
ATI Ex. 2108
IPR2023-00922

Page 1 of 316

 Pat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEft. 8 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 1 of 54—- raya UY

Author: Laurent Lefebvre

Issue To: | Gopy No:

R400 Sequencer Specification

SQ

Version 2.019

Overview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce’ir400\doc_lib\designiblocksisq\R400,Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specificetion

| . Se "APPROVALS - Us
Name/Dépt-- ee a8 Signature/Date

 fb

Remarks:

 THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |:
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2020 coch400_Sequencendes 73711 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © =

ATI 2029

LGv. ATI

IPR2015-00325

AMD1044_0257395

ATI Ex. 2108

IPR2023-00922

Page 1 of 316

ATI Ex. 2108
IPR2023-00922

Page 2 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 20014September,201522 of 54

Table Of Contents

LOVERVIEW oo eesccecccscsesnsucseseuesevenseressuesenssssenensnsssesessenvnsssssnnsssusssuenenensssssasssnnsrssenenenesseseses oF
Li Top Level Block Diganeee e cece eee tees e es ttittttntttentnttnnibinagieetitpitettaitstsusunanansnnnns 119
12 Data Flow graph (SP :
13 Comtrol Graphene eee ee eee ee cece ee ee tpe tte ateteteeteat ats sesssesnensategitstssttetestetetusesessss 1344
2. INTERPOLATED DATA BUS.. ... TG44
3. INSTRUCTION STORE........... see
4. SEQUENCER INSTRUCTIONS... oo. eccccccceccseeeesesesennnnnnneesssnnenenestuinnnnenenngnnnnneneetsenennnnnents 1644

5. CONSTANT STORES. oo. ccccccecccccce cece eeenen ce neeeennnn nese enaananteessnnnnnnssdsnanaanaanesssauuseenesessnseeeneces 1614
S.1 MGMOry OF AMIZALIONS ooo ocece eeeeeeeeeeseeestu ns ueununnane vitunuusstsssseeeyertunnusesetesseeceesers 1644 95
5.2 Management of the Control FlowConstantsV46 ee

$.3__Management of the fe-mepping tables ooopsen ttn aentaninuiniaaiasaies W346
5.3.1 R400 Constant Management once ceeccccecccsecesccssuscuscsssstuseussssusuussustsssustisussnisssiiiesiiss 1715

5.3.2 Proposal for R400LE constant management occ. cc ecccccsessesceccescuseesusssesutssuteseuss 4745

5 BA Free List BlOCK oie cs cccesussesesuespututctsitsauasasnnatuntstsiutsesssdstusistssstsesatsimtsta 14% 0
5.35 De-allocate Block ooo cece eves ceseeseseessssnstussatsusntusnatsssnditsutsiatitsutstsstustusnststsustnsasice2018

5.3.6 Operation of Incremental MODEL ccc cec cece ceceeeeeecseeseeteeevessesuseseesuessusensetssaseteessseses 2048

The controlling state...

6.2 The Control Flow PrOgrarm cicscssssssssssssesssssvssssssvssssovssstivassivsisnasvsssusiasnsssisssnn 2220 - oe
6.2.1 Control flow instructions table ooo... ccccceccecsccescussuscssessuseesussussussussetestussussstsususieciies 23B4

GB leplermertatcance eevee eves ceee eves esveuuesysesussuusvusybesususssubauesuesssisisussysiussussupbesssessuvessssss gage
64 Data dependant predicate instructions.2624 92
65 HW Detection of PVPS oooeecttee eeeeebetenentetettiotitteeteteeseuneneeneenes Z2f24

66 Register fle iCexing ooo occ cece cece ee ec cseseenees sisesstsntnesttennanunnpstunsessteteteseeeteteseteteuseseutes 2fZA - Bs

Method 7: Debugging registerscccettan2IBD o ee
Method 2: Exporting the values intheGPRs2625 =

PIXEL KILL MASK oceeeeter eeeeneeenereernyen es

7. eees

8.___ MULTIPASS VERTEX SHADERS (HOS) .0..cccscsscsssscsossssssssssssssssssosssssesssessessterssssesessnvsse a
9. REGISTER FILE ALLOCATION. oo ccssssssssesssssssssssssssssssssssssssvevssssssvsssvessssvsvsssuitensassvesasnevens 2826
10.__ FETCH ARBITRATION......... 2927

Lt.__ ALU ARBITRATION... 2927
12. HANDLING STALLS vovcsccecsssesssscssssssssssvesssssessesvesese 3028
13. CONTENT OF THE RESERVATION STATION FIFOS..
(4. THE OUTPUT FILE cece sceteeseeecseeseeeeeessereneeeeseneees

lJ FORMAT we

Exhibit 2029, dockuoo_Sequencerdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

49
$4 Constant Store INCeOxINeeeee eee eee eee eA EE LEE EEEEEttniiisitiuinbenpeneebigensititiitits sass 20418
$.5 Real Time Commands... we oes
$6 ConstantWaterfallingee2149 ©

LOOPING AND BRANCHES... eeae

AMD1044_0257396

ATI Ex. 2108

IPR2023-00922

Page 2 of 316

ATI Ex. 2108
IPR2023-00922

Page 3 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: ‘ 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 3 of 54sas a a fu LA i fy

17. THE PARAMETER CACHE oon ccccnccessseeceeesereennesntessutansnnnausssauannenautunmenusenssiennemassnsmennseases 333g
171 ExportrestrictionSeeeee BAB

17.2 Arbitration restrictions ooeeeeect eee e eect teeta bette etietettetttieettnetneenes 3439
18. EXPORT TYPES...... 3434

VertexShading... 346
PIK@L SMC oo cece eee eee eee ete ette ett tthe te eEEEEEEEEHiAG AMD itbecietpeiteiisspeieupispisisissinessnes

19. SPECIAL INTERPOLATION MODES.. 3534
19.1 Real time commands 3534
19.2 Sprites/ XY screen coordinates/ FB information...ceceeeetee atte tsetse 3532
 19.3 Auto generated COUNMIETSocccece cece nee e neat vee eesti es set epnt tent stb ecbttesteseusestussenes 3632

V9.3.) Vertex SRAers oonnocee oe cence cesses eee o cesses peepee veto utes cititeetstepeiteeseces.., 8632

19.3.2 Pixel Shader.once vce vee ce eee ec see o eee eee teece ete tets costtttpseiecriveeesees es, BEB2

20. STATE MANAGEMENTqu... cceccccccesenccsecesseeuseecessuuuseounsssusecenmnsussennnanavesesnnnaaantestnananacses 3623
20.1 Parameter cache SYNCHroniZationeeecece eee eee e eee tnnn nn ngetnasteteestnss 3633
21. XY ADDRESS IMPORTS... 3733

2L1Vertexindexesimpor 3733
22.
22.1

REGISTERS..
Control.

22.2 Context.
23. DEBUG REGISTERS...-cccccccssscesesseconnnnsssssnnnnsenseeennnensecassnensersunssansnsnnastanaesnnncstsananansttss 3835
23.1 COMO cece cece eee eee eaneesssts-ceeetueesesueessenesssesste setts steteetessepsusuusetsteseteseestieeetretensse: 3835
23.2 Control. 3835

24. INTERFACES...

241 External Interfaces. 3
242 SC to SP Inleracesoeeee eee eee beet bb ntetnes bitisstttetetieeetutesntenistessitees 3835

24.2.1aSCSPHoeceereesetpteptispntnabntnpitniigiinisinsiiinpwiiSOS
QD 2—SCanna ccceecec ccc vcen cece suesveves sustains pussy ssuaisviessustessesstyssipesunesneyeensenssss 3936

24.2.3 SQ to SX: interpolator DUS once c ccc ccccceccccsesescuscsssesvesusesstusuuteesseeseesusevisvssssvse vis 4138

24.2.4 SOQ to SP: Staging Register Data occ cssecscscscensnvsessvsvavannevsrpusstsvanveruunnvrtenvses 4138

2A25 VGT to SQ. Vertex interface.ccccecsesuescevesssetesuetussaueessestsevasiiivatnecaventisn 4138

242.6 S8Qto SX: Control bus... os esteess

24.2.7 SX to SQ: Output file COMOcece se eseeeccseeeevosessssvsnevosnssssnsnesessesaupnessesenss 4544

QA2B SO to TP: COmbrol BUS oes cece secs sencenvsvssanvssasnsvstasansausssssuvansetsssavisivansssanssesvanves 4642

24.2.9 TP to SQ: Texture Stal cccceccccssceucsscssapvavensssssasanvavsssssssunsayssvspisuanyisnvasssnesss 4642

2A 2AO SQ to SP: Texture Stall ccc secsescsvenesussasossnssssuasasvavstustusunssusssasitssunessunuesssanvess 4742.

242.11 SQ to SP: GPR and auto COUNT occ ese caeec seeeeee cess peenasstpsaetcetaevisatnintnsess 4743

BA ZAZ SQ to SPInstructionsonececses eve ees e cee ssceeee tees pcptatasaetsuaesseitgetisusnuatnsests 4844

242.13 SP to SQ: Constant address load/ Predicate Setoeee sve severe csusssrssersas 4844

24.214 SO to SPx: constant broadeast occcc ususencssesnesssvsussunvenetsssazosenmnsssusstineseuns 4945

Echiblt 2020. cdockd00_Sequencerdos 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257397

ATI Ex. 2108

IPR2023-00922

Page 3 of 316

ATI Ex. 2108
IPR2023-00922

Page 4 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE aFag 24 September, 2001 4 September, 201 22 4of 54 :
24.2, 15 SPO to SQ: Ki VECtOr lOocccece cece cses ceva saeetesuespestesntensttutitennevsiteetnentnnets 4945

24.216 SOQ to CP: RBBM DUS ooo ccesseussesuensssssansssnesssunsantvstisussnnnsvssansisssnnessunsnsssnsvess 4945 :

242.17 CP to SQ: RBBM DUS. occ ccc ecco cecs eens ecssonssesse css tatnastastsututninttisansisstniessenessesisess 4945

24,.2,18 SOQ to CP: State femoraete tates secetteatentetutueeuesstenengenepets 4945

 4 -SEQUENCER-INSTRUCTIONS.,
§.---- CONSTANT STORES wecnveveeverveves

5.31RA00.Sonstant-managementonsen
33-2—Proposatfor-R400L.E-constant-management
oy3-4—-Free-List Blo¢knner

3.3-5-—-De-allecate- Bloekrnnnaea

3-3-6. Operation-ofIncrementalmodel...
4——-GonstantStore-_indexing
$3Real-Time-Commands..

 62 The Control Flow Program oo...

1H—ALU-ARBITRATION.
12.-HANDLING STALLS essvseeensnnnensnrrenenrerrnonnneerinnenrernss

i—-1J-FOR MASensspinneraurearennerurinetinaee

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257398

ATI Ex. 2108

IPR2023-00922

Page 4 of 316

ATI Ex. 2108
IPR2023-00922

Page 5 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 20014 4 September, 20152 GEN-CXXXKX-REVA 5 of 54. i SLA i rat

SG16-S%-Interpolater-pus-—.-

SG1e-SF:-Staging-Register BalessseeeS
VGT to SQ > Vertex INterace..cece cece ee ect eteeeettreeteetttssetenttteecenenies 38

8Q10-SX:-COnU OL BUSsree44

Sx-1o-SQ-Outpul fle contolseAF
SGto-TP:-Contre| Bu enrnrererererreererrrrrrerrenerrrrrrrrrrerrerrrrrrerrrrerrreerrreerrerrrrerrre ee

+TPto-SQ:—-Texture- Stall enneereeerenrrrererennreereerrreerrerrrrererrrrererrrerrrererrereerrererrrererereethe

~-8G-te-SP:-Lexture- Stalrrererrennnrrrererenneeernrrenrreererrreerenrererreeeeerrereermerererreer he

SQ 1o-SP:GPR-and-auto-counter. ar

~-SQ-to-SPx:-ISltuGll ONS nnneceer eres rnrrrrrrrrrrrennnrerrrrrrsrnrrrrirrrrsrrre 44

Echiblt 2020. cdockd00_Sequencerdos 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257399

ATI Ex. 2108

IPR2023-00922

Page 5 of 316

ATI Ex. 2108
IPR2023-00922

Page 6 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20152 6 of 54lat fay ih

27-2-4+3---SP-to SQ-Constant-address-load/-Predicate-Set.44

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257400

ATI Ex. 2108

IPR2023-00922

Page 6 of 316

ATI Ex. 2108
IPR2023-00922

Page 7 of 316

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rey 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.5 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : Apri] 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

ORIGINATE DATE

24 September, 2001

Revision Changes:
A

EDIT DATE

4 Sepiember, 20152ieA A

First draft.

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 contro/
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPOQ interfaces. Changed della
precision. Changed VGT-SP0 interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT--SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that werer’t
directly tied to the SQ. Added explanations on
constant management. Added PA--SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scheme

DOCUMENT-REV. NUM. PAGE

GEN-CX200X-REVA 7 of 54

Exhibit 2020.dock400_Sequencerdes 79711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257401

ATI Ex. 2108

IPR2023-00922

Page7 of 316

ATI Ex. 2108
IPR2023-00922

Page 8 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 | 24 September, 2001 4 September, 20152 8 of 54Zi. oy A ih

Rev 2.01 (Laurent Lefebvre) Changed slightly the control flow instructions to
Dele : May 2. 2002 alowforce jumos and calls.

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257402

ATI Ex. 2108

IPR2023-00922

Page 8 of 316

ATI Ex. 2108
IPR2023-00922

Page 9 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 24 S5eptember, 2001 4 September, 20152 GEN-CXXKKXK-REVA | 9 of 54i Bmw i SA sh oe L

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257403

ATI Ex. 2108

IPR2023-00922

Page 9 of 316

ATI Ex. 2108
IPR2023-00922
Page 10 of 316

axe@860gJ9AODUOBOONJUGUAdODsousioJey"]eENUEPYUOD[Ly@8sbez
Wi"Wield

sores}

MOTAIOAGJosuonbag[eisuey3]oansly

 aada|

 44

gO/Od-g0/0d| FO/Od

x-GCiadsdsdsiaaaiNiaaNi|*_4;uvassouori

-SP1SQYAOEy)TOMLNODos

|

¥S3°OLAqoVvd

uoijeayioadsuaouenbesoor

OVO)INWISHOOD

sopussuenbag"pppTFBI

“OELNOOXELLUSA=TERIERYeTEGLOsequigjaespalvdLids

moLSEiP-
O62")IUBISUOT&

SLVLSHOLSdAYOLSLSNI

peey2d

SINVLISNOO|peddeyy49imsiéey
 LO0Z‘“IequiaydespzSaLVGSLYNISIYO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257404

ATI Ex. 2108

IPR2023-00922

Page 10 of 316

ATI Ex. 2108
IPR2023-00922
Page 11 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 20152 GEN-CXXAXX-REVA | 11 of 54Hew Oi QO Areeit ey
1.1 Top Level Block Diagram

>—— Input Arbiter _
esSe ee,

:—r VIX RS PIX RS -+—

Exec Arbiter

|

Texture —

Figure 2: Reservation stations and arbiters

ALU

Underthis new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257405

ATI Ex. 2108

IPR2023-00922

Page 11 of 316

ATI Ex. 2108
IPR2023-00922
Page 12 of 316

| ORIGINATE DATE
| 24 September, 2001

1.2 Data Flow graph (SP)

|

instruction

 | pipeline stage

 instruction

JLleealr npulout

pipeline

 ScalarUnit instruction

scalar inputfoutput

 | pipeline stage

instruction

f a EI

catrapuale)

RegisterFile f

RegisterFile

Register File /

~

EDIT DATE

4 September, 20152A PA A

it

R400 Sequencer Specification

 tel fre rea

el
r

text aa

\

itive Assembly Unit or Render!Backend

1itexture|

quest

Byepsinyxey~ ByWO)BlepSAW

texture rel pst

ae\

\ to Primr

Exhibit 2029 decR400_Sequercerdoc

v

textureaddress

(

Figure 3: The shader Pipe

PAGE

12 of 54

73711 Byes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257406

ATI Ex. 2108

IPR2023-00922

Page 12 of 316

ATI Ex. 2108
IPR2023-00922
Page 13 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20152 GEN-CXXKXKX-REVA 13 of 54few Ov ihr
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Be

Ciause # + Rady
is CST -

WrAddr | SEQ | WrAddr||

cMD | | |i || i |
cst Lo | |

Phase| D4 | A
emp CSTestzestipx 4 C Wrvec |

RdAdar Do |WrScal race
3 “ 2 a

FETCH SPO Re OF

WrAddr

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file contro! interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257407

ATI Ex. 2108

IPR2023-00922

Page 13 of 316

ATI Ex. 2108
IPR2023-00922
Page 14 of 316

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152fu CLA wif

R400 Sequencer Specification PAGE

14 of 54

— _ iToRB ! AQ At

Ag At A2 BO its*2 (15) + 8 bits * 6 Getta s)r4 oF /
bits*6)* 16 (quads) * 2 (double-butfered) AD At AZ BO i4096 bits

2 Bt co ot c2 32x 128 /
Bt co ci c2 i

3 cs C4 C5 pe XYsbuffer (ping-pong buffer) |
! 24 bits * 16 quads * 2 C3 c4 cS bo || 768 bits |

saad 1
4 DI ba EO E1 || Dt D2 EO EI |ju i

_ T T i
| | 1 TINTERPOLATORS ! tFIX-FLOAT + EXPANSION

L
i

—— | L |

512 | ™mm. my rf J |
| | |I

hp — fj |
valfen] Tul a] oa |an|

4uR | | fLE | LL |
| | |I I I

Exhibit 2029 dockd00_Sequencerdac

Figure 5: interpolation buffers

73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257408

ATI Ex. 2108

IPR2023-00922

Page 14 of 316

ATI Ex. 2108
IPR2023-00922
Page 15 of 316

see@OHB_J9A05UOBOONWYUGUAdODsoudIIJON“|EHUSPYUSD[LY@vaHeweiderpSuppuonepdasqUy:oBML]

sopisseanbes“ggpysop6702Tay

L2lOCL/GIL

SLL

ellbb

OlL

TeeeeCAITETFCAI
L00z‘lequieydes

¥G}OSLdovd

WAREXXXXXO-NADWON(AdaLNSWNOOd
EGLOJeqQueyaesyaLvd1103

 aivday

 I91a

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257409

ATI Ex. 2108

IPR2023-00922

Page 15 of 316

ATI Ex. 2108
IPR2023-00922
Page 16 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20152 16 of 54aB.
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mappedregisters.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4, SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257410

ATI Ex. 2108

IPR2023-00922

Page 16 of 316

ATI Ex. 2108
IPR2023-00922
Page 17 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September 20152 GEN-CXXXXX-REVA | 17 of 54hy

2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VWWR_BASE). Onthe read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF afler the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
ig 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacketof state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE and if both are idle willerase the content of state fo replace it ‘withthe newstate (this is depicted in Figure 8: De-allocation mechanism}
allecation-mechaniem). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 hus allowing the newstate to
reuse these physical addressesif needed).

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257411

ATI Ex. 2108

IPR2023-00922

Page 17 of 316

ATI Ex. 2108
IPR2023-00922
Page 18 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 24 September, 2001 4 September, 20152 18 of 54Zi. oy A ih

_ Free List
sities>

Context 0 => N

 | Renaming Table

~CurrenvLast|| |Context i
(8 rows of 16-8|| eri ;
bit physical => " Logical Address128 entries copy
in eight clocks) & Context

Physical
Address

 Global Register |Data Bus

Staging Data

Constants ' Buffer | > Physical
location <——_—_ | Memoryavailable i i . i
WRTR f —Staging Write Addr|

physical
address next

to physical
schedule address

for ready
deallac | for allocate|

Logical address i ~, Seq
Onthe peNN ConstantGlbRegBus _ aA _4 a | Requestwhen Ish are zero This !

first word of write , | Context |
Renaming Table Dirt |

for 1 Context yy |
Current/Last Logical i | Context &Physical i _L Logical

Address Address | Address Address —]er (Only | ditset | |
Le ‘cal de- | don't | |

Address|allocate allocate -—____| ifset) | or de| | allocate)| Renaming: table
N-Contexts

Copy Last held above to
Current Context onreceipt

of Set Constant for a
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry te current state.

Figure 7: Constant management

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257412

ATI Ex. 2108

IPR2023-00922

Page 18 of 316

ATI Ex. 2108
IPR2023-00922
Page 19 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXKX-REVA | 19 of 54Bu “ by i

SQ_STATE#ADDR

DEALOC _i—WRITE_ENABLE

Free List CNT VALUE|COUNTERS - 5 |
| |

| [| | PREVIOUS
i NOT lal STATE

| |
| NEW

| | | STATE| |

VALUE | || | |——— I=

VALID | he ~<| | L

/ oR || ; :

: | SQ IDLE
—— AND } PA_IDLE

CP_NEW_STATE_CNTL—
Cee SET CTX BITS

Figure $: De-allocation mechanism for R400LE.

5.3.3 Dirty bits
Two sets of dirty bits will be mainiained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incaming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked eachtime a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk thefreelist
like a ring.
The second painter will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_pir does not equal the stop_pir and the IFC is at its maximum count.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257413

ATI Ex. 2108

IPR2023-00922

Page 19 of 316

ATI Ex. 2108
IPR2023-00922
Page 20 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| ; 24 September, 2001 4 September, 20152 20 of 54
| 5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. if is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advancethe write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constanis happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthe first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated.Aline will be allocated of the free-list counter ar
the free list at read_ptr pointerif read_ptr |= to stap_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incrernented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has notfree list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-rmapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta's. It allows memory to beefficiently used and when the constants updates are small it can store multiple
context. However,if the updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shaderpipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257414

ATI Ex. 2108

IPR2023-00922

Page 20 of 316

ATI Ex. 2108
IPR2023-00922
Page 21 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 21 of 54ii

 Ae0ks =
between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1XR2X // Loads the sequencerwith the content of R2.X, also copies the content of R2_X into R1.*
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
worksis the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
Higure 9: ‘The instruction store

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257415

ATI Ex. 2108

IPR2023-00922

Page 21 of 316

ATI Ex. 2108
IPR2023-00922
Page 22 of 316

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20152 22 of 54
| 6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWVe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consistsof:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

41: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
f: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ’ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flowinstruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

| Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257416

ATI Ex. 2108

IPR2023-00922

Page 22 of 316

ATI Ex. 2108
IPR2023-00922
Page 23 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 23 of 54PNA Ait Sey
guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be done.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0}.

; - Execute
47 | 46... 43 40...34 oe88 152tO
Addressing 0001 | RESERVED | Instructions type + serialize (9|Count Exec Address

| | instructions)
Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, Q = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized),

 NOP

_ 47 [| 46... 43 42....0
Addressing | 0010 RESERVED

This is a regular NOP.

Conditional_Execute
 47 [46.43] 42 | 41... 34 | 33...16 | 15...12 | 11.0

Addressing 0011 Condition|Boolean | Instructions type + serialize @ Count Exec Address
address | instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction.

ConditionalExecute_Predicates

47 46...43 | 42 41... 36 35... 34 | 33...16 | 45...412 11...0
 Addressing 0010 Condition|RESERVED|Predicate | Instructions Count Exec Addressvector type + serialize

| (9 instructions) |

Check the AND/OR ofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. If the
condition is not met, we go on to the next control flow instruction.

| _ Loop_Start_ : /

47 46... 43 42... 17 20... 16 15... 1246-- 11...0
42

Addressing 0101 RESERVED loop 1D | RESERVEDIo Jump address
| opiD

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257417

ATI Ex. 2108

IPR2023-00922

Page 23 of 316

ATI Ex. 2108
IPR2023-00922
Page 24 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20152 24 of 54ey LYSiwes ed

| 7 : - LoopEnd”
| 47 | 46...43 1 42... 204 23... 21 | 20... 1649.47 | 15...1246- | 14...0| | | |

Addressing | 0011 RESERVED Predicate break loop ID | RESERVED start address
| | Predicate-break | leop- 1D

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break [= 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 (46... 43 | 42 | BB-41... 34 | 33.1382 | 12 | 41...0
Addressing o111 | Condition | Predicate RESERVED | Foree Call Jump address

| | | veeterBoolean |
| address

lf the condition is met, jumps to the specified address and pushes the control flaw program counter on the stack. /f
force call is set ihe condition is ignored and the cail is made always.

47 46... 43 | 42...0
Addressing | 1000 | RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

 47 46... 48 42 41... 34 33 | 32... 132 12 11 .. 0

|| Addressing 1001 | Condition Boolean|FW only | RESERVED | Force Jump | Jump address| | address | | |
 lf force jurnp is set the condition is ignared and the jump is made always, if FVonly is set then only forward jurmps
are allowed,

Allocate

47 | 46... 43 42...44 | 40... 4 3...0
Debug | 1010 | Buffer Select | RESERVED Allocation size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export}
11 — pass thru (out of order exports).

If debug is set this is a debug alloc (ignore if debug DB_ON registeris setto off).

End Of Program
47 46... 43 | 42...0

RESERVED|1011 | RESERVED

Marks the end of the program.

6.3 Implementation

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257418

ATI Ex. 2108

IPR2023-00922

Page 24 of 316

ATI Ex. 2108
IPR2023-00922
Page 25 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXKK-REVA 25 of 54oo i Ck
The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. it is returned to the buffer (@t the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored ina 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the mullitead ported device will be termed ‘status’.

‘State Bits’ needed include:

Control Flow Instruction Pointer (42-13bits),
Execution Count Marker 4 bits),
Loop Iterators (4x9 bits),
Call return pointers (4x12 bits),
Predicate Bits(4x64 bits),
Export ID (4 bit),
Parameter Cache base Ptr(7 bits),
GPR Base Pir (8 bits),

. Context Pir (3 bits).
0. LOD corrections (6x16 bits)vf

BOONDTEWN
sont

Absent from this list are ‘Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, cali return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits’ needed include:

* Valid Thread

e Texture/ALU engine needed
e Texture Reads are outstanding

Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 —pass thru (out of order export)

e Allocation Size (4 bits)
« Position Allocated
» First thread of a new context

e Event thread (NULL thread that needs to trickle down the pipe)
«Last (1 bit)

Valid bits (64 bits) « | ===) Formatted: Bullets and Numbering

e _Fulse SX (1 bit) * | 5 a4 Formatted: Bullets and Numbering

Echiblt 2020. cdockd00_Sequencerdos 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257419

ATI Ex. 2108

IPR2023-00922

Page 25 of 316

ATI Ex. 2108
IPR2023-00922
Page 26 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20152 26 of 54PAD Aiwet SB.

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of TextureReadsoutstanding or
Waiting_on_Texture_Read_to_Complete are ‘0’ are considered. Thenif AllocationWait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older threads have already done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not consideredif it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. Ifthe thread needed to allocate, then
ai this time the allocation is done, based on Allocation_Size. If a thread has its “las?” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how manytimes the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The TextureReadsOutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any nurnber
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way weplan to support those is by supporting
three vector/scalar predicate operations of the form:

PREDSETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_# ~ SETEO
PRED_SETE1_#~-SETE1

The export is a single bit - 1 or O thatis sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or QO. For example, the instruction:

PO_ADD_# RO,R1,R2

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257420

ATI Ex. 2108

IPR2023-00922

Page 26 of 316

ATI Ex. 2108
IPR2023-00922
Page 27 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXKXX-REVA 27 of 54ear: ——— A A
Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencerwill insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register’
0 1 ‘relative register
i 0 ‘previous vector’
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our newaddress that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

Weloop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangernents.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethe first error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stack full
return with stack empty

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257421

ATI Ex. 2108

IPR2023-00922

Page 27 of 316

ATI Ex. 2108
IPR2023-00922
Page 28 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20152 23 of 54A OEArs ol

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the vaiues in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exporis
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer(evenif they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allowthe shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257422

ATI Ex. 2108

IPR2023-00922

Page 28 of 316

ATI Ex. 2108
IPR2023-00922
Page 29 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA | 29 of 54Bf. O Avil fy

Above is an example of how the algorithm works. Vertices comein from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

 The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able ta handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. Tne ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinstt Einst2 Oinst2 EinstO Oinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257423

ATI Ex. 2108

IPR2023-00922

Page 29 of 316

ATI Ex. 2108
IPR2023-00922
Page 30 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20152 30 of 54A VA A wld

12. Handling Stalls
When the outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in orderto fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are pul before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BYV 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. (J Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Aliso assuming that A is the parameter value at VO (interpolated with |), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-!-J).

AOU = Id) — 10)

AOL? = JQ} - J(0)

AO2T = 1(2)- IO) PO PA

AO2ZS = J (2) - F(0)

AO3I = [)- (0)

AOBT = 103) - F(0) P2 PS
P0=C+1(0)*(A-C)+J()*(B-C)

Pl=P0+A0U*(A~C) + AOL*(B-C)

P2 = P0+A021 *(A-C)+ AO2 *(B-C)

P3 = P0+A03F *(A-C)+A03 *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Muttiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257424

ATI Ex. 2108

IPR2023-00922

Page 30 of 316

ATI Ex. 2108
IPR2023-00922
Page 31 of 316

 Ort | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE“au, 6 | 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA | 31 0f 54i oe iaeeneet by i
Adds: &

FORMAT OF PO's |J: Mantissa 20 Exp 4 fori + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa & Exp 4 for J + Sign

Total numberof bits | 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating paint convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constantattributes
Becauseof the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that if A= Band B=C and C =A, then P0,1,2,3= A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1.2,3 = A;

else if (| = 0) or (J = 0) and
(QJ = 0) or (1-I-J = 0) and
((1-J-1 = 0) or (7 = 0))) {

if@ =O) {
PO= A;

belse if(J '= 0) {
Po = B;

helse {
PO=C;

/irest of the quad interpolated normally
}
else
{

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTfor it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 10 11 1213 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 44 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding fo accountfor
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257425

ATI Ex. 2108

IPR2023-00922

Page 31 of 316

ATI Ex. 2108
IPR2023-00922
Page 32 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20152 32 of 54bansOVALDAwwit|
The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure11FiguretiFigure14. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 1OFigure1OFigure-1Q.

Basis for 8-deep Laich Memory (from R300)

8x24-bit 11631442 60.57813 17 perbit

Area of 96x8-deep Latch Memory 46524 we
Area of 24-bit Fix-to-float Converter 4712.2 per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT to Shader Interface

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257426

ATI Ex. 2108

IPR2023-00922

Page 32 of 316

ATI Ex. 2108
IPR2023-00922
Page 33 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 24 September, 2001 4 September, 20152 GEN-CXXKXX-REVA | S33 0f 54L fhe ey OA 3h oe i

aeee Line

VGT BLOCK

(IN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

VECTOR ENGINE

Figure 11:VGT te Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (7 R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER
4 bits 7 bitsADDRESS |

The PA generates the pararneter cache addresses as the positions came fram the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting &
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
Qo0000000000 the second one 00010000000, third ene CO100000000 and se on up to 11170000000. Then the next
position received (the 17) is going to have the address 00000001000, the igh Q0010001000, the 49" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257427

ATI Ex. 2108

IPR2023-00922

Page 33 of 316

ATI Ex. 2108
IPR2023-00922
Page 34 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 20152 34 of 54i fi OIA Av eil

71 Export restrictions

[7.1.1 Pixel exports:
Pixels can export 1,.2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved precicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. lt is always better to export
posistion as soon as possible. Position has to be exporied in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

 ALU (CATA) ALU(DATA) ALU (DATA)...

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed ta be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannotallocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (evenif not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereisalist of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 vertex exports to the frame buffer and index
41:47 - Empty
48:55 - 8 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257428

ATI Ex. 2108

IPR2023-00922

Page 34 of 316

ATI Ex. 2108
IPR2023-00922
Page 35 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 24 September, 2001 4 September, 20752 GEN-CAXKXK-REVA 35 af 54i it EY 3

63 - sprite size export that goes with position export
(point_h,point_w,edgeflag misc)

18.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
47 - Empty
8 - Buffer 0 Color/Fog (primary)
9g - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 exports for multipass pixel shaders.
41:47 - Empty
48:55 -8debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component)

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able abie to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter cata memories are hooked on the RBBM bus andare loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereisalist of all the modes and how theyinteract
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. if the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 0 = No modification
Param_Gen_]l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_l0 disable, sncd_xy enable, no gen_st — 10 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st ~ 10 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257429

ATI Ex. 2108

IPR2023-00922

Page 35 of 316

ATI Ex. 2108
IPR2023-00922
Page 36 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20152 36 of 54 Ba ree

Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage. garbage,s, t
Param_Gen_l0 enable, snd_xy enable, no gen_st — 10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s,t

19.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1* pass data to memory and then use the count to retrieve the data on the 26 pass.
The count is always generated in the same way butit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEXregister. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counteris reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_l0 is enabled, the data will be put in the x field of
the 2 register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1“ register (RO.x).

 |I
AUTO STG O | INTERPOLATORSCOUNT ,

STGi

r|

AUTO COUNT | 9000c0 |

 The Auto Count Value is
broadcast to all GPRs. Itis

loaded into a register wich has
its LSBs hardwired to the

GPR number(6 thru 63). Then
if GEN_INDEXis high, themux selects the auto-count

value and it is loaded into the
GPRsto be either used to

retrieve data using the TP or
GPRO sent to the SX for the RB touse it to write the data to

memory||

Figure 12: GPR input mux Contral

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to O and every

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257430

ATI Ex. 2108

IPR2023-00922

Page 36 of 316

ATI Ex. 2108
IPR2023-00922
Page 37 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 37 of 54 — ~ BAhenoe scsih
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every tirne the state changes, the newstate counter is initialized to 0.

21. AY Address imporis
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the [J
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the J data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See

section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

22.1 Control

REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REGSIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY__policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32°6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EOQ_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

22.2 Context

PS_BASE
VS_BASE
VS_CF_SIZE
PS_CFSIZE
PS_SIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PARAM_WRAP

PS_EXPORT_MODE

Exhibit 2028 cock405_Sequencercdes

base pointerfor the pixel shader in the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader (# of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cniltinstructions)
size of the vertex shader (cntltinstructions)
number of GPRsto allocate for pixel shader pragrams
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode

73711 Byest** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257431

ATI Ex. 2108

IPR2023-00922

Page 37 of 316

ATI Ex. 2108
IPR2023-00922
Page 38 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20152 38 of 54

1Ixxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT_COUNT Numberof locations exported by the VS (and thus numberofinterpolated
parameters)
PARAM_GEN_I0 Do we overwrite or not the parameter O with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shacer
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

23. DEBUG Registers

23.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2

23.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

24, Interfaces

24.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

24.2 SC to SP Interfaces

24.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data whichis transferred per quad is

Ref Pix | => $4.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257432

ATI Ex. 2108

IPR2023-00922

Page 38 of 316

ATI Ex. 2108
IPR2023-00922
Page 39 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXKXX-REVA | 39 of 54o. iHy - A
Delta Pix | (x3) => $4.8 Floating Point Delta | value
Delta Pix J (x3) => $4.8 Floating Point DeltaJvalue

This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the countis less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a bufferfree.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of |.J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,5P,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name | Bits|Description
SC_SP#_data 64 \J information sent over 2 clocks (or X,Y in 24 LSBs with facenessin upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
Bits [63:39] [38:26]=(25:13) [12:0
Format SE4M20. SE4M& SE4M8 SE4M8

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus

' The SC shall lock at state data to determine how many types to send for the
| interpolation process.

 Type 2
Field Face xX Y
Bits (63) [23:12] (17:0

| Format Bit Unsigned Unsigned

_SC_SP#_valid oe A[Valid a oe
SC_SP#_last_ quad data 4 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

2422 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks pertransfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name | Bits | Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
Event ~ valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo
and onto the reservation stations

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257433

ATI Ex. 2108

IPR2023-00922

Page 39 of 316

ATI Ex. 2108
IPR2023-00922
Page 40 of 316

ORIGINATE DATE

24 September, 2001
EDIT DATE R400 Sequencer Specification PAGE

4 September, 20152 40 of 54ie PUPS

making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pe_dealloc
or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid — Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pe_dealioc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

SC_SQ_valid

4 SC sending valid data, 2” clk could be all zeroes

8C_SQ_data ~ first clock and second clock transfers are shownin the table below.

| Name | BitField Bits | Description

[1 Clock Transfer | a

SC_5Q_event [0 1 | This transfer is a 1 clock event vector

L | _ |Force quad_mask = new_vector=pc_dealloc=0
8C_SQ_event_id [2:4] 2 This field identifies the event

0 => denotes an End Of State Event
1 => TBD

| SC_SQ_pe_dealloc 15:3] 3 | Deallocation token forthe Parameter Cache
SC_SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > © and after

dispatching the Pixel Vector the SQ will decrernent the court.
SC_SQ_quad_mask |[i0:;7] 4 | Quad Write maskleft to right SPO => SP3
SC_SQ_end_of_prim 11 1 End Ofthe primitive

|SC_SQstateid| [14:12] 3 | State/constant pointer (6*3+3)
8C_SQ pixmask _[80:15] 16 | Valid bits for all pixels SPO=>SP3 (UL,UR.LL,LR)
SC_SQ_prim_type (83:31) 3 Stippied line and Real time cornmand need to load tex cords from

alternate buffer
000: Normal
010: Realtime
701: Line AA
110: Point AA (Sprite)

8C_SQ_provok_vix | [35:34] 2 | Provoking vertex for flat shading
SC_SQ_pc_ptrO | [46:36] 11 | Parameter Cache pointer for vertex 0
2nd Clock Transfer Sean

8C_S80_pe_pirt | [10:0] it | Parameter Cache pointer for vertex 1

Exhibit 2029 dockd00_Sequencerdac 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257434

ATI Ex. 2108

IPR2023-00922

Page 40 of 316

ATI Ex. 2108
IPR2023-00922
Page 41 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CX2Q000-REVA 41 of 54
L - i PPEAL hE.

5C_SQ_pco_ptr2 (21:11) | 11 Parameter Cache pointer for vertex 2
8C_SO0_lod_correct | [45:22] | 24 | LOD correction per quad (6 bits per quad) mS

Name __ |Bits|Description - poe
SQ_SC_free_buff 4 Pipelined bit that instructs SC to decrement count of buffers in use.

8Q_SC_dec_entr_cnt | 1 Pipelined bit that instructs SC to decrement count of new vector and/or event |
sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo. |

The sean converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.

2.) A current pixel vector is being assernbled with alt least one or more valid quads and the vector has been

marked for dealiocate when a primitive marked new_vector arrives. The Scan Converterwill submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

24.2.3 SQ to SX: Interpolator bus

Name | Direction [Bits | Description
$Q_SXx_inierp, flat_vix SQ—S8Px 2 _ Provoking vertex for fiat shading
5Q_SXx_interp_flat_gouraud | SQ-»SPx 14 | Flat or gouraud shading
8Q_SXx_interp_cyl_wrap SQ—SPx 4 | Wich channel needsto be cylindrical wrapped
SQ_SXx_pe_ptr0 |SQ->SXx 4 | Parameter Cache Pointer
SQ_SXx_pce_ptrt i | Parameter Cache Painter
SQ_SXx_pc_ptr2 i | Parameter Cache Pointer
|SQ_SxXxrtsel 1 SelectsbetweenRTandNormaldata
SQISXxpelwren ’ 1 Write enableforthe PC memories
SQ_SXx_pe_wr_ addr | S$Q->SXx 7|Write address forthePCS)

$Q_SXx_pe_channelmask “| SQ->SXx L4 Channel mask

24.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.

 Name __| Direction _| Description ;
SQ_SPxvsr_data|SQ>SPK96“ Pointersof indexes or HOSsurface information
|SQ_SPx_vsr_double __| SQ>SPx {4GNormal 96bits per vert 1: double 192bits pervert a

SQ_SP0_ vsr_valid | SO-9SP0 4 | Data is valid
$Q_ SP1_ vsr_ valid SQ—SP1 1 | Data is valid
SQ_SF2_vsr_valid | SQ >SP2 1 _ Data is valid &
$Q_SP3_vsr_ valid | SQ >SP3 1 | Data is valid ; a
$Q_SPx_vsr_read | $Q >SPx 4 | Increment the read painters Be

24.2.5 VGT to SQ: Vertex interface

24.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257435

ATI Ex. 2108

IPR2023-00922

Page 41 of 316

ATI Ex. 2108
IPR2023-00922
Page 42 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20152 42 of 54Je OA i

| Name | Bits DescriptionVGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

; data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

| ‘VGT_SQ_vgt_end_of_vector"is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)

SQ_VGT_ortr | 1 Ready to receive (see write-up for standard R400 SEND/RTR interfacehandshaking)

24.2.5.2 Interface Diagrams

Exhibit 2029 dockd00_Sequencerdac

73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257436

ATI Ex. 2108

IPR2023-00922

Page 42 of 316

ATI Ex. 2108
IPR2023-00922
Page 43 of 316

see@OHB_J9A05UOBOONWYUGUAdODsoudIIJON“|EHUSPYUSD[LY@vaHe
sus

YaONENOSSHaQVHS

sopresvanbeg“ggrusop8z0e

YaddndamseXLOL

eeeTCARRSTYCAEee
vG10oFdovd

aaa45avaOS

&HOLFAFOANT

bATanodUSsTsA

ncnayje

ReSSb-——iZdea

 pussj5aOSva@cNas

ZAOMORAJO.CNTR

ZWIdnNcCdUSTSA

 pwduslon|224ilWAREXXXXXO-NADWON(AdaLNSWNOOd

©)nenaGWLWUSLSA

LDA

Lo0g‘IequaydespzaLvdSLVYNISIO

EGLOJeqQueyaesyaLvd1103

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257437

ATI Ex. 2108

IPR2023-00922

Page 43 of 316

ATI Ex. 2108
IPR2023-00922
Page 44 of 316

axe@2604JBAODUODIONWYHUAdODSOUIdIOJON"JENUSPIFUOD[LY@weatice,semscusnbesoorNdorcoeWAG| “SOSLSIU]IBABSVa10]Webegedb]balelsq”7Sinaiy
——-NOISSINSNVaLSdoOLsdadaNngs

NOISSINSNWALSLAVLS-adadaaHATHOdd

_

1

NOISSIASNVaLSdoOlsaaATaoud

ayOglaALAWaOf1aINDO@1a

 STUA

LAOWEWGO@1ayWLWd?yanus€Wawa€aNgsZWLWZanusSLdLOAZulyOsTulyosQOwlOsulaOs

PULL
 GSJOPy

49Vduoijeayioadsuaouenbesoor

aTEWORreyEGLOsequigjaespalvdLids

|

SaLVGSLYNISIYO TWIRELVANeaddoAATLOaLOdd

AMD1044_0257438

ATI Ex. 2108

IPR2023-00922

Page 44 of 316

ATI Ex. 2108
IPR2023-00922
Page 45 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20152 GEN-CXXAXX-REVA | 45 of 54Hew Oi QO Areeit ey
24.2.6 SQ to SX: Control bus

Name _ Direction | Bits | Description
SQ_SxXx_exp_type SQ—SXx 2 | 00: Pixel without z (1 to 4 buffers)

| 01: Pixel with z (1 to 4 buffers)
| 40: Position (1 or 2 results)
141: Pass thru (4,8 or 12 results aligned)

SQ_SxXx_exp_number | SQ>8Xx 12 |Number of locations needed in the export buffer
| | | (encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ—SXx i LALU ID
SQ_SXx_exp_valid | SQ-+SXx 4 ' Valid bit
SQ_SXx_expstate SQ>8Xx 13 | State Context
SQ_SxXx_free_done SQ—>SXx i | Pulse to indicate that the previous export is finished

(this can be sent with or without the other fields of the
| interface)

SQ_SxXx_free_alu_id | SQ>SXx 14 / ALU IB

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

o 00= 1 buffer
o O1 = 2 buffers
o 10 3 buffers
o 611 4 buffer
e 01: Pixels with Z
o 00=2 Buffers (color + Z)
o O1=3 buffers (2 color + Z)

10 = 4 buffers (3 color + Z)
11 = 5 buffers (4 color + 2)

e Type 10: Position export
o O0= 1 position
o QO1= 2 positions
o 1X = Undefined

* Type 11: Pass Thru
00 = 4 buffers
01 = 8 buffers
10 = 12 buffers
11 = Undefined

* Typ

oa0a

Cc
Oo

Oo0

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

24.2.7 SX to SQ: Outputfile contro!

[Name |Direction| Bits |Description — |
SXx_SQ_exp_count_rdy SXx-8Q 1 | Raised by SXOto indicate that the following twofields

| reflect the result of the most recent export
SXx_SQ_exp_posavail | SXx-95Q_ 4 | Specifies whether there is room for anotherposition.
SxXx_SQ_exp_buf_avail SXx—-8Q 7 | Specifies the space available in the output buffers.

| 0: buffers are full
1: 2K-bits available (32-bits for each of the 64

| pixels ina clause)

| 64: 128K-bits available (16 128-bit entries for each of
| | 64 pixels)

| 65-127: RESERVED

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257439

ATI Ex. 2108

IPR2023-00922

Page 45 of 316

ATI Ex. 2108
IPR2023-00922
Page 46 of 316

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20152 46 of 54i i OIA Av eil

24.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which RSline it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits | Description

TPx_SQ_data_rdy | TPx-- SQ 1 Data ready
TPx_SQ_rs_line_num TPx— SQ 6 | Line number in the Reservation station

TPx_SQ_type | TPx—> SQ 1 _ Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx send SQ—TPx 1 i Sending valid data
SQ_TPx_const SQ--TPx 48 | Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ-TPx 24 _| Fetch instruction sent over 4 clocks
SQ_TPx_end_of groupss| SQ.TPx [1 __ Last instruction of the group ee
SQ_TPx_Type _SQ-TPx 1 _ Type of data sent (O:PIXEL, 1:VERTEX) 1
$Q_TPx_gpr_phase SQ--TPx 2 | Write phase signal
SQ_TPO_lod_correct | SQ—TPO [6 _ LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pix_mask SQ—TPO 4 | Pixel mask 1 bit per pixel
SQ_TPi_lod_correct _SQ-—TP1 | 8 _ LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ->TP1 4 _Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ--TP2 16 | LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ-TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | SQTP3 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ->TP3 4 _ Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ-—TPx [6_ Line number in the Reservation station |
SQ_TPx_write_gpr_index _8Q-2TPx L7 Index into Register file for write of returned Fetch Data

24.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stali

|

SQ_SP_wr_addr |

TL -—

ne _| Direction[TP8a
Name oo
TP_SQ_fetch_stall

Exhibit 2029 decR400_Sequercerdoc 73711 Byes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257440

ATI Ex. 2108

IPR2023-00922

Page 46 of 316

ATI Ex. 2108
IPR2023-00922
Page 47 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE

| 24 September, 2001 4 September, 20152 GEN-CXXKXX-REVA | 47 of 54i i OA 3h oe i

24.2.10 SQ to SP: Texture stall

Name . [Direction| BitsDescription _ ee| =SQ_SPx_fetch_stall | SQ-»SPx 4 | De not send more texture requestif asserted :

24.2.11 SQ to SP: GPR and auto counter

Name Direction Bits|Description
SQ_SPx_gpr_wt_addr | 8Q-SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ-SPx 7 Read address
8Q_SPx_gprrd_en [| 8Qs8PK 1 | Read Enable :

$Q_SPOgprwren |1|WriteEnablefortheGPRsofSPO
8Q_S3PF1 gpr wr en i White Enable for the GPRs of SPi [os
$Q_SP2gor wren i Wirite Enable for ine GPRs of SP2 foe
$Q_SPx3gprwren 1 Write Enable for the GPRsof SP3 | 8
SQ_SPx_gpr_phase SQ >SPx 2 The phase mux ({arbitrates between inputs, ALU SRC |

_ . _. . _| teads and writes)
SQ_SPx_channel_mask SQ >SPx 4 | The channel mask
SQ_SPx_gpr_input_se! SQ >SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXQ,
| _MTX1, autogen counter.

SQ_SPx_auto_count SQ—SPx 12?|Aute count generated by the SQ, commonfor all shader
I pipes

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257441

ATI Ex. 2108

IPR2023-00922

Page 47 of 316

ATI Ex. 2108
IPR2023-00922
Page 48 of 316

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20152 48 of 54i ey4A 3h

| 24.212 SQ to SPx: Instructions
Name | Direction | Bits |Description
$Q_SPx_instr_start SQ—SPx 1 | Instruction start
$Q_SP_instr SQ—-SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzle 11:4
VectorDst 1742
Unused 20:18

1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 17:12
Unused 20:18

2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused :

3: Vector Opcede 4:0
Scalar Opcode 10:5
Vector Clamp a4
Scalar Clamp 12:12

| Vector Write Mask 16:13 TEESE

/ fo (| SealarWriteMask20170
8Q_SPx_exp_alu_id | SQ—SPx 14 _ ALU ID
SQ_SPx_exporting SQ—SPx 2 0: Not Exporting

1: Vector Exporting :
_ ee fo | 2SealarExporting :
$Q_SPx_stall |SQ->SPx 1 | Stall signal
$Q_SP0_write_mask SQ—>SPO0 4 Result of pixel Kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are computed perclock

$Q_SP1_ write_mask SQ—SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color

| | buffers). 4x4 because 16 pixels are computed per| | clock
SQ_SP2_ write_mask 8Q>SP2 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and ail color
| buffers). 4x4 because 16 pixels are computed per

ee—clot
$Q_SP3_ write_mask SQ—SP3 4 Result of pixel kill in the shader pipe, which must be

cutout for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

24.2.13 SP to SQ: Constant address load/ Predicate Set

NameDirectionBits| Description pened
SPO_SQ_const_addr SPO0—-SQ [36 onstant address load / predicate vector load (4 bits only) |
epee eeete | tothesequencer
SP0_SQ_valid | SP0—-SQ 41. | Data valid
SP1_SQ_const_addr SP1—-SQ 36 Constant address load / predicate vector load (4 bits only)

I

| to the sequencer

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257442

ATI Ex. 2108

IPR2023-00922

Page 48 of 316

ATI Ex. 2108
IPR2023-00922
Page 49 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 207152 GEN-CXAXKAX-REVA 49 of 54
SP1_SQ_valid _SP1>50 i _ Data valid
SP2_SQ_const_addr SP2—SQ 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
$P2_SQ_valid | SP2--SQ 14 _Data valid
SP3_SQ_const_addr SP3—S8Q 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
SP3_SQ_valid _SP3-80 4 | Data valid

24.2.14 SQ to SPx: constant broadcast

Name _| Direction [Bits | Description
SQ_SPx_const | $Q >-SPx 128 | Constant broadcast

24.2.15 SPO to SQ: Kill vector load

Name[Direction Bits| Description
SPO_SQ_Kkiil_vect SPO—SQ 4 _ Kill vector load
SP1_3Q_kill_vect | SP1--30 4 | Kill vector load
SP2_SQ_kill_vect SP2—SQ 4 _Kill vector load
SP3_SQ_kill_vect $P3—S8Q 14 | Kill vector load

24.2.16 SQ to CP: RBBM bus

Name | Direction | Bits Description
8Q_RBB_rs SsQ—cp 1 | Read Strobe
SQ_RBB_rd (32 | Read Data
$Q_RBBM_onrtrtr a _ Optional
SQ_RBBM_rr im _ Real-Time (Optional)

242.17 CP io SQ: REBM bus

Name Direction Bits | Description
rbbm_we | CP-»SQ [4 | Write Enable ;
rbbm_a CP5Q 15 _| Address -- Upper Extent is TBD (16:2)
rbbm_wd | GP-»SQ | 32 Data
rbbm_be CP—=SQ 4 _ Byte Enables
rbbm_re | CP>SQ [4 | Read Enablerbb_rsO CP5Q i | Read Return Strobe 0

rbb_rsi |GP--»SQ 14 _ Read Return Strobe 1robb rdO cP—S0 32 | Read Data

rbd? CPo-S8Qss82ReadData
RBBM_SQ_soft_reset | CP-»SQ im | Soft Reset

242.18 SQ to CP: State report
Name i Direction | Bits | Description
$Q_CP_vs_event SQ—-CP 1 | Vertex Shader Event
SQ_CP_vs_eventid | SQ3CP 2 _ Vertex ShaderEvent ID
SQ_CP_ps_event SQ—CP 1 _ Pixel Shader Event
8Q_CP_ps_eventid | SQ—CP 12 | Pixel Shader Event ID

eventid = 0 => *sEndOfState (i.e. VsEndOfState)
eventid = 1 => *sDone (i.e. VeDone}

So, the CP will assume the Vs is done with a state wheneverit gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Exhibit 2028 dockdoG_Sequencerdes 73711 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257443

ATI Ex. 2108

IPR2023-00922

Page 49 of 316

ATI Ex. 2108
IPR2023-00922
Page 50 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20152 50 of 54i Pid i

| 24.3 Exampleof control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

ud
ul

ex 0
PP
4@“ a

u3 Serial
u4

ex 2
u5
u6 Serial

ex 3
u7
loc Position 1 buffer
u 8 Export@4 -
loc Parameter 3 buffers
uS Expori 0

oebg oO
u 10 Serial Export 2
u 11 Export 1 End

 PRAbPPAPSEPAPRIDP
Would be converted into the following CF instructions:

QO Tex G Tex O Alu 1 A_u O Tex G Alu O Alu 1 Tex O

 sx O Alu 1 Alu 0 End

And the execution of this program would looklike this:

Put thread in Vertex RS:

Contro! Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits}, (ECM)
Loap lterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Pir (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

0 ‘0 [0

[CRP
i)

[Exip[GPR| ;
/O 10 :o Lo 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257444

ATI Ex. 2108

IPR2023-00922

Page 50 of 316

ATI Ex. 2108
IPR2023-00922
Page 51 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 20152 GEN-CXARKKX-REVA 51 of 54Sn & FEV AL i ey
00 — No allocation needed
01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 - pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bij, CAST)

Status Bits

VALID | TYPE PENDING [SERIAL [ALLOC [SIZE [POS_ALLOC FIRST | LAST
1 | ALU 0 0 0 0 0 1 0 poe

Then the thread is picked up for the execution of the first control flow instruction:=xecute ALu © Alu O Tex 0 Tex O Alu + Alu GO Tex © Alu O Alu + Tex O

It executes the first two ALU instructions and goes back to t
state returned to the RS:

@ RS for a resource request change. Here is the

State Bits

CFP [ECM Pu | CRP | PB | EXID | GPR EB | CPTR LOD

Status Bits

VALID [TYPE PENDING|SERIAL|ALLOC|SIZE | POSALLOC FIRST | LAST
1 | TEX 0 0 10 i) Oo 1 6

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
back in this state:

 State Bits

(CFP[ECM Pu | CRP | PB EXID | GPR EB [CPTR LOD
Q i4 Lo 0 [0 Q 0 0 [0 0

Status Bits :SameaFPEEEOPRATTIOTS—

|VALID | TYPE PENDING [| SERIAL | ALLOC[SIZE|POS_ALLOC FIRST LAST
1 | ALU 1 I4 i) [oO oO 1 Q

Because ofthe serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in
this state:

State Bits

| CFPQ

| Status Bits |.

VALID | TYPE PENDING | SERIAL | ALLOC [SIZE|POS_ALLOC FIRST__/ LAST
1 | TEX 0 LO [0 0 0 1 [oO |

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

Echiblt 2020. cdockd00_Sequencerdos 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257445

ATI Ex. 2108

IPR2023-00922

Page 51 of 316

ATI Ex. 2108
IPR2023-00922
Page 52 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20152 52 of 542: ot i

| State Bits
CFP [ECM [Lt CRP PB EXID _GPR EB [CPTR LOD
aq [7 iO PO 0 LO | 0 0 [O 0

Status Bits

VALID|TYPEPENDING | SERIAL|ALLOC|SIZE|POS_ALLOCFIRST|LAST

1 ALU 1 fo [0 fo. [0 1 a poe

Now, evenif the texture has not returned we can still pick up the thread for ALU execution because the serialbit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP | ECM [Lu | CRP PB [EXID _GPR EB | CPTR LOD0 8 Lo Lo 0 LO Lo 0 i) 6

‘StatusBits

VALID TYPE PENDING | SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST | :i ALU 1 4 0 0 0 1 o |

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

| CFP (ECM LL | CRP PB | EXID GPR EB | CPTR LOD
0 9g 6 6 6 [o 10 0 [9 6 |

| Status Bits |

|VALID TYPE PENDING| SERIAL|ALLOC_ - ;
4 TEX 0 oO : a 1

Picked up by the TP and returns:2xecute Alu O

State Bits

CFP ECM Li [CRP PB [EXID _GPR EB CPTR LOD -
1 10 :O 10 0 LO 0 0 10 0

“StatusBits ~ - ~ |e

VALID TYPE PENDING | SERIAL | ALLOC|SIZE | POSALLOC FIRST|LAST Jo81 ALU 4 Lo lo 0 Q 1 Q poe

Picked up by the ALU and returns (lets say the TP has not returned yet):ALloc Position 1

State Bits
oo[CRP«| PB EXID _GPR EBS| CPTR| LoD

LO 0 lO 10 0 LO Lo

Exhibit 2020. dockdoo_Sequencecdoe 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257446

ATI Ex. 2108

IPR2023-00922

Page 52 of 316

ATI Ex. 2108
IPR2023-00922
Page 53 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXXKX-REVA 53 of 54Bae ae
Status Bits VALID TYPE PENDING|SERIAL [ALLOC|SIZE [POS_ALLOC FIRST LAST
1 ALU i 10 1 Ot 4 Oo 1 0 |

ifthe SX has the place for the export, the 5Q is going to allocate and pick up the thread for execution. It returns to
the RS in this state:

Execute Alu O Tex 0

State Bits

CFP [ECM Ler [CRP|PB [EXID (GPR [EB [cptR [top |
3 [4 LO LO Lo LO LO [0 16 LO

Status Bits)

| VALID [TYPE PENDING [SERIAL [ALLOC [SIZE|POS_ALLOC FIRST|LAST ae
1 | TEX i iO 10 Lo [4 1 [0 fe

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

A_loc Param 3

State Bits

Status Bits Jo

| VAI ‘| SIZE | POS_ALLOC FIRST
1 3 4 1

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

=xecute Alu © Tex 0 Alu 1 Alu O End

State Bits

CFP | ECM [Li CRP PB EXID i GPR EB CPTR LOD
5 4 0 0 0 1 0 | 100 Oo [O

Status Bits |
VALID | TYPE PENDING [SERIAL [ALLOC [SIZE [POS_ALLOC FIRST | LAST :
1 | TEX 1 0 LO Lo 4 1 Lo L

This executes on the TP and then returns:

State Bits :

 | CFP [ECM ii [CRP PB | EXID _GPR [EB [CPTR [LOD |
5 2 0 0 0 1 (0 [100 0 Lo |

| Status Bits Joe

Echiblt 2020. cdockd00_Sequencerdos 73711 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © += | :

AMD1044_0257447

ATI Ex. 2108

IPR2023-00922

Page 53 of 316

ATI Ex. 2108
IPR2023-00922
Page 54 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20152 54 of 54
Ag 4A Sy 4 :

VALID TYPE [PENDING | SERIAL |ALLOC SIZE|POS_ALLOC FIRST LAST le
1 ALU | 4 [4 0 0 1 4 1

Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25. Open issues
Need to do sometesting on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2020 deckd0G_Sequeneerdoe 73711 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257448

ATI Ex. 2108

IPR2023-00922

Page 54 of 316

ATI Ex. 2108
IPR2023-00922
Page 55 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2016438 GEN-CXXXXKX-REVA 1 of 53bh SEOBAe SU
Author: Laurent Lefebvre

‘Issue To: |CoryNo:

R400 SequencerSpecification

SQ

Version 2.024

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overviewof the

required capabilities and expected uses of the block. It also descrives the block interfaces, internal sub-
blocks, and provices internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce\r400\doc_lib\design\blocksisq\R400Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS _
Signature/Bate.-— Name/Dept —

 Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of AT|. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT! Technologies Inc.”

Exhibit 2030.decR40G_Sequencerdes 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +

ATI 2030

LG v. ATI
IPR2015-00325

AMD1044_0257449

ATI Ex. 2108

IPR2023-00922

Page 55 of 316

ATI Ex. 2108
IPR2023-00922
Page 56 of 316

 Vt ORIGINATE DAT EDIT DATE R400 Sequencer Specification PAGE| *3 0 24 September, 2001 4 September, 201543 2 of 53
|

Table Of Contents

1. OVERVIEW... ccccssssscnnsusesssnnnseesvnsnnssernennssenannensns ponsnursssnonnsessuensncnssnmensnosaenatsessonanseneseunnaseseennns 7

1.1 Topo Level BlOCk DIAQram ooocecececeed c eee e eee e eee ieee d dds cbt teteccageeeeseeeeees 9
1.2 Data Flow graph (SP)ooccc ccc ccctenecre eee e eee ee neste cnt centr Clee aeeGGeAAeRAESegeeegcecedaaeaGedeHReeeeeeees 10
LB Comtrol Grae...ccccece cece cence ce eee net e eee e ee ee ee eee CcnECGt EC Ge dH GG EOGHAN HAASE Cgeeege ccd ded OSieHaeeeBeroas 14
2. INTERPOLATED DATA BUSccscesossnarsssnsonssevensnonensvnsessoesnnansseoennsatsssanonsnaveneznnenanas 11

3. INSTRUCTION STORE.......cccccccsceccsscnnsercensnseaceesnonstsenseneuneeensearsneauesescenuseareneneuntaeeseneevenense 14

4. SEQUENCER INSTRUCTION G.:ccssssscsssncssssnonesecenssonnsersenarocensnsnrecenannesessponenesenenoeenerne 14
5. GONSTANT STORES1.00... .cccccssscsessoensssnesssonesssssnsonssessosonensnanersosnnnanssensnannsssvanonssessaesonenanas 14

5.1 M@MoOry OFG@MiZallOns o.oo... cece cece cece ccceeceesceeeaeesuaaaeeessseeeeeecceeeeeeesseeeaaassssseeeseseeeeeeseeess 14
5.2 Management of the Control Flaw Constant 00.000ccc cece cece ccceeteseeteeeeteeeeeeeecneeenencaea 15
5.3 Management of the re-mapping tablesoooeencee cee eeeeeeeeeeeeaeeeaaaansaaaaaeneeeeees 15

5.3.1 R400 Constant management...cece ccc ceeeeesee eee ceeses tes cetevetetvevevtevevevetiertes 15

5.3.2 Proposal for RA0OLE constant management...cccccc ccc eee eset eetesventeeeetenes 15
5.3.30 Dirty Bitsoccccc cceccccccccceveseeneesvevetuneevstersessessseisusvevetensetersessreistisiservetetesttee. 17
5.3.4 Free List BlOCK. o.oo. ccc cc ccc cece ssesesessstenesescacessvesenesensecsnensseseseesavsceussensetenetsnscesseteesnees 17

5.3.5 De-allocate BlOCK ooo oooceeeee ce ceseeeesseneetevsceneetessstateatessivansevsttivensieatentstennetserseens 18

5.3.6 Operation of Incremental Model ooo... cececcceseeseesceveseeveusvevessetsvavetvtevavstiennvavscstes 18
5.4 Constant Store Indexing... ccc ccecccee eens cee e cess ccee eens ce ee dees eaAeeeeseeegeees cc ects caus aaeeeuaeeneasenees 18
5.5 Real Time Commands2...cece ccc eee cceeeeescccteneresaeeeaaeeseeeeeeecceeeeesccttnettesananasseeteeeerccee 19

5.6 Constant Waterfalling oo...ccccece cence ce eceeeee cote eb nese aaees sees nese cgeeeecteceaadaaeaeeneeeesesegesencnaes 19
6 LOOPING AND BRANCHEG.........:s:ccsssssscnsncsesesnesesensspanersenarocensneresscnanneseseannenesenenoeansonn 20

6.1 The controlling State.oocece eee c cece ect nce cases eee cone eeeeescneecactaaaaaaueeeseeesaseseeeesuies 20
6.2 The Control Flow Prograrn oo... cece ccc cece cesses cee ceeee cee naee eee eeeeseeceeeecceeeeseeeneessseeeseeeseaea 20

6.2.1 Control flow instructions table... ccccceeccccesessscsseveresenvevessrestevessnntinsssenntenieites 21

ye 01 ©) (<2 60>] 0111 0)6ceZo22
64 Data dependant precicate InStructionsooocececc neee cece te be eateeteeeeaaaeees 2524
6.5 HW Detector Of PVPS... ccc cee ccceec cee eceeee cere ccte cere ce aee nase ueeeeeeeceeeceesscue nee cesaaaesuneeanens Zoe4
6.6 Register Mle INCOXINGccccece anette ceeeeeeeecneeeeeseaaeeeeesseeaneeeceeaaaaeseeeeeeasceneaeerenaaes 202524
6.7 Debugging the Shaders...ceceeect cece cnet eee cee aeeeceeeeeeseeeeceetcneeeeeesensasees 2625

6.7.1 Method 1: Debugging registers oo... ccc ccceccccsceccseseeseeceseteetreceestaverstevsevevtnteess 2625

6.7.2 Method 2: Exporting the values in the GPRS...eceteees cette rere 262625
7. PEXEL KILL MASE q....ccccccccosencsrerctssnossmsentosotmeesesesoneoesecenustsnssausesuentansesssetenesesesenedenecesectanenene 26

8 MULTIPASS VERTEX SHADERS (HOS)... ...cccssssssencconssssensrsnserscensnsersssnnnnsecensnnanseenenanes 2726
9, REGISTER FILE ALLOCATION|..occcccssscccccsssnnsneenneessessnnnsrssennennsvesunseseeseeansecunnnsesenenenness 2728
10. FETCH ARBITRATION... ..ccccscsonsscessssnsnsssnsessonsusnnaessseueussesssonssensenssnanasensns oennntsesevannases 2827
11. ALU ARBITRATION........cc:ssesssssenssesssseneeeneansensnnsensoennenanssonpannrserensanseceneannecnnnetasoonnenenes 2827
12. HANDLING STALLS oo. teccesessssnecsesssweseessensnacensuensaeuansnsssennonssessonaeneeeneansecennuseseeenenness 2928
13. CONTENT OF THE RESERVATION STATION FIFOS..........ccccccccesersssssnsnnnscesnnnersveeneeses 2928
14. THE QUTPUT FILE.........c:cccensscsnensnsessonenenssennnansensennaensenancensonsnnnessonmaeeseranansstnaenisenennnncess 2928
TS. ed POIRMAT ooo. ccssesceseenneensnnsereesunwasseyseeusenssnnesssusnennesssnnnanstse sounensusneensossunmnesseenenstsesepnansess 2928

15.1 Interpolation of constant attributes ooocececece cece eee c ee ee sees saaaa aa aeentteeeeeeeeeeenes 3029
16. STAGING REGISTERS.........ccccssssnseccsensnsnnsnensrocnsnnnness snannenessnnansesenenonnseenseannecnansuasoennnneess 3029

Eyhibit 2030. deckauu_Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257450

ATI Ex. 2108

IPR2023-00922

Page 56 of 316

ATI Ex. 2108
IPR2023-00922
Page 57 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE > 24 September, 2001 4 September 201543 GEN-CXXXXX-REVA 3 of 53
17. THE PARAMETER CACHE ...w...ccsssssssssnssssensssnsscsnsenrussnnwnsseennnnseuesunsuseusnunessavensuaneneuns 323430

17.1 EXPOrt rEStriCtions.oocccc cece cece eee c cece eee a eae eee eceeeeeeeseeeeeeeeseeeaaascisseseeseeeeeereeeees 333430

17.1.1 Pixel exports:ooocece ccs ceeeeeenses cree setetrsersvenserertvevvittsttvnettteesnen 333439

7.1.2|Vertex exports: occcece es cceeeesesceeeterscteesiersettetertintvetevtsnetetsteteteresenes 333439
L713 Pass thru exports: occcc cece ces eeercstrtevssertenesctnntavventtnitittneinntniens 333430

17.2 Aroltration restrictions...cececcccecccceccccccceceseeeseeecueescsescvevtenetestsesteeeneaes 333430

18. EXPORT TYPES.ccccossecsssvenosssseannnevesssnnsnaseuaasssneuansssananeusaasnnnnansvenannnecassunnsuaseuaasusennnn Soceet

TB.1 Vertex SPACINGceecece cree etree rr nee e ae eA RAE ARE C SEG C EEG E CECE Cae aaeeeeneeneesecgeeeeneceae 333234
18.2 Pixel Shadingocceee cee cece eee eee a cece teens aeeeeeeeccneaeeeesestnieseeseeneseees 343234
19. SPECIAL INTERPOLATION MODES.:ccossscarsossoonsssosssneusessunmnanessanneneosnnavsassasenssvenann 343234.

19.1 RE@l TMG COMMANGS0ceccceccceneceeeseueeaecesaeeeaeeeeansarestansvareenaeeesvenenereeeenes 343234

19.2 Sprites/ XY screen coordinates/ FB information...eeeee ete 343332
19.3 Auto GeNE@raled COUNLETS 00ccee cece ccc c eee eter ened deen Ecdddeeee tees eeee cree Gees CGCeKEEECcadeeEEEeeeeS 358332

19.3.1 Vertex Shaders .ooccccccccccccccccescecsecsvcsneceeerseeeecavcrtseevssaevariciseutessatevnereevavenerteny 353332

19.3.2—Pixel SHAGErS ooo ccecccccecevcsneceevseseveveecrsaeavssereauereaesesissivarsassatevnteesevavevereety 353332

20. STATE MANAGEMENTcuvssscseaeneservessessssussossssvssnaso0evenscssuvsuusesssunnosnaopenenso0evenecesuvess 383433
20.1 Parameter CACNE SYNCHIONIZATION ooo... cece cc ccc ec tenceeceeaeeeeeceee nner seeeeeascenneeeeraaaes 398433
21. XY ADDRESS IMPORTG........0...0cccecssecosscsccesssscsssonoousssseeeusceveseussessussoussvooouensveceuseeteveus 363423
21.1—V@P@x INDEXES INDOMTS0ccece cece cece cece ener bene nenHC cad cece ccee cece ec ee de EEE ECEEEEEEECtEEEEEEEEEEES 363433
22, REGISTERS. oooc.cccscccveccvssssssennnnsssscnseusescusuussevessnasannnneusovevasnsssstsuusesssusnnanssnnenusecuassevesunss 363834
22.1 COPOL onc cece cc cecccccccecccececceucececcececuuvececauecscueesececeeeauestereeeersteeeteeveceveneesrateeereeeess 363534

22.2 COMOccccece eee ceue cece eeeereae ects cuneeeueeseraneeccraversvereneaneceraneeeereresriveenreterenes: 362534

23. DEBUG REGISTERS. ..0.......c.c00scesecessecvnesevecevsussnssnnnnssoscususescasauesevessnaansnanensovevsnsceseuses 373635

23.1 COMERocc cec ccc ceccccecccccceceeceue cece veueceuscereeecseeeesevesecaeesseeeetervecerevecereueeieaneetereseess 372635

0P6110Se3/3635

24. INTERFACESoooeescsesesessrssneesevsvererseversemsessnnmessvsvensevenernserevnenteenees 373635

24.1 External Interfaces... ccccccccccccccccscrescrevevsvsescasevevssuenevevsveverescevenerererees 373635

942 SC to SP Interfaces...occcccecccccccccceeccccuccecuceeccecuceceeeecereeecstaeceveveeeennecereess 373635

QA21 SOSPHocc cccccccccceccesccesceseeseneevescreaucessietsuesetsevevescreensevrvesnessvsvevevessunseseveses 373635
QA 2.2 SCSQcececece cece seteetee tes ereetenstettetentesvecettereseettereititetervetneereceees 383236
24.2.3 SQ to SX: Interpolator DUS oooeecece ee ccsee cen seneetessserentesesantanvecetsenavenees 403938

24.2.4 SQ to SP: Staging Register Data o.oocececect te sett retterteternrnreens 403938
24.2.5 VGT to SQ: Vertex Interface... ccccceccccecccseceusvsssevecevcresevevinvevavesrecevavereeeees 403938

24.2.6 SQ to SX: CONtrol BUS o.oo ceccccecccceccsesseseeesssevesenevavcrerevevsetevseaevanetevsreaverees 444244

24.2.7 SX to SQ: Outputfile Control oooeeeccc eeses cee eee csetteesvenertevesteeerenes 444244
24.2.8 SQ to TP: Control OUS coco cccccccccccccccccccceeccsseenececcsessecsesusecerscsesevercessiuerestenencerees 454342

24.2.9 TP to SQ: Texture Stall ooo ccccccccccccceccesceccecesecesercsveversereveversersetesseseusvereereree: 454342

24.2. 10 SQ to SP: Texture stall.cecc ccc cecce cece cece ceeveeeeseseeevesesscesteseevesteetereeees 464442

24.2.1] SQ to SP: GPR and auto Counter...cececect te stetentetettetssernerteritens 464443
242.12 SQ to SPX: INStUCtIONS 2cccc cccccccccecccceceucecsseseeccstenecertuesecerecetecrsessetetereeees 474544

242.13 SP to SQ: Constant address load/ Predicate Setcccccccccccccceceeeseceeeeesvesees 474544

24.2.14 SQ to SPx constant broadCAaSt .oo..occcccccccccccceccsessecsececenveseeneveccesseevesteecenverees 484645

Exhibit 2030.docRaGG_Sequencer.dec 74578 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257451

ATI Ex. 2108

IPR2023-00922

Page 57 of 316

ATI Ex. 2108
IPR2023-00922
Page 58 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201573 4 of 53

24.2.15 SPO to SQ:Kill vector load ooccccece cceceees ete tecerseetescsereeetscrererevsereey 484645

24.216 SQ to CP: RBBM DUSooccececeecseecetescsneteteecenteeersvtteerersettereeteees 484645
24.22.17 CP to SQ: RBBM DUS oo. ccccccecceecscctecescetcreeserersesestseetenvetteitversisensetene, 484645

24.2.18 SQ to CP: State report oooeccecesceeesscsveveneveetesteversesersetuisisviveteseereieee 484645
24.3 Example of control flow program execution.ccccece eset ete tetttnee ete 494645
25. OREN ISSUES... csescsssnsesssnsessesssenssnsnnnnnaaaennanunsssanannesebnneaesannnneneusannaneessaeasaaonnaneasannnen §35150

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257452

ATI Ex. 2108

IPR2023-00922

Page 58 of 316

ATI Ex. 2108
IPR2023-00922
Page 59 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA | 5 of 53SOOO BAe SO a

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre}
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2007
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 200%

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.4 (Laurent Lefebvre}
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.171 (Laurent Lefebvre}
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

Exhibit 2030 docRaeo_Sequencer.dec

Changed the interfaces to reflect the changesin the
SP. Acded somedetails in the arbitration section.

Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, conirol flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes madein the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_orjump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SP0 interfaces. Changed delta
precision. Changed VGT—SP0 interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—S@Qinterface. Added content on constant

management. Updated GPRs.
Removed from the specall interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of

clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exparting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
New control flow scheme

74578 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257453

ATI Ex. 2108

IPR2023-00922

Page 59 of 316

ATI Ex. 2108
IPR2023-00922
Page 60 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201543. 6 of 53— eons ea OU

' Rev 2.01 (Laurent Lefebvre) Changed slightly the control flow instructions to
Date : May 2, 2002 allow force jumps and calis.

Date: May 13, 2002 constant/pred interface. Added Last field to the
SQ--SP instruction load interface.

Rev 2.02 (Laurent Lefebvre) Updated the Opcedes, Added type field to the

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257454

ATI Ex. 2108

IPR2023-00922

Page 60 of 316

ATI Ex. 2108
IPR2023-00922
Page 61 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 7 of 53fae SO aaa

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencerfor the whole chip.

The sequencerfirst arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencerwill not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2030.docRago_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *««

AMD1044_0257455

ATI Ex. 2108

IPR2023-00922

Page 61 of 316

ATI Ex. 2108
IPR2023-00922
Page 62 of 316

axe@OBEYJBAODUOBOON[YBUAdODsousisJoY"JEYUSPYUOD[LY@veSokaeer,—sopuesuenbes“oorasaTGETTIERSMITAIOAOJadUaHbesgJusoues:]oNSLy

+gyjyayjy}ayjsayAAA4—_ gO/Od-}O/Od=~goiod+SO/OdaeSO«uea>)BLVLSHOLES<=WweliiedsdsdsdS|;;[ena—ASS7_Z|LLSNIaw|;- |r*)SYOLSLSNI«HatlNii)SaLNi«aaLN|ZOLS1s
ISN]woet"|OS“ishadvessowdriLe|peSPICED4peasyJO-2L“SPSOWNOZ-——TORLNGO=TORLNCO|aes1Reyr|—ddNOwLNODSLINVLSNOOpaddey)XELNSAjosie

Be rrrenrrernrnnnnnnnnnancnmnnanannnwis
LoreayeeYE€gJOSESTazLO0Zequeydes9Z39vduoleoyloadgJaouenbasCoryavdLida3ivdSLYNIDINO

TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2108

IPR2023-00922

Page 62 of 316

AMD1044_0257456

ATI Ex. 2108
IPR2023-00922
Page 63 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 9 of 53fae SO aaa

1.1 Top Level Block Diagram

|

— Input Arbiter ==

—+ VIX RS PIX RS *—

4 Exec Arbiter tt

| |
ALU Texture —

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2050.cocRauo_Sequencendes 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © ««#«

AMD1044_0257457

ATI Ex. 2108

IPR2023-00922

Page 63 of 316

ATI Ex. 2108
IPR2023-00922
Page 64 of 316

ORIGINATE DATE

24 September, 2001

 EDIT DATE
R400 Sequencer Specification

4 September, 201573.a eo PAGE

10 of 53

"12 Data Flow graph (SP)

tu
a(mem

5 | E5 6
B fps= #= =

BBEh

DL

Register File

tel |re requ

~\

5 |
3
2 A

2) \
= { Register File

wd OL Scalar input/output
— MAC|| text|reque' "

pipeline stage | ~
=
Cc
~| _—

=| &
5| © ;
3 o (

Fa Register File t Ls- s—_.. 2
BOx oho= quest igScalarinputlouin aa ut e Ss

So LL” ; i e g =
pipeline stage | 3S g|—S pp Dm

|)
5} og% &
ene

2 &

8k texture rel bst

scalar input/output

textureaddress

(

(ta Primitive Assembly Unit or RenderBackend

Exhibit 2030. dock400_Secuencer.dec

Figure 3: The shader Pipe

74878 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257458

ATI Ex. 2108

IPR2023-00922

Page 64 of 316

ATI Ex. 2108
IPR2023-00922
Page 65 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA 11 of 53BAe Od ALO

The gray area represents biccks that are replicated 4 times per shaderpipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rdy ST WrAddr

P|

Pf

WrAddr

CMD

CST

a

Phasei .
CMD csTcstzest ipx 4 B C WrVec |

RdAddr | | | | | | | WiSeal WrAddr
voy | yey yy

Vm

FETCH spo OF

yp WrAddr

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpclators contain an |J buffer to pack the information as much as possible before writing it to the registerfile.

Exhibit 2050.cocRauo_Sequencendes 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © ««#«

AMD1044_0257459

ATI Ex. 2108

IPR2023-00922

Page 65 of 316

ATI Ex. 2108
IPR2023-00922
Page 66 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 12 of 53L Aes PAS

we

ids buffer (ping-pong buffer}

Bo (28 bits * 2 (J) + 8 bits * 6 elta lUs)+4 exd
bits*6}* 15 (quads) * 2 (double-buFfered)4096 bits

32x 128

Ys buffer (ping-pong buffer}24 bits * 16 quads * 2
768bits
KDA

m1 ne Eo a

, — me _

ar

 a ORE ia1

2a + vv Pe z= Q9Zz

S12

4LR i || ak || ar | xa
He

Figure 5: Interpolation buffers

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257460

ATI Ex. 2108

IPR2023-00922

Page 66of 316

ATI Ex. 2108
IPR2023-00922
Page 67 of 316

vex@OBEYJGAODUOBaHOKJUBUAdODsousiajay“PENUSPIPUOD[LW©veee002WeIstIpSulUonUpodisiy:9oNnsLy
sepuesuanbesg“ooreconheaHS

La)0d|2D)0gGOevOsLDvOLY0Ded£O)1a]OV1dod7oOAXod| odAX|ZOpo|GypepAX| GO|G9|ax}bO~~|éa)oJyea]~~|OO,Jt}tfaEETay#99|AK09id|edaCCLICEL|LOLOcL6bLSLLIZLLIOLLIGELPILISbL|ZELIbbL/OLL)61)SL|ZLeGJOSLWASXXXXXO-NaADeTSTOSTOQUSHISSLoo‘equaydespzdvdWON‘Asde-LNSWNOOGaivdLidsALVGSLYNISIHO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257461

ATI Ex. 2108

IPR2023-00922

Page 67of 316

ATI Ex. 2108
IPR2023-00922
Page 68 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
: 24 September, 2001 4 September, 201543 14 of 53. Ries GAO ha on

' Above is an exampleof a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The |J information is packed in the [J
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to loac the ALUinstruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mappedregisters.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthestory is quite the sarne but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite reguiar shader data. The shared code (shared
subroutines) uses the same path as reai time.

4. SequencerInstructions
Ail control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. Tne read BW from the ALU constantstore is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixelWvertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 cifferent states total, which are going to be shared between the pixel anc the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table.It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 becauseit must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257462

ATI Ex. 2108

IPR2023-00922

Page 68 of 316

ATI Ex. 2108
IPR2023-00922
Page 69 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA 15 of 53_nOi SOOO" AA

5.2 Managementof the Control Flow Constants
The contro! flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the contral flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change(by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirementis that the physical memory MUST beat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both areidle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:-De-aillocation-mechanismFigure-8:-De-
allocation-mecshanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context cirty bits that were used in the current state to 7 (thus allowing the new state to
reuse these physical addressesif needed).

Exhibit 2030.decR4uo_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044

0257463

ATI Ex. 2108

IPR2023-00922

Page 69 of 316

ATI Ex. 2108
IPR2023-00922
Page 70 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 16 of 53a A iO

Free List
Free_

Address Fe
fo Numberof entries

1 equals Max Number of
Ft Physical Blocks, Ali| Pointers start at | i

Free_ptr—» rointers Start af zero | Renaming TableWritePir can never pass each ! Context 0 => N
Whena Logical other Current/Last i

Address is written Context i

nitesBeare (8 rows of 16 -8 | I)gras rows of 16 Sbit|store the physical bit physical => [>r7) PMysiest = Tes entice sony |_Logical Address
address that was(MSStop ptr 428 entries copy| |______Sighelosks)__Hocatedbythat _ i 4 \
Lopical Address ptr to first physical in eight clocks) ||| Context # | & Context

address that is ' ' @scheduled to be de-
allocated but naty 6
yet de-allocate. 6Advanced each ti i

a contextis:freed by | Context N P hysical
ee the numberof t Address
i— Read_ptr tepiccesoymat— pir to physical Context

. ! addressthat will beused next if the init
count is at

¥ maximum nurber
Address of physical addressto Allocate

Global Register >|
Data Bus Staging Data >»

Constants ee Buffer | Physical
location <—_ r | | Memoryist ! i

avaliable (pass Phys ——> Staging Write Addr |WRTR Address if ging
[Context |Dirty} i— >

physical —-Dealloe <sidelroes Counts | next
fo physical |

schedule address
for ready

de-alloc for allocate
Logical address i | onttQn the, tape A |GibRegBus A A _ Requestwhen Isb are zero Ths

first word of write - Reset Context
Renaming Table Dirt Dirt |for 1 Context y y |

Current/Last Logical Logical | Context &Physical | | Logical
Address Address »@|Address Address(Only (lf setper s i: de- dont |
Logical }allocate allocateAddress .

ifset) | orde- |
| allocate) | Renamingtable

N-Contexts

behind Set State load - 16 clocks)

Exhibit 2030. dock4u0_Sequencerdec

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

all other Set States just write one
entry to current state.

Figure 7: Constant management

—_—WdJao—_———>
|||ILo

74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *s«

AMD1044_0257464

ATI Ex. 2108

IPR2023-00922

Page 70 of 316

ATI Ex. 2108
IPR2023-00922
Page 71 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015438 GEN-CXXXXX-REVA 17 of 53

SQ_STATE#

DEALOC

Free List «CNT VALUE COUNTERS

 |

| PREVIOUS

i 1

| Nor | STATE
<¢—__ |

NEW

| STATE! |

- VALUE po || - — |
| aVALID | | |

——| [L——

| SQ IDLE

——AND | PAIDLE
-« CP_NEW_STATE_CNTL—REMAPPING Lt

ee SET CTX BITS

Figure 8: De-allocation mechanism for R4A00LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. [fit is set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the criver does a set constant
twice to the same logical address between context changes. NOTE: Itis important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been usec once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical biock address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enaugh to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finisnes. The address between the stop_ptr and write_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFCis at its maximum count.

Exhibit 2030.docRauo_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *«« |

AMD1044_0257465

ATI Ex. 2108

IPR2023-00922

Page 71 of 316

ATI Ex. 2108
IPR2023-00922
Page 72 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201573. 18 of 53a

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pcinter. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof biocks in one clock.

5.3.6 Operation of incremental model
The basic operation of the mode! would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter becauseits not at the max value. The cata will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that nasits dirty bits set while in the same context. both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthefirst draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy anc if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set siates comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the freelist at read_ptr pointer if reac_ptr != to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical addressis allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_pir). Tne command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof biocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the reac_ptr
allocate pointer for future allocation.

This device allows representation cf multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaced first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257466

ATI Ex. 2108

IPR2023-00922

Page 72 of 316

ATI Ex. 2108
IPR2023-00922
Page 73 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA 19 of 53B mEBctL

betweenthe time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2_ X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the acdress register, we are
gaing to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the S@ to makesure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To doa so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT
i

RT SECTON /
(Reads/Writes are direct) || Y

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)
Figure 9: The instruction store

Exhibit 2050.cocRauo_Sequencendes 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © ««#«

AMD1044_0257467

ATI Ex. 2108

IPR2023-00922

Page 73 of 316

ATI Ex. 2108
IPR2023-00922
Page 74 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201573. 20 of 53a Es

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256: 0]
Loop_count[7:0]31:0]
Loop_Stari[7:0][/31:0]
Loop_Step[7:0]/31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested icops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch

7. End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the outout buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual

allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order-- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257468

ATI Ex. 2108

IPR2023-00922

Page 74 of 316

ATI Ex. 2108
IPR2023-00922
Page 75 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201843 GEN-CXXXXX-REVA 21 of 53Aes RAMA Riles IAA

 guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs' may be done.

6.2.1 Contro! flow instructions table

Here is the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0)

NOP

ATAS 43 | 420
0000 Addressin RESERVED

g

This is a regquiar NOP.

Execute

47... 444% 4346-~ 40... 34 33 ...16 15...12 11... 0

~0001AddreAddress RESERVED Instructions type + serialize (9|Count Exec Address
ssing s,s ing9a04 instructions)

Execute End tsi—‘sSsSOC(Ci‘iésSS
43 4034 3 8 19.12

| Address RESERVED Instructions tyoe + serialize (9|Count
in instructions)

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). |f Execute End this is the last execution block of the shacer program.

 Conditional_Execute

47... 4447|4346 42 41... 34 | 33...16 | 15.12 11.042
Condition|Boolean

address
O01 1Adere|Address

ssing ingQO+-4. instructions type + serialize (9 Count Exec Address
instructions)

Conditional Execute End |

47... 44 | 43 42 44... 34 | 33.16 | 15.12 11.....0

0100 | Adetess Condition|Boolean|Instructionstype+serialize(9 Count Exec Addressing address instructions)
ifthe specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified _
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction._If |
Conditional Execute End and ihe condition is met, this is the last execution block of the shader program.

ConditionalExecutePredicates

AT...4442 | 4346---- 42 41... 36 35... 34 33...16 15...12 11...043.
0101 Aderes|Addressi|Condition|)RESERVED|Precicate Instructions Count Exec Address

Seg ngGot0 vector type + serialize
(9 instructions)

Exhibit 2030.decR409_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257469

ATI Ex. 2108

IPR2023-00922

Page 75 of 316

ATI Ex. 2108
IPR2023-00922
Page 76 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

(9 instructions)

24 September, 2001 4 Seplember, 201543 22 of 53iwi icy Ramis An

[| oo ___..,GonditionalExecutePredicates End
| 47 ... 44 43 A2 41. 36 35... 34 33...16 18...12 17....0
| 0410 Addressi|Condition|RESERVED|Predicate Instructions Count Exec Address

ng vector type + serialize
|

|
Check the AND/OR of all current predicate bits. lf AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the

| condition is not met, we go on to the next control flow instruction. |f Conditional Execute Predicates End and thecondition is met, this is the last execution block of the shacer program,

Loop_Start

| 47... 4447|4346... 42.17 | 20... 16 15...12 41...043

| O111Addre|Address RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the siart to end, and also indicates which

control flow constants should be used with the loop.

LoopEnd |

| 47, AAAZ|A346 42... 24 23... 21 20... 16 15...12 171...0| 43 |

| {000Addre|Addressi|RESERVED Predicate break loop ID | RESERVED start address| ssing ngoo44 |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop. If predicate break '= 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

_; 7 - Conditionnal_Call oo 7 _ |

| 47... 4447|4346 42 41... 34 33... 13 12 17...043

| 1001Adere|Addressi Condition Boolean address|RESERVED Force Call Jump address
ssing ngOi44 t

lf the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.If

force call is set the condition is ignored and the call is made always.

 | Return

| 47... 444%|4346 42 ...0| 43
| 1010Addre|Addressi RESERVED| essing ng1000

Pops the topmost address from the stack and jumpsto that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal Jump

 | 47... 444%|4346 | 42 41... 34 33 32... 13 12 11...043

| 1011Addre “Addressi| Condition|Boolean|FWonly|RESERVED|Force Jump Jump address| seing ng+oo4 address

| Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257470

ATI Ex. 2108

IPR2023-00922

Page 76 of 316

ATI Ex. 2108
IPR2023-00922
Page 77 of 316

 ORIGINATE DATE

24 September, 2007

 EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 201548 GEN-CXXXXX-REVA 23 of 53Sh

\f force jurnp is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Allocate

Af, 4442 | 4346--- 42...44 40... 4 3...0a8

1100bebug | Debug40 Buffer Select RESERVED Allocation sizea0

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export)
11 — pass thru (out of order exports).

\f debug is set this is a debug alloc (ignore if debug DB_ON registeris set to off).

Marks-the-end-oltheprogram.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices

48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possibile sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.
Each entry in the buffer will be stored across two physical pieces of memory - mostbits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-tread ported device will be termed ‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop iterators (4x9 bits),
Call return pointers (4x12 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr(7 bits),
GPR Base Ptr (6 bits)

. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

 COONAaARWN
Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate

Exhibit 2030.cocRauo_Sequencendee 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © «««

AMD10440257471

ATI Ex. 2108

IPR2023-00922

Page 77 of 316

ATI Ex. 2108
IPR2023-00922
Page 78 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 24 of 53. Wiens, OC A an

' bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits' neeced include:

Valid Thread

Texture/ALU engine needed
Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
First thread of a new context

Event thread (NULL thread that needsto trickle down the pipe)
Last (7 bit)
Pulse SX (1 bit)

All of the above fields from ail of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_tc_Complete are ‘0’ are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. if the allocation is position allocation, then the thread is only
considered if all ‘older threads have alreacy done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only considered if it is the oldest threac. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread hasits “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal numberof 2 clauses,
evenif it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only verylittle change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257472

ATI Ex. 2108

IPR2023-00922

Page 78 of 316

ATI Ex. 2108
IPR2023-00922
Page 79 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA 25 of 53fic SU Be

6.4 Data dependantpredicate instructions
Data dependant conditionals will be supported in the R400. The only way we pian to support those is by supporting
three vector/scalar predicate operations of the form:

PREDSETE # - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PREDSETNE_# - similar to SETNE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_#- similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO#-—S 0
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or 0 that is sent using the same cata path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors {in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells usif

we execute on 7 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

 {Ilssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.5 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs whereverthere is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loopsin fetch clause, we need to be able to index into the registerfile in order to retrieve the
cata created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing anc the instruction will contain these controls:

Bit? Bit 6

0 0 ‘absolute register’
0 4 ‘relative register’
4 0 ‘previous vecior'
4 4 ‘previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and weaddtoit the loop_index and this becomes our new addressthat we give to the shaderpipe.

The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

Weloop until loop_iterator = loop_count. Locp_step is a signed value [-128...127]. Tne computed index value is a 10
bit counter that is also signed. lts real range is [-256,256]. The tenth bit is only there so that we can provide an cut of

Exhibit 2030.cocR409_Sequencerdee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** |

AMD1044_0257473

ATI Ex. 2108

IPR2023-00922

Page 79 of 316

ATI Ex. 2108
IPR2023-00922
Page 80 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 26 of 53Amie Ar A ‘ raat

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shadersefficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow

- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
~ call stack

call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

lf indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE: Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug madeit is assumed that the program is always exporting n debug vectors andthat ail other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (evenif they occur
before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vecior of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shaderpipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETG
MASK_SETGT

 mr

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257474

ATI Ex. 2108

IPR2023-00922

Page 80 of 316

ATI Ex. 2108
IPR2023-00922
Page 81 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 27 of 53Bee SON es OO

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Registerfile allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXELREG_SIZE for pixels.

Exhibit 2050.cocRaug_Sequencendee 74878 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «««

AMD1044_0257475

ATI Ex. 2108

IPR2023-00922

Page 81 of 316

ATI Ex. 2108
IPR2023-00922
Page 82 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
2

 BS os| September, 2001 4 September, 201543 28 of 53

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottom tc
top. Vertices are in orange and pixels in green. The biue line is the tail of the vertices anc the greenline is the tail of
the pixels. Thus anything between the twolines is shared. When pixels meets vertices the line turns white and the
boundaryis static until both vertices and pixels share the same “unallocated bubble”. Then the boundaryis allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses oneof the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready io execute. Once chosen, the clause state machine
will send one 2x2 feich per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This meansthat there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(7?) in flight fetches and ihus there can be a fair numberof active clauses waiting for their
fetch return data.

li. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made bylocking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 OinstO Einsti Oinst1 Einst2 Cinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257476

ATI Ex. 2108

IPR2023-00922

Page 82 of 316

ATI Ex. 2108
IPR2023-00922
Page 83 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 29 of 53fae SO aaa

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POSFULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencerwill set the OUTFILEFULL signal n clocks before the outputfile is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets af those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW tc this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. lJ Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vectorof lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixels parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO ts the interpolated parameter at Pixel 0 having the barycentric coordinates |(0), J(Q) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with |}, B is the parameter value at V1
(interpolated with J) and C is the parameter vaiue at V2 (interpolated with (1-I-J).

AO= 7) — 70)

AOL = J(D—7()

AQ2F = 7(2)— FQ) Pq

A027 = J(2)-—J(0)

AO3/ = /G)~ 1(0)

A037 = JG) —J(0) P2 P3

PO0=C+1(0)*(A—-C)+J(0)* (B-C)

Pl= P0+A01 *(A—C)+A0LJ *(B-C)

P2 = P0+A027 *(A—C) + A020 *(B-C)

P3 = P0+A03/ *(A—C)+ A037 *(B-C)

PO is computed at 20x24 mantissa precision and P’ to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2030.docRago_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *«« |

AMD1044_0257477

ATI Ex. 2108

IPR2023-00922

Page 83 of 316

ATI Ex. 2108
IPR2023-00922
Page 84 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE se 24 September, 2001 4 September, 201543 30 of 53fen. ot eas. rms

' Adds: 8

FORMAT OF PO's lJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deitas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because ofthe floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that if A= B and B=C and C =A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,2,3 =A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-l-J = 0)) and
((1-u-l = 0)or (I= 0))) {

if) t= O)£
PO=A;

} else if(J != 0) {
PO =B,

helse {
PO =C;

‘rest of the quad interpolated normally
}
else

{
normal interpolation

}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following groupof vertices sent by
the VGT:

012345678910 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 3/7 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 6263

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 89 10 11 24 25 26 27
40 41 42 43 56 57 56 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 6263

The || markers show the SP divisions. In the event a shaderpipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUTwill not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

| Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257478

ATI Ex. 2108

IPR2023-00922

Page 84 of 316

ATI Ex. 2108
IPR2023-00922
Page 85 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 2001 4 September, 201543 GEN-CXXXAXX-REVA 31 of 53

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in

Figure11Figure-tFigure—t4. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. Tne gate count estimate is shown in Figure1OFigure-1OFigure-10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 116314? 60.57813 :?per bit

rea of 96x8-deep Latch Memory 46524 |?
rea of 24-bit Fix-to-float Converter 4712." per converter

Method 1 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384
Figure 10:Arca Estimate for VGT to Shader Interface

Exhibit 2020.docR4ga_Sequencerdee 74578 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+«

AMD1044_0257479

ATI Ex. 2108

IPR2023-00922

Page 85 of 316

ATI Ex. 2108
IPR2023-00922
Page 86 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 32 of 53BAewse lewis

—_=_£_£_————— J

VGT BLOCK
(IN PA)

 SHADER

SEQUENCER |

VECTOR ENGINE

VECICR ENCINE

PIPES

Figure 11: VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory numberand the 7 LSBsare the address within this memory.

| MEMORY NUMBER | ADDRESS |4 bits 7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 000710000000, third one 00700000000 and so on up to 11110000000. Then the next
position received (the 17") is going to have the address 00000001000, the 48" 00010001000, the 19” 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORTCOUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257480

ATI Ex. 2108

IPR2023-00922

Page 86 of 316

ATI Ex. 2108
IPR2023-00922
Page 87 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 33 of 53

17.1 Export restrictions |

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX{ +z). Tne exports will be done in order. The PRED_OPTIMIZ
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache(see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3. Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)...

They cannot have texture instructions interieaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTERall pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
Cannot allocate position if any older thread has not allocated position

3) If last thread is marked as not valid AND marked as last and we are about to execute the secondto oldest
thread also marked last then:

a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

Cannot execute a texture clause if texture reads are pending4)
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination addressfield in the
ALUinstruction. Hereis a list of all possible export modes:

18.1 Vertex Shading

0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 vertex exports to the frame buffer and index
41:47 - Empty
48:55 - 8 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2030.decR409_Sequencerdec 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257481

ATI Ex. 2108

IPR2023-00922

Page 87 of 316

ATI Ex. 2108
IPR2023-00922
Page 88 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

 | 24 September, 2001 4 September, 201543 34 of 53Rae an Rides: fs

63 - sprite size export that goes with position export
(point_h, point_w,edgeflag, misc)

18.2 Pixel Shading

0 - Color for buffer 0 (primary)
4 ~ Color for buffer 4
2 ~ Color for buffer 2
3 ~ Colorfor buffer 3

47 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
44 - Buffer 3 Color/Fog
12:15 -Empty
16:31 - Empty (Reserved?)
32 - Export Address
33:40 -8 exports for multipass pixel shaders.
41:47 - Empty
48:55 -8 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (Z exported to ‘alpha’ component)

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameterstore. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 veciors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_lO register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how theyinteract
together:

Gen_stis a bit taken from the interface between the SC and the SQ. This is the MSBofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_10 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_!0 disable, snd_xy disable, gen_st — !0 = No modification
Param_Gen_lO cisable, snd_xy enable, no gen_st — 10 = No modification
Param_Gen_lO disable, snd_xy enable, gen_st — |0 = No modification
Param_Gen_|0 enable, snd_xy disable, no gen_st— 10 = garbage, garbage, garbage, faceness

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257482

ATI Ex. 2108

IPR2023-00922

Page 88 of 316

ATI Ex. 2108
IPR2023-00922
Page 89 of 316

ORIGINATE DAT EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015438 GEN-CXAXXXX-REVA 35 of 53

Param_Gen_l0 enable, snd_xy disable, gen_st-—|0 = garbage, garbage, s,t
Param_Gen_l0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_i0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vecior count to be able to
both use this count to write the 1* pass data to memory and then use the count to retrieve the data on the an pass.
The count is always generated in the same waybutit is passed to the shaderin a slightly cifferent way depending on
the shadertype (pixel or vertex). This is toggled on and off using the GEN_INDEX register. Tne sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|0 Is enabled, the cata will be putin the x field of
the 2" register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1° register (RO.x).

AUTO INTERPOLATORS
COUNT ~

| sTGt

He
AUTO COUNT cocoa |

The Auto Count Value is

/ broadcastto all GPRs.It is

||

MUX : : .
} loaded into a register wich has

|

GPRO

its LSBs hardwired to the

Figure 12: GPR input mux Control

GPR number(0 thru 63). Then

if GEN_INDEXis high, the
mux selects the auto-count

value andit is loaded into the
GPRsto be either used to

retrieve data using the TP or
sent to the SX far the RB to

useit to write the data to
memory

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pine. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In arder for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a iotal of 8 counters). These counters are initialized to 0 and every

Exhibit 2030.cocR409_Sequencerdee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** |

AMD1044_0257483

ATI Ex. 2108

IPR2023-00922

Page 89 of 316

ATI Ex. 2108
IPR2023-00922
Page 90 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 36 of 53Rin AN tie, OAT

' time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixeis with the SC_SQ_new_vector bit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go io one and decrements it. The sequencer can then
issue the group of pixels to the interpclators. Every time the state changes, the new state counter 's initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the |Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpclation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at atime by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

22.1 Control

REGDYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REGSIZEPIX Size of the register file's pixel portion (minimal size wnen dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program ata time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)

INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 296*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANTEORT). The re-mapping table operates on the rest of the memory
TSTATE_EORT This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping tabie operates on the rest of the memory

22.2 Context

PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader(# of instructions in control program/2)
PS_CF_SIZ size of the pixel shader(# of instructions in control program/2)
PSSIZE size of the pixel shader(cntl+instructions)
VS_SIZE size of the vertex shader (cnii+instructions)
PS_NUM_REG number of GPRsto allocate for pixel shader programs
VS_NUM_REG number of GPRsto allocate for vertex shader programs

PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0=flat, 1
= gouraud)
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode

PARAM_WRAP

 PS_EXPORT_MOD

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257484

ATI Ex. 2108

IPR2023-00922

Page 90 of 316

ATI Ex. 2108
IPR2023-00922
Page 91 of 316

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201542BAe “WO I

VS_EXPORT_MODE
VS_EXPORT_COUNT
parameters)
PARAM_GEN_I0
GEN_INDEX

 DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 37 of 53

1xxxx : Multipass mode
lf normal, bbbz where bbb is how many colors (0-4) and z is export z or not
lf multipass 1-12 exports for color.
Q: position (1 vector), 1: position (2 vectors), 3:multipass
Numberof locations exported by the VS (and thus numberofinterpolated

Do we overwrite or not the parameter 0 with XY data and generated T and S values
Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders
and R2 for vertex shaders

CONST BASE _VTX (S bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shacer
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX(8 bits) Size of the logical constant store for vertex shaders

INST_PRED_OPTIMIZE

CF_BOOLEANS
CF_LOOP_COUNT
CF_LOOP_START
CF_LOOP_STEP

Turns on the predicate bit optimization (if of, conditional_execute_predicatesis
always executed).
256 boolean bits

32x8 bit counters (numberof times wetraverse the loop)
32x8 bit counters (init value used in index computation)
32x8 bit counters (step value used in index computation)

23. DEBUG Registers

23.1 Context

DB_PROB_ADDR instruction address wherethefirst problem occurred
DB_PROB_COUNT number of problerns encountered curing the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

23.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DBTSTATE_MEMSIZE Size of the physical texture state memory

24. Interfaces

24.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

24.2 SC to SP Interfaces

24.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the |,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

The actual data which is transferred per quad is
Ref Pix | => $4.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value

Exhibit 2030. decR430_Sequencerdec 74876 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257485

ATI Ex. 2108

IPR2023-00922

Page 91 of 316

ATI Ex. 2108
IPR2023-00922
Page 92 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201573 38 of 53BAe AS des Cu

Delta Pix | (x3) => S4.8 Floating Point Delta | vaiue
Delta Pix J (x3) => $4.8 Floating Point Delta J value

This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is concitionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with facenessin the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a |J_BUF_INUSE_COUNTinthe SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJBUF_INUSECOUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the countis less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We mayrevisit this for both the SX,SP,SQ and adc a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name Bits|Description |
SC_SP#_data 64 lJ information sent over 2 clocks (or X,¥ in 24 LSBs with faceness in upperbit)

Type 0 or 1, First clock |, second clk J
Field ULC URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8

Type 2
Field Face xX Y

Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#last_quad_data 4 This bit will be set on the last transfer of data per quad. |
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

2 -> |ndicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

2422 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx G2-94bits) could be folded in half to approx 47
49bits. 1

Name Bits | Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers

Event ~— valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and

| event_id through requestfifo

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257486

ATI Ex. 2108

IPR2023-00922

Page 92 of 316

ATI Ex. 2108
IPR2023-00922
Page 93 of 316

ORIGINATE DATE

24 September,

2001

 EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 2015438 GEN-CXXXXX-REVA 39 of 53A owe ELdh,A.

 2 clk transfers

and onto the reservation stations

making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data

consisting of pc_dealioc
or new_vecior. Receipt ofthis is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

Quad Data Valid — Sending quad data with or
without new_vectoror pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pe_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero,

SC_SQ_data — first clock and second clock transfers are shownin the table below.

1° Clock Transfer
SC SQ event

|Description

This transfer is a 1 clock event vector Force quad mask =

new vector=pe dealloc=0

 SC SQ event id | Aa | 4 Jhis field identifies ine event 0 => denotes an End Of State Event 4| => TBD

SC_SO_pc dealloc £3 [3 Deallocation token for ine Parameter Cache
SC SQ new vector 8 4 lhe SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC SQ quad mask 12s 4 | Quad Write maskleft to right SPO => SP3

SC SQ end of om
SC SQ state id

SC SQ pix mask
So_SQ_provokvix

End Of the primitive
State/constant pointer
Valid bits for all pixels SFO=>SP3 (ULUR LLL)

Exhibit 2050.cocR4G9_Sequencerdes 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+*

 Point AA (Sprite)

AMD1044_0257487

ATI Ex. 2108

IPR2023-00922

Page 93 of 316

ATI Ex. 2108
IPR2023-00922
Page 94 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 40 of 53fie ot Hews

Name Bits Description |
$Q_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use. |
$Q_SC_dec_cntr_ent 4 | Pipelined bit that instructs SC to decrement count of new vector and/or event

| | sent to prevent SC from overflowing SQ interpclator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembied with at least one or more valid quads and the vector has been

marked for deallocate wnen a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated whenail primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

24.2.3 SQ to SX:Interpolator bus

Name Direction Bits|Description

| SQ_SXx_interp_flat_vix | SQ—SPx 2 Provoking vertex forflatshading
SQ_SXx_interp_flat_gouraud | SQ--SPx 4 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ->SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pe_ptroO|SQ-SXx 11 Parameter Cache Pointer
SGQ_SXx_pc_ptri | SQ>SXx i1 Parameter Cache Pointer |
SQ_SXx_pe_ptr2 SQ—>SXX% i1 Parameter Cache Pointer |
SQ_SXx_tt_sel | SQ—SXx 1 Selects between RT and Normal data |
SQ_SXx_pc_wr_en SQ—SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr | SQ--SXx 7 Write address for the PCs
SQ_SXx_pe_channel_mask | SQ-SxXx [4 Channel mask

24.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.
Name | Direction Bits | Description
SQ_SPx_vsr_data SQ—SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double | SQ—SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SPO_vsr_valid _ {|SQ—spo Datais valid _ |

SQ_SP1_vsr_ valid SQ->SP1 1 Data is valid ;
SQ_SP2_vsr_ valid [SQ-+SP2 1 Data is valid |
Q_SP3_vsr_valid SQ--SP3 1 Data is valid |
SQ_5SPx_vsr_read | SQ—-SPx 1 Increment the read pointers |

24.2.5 VGT to SQ: Vertex interface

24.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. Tne VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257488

ATI Ex. 2108

IPR2023-00922

Page 94 of 316

ATI Ex. 2108
IPR2023-00922
Page 95 of 316

Pat) ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEw 0 24 September, 2001 4 September, 201543 GEN-OXXXXX-REVA 41 of 53
vecteecnecreenmemner a eee oe Be hehAS DL ELOY nnnnclsonenenenenenenannnnnanansmmmmmmmananenanananananananananensnanennmnmnneneictanan

Name Bits Description

|VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information

VGT_SQ_vsisr_double i 0: Normal 96 bits per vert 1: double 192 bits per vert _|
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector" is set on the first vector)
|VGT_SQ_indx_valid 4 Vsisr data is valid

VGT_SQ_state | 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct whenL__ ‘VGT_SQ_vgt_end_of_vector’is high.

VGT_SQ_send | 1 Data on the VGT_SOQis valid receive (see write-up for standard R400 SEND/RTRinterface handshaking)

SG_VGT_itr | 1 Ready to receive (see write-up for standard R400 SEND/RTR_ interfacehandshaking)

24.2.5.2 Interface Diagrams

Exhibit 2030.docR40G_Sequencerdee 74578 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD10440257489

ATI Ex. 2108

IPR2023-00922

Page 95 of 316

ATI Ex. 2108
IPR2023-00922
Page 96 of 316

MAONANDSSMS0VHS

wx©BBEJ8A0DUOBOONJYUBLAdODsouslajeyJEUSPIUOD[Ly@reaeigpssopte
ALIAG

valde

eSOOPDEOL

ZMOLODAJOGN

SYZOMTAICTMSTSA

ELEYetmmememeeeemeenmeearneenenenenmnnenemyZ¥LVC¥SISA

ISA

eG10cyavd

ur©ERGLOdlequisjaes¢uoneoyoadsia9uanbas0oPpyAvauda

LO0z‘equesdespzalvdalvyNioido

 TWIRELVANeaddoAATLOaLOdd

 AMD1044_0257490

ATI Ex. 2108

IPR2023-00922

Page 96 of 316

ATI Ex. 2108
IPR2023-00922
Page 97 of 316

we©ae18A0DUOBOTLONJYUBIUAdODsouslejey‘jeENUSPYUOCD[Ly©«sSei4asuses
sonuecuerbes“cernaonS607IGERS

AMD1044_0257491

ATI Ex. 2108

IPR2023-00922

Page 97 of 316

NOISSIWNSNVadLSdOlsadaNds

NOISsSIWNSNWadlsbevis-dddadATeodd

NCISSIWNSNVaLSsdolsddATHodd
ayOg1gRLAWaOdTaLNOOdIdLOWiwdOdla

bpWivdbpaNus€Wivd“NSSWLWaZzGNusSIMLDA

oN OY

ZULYOsTulyosQOULyOsULOs

 PLLA

 Pun

ce“Yoe*“|£9JOeyVASXXXXXO-NADELGLOdlequejces7L007Jequiejdespz|,a:doVvdWAN“AseLNAANOOGaivdLidaFLVdSLYNIOIdOJVg TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2108
IPR2023-00922
Page 98 of 316

 ORIGINATE DATE

24 September, 2001

 EDIT DATE

a4 September, 201573.

PAGE

44 of 53
R400 Sequencer Specification

24.26 SQ to SX: Control bus

[Name | Direction | Bits|Description
SQ_SxXx_exp_type SQ—SxXK 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ—SXx 2 Number of locations needed in the export buffer |
(encoding depends on the type see bellow). |

SQ_SXx_exp_alu_id SQ—>SXx 1 ALU ID
SQ_SXx_exp valid SQ—-SXx 1 Valid bit
SQ_SXx_exp_state SQ--SXx 3 State Context

$Q_SXx_free_done SQ-—-SXx 1 Pulse to indicate that the previous export is finished |
(this can be sent with or without the otherfields of the |

- ef interface)eee_
SQ_SXx_free_alu_id SQ--SXx 1 ALU ID

Depending on the type the numberof export location changes:
Type 00 : Pixels without Z

o 00=1 buffer
o 01 =2 buffers
o 10=3 buffers
o 411 = 4 buffer

Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)

01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 =5 buffers (4 color + Z)

Type 10: Position export
o 00 = 1 position
o 01 =2 positions
o 1X = Undefined

Type 11: Pass Thru
00 = 4 buffers

oO

o

o QO1=8 buffers
o 10= 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that telis the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALUid.

24.2.7 SX to SQ: Outputfile contro!

Name Direction | Bits|Description

SXx_SQ_exp_count_rdy SXx—SQ | 1 Raised by SX0to indicate that the following twofieldsreflect the result of the most recent export
SXxX_SQ_expposavail SXx-SQ | 1 Specifies whetherthere is room for another position.
SXx_SQ_exp_buf_avail SXx—SQ 7 Specifies the space available in the output buffers.

0: buffers are fuil

4: 2K-bits available (32-bits for each of the 64
pixels in a clause)
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Exhibit 2030. dock400_Secuencer.dec 74878 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257492

ATI Ex. 2108

IPR2023-00922

Page 98 of 316

ATI Ex. 2108
IPR2023-00922
Page 99 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 207548 GEN-CXXXXX-REVA 45 of 53

24.2.8 SQto TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RSline it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description

| TPx_SQ_data_rdy Px SQ 1 Data ready

| TPx_S@_rs_line_num TPx-—+ SQ | 6 Line number in the Reservation station
TPx_SQ_type TPx>SQ 1 Type of data sent (O:PIXEL, 1:VERTEX)

| SQ_TPx_send SQ—>TPx 1 Sending valid data ;
_SQ_TPx_const enBALTPK 48 __|Fetch statesentover 4clocks (192 bits total)_
| SQ_TPx_instr SQ—TPx | 24 Fetch instruction sent over 4 clacks
|SQ_TPx_end_of_group| SQ>TPx 1___| Lastinstruction ofthe group
_SQ_TPx_Type SQSTPx _1__| Typeof datasent (O:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase|SQ>TPX. 2|Write phasesignal

| SQ_TPO_lod_correct SQ—TPO | LOD correct 3 bits per comp 2 components per quad
_SQ_TPO_pix_mask _ |SQ>TPO 4_|Pixel mask1bitperpixel

Q_TPllodcorrect.|SQ>TPAT8LODcorrect3bits per comp2componentsperquad__
_SQ_TP1_pix_mask | SQ—>TP1 | 4 Pixel mask 1 bit per pixel
_SQ_TP2_lod_correct SQ2TP2 6___|LOD correct3 bits percomp 2 components per quad _|

SQ>TP2 4|Pixelmask1bitperpixeloo
SQ—-TP3 6 LOD correct 3 bits per comp 2 components per quad

| SQ_TP3_pix_mask SQ—>TP3 4 Pixel mask ‘1 bit per pixel
| SQ_TPx_rs_line_num SQ—TPx 6 Line number in the Reservation station
| SQ_TPx_write_gpr_index SQ->TPx mi | Index into Registerfile for write of returned Fetch Data

24.2.9 TP to SQ: Texture stall

The TP sendsthis signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stall

SQ_SP_wr_addr | |

_ SUO — y

Name Direction Bits|Description
TP_SQ_fetch_stall TP— 3Q 11 Do not send more texture request if asserted

Exhibit 2050.cocRauo_Sequencendes 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © ««#«

AMD1044_0257493

ATI Ex. 2108

IPR2023-00922

Page 99 of 316

ATI Ex. 2108
IPR2023-00922

Page 100 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201543. 46 of 53Are APBA

242.10 SQ to SP: Texture stall

Name Direction Bits|Description

$Q_SPx_fetch_stall SQ--SPx 4 Do not send more texture request if asserted

24.2.11 SQ to SP: GPR and auto counter

Name Direction Bits|Description
$Q_SPx_gpr_wr_addr SQ-+SPx 7 | Write address
SQ_SPx_gpr_rd_addr —|SQ-SPx 7 _| Read address
$Q_SPx_gpr_rd_en SQ—SPx i | Read Enable
$Q_SPOQ_gpr_wr_en SQ—SPx 1 Write Enable for the GPRs of SPO
$Q_SP1_gpr_wr_en SQ—SPx 1 __ Write Enable forthe GPRs of SP1
SQ_SP2_gpr_wr_en SQ—SPx 1 Write Enable for the GPRs of SP2 |
SQ_SP3_gpr_wr_en SQ-—>SPx 1 | Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC|

reads and writes)
SQ_SPx_channel_mask SQ—SPx 4 ; The channel mask
$Q_SPx_gpr_input_sel SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated cata, VTXO
ee BP |_|WEX1, autogencounter.

~SQ_SPx_auto_count SQ-+-SPx 12? | Auto count generated bythe SQ,commonfor all shader _
| pipes

Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257494

ATI Ex. 2108

IPR2023-00922

Page 100 of 316

ATI Ex. 2108
IPR2023-00922

Page 101 of 316

ORIGINATE DATE

24 September, 2007 i

24.2.12 SQ to SPx: Instructions

 EDIT DATE

4 September, 201542SeODBsEES

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 53

Name Direction Bits|Description ;
$Q_SPx_instr_start | SQ-»SPx 1 Instruction start
SQ_SP_instr SQ—SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0

SRC AArgument Modifier 3:3
SRC A swizzile 11:4
VectorDst 17:12
Unused 20:18

1: SRC B Select 2:0

SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 17:12
Unused 20:18

2: SRC C Select 2:0

SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:14
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17

SQ@_SPx_exp_alu_id SQ—SPx i | ALU ID
SQ_SPx_exparting SQ—>SPx 2 0: Not Exporting

| 1: Vector Exporting
eePo _| 2: Scalar Exporting

SQ_SPx_stall | SQ—SPx 1 Stall signal
SQ_SP0_write_mask SQ—SPO0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ—SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ writemask SQ—SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock
SQ_SP3_ write_mask SQ-—SP3 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ SPx last | SQ->SPx 4 Last instruction of the block

24.2.13 SP to SQ: Constant address load/ Predicate Set

Name | Direction Bits|Description
SPO0_SQ_const_acdr SP0—-SQ | 36 Constant address load / predicate vector load (4 bits only)

to the sequencer

SPOSQvalidace 41|Datavalig es |SP1_SQ_const_addr SP1i-SQ , 36 Constant address load / predicate vector load (4 bits only)

Exhibit 2090.cecR400_Sequencendec 74576 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257495

ATI Ex. 2108

IPR2023-00922

Page 101 of 316

ATI Ex. 2108
IPR2023-00922

Page 102 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 48 of 53

to the sequencer
SP1_SQ_valid SP1—-SQ 1 Data valid
SP2_SQ_const_addr SP2—SQ 36 Constant address load / predicate vector load (4 bits only) |

ee to the sequencer |
SP2_SQ_valid SP2—SQ 1 Data valid
SP3_SQ_const_addr SP3—-SQ 36 Constant address load / predicate vector load (4 bits only

to the sequencer
_SP3_SQ_valid _SP3-SQ 1 Data valid
SPO SQ data type SP>SQ 4 Data Type

0:ConstantLoad
1PredicateSet

24.2.14 SQ to SPx: constant broadcast

Name | Direction Bits|Description
$Q_SPx_const | SQ—>SPx 128|Constant broadcast |

24.2.15 SPO to SQ:Kill vector load

Name Direction Bits|Description |

SP0_SQ_Kill_vect SP0—SQ 4 Kill vector load .
SP1_SQ_kill_vect SP1—SG@ 4 Kill vector load |
SP2_SQ_Kkill_vect SP2—-SQ 4 Kill vector load :
SP3_SQ_Kill_vect | SP3-oSQ 4 Kill vector load

24.2.16 SQ to CP: RBBM bus

Name Direction Bits|Description
$Q_RBBis SQ-+CP 1 Read Strobe
$Q_RBB_id SQ—CP 32 Read Data
$Q_RBBM_onrirtr SQ—CP 1 Optional
SQ_RBBNM_tir 3S0—CP 1 Real-Time (Optional)

24.2.17 CP to SQ: RBBMbus

Name Direction Bits|Description |
rbbm_we CP>SQ 1 Write Enable
rbbm_a CP--SQ. 15 | Address -- Upper Extent is TBD (16:2) |
rbbm_wd CP—SQ 32 Data
rbbm_be CP-3SQ 4 Byte Enables
rbbm_re CP—SQ 1 Read Enable |
rbb_rs0 CP-SQ 1 Read Return Strobe 0

roost| CP--SQ 1 Read Return Strobe 4
rbb_rdO CP—SQ 32 Read Data 0
rbb_ rd‘ CP—SQ 32 Read Data 0

RBBM_SQ_soft_reset CP-SQ 1 Soft Reset

242.18 SQ to CP: State report
Name Direction | Bits|Description
SQ_CP_vs_event SQ—CP [4 Vertex Shader Event
SQ_CP_vs_evenitid SQ—-CP [2 Vertex Shader Event ID
SQ_CP_ps_ event SQ—CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ--CP 2 | Pixel Shader Event ID

eventid = 0 => *sEndOjfstate (Le. VsEndOfstate)
eventid = 1 => *sDone (Le. VsDone)

So, the CP will assumethe Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

| Exhibit 2030.decRau0—Sequencendee 74678 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257496

ATI Ex. 2108

IPR2023-00922

Page 102 of 316

ATI Ex. 2108
IPR2023-00922

Page 103 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 49 of 53fe SU 2

24.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

uo
ut

ex 0daze=<

u 3 Serial
u4

ex 2
ud
u 6 Serial

@x oo
uv
loc Position 1 buffer

u 8 Export
ex 4
loc Parameter 3 buffers

u 9 Export 0

@x a

 u 10 Serial Export 2

u 11 Export 1 End

 PRAPPAPPPAPrPAPE

Would be converted into the following CF instructions:

Execute Alu O Alu C Tex 0 Tex 0 Alu 1 Alu O Tex O Alu O Alu 1 Tex O
Execute Alu 0
Alloc Position 1
Execute Alu CO Tex 0
Alloc Param 3
Execute Alu 0 Tex @ Alu 1 Alu ¢ End

And the execution of this program would lock like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr(7 bits), (EB)
Context Ptr (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bitseeeeeeeee

CFP ECM i | CRP PB EXID GPR EB CPTR LOD
0 0 [0 [oO a a G a 6 a

Valid Thread (VALID)
Texture/ALU engine needed (TYPE
Texture Reads are outstanding (PENDING)

Exhibit 2030.cocRau0_Sequencerdes 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «#*

AMD1044_0257497

ATI Ex. 2108

IPR2023-00922

Page 103 of 316

ATI Ex. 2108
IPR2023-00922

Page 104 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 24 September, 2001 4 September, 201573 50 of 53arin Radmis i £

Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 ~ No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits |

VALID L TYP PENDING [SERIAL|ALLOC [SIZE | POSALLOC|FIRST LAST |
1 _ ALU 0 Q 0 0 LO 4 0

7

Then the thread is picked up for the execution of the first contral flow instruction:Execute Alu 0 Alu O Tex 0 Tex 0 Alu 1 Alu 0 Tex O Alu 0 Alu 1 Tex 0

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB [| EXID | GPR EB CPTR LOD
0 2 0 0 0 [0 [0 0 0 0

Status Bits

VALID _TYPE [PENDING|SERIAL|ALLOC | SIZE [POS_ALLOC | FIRST | LAST
1 | TEX [0 0 0 0 [0 4 LO

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

backin this state:

State Bits

 |CFP ECM Li CRP [PBee EXID (GPR{|EB|CPTR_

[90 [0 0

Status Bits
aaSSTL

VALID | TYPE PENDING SERIAL | ALLOC | SIZE | POS_ALLOC FIRST | LAST
1 _ALU 1 1 LO 0 [9 4 [0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in
this state:

State Bits

CFP | ECM LI | CRP [PB | EXID GPR EB | CPTR LOD
Q 16 Q 10 0 0 LO 0 0 Q

Status Bits

VALID _TYPE PENDING|SERIAL | ALLOC SIZE | POSALLOC [FIRST
4 _ TEX 0 0 [G _O [0 4 [oO |

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257498

ATI Ex. 2108

IPR2023-00922

Page 104 of 316

ATI Ex. 2108
IPR2023-00922

Page 105 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 51 of 53Ades SOO BA

State Bits

CFP | ECM [LI | CRP PB | EXID GPR|EB CPTR [LOD |
0 7 [0 [0 0 [0 0 [0 0 | 0 |

Status Bits |

 Mm POSALLOC | FIRST LAST
0 10 0 [1 0 |

 VALID | TYPE|PENDING [SERIAL ALLOC|SiZ
1 LALU 14 [0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the seria! bit
is not set. The thread will however come back to the RS for the second ALU instruction becauseit has the serial bit
set.

State Bits

CFP ECM Ll CRP PB EXID GPR EB CPTR | LOD
0 8 [oO 0 0 0 Q 0 0 [0

Status Bits
|

VALID TYPE PENDING|SERIAL | ALLOC__| SIZE_| POS_ALLOC| FIRST LAST |
1 ALU 4 | 1 0 | 0 [0 1 0 |

As soon as the TP clears the pending bit the thread ts picked up and returns:

‘StateBits

CFP ECM [ul | CRP PB EXID GPR [EB [| CPTR LOD
0 9 [0 [0 0 0 0 Lo [0 0

Status Bits

VALID TYPE PENDING|SERIAL = ALLOC|SIZE|POS_ALLOC | FIRST | LAST
1 TEX 0 0 0 0 0 [1 [0

Picked up by the TP andreturns:
Execute Alu 0

State Bits=ee

CFP ECM Li CRP PB EXID | GPR EB | CPTR LOD
1 [0 0 0 0 0 [0 0 [0 0 |

Status Bits

VALID | TYPE | PENDING | SERIAL | ALLOC | SIZE | POS_ALLOC FIRST | LAST
1 | ALU 14 0 Oo [0 [0 1 [0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM Li | CRP PB [| EXID | GPR EB CPTR LOD
2 0 10 LO Q LO [0 Q LO Q

Exhibit 2080.docR4gg_Sequencerdee 74578 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+« |

AMD1044_0257499

ATI Ex. 2108

IPR2023-00922

Page 105 of 316

ATI Ex. 2108
IPR2023-00922

Page 106 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201543 62 of 53B £ At. Rides An

TYPE PENDING [SERIAL|ALLOC SIZE|POS ALLOC|FIRST LAST
| 041 ALU 1 0 a 1 0

if the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to
the RSin this state:

Execute Alu 0 Tex 0

State Bits

CFP ECM LI CRP PB EXID | GPR [EB [CPTR [LOD
3 4 10 10 0 | 0 [0 [0 10 10

Status Bits

VALID | TYPE [PENDING | SERIAL [| ALLOC | SIZE|POS _ALLOC [FIRST LAST |
1 | TEX L141 | 0 | 0 oO 1 4 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDINGbit and we proceed:

Alloc Param 3

| State Bits

 CFP [ECM [Ll | CRP PB | EXID GPR EB CPTR LOD

4 10 10 10 Q 14 oO 0 0 0

Status Bits

VALID _TYPE PENDING [SERIAL [| ALLOC SIZE|POS ALLOC
1 | ALU 1 0 [410 13 1 [4 10

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

Execute Alu 0 Tex 0 Alu 1 Alu O End

State Bits

CFP.|/ECM[Ul[CRP/|PBfeExiD=|GPR) [EB. [CPTR [LOD
5 4 oO oO 0 4 oO | 100 Lo Q

Status Bits

VALID | TYPE PENDING|SERIAL | ALLOC | SIZE | POS _ALLOC | FIRST [| LAST
1 | TEX { Q ro [0 4 4 [0 |

This executes on the TP and then returns:

 State Bits

CFP ECM [Ll [| CRP PB | EXID GPR [EB CPTR LOD
5 2 0 10 q 4 io | 100 0 Q

Eyhibit 2030. decRau0_Sequencendee 74578 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD10440257500

ATI Ex. 2108

IPR2023-00922

Page 106 of 316

ATI Ex. 2108
IPR2023-00922

Page 107 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201543 GEN-CXXXXX-REVA 53 of 53AL SOO 5. £23.

Status Bits

VALID TYPE [PENDING [|SERIAL |ALLOC [SIZE |POS_ALLOC | FIRST | LAST
1 ALU [4 [4 0 [0 4 1 1 Waits for the TP to return becauseof the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25. Open issues
Need to do sometesting cn the size of the register file as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2050.cocRauo_Sequencendes 74878 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © ««#«

AMD1044_0257501

ATI Ex. 2108

IPR2023-00922

Page 107 of 316

ATI Ex. 2108
IPR2023-00922

Page 108 of 316

 Pat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEft. 8 24 September, 2001|4 September, 201545 GEN-CXXXXX-REVA 1 of 54— sil falas uy

Author: Laurent Lefebvre

Issue To: | Gopy No:

R400 Sequencer Specification

SQ

Version 2.032

Overview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce’ir400\doc_lib\designiblocksisq\R400,Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specificetion

| . Se "APPROVALS - Us
Name/Dépt-- ee a8 Signature/Date

 fb

Remarks:

 THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |:
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2041 cochs0G_Sequencendes 71818 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © =

ATI 2031

LGv. ATI

IPR2015-00325

AMD1044_0257502

ATI Ex. 2108

IPR2023-00922

Page 108 of 316

ATI Ex. 2108
IPR2023-00922

Page 109 of 316

ORIGINATE DATE

24 September, 2001

 EDIT DATE

2 of 54 R400 Sequencer Specification PAGE
4 September, 20° 518baal eee

Table Of Contents

LOVERVIEW oo eesccecccscsesnsucseseuesevenseressuesenssssenensnsssesessenvnsssssnnsssusssuenenensssssasssnnsrssenenenesseseses oF
Li Top Level Block Diganeee e cece eee tees e es ttittttntttentnttnnibinagieetitpitettaitstsusunanansnnnns 119
12 Data Flow graph (SP :
13 Comtrol Graphene eee ee eee ee cece ee ee tpe tte ateteteeteat ats sesssesnensategitstssttetestetetusesessss 1344
2. INTERPOLATED DATA BUS.. wee (G44
3. INSTRUCTION STORE........... see
4, SEQUENCER INSTRUCTIONS... ccccccececcceseennsececsnsnnnerscennnsnernessnsneeesenessnuteneneeseiueennnnntens 1644

4, CONSTANT STORES... cccccccccccececssuueeeneenssrssnnnnennsesanstnsssssasensneassssnnsnnansssnnsnananssansnnananenes 1614 |.
S.1 MGMOry OF AMIZALIONS ooo ocece eeeeeeeeeeseeestu ns ueununnane vitunuusstsssseeeyertunnusesetesseeceesers 1644 95
5.2 Management of the Control FlowConstantsV46 ee

$.3__Management of the fe-mepping tables ooopsen ttn aentaninuiniaaiasaies W346
5.3.1 R400 Constant Management once ceeccccecccsecesccssuscuscsssstuseussssusuussustsssustisussnisssiiiesiiss 1715

5.3.2 Proposal for R400LE constant management occ. cc ecccccsessesceccescuseesusssesutssuteseuss 4745

5 BA Free List BlOCK oie cs cccesussesesuespututctsitsauasasnnatuntstsiutsesssdstusistssstsesatsimtsta 14% 0
5.35 De-allocate Block ooo cece eves ceseeseseessssnstussatsusntusnatsssnditsutsiatitsutstsstustusnststsustnsasice2018

5.3.6 Operation of Incremental MODEL ccc cec cece ceceeeeeecseeseeteeevessesuseseesuessusensetssaseteessseses 2048
4 Constant Store INGexiGeeece eee ee eeeeee te ettettettinuiutnbnbibibenenngunitiiiiitteetet:ipitmunenninns

Real Time Commands..... -
Constant VWaterfallingetetacit tennis

The controlling state...

6.2 The Control Flow PrOgrarn sacs csscssssssssessssssvssssssvssssovssstivassuvsisinvsvssssusiasnsssiissssn 2220 - ee
6.2.1 Control flow instructions table ooo... ccccceccecsccescussuscssessuseesussussussussetestussussstsususieciies 2324

GB leplermertatcance eevee eves ceee eves esveuuesysesussuusvusybesususssubauesuesssisisussysiussussupbesssessuvessssss 2523
64 Data dependant predicate instructions.2624 —
65 HW Detection of PVPS oooeecttee eeeeebetenentetettiotitteeteteeseuneneeneenes 2128

 66 Register fle iCexing ooo occ cece cece ee ec cseseenees sisesstsntnesttennanunnpstunsessteteteseeeteteseteteuseseutes 2/25 - Bs

Method 7: Debuaging registers Method 2: Exporting the values intheGPRs2826 | —
PIXEL KILL MASK oceeeeter eeeeneeenereernyen es

7. eee

8. MULTIPASS VERTEX SHADERS (HOS)... ceccecceceeeeeeeeceeseeeeeee cess eeneeeeeecseeneesenieseneeteass ee
9. REGISTER FILE ALLOCATION. ou. :cecssecssesesenesestpeeeresestssveneeenspupervenessntsenseneessnesensenssss 2926
10. FETCH ARBITRATION......... 3028 |

iL. ALU ARBITRATION... 3028
12. HANDLING STALLS oon ee esse esssseesnaevennsnsneennene aston Mae
13. CONTENT OF THE RESERVATION STATION FIFOS..
(4. THE OUTPUT FILE cece sceteeseeecseeseeeeeessereneeeeseneees

lJ FORMAT we

Exhibit 2031 dockdoo_Sequencerdoe 71818 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *=«

LOOPING AND BRANCHES... ceseenes, REED

AMD1044_0257503

ATI Ex. 2108

IPR2023-00922

Page 109 of 316

ATI Ex. 2108
IPR2023-00922

Page 110 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: ‘ 24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA 3 of 54sas a f i “3 Ban es

17. THE PARAMETER CACHE oon ccccnccessseeceeesereennesntessutansnnnausssauannenautunmenusenssiennemassnsmennseases 3434
171 ExportrestrictionSeeteenBABE

17.2 Arbitration restrictions ooeeeeect eee e eect teeta bette etietettetttieettnetneenes 3432
18. EXPORT TYPES...... 3532

VertexShading... 353
PIK@L SMC oo cece eee eee eee ete ette ett tthe te eEEEEEEEEHiAG AMD itbecietpeiteiisspeieupispisisissinessnes

19. SPECIAL INTERPOLATION MODES.. 3533
19.1 Real time commands 8533
19.2 Sprites/ XY screen coordinates/ FB information...ceceeeetee atte tsetse 3633
 19.3 Auto generated COUNMIETSocccece cece nee e neat vee eesti es set epnt tent stb ecbttesteseusestussenes 3634

T9321 Vertex SRAers ooo cee oe cee c eevee seca oes oe espe vet touts cotiteetetepriteessces.., 8634

19.3.2 Pixel Shader. nove cove cece cess eee ose eeepc e teeth Cottttepteiecriveesees es, B6B4

20. STATE MANAGEMENTqu... cceccccccesenccsecesseeuseecessuuuseounsssusecenmnsussennnanavesesnnnaaantestnananacses 3734
20.1 Parameter cache SYNCHroniZationeeecece eee eee e eee tnnn nn ngetnasteteestnss 3734
21. XY ADDRESS IMPORTS... 3735

22, REGISTERS..

 22.1 Control.
22.2 Context.
23. DEBUG REGISTERSoun. ccccccccccsceeerenecsnnnnnnaneensnnnneennsannnnnannunnanananaanecestuunrnnsssnsnensnaness 3935
23.1 COMO cece cece eee eee eaneesssts-ceeetueesesueessenesssesste setts steteetessepsusuusetsteseteseestieeetretensse: 3935
23.2 Control. 3836

24. INTERFACES...
24) External interfaces. os
242 SC to SP INEMACOSeeeatepets t sth ban abh obj bnbe tines tnnuptustevetpiesesnessss 3938

SQ to SX: interpolator DUS occcc eee cece eeeetee eee esseteteatetttettbbiteetuttrteeeece 4238

SOQ to SF: Staging Register Data.eeeeee eevee te tttaetettetteteetetee us 4238

2A25 VGT to SQ. Vertex interface.ccccecsesuescevesssetesuetussaueessestsevasiiivatnecaventisn 4238

242.6 S8Qto SX: Control bus... - verte A544

24.2.7 SX to SQ: Output file COMOcece se eseeeccseeeevosessssvsnevosnssssnsnesessesaupnessesenss 4544

QA2B SO to TP: COmbrol BUS oes cece secs sencenvsvssanvssasnsvstasansausssssuvansetsssavisivansssanssesvanves 4642

24.2.9 TP to SQ: Texture Stal cccceccccssceucsscssapvavensssssasanvavsssssssunsayssvspisuanyisnvasssnesss 4642

2A 2AO SQ to SP: Texture Stall ccc secsescsvenesussasossnssssuasasvavstustusunssusssasitssunessunuesssanvess 4743

242.11 SQ to SP: GPR and auto COUNT occ ese caeec seeeeee cess peenasstpsaetcetaevisatnintnsess 4743

BA ZAZ SQ to SPInstructionsonececses eve ees e cee ssceeee tees pcptatasaetsuaesseitgetisusnuatnsests 4844

242.13 SP to SQ: Constant address load/ Predicate Setoeee sve severe csusssrssersas 4944

24.214 SO to SPx: constant broadeast occcc ususencssesnesssvsussunvenetsssazosenmnsssusstineseuns 4945

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257504

ATI Ex. 2108

IPR2023-00922

Page 110 of 316

ATI Ex. 2108
IPR2023-00922

Page 111 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4. September 204 248 4of 54
24.2, 15 SPO to SQ: Ki VECtOr lOocccece cece cses ceva saeetesuespestesntensttutitennevsiteetnentnnets 4945 |

24.216 SOQ to CP: RBBM DUS ooo ccesseussesuensssssansssnesssunsantvstisussnnnsvssansisssnnessunsnsssnsvess 4945 :

242.17 CP to SQ: RBBM DUS. occ ccc ecco cecs eens ecssonssesse css tatnastastsututninttisansisstniessenessesisess 4945

24,.2,18 SOQ to CP: State femoraete tates secetteatentetutueeuesstenengenepets 5045

4 -SEQUENCER-INGSTRUGCTIONS,
&, CONSTANT STORES wcccsrecevvevvees

5.31RA00.Sonstant-managementonsen
33-2—Proposatfor-R400L.E-constant-management
33-4.—-Free-List Blook—---

3.3-5-—-De-allocate- Bleek -reccnereseren

3-3-6..-Operation-ofIncrementalmodel...
Constant Store-indexing

$3Real-Time Commands.

62 The Control Flow Prograrm oo.cceetee ecco tree eect teeeetrieteeetirtiateeettetenenetteeeenntties 20 ©

 6.4oeData-dependant predicate-instructions..

Cc
i L. ftARBEERATION «.::

12. HANDLING STALLS...

Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257505

ATI Ex. 2108

IPR2023-00922

Page 111 of 316

ATI Ex. 2108
IPR2023-00922

Page 112 of 316

 , i ORIGINATE DATE
Ge

" 3 24 September, 2001

242-5.VGT10SQ--Vertexinterface...agS

 GEN-CXXXKX-REVA 5 of 54

EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 201516Ny Eyaw

24-2-44SO-1o-SP:GPR and aulo-counlerseedd
ory Eee

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257506

ATI Ex. 2108

IPR2023-00922

Page 112 of 316

ATI Ex. 2108
IPR2023-00922

Page 113 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201515 6 of 54fae! eu “2 BA. L

24.2-43--SP-to SQ:Constant-address-load/Predicate-Set...45

Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257507

ATI Ex. 2108

IPR2023-00922

Page 113 of 316

ATI Ex. 2108
IPR2023-00922

Page 114 of 316

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201518lates a x £

Revision Changes:

DOCUMENT-REV. NUM. PAGE

GEN-CX200X-REVA 7 of 54

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rey 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.5 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : Apri] 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 contro/
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPOQ interfaces. Changed della
precision. Changed VGT-SP0 interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT--SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that werer’t
directly tied to the SQ. Added explanations on
constant management. Added PA--SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scheme

Exhbt 2071 dock400_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257508

ATI Ex. 2108

IPR2023-00922

Page 114 of 316

ATI Ex. 2108
IPR2023-00922

Page 115 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201515 8 of 54~ _ inal eu L

| Rev 2.01 (Laurent Lefebvre) Changed slightly the control flow instructions toDate : May 2, 2002 allow force jurnmps and calls.
Rev 2.02 (Laurent Lefebvre) Updated the Opcodes. Added type field to the
Date : May 13, 2002 constant/pred interface. Added Last field to the

SQ—SP instruction load interface.
Rev 2.03 (Laurent Lefebvre) SP interface updated to include predication
Date: July 15, 2002 optimizations. Added the predicate no stall

instructions

Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257509

ATI Ex. 2108

IPR2023-00922

Page 115 of 316

ATI Ex. 2108
IPR2023-00922

Page 116 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 201545 GEN-CXXXXX-REVA | Qof54! Cu a at i
1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257510

ATI Ex. 2108

IPR2023-00922

Page 116 of 316

ATI Ex. 2108
IPR2023-00922

Page 117 of 316

axe@BB0qJ9AODUOBOONJUGUAdODsousJoJey"]eENUSPYUOD[LY@5seet
Wi"Wield

sores}

MOTAIOAGJosuonbag[eisuey3]oansly

 aada|

 44

gO/Od-g0/0d| FO/Od

x-GCiadsdsdsiaaaiNiaaNi|*_4;uvassouori

-SP1SQYAOEy)TOMLNODos

|

¥S3°OLAqoVvd

uoijeayioadsuaouenbesoor

OVO)INWISHOOD

sopuscuanbag“pgpysonTEC

“OELNOOXELLUSA

THLETeySPOSTESEGLOdJequiejaasfalvdLids

moLSEiP-
O62")IUBISUOT&

SLVLSHOLSdAYOLSLSNI

peey2d

SINVLISNOO|peddeyy49imsiéey
 LO0Z‘“IequiaydespzSaLVGSLYNISIYO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257511

ATI Ex. 2108

IPR2023-00922

Page 117 of 316

ATI Ex. 2108
IPR2023-00922

Page 118 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 201545 GEN-CXXXXX-REVA | 11 of 54! Cu a at i
1.1 Top Level Block Diagram

>—— Input Arbiter _
esSe ee,

:—r VIX RS PIX RS -+—

Exec Arbiter

|

Texture —

Figure 2: Reservation stations and arbiters

ALU

Underthis new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257512

ATI Ex. 2108

IPR2023-00922

Page 118 of 316

ATI Ex. 2108
IPR2023-00922

Page 119 of 316

| ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201515! ews

1.2 Data Flow graph (SP)

|

instruction

JLleealr npulout

| pipeline stage

 instruction

scalar inputfoutput

pipeline

 ScalarUnit instruction
catrapuale)

 | pipeline stage

instruction

al

RegisterFile

RegisterFile

eee

 Register File

Backend

~)

f
\

R400 Sequencer Specification

 tel fre rea

el
r

 text aa

1itexture|

quest

Byepsinyxey~ ByWO)BlepSAW

 texture rel pst

ae\

\ to Primitive Assembly Unit or Render!r
v

textureaddress

(

Figure 3: The shader Pipe

PAGE

12 of 54

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257513

ATI Ex. 2108

IPR2023-00922

Page 119 of 316

ATI Ex. 2108
IPR2023-00922

Page 120 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201545 GEN-CXXKXKX-REVA 13 of 54i fa a
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Be

Ciause # + Rady
is CST -

WrAddr | SEQ | WrAddr||

cMD | | |i || i |
cst Lo | |

Phase| D4 | A
emp CSTestzestipx 4 C Wrvec |

RdAdar Do |WrScal race
3 “ 2 a

FETCH SPO Re OF

WrAddr

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file contro! interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257514

ATI Ex. 2108

IPR2023-00922

Page 120 of 316

ATI Ex. 2108
IPR2023-00922

Page 121 of 316

To RB

—_ a0 oa|

ORIGINATE DATE

24 September, 2001
OO

RE ||||

4 September, 201515

EDIT DATE

fail fu

ls CROSSBAR(4x100 bits)

R400 Sequencer Specification PAGE

14 of 54

Ao At A2 BG !Js buffer (oing-pong suffer) |
(25 bits *8 (8) +4547 4 (quadruple-butfere AD At AZ BO i42800 bits i

2 BI co ct c2 |
Bt co ci c2 i

3 cs | C4 C5 pe XYsbuffer (ping-pong buffer) |
! 24 bits * 16 quads * 2 C3 c4 cS Do :| 768 bits |

saad 1
4 DI ba EO E1 || Dt D2 EO EI |ju i

_ T T i
| | 1 T

INTERPOLATORS ! t 1FDGFLOAT + EXPANSION |
L
i

—— | |

512 | ™mm. ip rf J |
| | |I

— ph f{————— |
Furl aur} |ae|a|

| 4uUr | | fLL | 2kL | Xd
| | |I I I

Exhibit 2031 dockd0o_Sequencerdac

Figure 5: interpolation buffers

71818 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257515

ATI Ex. 2108

IPR2023-00922

Page 121 of 316

ATI Ex. 2108
IPR2023-00922

Page 122 of 316

sex@BHCJBAODUOS9130K]IUGUAdODDOUSIOJSY"[EHUSPYUOD[LY@wiseisi,—epsosvenbes“oopudoyTezTaNweiderpSuppuonepdasqUy:oBML]

cel)bel0z6LLOLL

aeaCARSTEPITTR
L00z‘lequieydes

 ¥G}OSLWAREXXXXXO-NADSraLodJequeces7d9VvdANN(AdaLNSINNOOdaLvd1103
 aivday

 I91a

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257516

ATI Ex. 2108

IPR2023-00922

Page 122 of 316

ATI Ex. 2108
IPR2023-00922

Page 123 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 207515 16 of 54+ ib

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mappedregisters.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4, SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257517

ATI Ex. 2108

IPR2023-00922

Page 123 of 316

ATI Ex. 2108
IPR2023-00922

Page 124 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4September. 20lots GEN-CXXXXX-REVA | 17 of 54
2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VWWR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF afler the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
ig 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE and if both are idle willerase the content of state fo replace it ‘withthe newstate (this is depicted in Figure 8: De-allocation mechanism}
allecation-mechaniem). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addressesif needed).

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257518

ATI Ex. 2108

IPR2023-00922

Page 124 of 316

ATI Ex. 2108
IPR2023-00922

Page 125 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 24 September, 2001 4 September, 201515 18 of 54inal eu L

_ Free List
sities>

Context 0 => N

 | Renaming Table

~CurrenvLast|| |Context i
(8 rows of 16-8|| eri ;
bit physical => " Logical Address128 entries copy
in eight clocks) & Context

Physical
Address

 Global Register |Data Bus

Staging Data

Constants ' Buffer | > Physical
location <——_—_ | Memoryavailable i i . i
WRTR f —Staging Write Addr|

physical
address next

to physical
schedule address

for ready
deallac | for allocate|

Logical address i ~, Seq
Onthe peNN ConstantGlbRegBus _ aA _4 a | Requestwhen Ish are zero This !

first word of write , | Context |
Renaming Table Dirt |

for 1 Context yy |
Current/Last Logical i | Context &Physical i _L Logical

Address Address | Address Address —]er (Only | ditset | |
Le ‘cal de- | don't | |

Address|allocate allocate -—____| ifset) | or de| | allocate)| Renaming: table
N-Contexts

Copy Last held above to
Current Context onreceipt

of Set Constant for a
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry te current state.

Figure 7: Constant management

Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257519

ATI Ex. 2108

IPR2023-00922

Page 125 of 316

ATI Ex. 2108
IPR2023-00922

Page 126 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201545 GEN-CXXXXKX-REVA | 19 of 54“3 ot rman i

SQ_STATE#ADDR

DEALOC _i—WRITE_ENABLE

Free List CNT VALUE|COUNTERS - 5 |
| |

| [| | PREVIOUS
i NOT lal STATE

| |
| NEW

| | | STATE| |

VALUE | || | |——— I=

VALID | he ~<| | L

/ oR || ; :

: | SQ IDLE
—— AND } PA_IDLE

CP_NEW_STATE_CNTL—
Cee SET CTX BITS

Figure $: De-allocation mechanism for R400LE.

5.3.3 Dirty bits
Two sets of dirty bits will be mainiained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incaming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked eachtime a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk thefreelist
like a ring.
The second painter will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_pir does not equal the stop_pir and the IFC is at its maximum count.

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257520

ATI Ex. 2108

IPR2023-00922

Page 126 of 316

ATI Ex. 2108
IPR2023-00922

Page 127 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| ; 24 September, 2001 4 September, 201545 20 of 54
| 5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_pir pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. it is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advancethe write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location frorn the free list
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirly
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthe first draw commandof the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointerif read_ptr |= to stap_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incrernented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has notfree list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-rmapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta's. It allows memory to beefficiently used and when the constants updates are small it can store multiple
context. However,if the updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shaderpipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257521

ATI Ex. 2108

IPR2023-00922

Page 127 of 316

ATI Ex. 2108
IPR2023-00922

Page 128 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Septernber, 201945 GEN-CXXXXX-REVA 21 of 54A oh

between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X% // Loads the sequencerwith the content of R2.X, also copies the content of R2_X into R1.*
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
worksis the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}

Higure 9: ‘The instruction-Constant store

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257522

ATI Ex. 2108

IPR2023-00922

Page 128 of 316

ATI Ex. 2108
IPR2023-00922

Page 129 of 316

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201515 22 of 54
| 6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWVe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consistsof:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

41: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
f: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ’ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

| Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257523

ATI Ex. 2108

IPR2023-00922

Page 129 of 316

ATI Ex. 2108
IPR2023-00922

Page 130 of 316

ORIGINATE DATE

24 September, 2001
 EDIT DATE

4 September, 201515a mo GEN-CXXXXX-REVA

DOCUMENT-REV. NUM. PAGE

23 of 54
guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be done.

6.2.1 Control flow instructions table
Hereis the revised contro! flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

NOP

47.44) 43 | 420
0000 | Addressing | RESERVED

This is a regular NOP.

Execute

47... 44 | 43 40... 34 | 3316 15...12 11....0
0001 Addressing RESERVED | Instructions type + serialize @|Count Exec Address

i | | instructions)

Execute_End _
47... 44 | 43 40... 34 33....16 15...12 11...0

0010 = Addressing RESERVED | Instructions type + serialize @|Count Exec Address
| instructions)

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(i = Serialize, O = Non-Serialized). if Execute_End this is the last execution block of the shader program.

Conditional_Execute

 47... 44 | 43 42 41... 34 | 33...16 15...12 | _1t...0

0011 | Addressing|Condition|Boolean|Instructions type + serialize (9 Count | Exec Addressaddress instructions)

Conditional_Execute_End

AP AA ABAaABBTO SO
0100 Addressing|Condition|Boolean|Instructions type + serialize @ Count Exec Address

address | instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

ConditionalExecutePredicates

47... 44 | 43 | 42 41... 36 35... 34 1 33...16 |18...12 11....0
0101 | Addressing|Condition RESERVED|Predicate Instructions Count Exec Address

/ vector type + serialize
(9 instructions)

ConditionalExecute Predicates_End
47... 44 | 43 L 42 — 41.36 [| 35..34 [33.16 | 15...42 11.0

0110 | Addressing | Condition|RESERVED|Predicate Instructions Count Exec Address
| ! vector type + serialize

| |_(9 instructions) L

Check the AND/ORofail current predicate bits. lf AND/OR matches the condition execute the specified numberof
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2031 cock405_Sequencerdec 7ia18 Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++ | ce

AMD1044_0257524

ATI Ex. 2108

IPR2023-00922

Page 130 of 316

ATI Ex. 2108
IPR2023-00922

Page 131 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September 201518 24 of 54

condition is not met, we go on to the next control flow instruction. lf Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

| - Conditional Execute Predicates No Stall

At4 43 42 41.36 | 33..34 | —33...161 101 Addressing Condition RESERVED Predicate Instructions Count

vecior type + serialize
@ instructions)

| - ConditionalExecutePredicatesNo Stall End 43 42 4038 | 36...34ae 33...16 15...12 | 17.0
Addressing Condition RESERVED|Predicate Instructions Count Exec Address

vector ype + serialize

Same as Conditionnal Execute Predicates but the SQ is not going to wail for the predicate vector to be updated.
You can only set this in the compiler if you knowthat the predicate set is only a refinement of the current one (like a
nested iD because the oplimization would sul work.

47... 44 43 [42... 1721 20... 16 15.12 | 11...0
 —__Loop_Start

 0111 Addressing | RESERVED | loop ID RESERVED T Jump address
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

 ; Loop_End -
47... 44 43 42... 24 | 23... 24 | 20... 16 15.12 | 11.0

' loop ID RESERVED | start address 1000 Addressing | RESERVED | Predicate break
Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call

47...44 43 i 42 41... 34 33... 13 12 11....0

 1001 Addressing | Condition | Boolean address | RESERVED Force Call | Jump address
If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return

47..44 48 [42.0

1010 Addressing | RESERVED
Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_.ue
 47... 44 44 41..34/) 330 | | 11....0 _1011 “Addiessing Conaition Boolean “FWonly — RESERVED | Force“jump | Jump address

address | | |

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257525

ATI Ex. 2108

IPR2023-00922

Page 131 of 316

ATI Ex. 2108
IPR2023-00922

Page 132 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA 25 of 54A A. AE

Allocate

47...44 | 43 42.4, #| 40.4-—ti‘(C‘;C;ST!;*CS:;«~CO..WOOO~™OC|
1100 | Debug | Buffer Select RESERVED | Allocation size

Buffer Select takes a value of the following:
01 — position export (ordered expart)
10 — parameter cache or pixel export (ordered export)
11 - pass thru (out of order exports).

Buffer Size takes a valueof the following:
00 ~ 1 buffer
O1 — 2 buffers

15 - 16 buffers

If debug is set this is a debug alloc (ignore if debug DB_ON registeris setto off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives ina given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the orderthat they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored In a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed ‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop Iterators (4x9bits),
Call return pointers (4x12 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr (7 bits),
GPR BasePir(8 bits),

. Context Pir (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

©ONITSW
Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257526

ATI Ex. 2108

IPR2023-00922

Page 132 of 316

ATI Ex. 2108
IPR2023-00922

Page 133 of 316

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 207949 25 of 54fi Oe

‘Status Bits’ needed include:

Valid Thread

Texture/ALU engine needed
Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 ~ No allacation needed

01 — Position export allocation needed (ordered export)
e 10- Parameter or pixel export needed (ordered export)
« ‘11-— pass thru (out of order export)
e Allocation Size (4 bits)
® Position Allocated
« First thread of a new context

® Event thread (NULL thread that needsto trickle down the pipe)
® Last (1 bit)
e Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wail is active, these threads are
further filtered based on whether spaceis available. If the allocation is position allocation, then the thread is only
considered if all ‘older threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the sarne parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. If the thread neededto allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also rermoved
from the buffer, never to return.

If | now redefine ‘clauses’ to rmean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses neededis 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal numberof 2 clauses,
evenif it involved texture fetching.

The Texture_ReadsOutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears thebit.

6.4 Data dependant predicateinstructions
Data dependant conditionals will be supported in the R400. The only way we plan to support thoseis by supporting
three vector/scalar predicaite operations of the form:

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257527

ATI Ex. 2108

IPR2023-00922

Page 133 of 316

ATI Ex. 2108
IPR2023-00922

Page 134 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201545 GEN-CXXXKX-REVA | ef of 54 AnD 8

PRED_SETE_# - similarto SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_#— SETEO
PRED_SETE1_#-SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit precicate vectors (in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you wantto use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control pragram, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our newaddress that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangemenis.

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257528

ATI Ex. 2108

IPR2023-00922

Page 134 of 316

ATI Ex. 2108
IPR2023-00922

Page 135 of 316

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201515 28 of 54i a x

6.7 Debugging the Shaders _
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Methed 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer(even if they occur
before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257529

ATI Ex. 2108

IPR2023-00922

Page 135 of 316

ATI Ex. 2108
IPR2023-00922

Page 136 of 316

 | ORIGINATE DATE EDIT DATE|
DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201515 GEN-CXXKKXK-REVA | 29 of 54a i int a 5 I

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2031 cock405_Sequencerdec 7ia18 Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257530

ATI Ex. 2108

IPR2023-00922

Page 136 of 316

ATI Ex. 2108
IPR2023-00922

Page 137 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201515 30 of 54L AOA a

Above is an example of how the algorithm works. Vertices comein from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8-n_potentially pending fetch clauses to be executed. The choice is
made by looking at the fifos-from-7-te-OVs and Ps reservation stations and picking the first one ready to execute.
Once chosen, the clause state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks)
until all the fetch instructions of the clause are sent. This means that there cannot be any dependencies between two
fetches of the sameclause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceedsin almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8-n_potentially pending ALU clauses to be executed. The choice is made by Jooking at the Vs and Ps reservation
stations and picking the first one ready to execuleThe choice is- madebylocking at the fifos from 7 ie OD and-vicking

the-first-one-readyto-oxesute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and ©O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinstt Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257531

ATI Ex. 2108

IPR2023-00922

Page 137 of 316

ATI Ex. 2108
IPR2023-00922

Page 138 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA 31 of 54ee Pe ws
Proceeding this way hices the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the-an_exporting clause, <8%).-The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wve have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. lJ Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). Theinterpolation is done at -diferent precisionacrossthe2x2,The-upperiefAll pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in-reduced-precisien-is-used-te-interpolatethe-parameterforthe-otherihrecpixeis-ofthe2x2.-Hereis-howewe-doit

Assuming-P0.is-theinterpolatedparameterat- Pixel0-havingthe-barycentric-coordinates-1(0),J(0)-and-so-onfor-P4,P2
and-P3.-Alise-assumingthatA-/s-theparameter-value-at-V0-(interpolaied-with-},-B-is-theparameter-value-atV4
Gnterpolated-with-J}-and-C-is-the-parameter-value al-V2-(inlerpelatedwilh-(-l-d)}.

PO =A+1(0)*(B~ A+ JF (0) *(C - A)

Pl=A+I(l)*(B-A)+J0)*(C = A)

P2=A+I1(2)*(B- A)+J(2)*(C - A)

P3=A+1(3)*(B- A) + J(3)*(C - A)

PO Pi

P2 P3
PO-is-computed-at20x24-mantissa-precision-and-P4to-P3-are-computed-at6X24- mantissaprecision.Sefar-nevisual
degradation-of the-image was-seen-using-this-schame.

Mulitiplies (Full Precision): 28
Muliplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: &

FORMAT OF Pé’s [J : Mantissa 20 Exp 4 for | + Sign

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257532

ATI Ex. 2108

IPR2023-00922

Page 138 of 316

ATI Ex. 2108
IPR2023-00922

Page 139 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 207515 32 of 54dows

Mantissa 20 Exp 4 for J + Sign

ea: . 1 ‘ .
ORMAT- of Deltas (c3}:Ma Hesa-8 Exp 6 as

Total numberof bits | 20*2-3+-8°6.+ 4*8 + 4*2 = 200,
428

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the nurnber is un-normalized. The maximum range for the IJs (Full precision) is +/- 63
1024and-the-+range-fortheDeltas-ig+422.

15.1 Interpolation of constantattributes
Becauseofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the baryeentric coordinatesterms are the same.

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 1213 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39g
40 44 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 G1 62 63

The sequencerwill re-arrange them in this fashion:

0123 16 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 ||8 91011 24 25 26 27
40 41 42 43 56 57 58 59 | 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sert
by the VGT to the SQ BUT will not be proceased by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257533

ATI Ex. 2108

IPR2023-00922

Page 139 of 316

ATI Ex. 2108
IPR2023-00922

Page 140 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4Seotember, 201515 GEN-CXXXXKX-REVA 33 of 54At By at.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data fo 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure11FiguretiFiguret4. The area of the fixed-to-float converters and the VSISRsfor this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure10FiguretTOFigure-1O,

Basis for 8-cdeep Latch Memory (from R300)

8x24-bit 11631 ,¢ 60.57813 17perbit

Area of 96x8-deep Latch Memory 46524 Ww
Area of 24-bit Fix-to-float Converter 4712.2 per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

VO BLOCK
(IN PA)

SHADER
SEQUENCER|—

VECTOR ENGINE

 VEOTOR ENGINE

Figure 11:VGT te Shader Interface

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257534

ATI Ex. 2108

IPR2023-00922

Page 140 of 316

ATI Ex. 2108
IPR2023-00922

Page 141 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 201515 34 of 54\ dows

| 17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (7R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER | ADDRESS |
4 bits |

7 dits

The PA generates the pararneter cache addresses as the positions came from the SQ. Allit needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 3
parameters per vertex (VS_EXPORT_COUNT= 8). The first position received is going to have the PC address
Q0000000000 the second one 00010000000, third ene CO100000000 and se on up to 111170000000. Then the next
position received (the 17) is going to have the address 00000001000, the igh Q0010001000, the 49" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1.2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned ofif the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exporied in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PREDOPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

ALU (DATA) ALU(DATA)...
They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:

| Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257535

ATI Ex. 2108

IPR2023-00922

Page 141 of 316

ATI Ex. 2108
IPR2023-00922

Page 142 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 2001 4 September, 201545 GEN-CXXAXX-REVA | 35 of 54 2 As
a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereis a list of all possible export modes:

18.1 Vertex Shading
0:15
16:31
32
33:40
41:47
48:55
60
61
62
63

- 16 parameter cache
- Empty (Reserved?)
- Export Address
- 8 vertex exports to the frame buffer and index
- Empty
- 8 debug export (interpret as normal vertex export)
- export addressing mode
- Empty
- position
- sprite size export that goes with position export

(point_h,point_w,edgeflag misc)

18.2 Pixel Shading
- Color for buffer 0 (primary)
- Color for buffer 1
~ Color for buffer 2
- Color for buffer 3
- Empty
- Buffer 0 Color/Fog (primary)
- Buffer 1 Color/Fog
- Buffer 2 Color/Fog
- Buffer 3 Color/Fog
- Empty
- Empty (Reserved?)
- Export Address
- 8 exports for multipass pixel shaders.
- Empty
- 8 debug exports (interpret as normal pixel export)
- export addressing mode
- Empty
- Z for primary buffer (2 exported to ‘alpha’ component)

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the pararneter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the reguiar parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257536

ATI Ex. 2108

IPR2023-00922

Page 142 of 316

ATI Ex. 2108
IPR2023-00922

Page 143 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201515 36 of 54ca} SRA

view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data rmemories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|O register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereis a list of all the modes and how theyinteract
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. if the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_]I0 disable, snd_xy disable, gen_st — |0 = No modification
Param_Gen_]0 disable, snd_xy enable, no gen_st — [0 = No modification
Param_Gen_l0 disable, snd_xy enable, gen_st — 10 = No modiification
Param_Gen_I0 enable, snd_xy disable, no gen_st ~ IO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage, garbage,s, t
Param_Gen_l0 enable, snd_xy enable, no gen_si — 10 = screen x, screen y, garbage, faceness
Param_Gen_|0 enable, snd_xy enable, gen_st — IO = screen x, screeny, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2m pass.
The countis always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEXregister. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counteris reset. Vvhile
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_|0 is enabled, the data will be putin the x fleld of
the 2™ register (R1.x), else if GEN_INDEXis set the data will be put into the x field of the 4% register (RO.x).

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257537

ATI Ex. 2108

IPR2023-00922

Page 143 of 316

ATI Ex. 2108
IPR2023-00922

Page 144 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA | 37 of 54i Estatatal : iease oS
 INTERPOLATORSAUTO

COUNT

oe
AUTO COUNT | 00000 |

The Auto Count Value is
Mux broadcasi to all GPRs.Itis

/ loaded into a register wich has
its LSBs hardwired to the

GPR number (C thru 63). Then
if GEN_INDEXis high, themux selects the auto-count

value and it is loaded inte the
GPRsto be either used te

retrieve data using the TP or
GPRO sent to the SX forthe RB touse it to write the data to

memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

21. X¥ Address imporis
The SC will be able to send the XY addresses to the GPRs.It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the J data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

REGDYNAMICDynamic-allocation (pixel/verien)ofthe-register-file-on-orof,

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257538

ATI Ex. 2108

IPR2023-00922

Page 144 of 316

ATI Ex. 2108
IPR2023-00922

Page 145 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201515 38 of 54

J 4. 7

_|Formatted: Bullets and Numbering
CONST.SIZE.“VIX @ bits). Size of the- logical constant storefofor vertex shaders
INSTPREDOPTIMIZE —_—Turme-on the predicate-bit oplimization dfofconditionalexecuie_predicatesis

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257539

ATI Ex. 2108

IPR2023-00922

Page 145 of 316

ATI Ex. 2108
IPR2023-00922

Page 146 of 316

| 24 September, 2001 4 September, 201515 GEN-CXXAXX-REVA | 39 of 54fy A fi i

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 Formatted: Bullets and Numbering

DBPROBADDR ____insiructionaddresswhere the first problemoccurred
DBPROBCOUNT numberofproblemsencounteredduring theexecutionoftheprogram
DBPROB_BREAIK breakthe clause ifanerroris found.
DBONnfS-OF-an-offdebug-method-2
DBINST.COUNT. inetruction-counter-for-debug-metbod-2
DBBREAKADDR ...preak-address-for-method-aumber-2

¥3.9- Control «| (eamnisig

DE_ALUCST.WMEMSIZE — a
DB_TSTATE_MEMSIZE

Size-ofthe-physical ALUconstant memory
Size-olthe-physical-texture-state-mamory

24-23. Interfaces

2 Formatted: Bullets and Numbering

24-423.1 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the samme name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

24.223.2 SC to SP Interfaces ~ _ omatied:blesantunietna—es ™

24.2423.2.1 SC_SP# |omaneatoberg
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpalators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data whichis transferred per quad is

Ref Pix | => $4.20 Floating Point | value*4
Ref Pix J => $4.20 Floating Point J value*4

Die Loch = 2 Cleati . :is ng

This equates to a total of 428.200 bits whichtransferred over 2 clocks
and therefor needs an interface 64100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,¥ data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: Ve could/may optimize for the case of only sending only lJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of lJ data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © += | ce

AMD1044_0257540

ATI Ex. 2108

IPR2023-00922

Page 146 of 316

ATI Ex. 2108
IPR2023-00922

Page 147 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201515 40 of 54MADBae

packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name [Bits | Description
SC_SP#_data | 64100|IJ information sent over 2 clocks (or X.Y in 24 LSBswith faceness in upper bit)

Type 0 or 1, First clock |, secand clk J
Field ULC URC LLC LRC
Bits [63:39] [38:26] [25:13] [12:0]

Format SE4M20 -SE4MZ0SE4M8 -SEA4NM20SE4MS. -SE4M20SE4MS
Type 2

/ Field Face x Y
| Bits (63] [23:12] (71:0)
i Format Bit Unsigned Unsigned

SC_SP#_valid 4 Valid
SC_SP#_last_quad_data if | This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
| 2 -> Indicates X,Y Data and faceness on data bus

The SC shail look at state data to determine how many types to send for the
| interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module staternent for
the SC and the SP block will have neither because the instantiation will insert the prefix. ee ees . ee Be

ee | Formatted: Bullets and Numbering :

24.2.223.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This cata will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94 bits) could be folded in half to approx 49 bits.
Name

| Bits Description fe

8C_SQ_data 46

Contro! Data sent to the SQ
1 clk transfers

2 clk transfers

Event ~ valid data consist of event_id and
state_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
ornew_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailoc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

Quad Data Valid - Sending quad data with or
without new_vector or pc_dealloc.
New vector will be posted to request be
fifo with or without a pixel vector and |

Exbiblt 2031 docR400_Sequercerdoc Tiga Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257541

ATI Ex. 2108

IPR2023-00922

Page 147 of 316

ATI Ex. 2108
IPR2023-00922

Page 148 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201535 GEN-CXXXAX-REVA 41 of 54a Ps

pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad maskset but the pixel
corresponding pixel mask set to
zero.

8C_SQ_valid i 1 | 8C sending valid data, 2™ clk could be all zeroes

SC_SQ_data — first clock and second clock transfers are shown in the table below.

Name BitField|Bits|Description

1° Clock Transfer _ _] ne
8C_SQ_event 0 4 This transfer is a 1 clock event vector Force quad_mask = :

| new_vector=pc_dealloc=0 ; ;
SC_SQ_event_id [4:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

=> TBD

8C_8Qpc_dealloc (7:5) 3 Deallocation token for the Parameter Cache
SC_SQ_new_vecior 8 1 The SQ must wait for Vertex shader done count > O and after

dispatching the Pixel Vector the SQ will decrement the count.
5C_SQ_quad_mask (12:9) 4 Quad Write maskleft to right SPO => SP3
‘8C_SQ_end_of_prm |18. [1 [EndOftheprimitive __
5C_SQ_state_id [16:14] 3 State/constant pointer (6*3+3)
8C_SQ_pix_mask | (32:17)|16 Valid bits for ail pixels SPO=>SP3 (UL,UR,LL,LR)
8C_SQ_provok_vix [8736] (2|Provokingvertexforflatshading
5C_SQ_pc_ptro [48:38]|14 Parameter Cache pointer for vertex 0.

[andClockTransfer
$CSQ_pe_pitrt (10:0) 11 Parameter Cache pointer for vertex 1
8C_SQ_pe_ptr2 (21:11)|114 Parameter Cache pointer for vertex 2
$C_SQ_lod_correct [45:22]|24 |LOD correction per quad (6 bits per quad)
5C_SQ_prim_type [48:46]|33 Stippled line and Real time command need to load tex cords from

alternate buffer

0000: Nenmnal-Sprite (point)
O01; Line
O10: Tri rect

| 101: Realtime Line
110: Realtime Tri rect104:-Line AA-110: Point AA (Sprite)

Name | Bits Description
$Q_SC_free_buff 4 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_entr_ent 11 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deailocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © += | :

AMD1044_0257542

ATI Ex. 2108

IPR2023-00922

Page 148 of 316

ATI Ex. 2108
IPR2023-00922

Page 149 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201545 42 of 542

| the new would wait for another vertex vector to be processed, but the one being waited for could never export es aS SSuntil the pc_dealloc signal made it through and thus the hang.) ss ee :

~ eee 4 Formatted: Bullets and Numbering| 24.2323.2.3 SQ to SX{SP): interpolator bus or Ls
Name oe Direction _ Bits|DescriptionLS : a :

| SQ_SPxXx_interp_flat_vix | $Q-»SPx L2 | Provoking vertex for flat shading :
| SQ_SP%o_interp_flat_gourau|SQ >SPx 1 Flat or gouraud shadingd

| SQ_SXxSPx_interp_cylwrap | SQ-»SPx 14 |Wich channel needsto be cylindrical wrapped
SQ_SXx_pc_ptrO SQ—SXx 11 Parameter Cache Pointer
SQ_SXx_pe_ptr1 | SQ-»SXx | 14 Parameter Cache Pointer
SQ_SXx_pe_ptr2 | SQ—SXx _11 | Parameter Cache Pointer ;$Q_SXx_it sel SQ—SXx 1 Selecis between RT and Normal data

$Q_SXx_pe_wr_en | $Q--SXx L 1 | Write enable for the PC memories
$Q_SXx_pe_wr_addr $Q—5xXx 7 Write address for the PCs

| SQ_SXx_pe_channel_mask | SQ—SXx [4 | Channel mask
||$Q_S%_pe.ptrvalid | SQ-2SXx i [R

$O_ SPx interp valid SQ--8Px pa | Interpolation control valid

This is a broadcast bus thatsends the VSISR information tothe staging registers of the shaderpipes.

7 . . od corma ed: wet an om ering24-2-423.24 SQ to SP: Staging Register Data - < : - = “s me pena ==

Name _ Direction _Bits | Description
8Q_SPx_vsr_data SQ—SPx 96 __| Pointers of indexes or HOS surface information
5Q_SPx_vsr_double | 80-—SPx (14 |_0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ—SPO0 i | Data is valid
SQ_SP1_ vsr_ valid | SQ>SP1 [4 | Datais valid
SQSP2_vervalid SQ>SP2 A|Data isvalid4
SQ_SP3_vsr_ valid | SQ—SP3 M4 Data is valid oo aS Soe
$Q_SPx_vsr_read | $Q—SPx 11 _ Incrementthe read pointers : Ss es : Se a

a ~ . SEs | Formatted: Bullets and Numbering
2423523,2.5 VGT to SQ: Vertexinterface “SS ee

24.25123.2.5.1 Interface Signal Table So

The area difference between the two methodsis not sufficient to warrant complicating the interface or the siate
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name Bits Description ; |VGT_SQ vsisr_data 96 Pointers of indexes or HOS surface information
VGTSOQevent 4 VGT is sending an event
VGT_SQ_vsisr_deublecontiny|1 0: Normal 96 bits per vert 1: double 192 bits per vert
ed
VGT_SQ_end_of_vectorvixv|1 Indicates the last VSISR data set for the current process vector (for double vector
ect data, "end_of_vector"is set on thefirst vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 RenderState (6*3+3 for constants). This signal is guaranteed to be carrect when

‘VGT_SQ_vgt_end_of_vectar’is high.
VGT_SQ_send i Data on the VGT_SQisvalid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rir 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

24.25.2939.5 2% Interface Diagrams wee + Formatted: Bullets and Numbering)

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257543

ATI Ex. 2108

IPR2023-00922

Page 149 of 316

ATI Ex. 2108
IPR2023-00922

Page 150 of 316

see@OHB_J9A0DUOBOONWYUGUAdODsoudIBJON“|EHUSPYUSD[LY@+acist
sus

YaONENOSSHaQVHS

sopresvanbeg“ggrUusapTEOE

TWIRELVANeaddoAATLOaLOdd

|AGIA

dadandaisvxLOL

bFiano

bTHSBLYLS

SISA

vpwldYSLSA

aaa45avaOS

orSagiojoaAJOpreWahswasTqoeaeteaJOAOSYaUyuodstsa4aDeWa

puesjaGsva

Teseqeqe4a63wd

vG10oFdovd

WAREXXXXXO-NAD WON(AdaLNSWNOOd
 SraLodJequeces7aLvd1103

©)nenaLo0g‘Iequaydespz ZAOMORAJO.CNTRZWIdnNcCdUSTSAGWLWUSLSA

LDA

aLvdSLVYNISIO

AMD1044_0257544

ATI Ex. 2108

IPR2023-00922

Page 150 of 316

ATI Ex. 2108
IPR2023-00922

Page 151 of 316

sxx@BB0qJ9AODUOBOONJUGLAdODsousJoJey"]ENUEPYUOD[Ly@oNee “SOSLSIU]IBABSVa10]Webegedb]balelsq”7Sinaiy
——-NOISSINSNVaLSdoOLsdadaNngs

NOISSINSNWALSLAVLS-adadaaHATHOdd

_

1

ccpriscusnbasoarysoRTOETANS|
AMD1044_0257545

NOISSIASNVaLSdoOlsaaATaoud

ayOglaALAWaOf1aINDO@1a

LAOWEWGO@1ayWLWd?yanus€Wawa€aNgsZWLWZanusSLdLOAZulyOsTulyosQOwlOsulaOs

SULAoe GSJOPy

49Vduoijeayioadsuaouenbesoor

[EeSEGLOdJequiejaasfalvdLids

|

SaLVGSLYNISIYO TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2108

IPR2023-00922

Page 151 of 316

ATI Ex. 2108
IPR2023-00922

Page 152 of 316

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 Seciember, 201546 GEN-CoOOOO-REVA | 45 af 34L i 0 A Ou L

242.623 2.6 SQ to SX: Contro/ bus *

Names| Direction “| Bits | Description
SQ_SXx_exp_type SQ—-SxXx 2 | 00: Pixel without z (1 to 4 buffers)

| 01: Pixel with z (1 to 4 buffers)
| 10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SxXx_exp_number | SQS8Xx | 2 Number of locations needed in the export buffer
; | | | (encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ—SXx 1 LALU ID
SQ_SXx_exp_valid | SQ-+SXx L 1 ' Valid bit
SQ_SXx_expstate SQ>8Xx 13 | State Context
SQ_SxXx_free_done SQ—>SXx i | Pulse to indicate that the previous export is finished

(this can be sent with or without the otherfields of the
| interface)

SQ_Sxx_free_alu_id | SQ>SXx 14 -ALU ID

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

o 00= 1 buffer
o O1 = 2 buffers
o 10 3 buffers
o 611 4 buffer
e 01: Pixels with Z
o 00=2 Buffers (color + Z)
o O1=3 buffers (2 color + Z)

10 = 4 buffers (3 color + Z)
11 = 5 buffers (4 color + 2)

e Type 10: Position export
o O0= 1 position
o QO1= 2 positions
o 1X = Undefined

* Type 11: Pass Thru
00 = 4 buffers
01 = 8 buffers
10 = 12 buffers
11 = Undefined

* Typ

oa0a

Cc
Oo

Oo0

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

24-2-723.2.7 SX to SQ : Output file control

[Name _ |Direction| Bits | Description — |
SXx_SQ_exp_count_rdy SXx-8Q 1 | Raised by SXOto indicate that the following twofields

| reflect the result of the most recent export
SXx_SQ_exp_posavail | SXx-95Q_ 4 | Specifies whether there is room for anotherposition.
SxXx_SQ_exp_buf_avail SXx—-8Q 7 | Specifies the space available in the output buffers. | 0: buffers are full

1: 2K-bits available (32-bits for each of the 64
| pixels ina clause)

| 64: 128K-bits available (16 128-bit entries for eachof
64 pixels)
65-127: RESERVED

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

 . S i=] Formatted: Bullets and Numbering :

«foo Formatted: Bullets and Numbering

AMD1044_0257546

ATI Ex. 2108

IPR2023-00922

Page 152 of 316

ATI Ex. 2108
IPR2023-00922

Page 153 of 316

R400 Sequencer Specification PAGE| ORIGINATE DATE EDIT DATE 46 of 54| 24 September, 2001 4 September, 201515i a 2fi OO

| 24.2893 2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RSline it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

a=] Formatted: Bullets and Numbering

Name Direction Bits | Description

TPx_SQ_data_rdy | TPx-+ SQ | 1 Data ready
TPx_SQ_rs_line_num TPx— SQ 6 | Line number in the Reservation station

TPx_SQ_type | TPx—> SQ 4 _ Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_send SQ—TPx 4 | Sending valid data
SQ_TPx_const _SQ-TPx | 48 _ Fetch state sent over 4 clocks (192bitstotal)
SQ_TPx_instr SQ->TPx 24 __| Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group _| 8Q-TPx [1 | Last instruction ofthe group ee :
SQ_TPx_Type SQ>TPx ul | Type of data sent (O:PIXEL, 1:VERTEX) 1
SQ_TPx_gpr_phase SQ>TPx 2 | Write phase signal
SQ_TPO_lod_correct | SQ—TPO 6 _ LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pix_rask SQ—TPO 4 _ Pixel mask 1 bit per pixel
SQ_TP1_lod_correct | SQ->TP1 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ->TP1 4 _Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ—TP2 6 | LOB correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ-TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct |SQ--TP3 16 | LOD correct 3 bits per comp 2 components per quad

| SQ_ TPS pix_mask SQ->TP3 4 _ Pixel mask 1 bit per pixel
SQ_LTPx_rs_iinenum SQ-—TPx . [6_ Line number in the Reservation station |
8Q_TPx_write_gpr_index _8Q->TPx L7 Index into Register file for write of returned Fetch Data

 { Formatted: Bullets andNumbering _ | 24.2923 2.9 TP to SQ: Texture stall ~
The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stali

|

SQ_SP_wr_addr |

|||

TL -—

Sut r|

|
Su2 r||

Name oo ‘| Direction . |Bits| Description _ |
TP_SQ_fetch_stall LTP.» SQ a | Do not send more texture requestif asserted

Exbiblt 2031 docR400_Sequercerdoc Tiga Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257547

ATI Ex. 2108

IPR2023-00922

Page 153 of 316

ATI Ex. 2108
IPR2023-00922

Page 154 of 316

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE : : : SSeS es :
beg «=||24 September, 2001 4 September, 201515 GEN-CXXXXK-REVA | 47 of 54 ass Shoe ce Ses ee

24—2-+023.2.10SQ to SP: Texture stall So :

Name . [Direction| BitsDescription _ ee| ee : :SQ_SPx_fetch_stall | SQ-»SPx 4 | De not send more texture requestif asserted : Oo ae

24.2-1423.2.11SQ to SP’ GPR and auto counter “0 ‘
Name Direction Bits|Description oe :
SQ_SPx_gpr_wr_addr | SQ-»SPx 7 Write address
8Q_SPx_gpr_rd_addr SQ>SPx 7 Read address
SQ 3Pxgprrden SQ--SPx 1. | ReadEnable

SQ_SPO_gpr_wren_ | SQ>SPx i,Write EnablefortheGPRsofSPO
SQ_SP1_gpr_wr_en SQ—SPx 1 Write Enable for the GPRs of SPi
$Q_SP2_gpr_wr_en |§Q-3SPx i Write Enable for the GPRs of SP2
$Q_SP3_gpr_wr_en SQ—SPx 1 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ >SPx 2 The phase mux (arbitrates between inputs, ALU SRC

_ . _. . _| reads and writes)
SQ_SPx_channel_mask SQ >SPx 4 | The channel mask
SQ_SPx_gpr_input_se! SQ >SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXQ,
| _MTX1, autogen counter.

SQ_SPx_auto_count SQ—SPx 12?|Aute count generated by the SQ, commonfor all shader
I pipes

Exhibit 2051 cockd0G_Sequencerdes 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257548

ATI Ex. 2108

IPR2023-00922

Page 154 of 316

ATI Ex. 2108
IPR2023-00922

Page 155 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24September, 2001|4 September. 201545 48 of 54 S oe :

2424223212 SQ to SPx: Instructions “Sr <o

Name oe Direction Bits| Description ee : :SQ SPx_instr stant SQ—SPx 4 _ Instruction start
SQ_SP_instr SQ—-SPx 224 Transferred over 4 cycles

0: SRC A Select ee
SRC A Argument Modifier 3:3
SRC A swizzle 4
-VectorDst AIA
Unused ——____- --Fer channel use mask

(PViReg) 202118

1: SRC B Select ~_ 2:0
SRC B Argument Modifier :
SRC B swizzle ts

ScalarDst AF
channel use mask (P¥/Req) 27:15Unused

20:48

2:SRCCSelect 2:0
SRC C Argument Modifier ss 3:3
SRC C swizzle 11:4
Per channel use mask (PV/Reg) 21:18Unused

20:42

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 41:44
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ--SPx 4 |ALU ID
SQ_SPx_exporting SQ—-SPx 2 0: Not Exporting

41: Vector Exporting
_| 2: Scalar Exporting

SQ_SPx_stall SQ—SPx | Stall signal
$Q_SP0_write_mask SQ—SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ-SPi 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

I _clock
SQ_SP2_ write_mask SQSP2 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ—SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

_Lastinstruction of the block
indicates to overwrite the use of PV/PS because of
the predication (use the GPRs instead). This

a

$Q_SPx_last SQ-SPx
SQ_SP0 pred overwrite SQ--SP0

ip]

SQSFpredoverwrite $G-2SP 1 4

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257549

ATI Ex. 2108

IPR2023-00922

Page 155 of 316

ATI Ex. 2108
IPR2023-00922

Page 156 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201515 GEN-CXXXXX-REVA 49 of 54i AO 4 ew ie.
lthe predication (use the GPRs instead). This

operation is dene on a per-pixel basis.

 SO_SP2 prec overwrite SO-8P2 4 Indicates lo overwrite ihe use of PV/PS because of
the predication (use the GPRs instead). This

|Operationisdoneon aper-pixelbasis.
SQ SP3 pred overwrite SQ—>5P3 4 indicates lo overwrite the use of PV/PS because of

| the redication use the. GERs instead). This

a4 Formatted: Bullets and Numbering :

24.24323.2.13SP to SQ: Constant address load/ Predicate Set *
Name Direction Bits | Description
SPO_SQ_const_addr SPO >SO 36 | Constant address load / predicate vector load (4 bits only)

fo| | to the sequencer

SPO_SQ_valid | SPO >SQ i | Data validSP1_SQ_const_addr SP1 >SQ 36 | Constant address load / predicate vector load (4 bits only)
| to the sequencer

SP1_SQ_valid | SP1--SQ 4 Data valid ; ; |
SP2_SQ_const_addr SP2—80 | 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
SP2_SQ_valid SP2—50 1 L_ Data valid
SP3_SQ_const_addr SP3—S0 | 36 | Constant address load / predicate vector load (4 bits only)

. ; L i “to the sequencer
SP3_SQ_valid SP3—S80 4 _ Data valid
SPO_SQ_data_type | SP2S0 1 | Data Type

: 0: Constant Load
| 4: Predicate Set

242-4423.2.14 SQ to SPx: constant broadcast

 oc] Formatted: Bullets and Numbering

Name | [Direction” [Bits[Description a ,r———C oeSQ_SPx_const | $Q—5Px [128 | Constant broadcast ee a ee

ne 4 Formatted: Bullets and Numbering2424523.2.15SPO to SQ: Kill vector load “ = : ——
Name[Direction | Bits| Description ode : - eS —
SP0_SQ_Kkill_vect SP0—SQ 4 _ Kill vector load
SP1_5Q_kill_vect | SP1--80 4 | Kill vector load
SP2_SQ_kill_vect SP2—S8Q 4 _Kill vectar load
SP3_SQ_kill_vect SP33S80 14 _ Kill vector load : : es : aS

ae ees Formatted: Bullets and Numbering2424623.2.16SQ to CP: RBBM bus | ss
Name | Direction [Bits | Description
SQ_RBB_is SQ >CP 1 _ Read Strobe

SQ_RBB_rd | §QCP (32 Read Data va oe
8Q_RBBM_nrtrtr $Q—cpP 1 | Optional ; oe DOSSs oe :
8Q_RBBM_rtr | SQ—CP 14 | Real-Time (Optional) oe Bas ane Ses ——

. . “") Formatted: Bullets and Numbering

24.2.1723.2.17 CP to SQ: RBBM bus “| (FormattedletandNunberng___)ee
Name Direction Bits | Description SS oe eS ee
rbbm_we 'CP->SQ 4 (Write Enable
rbbm_a CP—5Q 15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd | CP..»SQ | 32 | Data _
rbbm_be CF=SQ 4 | Byte Enables
rbbm_re |CP--»SQ 14 _ Read Enablerob _rsO CP—5Q i _Read Return Strobe 0

rbb_rsi _[CP-SQ 1|Read Return Strobe1
rbb_rdO | CP-»5Q 32 |Read|DataO-

Exhibit 2031 cock405_Sequencerdec 7ia18 Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257550

ATI Ex. 2108

IPR2023-00922

Page 156 of 316

ATI Ex. 2108
IPR2023-00922

Page 157 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 207848 50 of 54= Sh: NAABe

| robb_rd1 CP—SQ 32. | Read DataO
RBBM_S©_soft_reset | CF80 1 | Soft Reset

24.2-4823.2.18SQ to CP. State report - fen ed sean sie

 Name - | Direction Bits Description

SQ_CP_vs_event SQ—-CP 1 _ Vertex Shader Event
SQ_CP_vs_eventid | SQ—CP [2 _ Vertex ShaderEvent ID
5Q_CP_ps_event SQ—-CP 1 | Pixel Shader Event _
SQ_CP_ps_eventid | $Q--CP 2 | Pixel Shader Event ID

eventid = 0 => *sEndOfState (ie. VsEndOfState)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assurne the Vs is done with a state wheneverit gets a pulse on the SQ_CP_vs_event :

and the SQ_CP_vs_eventid = 0. : Oe ee 8

* . ne Formatted: Bullets and Numbering
24-323.3 Example of control flow program execution = = —
We now provide some examples of execution to better illustrate the new design.

Given the program:

ud
ul

ex 0
ex 1
u3Serial
ud

bP
“4

oye bo
ud
u6 Serial

oePo @
u7
loc Position 1 buffer
u 8 Export2x B®
loc Parameter 3 buffers
u9 Export 0@* oO
u 10 Serial Export 2
u 11 Export 1 End

 PRAbPRPAPPDAPPADD
Would be converted into the following CF instructions:

Lu Besx—-O Tex Tex—-O 7

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)

| Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257551

ATI Ex. 2108

IPR2023-00922

Page 157 of 316

ATI Ex. 2108
IPR2023-00922

Page 158 of 316

ORIGINATE DATE

24 September, 2001

Loop iterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Pir (8 bits), (GPR)
Export Base Ptr(7 bits), (EB)
Context Ptr (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXKX-REVA 4 September, 201315isthe eee Aone. i

PAGE

O1 of 54

State Bits

LOD CFP | ECM

a FO |
[CRP PB EXID | GPR EB CPTR
i) a [6 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
01 — Position export allocation needed (ordered export)
10 — Parameter or pixel export needed (ordered export)
11 — pass thru (out of order export}

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

 VALID TYPE_TYF _PENDING | SERIAL | ALLOC SIZE|POS_ALLOC
i ALU 0 10 [90

CS _ FIRST
0 0 i

|

[LAST ||I
Then the thread is picked up for the execution of the first control flow instruction:

lt executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

| CFP | ECM iL [CRP PB | EXID |GPR EB | CPTR LOD
0 [o 0 0 [0 [0 0 ro 0
Status Bits

VALID | TYPE -PENDING|SERIAL|ALLOC [SIZE|POS ALLOC FIRST | LAST
1 | TEX 0 0 10 10 G 1 6

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backin this state:

State Bits

CFP ECM [Ll [CRP PB EXID _GPR EB CPTR LOD
Q [4 FO FO Q FO LO 0 /O QO

Status Bits,

VALID TYPE PENDING | SERIAL | ALLOC [SIZE POS_ALLOC FIRST | LAST

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257552

ATI Ex. 2108

IPR2023-00922

Page 158 of 316

ATI Ex. 2108
IPR2023-00922

Page 159 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201515 52 of 54nererernarenenennnnnnnarennannenn eee 2 SAB seneenernral anpeeeeeneerrnrnnnennenenne one reer

| 1 [ALU 1 4 [0 _[o [0 i G
Because of the serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in

this state:

State Bits

CFP _ECM Lu LCRP PB _EXID LGPR [EB _CPTR [Lop
0 6 0 0 0 0 10 [a 0 [oO

Status Bits

VALID[TYPE—s PENDING[S$ERIAL| ALLOC[SIZE |POS_ALLOCFIRST [LAST|
1 | TEX 0 10 0 10 o 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits |
|CFP [ECM Ll | EB [cPTR [LOD|

Q 7 iO [0 oO ie

Status Bits > ; _ ee _ _ _ ee _ _
VALID TYPE PENDING SERIAL ALLOC SIZE|POS_ALLOC FIRST LAST
i | ALU i Lo 10 0 0 i 0 |

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serialbit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serialbit

set.

State Bits

| CFP TECM Pu 'CRP PB [EXID GPR [EB [CPTR | LOD
QO 8 0 0 0 0 /0 LO 0 LO

| Status Bits Je
|VALID TYPE PENDING | SERIAL | ALLOC SIZE | POS_ALLOC FIRST LAST le

1 ALU 1 [4 [0 0 i) 1 QO je

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits : :

| CFP | ECM LL iCRP PB | EXID | GPR EB | CPTR LOD oe
0 9 0 fo 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING [SERIAL | ALLOC SIZE|POS ALLOC FIRST LAST oe
1 TEX 0 0 10 0 0 1 0 bo

Picked up by the TP and returns:

| Exhibit 2031 dockdoo_Sequencecdoe 71818 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +=«

AMD1044_0257553

ATI Ex. 2108

IPR2023-00922

Page 159 of 316

ATI Ex. 2108
IPR2023-00922

Page 160 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

Picked up by the ALU and returns (lets say the TP has not returned yet):A_loc Position 1

StateBits i

CFP ECM Ll CRP PB EXID GPR | EB [cPTR [LOD
3 [6 6 [0 [0 5 r6 tO ro fo

Status Bits

LVALID TYPEPENDING
ALU 4

SERIAL | ALLOC [SIZE [POS_ALLOG FIRST LAST
oO 01 4 LO 1 a

ifthe SX has the place for the export, the 5Q is going to allocate and pick up the thread for execution. It returns to
the RS in this state:

Execute Ste-O A

State Bits

(CFP | ECM im |CRP [PB[EXID|GPR —B| CPTR LOD
3 1 0 0 0 [a 0 0 Lo 0

| Status Bits

VALID TYPE PENDING | SERIAL | ALLOC|SIZE | POS_ALLOC FIRST | LAST Fr1 TEX 1 Lo Lo 0 1 1 G P

Now, since the TP has not returned yet, we must wail for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

A_loc Param 3

| State Bits

CEP TECM TL LCRP PB | EXID | GPR EB _CPTR LOD
4 0 0 0 0 i 0 0 0 0

Status Bits

VALID TYPE PENDING | SERIAL [ALLOC | SIZE|POS_ALLOC FIRST LAST :
1 ALU i 10 110 3 4 1 0 |

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

Echibl 2031 cock400_Sequencerdos 71818 Hytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © += | :

24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA 53 of 54he Of o
State Bits

CFP [ECM LI | CRP PB | EXID | GPR EB |CPTR _| LOD
1 LO [0 i) 0 6 (0 0 [6 Ke

Status Bits :

VALID[TYPE_—s—séPENDING[SERIAL|[ALLOC [SIZE|POSALLOCFIRST[LAST|
1 | ALU 1 io 10 i [0 1 10

AMD1044_0257554

ATI Ex. 2108

IPR2023-00922

Page 160 of 316

ATI Ex. 2108
IPR2023-00922

Page 161 of 316

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 2015415 54 of 54oh Bs

| State Bits
CFP ECM [ul CRP PB EXID [GPR | EB [CPTR | LOD5 1 LO C (0 4 ro (406 0 6

Status Bits oe
‘VALID_| TYPE_—s«[PENDING[SERIAL[ALLOC[SIZE [POSALLOCFIRST[LAST|.

1 | TEX 4 10 iO Lo 4 4 [0 :

This executes on the TP and then returns:

“StateBits _

CFP ECM [Li [CRP [PB [EXID [GPR EB CPTR[LOD
5 2 i/o iz Lo 4 1O ' 400 0 6

| StatusBits ; ee ; _ _ _ ee

[VALID [TYPE [PENDING |SERIAL |ALLOC|SIZE|POS_ALLOC | FIRST LAST
1 [ALU 1 [4 0 0 1 1 1

Waits for the TP to return because ofthe textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25.24, Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

- oo “ Formatted: Bullets and Numbering

Saving power?

Exhibt 2031 deckd0G_Sequeneerdoe 71818 Bytes*** © ATL Confidential. Reference Copyright Notice on Cover Page © +=

AMD1044_0257555

ATI Ex. 2108

IPR2023-00922

Page 161 of 316

ATI Ex. 2108
IPR2023-00922

Page 162 of 316

Ces 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 1 of 51fe rat is

Author: Laurent Lefebvre

issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.04

Overview: This is an architectural specification jor the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: CAperforceir400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

ee oe oe APPROVALS eS :

Name/Dept cee o Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT| Technologies Inc.”

Exhibit 2032.decRaoc.sequencerdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++« |
ATI 2032

LGvy. ATI

IPR2015-00325

AMD1044_0257556

ATI Ex. 2108

IPR2023-00922

Page 162 of 316

ATI Ex. 2108
IPR2023-00922

Page 163 of 316

24 September, 2001 4 September, 20152 2 of 51Ra PRERSE EMP GD Be bePRT Bee Eel EE EPR En PM4aUu ecquencer specication | aBrn srtsscrud PI Edad

Table Of Contents

T. OVERVIEW o.ooeeeceescceseneeessnnenenseanseeenseuseasseusuoasanensenuaueatencasesesuceeusssensuaanauesetenaeneeaavenoes ?

11 Top Level Block Diagram oooccccece cece cc creer te ree cen eee seen ccteeeescnesteecsecancrersenecccereececernerss 9
1.2 Data Flow graph (SP)oo.cece cece ec cne ene cence tee eee ene eeeeecccenneeseceneeececenenroreeccnctesteccnaesy 410
G3 GOrtrol Granon...cenec ce cence nee ecco eee ee ree rec cn dene COd ed cnn ced Eee caeeeesedeceeesecceneceeseenciscnees 41
2. INTERPOLATED DATA BUSoeeceneneensneneenenecnecuesseneenecenneneonenentvonsunenensaaeaesenees 11

3% INSTRUCTION STOREoo... ccceccccccecessscccereoneeeneneenscaaeneensenscersceneaeecesesnensneensuansenseetsaaeresteees 14

4, SEQUENCER INSTRUCTIONS 0.ccc sscsssescssecestccesssensnesesseauersensaussesnonentenesssoesnwaseasaueensasous 14

8. CONSTANT STORES... ccccccscseesecsssueeersssenseseonnsesssesessansuesessuauessenuusscsuonensssessscananesesseaeensenous 14

S11 Memory organizations000eeeeee ee eee teeta dae ceeeeeeeeeteeecttnsnneeeeeeeseenes 14
§2 Management of the Control Flow Constants oo...cccccce cence ee sceeeeeetcentesseeeeeteeeeeeenceas 15
5.3 Management of the re-Mappind tables. ceccccccceeseeeeeneseeeeeeeeeneereseneearseeaeeaeeeaed 15

5.3.1 R400 Constant manageMent.........o.cccccccccee es ceeeeeeseceeevsteneecsenvansvisetatseneenirvesneansenees 15
5.3.2 Proposal for RAGOLE constant manageMent........c cee eee eee cents seteteerererenen 15
$13.30 Dirty Bits occccc ccc cc cccscsesevsssvesesersvevececstesvevevavrerevevevevitetessevevsciteveveveteeerevers 17
S.3.4 Free List BlOCKo.oo cccccccccccccccesceseseevevenenveeevevstesseseviveeensseanevevenativivestersenvevervetneanseates 17

5.3.5 De-allocate BlOCK .0...occccccccce cesesesceceesvsneseestestesevenieanvseanesiventetivivevntsereeverismneansenees 18

5.3.6 Operation of Incremental MOdeL oo... cece cecsceeesceeeeevsteteesseevevevensteevseneevivvetnvanseaees 18
54 Constant Store INGOXING cece cece cece ccc te eee cence ede ecenreteesencraeeeescnceeescaceeecsecnteccereecneneees 18
5.5 Real Time Commands...eeeette ete tebe c beste este ates cecieteeeeenenteees 19

§.6 Constant Waterfallingocccceccs ce cccc cece ces cccr tenes cenccrcrccnsccoreeeccccreeeserereeeerenecrersentanereees 18
6 LOOPING AND BRANCHES. .0.....ccccssssssscssecesssensseseenesssseauessensaussesnonentesesssoestwaressaueensensus 20

6.1 THE COPTPONING STAG.cececece cee errr en nn EE ERR REE ee ESE UGS HET AHH G EE CODE REED ORE CRE Donte ter Egos 20
6.2 The Control Flow Program ooocececece cee eee e esac eee eeceaeeeeettaeeeeseensseeeenisuneeesonias 20

6.2.1 Control flow instructions table..ooo00 ccc cecceeecscseeneestseetsenteveeveteteseneentrvenetenenens 21

63 Implementation...ceceeee eee cece tee ane ea eee eeeeeecee ed ccgeeaeaeeeeeececetttttceeeeeeeeneas 23
6.4 Data dependant predicate INSIPUCTIONS ooo.cecece cee ee eee ee eee e cee ettectb tebe ceteetnetebeenHaeEnes 24
6.5 HWDetection Of PVPSooocece ccc ccee ee eceeeenenee eens suunnes penne vescuuneeesaaeneseuuneeartneteanieeees 25
6.6 Register file indexing oo...eeeeeene Ett ntti etenentena 25
6.7 Debugging the Shaders...occcence cece cencccesceneeeeeecucce acer cenerereccrsorersesecneteereccnnenses 2625

6.7.1 Method 1: Debugging registers ooo.ec cecc cscs cccseesevcseseesessteneccstieesenieerwscstneneanens 26
6.7.2 Method 2: Exporting the values in the GPRS..0.0.000cccccccccececcecceccsetesecsteteresesessenstes 26

7. PURMEL KILL MASE o.oo. cecccccccccensenssarenancecencesnssoerscenneneceneaerececnateeceneueersserseurmenerennaneeteseas 26

8. MULTIPASS VERTEX SHADERS (HOS).......cccccccccssesesessssseessessaussesnonensenesssonsuwasessaueensesos 26
9, REGISTER FILE ALLOCATION.ccccccssscssenessesnsvesesseaucnssusssossanosenseserssenesvasseusauesenuouenes 2/726
10. FETCH ARBITRATION. uuu... .ccec ce ceesccnesesesssseessesesensesensensnnnenrascaeetessennaveusnensseusensnenneseseauees 28

Ll. ALU ARBITRATIONcccccccceccscoscecsecerseenensnentenecesenevecennaacecstoeenseoensnensenecseunaneeseneanenertone 28

12. HANDLING STALLS oo... cccesscesceceeseerscueunecsseauesscnoneenuserasoeswesesseueusesesuuauensaneeuotssussentesesrseueny 25

13. CONTENT OF THE RESERVATION STATION FIFOS..0..ccccscseressseesresesesesesnesensnsenaconsnee 29

14, THE OUTPUT FILELolcece eeceeseneeneecsnnnenseneeeaesunsensaznsnrascaeatessenuaeeusanenseuseussennnsessanees 29

15, LI FORMAT......2... cccccecccssececesennccessoneesesensucueuresccsnaenerecennasceseeceseusneuenertesessnaenevesennesterseeesentente 29

15.1 Interpolation of constant @ttriDUtes oo...ccceeeeee seen eee esee eee eeeedeeesaee ease sede ntenen cnet ee 29
16. STAGING REGISTERS oo. cccccccccccsstesessearsuesesensuersessnussesessenensusnesseueavesesunauensauueuatsenssentesessseueny 30

Exhibit 2032. docR400_Secuencences 72136 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257557

ATI Ex. 2108

IPR2023-00922

Page 163 of 316

ATI Ex. 2108
IPR2023-00922

Page 164 of 316

Ces 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 3 of 51

17. THE PARAMETER CACHE ...ccccesscccsscessssssssssssssossnvesssssssesssensasessessssssuesssassvesssonunessesnneesee 34
17.1 EXDOP PESTICTIONS.oeener E EEE REE EE RR EE EER HEE EE HEH EEE EDEEEE RECO DEER C Cette tect 32

L711 Pixel exports: occcece cece eerste eset rr trntrrittntitttintintintittwemnen 32
L7.1.2 Vertex @xports: o.ooccccece etree ttreretsrrtrtitstttentntivintnvinitnittmemenreen 32
17.1.3 Pass thru exports: 200cececece cece ec ee ee te cee tetentertetieetitestettitetetittititerte 32

17.2—Arbitration restrictions... ccc cccccccccccccccececeseeeeeeeeeeeeeeeeeeeueeeenetseeaaeersnseetetetseesteeneeseeees 32

18. EXPORT TYPEG........cccssssssnsssensnessnennnnsnsannnsnaneneseananansnsanansnnnennsnananens sn snanganannnnnnanannetasnaneanannns 32

| ESSe =>, eee) a>0 ||0,6rrr32
18.2 Pixel SACIeeeeeeonce reed cb crate e soc at ene cbteseeeecttrineeeercte 33
19. SPECIAL INTERPOLATION MODES00escsssnenssssnovsesssmunrerensensosuousnussunesueseueutesenenenenens 33

19.1 RE@! TIME COMMANS.0ccccece creer ene e REE EAE RN EE EARNED DE GdH EHH HEED R DEDEDE ERC c ttt t ects 33

19.2 Sprites/ XY screen coordinates/ FB Information...occcece cece ceccececcencoeeececuttetescues 33
193 Auto generated COUNTEISoocececette eee e eee c ee eda eae ecaeeeeeeceeeeeetentnseenees 34

19.3.1 Vertex SHAMS ooo cc ccecccccceccescscscesesseceevsecesescececsveseteestecieasviseversiterearssvesereiveterestees 34

193.2 Pixel SHAMEooo cceccccecesecceseeesecesevescesevecsuvesseceventecesensssnsavacestensecsennvaventeseeetes 34
20. STATE MANAGEMENTuu... cssccscsssesesssescnsscsnsentsceneesssronsssesunansseensousnnauseusnanseceeeusecauaunes 3534

20.1 Parameter cache synchronization ooocececece eee ce eee cn ee cece etetetecetttententeees 3534
21. AY ADDRESS IMPORTS. ...0.:cccccscssssonssecnsnerenensesseseseensensneseesenessesononanensnensesuneseoononsncnnnneseseen 35

21.1 V@rtex INGEXES IMPONMSceceee etek rece ener renner EEE EEE C OC EE REED C OECD Eg EC ence te cette nE eet 35
22, REGISTERScccccccsessssnennnnesunserscunesssevonsessasunesevsusessssnsausneaustsutaesennsononuneersdunnesueasescsonunnneses 35

221 COMPO Error! Bookmark not defined.error!Bockmarknotdefined.35

22.2 Context.eeError! Bookmark not defined.Error!Bookmarknotdefined.35

23. DEBUG REGISTERS..... ERROR! BOOKMARK NOT DEFINED ERROR!BOOKMARKNOT

DEFINED.3S

23.1 COMLEXeeError! Bookmark not defined.Error!Bookmarcnot-defined.25

23.2 Control. Error! Bookmark not defined. Error!Bookmark_notdefined.35

24. INTERFACES.0.....ccssscsssessesssssssssssenssssesssossssnessesonserssseenetossenassetensasoeesenensseseeess 3635

24.1 External Interfaces.ccccece este estes este vent tnsvstintrnsnnntventen 3635
24.2 SC tO SP INSTACESccccece tena seecececeenenteseaeaeeeeeeeesesntenstanenesseaeeeeecnettntianananas 3635

24.21 SC_SPHoccccscsescsescsseeescsessenssastesseseessicevevessssivevacisiteeveuvinescisevesisseeees 3635
0. SOan)OME|03736
24.2.3 SQ to SX: Interpolator DUS ooocece ccceceecseeceeseeseevevsueeenvteetavevsevetevitevteerentesareens 38
24.2.4 SQ to SP: Staging Register Data o.oocesersnesenrsestesevneetevstesensennetarnens 38
24.2.5 VGT to SQ: Vertex interface... csccseeees cess ercrtestesssertavsetesnessseneevertetanes 3938

24.2.6 SQ to SX: Comtrol BUS ooocece cccecesesesesee sess scseecesssevseceuesasssuttevevsteneisenevenes 4244
24.2.7 SX to SQ: Outputfile Controlocceect ee tee te cette trettttetneeteees 4244
24.2.8 SQ to TP: Control DUS ooocece ceccecesesecseseescevevceceuestessevevevsevneevssenvescrtesenes 4342

24.2.9 TP to SQ: Texture Stall ooocescccesesesseeeesseneesrcetertesssereavsrtesnesssneevenmetanes 4342

24.2.10 SQ to SP: Texture Stallcccceeeeee cesses sosnneeveetesnvstnnestsererenrennenrererene 4443
24.2.11 SQ to SP: GPR and auto Counter...occccc cccceceseeteevevseerevevevsestrevevereereee 4443
24.212 SQ to SPX: INStrUCTIONS ooo. cece cece ceccsesecccesesceseseresevsestsevetereeseseiesteseetereieetes 4544
24.2.13 SP to SQ: Constant address load/ Predicate Set...eeeseers 464544

Exhibit 2032.dockRae0Sequencerdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+« |

AMD1044_0257558

ATI Ex. 2108

IPR2023-00922

Page 164 of 316

ATI Ex. 2108
IPR2023-00922

Page 165 of 316

ae MJP RESP ENP TB herPT Bee | PaUU wequencer specication

Cal 24 September, 2001 4 September, 20152 | 4 of 51nonetts ord RENES OSS ES

24.2.14 SQ to SPx: constant broadcast ooo.cecc ceeeescsessescrteseecetnervesnetesreneenees 4645

24.2.15 SPO to SQ: Kill vector load ooo. ceeeces cscs escseeetescrersascrtesereetanersesentesenieanees 4645

24.2.16 SQ to CP: RBBM DUS .ooicceciccceccccecceccseseecsesceseecrereesecessetscevateneatitisseststicenenens 4645
24.2.17 CP to SQ: RBBM DUS ooo. c cocci cccecccccccceecesesceceeeseusessvevetervesutteviseteesvieieervetereree: 4645
24.2.18 SQ to CP: State report ooocece ceseensesseeevetteensesstesvenitietettitevnsnnranenetee: 4745

243 Example of control flow program @xX@CUTIONcece ccc cccecesceeeeeeeceseeeeseneaneennennaes 4746
28. OPEN ISSUES. qo... ccccccccesecsesenenseseneressuseversenenenensenarensasarcnenpardueauanereananansssaeacausnmavasazanaenes 5150

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257559

ATI Ex. 2108

IPR2023-00922

Page 165 of 316

ATI Ex. 2108
IPR2023-00922

Page 166 of 316

Mea PRE EE RR Bann BarRB Binne Hee Bee BOB eePRE Bee eeeeeSeeee ee

 24 September, 2001 4 September, 20152 GEN-C2Q000-REVA 5 of 51A Lig

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre) Changed the interfaces to reflect the changesin the
Date : July 9, 2001 SP. Added somedetails in the arbitration section.
Rev 0.3 (Laurent Lefebvre) Reviewed the Sequencer spec after the meeting on
Date : August 6, 2001 August 3, 2001.
Rev 0.4 (Laurent Lefebvre) Added the dynamic allocation method for register
Date : August 24, 2001 file and an example (written in part by Vic) of the

flow of pixels/vertices in the sequencer.
Rev 0.5 (Laurent Lefebvre) Added timing diagrams(Vic)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre) Changed the spec to reflect the new R400
Date : September 24, 2001 architecture. Added interfaces.
Rev 0.7 (Laurent Lefebvre) Added constant store management, instruction
Date : October 5, 2001 store management, control flow management and

data dependantpredication.
Rev 0.8 (Laurent Lefebvre) Changed the control flow method to be more
Date : October 8, 2001 flexible. Also updated the external interfaces.
Rev 0.9 (Laurent Lefebvre) Incorporated changes madein the 10/18/01 control
Date : October 17, 2001 flow meeting. Added a NOP instruction, removed

the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre) Refined interfaces to RB. Added state registers.
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre) Added SEQ-—SP0 interfaces. Changed delta
Date : October 26, 2001 precision. Changed VGT-—-SP0 interface. Debug

Methods added.

Rev 1.2 (Laurent Lefebvre) Interfaces greatly refined. Cleaned up the spec.
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre) Added the different interpolation modes.
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre) Added the auto incrementing counters. Changed
Date : December 6, 2001 the VGT-»SQinterface. Added content on constant

management. Updated GPRs.
Rev 1.5 (Laurent Lefebvre) Removed from the specall interfaces that weren't
Date : December 11, 2001 directly tied to the SQ. Added explanations on

constant management. Added PA-SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre) Added more details on the staging register. Added
Date : January 7, 2002 detail about the parameter caches. Changed the

call instruction to a Conditionnal_cail instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre) Added Real Time parameter control in the SX
Date : February 4, 2002 interface. Updated the control flow section.
Rev 1.8 (Laurent Lefebvre) New interfaces to the SX block. Added the end of
Date : March 4, 2002 clause modifier, removed the end of clause

instructions.

Rev 1.9 (Laurent Lefebvre) Rearangementof the CF instruction bits in order to
Date : March 18, 2002 ensure byte alignement.
Rev 1.10 (Laurent Lefebvre) Updated the interfaces and added a section on
Date : March 25, 2002 exporting rules.
Rev 1.11 (Laurent Lefebvre) Added CP state report interface. Last version of the
Date : April 19, 2002 spec with the old control flow scheme
Rev 2.0 (Laurent Lefebvre) New control flow scheme
Date : April 19, 2002

Exhibit 2032. docR4a0_sequencercse 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257560

ATI Ex. 2108

IPR2023-00922

Page 166 of 316

ATI Ex. 2108
IPR2023-00922

Page 167 of 316

Ro PR ERO EBNF YB BakPRT Be

Cail
Kofi EE EPR Em

m4uy oceQgquencer opecmcation PNT oe

24 September, 2001 4 September, 20152 6 of 51onealtttcode PERESOSSEon

Rev 2.01 (Laurent Lefebvre) Changed slightly the contro! flow instructions to
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date -August 2, 2002

allow force jumps and calls.
Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ-—SPinstruction load interface.

SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,
Documented the new parameter generalion scheme
for XY coordinates points and lines STs.

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257561

ATI Ex. 2108

IPR2023-00922

Page 167 of 316

ATI Ex. 2108
IPR2023-00922

Page 168 of 316

 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 7 of 51tt §

Aee Boe Eee BOF BeeFRB bee Le Nac ae Rel EW Boo ERE UR hee Wo BO BE re

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executesall of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencerfor the whole chip.

The sequencerfirst arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2032.docR49¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257562

ATI Ex. 2108

IPR2023-00922

Page 168 of 316

ATI Ex. 2108
IPR2023-00922

Page 169 of 316

 sex@OBBIBAODUOBOONJUBLAdODsouslejeyJENUSPYUOCD[LW©exv8eMGoe1z,—eeptesvenbes“eqrHsaT700MOTAIOAOAZdUONbegJes1ousy:]sANSL

Oyo)LSNI

|__aopeo]jupeues
"|ga"aa™ayaaa_| dO/Od:gO/dd-g0/Od=dO/od*ooi~a+°aaun.Oda|di|cwsinioe|avaYDe4ol||nLaLVLSHOSSww|dSdsdsdsTUOLSS|{_____,____LNXL|jasasbesa1PTOfy_aivisi

. 4.4. AI boASNTyfi“Ltotr™SOLSLSNIadaLNiYaLNi-YaLNi-¢aanI*~*|OMLNOS1SNa4Leri"ryriUVASSONOf
peey4O~:||feepoSNPpe

Sf}SCWNDZ-||rouiNooSINVLISNOOXSLSA

f

LO0z‘lequiaidagpzALVdSLVNISIYO

uoneoylosdsusouanbesoory
aLvdLida

TWISLVWaeaduoSATLOSLOdd

dO

AMD1044_0257563

ATI Ex. 2108

IPR2023-00922

Page 169 of 316

ATI Ex. 2108
IPR2023-00922

Page 170 of 316

bass 24 September, 2001 4 September, 20192 GEN-CXXXXX-REVA 9 of 51fh rat

1.1 Top Level Block Diagram

| Input Arbiter rd
| |

—— VTX RS PIX RS —

|
Exec Arbiter }¢———

— ALU Texture —
Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2032.docR49¢_Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257564

ATI Ex. 2108

IPR2023-00922

Page 170 of 316

ATI Ex. 2108
IPR2023-00922

Page 171 of 316

 |
Ref PREM TEMP FB BAP YT Be

24 September, 2001

| 1.2 Data Flow graph (SP)

ee

4 September, 20152Piowesrsenhteal

M4uy ScCquencer opecchication

10 of 51

PvPAA be

pipeline stage

WwW
jeanne

& 5
S —
5 &se

Register File5]

L. L. (Scalarinput/output MAC

pipeline stage

5
& i

#|—= Register File

scalar input/output
> MAC

instruction

pipeline stage

instruction

 ScalarUnit

fe requ

Y

Register File

scalar input/output

Register File

|

aT

ud

xs4

texlures quest |a e
oo
2i)

 to Primitive Assembly Unit or RenderBackend Se

Exhibit 2032docR400..Gequencar.des

texture r
Figure 3: The shader Pipe

BeionByeSAIL

Y

= Sc *
¢textureaddress

72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +++

AMD1044_0257565

ATI Ex. 2108

IPR2023-00922

Page 171 of 316

ATI Ex. 2108
IPR2023-00922

Page 172 of 316

7-00 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 11 of 51eeway Ae4ie

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip). |

1.3 Control Graph

Clause # + Rdy

WrAddr IS | SEQ CST | WrAddr
CMD | | |

CST | |

Ph | po
raat cmp CST’csTzcsT IDX A B C Wrvec ©

RdAddr | Co | |WiB8cal radar

‘ e ‘ ‘ e e : v

FETCH SP OF

| WrAddr

| | |
| | |
|

Figure 4; Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2032.docR49¢_Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257566

ATI Ex. 2108

IPR2023-00922

Page 172 of 316

ATI Ex. 2108
IPR2023-00922

Page 173 of 316

a
= No ENENSSEEMUAN 1 Be bet7 bBo Ket EE Bet Eee M4Uyu ocQquencer specication

C4 24 September, 2001 4 September, 20152 12 of 51BoonessuntSEVENED

ToRB

aoe:
L i,
BOa

Oeof ee ee —

4 AG | Al AQ BO lus buffer (ping-pong buffer} |
(25 bits *8 (J) *4*4* 4 (quadruple-bufferd AQ At A2 EO— 12800 bits

2 Bt oD ci c2
| Bt co Ct c2

3 C3 i c4 cs DBO XYsbuffer (ping-pong buffer}
| 24 bits * 16 quads * 2 >768 bits

32x24 |4 Dt D2 =0) Et

|
INTERPOLATORS

I
512

pec a
I

vuf2uL |) auL |} auL|UR || 2uR||3uR ||| | | I
1

Figure 3: Interpolation buffers

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257567

ATI Ex. 2108

IPR2023-00922

Page 173 of 316

ATI Ex. 2108
IPR2023-00922

Page 174 of 316

sax@OHJVAODUOsaHoRJUBLAdODsouaiejay"PEUaPYUOD[Ly@veevcizz—sopresuenbes™borwsoroTIa

DIBISeIpSupUoLEod4asyUy29oansLy

Col.

bolO61

Obl

VELiCbl

LGJOCLqoVd

¥¥
Py

EGLOgJequiejyaes7ALWGLids

WAAYXXXKXO-NAD‘WAN“ASLNSIWNOOd

L00Z‘JequiajdespzSLvdALYNIOIWO

 |TVIAELVNaaddoAAILOaLOdd

AMD1044_0257568

ATI Ex. 2108

IPR2023-00922

Page 174 of 316

ATI Ex. 2108
IPR2023-00922

Page 175 of 316

at Ref PRESSEE MAR FB bP TE ee P4aUU oequencer epecciication PYFAS fae

24 September, 2001 4 September, 20152 14 of 51

 Assessed “RUVOEE tel

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packedin the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid datain.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUswill perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory(this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tabies for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257569

ATI Ex. 2108

IPR2023-00922

Page 175 of 316

ATI Ex. 2108
IPR2023-00922

Page 176 of 316

 7-08) 24 September, 2001 4 September 20152 GEN-CXXXXX-REVA 15 of 51 |
5.2 Managementof the Control Flow Constants |
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. Aregister (SQ_CONTEXT_MISC.CF_RD_BASE) keepsthe current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents of its re-mapping tables to a
new one. We have8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to workin its simplest form, the requirement is that the physical memory MUSTbe at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2. Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFi
allocation-mecnanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2022.docR4ee_Sequencerdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257570

ATI Ex. 2108

IPR2023-00922

Page 176 of 316

ATI Ex. 2108
IPR2023-00922

Page 177 of 316

ee Kofi EE EPR Em PaUU wequencer specication a

24 September, 2001 4 September, 20152 16 of 51ct BENEOES rn

Free ListFree
Address : ¥

| Nurrber of entries
| equals Max Numberof a

— Physical Blocks. All | .
Free_pir of verdrall acura bat | Renaming Table

WritePtr can never pass each 7 i Context 0 => N
When a Logical other Current/Last

Addressis written
that has heen
written before,

store the physical

Context

 (8 rows of 16-8 Ls Context 0 (8 rows of 16 - 8 bitphysical => 128 entries copyin |'
bit physical =>

Logical Addresseight clocks}

mM

adressthat was «———— Stop_ptr 428 enlties copy |) (> teallocated by that a Py it | |Logical Address pir to first physical in eight clocks) ||| Context 4 \ & Contextaddress that is ' '
scheduled to be de-
allocated but noty
yet de-allocate.Advanced each time i

e a contextis freed by Lor Physical
ee C | the numberof ! AddressWa physical address |
EE <——_ Read_pir displaced bythati ptr to physical Contextaddress that will be

” used nextif the init
count is at

¥ maximum number
Address of physical addressto Allocate

Global Register
Data Bus

Staging Data |

Constants [Free Buffer | Physical
location <——_ ° | Memory- list ee

available Gass Phys Staging Write AddWRTR I acesst | taging Write Addr
-——| Context |

Dirty) | !>

physical
address next

to physical |
schedule address

for ready
de-alloc for allocate

Logical address | c Sed '
On the ———», ~ - Roc nat

GibRegBus " __& __& equeswhen Isb are zero This1 i rae

first word of write Renaming Table reset context “ A
for 1 Context ny on i
CurrentLast Le ical Lee ical Context &

Physical Ad ' Ade - le Logical |Address ress fess Address
ser (Only {lf set |

L pe de- don't |agical |allocate allocateAddress :
if set) or de-

allocate)| Renamingtable
N-Contexts

Copy Last held above to
Current Context on receipt

of Set Constant for a
—___. new context (Hide loading HF

behind Set State load - 16 clocks)
all other Set States just write one |

entry tc currentstate. |

Figure 7: Constant management

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257571

ATI Ex. 2108

IPR2023-00922

Page 177 of 316

ATI Ex. 2108
IPR2023-00922

Page 178 of 316

24 September, 2001 4 September, 20152 GEN-Q2000-REVAfs it. Ad L

aeeee Boe Eee BOF BeePRB bee eeee ee ee ae eBa

 BPD Bees |17 of 51

|

SQ_STATE#
DEALOC

Free List legCNT VALUE COUNTERS

| [4 PREVIOUS
| NOT | STATE
¢—— | NEW

| STATE
- VALUE |

—i te: |7 = |

VALID | a “| I + L____

| OR
|

|I

| <<§0 IDLE
——} AND ~«———Pa_|DLE—___

<¢CP_NEW_STATE_CNTL—
REMAPPING !

wABtE SET CTX BITS

Figure 8: De-allocation mechanism for R4Q0LE

5.3.3. Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. Ifitis set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renamingfor the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE:It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate ali physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one,else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_pitr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_pir does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2032.docR49¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257572

ATI Ex. 2108

IPR2023-00922

Page 178 of 316

ATI Ex. 2108
IPR2023-00922

Page 179 of 316

A PRESSEAE i LG Eo aeee P4aUU oequencer wepccnication Pon.

| Cfo) 24 September, 2001 4 September, 20152 | 18 of 51 |
| 5. 3.4 De-allocate Block ~ ~

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stopptr, read_ptr pointers in the freelist set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming tabie
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counterfor
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has notfree list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packetarrives, the content of the re-mappingtable is written to the correct re-mapping table for the
context number. Also if the next coniext uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clauseit will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. [It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loadedfirst with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibit 2032. docke00Sequensecdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257573

ATI Ex. 2108

IPR2023-00922

Page 179 of 316

ATI Ex. 2108
IPR2023-00922

Page 180 of 316

eSee Boe Bea BOF BeeFRB bee eeeeekee BPD Bow

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 19 of 51Assess SLO4 Jarkee

between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RIX,R2.X% /{ Loads the sequencerwith the content of R2.X, also copies the content of R2.X into Ri.X
NOP f latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64"9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT.It
works is the same way than when dealing with regular constant loads BUTin this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary betweenthe two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to havethe possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a smail synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sentto the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON

(Reads/Writes are direct)

_

REGULAR SECTION
(ReadsMrrites are passing

thru a remaping table)
Figure 9: The Constant store

Exhibit 2032.docR49¢_Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257574

ATI Ex. 2108

IPR2023-00922

Page 180 of 316

ATI Ex. 2108
IPR2023-00922

Page 181 of 316

Ao PREMSTENM PR TB BPAY Eo ee M4uy ScCquencer opecchication a

| tft! 224 September, 2001 4 September, 20152 | 20 of 51Peweehe OEbebe

| 6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][3 1:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program ofthe form:

1 Loop
2 Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch

7 End Loop
8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need ta be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ‘ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow conirol instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reservedbits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. Ve need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. Anew control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

| Exhibit 2032. docke00Sequensecdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257575

ATI Ex. 2108

IPR2023-00922

Page 181 of 316

ATI Ex. 2108
IPR2023-00922

Page 182 of 316

Re BORE Rees BERR EF Bem BaRE Bane Boe Eee BOF BeeFRB bee Head Nec Neca Nema EWE Boe bP UR bee WR

24 September, 2001 4 September, 20152 GEN-CX0OQXX-REVA 21 of 51st ot OAAd bush

guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only |
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs' may be done.

6.2.1 Control flow instructions table

Here is the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

Po NOP / |
47... 44— 43 420.000 eeei

0000 Addressing RESERVED |

This is a regular NOP.

Execute

47... 44 43 | 40... 34 3316 | 15...12 11....0
0001 Addressing RESERVED instructions type + serialize (9 | Count Exec Address

instructions) |

ExecuteEnd 47 ... 44 43 40 ... 34 33....16 15...12 11....0

0010 Addressing RESERVED instructions type + serialize (9 | Gount Exec Address
instructions) |

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type ofthe instruction (LSB) (1 = Texture, 0 = ALU and whetherto serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_Endthis is the last execution block of the shader program.

Conditional_Execute

 47 ... 44 43 42 41... 34 33...16 [15..12 | 11....0
0011 Addressing|Condition|Boolean|Instructions type + serialize (9 | Count | Exec Address

address instructions)

ConditionalExecuteEnd
 47... 44 43 _ 42 41... 34 33...16 | 15..12 | 11....0

0100 Addressing|Condition|Boolean|Instructions type + serialize (9 Count | Exec Address
| address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates

47... 44 43 42 41... 36 35... 34 33...16 15...12 0 11...0 0101 Addressing|Condition RESERVED|Predicate Instructions Count | Exec Address
vector type + serialize | |

(9 instructions) | |

Conditional_Execute_Predicates_End _

47 ... 44 43 42 41... 36 35... 34 33...16 15...12 | 11... 0
vector type + serialize

(9 instructions

 r

0110 Addressing|Condition RESERVED|Predicate Instructions | Count Exec Address|

|

Check the AND/OR ofall current predicate bits. lf AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren’t valid. If the

Exhibit 2032.docRas0-Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +«« |

AMD1044_0257576

ATI Ex. 2108

IPR2023-00922

Page 182 of 316

ATI Ex. 2108
IPR2023-00922

Page 183 of 316

pa Re PRESSE EMPTY Bee ber E Bo Coke EE ber E Ee rRM4UU ecquencer epecmcalion a

Cat 24 September, 2001 4 September, 20152 | 22 of 51Pesos SOded

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional Execute Predicates No Stall

47... 44 43 42 41... 36 35 ... 34 33...16 15...12 11...0

1101 Addressing|Condition RESERVED|Predicate Instructions Count Exec Address
vector type + serialize

(9 instructions)

 Conditional ExecutePredicatesNoStallEnd]

47... 44 43 42 41... 36 35 ... 34 33...16 15...12 11....0

1110 Addressing|Condition RESERVED|Predicate Instructions Count Exec Address

vector type + serialize
(9 instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinementof the current one (like a
nested if) because the optimization would still work.

Loop.Start

 47...44 43. ~«| 42... 21 [20..16 | 16.42 | #+‘11...0
o114 | Addressing _ oo RESERVED | loop ID | RESERVED|Jump address |

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

LoopEnd |
47... 44 | 43 42...24 | 23... 21 20 ... 16 | 48...12 11....0

1000 | Addressing | RESERVED | Predicate break loop 1D | RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

 _ ____Cenditionnal_Call _

42 41... 34 | 33... 13 | 12 11... 0
Jump address

_ Condition| Boolean address|RESERVED|Force Call| “1001 Addressing

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the cail is made always.

 Return

47 ... 44 | 43 42 ...0
 1010 | Addressing RESERVED

Pops the topmost address from the stack and jumpsto that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal Jump

 47... 44 | 43 | 42 41... 34 | 33 32...13 | 12 11...0

1071 | Addressing|Condition|Boolean|FWonly|RESERVED|Force Jump Jump address
address

lf force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257577

ATI Ex. 2108

IPR2023-00922

Page 183 of 316

ATI Ex. 2108
IPR2023-00922

Page 184 of 316

bes | 24 September, 2001 4 September, 20192 GEN-CXXXXX-REVA 23 of 51rat

Allocate

47 ... 44 43 42...44 40... 4 3...0

1100 Debug Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cacheor pixel export (ordered export)
11 — pass thru (out of order exports).

Buffer Size takes a value ofthe following:
00 — 1 buffer
01 — 2 buffers

15 ~ 16 buffers

If debug is set this is a debug alloc (ignore if debug DB_ON registeris set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained — one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices

48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returnedto the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - mostbits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed ‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop iterators (4x9 bits),
Call return pointers (4x12 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache basePir(7 bits),
GPR BasePtr(8 bits),

. Gontext Pir (bits).
0. LOD corrections (6x16 bits)
1. Valid bits (64 bits)

=~BSeSONAaswon=
Absentfrom this list are ‘Index’ pointers. These are costly enoughthat I’m presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Pir, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Exhibit 2032.docRa90-Sequencerdes 72136 Byes*** €) ATI Confidential. Reference Copyright Notice on Cover Page © ++« |

AMD1044_0257578

ATI Ex. 2108

IPR2023-00922

Page 184 of 316

ATI Ex. 2108
IPR2023-00922

Page 185 of 316

|
a Ao PRESSE M PA E Br de PaUU ecquencer epecnicalon a2

Cet) | September, zoo| 4 September, 20152 ‘| 24 of 51A se 2s

‘Status Bits' needed include:

Valid Thread

Texture/ALU engine needed
Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
First thread of a new context

Event thread (NULLthread that needsto trickle down the pipe)
Last (1 bit)
Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considersthe ‘first’ level selection whichis similar for both pixeis and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are ‘0’ are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread hasits “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses' to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc’ instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The TextureReadsOutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencerto set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependantpredicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257579

ATI Ex. 2108

IPR2023-00922

Page 185 of 316

ATI Ex. 2108
IPR2023-00922

Page 186 of 316

Rea BORE Rah BOWER Bee BaaRF Bane ee Koh ane Snel Meee EWE flee EO URhee BF RR EE BPD Bee

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 25 of 51AAAGT B db

PREDSETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthatthe result is ‘exported’ to the sequencer.
PRED_SETGT_#- similar to SETGT exceptthat the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the resuit is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETE0_#-—SETEO
PREDSETE1_#-SETE1

The export is a single bit - 1 or 0 thatis sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the secondbit tells us if

we execute on 1 or 0. For example, the instruction:

PO_ADD_#R0,R1,R2

Is only going to write the result of the ADD into those GPRs whoseprecicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{issue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.5 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs whereverthere is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loopsin fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6

0 0 ‘absolute register’
0 1 ‘relative register’
1 0 ‘previous vector’
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our new addressthat we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Exhibit 2032.docR49¢_Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257580

ATI Ex. 2108

IPR2023-00922

Page 186 of 316

ATI Ex. 2108
IPR2023-00922

Page 187 of 316

So PRERSEEME Eo Br Be de PaUU ecquencer epecnicalon rn

| tél) | September, 2001 4 September, 20152 | 26 of 51Peweissenhteal

| 6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethe first error occurred
2. count of the numberoferrors

The sequencerwill detect the following groupsof errors:
- count overflow

- constant indexing overflow
~ register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stack full

return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE: Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an addressregister for this mode.

Under the normal mode execution follows the normal course.

Under the debug modeit is assumed that the program is always exporting n debug vectors and thatail other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group ofpixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shaderpipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257581

ATI Ex. 2108

IPR2023-00922

Page 187 of 316

ATI Ex. 2108
IPR2023-00922

Page 188 of 316

7-00 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 27 of 51ca 4 i i

9. Registerfile allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEXREGSIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2032.docR49¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257582

ATI Ex. 2108

IPR2023-00922

Page 188 of 316

ATI Ex. 2108
IPR2023-00922

Page 189 of 316

Ae PRPSSTEMA ER bP YE ee PaUU ecquencer epecnicalon PPE

24 September, 2001 4 September, 20152 28 of 51iS ica,

Above is an example of how the algorithm works. Vertices comein from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the twolines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by locking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and
Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257583

ATI Ex. 2108

IPR2023-00922

Page 189 of 316

ATI Ex. 2108
IPR2023-00922

Page 190 of 316

 Chas 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 29 of 51eiees pene OOA dsb

Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
Whenthe output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shaderpipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULLsignal n clocks before the outputfile is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 572 bits/clock and read BW 256bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format

The IJ information sent by the PAis of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
modebit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PO = A+1(0)*(B— A)+ J(0)*(C — A)

Pl=A+I1(I)*(B-A)+ J (I) *(C —A)

P2 = A+1(2)*(B— A) +J(2)*(C — A)

P3 = A+1(3)*(B- A) +J(3)*(C — A)

"

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adas: &

FORMAT OF P’siJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20°83 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2032.docR4a¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257584

ATI Ex. 2108

IPR2023-00922

Page 190 of 316

ATI Ex. 2108
IPR2023-00922

Page 191 of 316

Ao PREMSTENM PR TB BPAY Eo ee M4uy ScCquencer opecchication a

| tft) 24 September, 2001 4 September, 20152 | 30 of 51 |peto

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencerwill have to re-order the data sent IN ORDERbythe
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

01234567891011 1213 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

01231617 18 19 32 33 34 35 48 49 50 51 [| 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, theSQ. VGt-+will-sendis responsible to
insert padding to account for the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38

39 52 53 54 55 will slill-be-notbesent by the VGT to the SQ-BUT. AND the S@ is= tesponsible to “jump” over thesevertices in order for no valid vertices to be sent to an invalid SP 2

sensideredinvalidtoy-ne-Si-asd-VGh.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure11Figure—1+Figure-1+. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure1O0Figure1OFigure-tO.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11634. 60.57813 1" perbit

rea of 96x8-deep Latch Memory 465247
Area of 24-bit Fix-to-float Converter 4712." per converter

Method 1 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384

Figure 10: Area Estimate for VGT to Shader Interface

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257585

ATI Ex. 2108

IPR2023-00922

Page 191 of 316

ATI Ex. 2108
IPR2023-00922

Page 192 of 316

Aee Boe Eee BOF BeeFRB bee Le Nac al Rell EW Boo EO UBhee Wo OM eB re2

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 31 of 514 4 fe i

 VGT BLOCK
(IN PA)

 Convessers (7a-b
x96-biz (12, 288 pote)

| SHADER| SEQUENCER

VECTOR ENGINE

VECTOR ENGINE

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. it consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mappedin the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER ADDRESS |
4 bits 7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00060000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the a7"} is going to have the address 00000001000, the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
5X doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*°VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2032.docR4a¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257586

ATI Ex. 2108

IPR2023-00922

Page 192 of 316

ATI Ex. 2108
IPR2023-00922

Page 193 of 316

A PRESSE EE bd Dn aeee PaUU ecquencer epecnicalon PPMoo

| 7-00 24 September, 2001 4 September, 20152 | 32 of 51
1171 Export restrictions _—

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned ofif the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PREDOPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Blloce 4 (8 or 12)
Execute ALU(ADDR} ALU(DATA} ALU(DATA) ALU (DATA)...

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTERail pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pendingbit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:

a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clauseif texture reads are pending
5) Cannot execute last if texture pending (evenif not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereisalist of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 vertex exporis to the frame buffer and index
41:47 - Empty
48:55 - 8 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257587

ATI Ex. 2108

IPR2023-00922

Page 193 of 316

ATI Ex. 2108
IPR2023-00922

Page 194 of 316

 Cdet 24 September, 2001 4 September, 20152 GEN-C20000-REVA 33 of 51Lee SOBb

63 - Sprite size export that goes with position export |
(point_h, point_w,edgefiag, misc)

18.2 Pixel Shading

0 - Color for buffer 0 (primary)
1 - Color for buffer 4
2 - Color for buffer 2
3 - Color for buffer 3

4:7 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 exports for multipass pixel shaders.
41:47 - Empty
48:55 -8 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 - Z for primary buffer (Z exported to ‘alpha’ component)

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memorysince there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important(true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memoriesare in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When-working-with-spriles,-one-_may want to_overwritethe parameter-0-with SC-_generated-data.Alse,XY screen
coordinates may be needed in the shader program. This functionality is controlled by the param gen_l0 register(in
SQ) in conjunction with the SND_XY register (in SC)_and the param gen pos. Also it is possible to send the
faceness information (for OGL front/back special operations) to the shader using the same control register. Here is a
list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param gen pos register.

Gen.-stis-a-bit-taken-from-theinterflace-between-theSC-and-the3Q.-This-isthe MSB-ofthe primitive-type.-Itthe-bitis
sel, it means-we-are dealingwithPoint 4A,Line 4A.orsprite-and inthiscase ihevertexvaluesaregoingtegenerated
belween-0 andt.

Param_Gen_lo disable, snd|xy disable,-no-gen_st—I0= No modification

 Param.Gen.0 disable sndUXxy enable85con_ct-10= No modification

Exhibit 2032.docR49¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257588

ATI Ex. 2108

IPR2023-00922

Page 194 of 316

ATI Ex. 2108
IPR2023-00922

Page 195 of 316

oe APRESS ENP EB PD te aeee PFaUU ecquencer oepeciicalion PMO

Gah24 September, 2001 4 September, 20152zl |:34 of 51PiratestucrdBEALSSY fobs.

garbage-facenesss,t_

Param_Gen_|0 enable, snd_xy enable-no-gen—st—10= Sign(faceness)screenX,(Sign PoindscreenY Sign(Line)s, t

in other words
The generated vector is (Xin RED, Y in GREEN, S in BLUE and T in ALPHA):
XYST

These values are alwa $ supposed to be positive and any shader use of them should use the ABS function

Signy = Point Primitive
Signs = Line Primitive
Sign] = currently unused as a flag.

lf Point & !Line, then itis a Poly,

| would assume that one implementation which allows for generic texture lookup (using 3D maps) for pol

stipple and AA for the driver would be
CY<0) f

R= 0.0 (Point)
helse if (S <0)!

R= 1.0 (Line)

19.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the Qn pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set-andParam_Gen_it-tsenabled, the data will be puttin the x field ofthe 2-param gen pos+1 register-(R4. i A

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_|0257589

ATI Ex. 2108

IPR2023-00922

Page 195 of 316

ATI Ex. 2108
IPR2023-00922

Page 196 of 316

Re BRB Rt BB RFR Ee boFRE Been Boe Eee BOF BeeFRB bee aad Nac eal Raed EWE Boom bE BN te WO RW

24 September, 2001 4 September, 20192 GEN-QXOQXXX-REVAPrssosue dé OOO d Bde ek

Leee

35 of 51

INTERPOLATORS

:
The Auto Count Value is

MUX / broadcastto all GPRs.It is
/ loaded into a register wich has

its LSBs hardwired to the

GPR number(0 thru 63). Then
if GEN_INDEXis high, the
mux selects the auto-count

value andit is loaded into the
GPRsto be either used to

retrieve data using the TP or
GPRO sent to the SX for the RB to

| useit to write the data to|

|

memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
Whenthe SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrementsit. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the new state counteris initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer}. Then when writing the data to the GPRs, the sequencer is going to
interpolate the |J data or pass the XY data thru a Fix—»float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES.The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2032.docR49¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257590

ATI Ex. 2108

IPR2023-00922

Page 196 of 316

ATI Ex. 2108
IPR2023-00922

Page 197 of 316

AA PRESSE EE bP aeee PaUU ecquencer epecnicalon Peo

| badd 24 September, 2001 4 September, 20152 | 36 of 51 |enacts sith PEGE Ein

. Interfaces

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of theseinterfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

The actual data whichis transferred per quad is
Ref Pix | => 34.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value “4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a |J_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data fo the SPs, he will increment the |J_BUF_INUSE_COUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name Bits _Description_
“SC_SP#_|data. “400 J information sentover 2 clocks.(or X,Yin24 LSBs with facenessin.‘upper bith|

ype 0 or 1, First clock |, second cik J
ield ULC URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
ormat SE4M20 SE4M20 SE4M20 SE4M20

Face x Y

[63] [23:12] [11:0]
Bit Unsigned Unsigned

SC_SP#_valid 1 | Valid
SC_SP#_last_quad_data 1 | This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 -> Indicates centroids -> Indicates centers

| 2-> Indicates X,Y Data and faceness on data bus
| The SC shall look at state data to determine how many types to send for the

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257591

ATI Ex. 2108

IPR2023-00922

Page 197 of 316

ATI Ex. 2108
IPR2023-00922

Page 198 of 316

Boe OB Beads Boome

a7cee 24 September, 2001 4 September, 20152Aueunt IONE |

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statementfor
the SC andthe SP block will have neither because the instantiation wiil insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94 bits) could be foldedin half to approx 49 bits.

eeeeeeee

GEN-CXXXXX-REVA

BRRP Boe

37 of 51

| Name | Bits

| SC_SQ_data
Description
Control Data sent to the SQ

46
1 clk transfers

"SO"S@valid

2 clk transfers
 Event ~ valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and

event_id through requestfifo
and onto the reservation stations

making sure state id and/or event_id
gets back to the CP. Evenis only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receiptof this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailoc will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

Quad Data Valid —- Sending quad data with or
without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel masksetto
zero.

1 | 8 sending valid data, 2clk could be all zeroes

SC_SQ_data — first clock and second clock transfers are shownin the table below.

| Name

1° Glock Transfer

SC_SQ_event

| BitField | Bits|Description |

This transfer is a 1 clock event vector Force quad_mask =
newvector=pcdealloc=0

SC_SQ_event_id

This field identifies the event 0 => denotes an End Of State Event 1
=> TBD

Exhibit 2032.dack400Sequencer.des 72136 Bytes**#* ©

ATI Confidential. Reference Copyright Notice on Cover Page © ++ |

AMD1044_0257592

ATI Ex. 2108

IPR2023-00922

Page 198 of 316

ATI Ex. 2108
IPR2023-00922

Page 199 of 316

san Ao PRESSEEe ber Re Eth Eber E Be R4aUU oecquencer epecnication re

Cael 24 September, 2001 4 September, 20152 38 of 51

SC_SQ_pc_dealloc [7:5] 3|Deallocation token for the Parameter Cache
SC_SQ_new_vector 8 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quadmask [12:9] 4 Quad Write maskleft to right SPO => SP3
SC_SQ_end_of_prim 13 1 End Of the primitive

SC_5Q_ stateid [16:14] [3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [82:17]|16 Valid bits for all pixels SPO=>SP3 (UL,UR,LL.LR)

[sc SQ provok_vix [37:36]|2 Provoking vertex for flat shading
SC_3Q_pe_ptr0 [48:38]|11 Parameter Cache pointer for vertex 0

ed

peCraEnneeerrSC_$Q_pc_ptri
SC_SQ_pc_ptr2

Parameter Cachepointer for vertex 1
Parameter Cache pointer for vertex 2

SC_SQ_lod_correct
SC_SQ_prim_type

 LOD correction per quad (6 bits per quad)
Stippied line and Real time command need to load tex cords from
alternate buffer

000: Sprite (point)
001: Line

010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line

110: Realtime Tri_rect

Name Bits|Description
SQ_3C_free_buff 1 Pipelined bit that instructs SC to decrernent countof buffers in use.
SQ_SC_dec_entr_ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packetsignal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel
marker\primitive.

mask to fill out the vector) prior to submitting the new_vector

(This will prevent a hang which can be demonstrated whenall primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

23.2.3 SQ to SX(SP): interpolator bus

Name Direction | Bits|Description ~
5Q_SPx_interp_flat_vix SQ—SPX 2 __| Provoking vertex forflatshading
SQ_SPx_interp flat_gouraud|SQ—-SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ—SPx 4 Wich channel needs to be cylindrical wrapped
|SQ_SXx_pe_ptrO |SQSXx 11.|Parameter CachePointer

SQ_SXx_pc_ptrt SQS8Xx 11 Parameter CachePointer
SQ_SXx_pce_ptr2 SQ >SXx 11 Parameter Cache Pointer
$Q_SxXx_'t_ sel SQ>SXx 4 Selects between RT and Normal data

SQ_SXx_pc_wr_en SQ—>SXx 1 _| Write enable for the PC memories
SQ_SXx_pe wr addr SQ-SXx 7 Write address for the PCs
SQ_SXx_pe_channel_mask SQ>Sxx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ—>SXx 1 Readpointers are valid.
SQ_SPx_interp_valid SQ—SPx 4 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Exhibit 2032. dock4o0-Sequencarces 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257593

ATI Ex. 2108

IPR2023-00922

Page 199 of 316

ATI Ex. 2108
IPR2023-00922

Page 200 of 316

eeee Boe Bea BOF BeeFRB bee Lad Neat Neat Nea EE Hoe EE UR bee BF OE BE BBDet Beco

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 39 of 51£3002

Name Direction Bits|Description _
SQ_SPx_vsr_data SQ—SPx 96 Pointers of indexes or HOS surface information |
SQ_SPx_vsr_double SQ—SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
$Q_SP0_ vsr_valid SQ—SP0 1 Data is valid
$Q_SP1_ vsr_ valid SQ—SP1 1 Datais valid |
SQ_SP2_vsr_ valid SQ—SP2 1 Data is valid
$Q_SP3_vsr_ valid SQ—SP3 1 Data is valid
SQ_SPx_vsr_read SQ--SPx 1 Increment the read pointers

23.2.5 VGT to SQ: Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits -peseeiptionVGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information

VGT_SQ_event 4 VGTis sending an event
| VGT_SQ_vsisr_continued 1 0: Normal 86 bits per vert 1: double 182 bits per vert

VGT_SQ_end_of_vix_vect i Indicates the last VSISR data set for the current process vector (for double vector
|data, “end_of_ vector" is set on the first vector)

VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6"3+3 for constants). This signal is guaranteed to be correct when

“VGT_ SQ_vgt_end_of vector’is high.

VGT_SQ_send i Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
L handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2032.docR4a¢_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257594

ATI Ex. 2108

IPR2023-00922

Page 200 of 316

ATI Ex. 2108
IPR2023-00922

Page 201 of 316

 see@Beg18A0DUCsONnON[YUBUAdODsouaiajay“JENUSPYUOD[LY©sex84Ggei2,—sopseananbosTpopAONEOC)

sus

|||

0BLY P|O88arabaOs
eox

aM=jt7GNESO38

ALIA

MEONANOSS

ASCVHS:onaramatfannemTeseleys45aOsya43ndaus[tfaeasnenmaennneomemnamnmarmrs}anaemicvXLCLacyjosaJopus4baOFvd
L~~nec‘é-(t-——————-————STqnepTapaaBAOeea|OSZGIAHOdASISA<—[eae5nnFATurdwien|OoaTjepisteaqaosea)OYZWIVUSTSA

LS40ObEGLO?TsdilisjdespFLo0g‘JequiaydasyzaovduoeoyloadgJeouenbes00rdavdLiaaFLVGSLVNIDINO

LDA

 TVIAELVNaaddoAAILOaLOdd

AMD1044_0257595

ATI Ex. 2108

IPR2023-00922

Page 201 of 316

ATI Ex. 2108
IPR2023-00922

Page 202 of 316

sen@Beg1BAODUOBoHOKWBAdoDeouaiajay‘jEHUSPYUOD[Ly@x«+5°Magerzz “SOBIIS]U]JONOSVadIo]WeIbeIq[ESOTpaleieq“TSinbig
NOTSSIWSNVALSdOLSSHCNES

[ooSIAWVLS-aedYEATHOdd

iiiiiiiiiLii[eesareeEES
:Eft

NOISSIWSNVdLSdOlsa aopuesuenbesyoradopZe0eWake

UU

 COL
HATHORd

AMD1044_0257596

qyOatsALGWSOfTaINDO4TALOOWiVd041dpyVivapyaNzs€Wid€GNESZVivaSbLAZWdOsLTulyos0ULYOSULYOS

jrySeay1GJOLPWARE-XXXXXO-NADeGL0¢Jequigloes»Aovd‘AINN“AdeLNSAIN209divdLiga

aLlvdALYNIOINO

 TVIAELVNaaddoAAILOaLOdd
Lo0g‘lequajdespz

4
ATI Ex. 2108

IPR2023-00922

Page 202 of 316

ATI Ex. 2108
IPR2023-00922

Page 203 of 316

|
Ao PREMSTENM PR TB BPAY Eo

tft) 24 September, 2001
23.2.6 SQ to SX: Control bus

anne

ee

4 September, 20152EOSfo de a

Rav ocquencer specication peo te

42 of 51

Name Direction Bits |Description

SQ_SXx_exp_type SQ—>SxXx 2 00: Pixel without z (1 to 4 buffers)
01: Pixel with z (1 ta 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ—SXx Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ—SXx ALU ID

SQ_SXx_exp_valid SQ->SXx Valid bit

SQ_SXxexpstate SQ—>SXx
co}a}

SQ_SXx_free_done SQ—-SxXx

SQ SXx free _alu_id SQ—-SXx

—
1

State Context

his-can-be-sent-with-or-witheut the-otherfields-ofine
inferface}Pulse that indicates that the previous export
is finished from the point of view of the SP. This
does not necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been

freed_up.
ALU ID

Depending on the type the number of export location changes:
e Type 00: Pixels without Z

o 00= 1 buffer
o 01 = 2 buffers
o 103 buffers
o 114 buffer

e Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
© 01 =3 buffers (2 color + Z)
o 10=4 buffers GC color + Z)
o 11 = 5 buffers (4 color + Z)

e Type 10: Position export
© 00 =1position
© 01 = 2 positions
o 1X = Undefined

e Type 11: Pass Thru
o 00 = 4 buifers
o 01 =8buffers
o 10 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that telis the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ: Outputfile contro!

Name Direction Bits|Description
SXx_SQ_exp_count_rdy SXx-SGQ 4 Raised by SX0 to indicate that the following twofields

reflect the resuit of the most recent export
SXx_SQ_exp_pos_avail SXx-SQ 1 Specifies whetherthere is room for another position.
SXx_SQ_exp_buf_avail SXx-SG 7 Specifies the space available in the output buffers. 0: buffers are full

1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

Exhibit 2032docR400..Gequencar.des 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +++

AMD1044_0257597

ATI Ex. 2108

IPR2023-00922

Page 203 of 316

ATI Ex. 2108
IPR2023-00922

Page 204 of 316

Ren DOH Rech BEER EF Boe oeFRE Been Boe Bea BOF BeeFRB bee eeeeee | BBD Boe24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 43 of 51

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Contro! bus

Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the addressin the register file
where to write the fetch return data.

Name Direction Bits Description

TPx_SQ_data_rdy | TPx— SQ 1 Data ready |
TPx_SQ_rs_line_num | TPx— SQ 6 Line numberin the Reservation station
TPxSQtype TPX>SQType of data sent (O:PIXEL,V'VERTEX)|

|SQ_TPx_send| SQ—TPx 1 Sending valid data ;
SQ_TPx_const |SQ>TPx 48 Fetch state sent over 4 clocks (192 bitstotal)
SQ_TPx_instr | SQ>TPx 24 Fetch instruction sent over 4 clocks |
SQ_TPx_end_of_group | SQ—TPx 1 Last instruction of the group

| SQ_TPx_Type | SQ—TPx 1 Type of datasent(O:PIXEL, VERTEX)
_SQ_TPx_gpr_phase _SQ->TPx | 2 Write phase signal

SQ_TPOlodcorrect | SQ>TPO 6 LOD correct 3 bits per comp 2 components per quad

SQ_TPO_pix_mask _SQ—>TPO 4 Pixel mask 1 bit per pixel |
SQ_TP1_lod_correct | SQ—TP1 6 LOD correct 3 bits per comp 2 components per quad |
SQ TP1_pix_mask | SQ>TP1 4 _| Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ—>TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask | SQ—TP2 4 Pixel mask 1 bit per pixel |
SQ_TP3_lod_correct | SQ—TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask | SQ—TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num | SQ>TPx 6 Line numberin the Reservation station |
SQ_TPx_write_gpr_index | SQ->TPx 7 Index into Register file for write of returned Fetch Data |

23.2.9 TP to SQ: Texture stall

The TP sendsthis signal to the SQ and the SPs whenits input bufferis full.

TP_SP_fetch_Stall

8Q_SP_wr_addr

 4|. su |

Name | Direction | Bits | Description

Exhibit 2032.docR49¢_Sequencerdes 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257598

ATI Ex. 2108

IPR2023-00922

Page 204 of 316

ATI Ex. 2108
IPR2023-00922

Page 205 of 316

Raf PRESSEE MAP BoB boPD Eee ee PaUU ecquencer epecnicalon a

24 September, 2001 4 September, 20152 44 of 51 | TP_SQ_fetch_stall Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall

| Name Direction Bits|Description
| SQ_SPx_fetch_stall $Q->SPx 4 Do not send more texture request if asserted

 23.2.11 SQ to SP: GPR and auto counter

_ Name Direction Bits | Description
| SQ_SPx_gpr_wr_addr SQ—SPx 7 Write address
_SQ_SPx_gpr_rd_addr SQ58Px__ T__|Readaddress
| SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable
_ SQ_SPO_gpr_wr_en SQ _>SPx 1 Write Enable for the GPRs of SPO
| SQ_SP1_gpr_wr_en SQ—SPx 1 Write Enable for the GPRs of SP1
|SQ_SP2gprwren SQ—>SPx 1 | Write Enable for the GPRs of SP2
| SQ_SP3_gpr_wr_en 8Q—SPx 1 | Write Enable for the GPRs of SP3

SQ_SPx_gpr_phase SQ—-SPx 2 The phase mux (arbitrates between inputs, ALU SRC
reads and writes)

| SQ_SPx_channel_mask SQ—SPx 4 | The channel mask
| SQ_SPx_gpr_input_sel 8Q—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.

SQ_SPx_auto_count SQ—-SPx 12? | Auto count generated by the SQ, commonfor all shader
| pipes

Exhibit 2032. docke00Sequensecdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257599

ATI Ex. 2108

IPR2023-00922

Page 205 of 316

ATI Ex. 2108
IPR2023-00922

Page 206 of 316

 7-00 24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 45 of 51& 4

23.2.12 SQ to SPx: Instructions |

Name Direction Bits|Description
SQ_SPx_instr_start | SQ—>SPx 1 Instruction start
SQ_SP_instr SQ—-SPx 22 Transferred over 4 cycles

0: SRC A Select 2:0

SRC A Argument Modifier 3:3
SRC A swizzle 11:4
VectorDst 17:12

Per channel use mask (PV/Reg) 21:18

4: SRC B Select 2:0

SRC B Argument Modifier 3:3
SRC B swizzle 11:4
ScalarDst 17:12

Per channel use mask (PV/Reg} 21:18

2: SRC C Select 2:0

SRC C Argument Modifier 3:3
SRC C swizzie 11:4

Per channel use mask (PV/Reg) 21:18

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 41:11
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17

35Q_SPx_exp_alu_id ; SQ—>SPx 1 ALU ID
SQ_SPx_exporting SQ—SPx 12 0: Not Exporting

1: Mecter-Exporting
2:-SealarExporting

$Q_SPx_stall ; SQ—>SPx 1 Stall signal
SQ_SP0_write_mask SQ—SP0 4 Result of pixel kill in the shader pipe, which must b

output for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe

Jettt Clock
SQ_SP1_ write_mask SQ—SP1 4 Result of pixel kill in the shader pipe, which must b

output for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe
clock

SQ_SP2_ write_mask SQ—SP2 4 Result of pixel kill in the shader pipe, which must b
output for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe
clock

SQ_SP3_ write_mask SQ—SP3 4 Result of pixel kill in the shader pipe, which must b
output for all pixel exports (depth and all color |
buffers). 4x4 because 16 pixels are computed per|
clock |

SQ_S5Px_last ; SQ—>SPx Last instruction of the block
SQ_SP0_pred_overwrite SQ—SP0 4 Indicates to overwrite the use of PV/PS because o

the predication (use the GPRs instead). Thi

mock

; ; operation is done on a per-pixel basis. ;
SQ_SP1_pred_overwrite SQ—SP1 4 Indicates to overwrite the use of PV/PS because o

the predication (use the GPRs instead). Thi
operation is done on a per-pixel basis.

SQ_SP2_pred_overwrite | SQ-+SP2 4 Indicates to overwrite the use of PV/PS because of |

Exhibit 2032.docRa90Sequencendes 72136 Byes*** ©) ATI Confidential. Reference Copyright Notice on Cover Page © +«« |

AMD1044_0257600

ATI Ex. 2108

IPR2023-00922

Page 206 of 316

ATI Ex. 2108
IPR2023-00922

Page 207 of 316

Aa PRESSTE MPA EE BPAY Ee ee M4uy ocquencer opechication 1

| a 24 September, 2001 4 September, 20152 46 of 51Dsresseh OLY Joabus

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

4 Indicates to overwrite the use of PV/PS because of

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

232.13 SP to SQ: Constant address load/ Predicate Set

 |"SQSPSpredoverwrite SQ-SP3

| Name Direction Bits|Description
| SPO_SQ_const_addr SP0—-SQ 36 Constant address load / predicate vector load (4 bits only)
| | to the sequencer
| SPO_SQ_valid SP0—SQ 4 Data valid
| SP1_SQ_const_addr SP1—-SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
| SP1_SQ_valid SP1—S8Q 4 Data valid

SP2_SQ_const_addr SP2—-S8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer

| SP2_SQ_valid SP2—S8Q 4 Data valid
| SP3_SQ_const_addr SP3—SQ 36 Constant address load / predicate vector load (4 bits only)
Loee ee|to thesequencer
| SP3_SQ_valid SP3—8Q 4 Data valid
| SPO_SQ_data_type SP9SQ 4 Data Type

0: Constant Load

1: Predicate Set

23. 2. l4 SQ to SPx: constant broadcast
| Direction 4Bits }Description a|

Sa,SPxconst “SQ->SPx 128|Constant broadcast

23.2.15 SPO to SQ: Kill vector load

| Name |Direction Bits |Description_
|SPO_SQ_Kill_vect_ SP0—-SQ 4 Kill vector load

| SP1_SQ_Kill_vect SP1 >SQ 4 Kill vector load
| SP2_ SQ kill vect SP2—S8Q 4 Kill vector load
| SP3 SQ kill vect SP3--+3SQ 4 Kill vector load

23.2.16 SQ to CP: RBBM bus

| Name Direction Bits | Description
| SQ_RBBts SQ—>CP 1 Read Strobe
| $Q_RBBord SQ—CP 32 Read Data
| SQ_RBBM_onrtrtr SQ—CP 1 Optional
| SQ_RBBM_rir | SQ-CP { Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus

| Name Direction Bits|Description
| rbbm_we CP >SQ 1 Write Enable
| rbbm_a CP >SQ 15 Address -— Upper Extent is TBD (16:2)
etbbmiwd CP-+SQ 32 Data esaeeeae
| rbbm_be_ CP>SG_ 4|Byte Enables_
(fobbmire(CP+SQ_——dt1 S| Read Enableaiaeesseses—(‘i‘iéiCCisr
i rbb_rs0 CP—SQ 1 ReadReturnStrobe 0
| rbb rst CP—SQ 1 Read Return Strobe 1
| rbb rd0 CcP—SQ 32 Read Data 0

| rbb_rdt CcP—SQ 32 Read Data 0
| RBBM_SQ soft_reset CP-SQ 4 Soft Reset

| Exhibit 2032. docke00Sequensecdes 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257601

ATI Ex. 2108

IPR2023-00922

Page 207 of 316

ATI Ex. 2108
IPR2023-00922

Page 208 of 316

F708) 24 September, 2001 4 September, 20152 GEN-CX}0XXXX-REVA 47 of 51i

23.2.18 SQ to CP: State report |
Name | Direction Bits|Description |
SQ_CP_vs_event | SQ—CP 1 Vertex Shader Event
SQ_CP_vs_eventid | SQ>CP 2 Vertex Shader Event ID

SQ_CP_ps_event | SQ-—CP 1 Pixel Shader Event
SQ_CP_ps_eventid _SQ-—CP 2 | Pixel Shader Event ID

eventid = 0 => “sEndOfState (Le. VsEndOfState)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state wheneverit gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

23.3 Example of control flow program execution
We now provide some examplesof execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer

Alu 8 Export
Tex 4
Alloc Parameter3 buffers

Alu 9 Export 0
Tex 5

Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be convertedinto the following CF instructions:

Execute 6 Alu 0 Alu O Tex 0 Tex 1 Alu 0 Alu CO Tex OG Alu 1 Alu O Tex
Execute © Alu
Alloec Position 1
Execute O Alu 0 Tex
Alloc Param 3

Executeend 0 Alu 0 Tex 1 Alu O Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker(3 or 4 bits), (ECM)
LoopIterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)

Exhibit 2032.docR4oe_Sequencerdec 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257602

ATI Ex. 2108

IPR2023-00922

Page 208 of 316

ATI Ex. 2108
IPR2023-00922

Page 209 of 316

a Re@ PRESSEDF Bees BaPRT Be Eel EE EPR Em Mau ocquencer opecmcation a

Ode) 24 September, 2001 4 September, 20152 | | 48 of 51 |a 24 ‘i

GPR BasePtr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits__

CFP ECM Lt=—sC<dT CRPPB | EXID | GPR | EB [CPTR | LOD
0 0 0 0 | o | 0 [0 Lo [o oO |

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 ~— No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

 Status Bits

VALID _ TYPE [PENDING [SERIAL[|ALLOC [SIZE|POSALLOC
1 | ALU 10 10 0 [0 0

 | FIRST
Then the thread is picked up for the execution of the first control flow instruction:

Execute Q Alu O Alu 0 Tex © Tex 1 Alu 0 Alu OQ Tex O Alu 1 Alu O Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP | ECM [Li CRP PB | EXID | GPR EB CPTR | LOD
0 2 10 [0 0 10 [0 0 [o [0

Status Bits

VALID _TYPE PENDING | SERIAL|ALLOC [SIZE|POS ALLOC FIRST LAST
1 | TEX 0 [0 0 0 0 4 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backin this state:

State Bits

CFP ECM Li CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID _ TYPE | PENDING [SERIAL[|ALLOC | SIZE |POSALLOC FIRST | LAST
1 | ALU [4 iz 0 [o [o [4 / oO

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257603

ATI Ex. 2108

IPR2023-00922

Page 209 of 316

ATI Ex. 2108
IPR2023-00922

Page 210 of 316

| Fall
Re DORE Rat BERR EF Ben BeRE Been

24 September, 2001 sss pent Pe

Boe Bea BOB eeFOB bee

4 September, 20152& isthe

Bond? Nan Nene Nove WW ER Boe FO URRee EMS EWG.

GEN-CXXXXX-REVA

Set Bane

49 of 51

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in

this state:

State Bits

CFP | ECM [Li CRP PB EXID | GPR EB CPTR | LOD
0 16 0 10 0 0 LO 0 0 10

Status Bits

SIZE | POSALLOCVALID [TYPE ENDING 1 | TEX ou | FIRST

PALLOC|NDING(SERIAL
0 | 0 [0 _.Ito

LAST
0 |

Again the TP frees up, the arbiter picks up the thread and executes. It returnsin this state:

State Bits

CFP [ECM Lt |CRP PBFEAIDGPR|EBCPTRLOD_
0 7 0 0 0 {0 a 0 0 a

Status Bits

VALID|TYPE| -PENDING|SERIAL |ALLOG|SIZE_|POS_ALLOC|FIRST|LAST
1 ALU 1 0 0 0 0 1 0

Now,even if the texture has not returned we can still pick up the thread for ALU execution becausethe serialbit
is not set. The thread will however come back to the RS for the second ALU instruction becauseit has the serial bit

set.

State Bits

CFP | ECM Tul | CRP PB EXID | GPR [EB CPTR LOD
0 8 [0 [0 [o 0 Lo [0 0 [o

Status Bits

|VALID|TYPE PENDING SERIAL [| ALLOC SIZE|POSALLOC | FIRST | LAST
1 | ALU 4 4 [0 [0 [0 [1 0

As soon as the TP clears the pendingbit the thread is picked up and returns:

State Bits

CFP | ECM LI CRP | PB EXID | GPR EB CPTR LOD
0 :9 0 10 Lo 0 [0 0 0 0

Status Bits

VALID TYPE 1 TEX PENDING[|SERIAL

0 0
| ALLOC
0

10 0
| SIZE | POS_ALLOC FIRST

4

Picked up by the TP and returns:
Execute 0 Alu

Exhibit 2032. docR400_Sequencer.des 72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257604

ATI Ex. 2108

IPR2023-00922

Page 210 of 316

ATI Ex. 2108
IPR2023-00922

Page 211 of 316

PPA Ee

50 of 51

Ate ee te

24 September, 2001

Eel EE EPR Em

 m4uy ocquencer opecmcation

 4 September, 20152

State Bits

CFP ECM LI _|CRP PB EXID | GPR EB CPTR | LOD
1 0 0 10 0 0 10 0 0 10

Status Bits

VALID | TYPE PENDING [SERIAL[|ALLOC|SIZE [POSALLOC FIRST | LAST
1 | ALU 1 0 0 0 [0 4 [0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Blloc Position i

State Bits

|CFP|.ECM _ Uo=|CRP _- PB EXID GPR EB CPTR |LOD
2 0 0 0

VALIDTYPE
1 ALU 1

0 1TYPE| PENDING PSFeiat partes
lf the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RSin this state:

Execute O Alu O Tex

State Bits

CFP ECM Li CRP | PB | EXID | GPR | EB [CPTR | LOD
3 1 [0 [0 [0 [0 10 [0 [0 | 0

StatusBits

VALID | TYPE PENDING|SERIAL|ALLOC|SIZE|POS_ALLOC_FIRST LAST
1 _TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDINGbit and we proceed:

Alloc Param 3

State Bits

CFP | ECM [Ll CRP[PBs| EXID | GPR | EB [CPTR | LOD
4 [0 10 0 [0 1 10 [0 10 0

Status Bits

VALID [TYPE PENDING [SERIAL|ALLOC [SIZE|POS ALLOC | FIRST LAST
1 | ALU 1 0 10 13 { 4 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

Executeend 0 Alu 0 Tex 1 Alu O Alu

Exhibit 2032. docka00_Secuencerdcs 72136 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257605

ATI Ex. 2108

IPR2023-00922

Page 211 of 316

ATI Ex. 2108
IPR2023-00922

Page 212 of 316

Re BORE Ra BEIR EF Bi BoeFRB Blane Boe Bea BOF BeeFRB bee eeeS

51 of 51 |

24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA

State Bits |
CFP ECM [Li _CRP PB EXID | GPR | EB CPTR [LOD
5 1 10 [0 0 1 10 [100 0 [0

Status Bits

VALID TYPE PENDING|SERIAL ALLOC|SIZE | POS ALLOC|FIRST | LAST
1 | TEX 1 0 0 0 1 1 [a

This executes on the TP and then returns:

State Bits

CFP ECM Cu _CRP PB | EXID | GPR EB | CPTR LOD
5 2 0 0 0 [4 0 100 [0 0

Status Bits

VALID | TYPE PENDING|SERIAL | ALLOC|SIZE | POSALLOC [FIRST|LAST
1 | ALU 1 1 0 0 1 [4 1

Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before droppingit on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do sometesting on the size of the register file as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

72136 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «««

AMD1044_0257606

ATI Ex. 2108

IPR2023-00922

Page 212 of 316

ATI Ex. 2108
IPR2023-00922

Page 213 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplernber, 20159 GEN-CXKKXXX-REVA 4 of 53— se fa
Author: Laurent Lefebyre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.054

Overview: This is an archiectural specification for ine R400 Sequencer block (SEQ). Il provides an overview of the

required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\werforcey400\doc_lib\design\blocks\sqg\R400Sequencer.dec
Gurrent Intranet Search Title: R400 Seguencer Specification

: Ve APPROVALS | : : :
Name/Dept eee : ooeeoe = Signature/Date |

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |:
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or |.
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2073. docRiO0_Sequencerdee 73016 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © =~

ATI 2033

LGv. ATI

IPR2015-00325

AMD1044_0257607

ATI Ex. 2108

IPR2023-00922

Page 213 of 316

ATI Ex. 2108
IPR2023-00922

Page 214 of 316

ORIGINATE DATE

24 September, 2001

 EDIT DATE

Table Of Contents

 R400 SequencerSpecification PAGE
4 September, 20159 20f53PET atate4.

1. OVERVIEW oo cccccccccscennneeessssuususnsnsstssueceeessssnssedin st tinniitnanttittttendestsnnnnnnnstieieeiine sisssasecensesentes oF

L. Too Level Block Diag CITeee eee eeeeee tats babe pbb sii itbbtbtthisssiissisisiisitititssssass 1191.
1a
2.
3.
4,

5.3.1 R400 Constant management...eeeeee veces ee veces eee pete eevee eeeecess 1748 |

5.3.2 Proposal for RAQOLE constant management...cee1745 .ee

5.3.4 Free List Blocks cscs ccc cces esse sseeest acess sss scgstitsepssessence14F
5.3.5 De-allocate Bloo ccccccccccessseeecsseseesusisssuscistuststuasusatuissadustissisiesintusisitsssinsiss 2048

5.3.6 Operation of Incremental Model occaeee eects te ese testesesesisssstesueteess 2048
$4 Constant Store Indexing...neocon ne cece cece vee seve eee eyeeeeeesuvevesesevesesis 20148
S35 Real Time COMMANGSoeseeeeensenetteseneussststneeetssspetvtseetibestetetirsseteesnsesats 2149 2
$6 Constant Walerfalling oe cee ee ee ence eee e estate teetsetsuenteststitetuttetestsnnnesetusisetseseesers 2148

6. LOOPING AND BRANCHES... cccccccseseneuececersucsnessssennnunnsssusessssssessapusnnnessssussesussstusususeninss 2220
6.1 The controling Stateocc cc cece ece cee v cence ests ce esne est tesestnstasisseeesitstituteeisistissstussusss 2220

6.2 The Control Flow Program... cette ntnettetnettattstttttetttsetetineussesesssstsses een
 6.2.1 Control flow instructions table... .

3 Implementation.eeeee eeee ee eee ctte tee te tb ttnntiepepseeeeeeeetitettteettetsuutneenenness 2023

 64 Data dependant predicate INSWUCLONSowceeeeeeeteterna teeaenae toed2f24

6.5 HW Detection of PV PSoooerates tenet acenentaniieungutnianininatieatueementenaseaens tana2728

J PIXEL, KiLL. MASK acccccssscsssssnssessensncsseeessseunesssuasasssesssesssssssesssseneeeeessssssnuusuisssseeses226
8. MULTIPASS VERTEX SHADERS (HOS —
9, REGISTER FILE ALLOCATION..........

FETCH ARBITRATION.........

ALU ARBITRATION...

12. HANDLING STALLS. ooeeeceeces eeeesreeeeeeeseeeeses cents wisl2@8 ©

13. CONTENT OF THE RESERVATION STATION FIFOS occceescceseesesseuseseeresneteneerseeens 3129
14. THE OUTPUT FILE...eeeeee
18. J FORMAT oon ceee cececesses

8. interpolation of constantattributes_
16. STAGING REGISTERS. oo... cccecccceccssceeeeeceesseneesnnestannnnnnnenssannunenssussunnnnnensanennnesessseneesnneess 3230

Exhibit 2033. dock400_Gequencerdoc 73018 Byes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © »==

AMD1044_0257608

ATI Ex. 2108

IPR2023-00922

Page 214 of 316

ATI Ex. 2108
IPR2023-00922

Page 215 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 2001 4September 20159 GEN-CXXXXXK-REVA 3 of 53ee

17. THE PARAMETER CACHE ooo cecccssereeeunnnens:sunennnn:tonsnnnne sii innnnneneneuimanenntesanuenoneunnnanenaunanes 3334
Vd EX POrt FESTICHONSoon ec ceveeee nee essen tesa niy tea uaa nni buen vebinuiungiitiuuiuniiuuisvinnnnyianinnns 3432

1B. EXPORT TYPES cocccssssssssssssssssosssssssssssvssuzsssnvssssussrsvisusassastsssssessssssssssessessssssrissessassenssne3432
18.1 Vertex SRACHIO ooo cece cece eeeeeELL LI LL LLL LEELA LLLLE LEIA ALDE LL LLLEEEth bb ubastabesisis

18.2PixelShading......

19. SPECIAL INTERPOLATION. MODES..
19] Real time commands. oe nib bbbbb sieht ibibbsiiibiietiibtitdiisttisttesiteicist

19.2 Sprites/ XY screen coordinates/ FB information.cebLLEuDALBAEEAttutiittuputuisiningepetainatniesesiss 3533
19.3 Auto generated COUNLGTS ooneeee eeeeeeettetttittbbttitMMMMMMMbEMAAAEAAEMibbituitttittusbssstnnnnnsnsuts 3634

19.3.2 Pixel shaders

20. STATE MANAGEMENT o.oo cccecccccccccecceceeeeceesnnnanneeeesanmnannsaneannnnaneesaaaaaaaneeeseenenaatectensnnnnuees 3735
20.1 Parameter cache SYMChroniZallon o.ooeeeeee e eee eens tute tte tenets 3/38
21. KY ADDRESS IMPORTS.cceceeenccconcccunesseunnnannsensannnnnanssssannnnesessnsusenanssssnnseesecess 3735
21.1 Vertex indexes IMportseeeee tee tee cette tet bet bn ett nbnneetetteittteeeetstis 3/38
22. REGISTERS |...ec. eeee 3738

33. INTERFACESG..........

23.1 External interfaces.
23.2 SC to SPinterfaces... coteett bitte tenttettesiittssteees BEBE

23.2.1 SC SPHeeeeee eee cence tenet Ate t bite tte tb tttttenpenenneetetestteteetetees 3838

23 2.2 SC SOeeeeee eee ceetHE SEE Abbe ttt tt tbteeteipunaetsetiitetteteetcts BOSE

23.2.3 SQ to SX(SP): interpolator bus

23.24 SQ to SP: Staging Register Dateocc sce cecs esses case ceusensenesncstususseapussissuininaiss 4139

2o.2.5 VGT to SQ Vertex interface.eeeee eee cee cesses taste pteuevesasetssisauensvssessasatens 4139

25.2.0 SG to SX: Control DUSoaec eee sete setene ce vesaestaspspseuuvesstegsiuitaususvsausasiapens 4442

23.2.) SX to SQ: Outout file COMMONcece ceee ca ee ves es eevee cecsuetesnsesstatanesaetcnusuisiesiss 4442

23.2.8 SQ tO TP: Control BUS ooo eee cscs cc ses cens sass sveneentevssaesvatasstssunpinsvatitatanetaruisausussississ 4543

2d.2.9 TP to SQ: Texture Stall occ cece ccsscscesssuevsvenscnsepcsassnseaesepssatisatntssvinsuntevensustazuisias 4543

23.210 SQ to SP: Texture Stata cccccscccscssenssasssusnsunssvssasstuteestussnvinsuntipsnunusvesassunnitaiss 4644

23.2.1] SQ to SP: GPR and auto COURTEN oiceccceecaee eaeetaesececeteseseuisasnesstvesastuassepies 4644

2a.212 SG to SPUNStrUcthoms occee eee cease cee cea eeats sates ceaseuevevessaasspossessvevetesesssies 4745

23.2.13 SP to SQ: Constant address load/ Predicate SetV/Kill Setocee ccves vere 4846

23.214 SG to SPX constant Proad Cast aoe cece scsssess sce sepensvanspusestapueyissvasisassssiprentavenses 4846

23.215 SQ to CP: RBBM DUSneccccecceccsesesesscuteecesasgstasussietisstuuuitstuiitstusstansiatsss 4046

232.16 CP to SQ: RBBM bus...

23.217

Exhibit 2035. doc409_Sequencardoc 73016 Hyes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257609

ATI Ex. 2108

IPR2023-00922

Page 215 of 316

ATI Ex. 2108
IPR2023-00922

Page 216 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE a cee

24 September, 2001 4 September, 20159 40f53faeenbe ne

24. OPEN ISSUES .ssecusersensstrsensseusnesansevenessnvsnuanyssstnouenvensssauvnsansansunvesnssessnssnvonsstnsnnsnysats 5384

 13 ~-Gontro Graveces

8. MULTIPASS VERTEX-SHADERS (HOS)
9, REGISTER-FILE-ALLOCATION...

174 EX POF FeSthOlONGrrrreereeeerererrnrreereererreer: Serenrrrrrryrerrrrereererrrrererreerneerererrreererrerrrereeressrer eet

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257610

ATI Ex. 2108

IPR2023-00922

Page 216 of 316

ATI Ex. 2108
IPR2023-00922

Page 217 of 316

rat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEs \ 24 September, 2001 4 September, 20159 GEN-CXXXX-REVA 5 of 53é.

 2 Ld -_Vertexindexesimports

<aee2perevrersCentdchnek
22.2-—Context.. Error! Bookmark notdefined.

3.--DEBUG- REGISTERS. “ERROR! BOOKMARKNOT DEFINED.

Exhibit 2035. doc409_Sequencardoc 73016 Hyes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257611

ATI Ex. 2108

IPR2023-00922

Page 217 of 316

ATI Ex. 2108
IPR2023-00922

Page 218 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20159 6 0f 53mAD:4. .

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257612

ATI Ex. 2108

IPR2023-00922

Page 218 of 316

ATI Ex. 2108
IPR2023-00922

Page 219 of 316

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 7 of 53 24 September, 2001 4 September, 20159J _ oy
Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rey0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rey 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre}
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002
Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : Apri] 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes madein the 10/18/01 contro!
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SPO interfaces. Changed delta
precision. Changed VGT—SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—+SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the Sx
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scherne

Exhibit 2073.doch400_Sequencer.dce 72016 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257613

ATI Ex. 2108

IPR2023-00922

Page 219 of 316

ATI Ex. 2108
IPR2023-00922

Page 220 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20159 B of 534 - ENO

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002
Rev 2.05 (Laurent Lefebvre)
Date ;

Changed slightly the control flow instructions to
allow force jumps and calls.
Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ—SP instruction load interface.
SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,
Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257614

ATI Ex. 2108

IPR2023-00922

Page 220 of 316

ATI Ex. 2108
IPR2023-00922

Page 221 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE!I 24 September, 2001 4 September, 2015) GEN-CXXXXX-REVA | 9 0f 53ee = ey ey 1

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executesall of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencerwill not start the next
vector until the needed space is available in the GPRs.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257615

ATI Ex. 2108

IPR2023-00922

Page 221 of 316

ATI Ex. 2108
IPR2023-00922

Page 222 of 316

oOooO™loN2t+3

axe@BBCJBAODUOBOIIONJUHUAdODOOUDIOJON"JENUSPIUOD[Ly@wseMaoloc,=sepseousrbespopusoTeteHN|5
=

MOIMIOAOJostenbag[eIsuey3]AANSLy<<||—OB]WUBISUSD
"aesae__eei|laf|pegood*|gd=~oo||SSaINDyaaBURAOd|*|EUBLNIOd

IPedalOd

etwe

ALVLSHOLad=

ds<ds_—;_ aoa_yoee3JYOLSLSNIBe|BeBy)aSLNiaSLNidalNij*-)SSLNia=

:z|:avornPiaflLSNI|AVESSOYDPi|aial||||;peey4O—]
ompodem||—dfTLLNOOSINVLSNOOD

XALYaA

|dd
|

¥i.reerTYLS€930OLAIOETSUEMSSF|Loozvequajdegpz49VvduoyeoyloadsJeouanbesCOPYavdLida3LVdSLYNIOINO

 TVIAELVNaaddoAAILOaLOdd

ATI Ex. 2108

IPR2023-00922

Page 222 of 316

ATI Ex. 2108
IPR2023-00922

Page 223 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 200% 4 September, 2015 GEN-CoO000¢-REVA | 11 of 53é 2 OD

1.1 Top Level Block Diagram

[Input Arbiter P||

— VIX RS PIX RS ¢—

 Texture

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (GQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257617

ATI Ex. 2108

IPR2023-00922

Page 223 of 316

ATI Ex. 2108
IPR2023-00922

Page 224 of 316

 24 September, 2001 4 September, 20158 12 of 53 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE|
| avast am

[1.2 Data Flow graph (SP)

 instruction

RegisterFile cnn ~ vl
a a - |

: —— ca
< L scalar input/output MAC \—

tel jre requ oN

| pipeline stage

< '
2 |

= |
zg :7 cae gene RegisterFile
es4 _

acl ‘salar input/outout Ta
| Ne MAC [isan
 /

| pipeline stage ScalarUnit =
/

=

: instruction Register File
8 \

 I } ei Si 18)

1 mus uest_ ig S\a (saree input/output 3 x- Se yet Y a =

| pipeline stage = gL ! am

Register FilebsfromRE !instruction

Ee

7 “T¥ al

texture rel pst me

= cS pd

textureaddress

(

SF

\ to Primitive Assembly Unit or RenderBackend

Figure 3: The shader Pipe

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257618

ATI Ex. 2108

IPR2023-00922

Page 224 of 316

ATI Ex. 2108
IPR2023-00922

Page 225 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20158 GEN-CXXXXX-REVA 13 of 53YO L
The gray area represents blocks that are replicated 4 times per shaderpipe (16 times on the overall chip).

1.3 Control Graph

Ciause # + Rady WrAddr | WrAddr|

cmp |

cst |i ||

Phase | Do ‘an |
emp CSTcstics; px & 8 © Wrvec |

RdAddr i Po WiScal Wwradar
oe

FETCH SP -—| OF

WraAddr

|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257619

ATI Ex. 2108

IPR2023-00922

Page 225 of 316

ATI Ex. 2108
IPR2023-00922

Page 226 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20159 14 0f 53eke EO

| ~

|

ry ~To RB | AG ' Al |i '! i !T

Ns CROSSBAR(4x100 bits}

l PSS SSieeee 2 nreee
CT ———S—S—S| i eae eeee
H levee . 1 Te ~ aeea

AQ At Ag Bo ids buffer (ning-pong buffer)
(25 bits *8 QU) +4544 4 (quadruple-butferd AG At A2 Bo12800 bits

2 Bt co ot o2
Bt co c c2

3 C3 C4 cs DO XYs buffer (sirg-pong buffer)
: 24 bits * 16 quads * 2 C3 cA 5 DO‘ 768 bits

32x24
4 Bi ba Eo E41 e1

INTERPOLATORS

812 |

. T
4p

Jaw |,a| | |au|UL |] 2Uk ff Suk | QR|UR Lk |} SLL |I I I I I\ \ \ \ \

Exhibit 2033. dock400_Sequencer.doc 73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »=*

Figure 5: Interpolation buffers

AMD1044_0257620

ATI Ex. 2108

IPR2023-00922

Page 226 of 316

ATI Ex. 2108
IPR2023-00922

Page 227 of 316

sxe@OBJ3A0DUOBONONWYUGUAdODsoudIBJON“|EHUSPYUD[LY@wvasoc
sapusseanbeg“agpusopccoHanky

AMD1044_0257621

ATI Ex. 2108

IPR2023-00922

Page 227 of 316

WeiserpSunUDueHepdazsUy:9BINT]

egiiy)toSL~OO-ver|-@zZ-zyba)0a}€D|OaAINTAAT)|}6Scr|4@Lb-9G-OF|-rZ-g)OFLDSOAJATAATFTfFjoSS/6E|teI“EG/9¢|-02‘A09ca)POAIATAfo}|

Ld

CCLCCL)LCLOCLIOLL

Chl

CRIersperenpereryy€G40GLWAREXXXXXD-NADCleToquIgdeSFL007‘JequajydespzdvdWON(ASa-LNSWINSOGaLvd1Id3SaLVvdSLVNISIO

 TVIAELVNaaddoAAILOaLOdd

ATI Ex. 2108
IPR2023-00922

Page 228 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 20159 16 of 53de ratte

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quads to interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

Theinstruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5 Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum jogical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320°32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257622

ATI Ex. 2108

IPR2023-00922

Page 228 of 316

ATI Ex. 2108
IPR2023-00922

Page 229 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20158 GEN-CXXXXX-REVA | 17 of 53- ual 1

5.2 Managementof the ControlFlow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VVWR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF afler the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver}, the sequencer will broadside copy the contents ofits re-mapping tables to a
newone. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbe at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-3:De-allocalion_-mechanismFigure 8,De~
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addressesif needed).

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257623

ATI Ex. 2108

IPR2023-00922

Page 229 of 316

ATI Ex. 2108
IPR2023-00922

Page 230 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20159 18 of 534 - ENO

Free Lis

| Renaming Table! Context 0 => N

CurrenVLast

Context

(8 rows of 16-8 hy ;bit physical => Logical Address128 entries copy| | Fj
in eight clocks) ee & Context

Q |@
ee

Context N PhysicalL i
— Address

 Global Register |

Data Bus Staging DataBuffer | PhysicalConstants ' sical
location <—————__ Fee / Memoryavailable annaApoanal

~ Staging Write Addr|WRTR

physical Qeallocaddress Counts next

to physical
schedule address

for ready
dealloc for allocate

. - SeqLi f address

ote pO | Constant
GibRegBus __ a | Request

when Isb are zero This | ifirst word of write | Reset Context I
Renaming Table Dit Dirk |

for 1 Context nd on | — ! ;
Current/Last Le ical | Le cal|| | Context 8Physical mar | acta i | Logical |Address FOSSpaAncress — Address —](Only | (if set |

per de- | don't | |Lagical " : !allocate allocateAddress 1"
| ifset) | or de-| | allocate)| Renaming: table

N-Contexts
Copy Last held above to

Current Cantext on receiot
of Set Constant for a

newcontext (Hide loading
behind Set State load - 16 clocks)
all cther Set States just write one

entry te current state:

Figure 7: Constant management

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257624

ATI Ex. 2108

IPR2023-00922

Page 230 of 316

ATI Ex. 2108
IPR2023-00922

Page 231 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 19 of 53 is rat ual

SQ_STATE#

DEALOC _WRITE_ENABLE

FreeList CNT VALUE|COUNTERS -
| PREVIOUSSTATE

|

| NEW
| STATE|

VALUE
te| | «_||

|

REMAPPING
FABLE

I I

| | | lat SQ IDLE—— AND PA_IDLE
he CP_NEW_STATE_CNTL—

SET CTX BITS

Figure 8: De-allecation mechanism for R4QQLE

5.3.3 Dirty bits
Two sets of dirty bits will be mainiained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incaming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage ofafree list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be ce-allocated. Nolte: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_pir and the IFC is at its maximum count.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257625

ATI Ex. 2108

IPR2023-00922

Page 231 of 316

ATI Ex. 2108
IPR2023-00922

Page 232 of 316

 24 September, 2001 4 September, 20159 20 of 53 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE|
|i vest Kye

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. it is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advancethe write_ptr
pointer fo make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

53.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the newdata will be over-written to the last physical address assigned for this logical address.
When the first draw commandof the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (cight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointerif read_ptr |= to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_pir). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoing table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. lt
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However,if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(S bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shaderpipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257626

ATI Ex. 2108

IPR2023-00922

Page 232 of 316

ATI Ex. 2108
IPR2023-00922

Page 233 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20159 GEN-CXXXXX-REVA 21 0f 53 heenseOPE

between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X.R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

55 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
worksis the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary betweenthe two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
Figure 9: The Constant store

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257627

ATI Ex. 2108

IPR2023-00922

Page 233 of 316

ATI Ex. 2108
IPR2023-00922

Page 234 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 200% 4 September, 20159 22 of 53

| 6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean(256:0]
Loop_count{[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

4 Loop
2 Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch
7 End Loop
8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ’ALU clauses’ we need to know whichinstructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-controlflow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flowinstruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257628

ATI Ex. 2108

IPR2023-00922

Page 234 of 316

ATI Ex. 2108
IPR2023-00922

Page 235 of 316

ORIGINATE DATE

24 September, 2001
EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 20158 GEN-CXXXXX-REVA 23 of 53J: SOA

guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be dane.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0}.

NOP | =

47... 44 | 43 42 ...0
0000. Addressing RESERVED

This is a regular NOP.

Execute

47... 44 | 43 | 40... 34 | 33.16 15...12 11...0
RESERVED Instructions type + serialize @|Count Exec Address0001 | Addressing instructions)

ExecuteEnd

47.44]. 43 40... 34 33....16 15...12 11...0
 0010 = Addressing RESERVED Instructions type + serialize (9|}Count Exec Address

instructions)
 i||i|AL

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, O = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47... 44 | 43 42 41... 34 | 33...16 | 15...12 | 11...0
0011 | Addressing|Condition|Boolean Instructions type + serialize (9 Count Exec Address

ae es eea address | instructions)

Conditional_Execute_End
47... 44 | 43 42 41... 34 | 33...16 15...12 41...0

0100 | Addressing|Condition|Boolean|Instructions type + serialize (9 Count Exec Address
i address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

ConditionalExecute_Predicates

47... 44 | 43 42 41... 36 35... 34 | 33...16 | 15...12 11...0

0101 | Addressing|Condition RESERVED|Predicate Instructions | Count Exec Address
| vector type + serialize |

(9 instructions) |

Conditional_Execute_Predicates_End
47..44) 43 [42at68584 886152FO

0119 | Addressing|Condition|RESERVED|Predicate Instructions Count Exec Address
i vector | type + serialize

| (9 instructions) |

Check the AND/OR ofail current predicate bits. lf AND/OR matches the condition execute the specified numberof
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257629

ATI Ex. 2108

IPR2023-00922

Page 235 of 316

ATI Ex. 2108
IPR2023-00922

Page 236 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20152 24 of 53 : c A

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

; _ Conditional_Execute_Predicates_No_Stall | .
47... 44 43 42 41...36 | 35... 34 33...16 15...12 | 11... 0

1101 Addressing Condition RESERVED|Predicate Instructions Count Exec Address
vector type + serialize

(9 instructions) I

; Conditional_Execute_Predicates_No_Stall_End
47... 44 43 42 4)... 36 [36... 34 33...16 15...12 | 11.0

 vector type + serialize

 1110 Addressing|Condition RESERVED | Predicate Instructions Count | Exec Address|||

| | @ instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

: Loop_Start
47... 44 43 42... 21 20... 16 15...12 11... 0

o111 Addressing | RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
|47... 44 43 | 42...24 | 23... 21 —20..16 |15.12 | 11...0

1000 Addressing | RESERVED | Predicate break i loop ID RESERVED ___ start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call
41.34 | 33.13 | 12 L 11...0

Boolean address|RESERVED | Force Call Jump address

47...44 43 B
4001 Addressing | Condition

if the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return

47.44 43 42.0
1010 Addressing | RESERVED

Pops the topmost address from the stack and jumpsto that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

 .47...44 43 | 42 [41... 34 33 | 32...13 12 11....0
1011 Addressing|Condition|Boolean|FWonly | RESERVED|Force Jump | Jump address

| address | |
If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257630

ATI Ex. 2108

IPR2023-00922

Page 236 of 316

ATI Ex. 2108
IPR2023-00922

Page 237 of 316

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2004 4 September, 2015 GEN-CXXXKX-REVA | 25 of 531 = Tat ey 1

Allocate _ ee47... 44 | 43 42...44 40... 3-4 Bo

1100 | Debug | Buffer Select RESERVED I SizgeAlecation-size
Buffer Select takes a value of the following:
01 — position export (ordered expart)
10 — parameter cache or pixel export (ordered export)
11 — pass thru (out of order exports).

Size field is only used fo reserve space in the export buffer for pass thru exports. Valid values are 7 (1 line) thru 9 (9
lines). Itshould be determined by the compiler/assembler by taking max index used +1,
BufferSizetakes-a-value-oef thefollowing:
00-—-buffer
O4.—2-buffers

45—16-butfers

If debug is set this is a debug alloc (ignore if debug DB_ON registeris set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the orderthat they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From eachbuffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker 4 bits),
LoopIterators (4x9 bits),
Call return pointers (4x12 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr(7 bits),
GPR Base Ptr (8 bits),

. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)
12, RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent io the Constant slore state+~

machine when reading it,

OOnNATaWN
 ---| Formatted: Bullets and Numbering

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257631

ATI Ex. 2108

IPR2023-00922

Page 237 of 316

ATI Ex. 2108
IPR2023-00922

Page 238 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 20159 26 of 53us Leb pe
Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, cali return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits’ needed include:

e Valid Thread

Texture/ALU engine needed
Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)

® 11—pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
First thread of a new context

Event thread (NULL thread that needsto trickle down the pipe)
Last (1 bit)
Pulse SX (1 bit)

All of the abovefields from ail of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considersthe ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Cormplete are '0' are considered. Thenif AllocationWait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if itis the oldest thread. Also a thread is
not consicered if it is a parameter or pixel or position allocation, has its First_thread_of_a_mew_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefillers is selected. lf the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. |f a thread hasits “last” bit set, then it is also removed
from the buffer, never to return.

lf | now redefine ‘clauses’ to mean ‘how manytimes the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn’t performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The TextureReads_Ouistanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencerto set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears thebit.

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257632

ATI Ex. 2108

IPR2023-00922

Page 238 of 316

ATI Ex. 2108
IPR2023-00922

Page 239 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 200% 4 September. 20158 GEN-CoO000¢-REVA | 27 of 53

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is 'exported' to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#—-—SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate’?}

HW Detection of PVPS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257633

ATI Ex. 2108

IPR2023-00922

Page 239 of 316

ATI Ex. 2108
IPR2023-00922

Page 240 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 20159 28 of 53

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Methed 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer(even if they occur
before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257634

ATI Ex. 2108

IPR2023-00922

Page 240 of 316

ATI Ex. 2108
IPR2023-00922

Page 241 of 316

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
: | 24 September, 2001 4 September, 2015) GEN-CXXXXX-REVA | 29 of 53. L . AN I

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257635

ATI Ex. 2108

IPR2023-00922

Page 241 of 316

ATI Ex. 2108
IPR2023-00922

Page 242 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification
24 September, 2001

4 September, 20159

Aboveis an exampie of how the algorithm works. Vertices comein from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between twofetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?} in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 OinstO Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257636

ATI Ex. 2108

IPR2023-00922

Page 242 of 316

ATI Ex. 2108
IPR2023-00922

Page 243 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20158 GEN-CXXXXX-REVA 31 of 53 - EY
Proceeding this way hices the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are alwaysinterpolated at full 20x24 mantissa precision.

PO =A+I1(0)*(B- A) + J(0)*(C - A)

Pl=A+I()*(B-A)+J30)*(C - A) eo 24
P2=A+I1(2)*(B-A)+J(2)*(C - A)

P3= 4 4+1(3)*(B -A)4J(3)*(C — A)
P2 P3

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's I: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the l/s (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Becauseofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257637

ATI Ex. 2108

IPR2023-00922

Page 243 of 316

ATI Ex. 2108
IPR2023-00922

Page 244 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
| 24 September, 2001 4 September, 20159 32 of 53sh Ya!

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER bythe
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 37|| 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 | 12 13 14 15 28 29 30 31 44 45 46 47 6D 61 62 63

The || markers show the SP divisions. in the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQis responsibie to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure1tFigure11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 1OFigure 1 OFigure-10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 2 60.57813 1perbit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712.7 per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT te Shader Interface

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257638

ATI Ex. 2108

IPR2023-00922

Page 244 of 316

ATI Ex. 2108
IPR2023-00922

Page 245 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20159 GEN-CXXXXX-REVA 33 of 53Pat fala

VGT BLOCK
(IN PA)

SHADER
SEQUENCER

VECTOR ENGINE

Figure 11:VGT te Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1 R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory numberand the 7 LSBs are the address within this memory.

[| MEMORY NUMBER | ADDRESS| |I

4 bits 7 hits |

The PA generates the parameter cache addresses as the positions come from the SQ. Allit needs to co is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the mernory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
Q0000000000 the second one 00010000000, third ene CO100000000 and se on up to 11110000000. Then the next
position received (the 47") is going to have the address 00000001000, the 18" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257639

ATI Ex. 2108

IPR2023-00922

Page 245 of 316

ATI Ex. 2108
IPR2023-00922

Page 246 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20159 34 of 53sh Ya!

| 17.1 Export restrictions

L7.1.1 Pixel exports:
Pixels can export 1,.2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned ofif the exports are done using interleaved precicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position ar parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exporied in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any orderwith texture instructions interleaved.
The PREDOPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

\

(ADDR) ALU(SATA) ALU (DATA) ALU(DATA)...
They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Aroitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannotallocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereis a list of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40--41__- 8-9vertex exports to the frame buffer and index
A442:47 - Empty
48:55 -8 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257640

ATI Ex. 2108

IPR2023-00922

Page 246 of 316

ATI Ex. 2108
IPR2023-00922

Page 247 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE!I 24 September, 2001 4 September, 20159 GEN-CoOOOOGCREVA 35 of 53ek 1

63 - sprite size export that goes with position export
(pointh.poinkwedgellagmige)x= point size, Y= edge flag is biLO. 2= Vix Kill is bitwise OR

of bits 30-0. Ary bt other than sign means Viki)

18.2 Pixel Shading
QO - Color for buffer 0 (primary)
1 - Color for buffer 7
2 ~ Color for buffer 2
3 - Color for buffer 3

4715 - Empty
a16 - Buffer 0 Color/Fog (primary)
S17—- Buffer 1 Color/Fog
108 - Buffer 2 Color/Fog
149 - Buffer 3 Color/Fog
4220:4631 - Empty
46:31_-~Empty (Reserved?)

—-32 - Export Address
334041 - &9exporis for multipass pixel shaders.
412.47 - Empty
48:55 -8debug exports (interpret as normal pixel export)
60 60 - export addressing mode +
6061-2 for primary buffer (2 exported to ‘alpha’ component)
6162:623 - Empty

GgFor_primarybufler--exportedtoe-aipha--cemponent)

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memary since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the pararneter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolanis important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual mernories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_!0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_posregister.

Param_Gen_]0 disable, snd_xy disable = No modification
Param_Gen_|0 disable, snd_xy enable = No modification
Param_Gen_|0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s,t
Param_Gen_l0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screeny,Sign(Line)s,t

In other words,

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

 ae -{ Formatted: Bullets and ‘Numbering _

AMD1044_0257641

ATI Ex. 2108

IPR2023-00922

Page 247 of 316

ATI Ex. 2108
IPR2023-00922

Page 248 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20159 36 of 53- ED.
The generated vector is ((in RED, Y in GREEN, S in BLUE and T in ALPHA):
xY,5,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
Signy = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If [Point & tLine, then it is a Poly.

| would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
lf(¥<O){

R = 0.0 (Point)
Jelse if (S <0) {

R = 1.0 (Line)
Jelse {

R = 2.0 (Poly)
}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 20 pass.
The count is always generated in the same way butit is passed to the shader in a slightly different way depending on
the shadertype (pixel or vertex). This is toggled on and off using the GEN_INDEX, PIX/VTX register. The sequencer
is going to keep two counters, ane for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a state.change—is-detectedRST PIX COUNT or
RST VIX COUNT events are received, the corresponding counter is reset. While there is only one count broadcast

the count must be different for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the correspondin
shader unit the SQ has two choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count«—-=before the count is broadcast to the SPs:

“Counter (19 bits) Phase (2 bits) Hardwired(4bits)

Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the S * —. Formatted: Bullets and Numbering

|Counter(21bits)| Hanwired (4 bits ee _

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VT™ is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_post+1
register.

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257642

ATI Ex. 2108

IPR2023-00922

Page 248 of 316

ATI Ex. 2108
IPR2023-00922

Page 249 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20158 GEN-CXXXXX-REVA | 37 of 53SAO

- _————

AUTO COUNT | ooooco |

|
STG O INTER

AUTO INTERPOLATORS
COUNT STGI | || |

_y

The Auto Count Value is
broadcast to all GPRs.It is

loaded into a register wich has
its LSBs hardwired to the

GPR number(0 thru 63). Then
if GEN_INDEXis high, the
mux selects the auto-count

value and itis loaded inte the
GPRsto be either used to

retrieve data using the TP orsent to the SX for the RB ta
use it to write the data to

memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to O and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencerwill first check if
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

21. X¥ Address imporis
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (fo the XY buffer). Then when writing the data to the GPRs, the sequenceris going to
interpolate the J data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257643

ATI Ex. 2108

IPR2023-00922

Page 249 of 316

ATI Ex. 2108
IPR2023-00922

Page 250 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 20159 38 of 53sh Ya!

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

23.2 SC to SP interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with facenessin the msb.
Transfers across these interfaces are synchronized with the SC_SQ [J Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,5P,SQ and add a
EndOfvector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

[Name———“t*és~s~SCCsSBits:|Description

Type 0 or 1, First clock |, second clk J
Field ULC URG LLC LRC
Bits [63:39] [38:26]=25:13) [12:0]

$C_SP#_data 100|IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Format SE4M20 SE4MZ0 SE4M20 SE4M20

|

 Type 2

Field Face xX Y
Bits [6324] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 14 Valid ; |
SC_SP#_last_quad_data | 1 This bit will be set on the last transfer of data per quad. |
SC_SP#_type 2

1 -> Indicates centers
2-> Indicates X,Y Data and faceness on data bus
The SC shall lock at state data to determine how many types to send for the |

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

0 -> Indicates centroids | :||
'

AMD1044_0257644

ATI Ex. 2108

IPR2023-00922

Page 250 of 316

ATI Ex. 2108
IPR2023-00922

Page 251 of 316

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 20159% oy

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 53
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module staternent for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94-708 bits) could be folded in half to approx 49
54bits.

Name

SC_SQ_data

| Bits|Description 1
46 Contro! Data sent to the SQ

1 clk transfers
Event ~— valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events oniy
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt ofthis is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailloc will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid —- Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads wili be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

S8C_SQ_valid 4 | SC sending valid data, 2" clk could be all zeroes he

1* Clock Transfer

8C_SQ_event

Exhibit 2033 dacR400_Sequencer.doc

(SCSQ_event_id

SC_SQ_data - first clock and second clock transfers are shown in the table below.

Name BitField | Bits|Description a

0 | This transfer is a 1 clock event vector Force quad_mask =
eee newvector=poCeallocOpus
[4c] | This field identifies the event 0 => denotes an End Of State Event 1

73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257645

ATI Ex. 2108

IPR2023-00922

Page 251 of 316

ATI Ex. 2108
IPR2023-00922

Page 252 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20159. 40 of 53

| => TBD

$C5Q,.pe_deallocSCSQ.spele | 33 Deallocalion token forthe Parameter CacheSiale/consiantpointeriate_id (6°33)
SCSQ pc dealloc ay3] 3 Deallocation token for the Parameter Cache
8C_SQ_new_vector 148 | i The SQ must wail for Verlex shader done count > 0 and after

| dispatching the Pixel Vector the $Q will decrement the court.
SC_SQ_quad_mask (125:12 | 4 Quad Write maskleft to right SPO => SP3

9] |
8C_SQ_end_of_prim 136 1 End Of the primitive
SC_SQ_pix_mask (32:17) | 16 Valid bits for ail pixels SPO=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vix [374:36 | 2 Provoking vertex for flat shading3] |
3G-3Gi-pe-plOSC SQ lod [483:38|49|Parameter-Gachepalnte-lorverexOLOD correction for quad 0
correct_O 5] (SPO)(9bitsperquad)
|SC_SQ lod correct 1 s244) |S LOD correction for quad 1 (SP1) (9 bits per quad

| 2nd Clock Transfer :
SC _S8Q jod correct 280-8 B:0186 $44|LOD correction for quad 2 GP2) (8 bits per quad)Parameter-GacheGpe-pird a pointer-for-vertex-t
$C. $Q lod correct3 L179] 9 | LOD correction for quad 3 (SP3) (9 bits perquad)
SC SQ pe ptr (28:18)|11 Parameter Cache pointer for vertex 0
8C_SQ_pe_ptr27 [e437|11 Parameter Cache pointer for vertex 12

429

SCSQpepire [4530:2|241|Parameter Cache pointer for vertex 2LOD correction per quad (6
SC-3Q_lod—correct 240) 4 bits-per-quad)
SC_SQ_prim_type (4833:4|3 Stippled line and Real time command need to load tex cords from

651] alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name _ Bits|Description _ s—~S@Y
|8Q_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_enir_ent 4 Pipelined bit that instructs SC to decrement count of new vector and/or event

seni to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partia
1.) He gets a primitive marked wit!

 vector whenever:
h an end of packet signal.

2.) A current pixel vector is being assernbled with at least one or more valid quads and the vector has been
marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector)
marker\primitive.

prior to submitting the new_vector

(This will prevent a hang which carn be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

Exhibit 2033. dock400_Sequencer.doc 73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »=*

AMD1044_0257646

ATI Ex. 2108

IPR2023-00922

Page 252 of 316

ATI Ex. 2108
IPR2023-00922

Page 253 of 316

 | ORIGINATE | 24 September, 2001

DATE EDIT DATE

4 September, 20159es = oyou

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 53
23.2.3 SQ to SX(SP): interpolator bus

SQ_SPx_interp_valid / SQ >SPx

3.2.4 SQ to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.

interpolation control valid

Name Direction [Bits | Description
SQ_SPx_interp_flat_vix SQ >SPx [2 _ Provoking vertex forflatshading
5Q_SPx_interp_flat_gouraud “SQ—SPx i | Flat or gouraud shading |

 SQ_SPxinterpeylwrap |SQ.-SPx_ 4___ Wichchannelneedstobecylindrical wrapped _
SQ. SPx interp param gen | SQ--SPx 4 | Generate Parameter
SQ SPx interp prim type SQ > SPx 2 | Bits [1:01 of primitive type sent by SC
SQ_SPx interp buff swap | $Q--SPx '1 | Swapp J buffers

$Q SPxinterpIJline_ 2 SP 2 (iWlnenumber
8Q_SPxinterpmode ii Gen art
SQ_SXx_pe_ptro 11 | Parameter Cache Pointer
SQ_SXx_pe_ptr1 (11 | ParameterCache Pointer
SQ_SXx_pe_ptr2- [sQ-»SXx 141 _ Parameter Cache Pointer
SQ_SXx_tt_sel $Q--SXx 1 | Selects between RT and Normal data (Bit 2 of prim type)
SQSx%9pewren | $O-9GR0 (8 _ Write enable for the PC memories
SQ_SXxi_pe_wr_en SO5S5%xSX1 48 | Write enable for the PC memories
SQ_SXx_pe_wr_addr | SQSXx 17 _ Write address for the PCs

-8Q_SXx_pe_channel_mask |SQ>SXx_ 4 | Channel mask
$Q_SXx, pe ptr valid SQ>SXx __ 1 Read pointers are valid.

(Name Direction Bits |Description. -_ ee
SO_SPx vsr_ data |9Q-35Px | 96 | Pointers of indexesorHOSsurfaceinformation|
SQ SPx_vsr double SQ—SPx i _0: Normal 96 bits per vert 1: double 192 bits per vert
SQSP0_vsrvalid|||SQ.>SPO |i |Dataisvalid
$Q_SP1_vsr_valid $Q >SP1 4 | Data is valid
$Q_SP2_vsr_valid $Q—SP2 1 _ Datais valid
|SQ_SP3_vst_valid|SQSP3 [4Dataisvalid

SQ_SPx_vsr_read _$0-3SPx 4 Increment the read pointers | “She

23.2.5 VGT to SQ: Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

|Name Bits|Description
VGT_SQvsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGTis sending an event
VGT_SQ_vsisr_continued p41. 0: Normal 96bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

| data, "end_of_vector"is set on the first vector)
VGT_5Q_indx_valicd 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

L_ 'VGT_SQ_vgt_end_of_vector"is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rir 4 Ready to receive (see write-up for standard R400 SEND/RTR interface

23.2.5.2 Interface Diagrams

handshaking)

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257647

ATI Ex. 2108

IPR2023-00922

Page 253 of 316

ATI Ex. 2108
IPR2023-00922

Page 254 of 316

aux©360J9A0DUOBDOIONTHUAdODsousIDJoY"JENUSPILUOD[Ly@xxxSev\ag1oczsopuecuenbeg“poy

AMD1044_0257648

ATI Ex. 2108

IPR2023-00922

Page 254 of 316

puesjSa6sva@cus

A“aHE

YEONANOAS

wavHSionSay

[sseqeqeqa&ovar

||

eees=po3ypt-—-—=-—
||||

wadingQIMSvxLOL

ay

]ToqoeaJOPuaJoaOSYA

DY[etmerceenneencnemmenenacqnapastssqhaOova%HIENCdWSTSA

DYrcZWLWYSISA

 OEPOEBGLO?JequiejdegaivdLiga

Lo0g‘equaydespzaLVdSLYNIOIO

eG$0Sr

39duoyeaioedsseouenbesOOF

 TVIAELVNaaddoAAILOaLOdd

ATI Ex. 2108
IPR2023-00922

Page 255 of 316

sxe@OBJ3A0DUOBONONWYUGUAdODsoudIBJON“|EHUSPYUD[LY@wvasoc

sopisscenbes“ggpyoopSs

onoO-8a
2

NOKHxG2OW=aINoroaa8—-fO

AMD1044_0257649

 "SOBLSIU]JOABSVa16)Wee[esIbO7PSeisqCTSinai
NOISSIWNSNVaL
sdOLsSYHands[SLaVLS-ddAHATHOdA

CoSd0LSdHdATHoOdd

aedOFlaALAWHO11LNOOFTdLNOVWIVdO@ra

yvavapyaNas€Wova€aGNgsZWawaZzaNaSSLaLOAZulyosTuyosQOulyosalaOs

 WAREXXXXXD-NADWON(ASa-LNSWINSOGaLvd1Id3
“LTT€G40oPdvd

 FUUUUU——

L007‘JequajydespzSaLVvdSLVNISIO

 TVIAELVNaaddoAAILOaLOdd

ATI Ex. 2108
IPR2023-00922

Page 256 of 316

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| | 24 September, 2001 4 September, 20159 44 of 531 ed a i

| 23.2.6 SQ to SXContro/ bus

Name | Direction | Bits | Description
SQ_SXx_exp_type SQ—8Xx [2 | 00: Pixel without z (1 to 4 buffers)

| O14: Pixel with z (1 to 4 buffers)
| | | 10: Position (1 or 2 results)
| [_11: Pass thru (4.8 or 12 results aligned) ;

SQ_SXx_exp_number SQ—SXx 2 | Number of locations needed in the export buffer
L (encoding depends on the type see bellow).

SQ_SXx_exp_alu_id | SQ-»SXx [4 ALU ID
8Q_SXx_exp_valid |SQ—SXx L4 | Valid bit
SO_SxXx_exp_state SQ8Xx 3 _ State Context

SQ_SXx_free_done SQ—SXx 1 | Pulse that indicates that the previous export is finished
i from the point of view of the SP. This does not
i necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been

_ freed up.
8Q_S*x_free_alu_id | SQ >SXx 11 | ALU ID

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

o 00= 1 buffer
o O1=2 buffers
o 10=3 buffers
o 114 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o O1=3 buffers (2 color + Z)
o 10=4 buffers (3 color + Z)
o 11=5 buffers (4 color + Z)

* Type 10: Position export
o 00=1position
o 01=2 positions
o 1X = Undefined

* Type 11: Pass Thru
o 00= 4 buffers
o O01 8 buffers
o 10= 12 buffers
o 11= Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ: Output file control
Name

T = =
|Direction

SXx_SQ_exp_count_rdy
| Bits | Description

| SXx-8Q | 1 | Raised by SX0to indicate that the following twofields
| reflect the result of the most recent export

SXx_SQ_exp_pos_avail

SXx_SQ_exp_buf_avail
Exhibit 2033 decR400_Sequencer.doc

| 00: 0 buffers ready
| | O11 buffer ready

I _ L | 10.2 or more buffers ready |
| SXx—S8Q 7 | Specifies the space available in the output buffers.

|

| SXx SQ 24 Specifies whether there is room for anotherposition.
| O: buffers are full
| 1: 2K-bits available (32-bits for each of the 64

73016 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *=*

AMD1044_0257650

ATI Ex. 2108

IPR2023-00922

Page 256 of 316

ATI Ex. 2108
IPR2023-00922

Page 257 of 316

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2075a

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 53a

| pixels in a clause)

| 64: 128K-bils available (16 128-bit entries for each of
| 64 pixels)
65-127: RESERVED

23.2.8 SQ toe TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which R&line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

. Name Direction Bits | Description_

TPx_SQ_data_rdy TPx-—- 3$Q | 41 Data ready
TPx_SQ_rs_line_num TPx— SQ 6 Line number in the Reservation station

TPx_SQ_type | TPx> SQ 11 _ Type of data sent (O:PIXEL, 1:VERTEX)
80 _TPx_send 8Q—TPx 4 | Sending valid data
SQ_TPx_const | SQ--TPx 148 | Fetch state sent over 4 clocks (192 bits total)

| SQ_TPx_insir SQ—>TPK 24 __| Fetchinstruction sent over 4 clocks
SQ_TPx_end_of_group | SQ--TPx 4 | Last instruction of the group -
8Q_TPx_Type 8Q-—TPx 4 _ Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase | SQ->TPx 12 | Write phase signal ;
$Q_TPO_lod_correct SQ-TPO 6 | LOD correct 3 bits per cornp 2 components per quad
SQ_TPO_pix_mask SQ—TPO |4 | Pixel mask 1 bit per pixel . _|
8Q_TPt1_lod_correct _SQ--TPI (6 | LOD correct 3 bits per comp 2 components per quad
SQ_TPt_pix_ mask SQ—TP1 4 _Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ-TP2 [6 | LODcorrect 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ—TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | 8Q--TP3 16 | LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_ mask SQ—TP3 4 _ Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ->TPK [6 ___| Line number in the Reservation station |
$Q_TPx_write_gpr_index 7? | Index into Register file for write of returned Fetch Data|-

23.2.9 TP to SQ: Texture stail

The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_ fetch Stal!

SQ_SP_wr_addr |

Exhibit 2033 dacR400_Sequencer.doc

DS

SUS

73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257651

ATI Ex. 2108

IPR2023-00922

Page 257 of 316

ATI Ex. 2108
IPR2023-00922

Page 258 of 316

ORIGINATE DATE

EDIT DATE

24 September, 2001 4 September, 20159

PAGE

46 of 53
R400 SequencerSpecification

Name | Direction Bits | Description

TP_SQ_ fetch stall TP. 80 L4 | Do not send more texture requestif asserted

23.210 SQ to SP: Texture stall

Name | Direction
SQ_SPx_fetchstall | SQ >SPx

Bits | Description

11 | Do not send more texture requestif asserted | cS

23.2.11 SQ to SP: GPR and auto counter

Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ->SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ—SPx 7 Read address
$Q_SPx_gpr_rd_en $Q->SPx J __| Read Enable
SQ_SP0_gpr_wr_en SOQ—SPx 14 Write Enable for the GPRs of SPO
SQ_USPi_gprwrenss| SQ SPX _ 44 Write Enable forthe GPRsof SP1
$Q_SP2_gpr_wr_en SQ >SPx 44 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ—SPx 44 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC

; fo ___| teads and writes)
SQ_SPx_channel_mask $Q—SPx 4 The channel mask
$Q_SPx_gpr_input_sel S@—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VIX,
VTX1, autogen counter.

SQ_SPx_auto_count SQ—SPx 42221|Auto count generated by the SQ, commonfor all shader
pipes

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257652

ATI Ex. 2108

IPR2023-00922

Page 258 of 316

ATI Ex. 2108
IPR2023-00922

Page 259 of 316

Air | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE, : . ¢ | 24 September, 2001 4 September. 20158 GEN-CXXXXX-REVA 47 of 53_ i J: aa Pee

23,.2.12 SQ to SPx: Instructions

Name Direction Bits Description
SQ.SPx_instr_start (SOQ >5Px 1 |Instruction start.
SQ_SP_instr SQ >SPx 242|Transferred over 4 cycles

0: SRC A Select 2:0

SRC A Argument Modifier 393

omEOEhalfPoh
PAL H8SRC A Negate

Argument Modifier 0:0
SRC A Abs Argument Modifier 14
SRC A Swiezle 92
Vector Dst 1819
Per channel Select 22:16

00: GPR
Oi. Py
10.PS
ii Constant GF 17 has to be 17 for all

channels)

SRC B Abs Argu
__ SRC B Swizzie

Scalar Dst
Per channel Select 2218

00: GPR
O11: PV
10. PS
11 Constant GF 11 has to be 11 for all

channels)

eabeahalet
Perchanneluse-mask(PV/Reg) 24:18

2: SRC C Negate Araument Modifier 0:0
SRC CO Abs Argument Modifier 4:4

 Per channel Select 00: GPR

OL PY
10: PS

11, Constant Gf 11 has to be 11 far all
channels)

SPRBeain

omBRO BENi

3: Vectar Oncode 4:0
Scalar Opcode 40:5
Vector Clamp 4111
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
Unused 23:21

Exhibit 2033 dacR400_Sequencer.doc 73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257653

ATI Ex. 2108

IPR2023-00922

Page 259 of 316

ATI Ex. 2108
IPR2023-00922

Page 260 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

: : 24 September, 2001 4 September, 20158 48 of 53" —— a Yavateta!
SQ. SPO pred override SO--8P0 4 0. Use per channel RGBA fleld (enables the per channel

| logic, # not set only pay attention to the 11 seting).
| | 1.Use GPR

SQ_SF' pred override ee 2SP | 4 To: Use per channel RGBAfield (enables the cer channel
| | logic, @ nol set only pay atiention fo the 11 seting).

|Use GPR

[de5Q_SP2_pred_override |SG238P2

Oo: Use per channel RGBAfield (enables the per channel

| logic, # not set only pay attention to the 117 seting).! i | tse GPR
SQ_5P3_pred_ override SQ--SP3 4 0: Use per channel RGBAfield (enables the per channel

| | | logic, F not set only pay attention to the 11 seting).
| 4: Use GPR

$Q_SPx_exp—alu_id SQ—-SPx 1 GPRALU ID
SQ_SPx_exporting SQ—SPx 1 Q: Not Exporting
eePPExporting oe : ee a

SQ_SPx_stall | 8Q >SPx it | Stall signal | : : ees :

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data re ———
Name | Direction Bits | Description
SQ_S8X0 write mask $G--SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all colar
I clock. This is for the cata coming of SPO and SP2.

$Q_SX1__ write mask | $9-SP1] 8 Result of pixel kill in the shader pine, which must be

output for all pixel exports (depth and all color
| buffers), 4x4 because 16 pixels are computed per

| clock. ThisisforthedatacomingofSPiandSP3.

4 . . 7 — oe 4 Formatted: Bullets and Numbering
23-2:4323.2.14SP to $Q: Constant address load/ Predicate Set/Kiil set iee

Name Direction Bits | Description : See SEE
SP0_SQ_const_addr 'SP0—sa [36 | Constant addressload / predicate vector load (4 bits only)/

ee | Kill veetor load (4 bits only) to the sequencer
SPO0_SQ_valid _§P0—SQ 4 | Data valid
SP1_SQ_const_addr SP1—SQ 36 | Constant address load / predicate vectorload (4 bits only)/

_ Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid | SP1--SO 14 _ Data valid | .
SP2_SQ_const_addr SP2—8Q 36 | Constant address load / predicate vector load (bits anly)/

| _ Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid | SP2—80 i _ Data valid ; _
SP3_SQ_const_addr | SP3—8Q | 36 | Constant address load / predicate vector load (4 bits anlyy/
3P3_S50Q_valid SP3=SQ i |
SPO_SQ_data_type SP3S3Q 42 | Data Type

| 0: Constant Load

| | 1: Predicate Set

 | Fermatted

 23-2-14423.2.15 S80 to SPx: constant broadcast ee
Name Direction Bits | Description Pee
SQ_SPx_const _SQ->SPx |128 | Constant broadcast ae

Formatted: Bullets and Numbering

Exhibit 2033 dech400_Sequencerdos 73018 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257654

ATI Ex. 2108

IPR2023-00922

Page 260 of 316

ATI Ex. 2108
IPR2023-00922

Page 261 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September. 20159 GEN-CoO000¢-REVA | 49 of 53 ; Aan ae = Formatted: Bullets and Numbering

23.2.16 SQ te CP: RBBM bus

Name | Direction | Bits | Description
SQ_RBB_rs SQ—>CP 1 | Read Strobe
SQ_RBB_ird | SQ—>CP | 32. Read Data
SQ_RBBM_ortrtr SQ—cP i | Optional
$8Q_RBBM_rtr | $Q>CP 14 _ Real-Time (Cotional)

23.2.17 CP to SQ: RBBM bus

Name | Direction [Bits | Description
Sobmowe CPSO WriteEnable
rbbm_a | CP.»SQ dress -- Upper Extent is TBD (16:2)
rbbm_wd | CP >SQ _ Data
rbbm_be _ Byte Enables

tbbm_re iReadEnable
rob_rsO 1 | Read Return Strobe 0
rbb_rst 1 | Read Return Strobe 1robb_rdO 32. | Read Data 0

rob_rd4 32 | Read Data 0
RBBM_SQ_soft_reset 1__Soft Reset

23.2.18 SQ to CP: State report

Name Direction Bits | Description
SQ_CP_vs_event |SQ—CP [4 | Vertex Shader Event :
SQ_CP_vs_eventid SQ—CP 42 | Vertex Shader Event ID |
SQ_CP_ps_event SQ—CP 4 | Pixel Shader Event

 5Q_CP_ps_eventid _42 | Pixel Shader Event iD.

 veriid =0.22“sEndOPtaie—(Le,VeEndOSiale)

ventid-«omteDone.{LeVeDone}

So,theCPuwillLaseume-the-Veiedone-with2-siate-wheneverit gete-a-pulse-ontheSQChve_event
and-the- SQ_CP.ve—_oventid=O,

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Aud
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4

Exhibit 2089 seck400_Sequencer.do: 73016 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257655

ATI Ex. 2108

IPR2023-00922

Page 261 of 316

ATI Ex. 2108
IPR2023-00922

Page 262 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE | 24 September, 2001 4 September, 20159 50 of 53i - es <
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

uO Alu O Vex 0 Vex 1 Alu O Alu O Tex 0 Aiu 1] Alu 0 Tex

 Alu O Alu4 r be I

And the execution of this program would look like this:

Put thread in Vertex RS:

Control FlowInstruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop lIterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Pir (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

CFP r ECM Ll CRP PB [EXID | GPR EB [CPTR LOD
Q no) Lo Lo 0 LO Lo 0 Lo oO

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
O1 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

| Status Bits

-VALID | TYPE PENDING | SERIAL |ALLOC[|SIZE|POS_ALLOC
1 | ALU 0 [0 i) LO 0 { Q

Then the thread is picked up for the execution of the first control flow instruction:FRxerute © Alu O Alu O Tex O Tex 1 Ailu O Alu O Tex O Ala 7 Aiu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

Exhibit 2033. deck400_Sequencerdoc 73018 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257656

ATI Ex. 2108

IPR2023-00922

Page 262 of 316

ATI Ex. 2108
IPR2023-00922

Page 263 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20153 GEN-CXXXXX-REVA 51 of 53
State Bits

| CFP | ECM Fu LCRP [PB [EXID | GPR EB | CPTR LOD

i) [2 0 [0 Lo [0 io 0 [o 0

 | Status Bits

|VALID. TYPE ‘PENDING | SERIAL |ALLOC | SIZE|POS_ALLOC FIRST LAST
1 TEX 0 10 [oO Lo Q 1 G

Then when the texture pipe frees up, the arbiter picks up the thread ta issue the texture reads. The thread comes
backin this state:

State Bits

 | ECM [| . :

[4 [0 [0 0 [0 10 0 [9 0

Status Bits

VALID TYPE PENDING_|
4 ALU i i

SERIAL[|ALLOC [SIZE [POSALLOC FIRST|LAST
i 6 6. To 1 6

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in
this state:

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serialbit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

Exhibit 2035. doc409_Sequencardoc 73016 Hyes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *==

enn:

State Bits

CFP| ECM Li _[CRP|PBLEXID.=GPR EB|CPTR| LOD
0 16 LO 10 0 LO [6 0 LO 0

{StatusBits cscsinsists

VALID TYP PENDIN [SERIAL | ALLOC [SIZE | POS_ALLO FIRST | LAST :
1 | TEX 0 LO LO 0 10 i fo Io

CFP [ECM [LI [| CRP | PB [EXID | GPR [EB CPTR LOD
a [7 10 10 ie oO io 0 Oo 0 |

Status Bits

-VALID| TYPE PENDING | SERIAL |ALLOC [SIZE|POS_ALLOCFIRST | LAST ce
1 ALU 1 fo Lo Oo 0 j Lo Je

AMD1044_0257657

ATI Ex. 2108

IPR2023-00922

Page 263 of 316

ATI Ex. 2108
IPR2023-00922

Page 264 of 316

=xecute 0
x TyLU

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20159 52 of 53a Senta LEAF,

|VALID TYPE “PENDING |SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST |
1 ALU i 1 [0 0 0 1 a |

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

| CFP ECM iL [CRP PB | EXID _GPR EB | CPTR | LOD |
Q 9 0 [0 OG Q ime) 0 a LO |

Status Bits |

|VALID TYPE PENDING| SERIAL__| ALLOC| SIZE _| POS_ALLOCFIRST|LAST |1 TEX 0 LO 10 0 0 1 0G |

Picked up by the TP and returns:

State Bits

 | EXID _GPR

Alloc Pas: the ALU and returns (lets say the TP has not returned yet):

1 0 0 6 0 Lo 0 [0

StatusBits

FVALID | TYPE PENDING[SERIAL | ALLOC| SIZE | POS_ALLOC FIRST LAST
1 _ALU 1 LO [0 LO Lo i CG

Picked up by

State Bits

|CFP | ECM ; [[
2 i) Lo [o 0 [o 0 0 Lo Oo |

| Status Bits |

VALID | TYPE PENDING [SERIAL|ALLOC [SIZE|POSALLOC FIRST|LAST |
1 LALU i [o Ot i 0 i 0

lf the SX has the place for the export, the SQ is going to alloca
the R&Sin this state:

Execu

é and pick up the thread for execution. It returns to

_StateBits
CFP _GPR EB [ECM
3 4

 [PB EXID
[0 LO Lo

Status Bits

VALID | TY PE PENDING SIZE POS_ALLOC FIRST LAST
1 | TEX 1

| SERIAL | ALLOC 10 lO 4 1

Exhibit 2033. dock400_Sequencer.doc 73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »=*

AMD1044_0257658

ATI Ex. 2108

IPR2023-00922

Page 264 of 316

ATI Ex. 2108
IPR2023-00922

Page 265 of 316

ORIGINATE DATE

24 September, 2001
EDIT DATE

4 September, 20159

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 53 - - t OOO
Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alilec Param 3

[State Bits |
CFP ECM [LI CRP PB | EXID [GPR | EB CPTR | LOD4 0 0 Q 0 1 0 0 0 0

Status Bits

VALID[TYPE| PENDING [SERIAL [| ALLOC|SIZE | POS_ALLOC FIRST _ LAST _
1 ALU it LO | 10 [3 L4 1) ic

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

Executeend 9 Alu O Tex 1 Alu @ Alu

State Bits

CFP ECM [LI [CRP [PB [EXID _| GPR [EB [CPTR | LOD
5 Oo 10 10 4 10 ' 100 [0 ro

Status Bits

VALID TYPE [PENDING | SERIAL | ALLOC|SIZE|POS_ALLOC | FIRST LAST .
1 TEX [4 Lo Lo 0 1 1 G jee

This executes on the TP and then returns:

State Bits

CFP ECM | LI CRP | PB | EXID | GPR [EB CPTR | LOD |
5 2 Lo Oo Lo 1 0 400 0 0 |

[Status Bits
VALID TYPE PENDING | SERIAL |ALLOC|SIZE|POS_ALLOC FIRST LAST
1 ALU 1 l4 0 0 1 4 1

Waits for the TP to return becauseof the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2033 dacR400_Sequencer.doc 73016 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257659

ATI Ex. 2108

IPR2023-00922

Page 265 of 316

ATI Ex. 2108
IPR2023-00922

Page 266 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201844 GEN-CXKKXXX-REVA 4 of 51— os a Z ft
Author: Laurent Lefebyre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.065

Overview: This is an archiectural specification for ine R400 Sequencer block (SEQ). Il provides an overview of the

required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\werforcey400\doc_lib\design\blocks\sqg\R400Sequencer.dec
Gurrent Intranet Search Title: R400 Seguencer Specification

: Ve APPROVALS | : : :
Name/Dept eee : ooeeoe = Signature/Date |

Remarks:

 THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |:
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or Jo.
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2034. docRiO0_Sequencerdee 73468 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © =~

ATI 2034

LGv. ATI

TPR2015-00325

AMD1044_0257660

ATI Ex. 2108

IPR2023-00922

Page 266 of 316

ATI Ex. 2108
IPR2023-00922

Page 267 of 316

[Ai
ORIGINATE DATE

24 September, 2001

 EDIT DATE

 R400 SequencerSpecification PAGE
4 September, 201544 2 of 51re i

Table Of Contents

1. OVERVIEWoeccceee ceeneene neces seaennnecnanewaedcdeaaseaie ccc ceaaneanesdeneauananestianaaaeeneacnaananessenanen 7

Lt Top Level Block Diagram oo...eectete e ence eee eb tte teers tteesceeettiteststttteseecsrieeess 9
1.2 Datla Flow graph (SP)ccceect beret nett bet t teeter cottieeeeercrateeeetsiaeeesterieegees 10
1.30 Control Grapneects ve
2. INTERPOLATED DATA BUS...............
3. INSTRUCTION STORE...00...
4. SEQUENCER INSTRUCTIONS..
§. CONSTANT STORESowe “

5.1 Memory OfQaAniZatlonsocccece tte eet eben cree sree ett E EEO bbcteteeebbociteestissieeetttaetenee ea 14
5.2 Management of the Control Flow Constantsoo.ceeeeeet e eters seeertneertenea 49
$3 Management of the re-mapping tables 00000... 15

5.3.1 R400 Constant managementoo. 15
5.3.2 Proposal for RAQOLE constant ManageMent ooece cee ceteeeeeveteestetee raters 15

SB.3 DEY DIScececece tete beter ivititititistittesntreititinttittsvititttitscrtnetrertenenaes 7
S.3.4 Free List BlOCK oooccctte tttee tr trtetettti tit ttitistitetititititttettrtrerttnttrsttes Foe

5.3.5 De-allocate Blokoccccc cttee tr tetttettti tit ttitstitetitititittitstttiesttinttrtttes 18

5.3.6 Operation of Incremental modelo.ectsrrte re rirrnnernranssees 18
$4 Constant Store INGO...cesses seve vee resvesvsssevavevevevevssvisevesevavevevevevevsuvevevavevsuaveves18
$.5 Real Time Command...ccccccsceeteeeveteestrs:titittititititttetititinttritcitetitetecsuseese19

$5.6 Constant Waterfalling.0.00.. .19
6 LOOPING AND BRANCHES... wee 20 |

B.1 THE COMTPONING STALEceceeet ieee ttt renee bttt ites ttitttienetitteeeccnteteeenirciteea 20 |
6.2 The Control Flow Progra oo. cccccccceccee cc ceceeettneteeeeteseeeeetsseetcesttateeeccstseeesecraeegs 20 5

6.2.1 Control flow instructions table oooceceer cr tteetttie reteset trtttittterieetes 21

6.3 lriplementationceecece ce cee eee ben eeeeeeeeeeaeeeeeeeeesseeeeeeresctussueeeeseeeaareeeeeeeennes 23
64 Data dependant predicate instructions...
6.5 HW Detection oF PVPSooee

6.6 Registerfile indexing...
6.7 Debugging the Shaders00.

6.7.1 Method 1: Debugging registersooccccette tte tete tee ttntttetiteee 26
6.7.2 Method 2: Exporting the values in the GPRSee26

7. PIXEL KILL MASK oecc cceenecnecceneeeaeecaeseananeeesenacanaenecauanaseeascnaaesaescatenananieesauaneanecenne 26

8 MULTIPASS VERTEX SHADERS (HOS).oo...cccccccccccccccctcencecaeteeeseneecsaeeaceeaaeeteceaeneaneneeseaate 26
9. REGISTER FILE ALLOCATION............. 2726 A
10. FETCH ARBITRATION oo. ccccccceccccccceeeenecscneeaneeeeceaneneenceaeseaneaaecaeaenesuaeeseaneaaenseesenaneanteceneas 28
11. ALU ARBITRATION oooccccce cece cneeeecnecsaeeseneeeceaneneenceesesaneaaecaeaenesnaeeseaneaaenseeseeaneantecnens 2B.
12. HANDLING STALLS ooocece eee ceee eee teceeneeeeeeee ten eneee ogeeeeeenaseasenecannaneeeetrenee
13. CONTENT OF THE RESERVATION STATION FIFOS........ececcccceeseeceecasenneenereeneneas 29
14. THE QUTPUT FILE Lecceccccccceceecneneeneeneaeeaeeseeensaneneenceeseaausaateaeaenesnaeeseaneaaenseesenaneantecenens 29
PS. WD FORMAT ooo. ccc cceceeeen ne cee rene nennerceaeeeneseesneneaaaeceanaaaneanecsenenanesgesseaneaaencessneneeatseseneaas wee 2D

15.1 Interpolation of constant attributesoooceceecesc ceeeetrsieeetrtteineeserseees wn 2d
16. STAGING REGISTERS oo... ceccceccccccceceeeeccneeeeeeecenecenenene cee e teenies cease tne connetanngdennaneeenecee en 30

Exhibit 2034 dock400_Gequencerdoc 73368 Byes*** @ ATL Confidential. Reference Copyright Notice on Cover Page © *==

_2900

AMD1044_0257661

ATI Ex. 2108

IPR2023-00922

Page 267 of 316

ATI Ex. 2108
IPR2023-00922

Page 268 of 316

ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE

die 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 3 of 51
17. THE PARAMETER CACHE.......cccccccccssceee cccsusessssessserauessvsssiersasstsissuuusasicsusstuussivssstesauessecssen 3

L711 EXPOrt reStrictions ooocerettee cece eentaeeeereenaeeeescuttaeeeentvsaeeeeenrseaeerenerinaeens 32 68

V7 TD Pixel exportsccccece eee cc ec cce cee ee estes estes ee tesieets sisiiteitieeiesstts 32 |
V71.2 Vertex exports:occcece ee ee tee cote tee neve vt eititie tvineviteneviereinnvivinn 32
T7103) Pass thru exports:occcece cece cece vette ee ce vee eeesteestuevevenevesierenneviviniens 32

17.2 Arbitration restrictions 000... 82 |

18. EXPORT TYPES Lice ccccccccccccccsnsaccceennannnnneeennaaaaaneessaaaanaiedsuaaaaaesesesaasaeeavesssseeeeeeeeceesananecsense 32
18.1 Vertex SAIN.eeerece reer ert rete e cot tttteettbiseteeetttiettestttssseestteeecceeetias a2 5
18.2 Pixel Shading0.ee
19. SPECIAL INTERPOLATION MODES.....
19.1 Realtime commands oo... veveveeeeseeees

19.2 Sprites/ XY screen coordinates/ FB information... ve
19.3 Auto generated COUMPETSceceec c ccc eeeee cc steteetessteeeeteaeteeestsseeicsetsteeeccnniiees es

19.3.1 Vertex shadersoccccc seve vscsvevevevevsuseseevsevsvavavevevevsasssvavevevsvevavevsusaveves BA

L932 Pimel SHAMEccccece cece ev eceveteeeeviceteteeeievieievtvevetvivessttvestivesisestiassess 34
20. STATE MANAGEMENT ooo. ...ccc0cccccccccccnccnscssnneennuccenceaaeeauesanasnaaenvsssaueeaauseesnnnaenauccsussaasansesonae 35
20.1 Parameter cache synchronization a5
21. XY ADDRESS IMPORTS.cccccccceee odd

21.1 Vertex indexes imports.......... 35
32. REGISTERS o.oo we BO
23. INTERFACESoessemeernteessmersetetsumeentisiteneusesesaetetanaeaceesseeen360

23.1 External Interfaces.ccccesses tes teestesressiesressitstiesnes casters 36

23.2 SC to SP Interfaces.eertee rotten retitrrecrtenestrssittrenitenee 3600

23.2.1 SOSPHcececece tee cee cette cece tc beeeeescoeeeeeessssiteescssteeessseseeeseetreeessnntiees 36 ©

Q3.2.2 SCSQ coecccccccssessssssssoeesvssssvsavevsssssvimmeessirvvvmivessvsimesssavvimvessasveviesvvenen7
23.2.3 SQ to SX(SP): Interpolater DUSoccccc cc trettie rittttttttrtititntesrtrens 39 0

23.2.4 SQ to SP: Staging Register Datacccect create ttttttetititetetrresees 39
23.2.5 VGT to SQ. Vertex interface.tersetestes trinisirsesnisns 39

23.2.6 SQ to SX: Control bus... .

23.2.7 SX to SQ: Output file COMOcecettre ttie rettttsttittitntesrerens :
23.2.8—SQ to TP: Control DUS oocece ees eseessessestrtesrtstitsritesessittstsitriesneeen 43

23.2.9 TP to SQ: Texture stall... AB
23.2,10 SQ to SP: Texture Stalecesses ve cscsssveversvavevevevevsussssstssvevevevevsvavsavevs44
23.2.1] SQto SP: GPR and auto COUNLEDoese treesreisernirnen 44 0

23.212 SQ to SPx: Instructionsoereter set nsiseriimiiserrinsns 45

23,2.13 SP to SQ: Constant address load/ Predicate Sel/Killset46

23,214 SQ to SPx: constant broadcast...testesise rnrrsierriernes 46

23.2.15 SQ to CP) RBBM Bus.cceceseeceeesveevescitveteressveteeseevevvetesststrsrerees 46

23.2.16 CP to SQ: RBBM BUSocccece eceecseceveeeeveevescitvevetessveteeveevevveteiseensrerees46
23.2.17 SQ to CP: State reportocccece cee ee cee sete teteestretestttetetntesetcreaees47

23.3 Example of control flow program Gxecullon oooccccceeeercetteteeescrtteetttieeeeena 47

Exhibit 2034. dock409_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257662

ATI Ex. 2108

IPR2023-00922

Page 268 of 316

ATI Ex. 2108
IPR2023-00922

Page 269 of 316

Vat) ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE24 September, 2001 4 September, 201544 4o0f 512%, i a £S;

94. OREN ISSUES .occccccccceccseccsccceceresessesserescoreuavneveressearsnsecsssnsvansverssteseuaveseronsnanenceseuavaneressrane 54

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257663

ATI Ex. 2108

IPR2023-00922

Page 269 of 316

ATI Ex. 2108
IPR2023-00922

Page 270 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 5 of 51= £N asa! fi i

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rey0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rey 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002
Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : Apri] 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes madein the 10/18/01 contro!
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SPO interfaces. Changed delta
precision. Changed VGT—SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—+SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the Sx
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scherne

Exhibit 2024.docK400_Sequencerdce 73365 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257664

ATI Ex. 2108

IPR2023-00922

Page 270 of 316

ATI Ex. 2108
IPR2023-00922

Page 271 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544. 6 of 51Prebe te OY

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :-August 2, 2002
Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

06 (Laurent Lefebvre
2

Changed slightly the control flow instructions to
allow force jurnps and calls.
Updated the OQpcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ—SP instruction load interface.
SP interface updated to include predication
optimizations. Added the predicate no. stall
instructions,
Documented the new parameter generation scheme
for XY coordinates points and lines STs.
Some interface changes and an architectural
changeto the auto-counter scheme.
Widened the event interface to 5 bits, Some other
littletypos

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257665

ATI Ex. 2108

IPR2023-00922

Page 271 of 316

ATI Ex. 2108
IPR2023-00922

Page 272 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 200% 4 September, 201544 GEN-CoO000¢-REVA 7 of 511 fs, _ catCi

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executesall of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencerwill not start the next
vector until the needed space is available in the GPRs.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257666

ATI Ex. 2108

IPR2023-00922

Page 272 of 316

ATI Ex. 2108
IPR2023-00922

Page 273 of 316

MwoOoOBMLONo|st3

vee@OHEdJ9AODUOSDHONJUBUAdODsoUDJDJay“PENUSPYUOD[LY@weagece,sepresuerbesMoprusorveowi|5
=

MITAIOAOJostenbag[Biswas2]WANSLY<<||—PEO]UBISUOD
~Gel|>aa_—_;——————|leggy|pmgood*|GOOodoyeood||S8aupDyaksoSUMOd=J*|SUAINIOd

iWaaOd

jewalf--

SLVLSHOLA=

dS+ds—LnTeeeseeeeeJYOLSISNIBe)Be!Be)eyHSLNIaSLNiYSNj=)HSLNI4ey

:i|:avo7fifymiiaLSNI|yVESsodorl|coeal|i
;peed4O~}bs|pL|

—do
woxinoo=SLNWLSNOO

XGA

dd ,TLSLglogFEGTOeBGWSGSSPF|Loogsequeydespz49VvduoyeoyloadsJeouanbesCOPYavdLida3LVdSLYNIOINO

 TVIAELVNaaddoAAILOaLOdd

ATI Ex. 2108

IPR2023-00922

Page 273 of 316

ATI Ex. 2108
IPR2023-00922

Page 274 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 200% 4 September, 201544 GEN-CoO000¢-REVA Gof 511 fs, ~ Ci ff

1.1 Top Level Block Diagram

[Input Arbiter P||

— VIX RS PIX RS ¢—

 Texture

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (GQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257668

ATI Ex. 2108

IPR2023-00922

Page 274 of 316

ATI Ex. 2108
IPR2023-00922

Page 275 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
| 24 September, 2001 4 September, 201544 10 of 51£

[1.2 Data Flow graph (SP)

 instruction

RegisterFile cnn ~ vl
a a - |

: —— ca
< L scalar input/output MAC \—

tel jre requ oN

| pipeline stage

< '
2 |

= |
zg :7 cae gene RegisterFile
es4 _

acl ‘salar input/outout Ta
| Ne MAC [isan
 /

| pipeline stage ScalarUnit =
/

=

: instruction Register File
8 \

 I } ei Si 18)

1 mus uest_ ig S\a (saree input/output 3 x- Se yet Y a =

| pipeline stage = gL ! am

Register FilebsfromRE !instruction

Ee

7 “T¥ al

texture rel pst me

= cS pd

textureaddress

(

SF

\ to Primitive Assembly Unit or RenderBackend

Figure 3: The shader Pipe

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257669

ATI Ex. 2108

IPR2023-00922

Page 275 of 316

ATI Ex. 2108
IPR2023-00922

Page 276 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 11 of 54fs, 2 ra 1
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Ciause # + Rady WrAddr | WrAddr|

cmp |

cst |i ||

Phase | Do ‘an |
emp CSTcstics; px & 8 © Wrvec |

RdAddr i Po WiScal Wwradar
oe

FETCH SP -—| OF

WraAddr

|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257670

ATI Ex. 2108

IPR2023-00922

Page 276 of 316

ATI Ex. 2108
IPR2023-00922

Page 277 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201544 12 of 51Prebeinae EY ft

| =

|

ry ~To RB | AG ' Al |i 't i !T

Ns CROSSBAR(4x100 bits}

l PSS aeaaaeeeee coed nreee
SSE' i ae aeoe
H levee . 1 Te ~ aeea

AQ At Ag Bo ids buffer (ning-pong buffer)
(25 bits *8 QU) +4544 4 (quadruple-butferd AO At A2 Bo12800 bits

2 Bt co ot o2
Bt co c c2

3 C3 C4 cs DO XYs buffer (sirg-pong buffer)
: 24 bits * 16 quads * 2 c3 cA 5 DO‘ 768 bits

32x24
4 Bi ba Eo E41 Et

INTERPOLATORS

812 |

. T
sp

Jaw |,a| | |au|UL |] 2Uk ff Suk | QR|UR Lk |} SLL |I I I I I| | | | |

Exhibit 2034. dock400_Sequencer.doc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © »=*

Figure 5: Interpolation buffers

AMD1044_0257671

ATI Ex. 2108

IPR2023-00922

Page 277 of 316

ATI Ex. 2108
IPR2023-00922

Page 278 of 316

sxe@OBJBA0DUOBONONWUGLAdODsoudIOJON“|EHUSPYUD[LY@wasocezWeiserpSunUDueHepdazsUy:9BINT]

sapresvenbag“poPEsopPEEWiig

L2LO@L

 ChlCLL)BELbgJOELWAREXXXXXD-NADdvdWON(ASa-LNSWINSOG

 eePEGLOgJequiajces7aLvd1Id3

L007‘Jequajydespz alvdaly¥'
lIoldo

 TVIAELVNaaddoAAILOaLOdd

AMD1044_0257672

ATI Ex. 2108

IPR2023-00922

Page 278 of 316

ATI Ex. 2108
IPR2023-00922

Page 279 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 14 0f51EA ends bees SOS

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quads to interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

Theinstruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5 Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum jogical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257673

ATI Ex. 2108

IPR2023-00922

Page 279 of 316

ATI Ex. 2108
IPR2023-00922

Page 280 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | 15 of 54L £N. fs

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VVWR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF afler the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver}, the sequencer will broadside copy the contents ofits re-mapping tables to a
newone. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbe at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacketof state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:De-sllocation-mechanismFigure 8:De~
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addressesif needed).

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257674

ATI Ex. 2108

IPR2023-00922

Page 280 of 316

ATI Ex. 2108
IPR2023-00922

Page 281 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 16 of 51Prebe te OY

Free Lis

| Renaming Table! Context 0 => N

CurrenVLast

Context

(8 rows of 16-8 hy ;bit physical => Logical Address128 entries copy| | Fj
in eight clocks) ee & Context

Q |@
ee

Context N PhysicalL i
— Address

 Global Register |

Data Bus Staging DataBuffer | PhysicalConstants ' sical
location <—————__ Fee / Memoryavailable annaApoanal

~ Staging Write Addr|WRTR

physical Qeallocaddress Counts next

to physical
schedule address

for ready
dealloc for allocate

. - SeqLi f address

ote pO | Constant
GibRegBus __ a | Request

when Isb are zero This | ifirst word of write | Reset Context I
Renaming Table Dit Dirk |

for 1 Context nd on | — ! ;
Current/Last Le ical | Le cal|| | Context 8Physical mar | acta i | Logical |Address FOSSpaAncress — Address —](Only | (if set |

per de- | don't | |Lagical " : !allocate allocateAddress 1"
| ifset) | or de-| | allocate)| Renaming: table

N-Contexts
Copy Last held above to

Current Cantext on receiot
of Set Constant for a

newcontext (Hide loading
behind Set State load - 16 clocks)
all cther Set States just write one

entry te current state:

Figure 7: Constant management

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257675

ATI Ex. 2108

IPR2023-00922

Page 281 of 316

ATI Ex. 2108
IPR2023-00922

Page 282 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 17 of 51 Lest fat Pat

SQ_STATE#

DEALOC _WRITE_ENABLE

FreeList CNT VALUE|COUNTERS -
| PREVIOUSSTATE

|

| NEW
| STATE|

VALUE
te| | «_||

|

REMAPPING
FABLE

I I

| | | lat SQ IDLE—— AND PA_IDLE
he CP_NEW_STATE_CNTL—

SET CTX BITS

Figure 8: De-allecation mechanism for RAQQLE

5.3.3 Dirty bits
Two sets of dirty bits will be mainiained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incaming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be ce-allocated. Nolte: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the numberof address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_pir and the IFC is at its maximum count.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257676

ATI Ex. 2108

IPR2023-00922

Page 282 of 316

ATI Ex. 2108
IPR2023-00922

Page 283 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 18 of 51Prades ina

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. it is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advancethe write_ptr
pointer fo make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

Ou

53.3.6 Operation of Incremental mode!
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the freelist set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the newdata will be over-written to the last physical address assigned for this logical address.
When the first draw commandof the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (cight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointerif read_ptr |= to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_pir). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoing table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. lt
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However,if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(S bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shaderpipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257677

ATI Ex. 2108

IPR2023-00922

Page 283 of 316

ATI Ex. 2108
IPR2023-00922

Page 284 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 19 of 51EE a Lia

between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X.R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

55 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the same way than when dealing with regular constant loads BUT in this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary betweenthe two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable perforrnancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
Figure 9: The Constant store

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257678

ATI Ex. 2108

IPR2023-00922

Page 284 of 316

ATI Ex. 2108
IPR2023-00922

Page 285 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2004 4 September, 201544 20 of 51Pradestae CY

| 6 Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWWe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean(256:0]
Loop_count{[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

4 Loop
2 Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch
7 End Loop
8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ’ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-controlflow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flowinstruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257679

ATI Ex. 2108

IPR2023-00922

Page 285 of 316

ATI Ex. 2108
IPR2023-00922

Page 286 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 21 of 51fvanbirake, SAO4
guaranteed to be ordered. Because strict ord ering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be dane.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0}.

 NOP Jo

47... 44 | 43 ; 42 ...0
0000 | Addressing RESERVED

This is a regular NOP.

Execute

47... 44 | 43 | 40... 34 | 33... 16 15...12 11...0
0001 | Addressing RESERVED Instructions type + serialize @|Count Exec Address

| instructions)

ExecuteEnd
47... 44 | 43 [40... 34 —_ 3316 _ 15...12 11....0

0010 = Addressing RESERVED | Instructions type + serialize @|Count Exec Address
| i instructions)

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, O = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47... 44 | 43 42 41... 34 | 33...16 | 16...12 | 11...0
0011 | Addressing|Condition|Boolean Instructions type + serialize (9 Count Exec Address

ae es eea address instructions)|

Conditional_Execute_End 47... 44 | 43 42 41... 34 | 33...16 15...12 qi..0

0100 | Addressing|Condition|Boolean|Instructions type + serialize (9 Count Exec Address
i address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

ConditionalExecute_Predicates
47... 44 | 43 42 41. 36 35... 34 33...16 15.12]11... 0

0101 | Addressing|Condition RESERVED|Predicate | Instructions Count Exec Address
vector type + serialize

| (9 instructions) |

Conditional_Execute_Predicates_End

|47... 44 | 43 42 41. "0110 Addressing| Condition |RESERVED| Predicate
36|35... 34 | 38.16

Instructions Count

vector | type + serialize
| (9 instructions) |

,15...42| 11...0

Check the AND/OR ofail current predicate bits. If AND/OR matches the condition execute the specified numberof
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2034 decR400_Sequencerdoe 73388 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »=*

AMD1044_0257680

ATI Ex. 2108

IPR2023-00922

Page 286 of 316

ATI Ex. 2108
IPR2023-00922

Page 287 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544. 22 of 51 : < a AAA
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall

47.44 43 42 41...36 | 35... 34 33...16 15...12 | 11....0

1101 Addressing Condition RESERVED|Predicate Instructions Count Exec Address
| vector | type + serialize| |

(9 instructions) i

; Conditional_Execute_Predicates_No_Stall_End -
47... 44 43 42 41...36 | 35... 34 33...16 15...12 | 11... 0

1110 Addressing|Condition RESERVED | Predicate Instructions Count | Exec Address|

 vector type + serialize
|_@ instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

: Loop_Start
47... 44 43 42... 21 20... 16 15...12 11... 0

o111 Addressing | RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47... 44 43 | 42...24 | 23... 21 | 20... 16 | 18..120| 1... 0

1000 Addressing | RESERVED _—s Predicate break | loop ID | RESERVED | start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call
|47...44 43 ' 42 41.34 | 33.13 | 12 L 11...0

1001 Addressing | Condition Boolean address|RESERVED | Force Call Jump address

if the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return

47.44 43 42.0
1010 Addressing | RESERVED

Pops the topmost address from the stack and jumpsto that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
.47...44 43 | 42 [41... 34 33 | 32...13 12 11...0

1011 Addressing|Condition|Boolean|FVWVonly|RESERVED|Force Jump Jump address

 | address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257681

ATI Ex. 2108

IPR2023-00922

Page 287 of 316

ATI Ex. 2108
IPR2023-00922

Page 288 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE||

24 September, 2001 4 September, 201544 GEN-CXXKXX-REVA | 23 of 51fs = oy £y 1

Allocate

47... 44 | 43 42...41 40...3 2...0
1100 | Debug | Buffer Select RESERVED Size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export)
11 -— pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 17 (1 line) thru 9 @
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON registeris setto off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives ina given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entryin the buffer will be stored across two physical pieces of mernory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed ‘status’.

‘State Bits’ needed include:

Control FlowInstruction Pointer (13 bits),
Execution Count Marker 4 bits),
LoopIterators (4x9 bits),
Call return pointers (4x12 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr(7bits),
GPR BasePtr (8 bits),

. Context Pir (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)
12. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

ODNDARUN>
Absentfrom this list are ‘Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257682

ATI Ex. 2108

IPR2023-00922

Page 288 of 316

ATI Ex. 2108
IPR2023-00922

Page 289 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 24 of 51Pantnienn 0
‘Status Bits’ needed include:

® Valid Thread
e Texture/ALU engine needed

Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameter or pixel export needed (ordered export)
11 —- pass thru (out of order export)
Allocation Size (4 bits)

* Position Allocated

® First thread of a new context

® Event thread (NULL thread that needsto trickle down the pipe)
« Last (1 bit)
e Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and forthe ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_toComplete are ‘0’ are considered. Then if Allocation_Wail is active, these threads are
further fitered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older threads have already done their position allocation (position allocated bits set). If the
allocation is parameterorpixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. Ifthe thread needed to allocate, then
ai this time the allocation is done, based on Allocation_Size. |f a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc’ instruction) (but doesn't performs the actual
allocation) and onefor the actual ALU/export instructions. As the ‘Alloc’ instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencerto set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations ofthe forrn:

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

» Mem/Color Allocated ee 4 Formatted: Bullets and Numbering

AMD1044_0257683

ATI Ex. 2108

IPR2023-00922

Page 289 of 316

ATI Ex. 2108
IPR2023-00922

Page 290 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 25 of 5124 i nates

PRED_SETE_# - similarto SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#—SETEO
PRED_SETE1_#~—SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit precicate vectors (in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbittells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate’?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/vrite.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_Index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index Is out of range and thus can make the
necessary arrangemenis.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257684

ATI Ex. 2108

IPR2023-00922

Page 290 of 316

ATI Ex. 2108
IPR2023-00922

Page 291 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 26 of 51ba OE

| 6.7 Debugging the Shaders_
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groupsoferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stack full
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the vaiues in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer(evenif they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group ofpixels/vertices. Its purpose is to optimize the texture feich
requests and allowthe shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257685

ATI Ex. 2108

IPR2023-00922

Page 291 of 316

ATI Ex. 2108
IPR2023-00922

Page 292 of 316

 ORIGINATE DATE EDIT DATE

DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | 27 of 51- i LN OF: ft L

9 Register file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257686

ATI Ex. 2108

IPR2023-00922

Page 292 of 316

ATI Ex. 2108
IPR2023-00922

Page 293 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification
24 September, 2001 4 September, 201544

Aboveis an exampie of how the algorithm works. Vertices comein from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between twofetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?} in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 OinstO Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257687

ATI Ex. 2108

IPR2023-00922

Page 293 of 316

ATI Ex. 2108
IPR2023-00922

Page 294 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 29 of 51 - PU ALS
Proceeding this way hices the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are alwaysinterpolated at full 20x24 mantissa precision.

PO =A+I1(0)*(B- A) + J(0)*(C - A)

Pl=A+I()*(B-A)+J30)*(C - A) eo 24
P2=A+I1(2)*(B-A)+J(2)*(C - A)

P3= 4 4+1(3)*(B -A)4J(3)*(C — A)
P2 P3

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's I: Mantissa 20 Exp 4 for! + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20°8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the l/s (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Becauseofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257688

ATI Ex. 2108

IPR2023-00922

Page 294 of 316

ATI Ex. 2108
IPR2023-00922

Page 295 of 316

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
| 24 September, 2001 4 September, 201544 30 of 51! Peden ba 0

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER bythe
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 6D 61 62 63

The || markers show the SP divisions. in the event a shader pipe is broken, the SQ /|s responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQis responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure1tFigure171Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 1OFigure-10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 2 60.57813 1perbit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712.7 per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT te Shader Interface

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257689

ATI Ex. 2108

IPR2023-00922

Page 295 of 316

ATI Ex. 2108
IPR2023-00922

Page 296 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 31 of 51i oy

VGT BLOCK
(IN PA)

SHADER
SEQUENCER

VECTOR ENGINE

Figure 11:VGT te Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory numberand the 7 LSBs are the address within this memory.

| MEMORY NUMBER4 bits ADDRESS]7 bits

The PA generates the parameter cache addresses as the pasitions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting 8
parameters per vertex (VS_EXPORT_COUNT= 8). The first position received is going to have the PC address
Q0000000000 the second one 00010000000, third ene CO100000000 and se on up to 11110000000. Then the next
position received (the 47") is going to have the address 00000001000, the 18" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257690

ATI Ex. 2108

IPR2023-00922

Page 296 of 316

ATI Ex. 2108
IPR2023-00922

Page 297 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201544 32 of 51! Peden ba 0

| 17.1 Export restrictions

L7.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned ofif the exports are done using interleaved precicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position ar parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any orderwith texture instructions interleaved.
The PREDOPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

\

(ADDR) ALU(SATA) ALU (DATA) ALU(DATA)...
They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Aroitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannotallocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereis a list of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:44-37_- 9.5vertex exports to the frame buffer and index
4238:47 - Empty
48:5525 - 85 debug export (interpret as normal vertexmemeryexport)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257691

ATI Ex. 2108

IPR2023-00922

Page 297 of 316

ATI Ex. 2108
IPR2023-00922

Page 298 of 316

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE!I 24 September, 2001 4 September, 201544 GEN-CXXXXK-REVA | 33 0f 51wand. EM

63 - sprite size export thal goes with position export
(X= point size, Y= edge flag is bit 0, Z= VixKillis bitwise OR of bits 30:0. Any bit other than

sign means VtxKill.)

18.2 Pixel Shading
QO - Color for buffer 0 (primary)
1 - Color for buffer 7
2 ~ Color for buffer 2
3 - Color for buffer 3
4:15 -Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 - Export Address
33:4437 - &5exporis for multipass pixel shaders.
4A236:47 - Empty
48.5925 - 83 debug exports (interpret as normal pixel memory export)
60 - export addressing mode
61 -Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands

We are unable fo use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_!0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how theyinteract together:

The Data is going to be written in the register specified by the param_gen_posregister.

Param_Gen_!0 disable, snd_xy disable = No modification
Param_Gen_10 disable, snd_xy enable = No modification
Param_Gen_|0 enable, snd_xy disable = Sign(faceness)garbage, (Sign Point)garbage, Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX(Sign Point)screeny ,Sign(Line}s, t

In other words,
The generated vector is % in RED, Y in GREEN, S in BLUE and T in ALPHA):
X%Y,8,T

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257692

ATI Ex. 2108

IPR2023-00922

Page 298 of 316

ATI Ex. 2108
IPR2023-00922

Page 299 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 34 of 51COA " Latest
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used forflags).
SignX = BackFacing
Sign¥ = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

lf [Point & !Line, then it is a Poly.

| would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<O) {

R = 0.0 (Point)
Jelse if S <0) {

R= 1.0 (Line)
yelse {

R = 2.0 (Poly)
}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 26 pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNTevents are
received, the corresponding counter is reset. While there is only one court broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) | Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counteris sent to the Sps:

Counter (21 bits) | HarvdiredtHardwired (4 bits) I

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VTXis set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_post+1
register.

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257693

ATI Ex. 2108

IPR2023-00922

Page 299 of 316

ATI Ex. 2108
IPR2023-00922

Page 300 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154. GEN-CoO00G-REVA | 35 of 312 - |

|
STG O INTER

AUTO INTERPOLATORS
COUNT STGI | || |

_y- _————

AUTO COUNT | ooooco |

The Auto Count Value is
broadcast to all GPRs.It is

loaded into a register wich has
its LSBs hardwired to the

GPR number(0 thru 63). Then
if GEN_INDEXis high, the
mux selects the auto-count

value and itis loaded inte the
GPRsto be either used to

retrieve data using the TP orsent to the SX for the RB ta
use it to write the data to

memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to O and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vector bit asserted, the sequencerwill first check if
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

21. X¥ Address imporis
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (fo the XY buffer). Then when writing the data to the GPRs, the sequenceris going to
interpolate the J data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257694

ATI Ex. 2108

IPR2023-00922

Page 300 of 316

ATI Ex. 2108
IPR2023-00922

Page 301 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 36 of 51Protest CY

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

23.2 SC to SP interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ [J Control Bus transfers.

The data transfer across each of these bussesis controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a bufferfree.
Note: Ve could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (Ve may revisit this for both the SX,SP,SQ and add a
EndOfvVector signal on all interfaces to quit early. Wve opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name ‘Bits Description

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
Bits [63:39] [88:26] (25:13) (12:9)
Format SE4M20 SE4NM20 SE4M20 SE4M20

SC_SP#_data 100|lJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bil) =

|

 Type 2

Field Face x Y
Bits [24] [23:12] [11:0]

| Format Bit Unsigned Unsigned

SC_SP#_valid 4 Valid oo] S
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad. |
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

i The SC shall lock at state data to determine how many types to send fer the |

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

i 2-> Indicates X,Y Data and faceness on data bus | ae

AMD1044_0257695

ATI Ex. 2108

IPR2023-00922

Page 301 of 316

ATI Ex. 2108
IPR2023-00922

Page 302 of 316

 DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

ORIGINATE DATE EDIT DATE 24 September, 2001 4 September, 201544

 interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module staternent for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

state_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt ofthis is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid - Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

8C_8Q_valid La SC sending valid daia, 2" clk could be all zeroes |

SC_SQ_data - first clock and second clock transfers are shown in the table below.

Name

BitField | Bits | Description

1* Clock Transfer

8C_SQ_event

This transfer is a 1 clock event vector Force quad_mask =
newvector=poeablocOpusThis field identifies the event 0 => denotes an End Of State Event 1

(SC_SQeventid

Exhibit 2034 deck400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** | :

Name | Bits|Description i
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
Event ~— valid data consist of event_id and

AMD1044_0257696

ATI Ex. 2108

IPR2023-00922

Page 302 of 316

ATI Ex. 2108
IPR2023-00922

Page 303 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 201544 38 of 51F ea AL,
=> TBD

SC_SQ_state_id [8:65] 13 State/constant pointer (6*3+3)
SC_SQ_pc_deailoc Sis | 3 Deallocation token for the Parameter Cache

EI
8C_S3Q_new_vector 4442 i The SQ must wail for Vertex shader done count > 0 and after

I dispatching the Pixel Vector the $Q will decrement the count.
SC_SQ_quad_mask [4616:4|4 Quad Write maskleft to right SPO => SP3

213)
8C_S8Qend_of_prim 41617 i End Of the primitive
8C_SQ_pix_mask ($232:4|16 Valid bits for all pixels SPO=>SP3 (UL,UR,LL.LR)

#18)
8C_SQ_provok_vik (S433:3|2 Provoking vertex for flat shading

334] !
SC_SQ_lod_correct_0 [43443|9 LOD correction for quad 0 (SPO) (9 bits per quad)

536]
SC_SQ_lod_correct_1 [5283:4|9 LOD correction for quad 1 (SP1) (9 bits per quad)

445)

2nd Clock Transfer

|SC_SQ_lod_correct_2 [8:0] 9 LODcorrection for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 _ LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pe_ptrO [28:18]|11 | Parameter Cache pointer for vertex 0
8C_S8Q_pe_ptrt [89:29]|11 Parameter Cache pointer for vertex 1
5C_SQ_pce_ptr2 [50:40] | 11 Parameter Cache pointer for vertex 2

8C_SQ_prim_type (53:51)|3 Stippied line and Real time command need to load tex cords from
alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtirne Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description

|SQ_SC_free_bulf 1 Pipelined bit that instructs SC to decrement count of buffers in use.
8Q_8C_dec_cnir_cnt 4 Pipelined bit that instructs SC to decrement count of new vector and/or event

sentto preventSCfrom overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assernbled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_cealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

AMD1044_0257697

ATI Ex. 2108

IPR2023-00922

Page 303 of 316

ATI Ex. 2108
IPR2023-00922

Page 304 of 316

 | ORIGINATE DATE||

23.2.3 SQ to SX(SP): Interpolator bus

EDIT DATE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVAfs, _ catOu

DOCUMENT-REV. NUM. PAGE

39 of 51

Name | Direction _ Description
SQ_SPx_interp_flat_vtx | SQ >SPx | Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | SQ—SPx | Flat or gouraud shading
|SQ_SPx_interp_cyl_wrap SQ>S5Px __Wiehchannelneedstobe cylindricalwrapped
SQ_SPx_interp_param_gen | S$Q-SPx Generate Parameter __
SQ_SPx_interp_prim_type SQ >SPx | Bits [1:0] of primitive type sent by SC
5Q_SPx_interp_buff_swap SO->-SPx _ Swapp LJ buffers

SQ_SPx_interp_|J_line SQ>SPx LMolinenumber
8Q_5Px_interp_mode | $Q-»SPx _Certer/Centroid sampling
SQ_SXx_pe_ptro SQ >SxXx | Parameter Cache Pointer cS
SQ_SXx_pe_ptrt | $O >SxXx | Parameter Cache Pointer a :
SQ_SXx_pe_ptr2 1 SQ-9SAK Parameter Cache Pointer _ - :
SQ_SXx_rt_sel $Q—SXx _ Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pe_wr_en | $Q->5X0 | Write enable for the PC memories
$Q_SX1_pe_wr_en SQ—Sx1 | Write enable for the PC memories
SQ_SXx_pe_wr_addr |SQ->8Xx _ Write address for the PCs

SQ_SX_pe_channel_mask |SQ>SXx_ | Channelmask
SQ_SXx_pe_ptrvalid SQ>SXx __ Read pointers are valid.
SQ_SPx_interp_valid | SQ >SPx Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.

(Name Direction Bits i escription ee
SO_SPx vsr_ data |9Q-35Px |96 | Pointers of indexes or HOS surface information
SQ SPx_vsr double SQ—SPx i | 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SPO_vsrvalid= [SQ>SPO [1 [Dataisvalid eee
SQ_SP1_vser_ valid _SQ >SP1 1 _ Data is valid
$Q_SP2_vsr_valid $Q—SP2 1 | Data is valid
|SQ_SPS_var_valid||SQ--SPS 1Dataisvalid|

SQ_SPx_vsr_read _S$Q-4SPx [1 _| Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore,the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 9G |
bits wide. in the case where an eventis sent ihe S LSBs of VGT_ SQ vsisr data contain the eventID. |e

|Name Bits|Description

VGT_SQvsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGTis sending an event
VGT_SQ_vsisr_continued p41. 0: Normal 96bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

| data, "end_of_vector"is set on the first vector)
VGT_5Q_indx_valicd 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

L_ 'VGT_SQ_vgt_end_of_vector"is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rir 4 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2034 dacR400_Sequencer.doc 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257698

ATI Ex. 2108

IPR2023-00922

Page 304 of 316

ATI Ex. 2108
IPR2023-00922

Page 305 of 316

YEONANOSSHaqVHS

xe@BUIBAODUOBOONWYGUAdODsoudIIJaN"PEHUSPIUSD[LY@weasocez

sopussuenbessorySOY

0ale

Adana
wadingQIMsvxLOL

[sseqeqeqa&ovar SST=oDSNpbpues35aOsva
 Say

pHIELOdASISAbWIWdMSISA

ToyOAJOpuejoaOSWaSoqnopaetseqo.OFwa

ay

zChas

DY[etmerceenneencnemmenenDYrc

LDA

%HIENCdWSTSAZWLWYSISA

LG30OFdovd

uoyeaioedsseouenbesOOF
 PEGLO?Jequiajaes-aivdLiga

Lo0g‘equaydespzaLVdSLYNIOIO

 TVIAELVNaaddoAAILOaLOdd

AMD1044_0257699

ATI Ex. 2108

IPR2023-00922

Page 305 of 316

ATI Ex. 2108
IPR2023-00922

Page 306 of 316

sxe@OBJBA0DUOBONONWUGLAdODsoudIOJON“|EHUSPYUD[LY@wasocez "SOBLSIT]JOABSVa16lWEBIESOTPaes]NOISSIWSNYaLSdOLSAAaNaS7

 NOTSSINSNVYdALSLYWLS-da
"|Sindy

aaATHOda
|

 “UU

 TU
sapresvenbag“poPEsopPEEWiigNOISSINSNVdaLSdOLSA4ATHORd

qdOldALAIWHOf1dINDO€Ta

yvavapyaNas€Wova€aGNgsZWawaZzaNaSSLaLOAZulyosTuyosQOulyosalaOs

Por

INOWLWdOd1a

LG10Ledvd

WAREXXXXXD-NADWON(ASa-LNSWINSOG
eePEGLOgJequiajces7aLvd1Id3

L007‘JequajydespzSaLVvdSLVNISIO

 TVIAELVNaaddoAAILOaLOdd

AMD1044_0257700

ON©—Om
=

NOKH:O0“xTLuo>6O—_NO-Fon<INoYDa8—-fO

ATI Ex. 2108
IPR2023-00922

Page 307 of 316

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 42 of 51Panini! oi

| 23.2.6 SQ to SX: Control bus

Name | Direction |Bits Description ;
SQ_SXx_exp_type SQ—-SXx 3 | 00: Pixel without z (1 to 4 buffers)

| O14: Pixel with z (1 to 4 buffers)
| 10: Position (1 or 2 results)
| 14: Pass thru (4.8 or 12 results aligned)

SQ_SXx_exp_number SQ—SXx 2 | Number of locations needed in the export buffer
L (encoding depends on the type see bellow).

SQ_SXx_exp_alu_id | SQ-»SXx [4 _ALU ID
8Q_SXx_exp_valid |SQ—SXx L4 | Valid bit
SO_SxXx_exp_state SQ8Xx 3 _ State Context

SQ_SXx_free_done SQ—SXx 1 | Pulse that indicates that the previous export is finished
i from the point of view of the SP. This does not
i necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been

_ freed up.
8Q_S*x_free_alu_id | SQ >SXx 11 | ALU ID

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

co O0= 14 buffer
o 6O1= 2 buffers
o 10=3 buffers
o 11=4 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o O1=3 buffers (2 color + Z)
o 10=4 buffers (3 color + Z)
o 11=5 buffers (4 color + Z)

* Type 10: Position export
o 00=1position
o 01=2 positions
o 1X = Undefined

® Type 11: Pass Thru
o 00= 4 buffers
o O01 8 buffers
o 10= 12 buffers
o 11= Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the sametime than the next export to the same ALUid.

23.2.7 SX to SQ: Outputfile controlT . :
Name | Direction
SxXx_SQ_exp_count_rdy SXx8Q

 Bits | Description

4 | Raised by SX0 toindicate that the following two fields
| reflect the result of the most recent export

SXx_SQ_exp_pos_avail SXx SQ 2 Specifies whetherthere is room for anotherposition.
| 00: O buffers ready

| | O41: 1 buffer ready
L _ L | 10: 2 or more buffers ready ;

SxXx_SQ_exp_buf_avail SXx—S8Q 7 | Specifies the space available in the output buffers.|

| O: buffers are full
| 1: 2K-bits available (32-bits for each of the 64

Exhibit 2034 dech400_Sequencerdos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257701

ATI Ex. 2108

IPR2023-00922

Page 307 of 316

ATI Ex. 2108
IPR2023-00922

Page 308 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 43 of 51
| pixels in a clause)

|_| 64: 128K-bits available (16 128-bit entries for each of
| | 64 pixels)
|_| 65-127: RESERVED

23.2.8 SQio TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which R&line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequenceralso provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

its Description

_ Name ___ Direction B

TPx_SQ_data_rdy | TPx—> SQ 1 Data ready
TPx_SQ_rs_line_num TPx— SQ 8 | Line number in the Reservationstation

TPx_SQ_type | TPx-> SQ 4 _ Type of data sent (O:PIXEL, 1:VERTEX)
8Q_TPx_send 8QTPx 4 | Sending valid data
$Q_TPx_const | SQ—>TPx 148 | Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ—>TPx 24 _| Fetchinstruction sent over 4 clocks

SQ_TPx_end_of_group | SQ->TPx i4 _ Last instruction of the group ;
SQ_TPx_Type 4 _ Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase .2 | Write phase signal |
$Q_TPO_lod_correct 6 _ LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pix_mask | 4 | Pixel mask 4 bit per pixel a
80Q_TP1_lod_correct .6 | LOD correct 3 bits per comp 2 components per quad
SQ_TPt_pix_mask 4 | Pixel mask 1 bit per pixel
SQ_TP2_lod_correct 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask 4 | Pixel mask 1 bit per pixel
SQ_TP3_Jod_correct | SQ-TP3 16 _ LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix mask SQ>TP3 4 _ Pixel mask 1 bit perpixel
SQ_TPx_rs_line_num | SQ>TPx i8 | Line number in the Reservation station _
$Q_TPx_write_gpr_index 8Q->TPx [7 l Index into Register file for write of returned Fetch Data :
SQ_TPx_clx_ id | SQTPx 3 [The state context 1D (needed for multisarnple resolves)||

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stali

Pwr addrS@Q_SP_wr_ad | |

|

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257702

ATI Ex. 2108

IPR2023-00922

Page 308 of 316

ATI Ex. 2108
IPR2023-00922

Page 309 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 44 of 51LoktoadnnEY

Name | Direction | Bits | Description
TP_SQ_fetch_stall | TP SQ 4 | Do not send more texture requestif asserted

23.2.10 SQ to SP: Texture stall
Name
SQ_SPx_fetch_stall

 | Direction Bits |

SQ SPx ra

23.2.11 SQ to SP: GPR and auto counter

Description |Do not send more texture request if asserted

Name _ | Direction_ Bits |Description 00
SQ_SPx_gpr_wr_addr | $Q.oSPx 7 Write aderess
SQ_SPxgprrd addr SQ—SPx 7 Read address
$Q_SPx_gpr_rd_en $Q->SPx 4 Read Enable
SQ_SP0_gpr_wr_en SQ >SPx 4 Write Enable for the GPRs of SPO
SQ_SP1_gpr_wr_en | SQ-SPK 4 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en _ SQSPx 4 _ Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ—SPx 4 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC

| | ee _| teads and writes)
S@Q_SPx_channel_mask | SQ—>SPx 4 _ The channel mask
8Q_SPx_gpr_input_sel SQ—SPx 2 When the phase mux selects the inputs this tells frorn

| which source to read from: Interpolated data, VTXO,
| _VTX1, autogen counter.

SQ_SPx_auto_count SQ—-SPx 21 Auto count generated by the SQ, commonforall shader
| pipes

Exhibit 2034 decR400_Sequencer.dos 73368 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257703

ATI Ex. 2108

IPR2023-00922

Page 309 of 316

ATI Ex. 2108
IPR2023-00922

Page 310 of 316

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
<< | 24 September, 2001 4 Seplember, 201544 GEN-CXXXXX-REVA 45 of 511 FS evtenwtes, fu cat

23.2.12 SQ to SPx: Instructions

Name Direction Bits|Description
5Q_SPx_instr_start |SQ >SPx i Instruction start
$Q_SP_instr $Q >SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC A Abs Argument Modifier=1:1
SRC A Swizzle 9:2
Vector Dst 15:10
Per channel Select 23:16

00: GPR
O01: PV
10: PS

44: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier 1:1
SRC B Swizzle 9:2
Scalar Dst 18:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has te be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier 1:1
SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 14:11
Scalar Clamp 12:12
Vector Write Mask 16:13

' Scalar Write Mask 20:17
gegenbe . LpmusedST
SQ_SP0_pred_override SQ—SP0 4 Q: Use per channel RGBA field (enables the per

channel logic, if not set only pay attention to the 11
| seting).

| | 1: Use GPR
SQ_SP1_pred_override SQ-SP1 4 0: Use per channel RGBA field (enables the per

| channel logic, if not set only pay attention to the 11
| seting).t .1: Use GPR

SQ_SP2_pred_override SQ—SP2 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11

| seting).
_1: Use GPR

SQ_SP3_pred_override SQ-SP3 4 0: Use per channel RGBA field (enables the per

channel logic, if not set only pay attention to the 11

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257704

ATI Ex. 2108

IPR2023-00922

Page 310 of 316

ATI Ex. 2108
IPR2023-00922

Page 311 of 316

ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 201544ate AVL

R400 SequencerSpecification PAGE

46 of 51

seting).
1: Use GPR

SQ_SPx_exp_id | SQ—-SPx 1 _GPRID
SQ_SPx_exporting SQ—SPx 1 0: Not Exporting

1: Exporting
SQ_SPx_stall | $Q>SPx 1 | Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SF data)

Name | Direction Bits |Description _ . _
SQ_SX0_write_mask $Q—SP0 8 Result of pixel kill in the shader pipe, which must be

output for ali pixel exports (depth and ail color
| buffers). 4x4 because 16 pixels are computed per

| _clock. This is for the data coming of SPO and SP2.
$Q_SX1_ write_mask SQ—SP1 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kil/ set

Name |Direction |Bits | Description -
SPO_SQ_const_addr SP0—SQ 36 | Constant address load / predicate vector load (4 bits only)/

_Kill vector load (4 bits only) to the sequencer
SPO_35Q_valic | §P0--SQ 4 | Data valid _
SP1_SQ_const_addr | SP1i-SQ 36“ Constant address load / predicate vectorload (4 bits only)/

i L _Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1—SQ 1 | Data valid
SP2_SQ_const_addr SP2—-SQ 36 =| Constant address load / predicate vector load ©bits only)/
a ee| | Kill vector load (4 bits only) to the sequencer

SP2_SQ_valid _SP2—80 im | Data valid
SP3_SQ_const_addr SP3—S80 36 | Constant address load / predicate vector load ©bits only)/

_Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid |SP3--5Q 4 | Data valid
SPO_SQ_data_type SP3SGQ | 2 | Data Type_ O: Constant Load

| 1: Predicate Set

||

| 2: Kill vector load

Becauseof the sharing of the bus none of the MOVA, PREDSETorKILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast

Name_ | Direction | Bits | Description
SQ_SPx_const | SQ—SPx [428 | Constant broadcast

23.2.16 SQ to CP: RBBM bus

Name Direction Bits | Description
SQ_RBB_is |SQ-CP 11.‘ Read Strobe
SQ_RBB_rd SQ—CP 32. ReadData.
|SQ_RBBM_nrtrir SQ—CP i _ Optional ee

S5Q_RBBM_rr / | Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus

Name Direction __| Bits [Descriptioni
robbm_we | CP»SQ 11 | Write Enable
robbm_a CP >SQ 15 _| Address -- Upper Extent is TBD (16:2)
robbm_wd | CP—+SQ [32 | Data

Exhibit 2034 decR400_Sequencer.dos 73368 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257705

ATI Ex. 2108

IPR2023-00922

Page 311 of 316

ATI Ex. 2108
IPR2023-00922

Page 312 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 47 of 54
: atm !

robbm_be | CP-»SQ 14 _ Byte Enables
rbbm_re CP=SQ 1 | Read Enable
rbb_rsO | CP-»SQ i 1 _ Read Return Strobe 0
robrst CP—=SGQ 1 _ Read Return Strobe 1
robbrdO | CP-»5Q |32 | Read Data 0
rob_rd1 ; CP—SQ 32 Read Data 0
RBBM_SQ_soft_reset | CP50 14 | Soft Reset

23.2.18 SQ to CP: State report

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

ud
ul

ex 0
PP
“1 OoPad a

u3 Serial
u4

ex 2
u5
u6 Serial

Ge~*~ @
u7
loc Position 1 buffer
u8 Export

ex 4
loc Parameter 3 buffers
u9 Export 0oO* On
u 10 Serial Export 2
u 11 Export 1 End

 PRAbbPAbDPPAPRIDD
Would be converted into the following CF instructions:

QO Alu O ‘lex O ‘tex 1 Alu 0 Alu O Tex O Alu 1] Alu D lex

 Aoi O Tex 1 Alu O Alu

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 ar 4 bits), (ECM)
Loop lIterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

Name Direction | Description
SQcPvsevent|SQCP ftexShaderEvent
SQ_CP_vs_eventid SQ—CP 45 | Vertex Shader Event ID | :
SQ_CPpsevent SQ-CP[1PixelShaderEventI
S5Q_CP_ps_eventid | SQ—CP 145 | Pixel Shader Event ID |

AMD1044_0257706

ATI Ex. 2108

IPR2023-00922

Page 312 of 316

ATI Ex. 2108
IPR2023-00922

Page 313 of 316

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

; 24 September, 2007 4 September, 207554 48 of 51_ Se

Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Pir (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

LCFP | ECM po RPTPBUL EXID)6 GPR[EB[CPTR[LOD
a) Oo 0 Ke) 0 10 LO 0 ie LO

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
01 — Position export allocation needed (ordered expart)
10 — Parameteror pixel export needed (ordered export)
11 - pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

| Status Bits lo

 VALID [TYPE PENDING [SERIAL ALLOC [SIZE [POS_ALLOCFIRST[LAST|
1 [ALU 0 lo lo 0 0 1 6

Then the thread is picked up for the execution of the first control flow instruction:Execute © Alu O Alu O Tex OG Tex 1 Alu G Alu G Tex G Alu 1 Alu O Tex

lt executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

[State Bits

|CFP [ECM ELI TCRP | PB | EXID | GPR [EB | CPTR | LOD
0 [2 [0 [oO jojo8 10) oO [oO

Status Bits

 [VALID[TYPEPENDING[SERIAL[ALLOC [SIZE |POS_ALLOC FIRST[LAST _
1 TEX 0 [0 [o 0 LO 1 0G

Then when the texture pipe frees up, the arbiter picks up the thread ta issue the texture reads. The thread comes
backin this state:

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

State Bits

CFP|[ecm[ul=={cre [PBC EXID)= iGPR [EBC CPTR[LOD
0 4 oO 0 [0 io 0 ie) (0 1o :

Status Bits

VALID TYPE—s_s PENDING + SERIAL| ALLOC| SIZE |POS_ALLOC FIRST |LAST1 ALU 1 i 1 .0 0 0 1 0

AMD1044_0257707

ATI Ex. 2108

IPR2023-00922

Page 313 of 316

ATI Ex. 2108
IPR2023-00922

Page 314 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 49 of 51 J f A.
Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsif in

this state:

State Bits

| CFP [ECM Eki [CRP PB | EXID _GPR [EB fcPTR [LOD |.
Q 6 0 0 Oo 0G LO [0 0 Lo [

| Status Bits

VALID [TYPE——Ss PENDING | SERIAL | ALLOC|SIZE [POSALLOC FIRST|LAST it
1 | TEX 0 i) [0 6 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits |

| CFP |ECM ELI |CRP PB |EXID | GPR EB | CPTR LOD
aq [7 [0 [0 0 6 0 0 0 0

Status Bits Jo
| VALID | TYPE PENDING [SERIAL | ALLOC [SIZE|POS ALLOC FIRST| LAST po

4 [ALU 4 [0 0 0 0 ‘1 [0 f

Now, evenif the texture has not returned we can still pick up the thread for ALU execution because the serialbit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP [ECM Li CRP PB | EXID | GPR [EB [CPTR LOD
0 18 0 0 0 'o 10 10 Oo 0

Status Bits

VALID TYPE PENDING [SERIAL ALLOC SIZE|POS _ALLOC FIRST LAST =
1 ALU 1 14 lo lo 0 1 io foe

As soon as the TP clears the pending bit the thread is picked up and returns:

‘StateBits”

|CFP [ECM Li | CRP | PB EXID (GPR[EB CPTR LOD
Q 19 19 10 1o oO lo ie 10 0

Status Bits

LASTjoe
0 Lo

|VALID| | TYPE _ PENDING|| SERIAL| ALLOC_ SIZE| POSALLOC FIRST
[toTEXOo (9 (9 0 0

Picked up by the TP and returns:=xecute O Alu

Exhibit 2034. dock409_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ==

AMD1044_0257708

ATI Ex. 2108

IPR2023-00922

Page 314 of 316

ATI Ex. 2108
IPR2023-00922

Page 315 of 316

Picked up by the ALU and returns (lets say the TP has not returned yet):Roloc Pos 1AU loo Pos? tion

State Bits

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RSin this state:

kxecute © Alu O lex

State Bits

CFP ECM [Ll | CRP PB _EXID [GPR EB | CPTR LOD o
3 i 4 :O 0 0 1a 0 0 :O 0 eS

‘StatusBits _ s

VALID TYPE PENDING|SERIAL | ALLOC
1 | TEX 1 10 10

|
10 4 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

 A_loc Paz

Status Bits |

1 ALU 1 LO 10
VALID TYPESs PENDING [SERIAL[| ALLOC_ 1 1 a 3

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

“xecuteend 0 Alu O ex 1 Alu O Alu

Exhibit 2034. doc400_Sequencerdoc 73368 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *==

Flt ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE= 24 September, 2001 4 September, 20154. 50 of Stne coe het BEL,
State Bits

|CEP | ECM EL | CRP PB | EXID _GPR EB | CPTR LOD
1 0 0 0 O [o 0 0 Lo 0 |

| Status Bits |

VALID[TYPEPENDINGSERIAL / ALLOC|SIZE|POS_ALLOCFIRST| LAST.
1 [ALU 1 0 Lo [0 Lo 1 0G

Status Bits JoPe‘

VALID TYPE PENDING | SERIAL | ALLOC|SIZE [POSALLOC FIRST LAST | oo
4 ALU 4 ro [01 | FO 1 oC pe

SIZE [POSALLOC FIRST | LAST }.|

State Bits |

CFP ECM [Ul [CRP [PB [EXID _GPR [EB CPTR LOD
4 0 Lo 'O [0 4 10 0 Oo 0

Seeeeeeeeeeeeeeon

SE. POS_ALLOC FIRST LAST}IL:

AMD1044_0257709

ATI Ex. 2108

IPR2023-00922

Page 315 of 316

ATI Ex. 2108
IPR2023-00922

Page 316 of 316

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 201544 GEN-CXXXXX-REVA 51 of 51wl OO I

LL CRP | PB | EXID | GPR | EB cPTR |LOD |
5 1 i) Qa [0 [4 [0 | 100 0 [a

Status Bits

VALID [TYPE|PENDING [SERIAL|ALLOC |SIZE [POS_ALLOC FIRST |LAST
1 _ TEX [1 Lo [0 0 1 1 LO

This executes on the TP and then returns:

State Bits |

CFP ECM EL | CRP i PB | EXID | GPR i EB CPTR | LOD
5 2 [0 [oO [0 [1 [0 | 100 0 [0

Status Bits

VALID LTYPE | PENDING [SERIAL | ALLOC|SIZE|POS_ALLOC [| FIRST LAST
1 PAL [4 ic [o 0 { 4 i

Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes

and does not return to the RS because the LASTbit is set. This is the end of this thread and before droppingit on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2094 seck400_Sequencer.dos 73368 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »=

1

AMD1044_0257710

ATI Ex. 2108

IPR2023-00922

Page 316 of 316

