
ATI Ex. 2107
IPR2023-00922

Page 1 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 4 of 48— by
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.87

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\perforce400\doc_llb\designiblocks'sq\R400Sequencer.dac
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS - as
es : Signature/Dateuu Name/Dept Oe

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this | =
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2024.doeR400_Sequencerdec 71269 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ***

ATI 2024

LGvy. ATI

TPR2015-00325

AMD1044_0257135

ATI Ex. 2107

IPR2023-00922

Page 1 of 260

ATI Ex. 2107
IPR2023-00922

Page 2 of 260

ORIGINATE DATE

24 September, 2001

 EDIT DATE

2 of 48 R400 Sequencer Specification PAGE a

4 September 20154TAO A
TableOfContents

1. OVERVIEW cecccccceecetrerceeenntecnnendRRRERECEeden ec cannenn een 6

1.1 Top Level Block Diagram oooccce ect ee cen eetneeeesnttaeeeeerssaeeeeebssaseeeeteseseeesnseereneneees 3
1.2 Data Flow graph (SP)ooccceee tr etre rb bette t tbr citteetittesteettteeceetttteeenintias 40
LB COMPO) GPAeeeeee rene n ere e cn EE Ee ED DD ttt Ee Db obttteeetiscieteesttsiseeesttssienenies 14
2. INTERPOLATED DATA BUS wetcccseinerenereinencnanenneneed eennnneneeaanennenecenaes Woe
3. INSTRUCTION STORE oooenciniinianoint booneeurrea4.
4. SEQUENCER INSTRUCTIONS.ooo cccccc eecasaeenanenensennnnaenecannnnanencaeananaaaeensannsaaeneceann 16
§. GONSTANT STORES2ccece ccc ceceree reac eenne ee rece eeeneey cece ee enens cance nnneenceteerenneeccenmenenereeceaees 16

S.1 M@MOry CFG ANIZATIONSocceect eee creer renter Eee DD Dott teebbcoitteettissiteestasieneeesa 16 6
3.2 Management of the re-mapping tables oooccccee cccteectseeeeeteeetssteteetetessaeenaes 16 2.

S201 Dirty BIScecett teeter ti tititititesttttittre titi tititttieterecen 1948 2

5.2.2 Free List Blok occccc cece ee ee teee sete tseeeseeteneeseteisessiteseusieessinesiesiteestin 4948
§.2.3 De-allocate BOCK oooccc cc ceces tent trtteetetstetittitisetstetitetineciittretercreentenes 204948

5.2.4 Operation of Incremental Modelocccette estetnttetttte teste 204848
$3. Constant Store INCexing.cececentres eee testes eetteeeeesevueeeevestseeeersntbieseerennesaas 20419
$4 Real Time Commands...eetenet tes tbitettbsrtittettttiiteeeenes Zi204—

$5 Constant Waterfallingocctect eee tener Eee cr btttteccnttitteetbrcieeeniea 212049
6& LOOPING AND BRANCHESocceeececeseende enenaedceciencanenceseneinen 222120
B.1 The COmTONINg Statecececcc eeee cc steteeetecciteeettasseeeettseseeeettsseeeceenaeees 222420
6.2 The Control Flow Program occ reece cette ete eeeeeetttteiseeetttteeesctteteeens Zeei2O
6.3 Data dependant predicate INStrUCTIONS...0. teetertere eee reper eerteeennee 2423
6.4 HW Detection OF PVPSotee etree tee et steers seeraeernsapenbrernsaerenaens 202423

6.5 Register fhe INDEXING...cececece ete e etc teteeeetttiteeeettaseeeesttiecceetttieeeecsttaeess 202423 |
6.6 Predicated instruction support for Texture CAUSEScette tttetettteees 2624
6.7 Debugging the SNaGersocceect tee cette ttee ett tsceeettttecteseteteeerstteeeees 202624 ©

6.7.1 Method 4: Debugging registersocccette ieee teeesttetetencneieaeieey 262524

6.7.2 Method 2: Exporting the values in the GPRs (12)oooteteeteee 2625
7. PIXEL KILL MASK occerrreneEES n nnn ede odenenedeneneaeteee225
8 MULTIPASS VERTEX SHADERS (HOS)... cccccccccss cee ceeeeeecesssesseneecsesessnenesconncaans 212625 |
9. REGISTER FILE ALLOCATION oo. ccceccc cee ce cnn nae nena da aeinan neti oinnin anes272625 4
10. FETCH ARBITRATION.occecccccceeneecenceenaneecnnaannnaneencnannnnane snnaannnnaessaaaanaanaenaaanne 282726
11. ALU ARBITRATION .ooocccccccccccccetececeecenceteeeeeeenceetegendcrcecencedenies caeeenennenecaeteee 282726
12 HANDLING STALLSosceetneeeneeeo enedned cece eenenenee 292827
13. CONTENT OF THE RESERVATION STATION FIFOSWo. .ccccceccccseccusenccsssncsnreesseneneen 202827
14. THE OUTPUT FILE. cecccetcccsntesetessceeneenee ccc einnn eco neenne nen cnnennnanescananenaeeescenenenneesananeas 292827
18. J FORMAToecee ie enne inei aiiiaioaboooinnHannonblicaiboilnooouaiboarne oomobale iui292827 |
15.1 Interpolation of constant attributescececece cece settee etseeeeeeessees 302828 S
16. STAGING REGISTERS wooo ccceccsstecsseeeeenecseneensen ee csnneennenesscnananntessnuenaaneeesnaueunaneesananeas 302928
17. THE PARAMETER CACHE... ccccccssscsstecsssesssecssnensensessneensnenessanansnneeesseuennnneesnanens 323130
18. VERTEX POSITION EXPORTING. ciccecccccessecccennseeeesseeneuseneessneneananerssanncaaeeessenenen 333430
19. EXPORTING ARBITRATION Qocccccseccsecessescssnerseneessneensnenescnenanneessneueunaneesaneneas 333430
20. EXPORT TYPES. ccecscccsceeeeeeceesnnnennn esas nnnsananesasnnaaanedsasnanaaneedsanamanaessasnaananadeasaneanas 333430
20.1 Vertex SHANGienre rn teen DHE ttn Eb tttferbttttiteeercttteeeeer 333430

Exhibit 2024, dochUoo_Sequencerdoc 71260 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257136

ATI Ex. 2107

IPR2023-00922

Page2 of 260

ATI Ex. 2107
IPR2023-00922

Page 3 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: 24 September, 2001 4 September 204a GEN-CXXXXX-REVA 3 of 48
20.2 PIKE SHSCINGccce eee c nt ete e tbr eeteebt bb citeeeettiesseeetttaeeceetttseeescsttaeess 333230
21 SPECIAL INTERPOLATION MODES. oo cccccsccscssnsccsssccnscanssssensnsnssssenusensssessannnnnnecssnssnnes 343234
21.1 PR@@! TIME COMMANIS ooo.cccccc cec cece ee ebb ebbeebbeeseeeteee bbe bbbbteeeetecceueeatestntreeeeeeess 343234

21.2 Sprites! XY screen coordinates/ FB information... teteteeeees 343234
21.3 Auto generated COUNTETSocceect etree bier ette tt ttteentitteeeeersttteeee 343334

2LB 1 Vertex shadersoiecece cceetesessesesessevsesseisvivsrevivetvetersvevrsettevsseseiees 343332

ZLB.2 Piel Shaders.cecesceeeecevesesevevesevsessvesvetrscvitetvetersveveeveservseseseiees 343332
22. STATE MANAGEMENT oo cccccccscsssceccccnscnsnscsesssssnsccsnasenasanssssnannnavstssanssansseusannnanntssenssnnas 353332

22.1 Parameter cache Synchronization occceceescentbteteesnetttteeeersttieeeeen 253332
23. KY ADDRESS IMPORTS. oo ccsssccsccssssenensnsnansnanssesnannnsnessnnnnnsnanasenuanananvessennannansnsnnnannne 353432

23.1 Verlex INCEXES IMPONTIScecececeteeetetitteeetttsceeetttitecteetttieeeestttieeees gos4as
24. REGISTERS oo. cccccccccassccnsccnscsssssnnsssescenssanansesansnsnnuscsnasnnssanssssnannnantsssanssnnssensannnsnnnsssnssnans 363433
DAL COMOeeecce cc cet tenet eer d eee eee bebe bbb bib bb HEED GHEEEEEEEOecdbbttetcitetttnaaasaaaaaeeess 363433
QAD CONTEecc ec cee cece eee en EE OLE EEE EEE EEG edd DEED EDDbttbeeeeee tsb tebeb ebb sctteeteseeeseeeeeaene® 363433
2%. DEBUG REGISTERS Lo ccccccacseeuuceceeneneuausseneusaneeceesadaeteuetsnaauaaaesecsuaedauceetedateteuseceusanaee 373834
251 COMTEXcceect ee eer eee ec rn EEE EEO bet tet bt batteetttisteeetttitectentteteeecnttieeees 3/3ee4

26. INTERFACEScccccsseessesesssssecsscssssessncsesecsneenencesssssmsnansesssantannesseronneeen 373534

261 External Interfaces.eeereretetrnsctivitnrnannens 373534

26.1.1 SC to SQ: lJ Control busorteres tren rsneerenes 373634

26.1.2 SQ to SP: Interpolator DUSceceete eet ese tsteteteeertetitetsteteteieees 383635
26.1.3 SQ to SP: Parameter Cache Read control bus... 383635

26.1.4 SQ to Sx: Parameter Cache Mux control BUS ooo cccccccceeeeeeseereeeseeees 393736

26.1.5 SQ to SP: Staging Register Dataooceecetnttettnttettteeete: 393236
26.1.6 PA to SQ: Vertex interface oooccccecsececsceecsessevevetesessveveesesetieeeserees 393236

26.1.7 SQ to CP: State reportcececess cette tsese estes ersten: 424439
26.1.8 SQ to SX: Control DUScece cecsescesescesvsevevssceveteetssvevettseevssssvaees 424439

26.1.9 SX to SQ: Output file Controlocccece cs tr tetetttettittettite rset 424439
26.1, 10 SQ to TP: Control busocccccceesesecsveevsessevivetestsstivettesesvisssviees 424439

26.1. 11 TP to SQ: TextureStaleeceesesecsvsecsersevevetveesstevettevessiesessiees 434240

26.1,.12 SQ to SP: Texture stallcececece cesesscsvsevevsscvevetvsvssvevetssseviesesviees 434240

26.1.13 SQ to SP: GPR, Parameter cache control and auto counteroo.434240
26.1. 14 SQ to SPx: INStUCTIONS oooccc ecceceeesesescesesveevescrevetereesveteeteteesvenseserees 444344

26.1,.15 SP to SQ: Constant address load ooocccceccecceceseeeeteevvevesvesvreveneseeeees 454444

26.1.16 SQ to SPx: constant broadcast o.oo cccceseeececcsevevervevessveveseestesveeeseeeees 454444

26.1,.17 SPO to SQ: Kill vector loadoooccc ceeesececscsecsersevsvetvetssvevesveveeviseesviees 454442

26,1.18 SOQ to CP: REBM Bus ooo cccccccccccceeeecsessevevveevssevevvsavssuvevvaavesevsevaavenvestvaaveevs 454442

26.1.19 CP to SQ: RBBM BUSceceeee e ee ett t ttt ttttttettten 404442
27. EXAMPLES OF PROGRAM EXECUTIONSoo... ..ccccsssecsccnsnenenscnenensnececenannanensuenananens 464442

27.1.1 Sequencer Control of a Vector ofVertices 464442
27.\.2 Sequencer Control of a Vector ofPixels A4TAB43
QT VS NOLOooococo ce cece ce cece cece eee be cee te ede eteteetestvessestessvssveveevessseveveetesveneisesees 484644

Exhibit 2024,doch409_Sequeneerdas 71260 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257137

ATI Ex. 2107

IPR2023-00922

Page 3 of 260

ATI Ex. 2107
IPR2023-00922

Page 4 of 260

Vat ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| © Fi 24 September, 2001 4 September, 20154 4 of 48Bethan os SAAS A

| 28. OPEN ISSUESoccericurenienner inn eneeene cer sneetenncecnenenmeneeseencns 484744

Exhibit 2024.dochUoo_Sequencerdos 71260 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257138

ATI Ex. 2107

IPR2023-00922

Page 4 of 260

ATI Ex. 2107
IPR2023-00922

Page 5 of 260

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date . October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2004
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Exhibit 2024.doch400_Sequencerdee

ORIGINATE DATE

24 September, 2001

Revision Changes:

Ra

EDIT DATE

4 Seplember, 20154Yarawe!

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer specafter the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes made in the 10/18/01 contro!
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPO interfaces. Changed delta
precision. Changed VGT--SP0 interface. Debug
Methods added.
interfaces greatly refined. Cleaned up the spec.

Addedthe different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-—SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_cail instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New Interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions,

71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 5 of 48

AMD1044_0257139

ATI Ex. 2107

IPR2023-00922

Page 5 of 260

ATI Ex. 2107
IPR2023-00922

Page 6 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 20154 6 of 48i Blin on Le A

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257140

ATI Ex. 2107

IPR2023-00922

Page 6 of 260

ATI Ex. 2107
IPR2023-00922

Page 7 of 260

xxx@BHC19AODUOSOHONJUBUAdODsoUdIaJOY“JENUSPHUOD[Ly@x84soz1
sepssouenbas“pored0hPLOEWINS

MITALIA0Asouonbeg[e1eueyi]easy

 -|-|—_aGBS")LUBISUEDooneeae|oeae"|Se|ayeeee
jomAL

AAAPETKL~——aVLVOBLMXL|go/od|GO/Od|gOsOdfe)PO/OdmnTEee__fOnounSd7Pr|SuEINiOe
|avaOd!|Le-ley—valenueBLWLSHOLESWevedsdsds

; povmemrennmamemennenemnnennnneone|SSNSALE
»po_wTOTx“Ibn|oa>|AMOLSLSNIMSLNI—)SELLNI/MSLNI|||

L_ LvolNI~qiLOM!|dvessouorii_rpee4O~Cn=|:—cdrounoo=|SINWLSNOO
MALLYA

45||:LSeSNOERNETEEERTSriosWAREOOKXKI-NADPGLO?Jequigjass»Loog‘equiaydespzdvd‘ANNAdaLNSIINDOdS170LidsSLYSLVYNISIYO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257141

ATI Ex. 2107

IPR2023-00922

Page7 of 260

ATI Ex. 2107
IPR2023-00922

Page 8 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 Seplember, 20154 8 of 48Bilis PO A

|.1 Top Level Block Diagram

veriex/pixel vevtor arbitrator
Possible delayfor available GPR’s[yg

ey
IPextare clause 0

: eservationstation
ALU clause C

}<-——feservation station

 FIFO Pened Pexture clause 1
ee eservationstation

efLU clause t fexture arbitrator

reservationstation
pyexture clause 2

eservation station

FIFO. Be[FRO exture clause 3eservation station

exture arbitrator
ALU clause 2
reservation station

: FIFO
JALU clause 3 Local
keservation station. aS! oO >

[Fre (Pextute clause 4ee reservation station.i FIFO
ALU clause 4
keservationstation ARS: j —s\ [Pextuce clause 5

eservation station
La FIFOU clause 5 J

res ervation station ARS|LOT Texture clause 6
; HFO eservation station

LeggALUclause 6 « “
foscrvation station rao ——_—| 4 (Pexture clause 7

FIFO eservation stationi g Ola
Legg—ALU clause 7kescrvation station

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and onefor pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257142

ATI Ex. 2107

IPR2023-00922

Page8 of 260

ATI Ex. 2107
IPR2023-00922

Page 9 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 20154 GEN-CXXXXX-REVA 9 of 48 A: Pd.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A smail command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packetis put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machinefirst decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

if the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packetfinally reaches the last ALU machine(7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and onefor the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the registerfiles.

Exhibit 2024,doch409_Sequeneerdas 71260 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257143

ATI Ex. 2107

IPR2023-00922

Page 9 of 260

ATI Ex. 2107
IPR2023-00922
Page 10 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20154 10 of 48L BA or Be A

1.2 Data Flow graph (SP)

|

 instruction

RegisterFile ‘OEee

2b | (sealat mmputfoutputr _¥1
pipeline stage |

 tel fre requ ~~

instruction Register File

7 scalarinput/output

pipeline stage
 rT ana

MAG [text equed —>~

Register File

 ScalarUnit

instruction I
BpepSinxey”quest
|

texture

\

ByWo)BjepSARUL| pipeline stage |

Register File oi
|I i

fexture re} pst | »
instruction

ee o

=I)

¢textureaddress1&

i

fo at - a\to Primitive Assembly Unit or RenderBackendI

Figure 3: The shader Pipe

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257144

ATI Ex. 2107

IPR2023-00922

Page 10 of 260

ATI Ex. 2107
IPR2023-00922
Page 11 of 260

 | ORIGINATE DATE EDIT DATE
DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 11 of 48& A Ee ‘

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady _
WrAddr IS SEQ cs

| | WrAddr
CMD | |

cst
|

Phase: H |
cmp SSTestzestipx & 8 © Wrveo |

RdAddr | _ | WrSeal wader
_——___— 4 Bo

FETCH SP OF

WrAddr:

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated dala bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257145

ATI Ex. 2107

IPR2023-00922

Page 11 of 260

ATI Ex. 2107
IPR2023-00922
Page 12 of 260

To RB

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154ra EUS A

R400 Sequencer Specification PAGE

12 of 48

ae

lds CROSSBAR (4x64 bits}

TT a= a !
to Segaa

| STEELEa$n pt - aee iee
—— To ee

— SSE. Us buffer (ging-pong buffer) 1
Aa Al Ag Be (28 bits * 2 (15) + bits * 6 (delta Ue)+4 & i

bits*6}* 16 (quads) * 2 (doubie-butfered) Ag At AZ BO i
4096bits |

2 Bt ce ct €2 32x 128
Bt co ci C2 |'

3 C3 o4 cs bo Ys buffer (ging-pong buffer)
24 bits * 16 quads * 2 3 C4 C5 Do i

768 bits Ised —____}__ _ |
4 D1 b2 EG 1

| ot bz EG i=

i i | | 1 TINTERPOLATORS . i
' FIX-FLOAT + EXPANSION

pe a “|

edi
a 1 |

512 “|/-a | |
|
fi. oy onHt i |f i j j i

3u aur | 3UR 4LR XA

Exhibit 2024. doch490_Sequencereiac

Figure 3: Interpolation buffers

71269 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257146

ATI Ex. 2107

IPR2023-00922

Page 12 of 260

ATI Ex. 2107
IPR2023-00922
Page 13 of 260

xix@OBEY19A0DUOOHION1YUBUAdODsoUdIOJOY"PENUSPYUOT[LY@wacozl,—semseouonbes“gornsePPLOTTITSWIt.iselpSuuUOREOd.AIUy79sans]

eeliecl[21OZL/6hL.StLél)bid
oceaniaocrencaacereeseanancnsaceaaaaaeaeaaatitaoAGASSIEEFERRIEREEFNSYPacaaaaaoSOSCESoCo87JOELWAREXXXXXO-NAOVGLO?JequielaesLO0g‘Jaquiaydes77dvdWON(AdaLNSINNOOGSLVdLidaSLYSLVNISIO

ATI Ex. 2107

IPR2023-00922

Page 13 of 260

AMD1044_0257147

 TVIELVNdadoAALLOdLOUdd

ATI Ex. 2107
IPR2023-00922
Page 14 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 14 0f 48 See

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencercontrols the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both lJ buffers?}

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 7 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context whereits shaderis in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257148

ATI Ex. 2107

IPR2023-00922

Page 14 of 260

ATI Ex. 2107
IPR2023-00922
Page 15 of 260

xix@OBEY19A0DUOOHION1YUBUAdODsoUdIOJOY"PENUSPYUOT[LY@wacozl,—semseouonbes“gornsePPLOTTITSSAQUIIULUOLIMLIPSULIY)JOMBIASof)DULLtLDUNS

S60PoTS60r

28P0DSd
99p0dSd|8p0DSd{*3epodSACx¥oPOOSe—4

‘apooeu;BugnoexeHIE}S0}SJOYA\SMAOUYigquanbesossysoig-qngayeudoidde

0]Sassalppe-qngayeudoiddeLJB}SEposSOMAOwe8sponsa0]Sessaippe

aSvaYSQVHSTSXid

‘apooau)BuynoaxeURIS0]BJ8UMSMOU

gd8podSdJgquenbes08S901g
3eP0DSA

LBYSSpodSAMHOV8Pp0DSAP09SA

amLeASWUSCVHSXSLYSA

aed

SpoPeleus.apogpeieus- 3Sv@YSCVHSXALYSAoRpauls|,BuryeiBurs-|aoBuryeng-03qoNsevet,ALOWS/\]UONONISU]JOSMAIAS,dDCOPY
LOOZ/PL/L}‘peyepdn

earnSEESERRSEEREYTEnaaaae810SLWAREXXXXXO-NAOVGLO?JequielaesLO0g‘Jaquiaydes77dvdWON(AdaLNSINNOOGSLVdLidaSLYSLVNISIO

TVIELVNdadoAALLOdLOUdd

AMD1044_0257149

ATI Ex. 2107

IPR2023-00922

Page 15 of 260

ATI Ex. 2107
IPR2023-00922
Page 16 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 20154 16 of 48i Blin on Le A

4 SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5 Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 bits. The memory thus holds
128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 32 lines
(each line addresses 1 texture state lines in the real memory). The CP write granularity is 1 texture state lines (or 192
bits). The driver sends 512 bits but the CP ignores the top 320 bits. it thus takes 6 clocks to write the texture state.
Real time requires 32 lines in the physical memary (this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must

hold 8 copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants “oS ee
The controlflowconstantsareregistermapped,thusthe CPwritesto the according registertoset the constant, the
$Q@ decodes the address and writes to the block pointed by its current base pointer (CF VWWR BASE). On the read
side, one level of indirection is used. A register (SQ CONTEXT MISC.CF RD BASE) keeps the current base pointer
to the control flow block, This register is copied whenever there is a siale change. Shouls the CP write to CF aller the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write fo CF the state is going to use the previous CF constants.

Ee _ 4Formatted: Bullets and Numbering

$25.3Managementof the re-mapping tables “

3-2-15.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257150

ATI Ex. 2107

IPR2023-00922

Page 16 of 260

ATI Ex. 2107
IPR2023-00922
Page 17 of 260

DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 17 of 48

EDIT DATE

4 September, 20154

ORIGINATE DATE

24 September, 2001 ou J. 2

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

3-2:29.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE andif both are idle willerase the content of state to replace it ‘withthe new state (this is depicted in Figure 9: De-allocation mechanism™}
aliccation-mecnaenism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addresses if needed).

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

 ‘Formatte:.Bullets and Numbering

AMD1044_0257151

ATI Ex. 2107

IPR2023-00922

Page 17 of 260

ATI Ex. 2107
IPR2023-00922
Page 18 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 18 of 48Bifhen or TAO A

Renaming TableContext 0 => N

each

 round but |
CurrenV/Last

Context
(8 rows of 16-&
bit physical =>

_Logical Address

128 entries copy
Logical Acdress in eight clocks) | & Context@

é
ea |

Context N L. Physical
‘| Address

Global Register ylData Bus

Staging Data

Constants Buffer Physical
location << |
available Sepal
WRTR ¢ ——® Staging Vurite Addr

I
physical oe
address Counts| nextto physical
schedule accress

for ready
de-alloc for allocate| |

! Seq
Logical address | | coon

On the ———_»“ awa \ ' B at
GibRegBus _ _ | eques|

when Isb are zero | | iir : cae ,
first word of write Renaming Tante! Context | Y A “

for 1 Context yoy
Current/Last \ caical 1 | | Context &Physical | oe lg | | Logical

Address | Address ha Address —]| ff set I
per | don't | |Logical " : !

Address | allocate allocate
| if set} | or de-! | allocate)| Renamingtable

-Contexts
Cogy Last held above to

Current Context on receipt
of Set Constant for 4 |

newcontext (Hide loading
behind Set State load - 16 clocks)
alt other Set States just write one

entry te current state

Figure 8: Constant management

bit 2024. doch499_Sequencerdoe 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257152

ATI Ex. 2107

IPR2023-00922

Page 18 of 260

ATI Ex. 2107
IPR2023-00922
Page 19 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 19 of 48

i) TATESa a

DEALOC

Free List CNT VALUE COUNTERS | ||
PREVIOUS

NOT fa STATE

| NEW
| STATE| I

VALUE! ——__ } |
| << |——|I= '

VALID | hk «| | |
——— rR || r

: $Q IDLE
——{ AND | PA_IDLE

ltCP_NEW_STATE_CNTL—
Ree @—____SET CTX BITS

Figure 9: De-allecation mechanismfor R400L_E

5.2.35 3.3 Dirty bits
Two sets ofdirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the ariver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

$2-45 3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

a eo <°| Formatted: Bullets and Numbering

ade a Formatted: Bullets and Numbering

AMD1044_0257153

ATI Ex. 2107

IPR2023-00922

Page 19 of 260

ATI Ex. 2107
IPR2023-00922
Page 20 of 260

 | | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20154 20 of 48i Blin on Be A

32-55. 3.5 De-allocate Block

This block will maintain a free physical address block count for each context. Vhile in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

3-2-65.3.6 Operation of Incremental mode!
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the newdata will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied fo the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_pitr pointer if read_ptr != to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happensin parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are smail it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as weil as a ring could in this case.

5.35.4Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

a ce 4 Formatted: Bullets and Numbering

en 5 = 4 Formatted: Bullets and Numbering :

aoe Formatted: Bullets and Numbering :

AMD1044_0257154

ATI Ex. 2107

IPR2023-00922

Page 20 of 260

ATI Ex. 2107
IPR2023-00922
Page 21 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 21 of 48 : Z 5 :

betweenthe time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RILX.R2X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
NOP #f latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

5.45.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the samme way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

§-55.6Constant Waterfalling
In order to have a reasonable perforrnancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a smail synchronization issue related
with this as we need for the SQ ta make sure that the constants where actually written to memory (not only sentto the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
|I|

Figure 10: The instruction stere

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

“ 24 Formatted: Bullets and Numbering

“ ss a4 Formatted: Bullets and Numbering

AMD1044_0257155

ATI Ex. 2107

IPR2023-00922

Page 21 of 260

ATI Ex. 2107
IPR2023-00922
Page 22 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2004 4 September, 20154 22 of 48L B Alans or Be A

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VVe plan on
supporting constant loops and branches using a contro] program.

6.1 The controlling state.
The R400 controling state consisis of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:O][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] # eight 6 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] fi eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn't contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

The contro! program has eleves-nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Caonditionnal_Call
Return
Loop_start
Loop_end
End-of-clauee
Genditional_End_ofclause
NOP

Execute, causes the specified numberof instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257156

ATI Ex. 2107

IPR2023-00922

Page 22 of 260

ATI Ex. 2107
IPR2023-00922
Page 23 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXK-REVA 23 of 48 SAO :

Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.
Conditional_execute_Predicates executes a blockofinstructionsif all bits in the predicate vectors meet the condition.

Endofclause marke the: end ofa clause.

Conditional,jumps|jumps to ann address if the condition is met,
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsincethere are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than entl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flowinstruction perline in the instruction
store.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

_ Execute _ . |

47 | 46... 42 4144 BA | 40.24 23... 12 1... 0 |
Addressing|00001 LasiRESERVE RESERVED Instruction Exec Address |a count I |
Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of - =
instructions of the clause. Se

" NOP Po

47 46... 42 41d8 40... the

Addressing|00010 | LasiRESERVE RESERVED || D | i This is a regular NOP. If Last is sel, this is the last instruction of the clause. | ee

Conditional_Execute | Ls
i; 47 | 46... 42 | 41 40... 33 | 32 i 31...24 | 23... 12 | 11....0 |

Addressing | 00011 RESERVED Boolean Condition RESERVED|Instruction count | Exec AddressLast address | | i
if the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions), If Last is sel, then ifihe condilion is met, this is ine last group of instructions ia be
executed in ihe clause, ine condilion is nol met, we ge onto the next control flowinstruction,

; . Conditional_Execute_Predicates —

47 46...42|41 40... 35 34... 33 32 31... 24 23... 12 "| :

2|Predicate|Condition |RESERVED | instruction|ExecAddress—
vector count“Addressing| 00100|

| | ERY
| | ED |

Check the AND/OR ofail current predicate bits. lf AND/OR matches the condition execute the specified numberof
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. {f Last is

met, we go on te the next control flow instruction.

Exhibit 2024,doch409_Sequeneerdas 71260 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257157

ATI Ex. 2107

IPR2023-00922

Page 23 of 260

ATI Ex. 2107
IPR2023-00922
Page 24 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20154 24 of 48_ fs Sd

| _ Loop_Start
47 | 46... 42 | 41...17 [16... 12 i 44... 0

| 00101 | RESERVED loop ID Jump addressAddressing
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
Jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 | 46... 42 | 41... 17 | 16... 12 17...0

| oo1io | RESERVED loop ID | start address
Addressing |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call

47 | d6... 42 | 4 34... 33 | 32 | 34... 12 11.0[00111 | RESERGED Predicate Condition RESERVED | Jump address
Addressing | | vector | |

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

_ ; Return47 46... 42 41... 0

| o7000 | RESERVEDAddressing | |

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to ihe next instruction.

Conditionnal Jump

47 | 46 42 | 44 40... 33 | 32 | 31 30... 12 | 11...01 Ot001 | RESERVED|Boolean [Condition FW only RESERVED | Jump address
Addressing | address | |

If condition met, jumps to the address. FORVVARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support thoseis by supporting
three vector/scalar predicate operations of the form:

| Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257158

ATI Ex. 2107

IPR2023-00922

Page 24 of 260

ATI Ex. 2107
IPR2023-00922
Page 25 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 25 of 48

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_#-similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTEexcept that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# — SETEO
PRED_SETE1_#~— SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programs but only 4 willbe
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which precicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address anc the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 4 ‘relative register
4 0 ‘previous vector
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our newaddressthat we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257159

ATI Ex. 2107

IPR2023-00922

Page 25 of 260

ATI Ex. 2107
IPR2023-00922
Page 26 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Sepiember, 20154 26 of 48Ales es OVA
6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elemenis in the vector have a
value of one (thus we have to da the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
~ count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be:

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(evenif they occur before the address stated by the ADDR debug register).

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257160

ATI Ex. 2107

IPR2023-00922

Page 26 of 260

ATI Ex. 2107
IPR2023-00922
Page 27 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
go | | 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 27 0f 48RENEE s Hl Babess EEDA Coen fi L

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257161

ATI Ex. 2107

IPR2023-00922

Page 27 of 260

ATI Ex. 2107
IPR2023-00922
Page 28 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Sepiember, 20154 28 of 483 ABes. ues

Above is an example of how the algorithm works. Vertices come in from top to bottom: pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking ai the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by locking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinsi0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

 ichibit 2024. deck409_-Sequencerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©

AMD1044_0257162

ATI Ex. 2107

IPR2023-00922

Page 28 of 260

ATI Ex. 2107
IPR2023-00922
Page 29 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20154 GEN-CoO000¢-REVA, | 29 af 48L Bow or AAA oe ‘ LB

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PAis ofthis format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(Q) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AO? = FO— TO)

AOL? = JU) —- J(0)

AO27 = (2) - IO) PO PA
AO2S = J(2)- FJ(0)

AOBI = £3) — 1(0)

A037 = J(3)- J(0) p2 P3

PO=C +1(0)*(4-C)+J(0)*(B-C)

Pl= PO+A0L *(4-C)+ AOL*(B-C)

P2 = PO+A02 *(A—C)+ A02T *(B-C)

P3 = P0+A03I *(A-C)+A0B *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257163

ATI Ex. 2107

IPR2023-00922

Page 29 of 260

ATI Ex. 2107
IPR2023-00922
Page 30 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 20154 30 of 48Rin ODA

| Adds: =
FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign

Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 8°6 + 4*B + 4*2 = 1238

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that if A= Band B=C and C= A,then P0,1,2,3= A. Since one or more ofthe IJ terms
may be zero, so we extendthis to:

if (A=B and B=C and C=A)
PO0,1,.2,3 = A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-I-J = 0)) and
((i-J-1 = 0) or @=0))) {

if[= 0) {
PO =A;

} elseif(J '= 0) {
PO =B;

belse {
PO=C;

/irest of the quad interpolated normally
}
eise
f

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 10 11 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 6D G1 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGTwill send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sert
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

| Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257164

ATI Ex. 2107

IPR2023-00922

Page 30 of 260

ATI Ex. 2107
IPR2023-00922
Page 31 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 20154 GEN-CXXXXX-REVA 31 of 48Bi Lk
The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in

Figure12Figure-lerigure-t2. The area of the fixed-to-float converters and the VSISRsfor this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure11Figure-+-Figure-44,

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11634 ,¢ 60.57813 17perbit

Area of 96x8-deep Latch Memory 46524 12
Area of 24-bit Fix-to-float Converter 4712 ,¢ per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

 758520.

Figure 11:Area Hstimate for VG'T to Shader Interface

Exhibit 2024,doch409_Sequeneerdas 71260 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257165

ATI Ex. 2107

IPR2023-00922

Page 31 of 260

ATI Ex. 2107
IPR2023-00922
Page 32 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 200% 4 Seplember, 20154 32 of 48t A. LEV A
 VGT BLOCK

CIN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

Figure 12:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER | ADDRESS |
4 bits | 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. Allit needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_/7(a snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting &
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17) is going to have the address 00000001000, the 48" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2°VS_EXPORT_COUNT_/7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257166

ATI Ex. 2107

IPR2023-00922

Page 32 of 260

ATI Ex. 2107
IPR2023-00922
Page 33 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 33 0f 48i EP A en +. i
18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel outputfifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the export is going to occur at ALU clause7 if unset position export occurs at clause 3.

19, Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?}

20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading
0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(point_h,point_w,edgeflag,misc)

20.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1
2 ~ Color for buffer 2
3 ~ Color for buffer 3
4:7 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.
44:47 - Empty
48:59 - 12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component)

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257167

ATI Ex. 2107

IPR2023-00922

Page 33 of 260

ATI Ex. 2107
IPR2023-00922
Page 34 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20154 34 of 48i & : LEV A

| 21. Special Interpolation modes

21.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the realtime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_stis a bit taken from the interface between the SC and the SQ. This is the MSBof the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_|0 disable, snd_xy enable, no gen_st ~ 10 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — lO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage. garbage,s, t
Param_Gen_|0 enable, snd_xy enable, no gen_si — |0 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s,t

21.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1* pass data to memory and then use the countto retrieve the data on the 28 pass.
The count is always generated in the same way but it is passed to the shader in a slighily different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counteris reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler musi allocate 3 GPRsin all multipass vertex shader modes).

21.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_l0 is enabled, the data will be putin the x field of
the 2™ register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1* register (RO.x).

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257168

ATI Ex. 2107

IPR2023-00922

Page 34 of 260

ATI Ex. 2107
IPR2023-00922
Page 35 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 Seplember, 20154 GEN-CXXXXX-REVA | 35 of 48{ a of : {
 INTERPOLATORSAUTO

COUNT -

ee
AUTO. COUNT | oo0000 |

The Auto Count Value is
MUX broadcast to all GPRs. [tis

/ loaded into a register wich hasits LSBs hardwired to the
GPR number(C thru 63). Then

| if GEN_INDEXis high, themux selects the auto-courit
value and itis loaded inte the

GPRsto be either used to
retrieve data using the TP or

GPRO sent to the SX for the RB touseit to write the cata te
memory

Figure 13: GPR input mux Contral

22. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Pararneter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters areinitialized to O and every
time a vertex shader exporis its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than O before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrementsit. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newslate counter is initialized to 0.

23. AY _Acdress imporis
The SC will be able to send the XY addresses to the GPRs. Ii does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted vaiues to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks te the GPRs.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257169

ATI Ex. 2107

IPR2023-00922

Page 35 of 260

ATI Ex. 2107
IPR2023-00922
Page 36 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 20154 36 of 48Rin ODA

24, Registers

24.1 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC
INST_BASE_VTX
INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

24.2 Context

VS_FETCH_(0...73
VS_ALU_{0...7}
PS_FETCH_{0...73
PSALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PSCFSIZE
PS_SIZE
VS_SIZE
PSNUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO VERT
PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MASK
VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

PARAM_GEN_I0

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
interleaved, separate
start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2)
This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
256*4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EORT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occurat clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control prograrn is located
sight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shaderin the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader(# ofinstructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cnti+instructions)
size of the vertex shader (cntltinstructions)
number of GPRsto allocate for pixel shader programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)
0: vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode
tooo: Multipass mode
lf normal, bbb2z where bbb is how many colors (0-4) and z is export z or not
lf multipass 1-12 exports for color.
which of the last 6 ALU clauses is exporting (multipass only)
0: position (1 vector), 1: position @ vectors), 3:multipass

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)
Do we overwrite or not the parameter O with XY data and generated T and S values

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257170

ATI Ex. 2107

IPR2023-00922

Page 36 of 260

ATI Ex. 2107
IPR2023-00922
Page 37 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 2001 4 September, 20154 GEN-CXXKXXK-REVA 37 of 48Bu Py Ee ry

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0... 7} clause mode for debug method 2 (0: norrnal, 1: addr, 2: kill)

25.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26, Interfaces

26.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

26.1.1 SC to SQ: i/ Control bus

This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the sameprimitive, all quads of a vector are from the same
renderstate.

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257171

ATI Ex. 2107

IPR2023-00922

Page 37 of 260

ATI Ex. 2107
IPR2023-00922
Page 38 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20154 38 of 48- KBs Le:

[Name _ Direction, _[Bits |Description
$¢C_SQ_q_wr_mask sc-SQ 4 | Quad Write maskleft to right
SC_SQ_lod_correct SC—SQ 24 | LOD correction per quad (6bits per quad)
SC_SQ_param_ptrO | S$C-—SQ 111. P Store pointer for vertex 0

SC_SQ_param_ptrt _|SC-SQ_11 P Storepointer forvertex1
SC_SQ_param_ptr2 |SC--SQ 111 | P Store pointer for vertex 2
SC_SQ_end_of_vect sCc8Q 4 _ End of the vector
8C_S0store _dealioc | SC-+-8Q 4 _ Deallocation token for the P Store

SC_SQstateSOSSO 3___| State/constantpointer
SC_SQ_valid_pixel | $C-SQ (16 | Valid bits for all pixels
SC_SQ_nuil_prim sC—5Q 4 | Null Primitive (for PC deallocation purposes)
8C_S0_end_of_prim | SC-—SQ 4 _ End Oftheprimitive
SC_SQ_send_xy ' $C—8Q 14 | Sending XY information [XY information is going to be

| sent on the next clock]
SC_SQ_prim_type SCc—SQ 3 |Real time command need to load tex cords from

| alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.

| 000: Normal
| O11: Real Time
| 100: Line AA
| 101: Point AA
| 110: Sprite

SC_SQ_new_vector SC—SQ 1 | This primitive comes from a new vector of vertices.
| | Make sure that the corresponding vertex shader has
| | _ finished before starting the group ofpixels.

8C_SQ_RTRn 8Q—S8C 1 | Stalls the PA in n clocks
SC_SQ_RTS | $C--SQ 14 _ SC ready to send data

26.1.2 S@ te SP: Interpolator bus
Name | Direction | Bits | Description
SQ_SPx_interp_prim_type “SQ—SPx 3 | Type of the primitive| OGO : Normal

| O11 : Real Time
| 100: Line AA
| 101: Point AA

110: Sprite
8Q_SPx_interp_ijline |$Q->SPx 12 | Line in the IJ/XY buffer to use to interpolate
8Q_SPx_interp_buff_swap SQ—SPx 4 _ Swap the [JOY buffers at the end of the interpolation
SQ_SPx_interp_gen_l0 SQ—SPx 1 | Generate 10 or not. This tells the interpolators not to

| | use the parameter cache but rather overwrite the data
| _ with interpolated 1 and 0. Overwrite if gen_I0 is high.

26.1.3 SQ to SX: interpolator bus
Name | Direction | Bits | Description

SQ_SPx_interp_flat_vix| SQ>SPx 2_____ Provoking vertexfor flat shading
SOQ_SPx_interp_fiat_gouraud | SQ—>SPx i4 | Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ >SPx 4 | Wich channel needsto be cylindrical wrapped

| SXx md | §Q--»SXx (41 | Parameter Cache Pointer
| SXx_muxt 80-- iw!
| 4 Parameter Cache Pointer

| slects between RT and Normal data

Exhibit 2024 doch4o9d_Sequercer.doe 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

EE
oe {Form ted: Bullets ‘andNumbering ”

AMD1044_0257172

ATI Ex. 2107

IPR2023-00922

Page 38 of 260

ATI Ex. 2107
IPR2023-00922
Page 39 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 39 of 48Ba Bs Wt Een bers

26-1620. 1.4 SQ te SP: Slaging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.

Name | Direction | Bits | Description
5Q_SPx_vat_vsisr_data SQ—SPx $6 __ Pointers of indexes or HOS surface information
SQ_SPx_vgi_vsisr_double | 80->SPx 114 _O: Normal 96bits pervert 1: double 192 bits per vert
$Q_SP0_data_valid SQ—SP0 1 | Data is valid
SQ_SPi_data_valid | SQ—SF14 14 | Data is valid
SQ_SP2_data_valid SQ—SP2 i _ Data is valid
SQ_SP3_data_valid | SQ—SP3 14 _ Datais valid

2e-+-#+260.1.5 PA to SQ: Vertex interface

26-4-7-126,1.5.1 Interface Signal Table

The area difference between the two methodsis not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs(via the Shader Sequencer) in full, 32-bit floating-point format. Tne VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PA_SQvgt vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQvatvsisr_double 1 C: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vat_end_of_vector 4 Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector"is set on the second vector)
PA_SQ_vgt_vsisr_valid 1 | Vsisr data is valid
PA_SQ_vat_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

| “PA_SQ_vgt_end_of_vector’is high.
PA_SQ_vagt_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rir 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26-4-7226.1.5,2 Interface Diagrams

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

ce] Formatted: Bullets and Numbering

alee { Formatted: Bullets and Numbering

6 [- =| Formatted: Bullets and Numbering

AMD1044_0257173

ATI Ex. 2107

IPR2023-00922

Page 39 of 260

ATI Ex. 2107
IPR2023-00922
Page 40 of 260

xxx@OHBqIANUOBOON1YUHBUAdODsoudIIjSY"JEHUSPIUOD[LY@xx8°V'Gc0z12—sopresuentssogrusepHOE

HEONENDASWaqvHS

93ué

[sesqeqe45aGsvad

waddnd

aims

vxOLzo700ajopue45aTic¥,DayZBOTOFAHiaTQNepastaSaGsWdDauZWiiaodUSTSASlopneeaoetee|aeé©VivUSLSATTPOURRATeeTo8h10OFPOLOJequiaydagpL0og‘lequieydespz30vduojeoyjoadsisouenbesOOFYaLvdLids3LVdSLYNISINO
LOA

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257174

ATI Ex. 2107

IPR2023-00922

Page 40 of 260

ATI Ex. 2107
IPR2023-00922
Page 41 of 260

xix@OBEY19A0DUOOHION1YUBUAdODsoUdIOJOY"PENUSPYUOT[LY@wacozl,—semseouonbes“gornsePPLOTTITS SoG]IONHSVadid]Weibel(esibo7PSleisqTLSING
NOISSINSNVWALsdOLsWaadNnds

NOISSINSNVWALSLYVLS-ddqaATHOdd
.NOCISSINSNVdLsdOLsdHATHoRd

adOgKLANOAINDO31INOWEVdC4IaywWowd?GUNSZulyosIubuosOoubeosulySs

 [UUnnAnAnanonane

ERATRSETCROOi‘8710LeWAREXXXXXO-NAOVGLO?JequielaesLO0g‘Jaquiaydes77|eedvdWON(AdaLNSINNOOGdlvdLidaSLYSLVNISIO/

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257175

ATI Ex. 2107

IPR2023-00922

Page 41 of 260

ATI Ex. 2107
IPR2023-00922
Page 42 of 260

 | ORIGINATE DATE
| 24 September, 2001

EDIT DATE

4 September, 20184_ EU A

PAGE

42 of 48
R400 Sequencer Specification

26-1826.1.6SQ to CP: State report

aoe -4 Formatted: Bullets and Numbering

Name “Direction | Bits | Description _
SQ_CPvitx_state[SEQCP[3 _| Oldest vertex state stilinthepipe
$Q_CP_pix_state _ SEQ CP L3 | Oldestpixel state still in the pipe

26-1-926.1.7 SQ to SX: Control bus

Name [DirectionBits |Description———sSSCSsdSC
8Q_SXx_exp_Pixel SQ—SXx 1 1: Pixel
|eee ee Oeere

SQ_SXx_exp_start | SQ>SXx 14 | Raised to indicate that the SQ is starting an exporting
L clause _ /

SQ_SXx_exp_ Clause SQ—>SxXx 3 | Clause number, which is needed for vertex clauses
8Q_SxXx_expState | 8QSXx 3 | State ID-whichis-neadedforverex-clauses,
§O Sxx exp VOest 3 8 _ Export Destination
8Q_ Sc exp exponiD s 1 | ALU ID

Thesefields are sent synchronously with SP export data, described in SPO—SX0Ointerfaceoe

26-1-1026.1.8SX to SQ : Outputfile control

Name Direction Bits | Description
SXx_SQ_Export_count_rdy SXx-5Q 1 | Raised by SX0 to indicate that the following twofields

. [_teflect the result ofthe mostrecentexport
5X%x_SQ_ExportPosition SXx-5Q i | Specifies whether there is room for anotherposition.
SxXx_SQ_Export_Buffer SXx8Q 7 | Specifies the space available in the output buffers.

| 0: buffers are full
| 1: 2K-bits available (32-bits for each of the 64
| pixels in a clause)

| 64: 128K-bits available (16 128-bit entries for each of
| 64 pixels)
| 65-127: RESERVED

26-+-4126.1.9 SQ to TP: Control bus
eee { Formatted: Bullets and Numbering

Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the addressin the register file where to write
the fetch return data.

Name | Direction | Bits | Description
TPx_SQ_data_rdy TPx— SQ 1 | Data ready
TPx_SQ_clause_num TPx— $Q 3 Clause number

TPx_SQ_Type _TPx— SQ 1 | Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_const SQ—TPx 48 | Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct | SQ->TPx (24 | Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ—TPx i |Last instruction of the clause
$Q_TPx_Type | $Q-oTPx i 4 | Type of data sent (:PIXEL, 1:VERTEX)
SQ_TPx_phase | _SQ->TPx 2 _Write phase signal ee
SQ_TPOQ_lod_correct | SQ-—TPO 6 | LOD correct 3 bits percomp2 components per quad
SQ_TPO_pmask _SQ—TPO L4 Pixel mask1 bit per pixel
SQ_TP1_lod_correct SQ—TP1 6 _LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask (SQ >TP1 L4 | Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SGQ—TP2 & _LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask | SQ—TP2 4 | Pixel mask 1 bit per pixel

Exhibit 2024 doch4o9d_Sequercer.doe 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

gee Formatted: Bullets and Numbering

a4 Formatted: Bullets and Numbering

AMD1044_0257176

ATI Ex. 2107

IPR2023-00922

Page 42 of 260

ATI Ex. 2107
IPR2023-00922
Page 43 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: 24 Septernber, 2001 4 September, 20154 GEN-CoO000-REVA 43 of 48enn fhneDMEMA

SQ_TP3_lod_correct _SQ—TP3 8 _ LOD correct 3 bits per comp 2 components per quad |

SQ_TPS_pmask |SATPS __ +tSQ_TPx_clause_num $Q-3TPx 13
SOQ_TPx_write_gprindex | $Q->TPx L7

2614226.1.10 TP to SQ: Texture stall “

The TP sendsthis signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

8Q_SP_fetcn_Stall

SQ_SP_wr_addr | |

Names Direction BitsDescription _ oe:
TP_SQ_fetch_stall LTPsa ua | Do not send more texture requestif asserted :

26-4-4526.1.11SQ to SP: Texture stall “

Name | Direction | Bits | Description
SQ_SPx_fetch_stall | SQ—>SPx [4 _ Do not send more texture requestif asserted

26-+-4420.1.12SQ to SP: GPR, Parameter cache contro! and auto counter *

Name| | Direction Bits|Description$Q_SPx_ wr addr SG—>SPx 7 Write address
$Q_SPx_gpr_rd_addr | SQ--SPx 7 | Read address
$Q_SPx_gpr_re_addr SQ >SPx 1 Read Enable
SQ_SPx_gpr_we_addr | 8Q->SPx i Write Enable forthe GPRs . _ :
SQ_SPx_gpr_phase_mux | SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRCreads and writes)

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

SQ_SPx_channel_mask SQ—SPx 4 The channel mask
SQ_SP0_pixel_mask |SQ->SP0 4 | The pixel mask
SQ_SP1_pixel_mask SQ—SP1 4 The pixel mask
SQ_SP2pixel mask ss| SQ.»SP2 {4 | The pixel mask ee
SQ_SP3_pixel_mask | SQ—SP3 4 The pixel mask |
SQ_SPx_pc_we_addr S8Q—>SPx 1 Write Enable for the parameter caches :
SQ_SPx_gpr_input_mux SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXO,
eefo _([VTXt1,autogencounter,|

SQ_SPx_index_count ,SQ-»SPx 12? | Index count, commonfor all shader pipes

ae | Formatted: Bullets and Numbering :

Se Formatted: Bullets and Numbering

| - oo, Formatted: Bullets and Numbering

AMD1044_0257177

ATI Ex. 2107

IPR2023-00922

Page 43 of 260

ATI Ex. 2107
IPR2023-00922
Page 44 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 20154 44 of 48 Oe

26-1-4326,1.13 SQ to SPx: Instructions ~~ Te TE

Name —i(‘s*dzr Direction _—_—i[Bits | Description : :
SQ_SPx_instruct_start $Q—SPx cf _ Instruction start
$Q_SP_instruct SQ—SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier -3:3
SRC A swizzle 11:4
Uruised———-___--_-_-_____-__-______-__-VegtorDet

2017:12
Unused

1: SRC B Select 2:0

SRC B Argument Modifier -3:3
SRC B swizzle 11:4

ScalarDst P42
Unused 20:18 Unused

20:42

2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 1:14
Scalar Clamp 12:12
Vector Write Mask 16:13

Scalar WriteMask20:
$Q_SPx_stall SQ-+SPx 1 | Stall signal
SQ_SPx_export_count SQ—SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ—SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0O_export_pvalid SQ—SP0 4 Result of pixel kill in the shader pipe, which must be
cutout for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock
SQ_SP0_export_wvalid SQ—SP0 2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
[vectors ; ;

SQ_SP1_ export_pvalid SQ—SP1 4 Result of pixel kill in the shader pipe, which must be
outout for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock
SQ_SP1_ export_wvalid SQ—SP1 2 Specifies whether to write low and/or high 32-bit word

| of the 64-bit export data from each of the 16 pixels or| _ vectors
SQ_SP2_ export_pvalid SQ >SP2 4 Result of pixel kill in the shader pipe, which must be

outout for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

; | clock
$Q_SP2_ export_wvalid SQ—SP2 2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
i _vectors

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257178

ATI Ex. 2107

IPR2023-00922

Page 44 of 260

ATI Ex. 2107
IPR2023-00922
Page 45 of 260

ratted: Bullets and Numbering

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 45 of 48A bes ds i

SQ_SP3_ export_pvalid SQ—SP3 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock
SQ_SP3_ export_wvalid SQ—SP3 2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
| vectors

26-4626. 1.14 SP to SQ: Constant address load/ Predicate Set “Ts
Name | Direction | Bits | Description _
SP0_SQ_const_addr | SPO>SQ | 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
SP0_SQ_valid SPO0—SQ 1 | Data valid
SP1_SQ_const_addr SP1-SQO 36 Constant address load / predicate vector load (4 bits only)

fe| | to the sequencer
SP1_SQ_valid _SP1—SQ a _ Data valid
SP2_SQ_const_addr SP2—SQ 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
5P2_SQ_valic | SP2--SQ 14 | Data valid
SP3_SQ_const_addr SP3—SQ 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
$SP3_SQ_valid | 8P3—SQ 4 | Data valid

264+-4726.1.15 SQ to SPx: constant broadcast *

Name ee| Direction —s-_——si| Bits | Description
SQ_SPx_constant | SQ >SPx .128 | Constant broadcast

26-1-1826.1.16 SPO te SQ: Kill vector load

“=| Formatted: Bullets and Numbering

Name ‘Direction Bits | Description
SP0_SO_kill_vect | SPO580 14 | Kill vector load
SP1_SQ_Kkill_vect SP1=SQ 4 _ Kill vector load
SP2_SQ_kill_vect | SP2.8Q ia | Kill vector load
SP3_SQ_kill_vect | SP348Q 14 | Kill vector load

26-11926.1. 17 SQ to CP: RBBM bus ~

Name Direction Bits | Description
SQ_R&Brs |SQCP | | Read Strobe

(SQ_RBBrd SQ—0P ReadData
SQ_RBBM_nirtrt |SQ>CP| ___| Optional _
SQ_RBBM_rr | SQ-3CP if | Real-Time (Optional)

26-4-2076.1.18 CP io SQ: RBBM bus

 Name Direction Bits | Description
rbbm_we _ CP»SQ i _ Write Enable :
rbbm_a CP=SG 15 _| Address -- Upper Extent is TBD (16:2)
|rbbm_wed [CP-SQ s«[32_—Datta ee

rbbm_be _CP—SO i 4 | Byte Enables
rbbm_re CP—=SQ 1 | Read Enable

rbb_rsO | CP>SQ id | Read Return Strobe 0
robrst CP-SG 1 | Read Return Strobe 1
rbb_rdO |CP-»5Q | 32 | Read Data Orbb_rd1 CP—SQ 32. | Read DataO
RBBM_SQ_soft_reset CP—5Q 4 _ Soft Reset

Gchiblt 2024 dock405_Sequencer.dec 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

Ae S Formatted: Bullets and Numbering

| 225) Fermatted: Bullets and Numbering

fed Formatted: Bullets and Numbering

AMD1044_0257179

ATI Ex. 2107

IPR2023-00922

Page 45 of 260

ATI Ex. 2107
IPR2023-00922
Page 46 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 20154 46 of 48Blin or fatatew

27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Vertices
ss PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO

*® state pointer as well as tag into position cache is sent along with vertices
® space wasallocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
* The vertex program is assumed to be loaded when wereceive the vertex vector.

e the SEQ then accessesthe IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM whenthe CPis done loading the program)

2. SEQ arbiirates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
e at this point the vector is removed from the Vertex FIFO
* the arbiter is not going to select a vector to be transformedif the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came downwith the vertices
« SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycie)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SU3is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
« RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a regisierfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
® TSMO was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSMOQ

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit te complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

§. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (which is

shared with ail four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

4 —

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257180

ATI Ex. 2107

IPR2023-00922

Page 46 of 260

ATI Ex. 2107
IPR2023-00922
Page 47 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 47 of 48Be SOIR en A

e the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFOis full
e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

« parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters (it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixe! quads by the detailed walker
® the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
« SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface @vhich has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
* the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructians for fetch clause 0 from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMQ
FIFO)
e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF asit is received
® once the TU has written all the data for a particular clause io the register files, it increments a counterthat is

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro] packet continues to travel down the path of reservation stations until all clauses have been executed
*® pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

Exhibit 2024 dockt4o0_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257181

ATI Ex. 2107

IPR2023-00922

Page 47 of 260

ATI Ex. 2107
IPR2023-00922
Page 48 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 20154 48 of 48i Blin on Le A

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. The register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the iS
pointeris only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

Exhibit 2024 doct400_Sequercerdes 71260 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257182

ATI Ex. 2107

IPR2023-00922

Page 48 of 260

ATI Ex. 2107
IPR2023-00922
Page 49 of 260

el WJ ENA PID LAE ELL WAP WALL UIVEIN P-FREIZ VY. INUEVE. PAGE

Cat) 24 September, 2001 4 September, 201548 | GEN-CXXXXX-REVA 1 of 50ve Je A BAe.

Author: Laurent Lefebvre

issue To: Copy No:

R400 SequencerSpecification

SQ

Version 1.98

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overviewof the
required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, anc provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce\r400\coc_lib\design\plocksisqiR400Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

oe APPROVALS _ ee a
~~ Name/Dept- coe eee “ Signature/Date.

ne

 Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of AT!. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2025.docR49¢-Sequencerdos 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © + |
ATI 2025

LG v. ATI

IPR2015-00325

AMD1044_0257183

ATI Ex. 2107

IPR2023-00922

Page 49 of 260

ATI Ex. 2107
IPR2023-00922
Page 50 of 260

ot

 URIGINAITE VALE

24 September, 2001 CUI DATE R400 Sequencer Specification PAGE

4 September, 201948 2 of 50OA

Table Of Contents

L OVERVIEW .o.ccccccccsescnecaversuansaneacranacensssennseuasenuccesuneaasssenanussenczaaacanessansancasauarcasnecanensenananaaasnens 86

Li Top Level Block Dia COI oon cece eee eect ete eee bth e bbtt edt tthe bob tt bbe ttb ett teetttettinetes 108
12

L3 COntrol Graneccc cece ees cane ce nets epee eettp soot bbesstetnubeesesbannstesssessstetsesssispenssssisenesens 1844

2. INTERPOLATED DATA BUS. oo cccccscccccnnnaneccusnunnsseumnnaseusuausnnnuununssenenanensuusennnnsuenseseuncensanses 1344

3. INSTRUCTION STORE. 0 ccccncosccscuuseceunnusnseuasunnsesauuanneusuenauyesannuaacesenanecetasanunentunaansunuennanens 1644

4. SEQUENCER INSTRUCTIONSscccncconaseusecezeceanescenancusanuucusacssanauscenuecaceesauaacucatanancene 1846

§, CONSTANT STORES. ...0:ccccccantssssannzsyscevnsusnnsuanzyssaunuvssssupnpuogsseanuinnsvnensssssgnunsssssnnousssuanennoys 18416

MeEMOry OFQANIZaAliONS«oeeee vec cece eee eee cece eee sdb ee bebe vbetebey bobeee bse seeeeuenteneseuss: 1646

Management of the Control Flow CONMSTAIVS oon cecee cece ceeeeeec esau ee ccecteseuyesteses asta eesesesssueeess 1846

R400 Constant MANSGeOMON.0.cceccccccccccenecceneetesscutettesceueter:eneeneistestuevesseneenss 1848

Proposal for RA00LE constant management...eeeee cee cc eee sceese eee seeeee nes iOte

S34 Free List Blok occ ccc ceece cee cecee cece ceseetevepassusesiteusssisutuassuiciensussunisususinigusinitsssiiutsssenins 2148

5.3.5 De-allocate BlOCK oo... ccccccccccccccesccc uses sutsussicsvesesssutstsustsetsuts tes tensitettetcctestesiissttetss 2220

Operation of Incremental Modelocccence cece cesses net sete eennnsss 2270

SA Constant Store Indexing... cee ccce cece cceec cece cecee ees ununeytcueeeeciseteteessitsstsssistuuuuuustigetseseeenepes: 2220

55 Real Time COMMAndSneecece eee ee cece eect tes eben beds tee ptbs tebe bbbye cutee ees ipeeenesvenseenes 2324

5.6 Constant Waterfalling oooeee e cee ve cccccceeenceccseauecsceteesueysesstueuieseastsupusestesstanesess 2324

6. LOOPING AND BRANCHES.......ccscssssssscrsssccosssosssuanssevosesnnensnnnousssveseussssssanesesvesounnenannnasss 2422

5 | TNE COMTONING StQtSeeeeeecece eects tesette teste bbesttbestestestetesstetenestissesttsseessneses 2422

The Control Flow Prograrn ooo... cece cece cece cs cence nsec ee eene ceca nn eeescesebnnspusbstessvinesseasesiensess 2422

Data dependant predicate INSIUCHIONS ooeeeces cee cess tes teete tess settnestetesee tts 2624

64 HW Detection Of PVPS.cece cece ees cess cnseessnsess anne ssseteesbesustpstnebeesesseniessensesss 2/28

65 Register file indexingeccoven ceceeeecenng cee none tye etetebeetenereteseneess 2i25

6.6 nrecicatee Instruction support for Texture ClaUS@S ooeeeeee eeece ee seetetees 2i28

 7. PIXEL KILL MASK eastsaneueussaenaecosauenanuntncunecenequneyszunenenstexnn

. MULTIPASS VERTEX SHADERS (HOS)........0...cccssensoocscerensroccesscsunnenvessuscuucesecansnoossscenes"2926
9, REGISTER FILE ALLOCATION...cc::csccsssssosssonszsssunnenccsspsstnozeusanunsnnnossssssnpenapsstnnansosssensinns 2926

10. FETCH ARBITRATION...........0ccs0ccassscssssensossanvspsenennoucssnssaunyssannnnnncrospssonpvaunsnausaneussssusnnuays 3028

LL. ALU ARBITRATION.........coxccessessoneuesssennnnccesszensoesesnnanennestencesseseussusennnevessauceusesucatsnensecunens 3028

12. HANDLING STALLS ...cccccccosonssssenmnsrseszapasnousunsssuannneosssssannusssannousospeusisvosnssazsssnoeoussssnnonneys 3129

13. CONTENT OF THE RESERVATION STATION FIFOS.cccscsesssussssonansessennanarsssssasane 3129

14. THE OUTPUT FILEccccssonesuecssccnussesenunnoussusvennnsocsausennansccessuumousessannneusesaueannsvovenunensneucens 3129

US. [J FORMAT .u...oscsencrcssennsssxsonnorssssnonnsscssannnoossenansnas eopesssnspnunysssnnanusssonsannogssaunpnssnogsassossnaneyscs 3129

. ivterpolation of constant attributesocccee eects ccs eete sees esas rests seesteteesttsenesseses 3230

16. STAGING REGISTERG........cccssossceccesscnnousessanonsoesseauanns soesessessnsooesssvennnseesanseausesouatsnsnoneusesa 3230

17. THE PARAMETER CACHE .,......ccossesssssssstsssoneosssennonnssossnnnavgssusapanasepsuussaounuaustsnanpussonsnnnayss 3432

Exhibit 2025docR400-Sequencerdee 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257184

ATI Ex. 2107

IPR2023-00922

Page 50 of 260

ATI Ex. 2107
IPR2023-00922
Page 51 of 260

- WIREROUINATO UATE Cisth LAAN LLU INVEEIN Pek. INUIVE.

| tat) 24 September, 2001 4 September, 207548 GEN-CXXXXX-REVA 3 of 50
18. VERTEX POSITION EXPORTING escceeceenerccecessanseceecerersenauesteenenanceueunereneeasanerencaueateneenenees 3832

19. EXPORTING ARBITRATION wavcssenseeeereseteseseeessanennnnenennnnenneetennnenensmensnnnannanagannennesnenananees 3532

20. EXPORT TYPES..n..c.sesncncssonnncrsrsenssannsvsnsnsnessnnnsnssnnnussunsnnsansnvenanssesnnnnsseunansnssnnnnnssasunvennns 3532

20.2 PIXEL SNACING ooncece eee e ene cp ee en seen sess anne epee tebeebusspstnbbigestesbetbessetsenpenesssttesespessenness 3533

21. SPECIAL INTERPOLATION MODES.ccosvssscsssscsovsenansnnssvssnsssonnussssunneonsssannnnoasssanauns 3633

21.1 Real UME COMMANCS oo... eee cece ccc eee cee cene eeeecete nee teeeseteuunetes sete usecttettuueseeseteensuneseens 3633

Sorites/ XY_screen coordinates/ FB information...ccc e eee eeec ccs eneunseesestnn ees 3633

. Auto generated COUNLELS 2.econcee cece eee ence vee e ees sees nuesteesttesttiestuessesenessenestiss 3634

21.3.1 Vertex Shadersooocece cceeece cece cc eceeee bees tees cbe cb bessbeecbecebeseteeeseevteeeesess 3634

ZL 3.2 PRE SHAES oon eevee cece vee vesesessesuessisestesssstnttussuntsisitisetusisitsntustevievisssetnesss 3634
22. STATE MANAGEMENT00ccscsssaecesescnentoncsousscvensnasusscsnnusussussusuanensnustnsussususesssnunuscesunusuns 3734

22.1 Parameter cache SYNCHYONIZANON o.oo nec ceee cee eee cc rene cee ceeeee eee cuetbeustieeiatietenseeptisenessis 3734

23. XY ADDRESS IMPORTS.:c.cccsesserssncerecseseansesesnentssenseastanesuaucussssannassouensensessancascnsanuanes 3738

3. Vertex INCGEXES IMIDGITS oooocc coco necc cece ccececccceeceeucuseseeeseueseuestensssessstssesstessnesseecsses: 3/38

24, REGISTERS. ..neccscxssscossnsnnnsssnnnnnsoesonexsoetuanussausenonusnnnnnsonsesenussstsaanssensnnnnssvannuanssszsuanssassnsnnnas 3835

24.1 COMOL occ ncn e cee ce cece cece ee cee cee e tne e eben byte epee testes steteguee bees nietesttensttesitpugnesitinensevesteteens 3835

GAD COMGXcccccc ceecc cc cecees nese venue ese nuns tuaetstsdectetgsestsusett ysis tiuestitesestsetettenisiapestess 3835

25,DEBUGREGISTERS.....c:csesssesssscerssnsensnsssenessresensnersssensncnsssnssszsszsonniszsnsssonsseressunsesensesssOOOO
25.1 COMEoccec ccc cece nccucceecescnuusesebesssnunssasusesussussetuessunesteubersrvtevesversestsessaussenersessuaees 3938

28.2 COMPOecco cecc cc ecccccccccecccuce esse cueestesetssubestuetesttvessiutsessutesssitessstteissitessestessss: 3938

26. INTERFACES.ccc.cccccccccccsscecscssescsseseseseesssssescscssenesessssenesssssnssusssnsuserseneacausscnssseces 3936

26.1 External INterfaCes oon oiccccccccecccccccccececeececses cee sessesestusstscutsteteststistenttesietees 3936

26.1.1 SC to SQ: IJ Control DUS nici cccccccccccccccccecceceecccsectssvecencestustensiisetestesteseenins 3937

26.1.2 SQ to SP: Interpolator DUS ooo. ccccecccecccccscesesessseseesussusssutscitussessssssutsuitustsetsstessssss 4037

26.1.3 SQto SX: interpolator bUSeeeeeceecc cree ecec cece cosets ec ceeeeeecsesesecs 4037

26.1.4 SQ to SP: Staging Register Dataonc ccc cecceevccceseseeeseeseusecnssiteitsstusttviseseesens 4138

26.1.5 PAto SQ: Vertex interface o.oo cccecccceccccccusecescccentsuscustststitntsesseteiteiusttusistsestess 4138

26.1.6 SQ to CP: State report ooo cccccccccceceeeesessuesssse-susssssestsssssssusssusssusssutsetstsvessssees 4444

26.1.7 SQ to SX: Control DUS oon ccc ccc ee ccec cases ceeceeee cess cessseuesegetusssutsiceiutssdustinivisisttesiustasiss 4444

26.1.8 SX to SQ: Output file COMO! oo ceccccccccccccescceeseceeeceectusececes cet tessstiesisvisviseivtesseses 4444

26.1.9 SQ to TP: Control DUS ooo c cece cccce cece ccc ecs cesses teseesessutsutssissssistesstisitesttetisitessess 4444

26.1.10 TP to SQ: Texture Stall ooo cccccccccccccecccceccssccsessseseessecsscteseseistesestivissesesssteceesess 4542

261.11 SQto SP: Texture stallcocococ ceece cece cec cbc ce eevee bese ecseeeeee. 4542

261.12 SQto SP: GPR and auto COUNTED. cece ceceeccccceeeccccceeeecceceneeccecusceeceseseess 4542

261.13aStOSPX:INSUUCHIONSoooceeeeeeeeeeeeeeteseeeeuetaseettestusinepesentussteeeeretesetAB43
26.1.14 SP to SQ: Constant address load/ Predicate Set ...0...oocccoocccccccecccccecescscccsccscceseess 4744

261.15 SQ to SPx: constant broadCast o.oo cccccccccccccccceesesecseusssusssutstustsutssusssuesuentessevetes. 4744

26.1.16 SPO to SQ: Kill Vector [OBC ooo cn cece cece ccccceceecesscuseesesetestustestuisutuetistustuitsitiiusiusisteuises 4744

26.117 SQ to CP: RBBM DUS o.oo cccccccccccccscesescsceseessseutsussetustpussssuisstisuteitisstettetivisites: 4744

26.1.18 CP to SQ: RBBM DUS nonceee ecco eect estesbob sect eeescitettescessessiss A744

27.EXAMPLESOFPROGRAMEXECUTIONS..........::scscsosssesssossserecsesssesnsserseonssessenereosssneres4O40

Exhibit 2028.docR4G¢_Sequencerdos 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «**

AMD1044_0257185

ATI Ex. 2107

IPR2023-00922

Page 51 of 260

ATI Ex. 2107
IPR2023-00922
Page 52 of 260

ORIGINATE DAIE EU DAIE R400 Sequencer Specification PAGE

— 24 September, 2001 4 September, 201548 4 of 50Rioeoln Diane!

QT AB—_NOtCS ooo ccc cccccccccceccsecssssusteusssutsuessutssitsissussustsustsusisutsssisussssssvessuissssetseiseeuteuss 5047

28. OPEN ISSUES.ccccccsscoscssssosssssssosscosssenscsssssusssssssueusssasessucesseuusussssuuseasssatessuscnessnsssnsensuces 5047

13.—CONTED--GE-THERESERVATIONSTATONFIPOSpcs

Exhibit 2025docR4G0-Sequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257186

ATI Ex. 2107

IPR2023-00922

Page 52 of 260

ATI Ex. 2107
IPR2023-00922
Page 53 of 260

a WREROUNAT EO DANTE Cust DATE LUO VEIN PeFRO VV. INU IVE. PANGE

| (al) 24 September, 2001 4 September, 207548 GEN-CXXXXX-REVA 5 of 50 |Aenwaobee PES es.

20.1—--Vertex-Shading... Pee wR RRR RHR HER RRA RRR DER CM MRR ADS RH MEM RHR EHH HM MEER HHH MEHR OR HMHHH RHR HHP TORRHHH REM H RHR H RT ER HHH HEKER HH HHH RET OR EH34

2Li-Reatime.GO:mands-SEPTETTTESTeeeeeeeEELETTE TEEEeeeeeEeTEEETEEEEETEEEETE EEET EEEEEew

Exhibit 2028.docR4G¢_Sequencerdos 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «**

AMD1044_0257187

ATI Ex. 2107

IPR2023-00922

Page 53 of 260

ATI Ex. 2107
IPR2023-00922
Page 54 of 260

UREGINALE VALE

24 September, 2001

 CUI DATE R400 Sequencer Specification PAGE

4 September, 201548toctsbn ADEEEDA

Exhibit 2025docR4G0-Sequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257188

ATI Ex. 2107

IPR2023-00922

Page 54 of 260

ATI Ex. 2107
IPR2023-00922
Page 55 of 260

saa WRERGINA LO DAE CU DALE LAJUUNECIN PrIRID VY. INU. PUNMGE

Cat) 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA | 7 of 50sonstbes, Aeverbs i

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre}
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2004
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre}
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date ;

Exhibit 2025 docR4oQ—Secuencerdes

Changed the interfaces to reflect the changes in the
SP. Added somedetails in the arbitration section.

Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes madein the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_orjump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ—SP0 interfaces. Changed delta
precision. Changed VGT—SP0 interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—SQinterface. Added content on constant

management. Updated GPRs.
Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA—-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Concitionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter contro] in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of

clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alianement

71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257189

ATI Ex. 2107

IPR2023-00922

Page 55 of 260

ATI Ex. 2107
IPR2023-00922
Page 56 of 260

pm URIGINALE DATE EUIT DATE R400 Sequencer Specification FAGECat) 24 September, 2001 4 September, 201578 & of 50fi AOA §

|. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257190

ATI Ex. 2107

IPR2023-00922

Page 56 of 260

ATI Ex. 2107
IPR2023-00922
Page 57 of 260

«2©aed19A0DUOsoNONjUBUAdODsoUusJejey‘jENUEPIUOD[Ly©vexSeacei.comMOAIIAOLO9UOHbag[essUEy3]wNBLY

sSpopepanc0cHak

 ||4peojuepucseydada|"|ga*GNee
NYXA

AA4Aeee—_—lg|Wiwd_| 80d+gO/Od~do/odg0/ddCpKpLeeeeewo|SRMey““SUaLNIOg|5iyaaOdi|yo||.voavisHolgako|vivaSuid+_WivulvddSds“ds“dsSYxOLSOan/|se“ioestBody
|SLYESL

|leg-~<q<¢poi7SeOO_|
Kdiaae—_—*FYOLSLSNI4aLNiHa3LNI|<HSLNIj*dHaLNipf| ¥"|z -|i TOSENGOFhavorrlnrrl °ISNIdvessouofr!!x7“SISOWMDZaTONLNOOseKSUSAddINOSINVLSNOO|

5849i
>

~voronnnnsWLSyyPOUOTT09406WAREXXXXXO-NAOBrGLOGJequiajoes¢LoozVequieides¢zdvd‘WANN(ASae-LNSWNOOdaivdLidss1lVdSLVNISIdO

 TVIAELVNdadoAA
LLOaLOdd

AMD1044_0257191

ATI Ex. 2107

IPR2023-00922

Page 57 of 260

ATI Ex. 2107
IPR2023-00922
Page 58 of 260

pm URIGINALE DATE EUIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201578 10 of 50un AB

1.1 Top Level Block Diagram

vertex/pixel vector arbitralor

Possible delay for available GPR’s

 ooTexture clause 0
reservationstation

FIFO
IFexture clause 1
reservation station

LU clause 0

eservation station
Peteclause 1 nr exture arbitratoreservalionstation

exhire arbitrator exture clause 2
reservation station

he@j—-ALU clause 2eservation station

exture clause 3
eservation station

lag——fALU clause 3reservation station
Texture clause 4
fescrvationstation

ALU clause 4
eservation station

exture clause 5
reservation station

bag———ALU clause 4reservation station

 exture clause 6
reservationstation

ALU clause 6
eservation station

Texture clause 7
eservation station

LUclause 7

eservationstation

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257192

ATI Ex. 2107

IPR2023-00922

Page 58 of 260

ATI Ex. 2107
IPR2023-00922
Page 59 of 260

WARUAGENVA TE LANE CUP VAP LAW UIVECIN PIRI. IN LI vi

Cal 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 11 of 50RA POA AAonvie

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in

the GPRs to stare the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
resulis into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once ail the requests are sent the packetis put in
FIFO 14,

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Oncethe last instruction has been issued, the packet is put
into FIFO 2.

 There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause numberas the other oneis currently working on if the packet is not of the same type (renderstate).

lf the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional bufferis full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be seni.

A special case is for multipass vertex shaders, which can export 12 parameters per last G clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packetfinally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have accessto the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have accessto the registerfile address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher numberstate machines, preventing a bunch ofhalf finished jobs from
clogging up the registerfiles.

Exhibit 2025decR409-Sequencerdee 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257193

ATI Ex. 2107

IPR2023-00922

Page 59 of 260

ATI Ex. 2107
IPR2023-00922
Page 60 of 260

pol ORIGINAL UATE

Cat) 24 September, 2001 pliAniceties,

1.2 Data Flow graph (SP)

instruction
Register File

 scalarinput/output MAC

pipeline stage

instruction
Register File

(
| scalar input/output= MAG

pipeline stage

fo

EUIT DATE

4 September, 201548SABE ert

re requi

R400 Sequencer Specification

N

 J

 ScalarUnit Register Fileinstruction

Se

pipeline stage

Register File antsfromREinstruction

Ct

to Primitive Assembly Unit or RenderBackend‘

text reques

Se
Z

OEx 8

texturelS quest gs}—\\a a

e|
sgAim

SU

Figure 3: The shader Pipe

Exhibit 2025. docR400-Secuencerdes

textureaddress

(

PAGE

42 of 50

71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

|

AMD1044_0257194

ATI Ex. 2107

IPR2023-00922

Page 60 of 260

ATI Ex. 2107
IPR2023-00922
Page 61 of 260

7-08 WON AAT Oo LAE EL) WAP LAW VEIN P-PREC IV. IN GUEVE. PASE
The gray area represents biccks that are replicated 4 times per shaderpipe (16 times on the overall chip).

 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 13 of 50A Je DOA.

1.3 Control Graph

Clause # + Rady SEQ CST WrAddr

WrAddr |
CMD ||

CST |

*

Phasetis || oe
cmp C8T’cstzestinx A B © Wrvec |

Rady ic8 rar
oo ve yy

a

FETCH SP OOF

yp WrAdar ||
|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpclators contain an |J buffer to pack the information as much as possible before writing it to the registerfile.

Exhibit 2025.docR490_Sequeneerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257195

ATI Ex. 2107

IPR2023-00922

Page 61 of 260

ATI Ex. 2107
IPR2023-00922
Page 62 of 260

mm ORIGINATE DAIE EUIT DALE R400 Sequencer Specification PAGECad) 24 September, 2001 4 September, 201578 14 of 50etch OBENIi

_|

—
lds CROSSBAR (4x64 bits} |

Jo ieOEELE
iia =

aee ~ ™ ne aaeee ir
——

ids buffer (ping-pong buffer}
AG Al A2 BG (28 bits * 2 (J) + 8 bits * 6 delta lUs)+4 ex;

bits*6)* 16 (quads) * 2 (double-buffered)4096 bits

32x 128

XY¥s buffer (ping-pong buffer}
24 bits * 16 quads * 2

768 bits
32x24
 D1 D2 Eo Et

| | |
| | | 1 1 T|

: |
FIX-FLOAT + EXPANSION |

Figure 5: Interpolation buffers

Exhibit 2025docR4G0-Sequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257196

ATI Ex. 2107

IPR2023-00922

Page 62 of 260

ATI Ex. 2107
IPR2023-00922
Page 63 of 260

wx@BBeYy1BAODUOsayoNjUBUAdODsoussajay‘|eEHUEPYUOD[Ly@xeseeoea1z

WBIseIpSULWoNvpodszsiuy39oANSLy
sofuesuenbes“oopNSONO207THaKS

 bed

0GJOSLdovd

VASEXXXXXO-NSD‘WANAdaLNSANOOG

BEGLOgJeqluejaesdivdLida

v

LO0Z‘JequajdespzdivaSLYNISIedO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257197

ATI Ex. 2107

IPR2023-00922

Page 63 of 260

ATI Ex. 2107
IPR2023-00922
Page 64 of 260

ORIGINATE DATE EUIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201578 16 of 50Bimecsby OA Ka |!
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the [J
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store

There is going to be only one instruction store for the whole chip.It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALUinstruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASEcontrol registers. Tne VS_BASE and PS_BASE context registers are used
to specify for each context where its shaderis in the instruction memory.

For the Real time commandsthe story is quite the sare but for some smail differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines} uses the same path as real time.

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257198

ATI Ex. 2107

IPR2023-00922

Page 64 of 260

ATI Ex. 2107
IPR2023-00922
Page 65 of 260

‘gpooou)BuynoexeLIBRIS0]SIOyMSMOUyJaouenbagossysoiq-GNSayeuidoidde0)sosseuppeEIS@p0dSAILdOee@8P09DSA|V8Pp0DSd aux©BGegJBAODUOsoHoRjUBUAdODsoualejeyJeEyUEPYUOD[Ly©eseocaz28P09Sd

(*28P0DSA@8p0DSd

ALOUISULUCIPINAISUL

V8p0dSA

-apoopaueus'9SUL1e8y
S60V

‘9pooau)BugnoexsHeys0]BIBUMSMO”J9auanbasossyooig-qngeyeudoidde0}sossoippe138VaUAQVHSXALUSA 34}JOMOLA8,49PULcysandy
Crse0r28poDSd @Spo)Sd VW8P09Sd28podSALEISBPOSOIUMIdaN,d8podSAVW8podSA

‘epogpaieus®owl|jeeu

sopussuerbas“corMsonGe0eTONKSa

aSV@MAQVHSTSXxidaSV@YSQVHSXSLYSA

 SunyefSurs-1SCOWBuryfend-0Sdow
Agsea‘WfuyorLOOZ/PFL/LL:payepdn

Aioweay\|uoonisu|JOSMSI/A,S.4dDOOM “TY
s

VABE-XXXXXO-NEOsrotoeTequieldeWAN‘Aaa-LNSWND00avdLidaTVIGSIVAWSdCdOAATLOaLOdd
OG10ZLdSvd

L00Z‘equieidespzaLvdSLYNIDIdO

AMD1044_0257199

ATI Ex. 2107

IPR2023-00922

Page 65 of 260

ATI Ex. 2107
IPR2023-00922
Page 66 of 260

 pm URIGINALE DATE EUIT DATE R400 Sequencer Specification PAGE

bal 24 September, 2001 4 September, 201578 18 of 50fi AOA §

4. SequencerInstructions
All control flow instructions and moveinstructions are handied by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constantstore is 128 bits/clock
and the write bandwicth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physica
memory(this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memoryis +28x492-320x96 bits (125 texture states
for regular mode, 32 states for RT). Tne memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Managementof the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1 }% number of states. This way,if the
CP doesn’t write to CF the state is going to use the previous CF consianis.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and onefor the texture
state}. On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. in our case, since the logical address space

| Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257200

ATI Ex. 2107

IPR2023-00922

Page 66 of 260

ATI Ex. 2107
IPR2023-00922
Page 67 of 260

WRRGHNAT EO DAE CUP WAP LAU UIVIIN PrIRID VIN UII.

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 19 of 50Rifle e be AOA AA ey,

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it ‘with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure-S:-De-alecatien-mechanismFigure3--De-
allecalion_mechanism). Note that in the case a state is cleared a value of O is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2025.docR490_Sequeneerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257201

ATI Ex. 2107

IPR2023-00922

Page 67 of 260

ATI Ex. 2107
IPR2023-00922
Page 68 of 260

UREGINATE VALE

24 September, 2001

CUI DATE R400 Sequencer Specification PAGE

4 Seplember, 201548 20 of 50

OOO Af

Free List
Free_

Address ¥
| Numberof entries

i equals Max Number of
~~ Physical Blocks. All|Pointers start at zero | i

Free_ptr > and ral around but | Renaming Table
WritePir can never pass each | Context 0 => N

ier 3Logical other Current/Last iress is written 1
Context po ..

onionbeore. (8 rows of 18-8 Ly Context 0 (Grows of 16- Bb|store the physical a si = 7 | physical => 128 entries copyin | .storethe physical le Stop tr bit physical => | eight clocks) | gebogical Addressallocated by that Fh 128 entries copy | | | Context + 1 \—~ & ContextLogical Address ptr to first physical in eight clocks) ||| “ |address thatis ,
scheduled to he de- 6
allocated but noty é
yet de-allocate. GAdvanced eachtime f | i

@ context is freed by | Context N l= Physical
the number of ! ! Address

é physical addressa Read_pir displaced by that| i ptr to physical Contextaddress that will be
i used next if theinitcount is at

v maximum nuraber
Address of physical addressto Allecate

Global Register »Data Bus .
Staging Data |

Buffer ry iConstants —~; | Physical

location << ree Memory
availablebeear|

{pass Phys |. —— Staging Write AddrWRTR Address if ging |r—® Context |
Dirty) |— >

hysical Dealloc
address Counts j next

fo physical |
schedule address

for ready
de-alloc for allocate

. | SeqLogical address i i |
On the — _ ro. | constant

GlbRegBus a. equeswhenIsb are zero This |
first word of write . Reset Context |

Renaming Table Dirt Dirt |
for 1 Context y y ~
Current/Last L per | L per i | | Context &ei ogical ; Logica | Logical
aoa Address | Address Alivees 4

(Only (lf set |
per de- don't '

Logical © |
Address allocate allocate

ifset) | orde- |
| allocate) Renamingtable

Exhibit 2025. docR400_-Seauencerdes

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Figure 8: Constant management

TS

N-Contexts
||||Po

71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257202

ATI Ex. 2107

IPR2023-00922

Page 68 of 260

ATI Ex. 2107
IPR2023-00922
Page 69 of 260

- WROGHN AAP LAA EE Civ WAT WOO UIVECIN PIR. INUJIVE. PNG

(at) 24 September, 200% 4 September, 201548 GEN-CXXXXX-REVA 21 of 50Rae esky Ae A

SQ_STATE#

DEALOC
COUNTERS

ADDR —

—— WRITE_ENABLE
Free List «ONT VALUE |

| PREVIOUS

|| I

NOT be STATE
a ’ NEW

| STATE
VALUE | 1

le
| j= |

VALIDeo| |
| SQ IDLE

r AND PA,iDLE —————
MCPNEW_STATE_GNTLREMAPPINGTABLE SET CTX we|

Figure 9: De-allocation mechanism for RAQ00LE

5.3.3. Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. [fit is set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
cata. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the criver does a set constant
twice to the same logical address between context changes. NOTE: Itis important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been usec once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
ce-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFCis at its maximum count.

Exhibit 2025.docR490_Sequencerdee 71630 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257203

ATI Ex. 2107

IPR2023-00922

Page 69 of 260

ATI Ex. 2107
IPR2023-00922
Page 70 of 260

po ORIGINALE DATE EUIT DATE R400 Sequencer Specification PAGECat) 24 September, 2001 4 September, 201548 | 22 of 50
5.3.5 De-allocate Block , :
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the sei of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of incremental model
The basic operation of the mode! would start with the write_ptr, stopptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The cata will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthefirst draw commandof the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the resel dirty was sel, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated.Aline will be allocated of the free-list counter or
the freelist at read_pir pointer if read_ptr != to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants In use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof biocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the reac_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are smail it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

|

AMD1044_0257204

ATI Ex. 2107

IPR2023-00922

Page 70 of 260

ATI Ex. 2107
IPR2023-00922
Page 71 of 260

 CLP) WAP LAUIVEEIN P-IXRID V¥. INUIVE. PAEsuet WRRGHINAT OO LANE

tal) 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 23 of 50Rides ein Ar A ven bey

betweenthe time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X /i Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
NOP f/ latency of the float to fixed conversion
ADD R3,R4,CO[RZ.X]// Uses the state from the sequencer to add R4 to CO/R2_X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constanis are written by the CP using the register mapped registers allocated for RT. It
works Is the same way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reacs are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To ca so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last renderstate is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON /

(Reads/Writes are direct) 7|||

REGULAR SECTION

(Reads/Writes are passing
thru a remaping table)

||

Figure 10: The instruction store

Exhibit 2025.docR490_Sequeneerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257205

ATI Ex. 2107

IPR2023-00922

Page 71 of 260

ATI Ex. 2107
IPR2023-00922
Page 72 of 260

 URIGINALE DATE EUIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201548 24 of 50 |ieonko SBE ere l 6.ainqg and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256: 0]
Loop_count[7:0][31:0]
Loop_Stari[7:0][31:0]
LoopStep[7:0731:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters io allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programsare located in the R400 programming guide documeni.

The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][/7:0] #4 eight 8 bit painters to the location where each clauses control program is located
Vertex_shader_alu[7:O][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_feteh[7:0][/7:0] H eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] /f eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program awareof the clause
boundaries.

The control program has nine basic instructions:

Execute

Conditional_execute
Conditional_Execute_Precicates
Conditional_jump
Conditionnal_Caill
Return

Loop_start
Loop_end
NOP

Execute, causes the specified numberof instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberof instructions.
Conditionnal_Caill jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the |P is popped from the stack.

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257206

ATI Ex. 2107

IPR2023-00922

Page 72 of 260

ATI Ex. 2107
IPR2023-00922
Page 73 of 260

 ea WIRGHNAT CO UATE CUPP UATE LITO UINVECIN PIRI. INI. PAGE

(al) 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 20 of 50
EB PEA A +,

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Concitional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

23

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsincethere are two contro! flow instructions per
memory line. Thus the compiler must insert NOPs where neededto align the jumps on even CFP addresses.

Also if the jumpis logically bigger than pshader_cntl_size (or vshacder_cntl_size) we break the program (clause) and
set the debug registers. |f an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and sei the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address fied (or in the jump address
field) is an ABSOLUTE address. lf the addressing field is cleared (should be the defaull) then the address Js relative

tothe base of the current shader pregram.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

 47 46.42 | 41 40. 24 | 23... 12 11.0 |

Addressing 00001 | Last RESERVED instruction|Exec Address |
| count

Execute up to 4k instructions a
instructions of the clause.

the specified adcressin the instruction memory. If Last is set, this is the last group of

NOP |
47 46...42|41 40... 0

Addressing|00010 | Last | RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46...42) 44 | 40 40-39... 3231 34.30... 24 23... 12 41... 0

| 3332
Addressing|00011|Last RESERVED|Boolean|Condition | RESERVED instruction xec

address count Address
lf the specified Boolean (8 bits can address 256 Booleans) meets the specified condit
instructions (up to 4k instructions). If Last is set, then if the concition is met, this is the
executed in the clause. If the condition is not met, we go on to the next control flow instr’

ion then execute the specified
ast group of instructions to be
uction.

ConditionalExecute_Predicates

47 46...42|41 40-40... 34-33... 3231 34-30... 24 23... 12 11...0

3e34 3332

Addressing 00100 Last | RESERVED|Predicate|Condition|RESERVED|Instruction|Exec Address
| | vector L.count |

Check the AND/ORof all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

LoopStart

 47 | 46... 42 | 41... 17 | 16... 12 | 411...0

Exhibit 2025decR499-Sequencerdee 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257207

ATI Ex. 2107

IPR2023-00922

Page 73 of 260

ATI Ex. 2107
IPR2023-00922
Page 74 of 260

ORIGINATE UAE

24 September, 2001

EUIT DATE

 4 September, 201578

RESERVED

R400 Sequencer Specification
26 of 50

ump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

LoopEnd

47 | 46... 42 | 41... 17 16... 12 | 11... 0
r 00110 | RESERVED loop IDs start address

Addressing |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

| 47 | 46... 425 41... 3834 34-330. 312 34-30... 12 11...0| 3332 |
| 00111 RESERVED Predicate|Condition RESERVED | Jump address

Addressing | vector | If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return

47 | 46... 42 | 41 ...0

| 071000
Addressing |

 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Concditionnal_Jump

 47 | 46. 42 | 41 404 40-39|. | 3231 3430 30-29...12 — 11...0| - 3332 _

o1001 | RESERVED Boolean | Condition|FWonly|RESERVED | Jump addressAddressing | address |
lf condition met, jumps to the address. FORWARD jumponly allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end orthe loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we pian to support those is by supporting
three vector/scalar predicate operations of the form:

 PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PREDSETGT_#- similar to SETGTexceptthat the result is ‘exported’ to the sequencer
PREDSETGTE#- similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions: PRED_SETEO#-— SETEO

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257208

ATI Ex. 2107

IPR2023-00922

Page 74 of 260

ATI Ex. 2107
IPR2023-00922
Page 75 of 260

pa WARTGINAAT EE LIAN I Civ WAT VU UIVEEIN PeIR OV. INUIVE. PANG

(al) 24 September, 2007 4 September, 201548 | GEN-CXXXXX-REVA 2f of 50Bdese eb, Oy Ades verb

PRED_SETE1_#-SETE1
The export is a single bit - 1 or 0 that is sent using the same cata path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate veciors (in fact 8 sels because weinterleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the secand bit tells usif

we execute on 1 or 0. For example, the instruction:

PQADD_#RO,R1,.R2

Is only going to write the result of the ADD into thase GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

 {lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.4 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs whereverthere is a dependant read/write.

 The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bité

0 0 ‘absolute register’
0 4 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addtoit the loop_index and this becomes cur new addressthat we give to the shaderpipe.

The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed incex value is a 10
bit counter that is alse signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic’ so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we haveto co the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

Exhibit 2025.docR490_Sequencerdee 71636 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257209

ATI Ex. 2107

IPR2023-00922

Page 75 of 260

ATI Ex. 2107
IPR2023-00922
Page 76 of 260

la September, 2001 4 Seplember, 201578 28 of 50sentinel6.7kethe Shaders
In order to be able to debug the pixel/vertex shadersefficiently, we provide 2 methods.

|2aseaten E UAL EU VATE R400 Sequencer Specification PAGE

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
- count overflow

- constant indexing overflow
- register indexing overfiow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE: Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all norma! shader instructions of the clause are replaced by NOPs. Only debugexport instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), t is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(even if they occur before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shaderpipe to kill pixels using the following instructions:

 MASK_SETE

MASK_SETNE

MASK_SETGT

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257210

ATI Ex. 2107

IPR2023-00922

Page 76 of 260

ATI Ex. 2107
IPR2023-00922
Page 77 of 260

pat WIRRGHNAT EO UAE CUP WAT LIU VEIN Pein. INUJIVE. PMG

| 7-08 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 29 of 50Aes eas, nace,

MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Exhibit 2025.docR499_Sequencerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257211

ATI Ex. 2107

IPR2023-00922

Page 77 of 260

ATI Ex. 2107
IPR2023-00922
Page 78 of 260

oo ORIGINATE DATE EUIT DATE R400 Sequencer Specification PAGE
2 | September, 2001 4 September, 201578 30 of 50hf gs Abe cakes

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The biue line is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the twolines is shared. When pixels meets vertices the line turns white and the
boundaryis static until both vertices and pixels share the same “unallocated bubble”. Then the boundaryis allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 feich per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between twofetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(7?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by locking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einsti Oinst4 Einst2 Oinsto...

Proceeding this way hides the latency of 8 clocks of the ALUs. Also note thai the interleaving also occurs across
clause boundaries.

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257212

ATI Ex. 2107

IPR2023-00922

Page 78 of 260

ATI Ex. 2107
IPR2023-00922
Page 79 of 260

A

pa WRRGHINATO UAE Civ WAT LIU VEEIN Pein. INUIVE. PANE

| (al) 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 31 of 50

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State / bits for the base address of the GPRs, some bits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW te this store is 256 bits/clock. Just
before this output file are staging registers with write BWV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 cf those on the whole chip).

15. lJ Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vectorof |J’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixels parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0is the interpolated parameter at Pixel 0 having the barycentric coordinates |(0), J(Q) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with |}, B is the parameter value at V1
(interpolated with J} and C is the parameter value at V2 (interpolated with (1-I-J).

AOU = FL) -— 70)

AOL = J(D-— JO)

AO2F = 7(2)—1(0) Pq

A027 = J(2)—-J(0)

AO3= [(3)— [(0)

A037 = J(3) —J(0) P2 P3

P0=C+1(0)*(A-C)+J(0)* (B-C)

Pl= PO+A0L*(A—C)+A0LJ *(B-C)

P2=P0+A02I *(A—C) + A02T *(B-C)

P3 = P0+ A03I *(A—C)+ A0BJ *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2025.docR490_Sequencerdee 71636 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257213

ATI Ex. 2107

IPR2023-00922

Page 79 of 260

ATI Ex. 2107
IPR2023-00922
Page 80 of 260

po URIGINALE DATE EUIT DATE R400 Sequencer Specification PAGECat) | 24 September, 2001 4 September, 201578 32 of 50fi AOA §
Adds: 8

FORMAT OF PO's lJ: Mantissa 20 Exp 4 for! + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 20*2 + 8°6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constantattributes
Because ofthe floating point imprecision, we need to take special provisions/f all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that if A= B and B=C and C =A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,2,3 =A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-l-J = 0)) and
((1-J-1 = 0) or (1 = 0))) {

if(| != O){
PO=A;

} else if(l != 0) {
PO =B;

} else {
PO =C;

/rest of the quad interpolated normally
}
else

{
normal interpolation

}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following groupof vertices sent by
the VGT:

0123456789 1011 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 89 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 6263

The || markers show the SP divisions. In the event a shaderpipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257214

ATI Ex. 2107

IPR2023-00922

Page 80 of 260

ATI Ex. 2107
IPR2023-00922
Page 81 of 260

sal WIR GHINPAT IO LANE CUPP UATE VIO UINVECIN DISD. INU IVE. PAGE

| Cal) 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 33 of 50A. den OU A.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in

Figurei2Figure-peigure-t2. The area of the fixed-to-float converters and the VSISRs for this method is roughly |estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 115

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 1° 60.57813 u? perbit

rea of 96x8-deep Latch Memory 46524 \?
rea of 24-bit Fix-to-float Converter 4712 2 per converter

Method 1 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384
Figure 11:Area Estimate for VGT te Shader Interface

Exhibit 2025docR409_Sequencerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257215

ATI Ex. 2107

IPR2023-00922

Page 81 of 260

ATI Ex. 2107
IPR2023-00922
Page 82 of 260

4 September, 201578 34 of 50BM creecrbon ADEE A BAomeas

ot ORIGINATE UATE

Cat) | 24 September, 2001
VGE BLOCK

(IN PA)

 CUT DATE R400 Sequencer Specification PAGE

SHADER
SEQUENCER |

VECTOR ENGINE

YECICR ENGINE

Figure 12: VGTte Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1VV).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simpie round robin. The pararneter cache pointers are mapped in the following way:
4MSBs are the memory numberand the 7 LSBs are the address within this memory.

| MEMORY NUMBER | ADDRESS4 bits 7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_/7(a snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). Thefirst position received is going to have the PC address
00090000000 the second one 00010000000, third one 00700000000 and so on up to 111100009000. Then the next
position received (the 47°") is going to have the address 00000001000, the 4g" 00070001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2°V8_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257216

ATI Ex. 2107

IPR2023-00922

Page 82 of 260

ATI Ex. 2107
IPR2023-00922
Page 83 of 260

pai WRRGHINAT CO UAE CUP) WAP LIU VEIN Pein. INUJIVE. PANGE

| 7-08 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 35 of 50Aes eas, nace,

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export Is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel outputfifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the expert is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

 {ISSUE: Do we move the parameter caches to the SX?}

20. Export Types
The export type (or the location where the data should be put) is specified using the destination addressfield in the
ALUinstruction. Hereisalist of all possible export modes:

20.1 Vertex Shading
0:15 -16 parameter cache

16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 -Empty
48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - pasition
63 - sprite size export that goes with position export

(point_h, point_w, edgeflag, misc)

20.2 Pixel Shading

0 - Color for buffer 0 (primary)
1 - Color for buffer 4
Z2 - Color for buffer 2
3 - Color for buffer 3

4:7 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
41 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.

44:47 - Empty
48:59 -12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 - Z for primary buffer (Z exported to ‘aloha’ component)

Exhibit 2025.docR499_Sequencerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257217

ATI Ex. 2107

IPR2023-00922

Page 83 of 260

ATI Ex. 2107
IPR2023-00922
Page 84 of 260

24 September, 2001 4 September, 201548 36 of 50wiAcascanion SA BS ae crate21.aan Interpolation modes
21.1 Real time commands

We are unable to use the parameter memorysince there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 veciors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hcoked on the RBBM bus and are loaded by the CP using register
mapped memory.

2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_l0 register (in SQ) in
conjunction with the SND_XYregister (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereis a list of all the modes and how theyinteract
together:

ORIGINATE UATE EU VATE R400 Sequencer Specification PAGE

Gen_stis a bit taken from the interface between the SC and the SQ. This is the MSBofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 4.

Param_Gen_l0 disable, snd_xy disable, no gen_st — [0 = No modification
Param_Gen_lO disable, snd_xy disable, gen_st — !0 = Ne modification
Param_Gen_lO disable, snd_xy enable, no gen_st — |0 = No modification
Param_Gen_l0 cisable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_10 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness
Param_Gen_lO0 enable, snd_xy disable, gen_st — 10 = garbage, garbage,s,t
Param_Gen_l0 enable, snd_xy enable, no gen_st — lO = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s,t

21.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1** pass data to memory and then use the countto retrieve the data on the an pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequenceris going to
keep two counters, one for pixels and onefor vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex snader modes).

21.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_l0 is enabled, the data will be put in the x field of
the 2" register (R1.x), else if GEN_INDEXis set the data will be put into the x field of the 1* register (RO.x).

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257218

ATI Ex. 2107

IPR2023-00922

Page 84 of 260

ATI Ex. 2107
IPR2023-00922
Page 85 of 260

at WREGINATO DALE CLP VAP LAO UIVIICIN PAIRED VINE. PAW

(al) 24 September, 200% 4 September, 201548 GEN-CXXXXX-REVA 37 of 50
A POA BA j

. |
AUTO STGO INTERPOLATORS

COUNT -

| STG1 | |i | I| | |

AUTO COUNT cocoa |

The Auto Count Value is

MUX broadcast to all GPRs.It is
} loaded into a register wich has

its LSBs hardwired to the
GPR number(0 thru 63). Then

if GEN_INDEX is high, the
mux selects the auto-count

value andit is loaded into the
GPRsto be either used to

retrieve data using the TP or
GPRO sent to the SX far the RB touseit to write the data to

memory

Figure 13: GPR input mux Control

22. State management

programs as they enter the last ALU clause.

22.1 Parameter cache synchronization

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exporis its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vectorbit asserted, the sequencer wvill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to ane and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the lJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to ihe GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
in order to import vertex indexes, we have 16 8x96 staging registers. These are loaded aneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Exhibit 2025docR4o9-Sequencerdec. 71630 Bytes*** © AT! Confidential. Reference Copyright Noiice on Cover Page © ***

AMD1044_0257219

ATI Ex. 2107

IPR2023-00922

Page 85 of 260

ATI Ex. 2107
IPR2023-00922
Page 86 of 260

 URIGINALE DATE EUIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201578 38 of 50fi AOA § 24.aeisters
24.1 Control

REG_DYNAMIC
REGSIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS

CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

24.2 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BAS
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE
VS_SIZE
PS_NUM_REG

VS_NUM_REG
PARAM_SHADE

PROVO_VERT
PARAM_WRAP

PS_EXPORT_MODE

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
interleaved, separate
start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2}

This is where the CPF puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
2096°4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EORT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occurat clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight & bit pointers to the location where each clauses control program is located
base pointer for the pixel shader in the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader(# of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader(cntl+instructions)
size of the vertex shader(cnti+instructions)
number of GPRsto allocate for pixel shacer programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0=flat, 1
= gouraud)
0: vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode

1xxxx : Multipass mode
lf normal, bbbz where bbb is how manycolors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

PARAM_GEN_I0

Exhibit 2025. docR400-Secuencerdes

0: position ie vector), 1: position (2 vectors), 3:multipass

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)
Do we overwrite or not the parameter 0 with XY data and generated T and S values

71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257220

ATI Ex. 2107

IPR2023-00922

Page 86 of 260

ATI Ex. 2107
IPR2023-00922
Page 87 of 260

| Raa
GEN_INDEX

WIAKGINAETO UAL CLP) WAP DAO UIVIITIN PIR. INV. PASE n

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 39 of 50Bf on w PO A IAogwee

Auto generates an accress from 0 to XX. Puts the results into RO-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (§ bits}Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZ

Cc

F_BOOLEANS
CF_LOOP_COUNT
CF_LOOP_START
CF_LOOP_STEP

25. DEBUG Registers

25.1 Context

DB_PROB_ADDR
DB_PROB_COUNT
DB_PROB_ BREAK

DB_INST_COUNT
DB_BREAK_ADDR

DB_CLAUS

MODE_ALU_{0...7}
DB_CLAUSE

 _MODE_FETCH_{O...7}

25.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_LTSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

E_VTX (8 bits) Size of the logical constant store for vertex shaders
ST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicatesis

always executed).
256 boolean bits

32x8 bit counters (number of times wetraverse the loop)
32x8 bit counters (init value used in index computation)
32x8 bit counters (step value used in index computation)

instruction address where thefirst problem occurred
number of problems encountered curing the execution of the program
break the clause if an error is found.

instruction counter for debug method 2
break address for method number 2

clause moce for debug method 2 (0: normal, 1: addr, 2: kill)

clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

26.1 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it meansthat SQ is going to broadcast the sameinformation to all SP instances.

26.1.1 SC to SQ: IJ Control bus

This is the contral information sent to the sequencer in order to control the |J fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
renderstate.

Exhibit 2025docR4o9-Sequencerdec.

71630 Bytes*** © ATI Confidential. Reference Copyright Noiice on Cover Page © ***

AMD1044_0257221

ATI Ex. 2107

IPR2023-00922

Page 87 of 260

ATI Ex. 2107
IPR2023-00922
Page 88 of 260

ORIGINATE DAIE EUIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201578. 40 of 50

| Name | Direction Description
$C_$Q_q_ wrmask | SC-SQ 4 Quad Write mask left to right
$C_SQ_lod_correct $c—SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_param_pirO i SC-SQ 14 P Store pointer for vertex 0
$C_SQ_param_ptr1 SC—SQ 11 P Store pointer for vertex 1
$C_SQ_param_pitr2 | SC-—SQ 14 P Store pointer for vertex 2 |
$C_SQ_end_of_vect sc—sQ 1 End of the vector |
$C_3Q_store_dealloc | SC>SQ 1 Deallocation token for the P Store
$C_SQ_state | $C-SQ 3 State/constant pointer
SC_SQ_valid_pixel | SC-—SQ 16 Valid bits for all pixels
SC_$Q_null_prim Sc—-SQ 4 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim sc—sQ i End Of the primitive
SC_SQ_send_xy Sc—-sQ 4 Sending XY information [XY information is going to b

L E _ sent on the next clock]
SC_SQ_prim_type sc—-sQ 3 Reali time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite read
their parameters from GEN_T and GEN_S GPRs.
Q00 : Normal
011: Real Time
100: Line AA
101: Point AA

110: Sprite
SC_SQ_new_vector Sc—SQ 4 This primitive comes from a new vector of vertices

Make sure that the corresponding vertex shader ha
finished before starting the group of pixels.

$C_SQ_RTRn SQ>SC 1 Stalls the PA in n clocks

 $C_SQ_RTS | SC--SQ 4 SC ready to send data

26.1.2 SQ to SP: interpolator bus
Name | Direction Bits|Description
$SQ_SPx_interp_prim_type SQ—SPx 3 Type of the primitive

000: Normal
011: Real Time
100: Line AA
101: Point AA

110: Sprite
$Q_SPx_interp_ijline SQ--SPx 2 Line in the IJ/XY buffer to use to interpolate

| SQ._SPxinteromode | SQ—SPx 4 0:
| _ 1 Use center buffer
SQ_SPx_interp buff swap SQ—SPx 1 Swap the IJPCY buffers at the end of the interpolation
SQ_5Px_interp_gen_|0 | SQSPx 4 Generate 10 or not. This tells the interpolators not to |

| use the parameter cache but rather overwrite the data |
with interpolated 7 and 0. Overwrite if gen_10 is high. |

26.1.3 SQ to SX: Interpolator bus
Name | Direction Bits|Description
$Q_SPx_interp_flat_vtx SQ-+SPx 2 Provoking vertex for flat shading

|SQ_SPx_interp_flat_gouraud | SQ->SPx 1 Fiat or gouraud shading
$Q_SPx_interp_cyl_wrap $Q->SPx 4 Wich channel needs to be cylindrical wrapped

| SQ_ SXx_pirimuxd | SQ>SXx 11 Parameter Cache Pointer |
|| SQ_SXx_ptr2rauned SQ—SXx 11__| Parameter Cache Pointer
|| SQ_SXx_ptrorux2 | SQ-+»SXx 11 Parameter Cache Pointer
| SQ_SXx_RT_switch | SQ->SXx 1 Selects between RT and Normal data

|| SQ_SXx_pe wre en SQ—SAX i Write enable for the PC memories
|| $Q SXx po wr addr | $Q--SXx Zi Wote address for the PCs

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257222

ATI Ex. 2107

IPR2023-00922

Page 88 of 260

ATI Ex. 2107
IPR2023-00922
Page 89 of 260

pe WRRGHINATO UAE Civ WAT WOU VEIN Paik. INUIIVE. PANE

| 7-08 | 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 41 of 50A 2 a

26.1.4 SQ to SP: Staging Register Data
This is a broadcast bus that sencs the VSISR information to the staging registers of the shaderpipes.

Name Direction Bits|Description
SQ_SPx_vgt_vsisr_data SQ—SPx | 96 Pointers of indexes or HOS surface information
$Q_SPx_vgt_vsisr_double SQ—SPx Li |_0: Normal 96 bits per vert 1: double 192 bits per vert

SQ_SP0_data_valid SQ—SPO | 1 | Data is valid
SQ_SP1_data_valid _8Q—-5Pi1 4 | Data is valid
SQ_SP2_data_valid SQ—SP2 1 Datais valid
SQ_SP3_data_vailid SQ--SP3 i4 | Data is valid

26.1.5 PAto SQ: Vertex interface

26.1.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer)in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Description

_Pointers of indexes orHOS surfaceinformation
0: Normal 96 bits per vert 1: double 192 bits per vert
Indicates the last VSISR data set for the current process vector (for double vector
data, “end_of_vector" is set on the second vector)

Name Bits

PA_SQ_vgt_vsisr_data - 96
-PA_SQvgt_vsisr_double | 1
PA_SQ_vgt_end_of_vector 1

PA_SQ_vgt_vsisr_valid 1 Vsisr data is valid
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector’is high.
PA_SQ_vgt_send 1 Data on the VGT_S@is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)|
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26.1.5.2 Interface Diagrams

Exhibit 2025docR490_Sequencerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257223

ATI Ex. 2107

IPR2023-00922

Page 89 of 260

ATI Ex. 2107
IPR2023-00922
Page 90 of 260

HAONANDSASHACVHS

wx©BBE19A0DUOBOHONJUGAdoDsouslejey‘jeMUapPYUOD[Ly@+scools

sopiesuenbes“gopeoOnO20cMATRG

pues76aOsve

ZMOLSTA10ONELfnnnZTTaPomYSTSse

i
ElpendOHfaZLlana|

wasasndams

PXLOL,{tifxxacncnenmncenenemenensenemeinnanerssp¥VL¥dESISA

0GJ0Zr

q9vduoljeoloadgisouanbesoory
xySEGLO?10QW8]GESPalvdlida

 TVIELVNdadoAALLOdLOUdd

LO0ZJequaides7zalvdSiVYNIDI8O

AMD1044_0257224

ATI Ex. 2107

IPR2023-00922

Page 90 of 260

ATI Ex. 2107
IPR2023-00922
Page 91 of 260

vex@BBE1BAODUOBOONJUBUAdODsouslajey"JENUSPIJUOD[LW@xxseMaovaz
 sopuesuerbes“poresopGoboTaig

AMD1044_0257225

ATI Ex. 2107

IPR2023-00922

Page 91 of 260

‘BOELAIU]|JOAHSVdJo)Weibel[esho7paejlsq|Sinbig
NOISSINSNVWaLsdOlsYaNds_

NOISSIWNSNVaLSLavVis-ddadATaHoOdd
NOISSIWSNVadLsdOLSddATdOdd

adOdIgRLdWaOdIdLNOSOdT4

 ZULOsTULyOs0ULYOsULOs

PLUTO0S10ey|VASEXXXXXO-NADSESLOcJequiejaesp|L00z‘equiajdespz

 3OvdWON‘AzaLNSWND0daLvdLidsALVGSLVNIOINOTVIGSIVAWSdCdOAATLOaLOdd

Tr|

ATI Ex. 2107
IPR2023-00922
Page 92 of 260

URIGINALE DATE

 CUT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201578 44 of 50i OPA 6

26.1.6 SQ to CP: State report
Names—‘—S | Directionsd Bits Description ee
SQ_CP_vrix_ state SEQ-—+CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ-sCP 3 Oldest pixel state still in the pipe

26.1.7 SQ to SX: Control bus

‘Name—i(‘sé!OOC*(r*CDirvectiOonN Bits|Description
SQ_SXx_exp_Pixel SQ—SxXx 1 1: Pixel

0: Vertex |

$Q_SXx_exp_Clause SQ—SxXx 3 Clause number, which is needed for vertex clauses |
SQ_SXx_exp_State | SQ-—-SXx 3 State ID |
$Q_SXx_exp_exportID SQ—-SXx 1 ALU ID

every time the sequencer

26.1.8 SX fo SQ: Outputfile control

Name Direction [Bits|Description—
SXx_SQ_Export_count_rdy SXxX—SQ 1 Raised by SX0to indicate that the following twofields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx-SQ | 1 Specifies whetherthere is room for another position.
SXx_SQ_Export_Buffer SXx—S8Q 7 Specifies the space available in the output buffers.

0: buffers are fuil

4: 2K-bits available (32-bits for each of the 64
pixels in a clause)
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

26.1.9 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the addressin the registerfile where to write
the fetch return data.

Name Direction Bits|Description
TPx_SQ_data_rdy TPx— SQ 1 Data ready
TPx_SQ_clause_num TPx— SQ 3 Clause number

TPx_SQ_Type TPx—+ SQ 1 Type of data sent (O:PIXEL, 1: VERTEX)
SQ_TPx_const SQ—TPx 48 Fetch state sent over 4 clocks (192 bits total)
$Q_TPx_instuct $SQ-—>TPx 24 Fetch instruction sent over 4 clocks i
SQ_TPx_end_of_clause SQ—TPx 1 Last instruction of the clause
SQ_TPx_Type _|SQ—TPx 1 Type of data sent (O:PIXEL, 1: VERTEX)
SQ_TPx_phase SQ—+TPX 2 Write phase signal
$Q_TPO_lod_correct SQ->TPO 6 LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pmask SQ—TPO 4 Pixel mask 1 bit per pixel

_SQ_TP1_lod_carrect _LSQ>TP1 |6|LODcorrect 3 bits percomp2components per quad
SQ_TP1_pmask SQ—TP1 4 Pixel mask 1 bit per pixel _
$SQ_TP2_lod_correct SQ—TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ-3TP2 4 Pixel mask 1 bit per pixel

SQ_TP3lodcorrect|SQ>TP3 6 |LOD correct3bits per comp2componentsperquad
$Q_TP3_pmask SQ--TP3 4 Pixel mask 1 bit per pixel

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257226

ATI Ex. 2107

IPR2023-00922

Page 92 of 260

ATI Ex. 2107
IPR2023-00922
Page 93 of 260

at WRRGINA TO DATE Cub LAE DAUIVEEIN PeFRIC VV. INUIEVE. FANS

Cal) 24 September, 2001 | 4 September, 201548 GEN-CXXXXX-REVA 45 of 50
: Risen OCA Bde esky, ~ i

SQ_TPx_clause_num SQ—TPx 3 Clause number a
$Q_TPx_write_gpr_index $Q->TPx 7 index into Registerfile for write of returned Fetch Data

26.1.10 TP to SQ: Texture stal/

The TP sendsthis signal to the SQ whenits input buffer is full The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

$Q_SP_fetchStall

SQ_SP_wr_addr | |

Sui
|||
|

 Name Direction Bits|Description
TP_SQ_fetch_stall TP— SQ 4 Do not send more texture requestif asserted

26.1.11 SQ to SP: Texture stall

Name Direction | Bits _D
$Q_SPx_fetch_stall SQ-+SPx 14 | D

escription
o not send more texture requestif asserted |

26.1.12 SQ to SP: GPR; Parametercache-centreLand auto counter

Name | Direction Bits|Description
SQ_SPx_gprwr_addr SQ—SPx 7 Write address
$Q_SPx_gpr_rd_addr SQ—SPx 7 Read address
SQ_SPx_gpr_red_addren =| SQ>SPx 1 _| Read Enable |
$Q_SPx_gpr_wewr addren | SQ->SPx 4 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC |

reads and writes)
SQ_SPx_channel_mask SQ—SPx 4 The channel mask
$Q_SPO0_pixel_mask SQ—SP0 4 The pixel mask
SQ_SP1_pixel_mask | SQ—SP1 4 The pixel mask
SQ_SP2_pixel_mask SOQ-—-SP2 4 The pixel mask
$Q_SP3_pixel_mask / SQ>S$P3 4 The pixel mask
$Q_SPx_gpr_input_mux SQ—SPx 2 When the phase mux selects the inputs this telis from

which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.

$Q_SPx_index_count | SQ--SPx 12?|Index count, common for all shader pipes

Exhibit 2025.docR490_Sequencerdee 71636 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257227

ATI Ex. 2107

IPR2023-00922

Page 93 of 260

ATI Ex. 2107
IPR2023-00922
Page 94 of 260

la September, 2001 4 September, 201548 46 of 50eABAcotoil1.13 SQ to SPx: Instructions
ORETGINATLE UATE EU VATE R400 Sequencer Specification PAGE

Name | Direction Bits|Description
$Q_SPx_instruct_start | SQ—SPx 1 Instruction start

$Q_SP_instruct | SQ—>SPx 21 Transferred over 4 cycles
| 0: SRC A Select 2:0

SRC AArgument Modifier 3:3
SRC A swizzle 11:4

| VectorDst 17:12
Unused 20:18

1: SRC B Select 2:0

| SRC B Argument Modifier 3:3
SRC B swizzle 11:4
ScalarDst 17:12

| Unused 20:18

2: SRC C Select 2:0

SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vector Opcode 4:0
| Scalar Opcode 10:5

Vector Clamp 11:11
| Scalar Clamp 42:12

Vector Write Mask 16:13
Scalar Write Mask 20:17

SQSPx_exp exportiD | SQ-SPx 4 ALU ID
$Q_SPx_stall | SQ—>SPx 1 Stall signal |

3 Each set of four pixels or vectors is exported over |

$Q_SPx_export_count | SQ—SPx
eight clocks. This field specifies where the SP is in |

; fo that sequence.
SQ_SPx_export_last | SQ>SPx 1 Asserted onthe first shader count of the last export |

of the clause

SQ_SP0O_export_pvalid | SQ—SPO 4 Result of pixel kill in the shader pipe, which must b
cutput for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe

 | clock

SQ_SP0_export_wvalid | Sa—sPo 2 Specifies whether to write low and/or high 32-bit word |
of the 64-bit export data from each of the 16 pixels or |

= pf ___|vectors
SQ_SP1_export_pvalid“SOs8r1 4 Result of pixelkill in theshaderpipe,which must b

cutput for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe

| clock

SQ_SP1_ export_wvalic | SQSP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels o
vectors

SQ_SP2_ export_pvalid | SQ>SP2 4 Result of pixel kill in the shader pipe, which must b
output for all pixel exports (depth and all colo
buffers). 4x4 because 16 pixels are computed pe

| clock

SQ_SP2_ export_wvalic | SQ—>SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels o

| vectors
SQ_SP3_ export_pvalid | SQ-SP3 4 Result of pixel kill in the shader pipe, which must be|

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257228

ATI Ex. 2107

IPR2023-00922

Page 94 of 260

ATI Ex. 2107
IPR2023-00922
Page 95 of 260

WRROHNAT OE DAE

Cal
EU) WAP

DO UNVECIN Paik OV. INU.

GEN-CXXXXX-REVA

24 September, 200% 4 September, 201548 47 of 50BAe ni Ar Ra ewy eis

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock ; /

SQ_SP3_ export_wvalid SQ—SP3 2 Specifies whetherto write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

26.1.14 SP to SQ: Constant address load/ Predicate Set

Name Direction | Bits|Description
SP0_SQ_const_addr SP0—-SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
“SPO_SQvalid |SPOSQU1Data valid”
SP1_SQ_const_addr SP1-SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_8Q_valid SP1—SQ 1 Data valid
SP2_SQ_const_addr SP2-SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2—SQ 1 Data valid
SP3_SQ_const_addr SP3--SQ 36 Constant address load / predicate veciar load (4 bits only)

to the sequencer
SP3_SQ_valid SP3—SQ 14 Data valid

26.1.15 SQ to SPx: constant broadcast

Name Direction —__| Bits|Description -
$Q_SPx_constant SQ--SPx | 128|Constant broadcast

26.1.16 SPO to SQ:Kill vector load

Name Direction | Bits|Description
SP0_SQ_kill_vect SP0—-SQ 4 Kill vector load
SP1_$Q_kill_vect SP1-SQ 4 Kill vector load
SP2_SQ_kill_vect SP2—SQ 4 Kill vector load
SP3_SQkillvect SP33SQ,(4. Killvectorloadti(i‘“‘O™S™S™S™*”*”;C‘Cs

26.1.17 SQ to CP: RBBM bus

Name Direction Bits|Description
SQ_RBB_S its” SQ-CP)|i [ReadStrobe t—(‘;O;CO;O;*r
SQ_RBB_rd SQ—CP 32 Read Data
$Q_RBBM_onrirtr SQ—CP 1 Optional
$Q_RBBM_rtr SQ—>CP 4 Real-Time (Optional)

26.1.18 CP to SQ: RBBM bus

Name Direction | Bits|Description
rbbm_we CP—+SQ 1 Write Enabie
rbbm_a CPSQ | 15 Address -- Upper Extent is TBD (16:2)
rbbm_wad CP>SQ 32 Data
rbom_be CP->SQ i 4 Byte Enables
rbbm_re CP-»SQ 1 Read Enabie

rbb_rsO CP-+SQ [1 Read Return Strobe 0
rbb_rst CP>SQ 1 Read Return Strobe 1
rbb_rd0 CP—SQ | 32 Read Data 0
rbb_rdt CP+SQ 32 Read Data 0
RBBM_SQ_soft_reset CP>SQ 4 Soft Reset

Exhibit 2025. cocR4oo_Sequencer.des 71630 Bytes** © ATI Confidential. Reference Copyright Noiice on Cover Page © ***

AMD10440257229

ATI Ex. 2107

IPR2023-00922

Page 95 of 260

ATI Ex. 2107
IPR2023-00922
Page 96 of 260

la September, 2001 4 September, 201548 48 of 50|2aseiten EUALE EU VATE R400 Sequencer Specification PAGEcatia SOE Arsen

27.

27.

1.

10.

11.

bil les of program executions

1.1 Sequencer Contro/ of a Vector of Vertices

PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
® space was allocated in the position cache for transformed position before the vector was sent
e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when wereceive the vertex vector.

e the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM whenthe CP is done loading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
e at this point the vector is removed from the Vertex FIFO
e the arbiter is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to co (ie no pixels are in the pixel fifo).

SEQ allocates spacein the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP registerfile over the RE_SP interface (which has a bancwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFO of SU0, SU1, SU2, and SU3 is written the first cycle
6 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
6 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
e RF3 of SUC, SU1, SU2, and SUS is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does noi wait for requests made to ihe Fetch Unit to complete; it passes the registerfile write index for

the fetch data to the TU, which will write the data to the RF asit is received
* once the TU has written all the data to the registerfiles, it increments a counterthat is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
* position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (whichis

shared with ali four shader pipes) back to the PA’s position cache
e A parameter cache pointeris also sent along with the position data. This tells to the PA wherethe daiais

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257230

ATI Ex. 2107

IPR2023-00922

Page 96 of 260

ATI Ex. 2107
IPR2023-00922
Page 97 of 260

Cal

12.

WRPGUINATO VAIO ELE) WAP DVUUMIECIN P-IRED VINO. PAS

24 September, 2001 4 september, 201548 GEN-CXXXXX-REVA 43 of 50BA ose DV A A os by

6 the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full
6 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

6 parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ dealiocates that space when there is no

longer a need for the parameters(it is told by the PA when using a token).
6 the ASM arbiter will prevent a packet from starting on ASMif the pararneter cache(or the position buffer

if position is being exported) is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1.

10.

11.

12.

13.

As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

« At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.
the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
@ the state pointer and the LOD correction bits are also placed in the Pixel FIFO
@ the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

SEQ allocates spacein the SP registerfile for all the GPRs used by the program
6 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
@ SEQ will not allow interpolated cata to be sent to the shader until space in the register file has been allocated

SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO}
® note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
@ the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
6 all other information (such as quad address for example) traveis ina separate FIFO

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
@ TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO0O does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received

6 once the TU has written all the cata for a particular clause to the registerfiles, it increments a counter thatis
associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO andstart to execute the ALU clause

ASM) accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM7 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
« pixel data is exported in the last ALU clause (clause 7)

6 tis sent to an output FIFO where it will be picked up by the render backend
* the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Exhibit 2025docR490_Sequencerdoc 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *««

AMD1044_0257231

ATI Ex. 2107

IPR2023-00922

Page 97 of 260

ATI Ex. 2107
IPR2023-00922
Page 98 of 260

eh ORIGINATE UATE EU VATE R400 Sequencer Specification PAGECat) 24 September, 2001 4 September, 201548 50 of 50seat SOABA ely |
27.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. The register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need to do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both iJ buffers for center + centroid interpolation?

Exhibit 2025docR460_Gequencerdes 71630 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257232

ATI Ex. 2107

IPR2023-00922

Page 98 of 260

ATI Ex. 2107
IPR2023-00922
Page 99 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 4 of 52ae eeaiey ot iv
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.108

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\perforce400\doc_llb\designiblocks'sq\R400Sequencer.dac
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS - as
es : Signature/Dateuu Name/Dept Oe

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyrightin this |.
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2026.doeR400_Sequencerndec 75288 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ***

ATT 2026

LGv. ATI

IPR2015-00325

AMD1044_0257233

ATI Ex. 2107

IPR2023-00922

Page 99 of 260

ATI Ex. 2107
IPR2023-00922

Page 100 of 260

ORIGINATE DATE

24 September, 2001

 EDIT DATE

2 0f 52 R400 SequencerSpecification PAGE

4 September, 201525SE AB thew

Table Of Contents

5.3.1 R400 Constant management ooo ccc ecco esceecece c eee eeee coos ee ee ees cee eetneeveneseees.... 1846

 5.3.2 Proposal for R400LE constant management oe eeeeet WOE

S34 Free List Blockce ee eee ee ees seeenaey setteeAIG

5.3.5 De-allocate Blok occee ee ceeeeeeePRB
5.3.6 Operation of Incremental MOCELonceccc cece cee sce ece eevee vec etes tees tenets 2220

 MULTIPASS VERTEX SHADERS (HOS

9, REGISTER FILE ALLOCATION............. oe ee
10. FETCH ARBITRATION. ..0.cc.:eesceencesteerereessesensenecentesenenyessusesmesenesruseeneresssupessenecsntemmeseneess 3028
iL ALU ARBITRATION......
12. HANDLING STALLS.....
13. CONTENT OF THE RESERVATION STATION FIFOS..

4. THE OUTPUT FILE..
IJ FORMAT ooo ceeceeeeeeeeeeeenseeenneees

15.1 Interpolation of constant attbutes oooeeeee eee ete e cet e ete nett ittteetett ee 3230
16. STAGING REGISTERS. q...o.ecececceeecceseeeressesseeenennenesssesenenssuunennenessenuunestsstuennentenensaenesennusss 3230
17. THE PARAMETER CACHE. ..nccccccccccccscecescrssseesssntescenrennecesunrssenecessenetsrersanenernestineseransess 3432

18 VERTEX POSITION EXPORTING... cccccoccccseesnerensssnnnnennescanausunnseusssannnnannsssnnnnunnsess 3532

Exhibit 2028,dochUo9_Sequencerdos 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

©__ OVERVIEW cssssssssneesssssessusssssssesssssssssunnnnsssssuusesususunsnsessusiussunanenseesesussssssnnnneeessssutuensnsaeee8
Top Level Block DIQGraIeeeceee een eeeee ee tbe ten eette tube eetetyoeepttettentutteieeeeectiess 108 |

5.5 Real TimeCommands...2324
8.6 Constant Waterfalling oocece cence ee ees ueceeeeesessneesenesssegesststuuseusneetuuecustsetunsisestsuntenses 2324 —

AMD1044_0257234

ATI Ex. 2107

IPR2023-00922

Page 100 of 260

ATI Ex. 2107
IPR2023-00922

Page 101 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

é 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 3 of 52
19. EXPORTING ARBITRATION oo eeccsecepeseesseeseseresesteeeeeees sos tesmesnesssnuseveneessnerserstesreneenencats 3532
20. EXPORT TYPES.cece 3532

20.1 Vertex SHAG.ecece cece eee t nee ce nee p ent bbe ttt vb bab bcos stg cettetunet ete teesttstteseetecesss 3532
20.2 Pimel SnACINGeeeee eeeeeenett ee 3533
21. SPECIAL INTERPOLATION MODES. 0. ecccecceecccccccceencsnessnnnnnensannnnnensssusurnnenrerenensnneneses 2633

Real time commands ow.

QL BL Vertex SRaderS noone cece cveeesee css sesceuasssastasatusstutussagusigisuetitstustuiitetcissttitssss 3724

21.3.2 Pixel shadersnecee cece ees sess ce eases sobs ee bee tut ets eetstsseseeiesss 3734
22, STATE MANSGEMENT.......... iT34
22.1 Parameter cache SVNCHroniZationeeeete eee cette ete nnettenesecetesteee 3/34
23. ¥Y ADDRESS IMPORTS... cccccecccsscsceceresseenerescsnsnnnatensesseenscensnssesusennnssseatenenaneesunnnnenesens 3835
23.1 Vertex Indexes IMPOMSoeeect e te tet t ttt tbhbbnbesttctasetitentiss 3835
24. REGISTERS 0. ieccccceneee . 2838
241 -
PAZ COMOXceeeee eee eee ee anettebette et A hb bbibtigttttietctteteeesusssennesetesess 3835
25. DEBUG REGISTERS... ...ccccccccccessneesceersnsnnsestsnnnnnssesonmnnnensssnnnnnenrsunsanenesnsesstunsunnntstunronenetens 3936
25.1 Context... 3936
252 Control3926

26. INTERFACES.accccccsccsececsessscusessesesscsssesessessasaesunnenitaesaninssasssaaunutseesssnainanessanantaases 3936

26.1 External INterhacescccccccccccscecsescscsssussnessvsssesesusessessupstnsstutetisivssssnusunessiess 3936

26.1.1 SC to SQ: ld Control pusocceeeeecssencasesvevssssneosesvanvevatatcssuneevivaevess 3932

LZ SQ to SP: interpolator DUS onc cccccccceccecesecscencuecnsssusuesseut sess tesssususssttuasusitstensessussiss 4237

3

SQ to SPx: INStrUCHIONS ooeeeeee eee ees
SP to SQ: Constant address load/ Predicate S

SQ to CP: RBBM bus...

26.1.18 CP to SQ: REBM DUGoiesc ee tee estes tetetstetisutstittesssututiessitiestsitutusseutneeesices 4g44
27. EXAMPLES OF PROGRAM EXECUTIONS... sec sseeseerserseeeecereteneeseersrnesenereessenerenee reuse 4945

271.1 Sequencer Control of a Vector ofVertices4545

Exhibit 2026.doch409_Sequeneerias 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257235

ATI Ex. 2107

IPR2023-00922

Page 101 of 260

ATI Ex. 2107
IPR2023-00922

Page 102 of 260

ORIGINATE DATE

24 September, 2001

EDIT DATE

 4 September, 201525 4 of 52PLA Bi fhe eb R400 SequencerSpecification PAGE

 27.1.2 Sequencer Control of a Vector of Pixels ooo cece ceee cece cceseeeeseessesezsesessvsstnsusenseses 5046

QT LS NOS oa ecee ccc ceseecescessuseseususseusuesuseesussusuesssssisusuasusiunsnisiiisssipisutustsitustususisssustnsss iiss 54147
28. OPEN ISSUES. D14ae

66 Predicated. Instruction-suppert FOP--OxLUPe-GIAUG86 -reeeererereerreerrrererrrreerrrerrrerrrrererrerrrrr eA

ALUARBITRATION -cccciiaerriienvrennnnnnerrrrninerienmrrrirarirnrraTE |

15.1 nterpolation-of- constant attbute sceereeeeeeeeeererere2)

19. —EXPORTINGARBEARATOAcccreneevart

Exhibit 2028.doch4o9_Sequencerdos 75208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257236

ATI Ex. 2107

IPR2023-00922

Page 102 of 260

ATI Ex. 2107
IPR2023-00922

Page 103 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 5 of 52- - BR ms AEE) A Rian o,

20.2-——PX@l- SAGGenrerssoeererres“perp renner rrrrrrrrrrrrerrrrnrrrrererrrrreeerrrrirrerrerrrierrrrrererrer Ot

24.3-1——Verex-shaders ans eeeeeeneeneeeetienenoS

243.2-——Pixel shadersnannies

4.-REGISTERS-
24,..ontrol....theEethe

Exhibit 2026.doch409_Sequeneerias 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257237

ATI Ex. 2107

IPR2023-00922

Page 103 of 260

ATI Ex. 2107
IPR2023-00922

Page 104 of 260

Vat ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE24 September, 2001|4 September, 201525 6 of 52SEPA AB han

aan4E| 28----OREN-ISSUESsssssssssricanensinnneresinenes

Exhibit 2028.doch4o9_Sequencerdos 75208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257238

ATI Ex. 2107

IPR2023-00922

Page 104 of 260

ATI Ex. 2107
IPR2023-00922

Page 105 of 260

 DOCUMENT-REV. NUM. PAGE | oe
ORIGINATE DATE EDIT DATE

24 September, 2001 4 Seplember, 201525 GEN-CXXXXX-REVA 7 of 52Bale embs “SP A BAe i

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date . October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2004
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date:March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Exhibit 2026.doch400_Sequencerdee

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes madein the 10/18/01 contro!
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ—-SPO interfaces. Changed delta
precision. Changed VGT--SP0 interface. Debug
Methods added.
interfaces greatly refined. Cleaned up the spec.

Addedthe different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—-SQ interface. Added content on consiant
managemem. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_cail instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byle allanement.
Updated the interfaces and added a section on
exporting rules.

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257239

ATI Ex. 2107

IPR2023-00922

Page 105 of 260

ATI Ex. 2107
IPR2023-00922

Page 106 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201525 8 of 52i Rave, PAA A Aine,

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and ail eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257240

ATI Ex. 2107

IPR2023-00922

Page 106 of 260

ATI Ex. 2107
IPR2023-00922

Page 107 of 260

sepuscuenbespopylOrG22WINS

vax@BHC]1BAODUOSOHONJUBUAdODsoUdIaJOY“JENUSPHUOD[Ly@«8aseraMITALIA0Asouonbeg[e1eueyi]easy

 --—_oyGBS")LUBISUEDeeeeeay|beayeelgeeoay|a s_
jomAL

AAAPETKLfoae—aVLVOBLMXL;|go/od+|d0/OdfydO/Odfk| POOReTEee__fOnounSd7r||GUBINIOd|vee+FLWLSHOLE|Wevedsdsds|/ LSNIXAL||tOx—eea——Cooa>|AMOLSLSNIMELNI:MELLNIee]SELLNI|Be

|L_ LvolNI~qiLOM!dvessouorifmomiiz|peayJo1
“ouuniooSLNVLSNOO|49

:LSPennSPreyyPCGSeeCG106WAREOOKXKI-NADGEGLOEAeQuieyaesypLoog‘equiaydespzdvd‘ANNAdaLNSIINDOdS170LidsSLYSLVYNISIYO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257241

ATI Ex. 2107

IPR2023-00922

Page 107 of 260

ATI Ex. 2107
IPR2023-00922

Page 108 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201525 10 0f 52Adee, CON A AS

|.1 Top Level Block Diagram

veriex/pixel vevtor arbitrator
Possible delayfor available GPR’s[yg

ey
IPextare clause 0

: eservationstation
ALU clause C

}<-——feservation station

 FIFO Pened Pexture clause 1
ee eservationstation

efLU clause t fexture arbitrator

reservationstation
pyexture clause 2

eservation station

FIFO. Be[FRO exture clause 3eservation station

exture arbitrator
ALU clause 2
reservation station

: FIFO
JALU clause 3 Local
keservation station. aS! oO >

[Fre (Pextute clause 4ee reservation station.i FIFO
ALU clause 4
keservationstation ARS: j —s\ [Pextuce clause 5

eservation station
La FIFOU clause 5 J

res ervation station ARS|LOT Texture clause 6
; HFO eservation station

LeggALUclause 6 « “
foscrvation station rao ——_—| 4 (Pexture clause 7

FIFO eservation stationi g Ola
Legg—ALU clause 7kescrvation station

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and onefor pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257242

ATI Ex. 2107

IPR2023-00922

Page 108 of 260

ATI Ex. 2107
IPR2023-00922

Page 109 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 11 of 52 Sil A ses

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A smail command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packetis put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machinefirst decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

if the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packetfinally reaches the last ALU machine(7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and onefor the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the registerfiles.

Exhibit 2026.doch409_Sequeneerias 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257243

ATI Ex. 2107

IPR2023-00922

Page 109 of 260

ATI Ex. 2107
IPR2023-00922

Page 110 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201525 12 of 52Rdimee, PEN AB Bh

1.2 Data Flow graph (SP)

|

 instruction

RegisterFile ‘OEee

2b | (sealat mmputfoutputr _¥1
pipeline stage |

 tel fre requ ~~

instruction Register File

7 scalarinput/output

pipeline stage
 rT ana

MAG [text equed —>~

Register File

 ScalarUnit

instruction I
BpepSinxey”quest
|

texture

\

ByWo)BjepSARUL| pipeline stage |

Register File oi
|I i

fexture re} pst | »
instruction

ee o

=I)

¢textureaddress1&

i

fo at - a\to Primitive Assembly Unit or RenderBackendI

Figure 3: The shader Pipe

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257244

ATI Ex. 2107

IPR2023-00922

Page 110 of 260

ATI Ex. 2107
IPR2023-00922

Page 111 of 260

 | ORIGINATE DATE EDIT DATE|
DOCUMENT-REV. NUM. PAGE

24 September, 20014 4 September, 201525 GEN-CXXAXK-REVAAA& 13 of 52

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady _
WrAddr IS SEQ cs

| | WrAddr
CMD | |

cst
|

Phase: H |
cmp SSTestzestipx & 8 © Wrveo |

RdAddr | _ | WrSeal wader
_——___— 4 Bo

FETCH SP OF

WrAddr:

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated dala bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257245

ATI Ex. 2107

IPR2023-00922

Page 111 of 260

ATI Ex. 2107
IPR2023-00922

Page 112 of 260

To RB

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525Hose UY A Ben

R400 Sequencer Specification PAGE

14 of 52

ae

lds CROSSBAR (4x64 bits}

TT a= a !
to Segaa

| STEELEa$n pt - aee iee
—— To ee

— SSE. Us buffer (ging-pong buffer) 1
Aa Al Ag Be (28 bits * 2 (15) + bits * 6 (delta Ue)+4 & i

bits*6}* 16 (quads) * 2 (doubie-butfered) Ag At AZ BO i
4096bits |

2 Bt ce ct €2 32x 128
Bt co ci C2 |'

3 C3 o4 cs bo Ys buffer (ging-pong buffer)
24 bits * 16 quads * 2 3 C4 C5 Do i

768 bits Ised —____}__ _ |
4 D1 b2 EG 1

| ot bz EG i=

i i | | 1 TINTERPOLATORS . i
' FIX-FLOAT + EXPANSION

pe a “|

edi
a 1 |

512 “|/-a | |
|
fi. oy onHt i |f i j j i

3u aur | 3UR 4LR XA

Echibit 2026 doch400_Sequeneerdac

Figure 3: Interpolation buffers

75208 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257246

ATI Ex. 2107

IPR2023-00922

Page 112 of 260

ATI Ex. 2107
IPR2023-00922

Page 113 of 260

xx@BHC1BAODUCSOONIUBLAdODJoUsIaJOY“PEUSPYUCDLLY@weaeaz92—semsesuenbosparadegzTINSWIt.iselpSuuUOREOd.AIUy79sans]

éG40SLWAREXXXXXO-NAOdvdWAN(AdaLNSINNOO"d

 GEGLOeJequiesaesy3lVdLidsSLYSLVNISIO TVIELVNdadoAALLOdLOUdd

AMD1044_0257247

ATI Ex. 2107

IPR2023-00922

Page 113 of 260

ATI Ex. 2107
IPR2023-00922

Page 114 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201528 16 of 52bs ws
Above is an example of a tile the sequencer might receive from the SC. The write side is haw the data get stacked
into the XY and [J buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencercontrols the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context whereits shaderis in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257248

ATI Ex. 2107

IPR2023-00922

Page 114 of 260

ATI Ex. 2107
IPR2023-00922

Page 115 of 260

vax@BEd19AODUSSOONWBLAdODsousiajay"[ENUSPIUODLLY@xxvMGeezs,—sepsosuonbestoorNONITHHISAQUIIULUOLIMLIPSULIY)JOMBIASof)DULLtLDUNS

S60PoTS60r

28P0DSd
99p0dSd|8p0DSd{*3epodSACx¥oPOOSe—4

‘apooeu;BugnoexeHIE}S0}SJOYA\SMAOUYigquanbesossysoig-qngayeudoidde

0]Sassalppe-qngayeudoiddeLJB}SEposSOMAOwe8sponsa0]Sessaippe
aSvaYSQVHSTSXid

‘apooau)BuynoaxeURIS0]BJ8UMSMOU

gd8podSdJgquenbes08S901g
3eP0DSA

LBYSSpodSAMHO

V8Pp0DSA

VW8p0DSA

amLeASWUSCVHSXSLYSA

aed

SpoPeleus.apogpeieus- 3Sv@YSCVHSXALYSAoRpauls|,BuryeiBurs-|aoBuryeng-03qoNsevet,ALOWS/\]UONONISU]JOSMAIAS,dDCOPY
LOOZ/PL/L}‘peyepdn

OO———eeeeTOeSTIeaeeeiicinsresscercesucccieuaiaCGIOLLWAREXXXXXO-NAOGEGLOeJequiesaesyLO0g‘Jaquiaydes77dvdWON(AdaLNSINNOOGSLVdLidaSLYSLVNISIO

TVIELVNdadoAALLOdLOUdd

AMD1044_0257249

ATI Ex. 2107

IPR2023-00922

Page 115 of 260

ATI Ex. 2107
IPR2023-00922

Page 116 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201525 18 of 52Adee, PEN AB Bh

4 SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5 Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant siore for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 320%96 bits (128 texture states
for requiar mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VVWR_BASE). On the read
side, one levelof indirection is used. A register (GQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer nurnber +71)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257250

ATI Ex. 2107

IPR2023-00922

Page 116 of 260

ATI Ex. 2107
IPR2023-00922

Page 117 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 19 of 52 Ai OE A BA

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R40CLE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE andif both are idle willerase the content of state to replace it ‘withthe new state (this is depicted in Figure 9: De-allocation mechanism™}
aliccation-mecnaenism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addresses if needed).

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257251

ATI Ex. 2107

IPR2023-00922

Page 117 of 260

ATI Ex. 2107
IPR2023-00922

Page 118 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 207525 20 of 52SV AB thew

Renaming TableContext 0 => N

each

 round but |
CurrenV/Last

Context
(8 rows of 16-&
bit physical =>

_Logical Address

128 entries copy
Logical Acdress in eight clocks) | & Context@

é
ea |

Context N L. Physical
‘| Address

Global Register ylData Bus

Staging Data

Constants Buffer Physical
location << |
available Sepal
WRTR ¢ ——® Staging Vurite Addr

I
physical oe
address Counts| nextto physical
schedule accress

for ready
de-alloc for allocate| |

! Seq
Logical address | | coon

On the ———_»“ awa \ ' B at
GibRegBus _ _ | eques|

when Isb are zero | | iir : cae ,
first word of write Renaming Tante! Context | Y A “

for 1 Context yoy
Current/Last \ caical 1 | | Context &Physical | oe lg | | Logical

Address | Address ha Address —]| ff set I
per | don't | |Logical " : !

Address | allocate allocate
| if set} | or de-! | allocate)| Renamingtable

-Contexts
Cogy Last held above to

Current Context on receipt
of Set Constant for 4 |

newcontext (Hide loading
behind Set State load - 16 clocks)
alt other Set States just write one

entry te current state

Figure 8: Constant management

bit 2026.doch499_Sequencerdoe 75268 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257252

ATI Ex. 2107

IPR2023-00922

Page 118 of 260

ATI Ex. 2107
IPR2023-00922

Page 119 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE
24 September, 2004 4 September, 201525 GEN-CXXKXX-REVA | 21 of 52oy A i

i) TATESa a

DEALOC

Free List CNT VALUE COUNTERS | ||
PREVIOUS

NOT fa STATE

| NEW
| STATE| I

VALUE! ——__ } |
| << |——|I= '

VALID | hk «| | |
——— rR || r

: $Q IDLE
——{ AND | PA_IDLE

ltCP_NEW_STATE_CNTL—
Ree @—____SET CTX BITS

Figure 9: De-allecation mechanismfor R400L_E

5.3.3 Dirty bits
Two sets ofdirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the ariver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257253

ATI Ex. 2107

IPR2023-00922

Page 119 of 260

ATI Ex. 2107
IPR2023-00922

Page 120 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201525 22 of 52L fdmenks WIAA B bs

| 5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. Vhile in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremenial model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renarning table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_pitr pointer if read_ptr != to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happensin parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the lagical address space. It
also allows the second context to be represented as the first set plus some newadditional data by just storing the
delta’s. It allows memory to beefficiently used and when the constants updates are smail it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as weil as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257254

ATI Ex. 2107

IPR2023-00922

Page 120 of 260

ATI Ex. 2107
IPR2023-00922

Page 121 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXKKX-REVA 23 of 52BA fe " ken 8s

betweenthe time the sequencer is loaded and the time one can index into the constant store. The assemblywill look
like this

MOVA RILX,R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
NOP #f latency of the float to fixed conversion
ADD R3,R4,CO[R2.%]// Uses the state from the sequencer to add R4 to CO[R2.X] into RS

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the samme way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable perforrnancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ ta make sure that the constants where actually written to memory (not only sentto the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
|I|

Figure 10: The instruction stere

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257255

ATI Ex. 2107

IPR2023-00922

Page 121 of 260

ATI Ex. 2107
IPR2023-00922

Page 122 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2004 4 September, 201525 24 of 52

| 6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. VVe plan on
supporting constant loops and branches using a contro] program.

6.1 The controlling state.
The R400 controling state consisis of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:O][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[?:0][7:0] # eight 6 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:O][7:0] # eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn't contain any instructions.

The control program for a given clause is executed te completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

The contro! program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Canditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified numberofinstructionsin instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stackif the condition is met. On the return
instruction, the IP is popped from the stack.

| Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257256

ATI Ex. 2107

IPR2023-00922

Page 122 of 260

ATI Ex. 2107
IPR2023-00922

Page 123 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXKXK-REVA 25 of 52 —_ Be J: Afi
Conditional_execute_Predicates executes a block of instructionsif all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an addressif the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsince there are two controlflow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. lf the addressing field is cleared (should be the defaull) then the address is relative
to the base of the current shader program,

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0}.

Last
| count

a ; Execute

47 | 46... 42 | 41 | 40... 24 | 23...12 | 11.0
Addressing | 00001 | RESERVED Instruction | Exec Address

| | |

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP

47 | 46..42| 41 40.0 |.
|Addressing | 00010 | Last| RESERVED

This is a regular NOP.If Last is set, this is the last instruction of the clause.

Conditional_Execute :
47 46...42 | 41 40 T 40.39... | 3231, 34.30... 24 23... 12 i 712.0 : :

L | | 33320 _ i je
Addressing 00011 Last|RESERVED Boolean|Condition|RESERVED Instruction Exec |

L address | count Address ||

if the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. Ifthe condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates |

47 46...42|41 40-40... 3433... 3221 34-30...24|23... 12 11...0

3834 3332
Addressing | 00100 | Last|RESERVED|Predicate | Condition|RESERVED|Instruction|Exec Address

vector | count

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren’t valid. if Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Exhibit 2026.doch409_Sequeneerias 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »* | —s

LoopStart neS

AMD1044_0257257

ATI Ex. 2107

IPR2023-00922

Page 123 of 260

ATI Ex. 2107
IPR2023-00922

Page 124 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 207528 26 of 52Bevrenks OETA BAe

 00101 L RESERVED Addressing |
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump te the address. Forward
Jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

 Loop_End |a7 a6a 4.17 es TOT

[00170 | RESERVED ' loop ID | start address |Addressing | / I |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 146... 42 | 41... 3834 | 3433... | 312 34-30... 12 | 11....0| Pe 3332 |

| 00111 RESERVED | Predicate|Condition RESERVED | Jump addressAddressing | vector |
If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
 —|4.. 42 | 41...0

/ 01000 RESERVED

Addressing |

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

 Conctenna|seme47 |*-@] 41... 404 40-38. 3231 3130 30-29... 41...03332.

| 01001 | RESERVED | Boolean | Condition FW only | RESERVED | Jump addressAddressing | address | | |
If condition met, jumps to the address. FORWARD jumponly allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of & (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support thoseis by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is 'exparted' to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#-—SETEO

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

~ loop ID |“ address | -

AMD1044_0257258

ATI Ex. 2107

IPR2023-00922

Page 124 of 260

ATI Ex. 2107
IPR2023-00922

Page 125 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA | 27 of 52Pn A BA

PRED_SETE1_# -— SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_#RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address anc the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 4 ‘relative register
4 0 ‘previous vector’
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our newaddressthat we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of O means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257259

ATI Ex. 2107

IPR2023-00922

Page 125 of 260

ATI Ex. 2107
IPR2023-00922

Page 126 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201525 28 of 52ee PEN AB Bh

| 6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break meansthat a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving andinitializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will nave a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be:

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug Kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(evenif they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257260

ATI Ex. 2107

IPR2023-00922

Page 126 of 260

ATI Ex. 2107
IPR2023-00922

Page 127 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA | 290f52 Bio e, AAEM A Bins «,

MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but fo memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257261

ATI Ex. 2107

IPR2023-00922

Page 127 of 260

ATI Ex. 2107
IPR2023-00922

Page 128 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

 24 September, 2001 4 September, 201525 30 of 52ms bi A AA

Above is an example of how the algorithm works. Vertices come in from top to bottom: pixels come in fram bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index Q and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking ai the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinsi0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

 ichibit 2026. deck409_Sequencerdes 75280 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257262

ATI Ex. 2107

IPR2023-00922

Page 128 of 260

ATI Ex. 2107
IPR2023-00922

Page 129 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA | 31 of 52Ain, PO A Bien

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PAis of this format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit}. The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(O) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AO? = FO— TO)

AOL? = JU) —- J(0)

AO27 = (2) - IO) PO PA
AO2S = J(2)- FJ(0)

AOBI = £3) — 1(0)

A037 = J(3)- J(0) p2 P3

PO=C +1(0)*(4-C)+J(0)*(B-C)

Pl = PO+A0L *(4-C)+ AOL*(B-C)

P2 = PO+A02 *(A—C)+ A027 *(B-C)

P3 = P0+A03I *(A-C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257263

ATI Ex. 2107

IPR2023-00922

Page 129 of 260

ATI Ex. 2107
IPR2023-00922

Page 130 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 32 of 52Adee, PEN AB Bh

| Adds: =
FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign

Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 8°6 + 4°8 + 4*2 = 1238

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the number is un-normalized. The maximum rangefor the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that ifA = Band B=C and C =A, then P0,1,2,3= A. Since one or more ofthe IJ terms
may be zero, so we extendthis to:

if (A=B and B=C and C=A)
PO0,1,.2,3 = A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-I-J = 0)) and
((-J-1 = 0) or @=0))) {

if |= 0) {
PO =A;

} else if(J '= 0) {
PO =B;

belse {
PO=C;

/irest of the quad interpolated normally
}
eise
f

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 10 11 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 6D 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sert
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

| Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257264

ATI Ex. 2107

IPR2023-00922

Page 130 of 260

ATI Ex. 2107
IPR2023-00922

Page 131 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 33 of 52Ba: esSb
The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in

Figure12Figure-lerigure-t2. The area of the fixed-to-float converters and the VSISRsfor this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure11Figure-+-Figure-44,

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11634 ,¢ 60.57813 17perbit

Area of 96x8-deep Latch Memory 46524 12
Area of 24-bit Fix-to-float Converter 4712 ,¢ per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 11:Area Hstimate for VG'T to Shader Interface

Exhibit 2026.doch409_Sequeneerias 75208 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257265

ATI Ex. 2107

IPR2023-00922

Page 131 of 260

ATI Ex. 2107
IPR2023-00922

Page 132 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 207525 34 of 52A Biber
 VGT BLOCK

CIN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

Figure 12:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (/R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER | ADDRESS
4 bits | 7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_/7(a snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shaderis exporting 2
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17) is going to have the address 00000001000, the 18" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2°VS_EXPORT_COUNT_/7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257266

ATI Ex. 2107

IPR2023-00922

Page 132 of 260

ATI Ex. 2107
IPR2023-00922

Page 133 of 260

 ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 | GEN-CXXXXX-REVA 35 of 52Bfievemte AY A BA one

18. Vertex position exporting
On clause 3 the vertex shacer can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel outputfifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1} Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

20. Exporting Rules

20.1 Parameter caches exports
We support masking anc out of order exparts to the pararneter caches. Se one can expart multi
PC line using different masks.

le times to the sarne

20.2 Memory exporis *
Memory exports don't support masking, However, you can excort out of order to memory locations.

20.3 Position exports “
Position exports have to be done IN ORDER and don't support masking.

20-21. Export Types
The export type (or the location where the data should be put) is specified using the destination addressfield in the
ALU instruction. Here isalist of all possible export modes:

26-421.1 Vertex Shading ~
0:15 -16 parameter cache
16:31 - Empty (Reserved’?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 -12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - Sprite size export that goes with position export

(point_h, point_w,edgeflag, misc)

20-221.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1

Exhibit 2026.doch400_Sequcneerdee 78288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

>) Formatted: Bullets and Numbering

Ls 4 Formatted: Bullets and Numbering

es . =| Formatbed: Bullets and Numbering

2 >| Formatted: Bullets and Numbering
Se 4 Formatted: Bullets and Numbering

ade +Formatted: Bullets and Numbering

AMD1044_0257267

ATI Ex. 2107

IPR2023-00922

Page 133 of 260

ATI Ex. 2107
IPR2023-00922

Page 134 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | i | 24 September, 2001 4 September, 201525 36 of 52L As Jon A Biller «

| 2 - Color for buffer 23 - Color for buffer 3
47 - Empty
8 - Buffer 0 Color/Fog (primary)
9g - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
42:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.
44:47 - Empty
48:59 - 12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -2Z for primary buffer (Z exported to ‘alpha’ component)

24.22, Special Interpolation modes

211991 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolanis important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual mernories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

24.222.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader pragram. This functionality is controlled by the gen_|O register (mn SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how theyinteract
together:

Gen_stis a bit taken from the interface between the SC and the SQ.This is the MSBofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_|0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy enable, no gen_st — [0 = No modification
Param_Gen_l0 disable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — IO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage. garbage,s, t
Param_Gen_|O enable, snd_xy enable, no gen_st — 10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, 8,t

243223 Auto generated counters
in the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the count to retrieve the data on the 2" pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on

| Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

os.4Formatted: Bullets and Numberingcame : Sou wa niewtee cn incmen

ene = 4 Formatted: Bullets and Numbering

.Le Formatted: Bullets and Numbering

AMD1044_0257268

ATI Ex. 2107

IPR2023-00922

Page 134 of 260

ATI Ex. 2107
IPR2023-00922

Page 135 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 37 of 52 A OP dB sis.

the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counteris reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

24-3-122.3.1 Vertex shaders se
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

24:3-227.3.2 Pixel shaders -
In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_l0 is enabled, the data will be put in the x field of
the 2” register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1“ register (RO.x).

_ oo, Formatted: Bullets and Numbering

]
STG O ||AUTO INTERPOLATORS

COUNT .
STG

The Auto Count Value is

broadcast to all GPRs.It is
loaded inte a register wich has

its LSBs hardwired to the
GPR number(6 thru 63}. Then

if GEN_|NDEXis high, the
mux selects the auto-count

value and itis loaded inte the
GPRsto be either used to

retrieve data using the TP or
sent to the SX forthe RB to

use it to write the data to
memory

Figure 13: GPR input mux Control

 « = {Formatted: Bullets and Numbering
22.23, State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22423.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every tirne the state changes, the newstate counter is initialized to 0.

“ | aS - Formatted: Bullets and Numbering :

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257269

ATI Ex. 2107

IPR2023-00922

Page 135 of 260

ATI Ex. 2107
IPR2023-00922

Page 136 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 38 of 52 fidieve, PEN AB Bh ! | _ (Formatted: Bullets and Numbering :
23:24, XY Address imports ee
The SC will be able to send the XY addresses to the GPRs. Ii does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—float converter and expander and write the converted vaiues to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.221.2 for details on howto control the interpolation in this mode.

23-424.1 Vertex indexes imports “Ee
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks te the GPRs.

24.25 Registers

24-195 1 Control

 tted: Bullets and Nu

oe Formatted: Bullets and Numbering
REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC
iNST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EQ_RT

EXPORT_LATE

24.995 2 Context

VS_FETCH_{0...7}
VS_ALU_{0...73
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CFSIZE
PS_SIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO_VERT

Exhibit 2026 doch4o9d_Sequercer.doe

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
interleaved, separate
start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2)
This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
256*4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EORT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occurat clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
sight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses contro! prograrn is located
base pointer for the pixel shader in the instruction store
base pointerfor the vertex shader in the instruction store
size of the vertex shader(# ofinstructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cntlt+instructions)
size of the vertex shader (cntl+instructions)
number of GPRsto allocate for pixel shader programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)
0: vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257270

ATI Ex. 2107

IPR2023-00922

Page 136 of 260

ATI Ex. 2107
IPR2023-00922

Page 137 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 39 of 52~— A. os. PUABAe

PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).

PS_EXPORT_MODE Oxxxx : Normal mode
toon : Multipass mode
lf normal, bobbz where bbb is how many colors (0-4) and z is export z or not

 8 fer ee MAS & eek et gg if
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0...6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)

PARAM_GEN_1I0 Do we overwrite or not the parameter O with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders

anc R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Tums on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in inclex cornputation)

25-26, DEBUG Registers

DB_PROB_ADDR instruction address wherethe first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_LINST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2
DB_CLAUSE
_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill

25.226.2 Control “

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26-27. Interfaces

26-427.1 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

27.2 SC to SP Interfaces “|

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

oe 4 Formatted: Bullets and Numbering :

==) Fermatted: Bullets and Numbering

2 2 4 Formatted: Bullets and Numbering

ao 4 Formatted: Bullets and Numbering

AMD1044_0257271

ATI Ex. 2107

IPR2023-00922

Page 137 of 260

ATI Ex. 2107
IPR2023-00922

Page 138 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 40 of 52

There is one of these interfaces at front of each of the SP (buffer to stage pixel interpalators), This interface transmits
the |.J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interiaces transmits one half of a quad per clock. The interface below cescribes a half of a quad worth of
data,
The actual data which is transferred per quad is

Ref Pix | => $4,206 Floating Point | value
Ref Pix J => $4.20 Floating Point J value

Delta Pix |3) => S48 Floating Point Delta | value
Delta Po J (x3) => S4.8 Floating Point Delta J value

This equates to a total of 128 bite which transferred over 2 clocks
and therefor needs an interface 64 bite wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock, The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ [J Control Bus transfers.

The data transfer across each of these busses is controlied by a I) BUF INUSE COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs. he will incrementithe IJ BUF INUSE COUNT count Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX BUFER MINUS 2 if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only || to use all the buffers to pre-load more. Currentl
iLis planned for the SP te hold 2 double buffers of |.J data and two buffers of X,Y data, so if either X.Y or Centers and
Centreids are on, then the SC can send twe Buffers,

in at least ihe initial version, the SC shall send 16 quads per pixel vector even if the vector is not full, This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX.SP.SQ and add a
EndOfvector signa! on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name | Bits|Description
SC_SP# data 64 lJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock |, second clk J
Filed ULS URC LLC LRG
Bits 83:39 38:26 28:13 12:9
Format SE4AM20 SEAMS SE4AM& SEAMS

Type 2Field Face XK ¥
Bits 63 23:12 0
Format Bit Unsigned Unsigned

SC_SP#valid L Nalid
SC SP# last quad rh This bE will be set on the last lransler of data per quad.
SO _SP# type 2 0 -> Indicates centroids

1-2 Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send far the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of us in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix,

2/22 SC SQ

This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per ansfer with | to 1G transfers. Therefore ine bus (approx 92 bite) could be folded in half to approx 46 bite.

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

«a S = -|Formatted: Bullets and Numbering ~

a Biesembs OA A Bile es J. (Formatted: Bullets and Numbering ~
272.1 SC _SP# . Tee =

AMD1044_0257272

ATI Ex. 2107

IPR2023-00922

Page 138 of 260

ATI Ex. 2107
IPR2023-00922

Page 139 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXKXX-REVA 41 of 52ba i: eeA BA.

Name——S Description TT|
SC_SQdata Control Data sent to theSQ

 8C_ SQ. valid

1Loclk transfers

Event ~ valid data consist of event_id and
slate id. Instruct SQ to posi an
event vector to send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id

eeHE back to the CP.Eventsonly
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask - Transfer Control data
consisting of pc dealloc
ornew vector, Receipt of this is to
transfer pe_dealloc or new _vector

coeWithoutany validquad data. New
vector will always be posted to
request fifo and pe _dealloc will be
aleched io any pel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valic — Sending quad data with or

cee.Without newvectororpcdealioc.
New vector will be posted to request
fifo with or without a pixel vector and
pc _dealloc will be posted wilh a pike!
vector unless none is in progress. In
this case the pc_dealloc will be
pasted in the request queue.
Filler quads will be transferred with
TheQuad mask setbut thepixel
corresponding pixel mask set to
Zero,

“| 8C sending valid data, 2" clk could be all zeroes

SC_SQdata ~ firet clock and second clocktransfers are shown In the table below.

Name ‘BitField Bits|Description

1%GlockTransfer

$C_3Q event 1 | This transfer is a 1 clock event vector
| Force quad_mask

SC SQ event id 2 This Feld identifies the event
| O.=> denotes an End Of State Event
| 4 => TBD

5C_8Q pe dealloc 1 _| Deallocationtoken forthe ParamelerCache —
SCSQnew vector i | The SQ must wait for Vertex shader done count > 0 and after

i dispatching the Pixel Vector the SQ willdecrement the count,
8SQquadmask 4 QuadWrilemaskleft to right SPO => SPS
8C_ SQ end of prim 1 End Ofthe primitive_
SC_SO state id 3 State/constant pointer (6°3+3

|SC SQ px mask 16 | Valid bits for all pixels SPO=>SPS (ULURLLLE)
S¢_SQprimtyes 3 | StippledlineandRealtmecommandneedtoloadtexcordsfrom

Echibit 2029 doch403_Sequeneerdse 75298 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257273

ATI Ex. 2107

IPR2023-00922

Page 139 of 260

ATI Ex. 2107
IPR2023-00922

Page 140 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2004 4 September, 207525 42 of 52
idmemin OO fl in

alternate buffer

| 000: Normal

8C_SQ pe pir Parameter Cache pointer for vertex 1

SC_ SQ po pire (fect) (it | Parameter Cache pointer for vertex 2 |
8C_ 30 Jod correct 45:22) | 24 LOD correction per guad (6 bils per quad)

Name
$0 SC free buff i
8Q 8C dec cntr_ent

iis|Description

Pipelined bit that instructs SC to decrement count of new vector and/or event |
sent io prevent SC from overflowing SQ inlerpolator/Reservation requestfifo.

The sean converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet sianal. +.
2.) 4 current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when _a primitive marked new vector arrives, The Scan Converter will submit a partial
yector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new vector

Mmarker\orimitive.

exceptforaonequad orimitive. that ‘golmarkedpe_dealloc (vertices maximumsize), in this casetwo
new _veclors are submitted and processed, but then ene valid quad with the pc dealloc creates a vector and then
the new would wait for another vertex vector to be processed, bul the one being waited for could never export
uculihe oc dealloc signal made it through and thus the hang)

faesent). “Alpixels‘fomthe. group- of ‘quadeare.‘from. thesgarme-‘primitive. aequadeof.a-vector-are-frorn-the.Sarne23

261327,2.3 SQ to SX: interpolator bus

B :
im Pipelined bit that instructs SC to decrement count of buffers in use. [ee
i

Formatted: Bullets and Numbering :

= Formatted: Bullets and Numbering

=<] Formatted: Bullets and Numbering

[Name Direction_ Bits|Description
SQ_SPxSxJinterp_ flat_vic | SQ-3SPx [2 | Provoking vertexforflatshading _
SQ_SPXx_interp_flat_gourau|SQ >SPx 1 Flat or gouraud shading
d

SQ_SPoo_interp_cyl_wrap |8Q->SPx 4 | Wich channel needsto be cylindrical wrapped
SQ_SxXx_ptrimuxd SQ—SXx 11 Parameter Cache Pointer
SQ_SXx_ptr2ravect SQ-»SKx 11. | Parameter Cache Pointer
SQ_SXx_pion _SQ—SXx | 11 | Parameter Cache PointerSQ SXx_Riswitchrt sel SQ-9SXX 1 Selects between RT and Normal data

SGSXx pewren |SQ-2SXx |i |Writeenablefor thePC memories
8QSxAx_pe_wr_adar SO-25Xx 7 Write address for the PCs

| SQ_SXx_pe_cmesk SQ 7SKx 4 Channel mask

261427,2.4SQ to SP: Staging Register Data -

This is a broadcast bus that sends the VSISR information to t! @ staging registers of the shaderpipes.

| Name || Direction | Bits | Description

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

ES =-({Formatted: Bullets and Numbering

AMD1044_0257274

ATI Ex. 2107

IPR2023-00922

Page 140 of 260

ATI Ex. 2107
IPR2023-00922

Page 141 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

es 24 September, 2001 4 September, 201528 GEN-CoOOOCK-REVA | 43 of 52- fiouveks 9Pe AAS ~ seanonnneneeey
SQ_SPx_vgtvsisrvsrdata _SQ—SPx 96 __| Pointers of indexes or HOS surfaceinformation

SQSPxvgtvsisrys(double|SQ—>SPx [1]©: Normal96bits per vert 1: double 192bits per vert$Q_SP0_¢ata—valid | SQ-»SPO 14 | Data is valid
SQ_SP1_cata-valid SQ—SP1_ | 1 | Data is valid
|SQ_SP2_datacvalid|SQ.SP2

$Q_SP3_date_valid '$Q.>SP3_ | Datais valid

26-1-527.2.5 PA-VGT to S@ : Vertex interface

26-4+54272.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requiremenis of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencenin full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

[Name [Bits [Descriptionssrrt—“—OCOCOCOCOCCiszC
PAVGTSQ—vgt-vsisr_data 96 Pointers of indexes or HOS surface information
¥GTPASQ—vet-vsisr_doubl|1 O: Normal 96 bits per vert 1: double 192 bits per verte

VGTPA..SQ—vgt-end_of_v|1 Indicates the last VSISR data set for the current process vector (for double vector
ector data, “end_of_vector"is set on the second vector)
VGTPASQ—vot-velerindx_v|1 Vsisr data is valid
alid

Tr z - es -
VGTPASO—vgt-state 3 Render State (6°3+3 for constants). This signal is guaranteed to be carrect when

"PAVGT SQ_vgt_end_of_vector’is high.
VGTPA_SQ_—vgt-send i Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VST PA—vgtrtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26-4:3,227,2.5,2 Interface Diagrams *

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

ee) Formatted: Bullets and Numbering

==) Formatted: Bullets and Numbering :

AMD1044_0257275

ATI Ex. 2107

IPR2023-00922

Page 141 of 260

ATI Ex. 2107
IPR2023-00922

Page 142 of 260

xix@OBE1GAODUODOHON[UBUAdODsoUdIaJOY"JENUSPYUODLLY@vx0MGoezs2—sopresvonbeg“ponyUTOT

HEONENDASWaqvHS

93ué

[sesqeqe45aGsvad

waddnd

aims

xXLOLZ2]9e8ajopue15aGeyy,SayZROIOTAFTaTQNepastaSaGsWdDauZWiiaodUSTSASlopneeaoetee|aeé©VivUSLSAaseeePERFCIIPE£90bPSEGLOSJaquiejaaspL0og‘lequieydespz30vduojeoyjoadsisouenbesOOFYaLvdLids3LVdSLYNISINO
LOA

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257276

ATI Ex. 2107

IPR2023-00922

Page 142 of 260

ATI Ex. 2107
IPR2023-00922

Page 143 of 260

un

xxx@BHC1BAODUOSOHONJUBUAdODsoUdIaJOY"|EUSPHUODLLY@x8%aeezs “SoeiSjl]JOAHSVadid]Weibeiq[EdIBOTpaleiedNOISSINSNVWALsdOLsWaadNnds

",sunbig

NOISSINSNVWALSLYVLS-ddqaATHOdd .NOCISSINSNVdLsdOLsdHATHoRd
=

sopussuenbes“ggryOR9202WINS

AMD1044_0257277

CUPLnn
|

adOgKLANOAINDO31INOWEVdC4IaywWowd?GUNSZulyosIubuosOoubeosulySs

LULA

CG410Gedvd

WAREXXXXXO-NAOWAN(AdaLNSINNOO"d

GEGLOeJequiesaesy3lVdLids ae|SPTYLVEILere

LO0g‘Jaquiaydes77SLYSLVNISIO

 TVIELVNdadoAALLOdLOUdd

ATI Ex. 2107

IPR2023-00922

Page 143 of 260

ATI Ex. 2107
IPR2023-00922

Page 144 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

mg | 24September, 2001|4 September, 201525 460152| a“ a ia Cra rn ae hs

- ane <4 Fermatted: Bullets and Numbering
26-1-627.2.6SQ to CP: State report = TE

Name | Direction Bits | Description es Se|SQ_CP_vitx_stateee|SEQ-CP 3. _| Oldestvertex state stilinthepipe : es ee ee :
SQ_CP_pix_state | SEQ CP | Oldestpixel state still in the pipe : 2 CS Soe

_oe=| Formatted: Bullets and Numbering
26-1427.2.7S@ to SX: Control bus ~ =< SSS

Name | Direction T I Description
SO_SXx_expFixation SQ—>SXx | 1: Pixel
[eee de (OO:Vertex
SQ_SXx_exp_cClause _ _| SQ>8Xx .3 | Clause number, which is needed for vertex clauses
SQ_SXx_exp_sState | SQ >SXx | 3 | State ID
SQ_SXx_exp_experiDalu id | SQ—>SXx 4 | ALU ID

These fields are sent syichronously-wih-SP-excor-dala-deccibed-inSk0-4540inletaceevery lime ine sequencer
picks an exportingclause for execution.

a S =| Formatted: Bullets and Numbering

261-827.2.8SXfo SQ: Outputfile control
Name _ | Direction Bits|Description .
SXx_SQ_Exportexp _count_rdy | SXx550 1 Raised by $X0Oto indicate that the following two

Po ee oe |fields reflect the result of the most recent export __

SAx_SQ_ExporiexpPpositionseas|SXx-SQ 1 Specifies whether there is room for another
2 ' position.
SXx_SQ_expExsertBuffer space | SXx-SQ 7 Specifies the space available in the output

buffers.
O: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for
each of 64 pixels)
65-127: RESERVED

. L =| Formatted: Bullets and Numbering

28-1-927.2.9SQ to TP: Control bus “oe a os
Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the addressin the register file where to write
the fetch return data.

Name | Direction [Bits _ Description
TPx_SQ_data_rdy TPx— SQ 4 | Data ready
TPx_SQ_cilause_num TPx— SQ 3 | Clause number

TPx_SQ_type _TPx-» SQ 1 Type of data sent Q:PIXEL, 1:VERTEX)
$Q Tex send SQ-2TPx 1 | Sending valid data
$Q_TPx_const | SQ->TPx | 48 _ Fetch state sent over 4 clocks (192 bitstotal)
$Q_TPx_instuctinstr SQ—TPx 24 __| Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause | 8Q-5TPx 4 _ Last instruction of the clause
SQ_TPx_Type SQ—TPx 1 | Type of data sent (O:PIXEL, 1:VERTEX)
SOQ_TPx_phase |S$Q-->TPx L2 | Write phase signal
$Q_TPO_lod_correct SQ-5TPO 6 _ LOD correct 3 bits per comp 2 componentsper quad

|SQ_TPO_pmask SQ>TPO __ 4 Pixel mask1 bitperpixel
|SQ_TP1_lod_correct | $O-TP1 16 “top correct 3bits per comp 2 compenents per quad

SQ_TP1_pmask SQ-TPi 4 _ Pixel mask 1 bit per pixel
$Q_TP2_lod_correct | SQ—TP2 6 _ LOD correct 3 bits per comp 2 components per quad

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257278

ATI Ex. 2107

IPR2023-00922

Page 144 of 260

ATI Ex. 2107
IPR2023-00922

Page 145 of 260

ORIGINATE DATE EDIT DATE

24 September, 2001 4_Seolember 201525

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 52

~ ~ EUBA

SQ_TP2_pmask | SQo1P2 4 | Pixel mask1 bit per pixel
|SQ_TP3lodcorrect _ | SQ—TP3 [8| LOD correct 3 bits percomp2componentsper quad
SsQ_TPS.;_pmask | $Q-»TP3 14 |Pixel mask1 bit perpixel

SQ_TPx_clause_num SQ—TPXx 3 | Clause number
$Q_TPx_write_gpr_index | $Q->TPx Le | Index into Register file for write of returned Fetch Data

26-4+-4027.2.10TP to SQ: Texture stall

_| Formatted: Bullets and Numbering

The TP sendsthis signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

8Q_SP_fetcn_Stall

v

SQ_SP_wr_addr | |
SU0 rq|||

|

fa

os . Formatted: Bullets and Numbering

 “ <1 Formatted: Bullets and Numbering

Name | Direction | Bits | Description
TP_SQ_fetch_stall | TP SQ 4 _ Do not send more texture requestif asserted

2644127211SQ to SP: Texture stail *

Name ee| Direction Description eee
SQ_SPx_fetch_stall | S8OQ->SPx | Do not send more texture request if asseried

26-14227.22/212SQ to SP. GPR, Parametercache-controland auto counter
Name Direction Bits|Description ee
SQ_SPx_gerwraddr_ | §Q->SPx 17 |Writeaddress
SQ_SPx_gpr_rd_addr SQ—SPx 7 | Read address "aoe
8Q_SPx_gpr_red_addren | 8Q—SPx 1 Read Enable be
SQ_SPx_gpr_wewraddren TS.SPX 1 Write Enable for the GPRs foe
SQ_SPx_gpr_phase_mux ‘SQ—>SPx 2 The phase mux (arbitrates between inputs, ALU SRC i=

reads and writes)
SQ_SPx_ channelmask—s|SQ-»SPx tA Thechannelmask
SQ_SP0_pixel_mask _8Q—SP0 4 | The pixel mask :
5Q_SP1_pixel_mask S5Q—SP1 4 The pixel mask
SQ_SP2_pixel_mask _[SQ-2SP200 4 __| The pixel mask
5SQ_SP3_pixel_mask SQ—SP3 4 _ The pixel mask
SQ_SPx_gpr_input_mux SQ >SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXQ,
| | VTX1, autogen counter.

SQ_SPx_indexauto_count SQ >SPx 12?|Index-Auto count_generated by the SQ, common fer all |
I shader pipes

Gchiblt 2028 cock400_Sequencer.cdec 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©

AMD1044_0257279

ATI Ex. 2107

IPR2023-00922

Page 145 of 260

ATI Ex. 2107
IPR2023-00922

Page 146 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

g | 24 September, 2001 4 September, 201525 48 of 52 oe ee oe

; To fees OA Bees ~ <4 Formatted: Bullets and Numberin2644327.2.13 SQ to SPx: Instructions <= (CermatotttsaéNunberng_]
Name | Directions| Bits | Description re .
$Q_SPx_instruet_start $Q—SPx it | Instruction start | :
$Q_SP_instract SQ—SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swiazle 11:4
VectorDst 17:12
Unused 20:18

1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 1712
Unused 20:18

2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vectar Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 1141
Scalar Clamp 12:12
Vector Write Mask 16:13

oe ee . Scalar WriteMaskOF
SQSPxexpalu.id SG--SPx iJ ALUID
SQ SPx exporting SQ--SPx 2 0: Not Exporting

1 Vector Exporting
2_ecalar Exporting

5Q_SPx_stall SQ->SPx 1 |Stall signal
8Q_SP0_expert_pvalid SQ—>SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are computed per

_ / | clock
SQ_SP1_ expert_pvalid SQ—SP1 4 Resuit of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and ail color
| buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ expert_pvalid SQ—SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock
SQ_SP3_ expert_pvalid SQ—SP3 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock C2
7 => Formatted: Bullets and Numberin

26-+1427.214 SP to SQ: Constant address load/ Predicate Set ~ ‘{Hormated:BultndNumbering___)
Name | Direction | Bits | Description : Soe ee
SPO0_SQ_const_addr SP0-SQ | 36 | Constant addressload / predicate vector load (4 bits only)

| _ to the sequencer
SPO_SQ_valid | SP0—SQ '1_| Data valid
SP1_SQ_const_addr | SP1-SQ | 36 =| Constant address load / predicate vector load (4 bits only)

| to the sequencer

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257280

ATI Ex. 2107

IPR2023-00922

Page 146 of 260

ATI Ex. 2107
IPR2023-00922

Page 147 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: | 24 September, 2001 4 September, 201525 GEN-CXXKXX-REVA 49 of 52L ven peelnadUTABE
SP1_SQ_valid _SPi-sQ a _ Data valid
SP2_SQ_const_addr SP2—S8Q 36 | Constant address load / predicate vector load (4 bits only)

| to the sequencer
$P2_SQ_valid | 8P2-.8Q 14 | Data valid
SP3_SQ_const_addr SP3—SQ 36 | Constant address load / predicate vector load (4 bits only)
gg ep bee tothesequencer o ee
$P3_S0_valic | SP3--SQ | Data valid Re es oe

. . . pe = Formatted: Bullets and Numbering
2644527.2.15 SQ to SPx: constant broadcast =

Name | Direction Bits | Description = : Se ee ee .
SQ_SPx_consfant | SQ48Px [128 | Constant broadcast fo Le : ee ee SS

- gore . ap ae ES Formatted: Bullets and Numbering26-1+-14627.2.16SPO to SQ: Kili vector load | = os Se
Name[Direction‘| Bits | Description ee - rr—SPO0_SQ_ kill vect SPO—SQ 4 |_Kill vector load

SP1_SQ_Kkill_vect | SP1-$8Q 4 | Kill vector load :
SP2_SQ_killvect SP2 >SQ 4 _Kill vector load See ee :
SP3_SQKillvect | SP3—-S0 14 Kill vector load oe oe : * Bs

2644727.2.17 SQ to CP: RBBM bus “ ———— coo
Name | Direction [Bits | Description 8 oe . : eS
SQ_RBBors sQq—cp 1 | Read Strobe
SQ_RBB id | SQ>CP 132 | Read Data
8Q_RBBM_onrirtr SQ >CP i | Optional go
SQ_RBBM_rir | $Q-2CP 4 | Real-Time (Optional) I oe : : Ee Hs

. ; a eee Formatted: Bullets and Numbering26-41827.2.18 CP to SQ: RBBM bus | (Formatted:GulesandNumbering__}oe a
Name Direction Bits | Description ee,—
rbbm_we | CP-»SQ 1 _ Write Enable ;
rbbm_a CP—5Q 15 | Address -- Upper Extent is TBD (16:2)
rbbm_wed | CP»SQ [3 | Data
rbbm_be CP—SO 4 | Byte Enables
robm_re | CP->SQ |1 Read Enable
rbb_rsO CP—5Q i | Read Return Strobe 0
rbb_rst | CP.»SQ 14 | Read Return Strobe 1
robb_rdO CP=SOQ 32. | Read Data O

rob_rd4 | CP SQ [32 _Read Data |e
RBBM_SQ_soft_reset | CP.»5Q if _ Soft Rese |

 * S oe 4 Formatted: Bullets and Numbering
27.28 Examples of program execulions r————— i “€——

2¢A7A428.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
® space was allocated in the position cache for transformed position before the vector was sent
* also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when wereceive the vertex vector.

® the SEQ then accesses the IS base for this shader using the local state pointer (providedto all
sequencers by the REBM whenthe CPis done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
* at this point the vector is removed from the Vertex FIFO

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257281

ATI Ex. 2107

IPR2023-00922

Page 147 of 260

ATI Ex. 2107
IPR2023-00922

Page 148 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 207525 50 of 52bs oe? =
e the arbiter is not going to select a vector to be transformedif the parameter cacheis full unless the pipe as

nothing else to do (le no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP registerfile over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFOof SUO, SU1, SU2, and SU3 is written the first cycle
e RF of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
e RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

® the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSMO
oo the contre! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
e TSMO does not wail for requests made to the Fetch Unit to complete: it passes the register file write index for

the fetch data te the TU, which will write the data to the RF asit is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. allinstructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
® position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there Is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
« the ASMarbiter will prevent a packet from starting an exporting clause if the position export FIFOis full

® parameter data is exported in clause 7 (as well as position dataif it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters(it is told by the PA when using a token).
« the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has compieted, the SEQ will free up the GPRsso that they can be used by another
shader program

24-AZZ8. 1.2 Sequencer Control of a Vectorof Pixels a

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

Exhibit 2026 doctt400_Sequercerdes 76208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257282

ATI Ex. 2107

IPR2023-00922

Page 148 of 260

ATI Ex. 2107
IPR2023-00922

Page 149 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA | St of 521ABE - B rk

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
® the Pixel FIFO is wide enough to source four quad’s worth of barycenitrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
® the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEC will not allow interpolated data to be sent te the shaderuntil space in the register file has been allocated

&. SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in frant of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
* all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine ©, or ASMO
FIFO)
* TSMO doesnotwait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data for a particular clause to the register files, it increments a counterthat is

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the conirol packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause Q from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e it is sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRsso that they can be usec by another
shader program

{22 -{ Formatted:Bullets andNumbering

2/-+-328.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. The register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer.

te Se ‘{ Formatted: Bullets and Numbering /
28-29, Open issues
Need to do sometesting on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Exhibit 2028 dockt4o0_Sequercerdes 75208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257283

ATI Ex. 2107

IPR2023-00922

Page 149 of 260

ATI Ex. 2107
IPR2023-00922

Page 150 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 207525 52 of 52wa PREAB thew
Parameter caches in Sx?

Using both lJ buffers for center + centroid interpolation’?

Exhibit 2028.doch4o9_Sequencerdos 75208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257284

ATI Ex. 2107

IPR2023-00922

Page 150 of 260

ATI Ex. 2107
IPR2023-00922

Page 151 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 4 of 52— A sh EPES A
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.119

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\perforce400\doc_llb\designiblocks'sq\R400Sequencer.dac
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS - as
es : Signature/Dateuu Name/Dept Oe

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |:
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.” S

Exhibit 2027.docR4a0_Sequencerndec 68208 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ***

ATI 2027

LGv. ATI

IPR2015-00325

AMD1044_0257285

ATI Ex. 2107

IPR2023-00922

Page 151 of 260

ATI Ex. 2107
IPR2023-00922

Page 152 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201319 2 of 52Asset) OCU VDE Bd no,

Table Of Contents

. OVERVIEW oc cccccccecscesnuneencessnenssnnnesnstennnnnessranunnnn cs tannnnn ness tnsnnnersnsntnnernnnessusunannetertrsnnnnneecentesca
Top Level Block DIQQrarr a. cece eeeee eeeeaeaanEta anita aaaap ee sasaeinnusanagnnsaenitas 108 |

5.3.1 R400 Constant management ono cence ccc cee cee cee c eee eeece eccoceeevee ees cet eetpeeseveneseeese.. 1845

 5.3.2 Proposal for R400LE constant management oe ee ee eeetWIS

S34 Free List Blockoe ee eee eee settee teens etuniittiupee AIFE

S35 De-allocate Blok occa ee ceeeeePIB
5.3.6 Operation of Incremental MOCELonceccc cece cee sce ece eevee vec etes tees tenets 2248

MULTIPASS VERTEX SHADERS (HOS

9. REGISTER FILE ALLOCATION... oe ee
10. FETCH ARBITRATION. ..0.cc.:eesceencesteerereessesensenecentesenenyessusesmesenesruseeneresssupessenecsntemmeseneess 3026
iL ALU ARBITRATION......

12. HANDLING STALLS.....
13. CONTENT OF THE RESERVATION STATION FIFOS..

4. THE OUTPUT FILE..
IJ FORMAT ooo ceeceeeeeeeeeeeenseeenneees

15.1 Interpolation of constant attbutes oooeeeee eee ete e cet e ete nett ittteetett ee 3228
16. STAGING REGISTERS.e ececcececeesseeereeesssesesensesesetenenenstuunnnneenssusuunestssessnunetennensiesesennasss 3228
17. THE PARAMETER CACHE... cccccccccccscecescessncessantessunrsnnecssusesnnnestertsnsutererecanetsenesstensernstss 3430

18. VERTEX POSITION EXPORTING.c--c.cccccceccscseennereesssnnnnenneecssnannnnnnssssannnnannssannnnannsess 35320

Exhibit 2027, doct4oo_Sequencerdoc 60208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

5.5 Real TimeCommands...2349
8.6 Constant Waterfalling oocece cence ee ees ueceeeeesessneesenesssegesststuuseusneetuuecustsetunsisestsuntenses 2349 |

AMD1044_0257286

ATI Ex. 2107

IPR2023-00922

Page 152 of 260

ATI Ex. 2107
IPR2023-00922

Page 153 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

_ 24 September, 2001 4 Sevlember, 201319 GEN-CXXXXX-REVA 3 of 52
19. EXPORTING ARBITRATIONooceccceeeeeessseeenneneesunnnnenesrnsueennnnnngaannnnneesssseneeenntesnununnnnenes 3530
20. EXPORTING RULES 0 ooo... cccccccccccscecesenecsnnnnnnananeesaaannnnsannannnnaseenaaaaanenessneneneressuseenen noes 3530
20.1 Parameter CacheS CXDOMS ooocc ee ceece tees es teetatteetteeeses ties 3530

‘VertexShading... 21]

212 Pixel Shadin
22, SPECIAL INTERPOLATION MODES ooo. ooo cccccccecnnnnnnesenennnnnccessunnenensesnsnennnnnssesnunseescess 3634
22.1 Real time COMMANS oooeeeee e ee eeetteetettttetttttpetibipeeeeioiisenagiieistituuuunnnuneunnanatens 363t
22.2 _Sprites/ XY screen coordinates/ FB information... ccc ccc ccc cece cece cee eee e ne eee neeesecessees 3634

STATE MANAGEMENT
Parameter cache synchronization

XY ADDRESS IMPORTS...cesses

24.1 Vertex INC@xeS UTDOMSooocece eee eee see sees cctetpetu ese stenteseenesstestestttesttteteetessesensersessecs 3833
25. REGISTERS............... 4833
25.1 Control3833
25.2 COMPONeeeececceecceetete teste enntetuninbibepeiititeitustitetugegetiniiiiatitigepeiitsituunneensnnanatnsins 3833
26. DEBUG REGISTERS.. 3934
26.1 COMOXeeeee eee bbe bettsaattttteeteteees veers OSA

27, INTE REACES.aac ccceccscssssssaressreznssnsvcasusnesvazsrsvansnsayssusnzneannsazsnunsueansssvapnnnsananinennavavasss 3935

271 External Interiacesnceeee cess cseasaeatatetapssasasuauonesustasnatetinastetassnssss 3938
272 SC to SP Inlerlaces.oeeceee ence ences ett ete snetnuasestiiststtutetesuetunsersststessensnss 3935

27.2.1 BO SPH one cocci ec cee e cece cen ee eu eee ce beneyennetssuantyesustsueyeysueycuipeueenestsatvevessusysusesneycesss 3938

2722 SC SQ...........

2723 SQ to SX interpolator DUS noececeee ccc eecescseessusesecstusestseesutussassssuanstetsuaeisussiss 4037

272A S8Q to SP: Staging Register Data. occ cee ceeccceecseeeesccseesssesessesusuassesipsaesasesis 4237

27 2,5 VGT to SQ > Vartex Interface... cccc ccc ceccesessueesssssunsussssusssesssussstssusesusstssusenseses 4938

27.2.6 SQ to SX: Control Busccce cece ceee ence e eate tutes vpestttesentstntueneneussatesieetenes 4644
27.2.7 SX to SQ: Output file COMUOL oe cecccceecccccecesezssseussasnsssssuesssussssstustupntssaneseseses 4644

2728 SQ to TP: Control Dus occ ccecccceccccceseceseecesseesscstcesee ee tessvesustsesutessvisiteyienienesss 4644

2729 TP to SQ: Texture Stallcece ceecee ces eecesessesscsuesuatssesttstsutesssipssuesietsaiuiseesiss 4742

27210 SG to SP: Texture Stallone ccc cecesc cs cesuscusessuuesseutestustusesasussesusuasesiiainesinesis 4742

272,11 SQto SP: GPR and auto counter.

27212 SQ to SPx. INStrUCtlOnS ooo cccc ccc ecceeseeecsceseeeeeses

272,13 SP to SQ: Constant address load/ Predicate Set... cccccccccccscsesseseccesusesus sence 4843

272,14 SQ to SPx: constant broadcast ooo. ccc ccccecescssessussueessessstsussessisssustutusiussuseusesceses 4944

272,15 SPO to SQ: Kill vector loa noc e ccc ccceeeceseeceseeesseeusseeseestestisesstistsetustuisunsseesesis 4944

27216 SQ to CP: RBBM DUS ooo ceccecceccccesecsepesssaes as yas sats asbabstbsaspaaiae bi abpaspabtsspaesastesiiss Ag44

Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257287

ATI Ex. 2107

IPR2023-00922

Page 153 of 260

ATI Ex. 2107
IPR2023-00922

Page 154 of 260

V4) ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE7 . | U 24 September, 2001 4 Seplember, 207519 4 of 52Pesci OUI owe,

21217 CP te SQ: REBM BUS ooo cece sssseusesasenuteussepusessssusatousaisutuussetatsusstunusutssutnseseas 4g44

2/2
o

6.5--—-Register- fie iAdexinQersnrrsereernrereeerereeeeeeererererreeers

9,REGISTER FILE ALLOCATION sersceerecervecs: = wer

i-fiiARBITRATION...

15—Ad- FORMATcccececseverree

Exhibit 2027, doct4o9_Sequencertos 60208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257288

ATI Ex. 2107

IPR2023-00922

Page 154 of 260

ATI Ex. 2107
IPR2023-00922

Page 155 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 5 of 52A ab SAA. aA

18.VERTEX-POSITION-EXPORTING...;
19... - EXPORTING ARBITRATIONicin

26-1+-4---SQ-to-SX:-Contrel-bus... os

26-18.--SX-to-SQ-:-Outpul-file-COnt0renee nceereeeeeeeee enero renereneenreerneeeerrenree Ad
26-49... $Q-10-TP:-Contro BUSs.ceresceeseeeee rerereeee er eninnreerernererenennnreeneeeeenneresree Ald

m 2

Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257289

ATI Ex. 2107

IPR2023-00922

Page 155 of 260

ATI Ex. 2107
IPR2023-00922

Page 156 of 260

 Pat ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE |
| _ 24 September, 2001 4 September, 201548 8 of 52aan PresethOUEES8fone or

Zi-+++ Sequencer Control of a Vector of Verticesocceee etecettteteestinitenes 45

f7-12-—-Sequencer-Control-of.aVectorofPixels...

Exhibit 2027, doct4o9_Sequencertos 60208 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257290

ATI Ex. 2107

IPR2023-00922

Page 156 of 260

ATI Ex. 2107
IPR2023-00922

Page 157 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |
24 September, 2001 4 5eptember, 201519 GEN-CXXXXX-REVA 7 of 52AccelOPES Bf or, i

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date . October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2004
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rey 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rey 111 (aurent Lefebvre)
Date:

Exhibit 2027.doch400_Sequencerdee

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPO interfaces. Changed delta
precision. Changed VGT—SP0 interface. Debug
Methods added.
interfaces greatly refined. Cleaned up the spec.

Addedthe different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—-SQinterface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_cail instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP slate report interface. Last version of the
spec with the old control flow scheme

68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257291

ATI Ex. 2107

IPR2023-00922

Page 157 of 260

ATI Ex. 2107
IPR2023-00922

Page 158 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201518 8 of 52i Aesril AEE Aten,

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257292

ATI Ex. 2107

IPR2023-00922

Page 158 of 260

ATI Ex. 2107
IPR2023-00922

Page 159 of 260

wee©36Eq49A0DUODONON1UHUAdODsoUsIaJOY"JENUSPYUOD[Ly@vasoz09
sepiesuerbag=ogpysop1707Wala]

MITALIA0Asouonbeg[e1eueyi]easy

 eeeeeay|beaysolgeeoay|A._a,a/|80/0d+|g0/OdfydO/Od<~/ GO/OdkeTEeeSOwavs|ASdsdsOGaarwaa
“|SSLLNI |
4

|MELLNI=)SELLNI||

% dvassoudri

z

v

eeeYOaSEYSOAcS06WAREXXXXKXO-NAOdvdWAN(AdaLNSINNOO"d

PBO"]UBISUED

doDONELPEEKLVEWGLRUXLPOen‘asas

GiSUMOd-wf||susuniog||avaaad|

aleSLWLSHOLS-ISNIXA!»SFedOLSLSNI
avoISNi

peeydo~/ey

~dO
TOMINOSSLINVLSNOD

XALMSA

do

TLS

LO0g‘Jaquiaydes77SLYSLVNISIO

SralocJequieyaesyp3lVdLids

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257293

ATI Ex. 2107

IPR2023-00922

Page 159 of 260

ATI Ex. 2107
IPR2023-00922

Page 160 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201518 10 0f 52Asset OOOO Ad

|.1 Top Level Block Diagram

veriex/pixel vevtor arbitrator
Possible delayfor available GPR’s[yg

ey
IPextare clause 0

: eservationstation
ALU clause C

}<-——feservation station

 FIFO Pened Pexture clause 1
ee eservationstation

efLU clause t fexture arbitrator

reservationstation
pyexture clause 2

eservation station

FIFO. Be[FRO exture clause 3eservation station

exture arbitrator
ALU clause 2
reservation station

: FIFO
JALU clause 3 Local
keservation station. aS! oO >

[Fre (Pextute clause 4ee reservation station.i FIFO
ALU clause 4
keservationstation ARS: j —s\ [Pextuce clause 5

eservation station
La FIFOU clause 5 J

res ervation station ARS|LOT Texture clause 6
; HFO eservation station

LeggALUclause 6 « “
foscrvation station rao ——_—| 4 (Pexture clause 7

FIFO eservation stationi g Ola
Legg—ALU clause 7kescrvation station

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and onefor pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257294

ATI Ex. 2107

IPR2023-00922

Page 160 of 260

ATI Ex. 2107
IPR2023-00922

Page 161 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seniember, 201519 GEN-COOOOC-REVA 11 of 52 ib Ay OAS BM. che

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A smail command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packetis put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

if the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packelfinally reaches the last ALU machine(7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and onefor the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the registerfiles.

Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257295

ATI Ex. 2107

IPR2023-00922

Page 161 of 260

ATI Ex. 2107
IPR2023-00922

Page 162 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201518 12 of 52Asset OOOO Ad

1.2 Data Flow graph (SP)

|

 instruction

RegisterFile ‘OEee

2b | (sealat mmputfoutputr _¥1
pipeline stage |

 tel fre requ ~~

instruction Register File

7 scalarinput/output

pipeline stage
 rT ana

MAG [text equed —>~

Register File

 ScalarUnit

instruction I
BpepSinxey”quest
|

texture

\

ByWo)BjepSARUL| pipeline stage |

Register File oi
|I i

fexture re} pst | »
instruction

ee o

=I)

¢textureaddress1&

i

fo at - a\to Primitive Assembly Unit or RenderBackendI

Figure 3: The shader Pipe

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257296

ATI Ex. 2107

IPR2023-00922

Page 162 of 260

ATI Ex. 2107
IPR2023-00922

Page 163 of 260

 | ORIGINATE DATE EDIT DATE
DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 13 of 52A af SA

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady _
WrAddr IS SEQ cs

| | WrAddr
CMD | |

cst
|

Phase: H |
cmp SSTestzestipx & 8 © Wrveo |

RdAddr | _ | WrSeal wader
_——___— 4 Bo

FETCH SP OF

WrAddr:

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated dala bus
The interpolators contain an [J buffer to pack the information as much as possible before writing it to the registerfile.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257297

ATI Ex. 2107

IPR2023-00922

Page 163 of 260

ATI Ex. 2107
IPR2023-00922

Page 164 of 260

To RB

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 Seplember, 201519Preset VE Bo or

R400 Sequencer Specification PAGE

14 of 52

ae

lds CROSSBAR (4x64 bits}

TT a= a !
to Segaa

| STEELEa$n pt - aee iee
—— To ee

— SSE. Us buffer (ging-pong buffer) 1
Aa Al Ag Be (28 bits * 2 (15) + bits * 6 (delta Ue)+4 & i

bits*6}* 16 (quads) * 2 (doubie-butfered) Ag At AZ BO i
4096bits |

2 Bt ce ct €2 32x 128
Bt co ci C2 |'

3 C3 o4 cs bo Ys buffer (ging-pong buffer)
24 bits * 16 quads * 2 3 C4 C5 Do i

768 bits Ised —____}__ _ |
4 D1 b2 EG 1

| ot bz EG i=

i i | | 1 TINTERPOLATORS . i
' FIX-FLOAT + EXPANSION

pe a “|

edi
a 1 |

512 “|/-a | |
|
fi. oy onHt i |f i j j i

3u aur | 3UR 4LR XA

Echibit 2027 doch400_Sequencerdac

Figure 3: Interpolation buffers

69205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257298

ATI Ex. 2107

IPR2023-00922

Page 164 of 260

ATI Ex. 2107
IPR2023-00922

Page 165 of 260

see©BHEdJ9A0DUODONON1UHUAdODsoUsIOJOY"JENUSPYUODLLY@wssoz09WIt.iselpSuuUOREOd.AIUy79sans]

eCL

Sapuesusrbes“GOPyIOp2707UK

bel)

OCLIGLL)SLL)ZbL|SbL|SLL

éG40SLWAREXXXXKXO-NAOdvdWON(AdaLNSINNOOG3lVdLids
 SralocJequieyaesyp

 SLYSLVNISIO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257299

ATI Ex. 2107

IPR2023-00922

Page 165 of 260

ATI Ex. 2107
IPR2023-00922

Page 166 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4|September. 201318 16 of 52
Above is an example ofatile the Sequencer might receive from the SC. The write side is how the data get stacked
into the XY and [J buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencercontrols the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 7 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The-Fret picture. shows the yarlous. modes: the. oF Cah lead. the memory: The Sequencer has to keep track ofthe
 PLS “TheVS_BASE and PS.BASE context registers are used
to specify for each context whereits shaderis in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257300

ATI Ex. 2107

IPR2023-00922

Page 166 of 260

ATI Ex. 2107
IPR2023-00922

Page 167 of 260

Buoquinypuesjayng:peyeuuesL-

wenettafsa]899008penceauuesapoosonia—,sponSAeeneaape9epogSAne—-——_————cdEASSPOSSAIUMLOiV¥9p09Sda9podSA
VSpodSA

soptestienbes“gOrEsop2707US

xx@BBEJ9AODUOSOHONJYHUAdODsousiajoy‘J[EWUSPYUSDLLY@«eas0209

 S60b=960 28P0DSd

—————

39p0DSd§8p0DSd
VW8p0dSd

2BP0dSA“epooey)BugnoexeaSVaNSQVHSTaxIdUIs0]AlouSMOUYad‘apoo8u)Buynoexe
Heys0]B19UMSMOLH

_a¥PODSAirASVNSCVHSXELYSA5te__

Ssva@YysqVHSXSLysA

BPOOPEELS

ae@ponPeleus
eeuree|

SeulljeayBuryjend-0SqoI"

BulgajBuig-|SGOW
KaregwyuyorLOO@/PLLL:peyepdn

AIOWSIA]UOHONISU|JOSMSI/AS.dDOOF
L00Z‘JequiaydespzavdSLYNIOIdO

FeeSrSYICTSTeCGHOALWARYXXXXXO-NAOBrGlOgJeque\ies7qovd‘ANN(ASe-LNSINNOOGaLvdLida

TVIELVNdadoAALLOdLOUdd

AMD1044_0257301

ATI Ex. 2107

IPR2023-00922

Page 167 of 260

ATI Ex. 2107
IPR2023-00922

Page 168 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201518 18 of 52Asset OOOO Ad

$4. SequencerInstructions
All control flow instructions and moveinstructions are handied by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

6-5. Constant Stores

645.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contro! flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

625.2Managementof the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VVWR_BASE). On the read
side, one levelof indirection is used. A register (GQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer nurnber +71)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

635.3Managementof the re-mapping tables

63-15.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
betweenthe two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257302

ATI Ex. 2107

IPR2023-00922

Page 168 of 260

ATI Ex. 2107
IPR2023-00922

Page 169 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September 201918 GEN-CXXXXX-REVA 19 of 52
is 512 and the reserved RT space can be up to 356 entries, thememory must be of sizes 1280 and above. Similarlythe size of the texture store must be of 32*2+32 = 96 entries and above.

6-3-29.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the

sequencer would check for SQ_IDLE and PA_IDLE andif both are idle willerase the content of state to replace it ‘withthe new state (this is depicted in Figure &: De-allocation mechanism™}
aliccation-mecnaenism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addresses if needed).

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257303

ATI Ex. 2107

IPR2023-00922

Page 169 of 260

ATI Ex. 2107
IPR2023-00922

Page 170 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 207519 20 of 52Freseil OOOO Bs

Renaming TableContext 0 => N

each

 round but |
CurrenV/Last

Context
(8 rows of 16-&
bit physical =>

_Logical Address

128 entries copy
Logical Acdress in eight clocks) | & Context@

é
ea |

Context N L. Physical
‘| Address

Global Register ylData Bus

Staging Data

Constants Buffer Physical
location << |
available Sepal
WRTR ¢ ——® Staging Vurite Addr

I
physical oe
address Counts| nextto physical
schedule accress

for ready
de-alloc for allocate| |

! Seq
Logical address | | coon

On the ———_»“ awa \ ' B at
GibRegBus _ _ | eques|

when Isb are zero | | iir : cae ,
first word of write Renaming Tante! Context | Y A “

for 1 Context yoy
Current/Last \ caical 1 | | Context &Physical | oe lg | | Logical

Address | Address ha Address —]| ff set I
per | don't | |Logical " : !

Address | allocate allocate
| if set} | or de-! | allocate)| Renamingtable

-Contexts
Cogy Last held above to

Current Context on receipt
of Set Constant for 4 |

newcontext (Hide loading
behind Set State load - 16 clocks)
alt other Set States just write one

entry te current state

Figure 78: Constant management

bit 2027 doch499_Sequencerdoe 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+*

AMD1044_0257304

ATI Ex. 2107

IPR2023-00922

Page 170 of 260

ATI Ex. 2107
IPR2023-00922

Page 171 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA | 21 of 52iL He

i) TATESa a

 DEALOC I—WRITE_ENABLE

Free List CNT VALUE COUNTERS | || |PREVIOUS

NOT fa STATE

| NEW
| STATE| I

VALUE! ——__ } |
| << |——|I= '

VALID | hk <| | |
——— rR || r

: $Q IDLE
——{ AND | PA_IDLE

ltCP_NEW_STATE_CNTL—
Ree @—____SET CTX BITS

Figure 89: De-allocation mechanism for R400L_E

63-35.3.3 Dirty bits
Two sets ofdirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a newcontext is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the ariver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

63-45. 3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257305

ATI Ex. 2107

IPR2023-00922

Page 171 of 260

ATI Ex. 2107
IPR2023-00922

Page 172 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201542 22 of 52

6-3-55.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. VVhile in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

6-3-65.3.6 Operation of Incrernental mode!
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the newdata will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied fo the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_pir pointer if read_ptr != to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happensin parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are smail it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as weil as a ring could in this case.

645.4Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257306

ATI Ex. 2107

IPR2023-00922

Page 172 of 260

ATI Ex. 2107
IPR2023-00922

Page 173 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 23 of 52PU ES Be " Aeavd dw

betweenthe time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RILX.R2X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
NOP #f latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

655.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the samme way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

6.65.6Constant Waterfalling
In order to have a reasonable perforrnancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a smail synchronization issue related
with this as we need for the SQ ta make sure that the constants where actually written to memory (not only sentto the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
Figure 944: The instruction store

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257307

ATI Ex. 2107

IPR2023-00922

Page 173 of 260

ATI Ex. 2107
IPR2023-00922

Page 174 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201518 24 of 52Asset MOOR As

| 7-6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VVe plan on
supporting constant loops and branches using a contro] program.

| 746.1The controlling state.
The R400 controling state consisis of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

| 726.2The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:O][7:0] /f eight & bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:O][7:0] # eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn't contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

The contro! program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Canditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified numberofinstructionsin instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stackif the condition is met. On the return
instruction, the IP is popped from the stack.

| Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257308

ATI Ex. 2107

IPR2023-00922

Page 174 of 260

ATI Ex. 2107
IPR2023-00922

Page 175 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 25 of 52 —— fi 3 ue hi ben

Conditional_execute_Predicates executes a block of instructionsif all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an addressif the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsince there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jumpis logically bigger than pshader_cnil_size (or vshader_cnitl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the addressis relative
to the base of the current shader program.

Note that whenevera field is marked as RESERVED,it is assumed thatall the bits of the field are cleared (0).

count

ee . Execute .
47 | 46.42 | 41 | 40... 24 | 23... 12 | 11.0

Addressing | 00001 | Last| RESERVED Instruction | Exec Address
| |

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP

47 [46.42 | 41 40... 0
Addressing | 00010 | Last| RESERVED

This is a regular NOP.If Last is set, this is the last instruction of the clause.

Conditional_Execute
 i, 47 [46.42] 41 | 40 | 39... 32 31 | 30...24 | 23..1200| 17-0
Addressing|00011 | Last|RESERVED|Boolean | Condition|RESERVED Instruction | Exec

| address | count | Address

if the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates

 47 [46.42] 41 | 40.34[|33...32 | 31 30...24 | 23... 12 11...0
Addressing | 00100 | Last|RESERVED|Predicate | Condition|RESERVED|Instruction|Exec Addressvector | count

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. Wwe need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid. if Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop.Start ; |

47 146... 42 41... 17 16... 12 | 11...0
00101 | RESERVED loop ID Jump address

Addressing | | |
Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257309

ATI Ex. 2107

IPR2023-00922

Page 175 of 260

ATI Ex. 2107
IPR2023-00922

Page 176 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201519 26 of 52 — ivi
Loop Start. Comparesthe loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 146... 427 41.17 | 16...42 | 141...0

00110 RESERVED loop ID | start address
Addressing | L |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

 47 |46... 42 | 41... 34 33.32) 31 30... 12 i417... 0
00111 | RESERVED Predicate|Condition RESERVED Jump address

Addressing | vector | |
If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

 47 [4647 nal2OO
| | RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

ConditionnalJump

 47__—s«|46... 42 | 41... 40 | 39..32 | 31 [| 30 [| 29..22 11....0
| 01007 | RESERVED Boolean | Condition|FWonly | RESERVED | Jump address

Addressing | address | |

If condition met, jumps to the address. FORVVARD jumponly allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

736.3Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is 'exparted' to the sequencer.
PRED_SETGT_4- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#-SETEO
PRED_SETE1_#~-SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programsbut only 4 will be

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

Conditionnal_Call | aS

AMD1044_0257310

ATI Ex. 2107

IPR2023-00922

Page 176 of 260

ATI Ex. 2107
IPR2023-00922

Page 177 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201512 GEN-CXXXXX-REVA 27 of 52RS MMe
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbittells usif
we execute on 1 or 0. For example, the instruction:

PQ_ADD_# RO,R1,.R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

7.46.4HW Detection of PV,PS | -
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

756.5 Registerfile indexing |
Because we can have loops in fetch clause, we need ta be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our newaddress that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangemenis.

7.66.6Predicated Instruction support for Texture clauses :
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we haveto da the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

1. 6.7 Debugging the Shaders | . oe
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257311

ATI Ex. 2107

IPR2023-00922

Page 177 of 260

ATI Ex. 2107
IPR2023-00922

Page 178 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 Seplember, 201515 28 of 52

| ~?-+6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

76.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be:

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we havehit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(evenif they occur before the address slated by the ADDR debug register).

8-7, Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixeis/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257312

ATI Ex. 2107

IPR2023-00922

Page 178 of 260

ATI Ex. 2107
IPR2023-00922

Page 179 of 260

 | ORIGINATE DATE EDIT DATE

DOCUMENT-REV. NUM. | PAGE
| 24 September, 2001 4 September, 2015418 GEN-CXXXXX-REVA 29 of 52. =| Assetl YYAF i

9.8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

10-9. Registerfile allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257313

ATI Ex. 2107

IPR2023-00922

Page 179 of 260

ATI Ex. 2107
IPR2023-00922

Page 180 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 207518 30 of 52ft OU ES Ad

Above is an example of how the algorithm works. Vertices comein from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index Q and goes up to the top at
index 127.

44-10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The chaice is made
by looking ai the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

42-11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinsi0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

 ichibit 2027 deck409-Sequencerdes 60208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © =

AMD1044_0257314

ATI Ex. 2107

IPR2023-00922

Page 180 of 260

ATI Ex. 2107
IPR2023-00922

Page 181 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA | 31 of 52Asset) SAMO Aa

43-12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

14-13, Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

15.14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

46-15. |J Format

The IJ information sent by the PAis of this format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit}. The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(O) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AO? = FO— TO)

AOL? = JU) —- J(0)

AO27 = (2) - IO) PO PA
AO2S = J(2)- FJ(0)

AOBI = £3) — 1(0)

A037 = J(3)- J(0) p2 P3

PO=C +1(0)*(4-C)+J(0)*(B-C)

Pl= PO+A0L *(4-C)+ AOL*(B-C)

P2 = PO+A02 *(A—C)+ A02T *(B-C)

P3 = P0+A03I *(A-C)+A0B *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257315

ATI Ex. 2107

IPR2023-00922

Page 181 of 260

ATI Ex. 2107
IPR2023-00922

Page 182 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| h 24 September, 2001 4 September, 201518 32 of 52Seseil OOOO Ah ee,

| Adds: =
FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign

Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 8°6 + 4*B + 4*2 = 1238

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

16-+15.1 Interpolation of constant attributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that ifA = Band B=C and C =A, then P0,1,2,3= A. Since one or more ofthe IJ terms
may be zero, so we extendthis to:

if (A=B and B=C and C=A)
PO0,1,.2,3 = A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-I-J = 0)) and
((-J-1 = 0) or @=0))) {

if |= 0) {
PO =A;

} else if(J '= 0) {
PO =B;

belse {
PO=C;

/irest of the quad interpolated normally
}
eise
f

normal interpolation
}

17416, Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 10 11 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 6D G1 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGTwill send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sert
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

| Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257316

ATI Ex. 2107

IPR2023-00922

Page 182 of 260

ATI Ex. 2107
IPR2023-00922

Page 183 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 33 of 52i Joa
The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure-lerigure-i2. The area of the fixed-to-float converters and the VSISRsfor this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure10Figure-tiFigure-44,

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 2 60.57813 17perbit

Area of $6x8-deep Latch Memory 46524 (2
Area of 24-bit Fix-to-float Converter 4712,¢ per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

 EL 758520.¢

Figure 1014:Area Estimate for VG'Tto Shader Interface

Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257317

ATI Ex. 2107

IPR2023-00922

Page 183 of 260

ATI Ex. 2107
IPR2023-00922

Page 184 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201518 34 of 52SB STE AA
 VGT BLOCK

CIN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

Figure {142:VGT to Shader Interface

48-17, The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER | ADDRESS |
4 bits | 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting &
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17) is going to have the address 00000001000, the 18" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2°VS_EXPORT_COUNT_/7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257318

ATI Ex. 2107

IPR2023-00922

Page 184 of 260

ATI Ex. 2107
IPR2023-00922

Page 185 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 201519 GEN-CXXXXX-REVA | 35 of 52Amel! SAO Aa

49.18. Vertex osition exportin
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel outputfifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the export is going to occur at ALU clause7 if unset position export occurs at clause 3.

20-19, Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

24-20, Exporting Rules

24-420.1_ Parameter caches exports
We support masking and out of order exports to the parameter caches. So one can export multiple tirnes to the same
PC line using different masks.

24+:220.2 Memory exports
Memory exports don’t support masking. However, you can export out of order to memory locations.

21.320.3 Position exports
Position exports have to be done IN ORDER and don't support masking.

22-21. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereisalist of all possible export modes:

22-421.1 Vertex Shading
0:15 -16 parameter cache
16:3431 - Empty (Reserved?)
32 ~ Export Address
$233:43-40 - 42-8vertex exports to the frame buffer and index
4444:47 - Empty
48:5955 - 42-8debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(point_h,point_w,edgeflag misc)

22.221.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
47 - Empty

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257319

ATI Ex. 2107

IPR2023-00922

Page 185 of 260

ATI Ex. 2107
IPR2023-00922

Page 186 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201548 36 of 52! i ra ket bs

38 - Buffer 0 Color/Fog (primary)
9g - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:3431 - Empty (Reserved?)
32 ~ Export Address
3233:4440 - 42-8exports for multipass pixel shaders.
4441:47 - Empty
48:5955 - 42.8debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component

23-22, Special Interpolation modes

23-122.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write intoit. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able abie to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data rmemories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

23-222.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|O register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereis a list of all the modes and how theyinteract
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. if the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_]l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_]0 disable, snd_xy enable, no gen_st — [0 = No modification
Param_Gen_l0 disable, snd_xy enable, gen_st — 10 = No modiification
Param_Gen_I0 enable, snd_xy disable, no gen_st ~ IO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage, garbage,s, t
Param_Gen_l0 enable, snd_xy enable, no gen_si — 10 = screen x, screen y, garbage, faceness
Param_Gen_|0 enable, snd_xy enable, gen_st — IO = screen x, screeny, s, t

23-322.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the count to retrieve the data on the 2 pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEXregister. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257320

ATI Ex. 2107

IPR2023-00922

Page 186 of 260

ATI Ex. 2107
IPR2023-00922

Page 187 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA 37 of 52
GPRs the counter is incremented. Every time a state. change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different forall elements in the vector.

23-3422.3.1Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x fleld of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

23-32223.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_l0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1“ register (RO.x).

 |STG O | /
AUTO INTERPOLATORS

COUNT ,
STS1

The Auto Count Value is

broadcast to all GPRs.It is
loaded into a register wich has

its LSBs hardwired to the
GPR number(6 thru 63). Then

if GEN_INDEXis high, the
mux selects the auto-count

value and it is loaded inte the
GPRsto be either used to

retrieve data using the TP or
sent to the SX forthe RB to

use it to write the data to
memory

Figure 1213: GPR input mux Control

24.23, State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

24.423.]Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters areinitialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

25-24. AY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the [J
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257321

ATI Ex. 2107

IPR2023-00922

Page 187 of 260

ATI Ex. 2107
IPR2023-00922

Page 188 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 38 of 52

— Amel 2O0¥ A.

interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.2 for details on how to control the interpolation in this mode.

25-424.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

26-25, Registers

26-1251 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICYice or

INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

26-225.2 Context
VS_FETCH_{0...73
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO_VERT
PARAM_WRAP

PS_EXPORT_MODE

Exhibit 2027 doch4od_Sequercer.doe

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamicallocation turned
on)
policy of the arbitration between vertexes and pixels

start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2)
This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
256*4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EOQ_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occurat clause 7.

sight 8 bit pointers to the location where each clauses control program is located
sight 8 bit pointers to the location where each clauses contro! program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control prograrn is located
base pointer for the pixel shader in the instruction store
base pointerfor the vertex shader in the instruction store
size of the vertex shader(# of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cntl+instructions)
size of the vertex shader (cntitinstructions)
number of GPRsto allocate for pixel shader programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which pararneters are to be gouraud shaded (0 = flat, 1
= gouraud)
0: vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode
1xxxx : Multipass mode

69205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257322

ATI Ex. 2107

IPR2023-00922

Page 188 of 260

ATI Ex. 2107
IPR2023-00922

Page 189 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 39 of 52iL Smee A iw

If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MODE 0: position (1 vector), 1: position @ vectors), 3: multipass
VS_EXPORT
COUNT{0...6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode(per clause)

PARAM_GEN_IO Do we overwrite or not the parameter 0 with XY data and generated T and 8 values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Tums on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

274.26, DEBUG Registers

27-1261 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

27.2262 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

28-27. Interfaces

28-127,.1 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

227.2 SC to SP Interfaces

28.2427.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the [J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257323

ATI Ex. 2107

IPR2023-00922

Page 189 of 260

ATI Ex. 2107
IPR2023-00922

Page 190 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201818 40 of 52ih Mees ies
The actual data whichis transferred per quad is

Ref Pix | => $4.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value
Delta Pix | (x3) => $4.8 Floating Point Delta | value
Delta Pix J 03) => $4.8 Floating Point Delta J value

This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a lJ_BUF_INUSECOUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSECOUNT count. Prior to
sending the next pixel vectors dala, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a bufferfree.
Note: We could/may optimize for the case of only sending only IJ to use ali the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We mayrevisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name [Bits|Description ; |
SC_SP#_data 64 lJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bi)

Type 0 or 1, First clock |, second clk J
Field ULG URG LLC LRC
Bits (63:39) (38:26) (25:13) [12:9]
Format SE4M20 SE4M& SE4M8 SE4M8&
Type 2
Field Face X Y

Bits (63) (23:12) (17:0) |
| Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
|| SC_SP#_last_quad_data 14 This bit will be set on the last transfer of data per quad.

SC_SP#_type 2 0 -> Indicates centroids
1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus

| The SC shall lock at state data to determine how many types to send for the |
| interpolation process. |

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

28-2327,2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 46-47
bits.

Name | Bits | Description |
SC_SQ_data | 46 Control Data sent to the SQ

| 1 clk transfers |
| Event ~ valid data consist of event_id and |

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257324

ATI Ex. 2107

IPR2023-00922

Page 190 of 260

ATI Ex. 2107
IPR2023-00922

Page 191 of 260

ORIGINATE DATE

24 September, 2001 A

EDIT DA

oe

TE DOCUMENT-REV. NUM. PAGE

4 September, 201519 GEN-CXXXXX-REVA 41 of 52teatnatett

2 clk transfers
Quad Data Valid — Sending quad data with or

siate_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Conirol data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pe_dealioc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deallac will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

| SC_SQ_valid

1 SC sending valid data, 2" clk could be all zeroes

5C_SQ_data — first clock and second clock transfers are shown in the table below.

 | Name BitField [Bits | Description |
:

SC_SQ_event 0 i This transfer is a 1 clock event vector
L L Force guad_mask = new_vector=pc_dealloc=0 I
8C_S8Q_event_id (2.1] 2 This field identifies the event

0 => denotes an End Cf State Event
1 => TBD

| SC_SQ_pe_dealloc (6.338 ot Deallocation token for the Parameter Cache |
$C_SQ_new_vector 64 The SQ must wait for Vertex shader done count > 0

and after dispatching the Pixel Vector the SQ will
| decrement the count.

$CSQ quad_mask [08:78] 4 Quad Write mask left to right SPO => SP3 |
SC_SQ_end_of_prim ite i End Ofthe primitive
SC_SQ_state_id (142.126) | 3 State/constantpointer (6*3+3) | ;
SC_SQ_pix_mask (8028:153] (16 Valid bits for ail pixels SPO=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_iype S4:3128] 3 Stippled line and Real time command need to load tex

cords from alternate buffer
000: Normal
406010: Realtime
101: Line AA

Echibit 2027 doch409_Sequeneerdec 69205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257325

ATI Ex. 2107

IPR2023-00922

Page 191 of 260

ATI Ex. 2107
IPR2023-00922

Page 192 of 260

ORIGINATE DATE

EDIT DATE

24 September, 2001 4 September, 201518CED.

PAGE

42 of 52
R400 Sequencer Specification

| 110: Point AA (Sprite)

 2nd Clock Transfer

SC_SQ_ provokvixSC-SQ-pc—sir|[35:34][42:32]}|244+ | Provoking vertex for flat shadingParameter_Cache
8 | pointerforvedex0
SC SOQ pe pid 46:36 Wf Cache pointer for vertex0

 8C_SQ_pe_ptri po.c) 1 Parameter Cache pointer for vertex 1
SC_SQ_pe_ptr2 [21:11] li | Parameter Cache pointer for vertex 2
8C_SQ_lod_correct [45:22] 24 | LOD correction per quad (6 bits per quad}

Name Bits | Description
SQ_SC_free_buff 4 | Pipelined bit that instructs SC to decrement countof buffers in use.
$Q_SC_dec_cntr_cnt 4 Pipelined bit that instructs SC to decrement count of newvector and/or event

sent fo prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converterwill submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vecior (up to 1Gquads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximumsize). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another veriex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

28:2:327,2.3 SQ to SX: interpolator bus

Name Direction Bits | Description
8Q_Sx%x_interp_flat_vix | SQ—SPx 12 | Provoking vertex for flat shading
SQ_S%_interp_flat_gouraud|SQ—SPx 1 | Flat or gouraud shading
SQ_SX%x_interp_cyl_wrap | $Q-+SPx 14 | Wich channel needs to be cylindrical wrapped
SQ_SXx_pe_ptro4 SQ—SXx 11 _ Parameter Cache Pointer
SQ_SXx_pe_ptri2 | $Q->GAx | 11 | Parameter Cache Pointer
SQ_SXx_ps_ptr23 SQ>SXx 11 | Parameter Cache Pointer
SQ_SXxrbsel | $Q-+SXx 4 | Selects between RT and Normal data
SQ_SXx_pe_wr_en SQ-+SXx 4 | Write enable for the PC memories
SQ_SXx_pe_wr_addr SQ—SXx 7 | Write address for the PCs
SQ_SXx_pe_channel mask | SQ—SXx 14 | Channel mask

2e2et2724 SQ to SP: Staging Register Data
This is a broadcast bus thatsends the VSISRinformation to the staging registers of the shaderpipes.

Name _ Direction | Bits | Description
$Q_SPx_vsr_data SQ—SPx 96 _| Pointers of indexes or HOS surface information
SQ_SPx_vsr_couble | SQ-+SPx im _0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ ysr_valid SQ—SPO 1 _ Data is valid
SQ_SPi_vsr_ valid |SQ->SP1 1 | Data is valid

“SQ"SP2_vsr_valid SQSP2 [1 Dataisvalid
SQ_SP3_vsr_ valid [1_|Data is valid
$Q_SPx_ vsr read $O-5Px Li Increment the read pointers

peed)?2.5 VGT to SQ: Vertex interface

28.2-3,427,2.5,1 Interface Signal Table

The area difference between the two methodsis not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257326

ATI Ex. 2107

IPR2023-00922

Page 192 of 260

ATI Ex. 2107
IPR2023-00922

Page 193 of 260

ORIGINATE DATE

24 September, 2001
EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 201549 GEN-CXXXXK-REVA 43 of 52iL Pe sak.

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name | Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double i 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vectar (for double vector

data, “end_ofvector"is set on the secend-first vectan

VGT_SQ_indx_valic 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of vector" is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
$Q_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

28.25.227,.2.5.2 Interface Diagrams

Exhibit 2027, docht409_Sequeneerdas 60208 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257327

ATI Ex. 2107

IPR2023-00922

Page 193 of 260

ATI Ex. 2107
IPR2023-00922

Page 194 of 260

ax@BHEd49A0DUOBOON1UHUAdODsoUsJIJIy"JENUSPYUOD[LY@wasozeo
Lses

sepiesuerbag“papysop1202WAI]

 —O88|jaauaGeaeeSonesDau

HEONENDAS

HaeqVHSOgu

Tees}04e45aCet

FTUSFivae

yaaand

aims

bXtL®OYOMOEAHOCNGDaezo]98ajopue45atievaBayZRMGIOFAAOINFyWigaodUstea|22%S[anepsavaagoaGeea|OHZWIIN0dASICAbYulASLSA| OauChupesonpeCewa|ae[nl——eo——————eeERCeS10PTGEGLOgJeque;LO0Z‘lequaydespZaOvduojeoyjoadsisouenbesOOFYaLvdLidsLVSLVNISINO
LOA

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257328

ATI Ex. 2107

IPR2023-00922

Page 194 of 260

ATI Ex. 2107
IPR2023-00922

Page 195 of 260

 UW

xxx@BBEg19A05UOSOONIUBUAdODsoUsIOJOY“JEUSPYUOD[Ly@MGsozs9sepssverbss“copyoopzzozaM
AMD1044_0257329

 SoG]IONHSVadid]Weibel(esibo7PSleisqTLSING
NOISSINSNVWALsdOLsWaadNnds:

TLL

|

NOISSINSNVWALSLYVLS-ddqaATHOdd
CtSdOLsqHATHOud

adOgKLANOAINDO31INOWEVdC4IaywWowd?GUNSZulyosIubuosOoubeosulySs

CG410Gedvd

ou

LO0g‘Jaquiaydes77SLYSLVNISIO

TALCSralocJequieyaesyp3lVdLids

WAREXXXXKXO-NAOWAN(AdaLNSINNOO"d

 TVIELVNdadoAALLOdLOUdd

ATI Ex. 2107

IPR2023-00922

Page 195 of 260

ATI Ex. 2107
IPR2023-00922

Page 196 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201518 46 of 52Asset OOOO Ad

gene 4 Formatted: Bullets and Numbering

2727272.6 SQ to SX: Control bus

Name Direction | Bits | Description
SQ_SXx_exp_pix SQ >SXx i | 4: Pixel

i i | O: Vertex

SQ_SxXx_expclause SQ—>SXx [3 | Clause number, which is needed for vertex clauses
$Q_SXx_exp_state |SQ->8Xx 3 | State ID
SQ_SXx_exp_alu_id $Q->SXx [4 | ALU ID

|| SQ 8% exp valid | $Q >SXx 4 | Valid be

These fields are sent every time the sequencer picks an exporting clause for execution.

lie Bullets and Numberin

242-8272.) SX to SQ : Output file contro! “ Te =
Name _ Direction Bits | Description
SXx_SQ_exp_count_rdy | SXx-SQ 1 Raised by SXOto indicate that the following two

/ fields reflect the result of the most recent export
SXx_SQ_exp_positien_availesas | SXx—-5Q 1 | Specifies whether there is room for another
e i position. _ _

| SXx_SQ_exp_buffer_availspace | SXx-SQ 7 Specifies the space available in the output buffers.0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each
| of 64 pixels)| | 65-127: RESERVED

| 27-29272.8 SQ to TP: Control bus “Ss =o
Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits | Description
TPx_SQdatardy TPx-- SQ (1 | Data ready
TPx_SQ_clause_num TPx— SQ 3 Clause number

TPx_SQ_type | TPx-> SQ i4 | Type of data sent (O:PIXEL, VERTEX)
SQ_TPx_send __|SQ>TPx i | Sending valid data
SQ _TPx_const SQ-»TPX 4 Fetch state sent over 4 clocks (192 bitstotal)
$Q_TPx_instr _SQ—TPx 2 Fetch instruction sent over 4 clocks

| SQ_TPx_end_of_clause SOQ—TPx 1 _ Last instruction of the clause
SQ_TPx_Type | SQ->TPx 4 _ Type of data sent (O:PIXEL, 1:VERTEX)

| SQ_TPx_gpr_phase SQ—TPx 2 _ Write phase signal
SQ_TPO_lod_correct | $Q--TPOQ 6 _LOD correct 3 bits per comp 2 components per quad

|| SQ_TPO_pix_mask SQ—TFO 4 | Pixel mask1 bit per pixel
SQTPi_lod_correctsi[SQ--TPt 6 | LOD correct 3 bits per comp 2 components per quad

|| SQ_TP1_pix_mask | SQ—TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_carrect SQ—TP2 6 | LOD correct 3 bits per comp 2 components per quad

|| SQ_TP2_pix_mask 4 _ Pixel mask 1 bit per pixel -
_SQ_TPSodcorrect|SQ TPS 8 Dcorrect5 bits percomp 2 componentsper quad

| SQ_TP3_pixmask SQ-sTP3 (4 | Pixel mask 1 bit perpixel
SQ_TPx clause num _SQ-»TPx 13 | Clause number

| Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257330

ATI Ex. 2107

IPR2023-00922

Page 196 of 260

ATI Ex. 2107
IPR2023-00922

Page 197 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE ; 24 September, 2001 4 Seplember, 201519 GEN-CXXXXX-REVA 47 of 52a a LLU RFAScrneaks — soerenni

SQ_TPx_write_gpr_index | SG->TPx Index into Register file for write of returned Fetch Data |

2pBeLO27 2.9 TP to SQ: Texture stall -
See 4 Formatted: Bullets and Numbering :

The TP sends this signal to the SQ_and the SPs whenits input bufferis full. The-SGis-going to -send-itie-the BPX, -
clocksafterreception(maximumof4clocksofpipeline delay).

TP_SP_fetch_Stali

SQ_SP_wr_addr |
U ||||: 1Q

———

Su2

Name _ | Direction | Bits | Description :
TP_SOQ fetch_stall | TP. $a 4 _ Do not send more texture requestif asserted a ee

27-24127.2.10 SQ to SP: Texture stall * er =
Name | Direction Bits | Description = S =
SQ_SPx_fetch_stall | SQ-»SPx i4 | Do not send more texture request if asserted :

«4

“=| Formatted: Bullets and Numbering

 Bee |SQ to SP: GPR and auto counter

Name Direction Bits|Description
SQ_SPx_gpr_wr_addr | SQ >SPx 7 _| Write address
$Q_SPx_gpr_rd_addr SQ—SPx 7 Read address
SQ_SPx_gpr_rd_en SQ—-SPx 4 | Read Enable _
SQ_SPx_gpr_wr_en _SQ—SPx 1 | Write Enable for the GPRs :
SQ_SPx_gpr_phase—mux SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC || -

reads and writes) :
$Q_SPx_channel_mask | §Q--SPx 4 The channel mask ;
8Q_SPx_gpr_input_muxse)|SQ—SPx 2 When the phase mux selects the inputs this tells frorn ||

which source to read from: Interpolated data, VTXO,|=
VTX1, autogen counter.

SQ_SPx_auto_count | SQ—SPx 127 | Auto count generated by the SQ, commonfor all shader
| _pipes

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257331

ATI Ex. 2107

IPR2023-00922

Page 197 of 260

ATI Ex. 2107
IPR2023-00922

Page 198 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001|4 September, 2015419 48 of 52 a oe
= ' ” a a ties _ coo] Formatted: Bullets and Numbering| 24:2:4327.2.12_ SQ to SPxInstructions — = 2

Name | Direction Bits| Description _
SQ_SPx_instr_start SQ—SPx 1 Instruction start
SQ_SP_instr $Q—-SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swiazle 11:4
VectorDst 17:12
Unused 20:18

1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 1712
Unused 20:18

2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp W444
Scaiar Clamp 12:12

| Vector Write Mask 16:13 2
fe ee ‘| SealarWriteMask20170
SQ_SPx_exp_alu_id | SQ>SPx 1 | ALU ID
SQ_SPx_exporting SQ—SPx 2 0: Not Exporting

4: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall |SQ->SPx 1 |_Stall signal _ _
SQ_SP0_exp--pvalidwrite mas|SQ-SP0 4 Result of pixel kill in the shader pipe, which must be
k | output for all pixel exports (depth and all color

' | buffers). 4x4 because 16 pixels are computed per
i: _ clock

SQ_SP1_ SQ—SP1 4 Result of pixel kill in the shader pipe, which must be
write_maskexp—pvalid cutout for all pixel exports (depth and all color

| | buffers). 4x4 because 16 pixels are computed per| | clock
SQ_SP2_ SQ—SP2 4 Result of pixel kill in the shader pipe, which must be
write maskexp—pvalic output for all pixel exports (depth and ail color

| buffers). 4x4 because 16 pixels are computed per| _ clock
SQ_SP3_ SQ—SP3 4 Result of pixel kill in the shader pipe, which must be
write maskexe—pvalid output for all pixel exports (depth and all color

buffers). 4x4 because 16 pixels are computed per
! | clock C2

, . = Formatted: Bullets and Numbering2reA427 213 SP to SQ: Constant address load/ Predicate Set ~ ‘{Hormated:BultndNumbering___)
Name | Direction | Bits | Description : Soe Dees Bee
SPO0_SQ_const_addr SP0-SQ | 36 | Constant addressload / predicate vector load (4 bits only)

| _ to the sequencer
SPO_SQ_valid | SP0—SQ '1_| Data valid
SP1_SQ_const_addr | SP1-SQ | 36 =| Constant address load / predicate vector load (4 bits only)

| to the sequencer

| Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257332

ATI Ex. 2107

IPR2023-00922

Page 198 of 260

ATI Ex. 2107
IPR2023-00922

Page 199 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: | 24 September, 2001 4 Seplember, 201519 GEN-CoOOO0C-REVA 49 of 52L i. LOE is He rs
SP1_SQ_valid | SP1—80 | _ Data valid
SP2_SQ_const_addr SP2—S8Q | Constant address load / predicate vector load (4 bits only)

: to the sequencer
$P2_SQ_valid | 8P2-.8Q 14 | Data valid
SP3_SQ_const_addr SP3—SQ 36 | Constant address load / predicate vector load (4 bits only)

tothesequencer

eigenenes
SP3_§6valid | SP3-580

| Data valid ee = ce i

. . ES | Formatted: Bullets and Numbering
27-24327 2.14 SQ to SPx: constant broadcast “Sere << ee

Name | Direction | Bits | Description HESS SS : ee oe
SQ_SPx_const | SQ5Px | 128 | Constant broadcast i oe

att-le27.215SPO to SQ: Kill vector load oS ToS

NameDirection “| Bits|Description ehhh oe : :SP0_SQ Kill vect SPO0—SQ 4 _Kill vector load

SP1_SQ_Kkill_vect | SP1-SQ 4 |_ Kill vector load
SP2_SQKillvect SP2 SQ 4 _ Kill vector load

SP3_SQ_killvect SP3—-S80 4 Kill vector load : (fom S : geae |=" Formatted: Bullets arid Numbering
27-24727 2.16 SQ to CP: RBBM bus a <—t

Name | Direction | Bits | Description .
SQ_RBB_rs 8qQ—cCP 4 _ Read Strobe
SQ_RBB_rd | SQ>CP ' 32 | Read Data
SQ_RBBM_onrtrir SQ CP | 1 _ Optional :
SQ_RBBM_rir L8Q-.0P 4 | Real-Time (Optional) : : :

. , . ~~ a|Formatted: Bullets and Numbering :2¢-2-1827.2.17 CP to SQ: RBBM bus | LT
Name Direction Bits | Description a 8
robbm_we | CP-»SQ 14 _ Write Enable ;
rbbm_a CP—S5Q 15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd | CP»SQ | 32 Data
robbm_be CP—5Q 4 | Byte Enables
rbbm_re | CP>SQ 14 _ Read Enable
rbb_rsO CP—5Q i _ Read Return Strobe 0
rob_rs1 |CP--»8Q 11 | Read Return Strobe 1
rbb_rdO CPSOQ 32__| Read Data 0

rob_rd4 CP SQ Read Data 0 ; eS EASE GES SS SESS:
RBBM_SQ_soft_reset | CP-»SQ Soft Reset oes ee ees :

ade 4 Formatted: Bullets and Numbering

[Bits|Description
SG_CPvsevent 1 | Vertex Shader Event

eventid L 2 | Ve
8Q_CPps_event 4
5Q CP ps eventid I 2 | Pixel Shader Event 1D

evertid = 1 => *sDone Le, /sDone)

So, the CP will assume the Vs is done with a state wheneverit gets a pulse on the S@_ CP vs event

|
|
|
|
|

eventid = 0 => *sEndOfSiate (Le. VsEndO/State

and the 8Q@ CP vs_eventid = 0.

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257333

ATI Ex. 2107

IPR2023-00922

Page 199 of 260

ATI Ex. 2107
IPR2023-00922

Page 200 of 260

ORIGINATE DATE | EDIT DATE R400 Sequencer Specification PAGE

 Budd,|24 September, 2001 | 4 September, 201549 500f520 | -

SREY L CKD AAAOSE Rie Loo Formatted: Bullets and Numbering

28.Examples-ofprogram-executions “ —

28h.

1.PAsends avecior of64 vertices (actually vertex indices—32 bitejindexfor 2048 bit total io the RE’s Veriex FIFO

ostate-pointer-as- wellasstag inte. position eache-|is-sentalong with.vertices. ealse before the vector is sent to the RE, the cP has loaded the ‘global instruction store with the vertex
«Theverlex-srogram-is-assumedto. be loaded wherwe recelve-the-vertex vector.

“sTSMO.wasfirstselosted:by:the.TSM. arbiterbefore. it ‘could. start

7.ail instructions of fetch clause O are issued by TSMO

eTS MOdoes -notwell forrequestsmadetothe FetchUnite complete: itpasses-the register flewriteindexforthe

fetch data-to-the-FG whieh.willwerite-the. daia-to the.‘RE: agiiis-received

40.all-instructions-ofALU clause-0-are-iseued-by ASMG,thenthe-controlpacketis-passed-tothe-next-reservation

siation-(he-FlEO-in-front-offetch-state-machine-1,-orTSM1FIFO)

44.fhe- controlpacket.conlinues fe kavel GowaEthe path ofof-reservation- StationsuntilallGladseas-have-seer executed

oA 5a.arametereachepointeris-also-sentalong ayith-the-position. data. -This-teis-te-the-PA-where-the-dateis-geing

te-be-+ineihe.‘Para meter cache:

Exhibit 2027.doch400_Sequencerdee 66205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257334

ATI Ex. 2107

IPR2023-00922

Page 200 of 260

ATI Ex. 2107
IPR2023-00922

Page 201 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4i September 201518 GEN-CXXXXX-REVA | 51 of 52i Hi nA

sthe-ASM.arbiter vast prevent apacketfrora-starting-aan OxpO Hing Clause. ifthe. position. @xport.-FIECQis-fullapararnoterd.

spararseter-cdatais-sentto the-ParameterCache-over-adedicaied-bus.
 longer:a needfor the,para:meters :iLie-told-by thePA when using 35 token},
sthe ASMarbiterwil_preventapackelfrom- slantingon ASM?itheparametercachetorthepositionbulfecif

position is-beingexporied)is-full

42.after-the-shader-program-has-completed,-the-SEG-will-free-up the-GFRe so-that-they-can-be-used-by-another
shadersrogram

oALthis-pointitis-assumed-thalithe-pixelpregram-is loaded-inte-the-instructon-stere-andthusreadyto-beread.

2the RE's Pixel FIFO je loadedwith the barycentric- coordinatesforpixel quadsby the detalied walker

athe.state.pointerand the- £OD- correction -bite are.also-places-ir-the Fixel FIEQ

«SEQ will not allowinterpolated data to be sent to the shader until space in the register file has been allocated

S.5E0-controls-the-transierolinierselaied-dalaiothe 3P-regislerHe-overihe-RESP-interace-owhich-has-a
bandwidih-of2048bite/eycie)Seeintermolateddatabusdiagramsfordetalis.

wall. other.inforrpation- (euch.BS. quad address.forexample).travels In-a-se pa rate-FIEQ

#-TSMGaccepis-the-control_packelandfetches the-instrictons-forfetch-clause-Ofrem-the-global-instruction-store
7 , TSM arbi frre js .

6.allLinstructions-offetch-clause-0-areissued-byTSMO

o.the-control_packet is-passed-tothe-nextreservation-station-(the-FIFO-infront-ofALUstatemachineO, orASMO
FIFO)

+Lallinsinictions-ofALU clause-Oare issued by ASMO, thenthe controlsacketlepassedtothenexreservation

stationiheFIFOinfrentolfetchslatemachine-torTSM1FIFO}

12.the control packet continues te travel down the path of reservation stations until all clauses have been executed
. : : A a

ettis-sent-to-an-eutpult-FlFOwhere it-will-be picked -up-by-the-render-backend
ethe ASMarbllerwilpreventepackelfromstartingon ASM7ii theoutputFIEQisAu

iLeferthe shaderprogram-bae-compleled,iheSEQ wilfreeuptheGP Rssothal theycanbe usedby another
shader-program

Exhibit 2027 dockt4O0_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257335

ATI Ex. 2107

IPR2023-00922

Page 201 of 260

ATI Ex. 2107
IPR2023-00922

Page 202 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2004 4 September, 201518 52 of 52

38 = Al f Assit ORO OE tee - 2 a4 Formatted: Bullets and Numbering

15.The-register fle-base-pointer-for-a-vectorneeds-tetravel withthe-vector-thro.ghthe+eservation-stations,-but-the.

instuction-store-base-pointerdaes-nol-—thisjs -because-the-RFEpainteris-diferent-forallthreads,bulthes.
pointeris-only.differentfor-each-state-and-thus-can-be-accessed-via-the-slate-poinier.

=o) Formatted: Bullets and Numberingie s SE : a. 7 ~
29.28, Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

ParamelercachesinSA?

Using-bothJbuffers-for center-+centroid-internelation?

Exhibit 2027 doct#00_Sequercerdes 68208 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257336

ATI Ex. 2107

IPR2023-00922

Page 202 of 260

ATI Ex. 2107
IPR2023-00922

Page 203 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Sepiember, 201519 GEN-CXXXXX-REVA 4 of 58ae Aged OND
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1442.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: C\perforce400\doc_llb\designiblocks'sq\R400Sequencer.dac
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS - as
es : Signature/Dateuu Name/Dept Oe

Remarks:

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |:
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2020.doeR400_Sequencerdec 79201 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ***

ATI 2028

LGv. ATI

IPR2015-00325

AMD1044_0257337

ATI Ex. 2107

IPR2023-00922

Page 203 of 260

ATI Ex. 2107
IPR2023-00922

Page 204 of 260

ORIGINATE DATE

24 September, 2001

 EDIT DATE

2 0f 58 R400 SequencerSpecification PAGE

4 Seplember, 207519Feeil OP?

Table Of Contents

1. OVERVIEW .cccccccceecntrecceneeentecnnSnEREECEdene scanene 6

1.1 Top Level Block Diagram oooeeteteeeetnentreeeecrteeeeentsssaeeeetesseeeesntseseneentetenrnneees 98
1.2 Data Flow graph (SP).cececr eee ccc eeeebtrcceteeetttisteteettsesieeettaseescstreeeeeccny 4340 |.
1.3 COMPO) GIADInnnen DD tee Deol t beet etobiteeetrtiieeeectteeneeetreeecnea 41444
2. INTERPOLATED DATA BUSose cine re i ene cre eneanen edn oieaeneeaeaeaeneeces 4444 |
3. INSTRUCTION STORE. oooeee een ereinnitonanboraoniabnidanionetroopsWaa
4. SEQUENCER INSTRUCTIONS oocceccene ecceeceneeee tease cnnanaeneasnnnaannecessunanenneasaanaanences 1744
§. GONSTANT STORES2ccece cece crceeeeneeceneeee rec eeneneeesccensenensiiee easuaensaee cunesenceaecenneerecee14.
S.1 Me@Mmory OFQANIZAIONSoece cc eee e eet tebe etter beeebteteeccbetitteeescistittestnscitteereriies 744
3.2 Management of the Control Flow Constantsoo.ccteee cen ttteeetttsaetenettesaas 4845
$5.3. Management of the re-mapping tables ooo.cereeeeeetteeteeeennaeesas 18450

5.3.1 R400 Constant managementettte teenie 1845
5.3.2 Proposal for R400LE constant management ee4845
SBS Dirty DiScececece cate eer e eb eve vine tititiesevetetiviniviwitwttnvivnnnnnn 2047 |

5.3.4 Free List Blockeet ce eet ttt ttt tester 2O4R

S.3.5 De-allocate Blokoooeeeces ects eee eet vtetrecrestettttittitievitecitinetetes 2148
5.3.6 Operation of Incremental model ett ee2148

SA Gonstant Store Indexing.occcece cece sce cece ess ee esc cssseeeeccsssseeeeusssseeeenssssees 2148
$3.5 Real Time COMMANS.cececece ee eee e tees ceeeeteteescbetiteeescttittteettntiteeeettaiaas 2210 ©
3.6 Constant Waterfallingocccece cee cee et rebeesseebetesessetetsetescistetetettietetesecrs2249
6 LOOPING AND BRANCHES occecceeeeecireaecnnenannieednaertenennanes2320
6.1 The controlling state.etteete tetee nes 2320 |
6.2 The Control FlOW Progracececcs ct te ee ttn breteeetttteetettteeteeettieeeccstteeeencrea 2320
6.3 Data dependant predicate INStruclonscetteeee et teeter etttteeeertttteeeercra 2922 —
64 HW Detection of PVPS oo...
6S Register fie indexing...ettte
6.6 FPredicated Instruction support for Texture clauses
6.7 Debugging the Shaders oo...cccceeeeeecseeeeteaeees BO a

6.7.1 Method 4: Debugging registersooocccctettteettttttstttrerttnettetes 3023 -

6.7.2 Method 2: Exporting the values in the GPRS (12)oooeeteeteee 3024 =
7. PIXEL KILL MASEccc ccc ceetee cere eeneneneesensneneenesenennenees

8 MULTIPASS VERTEX SHADERS (HOS).
9. REGISTER FILE ALLOCATION. 34 ee
10. FETCH ARBITRATION ccccccccsseccceeecenee scence teen nnen nen Reena ne Scene ee Senneenna3246
ti. ALU ARBITRATIONoccee renneiec ence eee nnene esc ennned ces teeneaaedeeceneuneneessnaunnnenees 3226 —
12. HANDLING STALLS oesesti cienne rier nee naen enn LRnnnESCaneeRenneaeeteene essagt
13. CONTENT OF THE RESERVATION STATION FIFOSLoo. ccccceccccssetcsnecrssecnssncessnanennenens 332%
14. THE OUTPUT FILE Looennernan ennaannenaanennaanaestaaannaeaeennaanences sg@Fo
PR LE FORMAT ooo ccccccceccncnceen teteraened 0 eed CEECeeene332%
15.1 Interpolation of constant attributesooteecess atten testaeeeeeteeenenetreeennns 3428
16. STAGING REGISTERS wc ccccssecc eens eeeeen nnen nenen nee cane ecennea cee teene es 3428

17. THE PARAMETER CACHE. ..cecssccccssesse scene canner teen cananen ns annenane ees canannnetannnennees 3630
18 VERTEX POSITION EXPORTING oule seen eeneeereenene en eenannnnnanessnnannnnnaessaaaannnaees 3730 |

Exhibit 2023.dochUo9_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257338

ATI Ex. 2107

IPR2023-00922

Page 204 of 260

ATI Ex. 2107
IPR2023-00922

Page 205 of 260

Vat) ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEé a“ 6 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 3 of 58
19. EXPORTING ARBITRATION ooo.ccccccccccsscercececsnnnercccnnneaenercaeaanneeneneeemneeaneeesuneeananenseenaaneneee 2730
20. EXPORTING RULES 0. .eeccccccccssececeecsnnnaneeceennanenccceaaaannencaaeaaaneeaneeeauneeneeessneeaaaneesnennaantecs 3830
20,1 Parameter CACHES EXPOTTS ooeeeetree ee ee eet eeseentteeestttttreersnttnteeereea 3830
20.2 M@MOry EXPOSocc ieee ieee tb ieteeettteeteeetttteeieeetteeescsttseees 3830
20.3 Position exports... 3839
21. EXPORT TYPES... ccccccen 3830
21.1 Vertex Shading... 3834
212 Pixel Shadingee 3834
22, SPECIAL INTERPOLATION MODES ooocccccnnnecceeeaenteceeeeeneeneceseueeeeeceeeeeeeeeeers 2934
22.1 Peal TIME COMIMANGS ooocece cece cee ceee be bebeete tne bbhneEesebecteteebetcessettttevansaaaseeeeess 393+
22.2 Sprites/ XY screen coordinates/ FB information.............. 3934
22.3 Auto generated COUNTErScececette eee eeeeeteeseeeetrtettvettseeeeseeeateseenness 3932

22.3.1 Vertex shaderseeeeteieeentti3932
22.3.2 Pixel shaders... 3932

23. STATE MANAGEMENT ooo. ccccceee 4033
23.1 Parameter cache synchronization...... 4023
24. XY ADDRESS IMPORTS......cece .4033
24.1 Vertex indexes imports.......... 4033
28. REGISTERSoe 4133
QSL Ombreeee cs cece cee cece eceseseeeeeseeseeceggesseeesccsseeeececusseeeesssssseeeesssssees 4133
25.2 COMTEMEcececece cent tne e ere EE Ebb bbb bbb beet bbEE DG HHEEEEEEDScdtbbb bbe bisibtteaaaaeaaaaaseeeerese 4133
26. DEBUG REGISTERS...... 4234
26.1 CONTEXTcecette test teenttttteeerns 4234
2O2 COMOeeebb eee bbb tte te ttt sob tettttttiititttesetittttteeettces 4234

27. INTERFACES ccccccsssssecscssssssesesssssssnesnsssssnssseensesssnssustscesssnsesstsssssessssessesaneeneneees 4235
27.4 External INterracescecescecevetevevsesvsesesssevavevevevivaeveavaevevevevevevevieas 4235
27.2 SC to SP Interfaces...eeecece cee be eben ttte bbb deeeeebebbstbebet i tbttttaaaatsaaaateeeeecess 42385

QT ZL SCSPB ice cccceccccceseecssessseessvessvessvsssvessvessseessressusevessvstasevesessessuevessversssseeve 4235

QT22 SCSQ oiccccecccccessssesssseseesvvesevesssssversvtssevssssvettevessvsterevesessessuvevetsverssessseve 4336

27.2.3 SQ to SX interpolator BUSocccceceete steer tetitre tttttttrtitetteenenees 4537

27.2.4 SQto SP: Staging Register Dataecccc creeceetttttttrtittteetinees 4537

27.2.5 VGT to SQ) Vertex interface.occcece ttt ttttrtitetteettttttttresticees 4538

272.6 SQ to SK: Control BUScecetree vintetetie etittertetsestititittirtitetteennees 4944.

27.2.7 SX to SQ: Output file COMOccccette eter trttre ttttetsttitntinntee 4944

27I2ZB SQ to TP: Control DUScececee eetene eter esesnsesesteteteeestiutteteetettieescis 5044
27.2.9 TP to SQ: Texture Stalcececert etttttte eter trttt tutte5142

27.210 SQ to SP: Texture Stallccccree tretetite ss tittertetsetitititttititeteennee 5142

27.2.1] SQ to SP: GPR and auto counter 5142

2I2AZ SQ to SPX: INStrUCtions oooocce cece cece cette tetee se tettesettrtetititititertitetteetinees 5243

27.213 SP to SQ: Constant address load/ Predicate Seteccccetteetetcieee 5243
27.214 SQ to SPx: constant broadcastocccc cc csesescseseseseseststssestetsssesesssescvees 5344
2I2AS SPO to SQ: KN VECtOr ORocccece cettettte re teerestetsetitititttrtttetteenenees 5344

27.216 SQ to CP: RBBMBUS. ccccccccccccccsessssecsscsssessesesvestesssvonesesssstvvansustasacevassevessessee 5344

Exhibit 2028.doch409_Sequeneerdas 73201 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257339

ATI Ex. 2107

IPR2023-00922

Page 205 of 260

ATI Ex. 2107
IPR2023-00922

Page 206 of 260

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 of 58 R400 SequencerSpecification PAGE oe
4 September, 201819Aen AAAS

CP to SQ) RBBMDUS...ccccc eeeeeectteeeeetsoeteettessseeeeteseeceeerseteecnn® 5344

bovteeeeecnea 5344

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257340

ATI Ex. 2107

IPR2023-00922

Page 206 of 260

ATI Ex. 2107
IPR2023-00922

Page 207 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 24 September, 2001 4 September, 201319 |A 1

Revision Changes:
GEN-CXXXXX-REVA 5 of 58 | :

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date . October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2004
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001
Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rey 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rey 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date: April 18, 2002

Exhibit 2028,doch400_Sequencerdee

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes madein the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPO interfaces. Changed delta
precision. Changed VGT—SP0 interface. Debug
Methods added.
interfaces greatly refined. Cleaned up the spec.

Addedthe different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—-SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added mare details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangementof the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CPstate report interface. Last version of the
spec with the old control flow scheme
New control flow scheme

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +

AMD1044_0257341

ATI Ex. 2107

IPR2023-00922

Page 207 of 260

ATI Ex. 2107
IPR2023-00922

Page 208 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 Sepiember, 201518 6 of 58L ih AN)

Overview

The-sequenseris-based-on theR200designiiThe sequencer chooses two ALU slauses-threacds and a fetch clause
hreadto execute, and executes all of the instructions in a clause-block before looking for a mew clause of the same
type. Two ALU clauses-threads:are executed interleaved to hide the ALU latency. Bach-vector.will-have-aighi-feich
and-eight ALclauses, ‘but clauses -do-not neadto contain inetructons. fs vector. ofpixels or vertices ping-bongs

ke z ted. There are two separate seis-af
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257342

ATI Ex. 2107

IPR2023-00922

Page 208 of 260

ATI Ex. 2107
IPR2023-00922

Page 209 of 260

vax@BH0q1BAODUOSOHONJUBUAdODsoUdIaJOY“JENUSPHUOD[Ly@«89Hore
sopusousnbag“ggpysons70eEARS

MITALIA0Asouonbeg[e1eueyi]easy

 ~-—-£60")LUBISUEDcseae|%ax“|el|Fel|a °a
enaWY

AkAradeXLT(..ae-NagVVCSLIMAXL:|BO/Od+|PO/OdfyGO0/9d«7gO/OdRaafon‘aEOooSa__fOmounDd7\||GUBINIOd||||avaod|vee-U-4ALWISHOLS|Wevedsdsds|LSNIXALpobeer——aa|el»FYOLSLSNIaSLNi:aaLNIpe)SSLLNI||

|Lo|avo"-niISNuVESSONOPixprea31
“ouuniooSLNVLSNOD*Ad

|LSeeeeeRTBGOZWARYXXXXKI-NAOSESGlOcJequisjaesyL00Z‘iequiajdespzdvdWAN‘AdeeLNSIWND00sivdLidsSLYSLYNISINO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257343

ATI Ex. 2107

IPR2023-00922

Page 209 of 260

ATI Ex. 2107
IPR2023-00922

Page 210 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201819 8 of 58Feseit YD

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257344

ATI Ex. 2107

IPR2023-00922

Page 210 of 260

ATI Ex. 2107
IPR2023-00922

Page 211 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 9 of 58L Aisseil A> L

i Top Level Block Diagram

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257345

ATI Ex. 2107

IPR2023-00922

Page 211 of 260

ATI Ex. 2107
IPR2023-00922

Page 212 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201519 10 of 58i uy

|

— Input Arbiter -_
| |

' / |

|

—+| VTX RS PIX RS —

Echibit 2029 doch400_Sequeneerdac

a

| r"

Exee Arbiter |

 Texture

73201 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257346

ATI Ex. 2107

IPR2023-00922

Page 212 of 260

ATI Ex. 2107
IPR2023-00922

Page 213 of 260

exture arbitrator

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 11 of 53A SANS

vertex/pixel veetor arbitrator

——___¥

ALU clause ©

eservation station

Coo

La __ALU clause 1

Possible delay for available GPR’s <G

bogfETEgl

Irexture clause 0a eservation station |

reservation station
é FIFO iexture clanse 1 |

reservation station.
|

exture clause 2
eservationstation

. . - FIFO \
rexture clause 3 |eservation station |

FIFO agg

Pexture clause 4

reservation station |

eservarion station

 schibit 2028 docl403_Sequencereiac

L@g——-ALU clause 3eservation station FIFO

FIFO «ff
begALU clause 4 aleservation station FIFO

jag——ALU clause 5eservarion station
fenenenpe FIFO

jeg@—————] FIFO|g—__
begj——ALU clause 6reservation staan

gg FIFOag—__|pag——LU clause 7

[Pexture clause 5
oservation station

< FTEO Lag

[Pexture clause 6

|_—_pefFOPgfVexhire clause 7

‘osorvation station |

osorvation station |

exture arbitrator

Figure 2: Reservation stations and arbiters

4+heinputetaie machineslacksthe packetinthefirstFIFO.

73201 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257347

ATI Ex. 2107

IPR2023-00922

Page 213 of 260

ATI Ex. 2107
IPR2023-00922

Page 214 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 207519 12 of 58Seseif ODleaf

one3 time. Arbitrationis= performed by. three. arbiter blocks (two for the ALU. state-machines-and-one for the- fetch state
rrachines).The- arbitersaiweyefavorthehighernumbersiete-machines, preventing a-_bunchofhalffinishedjobs from

Under this new scheme the sequencer (5Q) will only use one global state management machine per vector t
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257348

ATI Ex. 2107

IPR2023-00922

Page 214 of 260

ATI Ex. 2107
IPR2023-00922

Page 215 of 260

Vat | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE: “ |‘ : 8 | 24 September, 2001 4 Seplember, 201519 GEN-CXXXXX-REVA | 13 0f 58L Fieseil A i

1.2 Data Flow graph (SP)

- _ __a Register File .Cf é

4 |
JL | ‘ scalar TapuToutput ,—]; rc Vv cence IL —_

pipeline stage | tel fre reau =

instruction 7 scalarinput/output
pipeline stage

 ScalarUnit
 instruction

\

 | pipeline stage |

Register File [|
I]oD |

MAC text equed

|

Register File | / hes3)

textire|E Quest ig3. f
a s)
|g)3

aym

instruction

Register File oi
—]

texture rel est

i

fo at - a\to Primitive Assembly Unit or RenderBackendI

Figure 3: The shader Pipe

aa
2iSSs&
2
iexwFg

(

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257349

ATI Ex. 2107

IPR2023-00922

Page 215 of 260

ATI Ex. 2107
IPR2023-00922

Page 216 of 260

 | ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
| 24 September, 2001 4 September, 201516 14 0f 58A ab Sr

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady _
WrAddr IS SEQ cs

| | WrAddr
CMD | |

cst
|

Phase: H |
cmp SSTestzestipx & 8 © Wrveo |

RdAddr | _ | WrSeal wader
_——___— 4 ne

FETCH SP OF

WrAddr:

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated dala bus
The interpolators contain an [J buffer to pack the information as much as possible before writing it to the registerfile.

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257350

ATI Ex. 2107

IPR2023-00922

Page 216 of 260

ATI Ex. 2107
IPR2023-00922

Page 217 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 15 of 58~ A ders

AG | Al |

ToRB | ! !| |

po

||
lds CROSSBAR (4x64 bits}

iia— CSS !
to aOT I

| Roa| . . J - WeTe Oe— oe
. Us buffer (ging-pong buffer) 1

Ag At AZ Bo *2(10) +@ bits * 6 Galta Ne)+4 & i
ite*6)* 16 (quads) * 2 (doubie-buffered) Ag At Al Bo i

4096bits |
2 Bt co ct c2 32x 128

Bt co ct c2 /'

3 C3 | o4 cs bo Ys buffer (ging-pong buffer)
24 bits * 16 quads * 2 3 C4 C5 DO :

768 bits Ised ee
4 Di b2 EG Et i

| ot D2 Eo Be
| Li i i

INTERPOLATORS ! ZL 1' FIC-FLOAT + EXPANSION |

ce _A -|

edi
— ! L |

512 “|/-f Ly. 1 |
| _ i a
| “| |

aa a | | Cae fowl onlan|eWWE |} QUE || i i WLR || 2LR |} SLR |} aLR | (XA| | | | | || | | | | |

Figure 3: Interpolation buffers

Exhibit 2028.doch409_Sequeneerdas 73201 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257351

ATI Ex. 2107

IPR2023-00922

Page 217 of 260

ATI Ex. 2107
IPR2023-00922

Page 218 of 260

sax@960d19AODUOSOHONJUBUAdODsoUdIOJsy"[ENUSPYUCDLLY@x29tozezWitigerpSunUYUEnepodAsUy79BINSLy

aepussnenbasagpystee2oeHAG

8S$0OF

AOVvduolyesyioedsss9uenbesOOPYabvLida
 L00Z‘JequaydespzavdSLVNIOIO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257352

ATI Ex. 2107

IPR2023-00922

Page 218 of 260

ATI Ex. 2107
IPR2023-00922

Page 219 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 201518 GEN-CXXKXX-REVA 17 of 58ns 5

Above is an example of a tile the sequencer might receive from the SC. The write side is haw the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencercontrols the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4 SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar mermory. The size of this memory is 320x965bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwordsof control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257353

ATI Ex. 2107

IPR2023-00922

Page 219 of 260

ATI Ex. 2107
IPR2023-00922

Page 220 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 18 0f 58rary

5.2 Management of the Control Fiow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_VWWR_BASE). On the read
side, one level of indirection is used. A register GQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer nurnber +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and onefor the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R40CLE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacketof state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replaceit with
the newstate (this is depicted in Figure 8: De-allocation mechanismPigure-G-De-alloeation-meckanism). Note that in
the case a state is cleared a value of 0 is written to the corresponding de-allocation counter location so that when the
SQ is going to report a state change, nothing will be de-allocated upon thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addresses if needed).

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257354

ATI Ex. 2107

IPR2023-00922

Page 220 of 260

ATI Ex. 2107
IPR2023-00922

Page 221 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 19 of 58Asset SAO

Renaming TableContext 0 => N

each

 round but |
CurrenV/Last

Context
(8 rows of 16-&
bit physical =>

_Logical Address

<—__ Stop ptr 128 eniries copy
Logical Accress :] in eight clocks) Ho|& Context

E oF @ |: @ |
ea |

| Context N | L. Physical
Z ‘| Address

<— Read_ptrpirte pt

Global Register ylData Bus
Staging Data

Constants Buffer Physical
location << |
available Sepal
WRTR ¢ ——® Staging Vurite Addr

I
physical oe
address Counts| nextto physical
schedule accress

for ready
de-alloc for allocate| |

! Seq
Logical address | | coon

On the ———_»“ awa \ ' B at
GibRegBus _ _ | eques|

when Isb are zero | | iir : cae ,
first word of write Renaming Tante! Context | Y A “

for 1 Context yoy
Current/Last \ caical 1 | | Context &Physical | oe lg | | Logical

Address | Address ha Address —]| ff set I
per | don't | |Logical " : !

Address | allocate allocate
| if set} | or de-! | allocate)| Renamingtable

-Contexts
Cogy Last held above to

Current Context on receipt
of Set Constant for 4 |

newcontext (Hide loading
behind Set State load - 16 clocks)
alt other Set States just write one

entry te current state

Figure 78: Constant management

‘chiblt 2028.doch409_Sequeneeriae 73201 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »* | —s

AMD1044_0257355

ATI Ex. 2107

IPR2023-00922

Page 221 of 260

ATI Ex. 2107
IPR2023-00922

Page 222 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201519 20 of 58$ oFsae

i) TATESa a

 DEALOC I—WRITE_ENABLE

Free List CNT VALUE COUNTERS | || |PREVIOUS

NOT fa STATE

| NEW
| STATE| I

VALUE po |
| << |— l= |

VALID | hk <| | |
——— rR || r

: $Q IDLE
——{ AND | PA_IDLE

ltCP_NEW_STATE_CNTL—
Ree @—____SET CTX BITS

Figure 89: De-allocation mechanism for R400L_LE

5.3.3 Dirty bits
Two sets ofdirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set ta zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the ariver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointerwill
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257356

ATI Ex. 2107

IPR2023-00922

Page 222 of 260

ATI Ex. 2107
IPR2023-00922

Page 223 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 Seplember, 2015416 GEN-CXXAXK-REVA | 21 07 58! Aesel A !

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. Vhile in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the newdata will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied fo the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_pir pointer if read_ptr != to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapoping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happensin parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the lagical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to beefficiently used and when the constants updates are smail it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as weil as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come frorn the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257357

ATI Ex. 2107

IPR2023-00922

Page 223 of 260

ATI Ex. 2107
IPR2023-00922

Page 224 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201518 22 of 58

' between the time the sequenceris loaded and the time one can index into the constant store. The assemblywill looklike this

MOVA RILX.R2X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
NOP #f latency of the float to fixed conversion
ADD R3,R4,CO[R2.%]// Uses the state from the sequencer to add R4 to CO[R2.X] into RS

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the samme way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable perforrnancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a smail synchronization issue related
with this as we need for the SQ ta make sure that the constants where actually written to memory (not only sentto the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(ReadsMWrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
Figure 944: The instruction store

| Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257358

ATI Ex. 2107

IPR2023-00922

Page 224 of 260

ATI Ex. 2107
IPR2023-00922

Page 225 of 260

 | 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 23 0f58! f !

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VVe plan on
supporting constant loops and branches using a contro] program.

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

6.1 The controlling state.
The R400 controling state consisis of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like lo be able lo code up @ program of the form:

TneLOOP
ZL Exec TexFetch
3 TexFetch
& ALY
&: ALU
8: TexFetch

7: End Loop
8: ALU Export

But realize that 3. may be dependent on 2: and 4: is almost certainiv dependent on 2: and 3. Without clausing
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
wcll, This information will be encapsulated in tne flow control instructions.

Each control flowinstruction will contain 2 bits of inforrnation for each (non-control flow) Instruction:
a) ALU or Texture

conanenenenutannentnunanaeecnatnnnenannnannieb)SerializeExecution

b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-fiow) instructions, If more than this were needed, a second Exec (with the
same conditions) would be issued

Another function that relies upon ‘clauses’ is allocation and order of execution, We need to assure that pixels and

allocated in order. Addilionally data can'l be exported urispace is allocated. A new control flow instruction:

Alloc «buffer select -- positionparameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation fora given thread can not be performed unless the equivalent allocation for all previous threads is already
completed, The implementation would also assure that execution of instruction(s) following the serialization due te the
Allocwill occur inorder -- atleastuntil thenextserialization orchange from ALU to Texture.Inmostcasesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257359

ATI Ex. 2107

IPR2023-00922

Page 225 of 260

ATI Ex. 2107
IPR2023-00922

Page 226 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 Seplember, 201549 24 of 58L ihe

uaranteed to be ordered, Because strict orderin is required for pixels, parameters and positions, this implies onl

‘allocs’ may be done,

6.2.1 Control flowinstructions table
Here is the revised contro! flow instruction set,

eet 4 Formatted: Bullets and Numbering

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute _ ee
47 | 46... 43 | 4934 | 33....16 18.12 120

Addressing | 0001 r RESERVED [Instructions type + serialize (9|Count Exec Address| | | instructions
Execute up te 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction 1.58) (1 = Texture, O = ALUand whether fo serialize or not the execution (MSB)
(L= Seraige, 0 = Non-Serlalized).

NOP

a7 | 46... 43 | 42 ...0Addressing |0010_ RESERVED

This is a regular NOP,

Conditional Execute

 Az | 46... 43 42. | 41... 34 | 33.16 1612 | 14.0
Addressing oot Condition|Boolean|Instructions type + serialize 9 Count Exec Address

address | instructions
ifthe specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met,we go onto the next control flow instruction,

47 | 46. 43 | 42 | 41.36 35 34 | 33.16 15.12 11.0
Addressing g0710 Condition|RESERVED|Predicate Instructions Count ExecAddress

yector type + serialize
(9 instructions)

Check the AND/OR of all current predicate bits. |f AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR_ this with the kill mask in order not to consider the pixels that aren't valid. If the
condition is not met, we goon to the next control flow instruction.

 ; Loop Start _

a7 | 46...43 42e 16.12 118
Addressing | O101 | RESERVED | loop ID | Jump address

Loop Start. Compares the loop Herator with the end value. If loop condition not met jump to the address. Forward
lump only, Also computes the index value. The loop id must maich between the start to end, and also indicates which
control flow constants should be used with the loop.

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257360

ATI Ex. 2107

IPR2023-00922

Page 226 of 260

ATI Ex. 2107
IPR2023-00922

Page 227 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 ib Pes

count with the end value, lf floorLoop end. Increments the counter by one, compares the loo cenditien met
continue, else, jump BACK to the start of the loop. if predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

___enditionnalCall

mh

[44.37 | 38a88 1.0

Addressing | RESERVED Predicate vector | RESERVED Jumpaddress

lithe condition is met, jumps to the specified address and pushes the contre! flow program counter on the stack

Return
47 ||__42|2

Addressing|
Poos the topmost addresa from the stack and jumps to tnat address. |f nothing is on the slack, the program will just
continue to the next instruction

ConditionalJump

47 146...43| 4 41... 34 330 C~«*dT;| 22... 12 i 18

Addressing 4007 Condition|Boolean|FWoonly RESERVED Jump address
address

Allocate oo

a7 46... 43 L 42,41 404 3.0 neDebu 4010 | Buffer Select RESERVED Allocation size

01 — position export (ordered export)
10 - parameter cache or pixel export (ordered export)
ii - pass thru (out of order exports),

lf debug is set this is a debug alloc (ignore ifdebug DB ON register !s set to off).

End Of Program

Marks the end of ine program.

6.3 Implementation -

The envisioned implementation has a buffer that maintains the stale of cach thread, A_thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter, Actually two butlers are maintained -- one for Verices and one for Peels. The intended molermeniation
would allowfor:

16 entries for vertices
48entriesforpixels.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 25 of 58 | eeA. OER

| Formatted: Bullets and Numbering

AMD1044_0257361

ATI Ex. 2107

IPR2023-00922

Page 227 of 260

ATI Ex. 2107
IPR2023-00922

Page 228 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201518 26 of 58

f, iy

From each buffer, arbitration logic atternpts to _select_1 thread for the texture unit and 1 (interleaved) thread for the
All unit, Once a thread is selected it is read out of the buffer, marked_as invalid, and submitted to appropriate
execution unit. tis returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been execuled. Aswitch from ALU to TEX or visa-versa or a SerializeExecution modifier forces
the thread to be returned to the buffer,

Each entry in the buffer will be stored across bve_ physical pleces of memory - most bile will be stored ina 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’, The bits kept in the multivead ported device will be termed ‘status’,

‘State Bits’ needed include:

 1. Control FlowInstruction Pointer (12 bits) aa ~—-(Formatted:BulletsandNumbering|2. Execution Count Marker 4 bits) : Semen aaes oe Sec bese
3._Loop Iterators (4x9 bits Ses — :
4, Call return pointers (4x12 bits)
5. Predicate Bits(4x64 bits)
6. Export ID 1 bi,
7, Parameter Cachebase Ptr (7bite),
8. GPR Base Pir (3 bits)
&. Context Pir (3 bits).
10, LOD corrections (Sx 16 bits)

Absent from this list are ‘Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return plrs, Predicate
bits, PC base pir and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Pir, Context Pir and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits’ needed include:

Texture/SLU engine needed a : ee Ses
Texture Reads are outstanding Se : a
Waiting on Texture Read to Complete
Allocation Wait (2 bits)

« 00~No allocation needed
» 01 — Position export allocation needed (ordered export
» 10 - Parameter or pixel export needed (ordered export

* J pass thru (oul of order export)
e Allocation Size (4 bits)
oe_Position Allocated
» First thread of a new context
e

Event thread (NULL thread that needs to trickle down the pipe)
o Last (1 bit)

eepe

All of the above fields from all of the entries go inte the arbitration circwiry. The arbitration circullry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
gixels and one for vertices. A final selection is then done between the two. But the rest of this implementation

ly considers the ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requiresnoallocationororderingsoitispurelybasedonselectingthe‘clcest’ thread thatrequires
the Texture Engine.

ALU arbitration ie @ ite more complicated. First, only inreads where elther of Texture Reads oulslanding or
Waiting on Texture Read to Complete are '0' are considered, Then if Allocation VWvaltis active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257362

ATI Ex. 2107

IPR2023-00922

Page 228 of 260

ATI Ex. 2107
IPR2023-00922

Page 229 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September 201519 GEN-CXXXXX-REVA 27 of 58ma

considered if all ‘older’ threads have already done their position allocation (position allocated bits set). [ff the
allocation is parameter or pixel allocation, then the thread is only consideredif itis the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First thread of a new _context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest of the threads that pass through the abovefilters is selected. Ifthe thread needed fo allocate, then
at this time the allocation is done, based on Allocation Sige. lfa thread has its “last” bit set, then it is also removed
frorn ihe buffer, never to retum.

If | now redefine ‘clauses’ to mean “how many times the thread is removed from the thread buffer for the purpose of
execiion by either the ALU or Texture engine’. then the minimum number of clauses needed is 2 -- ane to perform
the allocation for exports (execution automatically halis after an ‘Alloc' instruction) (but deesn't performs the actual

resumabiy the final instruction in such @ clause), a thread could still execute in this minimal number of 2 clauses

even if it invelved texture feiching.

The Texture Reads Ouistanding bit must be updated by the sequencer, based_on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 resulis in this bit being set. We could consider forcing synchronization such that two texture clauses fora

iven thread may not be culstanding at any time (that would be my preference for simplicity reasons and because it

would require only very litle changeinthe texture pipe interface). This would allow the sequencer to set the bil on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit,

Verlex—ehaderfetehLOy7olelgnt & bitpointerstothe location where each clauses control program istecated
Vertex.shader.all?Oly:a e location:whefeeach.Clauses: ecnire)program is.Jocated

&pointer-valueof FEmeans-that-iheclausedoesitcantain-anyinstructions.

The—control_program—for-_a_given_clauseis-execuied_to_compiletion_before_moving_to-anciher clause, (with the
exception of the pick two nature of the alu execution). The contro! prograrn is the only program aware of the clause
boundaries.

The-controlprogram-has-nine-basic-insiructions:

Execute
Condiionai-execuie
ConditionalExeculePredicales
Conditionaljump
Gondiiennal-Call
Return
Loop.start
Leop-end
NOP.

Execute, causes the specified nurmberof instructions in instruction store to be executed.
Gondiional_cxecute-checks-a-_condiionfirst-ancd-firus,causes_the-speciiednumberof instrictionsin-_insiructien
store-to-be-executed:
Loopstart-resets-the-cerresponding loos-sceunter_to-the-start-value-on-thefirstpass-afier-itchecke-for-the-end
condition-andttmetjumps-overtoeaspecifiedaddress.
Loop-end increments (decremenis?)theloop-counterandjumps-backthe specified number-ofinsiructions.
Gonditiennal..Call-jumpsto-an-address-and-pushes-the-/P-counter-on-ihe-siack ithecenditionis-mel.Onthe-returs
instruction,thefispopoed-from-thestack.

Exhibit 2028.doch409_Sequeneerdas 73201 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257363

ATI Ex. 2107

IPR2023-00922

Page 229 of 260

ATI Ex. 2107
IPR2023-00922

Page 230 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seolember, 201519 28 of 58A sh Ps

ee, OS OKG

NotethatwheneverafieldismarkedasRESERVED, itisassumedthat al the biteofthe fieldare cleared (0).

execuie-up-to4iinsiructions-al-the-specitied-eddress-_inthe-insirucion-_memery_i#iasiis-setihisis-thelast-growp-of
lnstruetons-oeftheclause.

This-is-ateguiarNOP,f-Lasiis-sel,this- isihetastinstruction-oftheclause,

it-the-specified-Boolean-(é-bils-can-address256-Booleans}-meets-the-specified-condition-then-execute-the-specified
insiructionsus-to-4_insituctions)tFLastis-set_thenifthe-conditionic-met-thisis-inelastgroup-oHinsinietionsto-be
executed-inihe-clause.ltihe-cenditionis-notmet,weqo-on-to-the-next-controlflowinstruction.

Gheck-the-AND/OR-of- all-current-predicate-bits. |}AND/OR-maiches-theconditionexecutethe-specified-sumber-of
instructions.Veneedto AN D/ORthiswith thekil mask inordernelto consider the pixels thaterent valid}Lasts
set, {hen if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met -we-ge-onioethened-senirelfiowincituction.

Loop-Start.Compares-the_loop-lterater with the-end~alue.tftleep-condition-nat-metjump-to-the-address.-Fonvard
jurmp-onlyAlso-compoutes theindexvalue.Theloopidmustmatchbeiveen-ihe-siar-toend,and-aleo-indicaigs-which
controlflowconstants sheuld-be-used-with-iheloop.

Loop-end_tineremenis the-counter_by-one,-compares_the_iloop-sount-with-tne-end-yahie._}#¥4ees-eendiienmet
sorntinue,-else,jump-BACK-io-the-star-efthe-loop:

The-waythis-is-describeddeesnotpreventnestedtoaps, and-the inchision-efthe loop-id-makethis-easy-to-do.

iHhe-condiiien-is-met,jumpsto-the-specifiedaddress-and_pushes-the-controlfiewprogram-counter-enthestack.

Popsthetepmost-address-fronithe-stack-and-jumps-io-tnatecdresstinothingis-on-the- stack, the-prograni-willjust
sentinueieihe-next-inetruction.

i-ecendition-mel,jurapsiothe-address.FORVVARD.-jurmp-onlyallowed--bit-31-selBit-31is-enlyan-colimizationforthe
commlerand-ehouldNOTbe-exposed-to-the AFL.

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257364

ATI Ex. 2107

IPR2023-00922

Page 230 of 260

ATI Ex. 2107
IPR2023-00922

Page 231 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 290f58! f !BARS

636.4 Data dependant predicate instructions ——
Data dependant canditionals will be supported in the R400. The only way we plan to support those is by supporting _. oe
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PREDSETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PREDSETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_#- similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# - SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or 0 thatis sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

646.5HW Detection of PV,PS ~
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

ae 4 Formatted: Bullets and Numbering

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6-56.6Registerfile indexing ~
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

 -(Formatted: BulletsandNumbering

Bit? Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
1 0 ‘previous vector
1 1 ‘previous scalar’

In the case of an absolute register we just take the address asis. In the case of a relative register read we take the
base address and weaddtoit the loop_index and this becomes our new address that we give to the shaderpipe.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257365

ATI Ex. 2107

IPR2023-00922

Page 231 of 260

ATI Ex. 2107
IPR2023-00922

Page 232 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 é. September.2015419 30 of 58
' The sequenceris going to keep a loop index computedaas such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

value foone(thus.wehave tog the. texture fetches.forthe whole vector), >Value- of Qmeans that ne ‘clomenteinthe
yectoer-have-his-predicaie_bit-set-and-we-car-thus-skip-oever_thetexture-feich.We-haveto-make-sure-the_invalid
pixels-aren‘t-considered-withthisoptimization.

6-66.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.
6.6-16.7.1Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE:Interrupt to the driver or not?}

6-6-26.7,.2Method 2: Exporting the values in the GPRs (42}
The sequencer will have a debug active, count register and an address register for this mode-and-3-bils-per-clause
specifying -the-execulionmodsforeach-clause. Themedes-can-be+
Normal So Soe

2 Debug au to 4 Formatted: Bullets and NumberingDebugAddr+Gount

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257366

ATI Ex. 2107

IPR2023-00922

Page 232 of 260

ATI Ex. 2107
IPR2023-00922

Page 233 of 260

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE
24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 31 of 58

Under the normal mode execution follows the normal ¢Course. Under-the_kilmode,all-contrelflow-tnstuctionsare

Under the debug made—(debug—Kil-OR-debug-Addr+cound. it is assumed that the programclause-7 is always
exporting 42-n_debug vectors and that all other exports to the SX block (position, color, 2, ect) will been turned off
(changed into NOPs) by the sequencer(evenif they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but fo memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257367

ATI Ex. 2107

IPR2023-00922

Page 233 of 260

ATI Ex. 2107
IPR2023-00922

Page 234 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 32 of 58

4 Seplember, 201316fh 3. ob

Above is an example of how the algorithm works. Vertices come in from top to bottom: pixels come in fram bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index Q and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking ai the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinsi0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

 ichibit 2028. deck409_-Sequencerdes 73201 Bytes*™** © ATI Confidential. Reference Copyright Notice on Cover Page ©

AMD1044_0257368

ATI Ex. 2107

IPR2023-00922

Page 234 of 260

ATI Ex. 2107
IPR2023-00922

Page 235 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 33 af 58! f !BARS

12. Handling Stalls
Whenthe outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. Wwe have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PAis of this format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(O) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AO? = FO— TO)

AOL? = JU) —- J(0)

AO27 = (2) - IO) PO PA
AO2S = J(2)- FJ(0)

AOBI = £3) — 1(0)

A037 = J(3)- J(0) p2 P3

PO=C +1(0)*(4-C)+J(0)*(B-C)

Pl= PO+A0L *(4-C)+ AOL*(B-C)

P2 = PO+A02 *(A—C)+ A02T *(B-C)

P3 = P0+A03I *(A-C)+A0B *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257369

ATI Ex. 2107

IPR2023-00922

Page 235 of 260

ATI Ex. 2107
IPR2023-00922

Page 236 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201512 34 of 58A tO OAA
' Adds: 8

FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 8°6 + 4°8 + 4*2 = 1238

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the number is un-normalized. The maximum rangefor the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that ifA = Band B=C and C =A, then P0,1,2,3= A. Since one or more ofthe IJ terms
may be zero, so we extendthis to:

if (A=B and B=C and C=A)
PO0,1,.2,3 = A;

else if (1 = 0) or (J = 0)) and
((J = 0) or (1-I-J = 0)) and
((-J-1 = 0) or @=0))) {

if |= 0) {
PO =A;

} else if(J '= 0) {
PO =B;

belse {
PO=C;

/irest of the quad interpolated normally
}
eise
f

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 10 11 12 13 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 6D G1 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGTwill send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sert
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

| Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257370

ATI Ex. 2107

IPR2023-00922

Page 236 of 260

ATI Ex. 2107
IPR2023-00922

Page 237 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 35 of 58esri ar
The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 1iFigure-+2. The area of the fixed-to-float converters and the VSISRsfor this method is roughly estimated as
0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure-44.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 2 60.57813 17perbit

Area of $6x8-deep Latch Memory 46524 (2
Area of 24-bit Fix-to-float Converter 4712,¢ per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

 EL 758520.¢

Figure 1014:Area Estimate for VG'Tto Shader Interface

Exhibit 2028.doch409_Sequeneerdas 73201 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257371

ATI Ex. 2107

IPR2023-00922

Page 237 of 260

ATI Ex. 2107
IPR2023-00922

Page 238 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201516 36 of 58OAA

 VGT BLOCK
CIN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

Figure {142:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (/R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER |” ADDRESS |4 bits ! 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) anc as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT-_-+ (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT--? = 8). The first position received is going to have the PC address
00005000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17h) is going to have the address 00000001000, the 48" 00010001000,the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*°VS_EXPORT_COUNT
~#to Current_Location and reset the memory count toe 0 before the next vector begins).

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257372

ATI Ex. 2107

IPR2023-00922

Page 238 of 260

ATI Ex. 2107
IPR2023-00922

Page 239 of 260

 | 24 September, 2004 4 September, 2015419 GEN-CXXXXX-REVA | 37 of 58I f !BARS

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

171 Export restrictions -

1711 Pixel exports:
Pele can export 1.2.3 or 4 color buffers to the SX(+2). The exports will be done In order. The PRED OPTIMIZE
function has to be turned _of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

4s we

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to beexportedin a singleexport block(no texture instructions can be

laced between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always pe allocated in erder to ihe SX.

17.13 Pass thru exports:
Pass thru exports have to be done in groups of the form:

They cannot have texture instructions interleaved in the export block, These exports are not quaranteed to be
ordered,

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip wher doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions ‘

Here are ine Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bil is set -
2). Gannot allocate position if any older thread has not allocated position
3) lf last thread is marked as not valid AND marked as last and we are about to execute the second to ocidest

thread also marked last then:
a, Goth threads must be from the same cortext (cannot allow a first thread)

b._Musl tum off ine predicate oplimigation for tne second thread
nnot execute a texture clause if texture reads are pending

_y “a: ; ~
On-elause-3-ihe-vertiex-shadercan-exporito-the-PAbol ihe-verex-pestion-and thepoint sortet-can-aise-dose-at
slause-7-i-nsldoenc-al-clause-d.The-storage-needed-teperformthe -sosition-expor-ie-aticast 64126memorieslor
the-pesition-and-64x22-memoeres-forthe-eprite-sizeitis-going-to-bataken-in-ihe-pixeloutpulie-tremtheSxblocks.
The-clause-where-the- position-expor-occurs-is-specified-by ihe EXPORTLATE register.ftumed-on, itmeans-that
the-export-is-qoing-to-cccuratAL. -clause7i-unset-_positionexpor-eccurs-at-clause-3.

AjLothertypes-of exporte canbe-co-issuedastlong as there isplace inthe receiving buffer.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

wee 4 Formatted: Bullets and Numbering

Se Formatted: Bullets and Numbering

aie a4 Formatted: Bullets and Numbering

J a4 Formatted: Bullets and Numbering

= | Formatted: Bullets and Numbering :

 S _-(Formatted: Bullets and Numbering

“e--] Formatted: Bullets and Numbering

sia, Formatted: Bullets and Numbering

AMD1044_0257373

ATI Ex. 2107

IPR2023-00922

Page 239 of 260

ATI Ex. 2107
IPR2023-00922

Page 240 of 260

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001|4 September, 201519 3aof5a ——— oe

20.1-Parameter-caches-exports
We-support-masking-and-out-oforder-exports-totheparametercaches.Se-one-can-expor-_multiple-times-tothe-same
PCine-using-different-masks.

20.2Memony-expors ee 4 Formatted: Bullets and Numbering _

Memory exports don’t support masking. However, you can expert out of order to memory locations.
| Formatted: Bullets and Numbering

24.18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes: a

24-4+18.1 Vertex Shading “=

=| Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 vertex exports to the frame buffer and index
41:47 - Empty
48:55 -8debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(point_h,point_w,edgeflag, misc)

an Formatted: Bullets and Numbering
21218.2 Pixel Shading “ =

0 - Color for buffer 0 (primary) oe1 ~ Color for buffer 1
2 ~ Color for buffer 2
3 - Color for buffer 3
4:7 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - & exports for multipass pixe! shaders.
41:47 - Empty
48:55 -8 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component)

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257374

ATI Ex. 2107

IPR2023-00922

Page 240 of 260

ATI Ex. 2107
IPR2023-00922

Page 241 of 260

 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA | 39 0f58 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE|| mA =

22.19. Special Interpolation modes

22-119.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the pararneter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (rue only if we map Microsoft's high priority stream io the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

22.219.2 Sprites/ XY screen coordinates/ FB information “
When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_stis a bit taken from the interface between the SC and the SQ. This is the MSBof the primitive type. /f the bit is
set, it means we are cealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_]!0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy disable, gen_st ~ 10 = No modification
Param_Gen_|0 disable, snd_xy enable, no gen_st — 10 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — lO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage. garbage,s, t
Param_Gen_|0 enable, snd_xy enable, no gen_sit — 10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s,t

22.319.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1* pass data to memory and then use the countto retrieve the data on the 2 pass.
The count is always generated in the same way butit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

22:3-119.3.1 Vertex shaders “
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler musi allocate 3 GPRsin all multipass vertex shader modes).

22-3-219.3.2 Pixel shaders “|

In the case of pixel shaders, if GEN_INDEXis set and Param_Gen_]|0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1* register (RO.x).

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

| Fermatted: Bullets and Numbering

 Soc] Formatted: Bullets and Numbering

ater Formatted: Bullets and Numbering :

coco] Formatted: Bullets and Numbering

sve] Formatted: Bullets and Numbering

AMD1044_0257375

ATI Ex. 2107

IPR2023-00922

Page 241 of 260

ATI Ex. 2107
IPR2023-00922

Page 242 of 260

EDIT DATE PAGE

40 of 58
| ORIGINATE DATE R400 Sequencer Specification
| 24 September, 2001 4 September, 207518$ a

 INTERPOLATORSAUTO
COUNT

ee
AUTO. COUNT | oo0000 |

The Auto Count Value is
broadcastto all GPRs. [tis

loaded into a register wich hasits LSBs hardwired to the
GPR number(0 thru 63). Then

| if GEN_INDEXis high, the
mux selects the auto-courit

value and itis loaded inte the
GPRsto be either used to

retrieve data using the TP or
sent to the SX for the RB to

useit to write the cata te
memory

GPRO

Figure 1213: GPR input mux Control

23.20. State management .
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters areinitialized to O and every
time a vertex shader exporis its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newslate counter is initialized to 0.

24.21, XY Address imports
The SC will be able to send the XY addresses to the GPRs. Ii does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the [J data or pass the XY data thru a Fix—-float converter and expander and write the converted vaiues to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2222 for details on howto control the interpolation in this mode.

24-421.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks te the GPRs.

ei
 J

he

+

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

-| Formatted: Bullets and Numbering

(| Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

eee -{ Formatted: Bulletsand Numbering _

AMD1044_0257376

ATI Ex. 2107

IPR2023-00922

Page 242 of 260

ATI Ex. 2107
IPR2023-00922

Page 243 of 260

Zone. Registers

25-122.1 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_R
CONSTANT_EO_RT

TSTATE_EO_RT

2222 Context

VS.-FETCH.40...7-
VSALLO Fh
PS_FETCH..1
PSALUJ0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PSSIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVOVERT
PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MODE
VS_EXPORT

| ORIGINATE DATE
| 24 September, 2004

EDIT DATE PAGE

41 of 58
ae

DOCUMENT-REV. NUM.

4 Seplember, 201519 GEN-CoO000¢-REVA, |4 iBARS ec] Formatted: Bullets and Numbering

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instructian store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2)
This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32°6 Texture state 32 bits registers (logically mapped)
256*4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real tire in the constant store (from 0 to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

EMPORT_LATEControls whether or not we are exporting position from clause 3. If set, position exports occur at
clause-7.

= 4 Formatted: Bullets and Numbering

eighbt-6 bil pointerstothe Jocalionwhereeachclausesconirelprogramjslocated
aight 8-bit-pointers-to-the location-where-each-clauses-contre!program-jsloscated

sight-8-bit-_pointers-to-the location where-each-clauses-controlprogram -is-located
sight & bit pointers to the location where each clauses contro! prograrn is located
base pointer for the pixel shacer in the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader @ of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cntit+instructions)
size of the vertex shader (cntltinstructions)
number of GPRsto allocate for pixel shader programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

H+yvertex-0,t: vertex, 2: verex 2,3:Lasi vertex olhe orimilive
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(G=linear, 1=cylindrical).
Oxxxx : Normal mode
1xxxx : Multipass mode
If normal, bobbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.
0: position (1 vector), 1: position (2 vectors), 3:multipass

_COUNT Number of locations exported by ihe V& (and thus numberof interpolated

PARAM_GEN_I0

Gchiblt 2028 cock405_Sequencer.cec

parameters) (0.6)— Sh4bi counters representing the #ofintermolated
parameters-exparted-in-clause-7 (located-in-VS_EXPORT.COUNT.6).OR

OFexporedvectorsto.memory per-clause-in-mullipass.mode(perclause}
Do we overwrite or not the parameter O with XY data and generated T and S values

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © |

AMD1044_0257377

ATI Ex. 2107

IPR2023-00922

Page 243 of 260

ATI Ex. 2107
IPR2023-00922

Page 244 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

‘ 24 September, 2001 4 September, 201542 42 of 58_ ah pee

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

*

26.23, DEBUG Registers

26-123.1 Context

DB_PROB_ADDR instruction address where thefirst problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2

DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2
DB-CLAUSE

26-223.2 Control “|

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

an

27-24. Interfaces

27-1241 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

27.2242 SC to SP Interfaces “

27.2.424.2.1 SC_SPH -
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data whichis transferred per quad is

Ref Pix | => $4.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value
Delta Pix | (<3) => $4.8 Floating Point Deita | value
Delta Pix J (x3) => $4.8 Floating Point Delta J value

This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

=p Formatted: Bullets and Numbering

Ss Formatted: Bullets and Numbering

HS 4 Formatted: Bullets and Numbering

Lo s| Formatted: Bullets and Numbering

_-(Formatted:Bullets and Numbering

AMD1044_0257378

ATI Ex. 2107

IPR2023-00922

Page 244 of 260

ATI Ex. 2107
IPR2023-00922

Page 245 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA | 43 of 58Aol ae !
Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ [J Control Bus transfers.

The data transfer across each of these busses is controlled by a JBUF_INUSECOUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the countis less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (VVe may revisit this for both the SX,SP,SQ and adda
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of

packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name [Bits|Description |
SC_SP#_data 64 \J information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bil)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRO
Bits [63:39] (38:26) (25:13) (12:4)
Format SE4M20 SE4M6& SE4M8& SE4M&
Type 2
Field Face xX Y

Bits (63) (23:12) [17:0] |
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid =
SC_SP#_last_quad_data 4 This bit will be set on the last transfer of data per quad. | oes
SC_SP#_type 2 0 -> Indicates centroids =

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall lock at state data to determine how many types to send for the

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

|. . I
interpolation process. fe

27.2.224.2.2 SC_SOQ “|
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks pertransfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name | Bits | Description

1 clk transfers

Event ~ valid data consist of event_id and
state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

| SSS

S$C_SQ_data 46|Control Data sent to the SQ oe

||

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257379

ATI Ex. 2107

IPR2023-00922

Page 245 of 260

ATI Ex. 2107
IPR2023-00922

Page 246 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 44 of 58wastOD

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pe_deallac will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid ~ Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad maskset but the pixel
corresponding pixel mask set tozero.

| SC_SQ_valid 1 SC sending valid data, 2" clk could be all zeroes

5C_SQ_data — first clock and second clock transfers are shown in the table below.

| Name | BitField Bits | Description

1° Clock Transfer

SC_SQ_event [0 1 | This transfer is a 1 clock event vector
L | . |Force quad_mask = new_vector=pc_dealloc=0
8C_S3Q_event_id [2:1] 2 This field identifies the event

0 => denotes an End Of State Event
1 => TBD

| 5C_SQ_pe_dealloc [5:3] 3 | Deallocation token for the Parameter Cache
SC_SQ_new_vector 6 1 he SQ must wait for Vertex shader done count > O and after

dispatching the Pixel Vector the 5Q will decrement the count.
8C_3Qquadmask | (10:7) 4 | Quad Write maskleft to right SPO => SP3
SC_SQ_end_of_prim 1 i End Ofthe primitive

|SC_SQstateid [14:12] 3 | State/constant pointer (6*3+3) _
SC_SQ_pix_ mask | [80:15] 16|Valid bits for all pixels SPO=>SP3 (UL,UR.LL,LR)
8C_S3Q_prim_type (83:31) 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Normal
010: Realtime

101: Line AA : es
110: Point AA (Sprite) SSS

|SC_SQ_provok_vix | [35:34] 2 | Provoking vertex for flat shading CES SOS
SC_3Q_pe_ptro | (46:36) 11 Parameter Cache pointer for vertex 0 ee

| SC_SQ_pe_ptri | [10:0] 11 | Parameter Cache pointer for vertex 1 oe
8C_80peptr2 [21:11] 11 | Parameter Cache pointer for vertex 2

$C_SQlod_correct [45:22] 24 LOD correction per quad (6 bits per quad)

| Name | Bits

 Description

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257380

ATI Ex. 2107

IPR2023-00922

Page 246 of 260

ATI Ex. 2107
IPR2023-00922

Page 247 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201349 GEN-CXXXXX-REVA 45 of 58l :

 8Q_SC_free_buff

ee Lu =

1 | Pipelined bit that instructs SC to decrement countof buffers in use.
SQ_SC_dec_cntr_ent 4 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo.
The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or rnore valid quads and the vector has been

marked for deaillocate when a primitive marked new_vectorarrives. The Scan Converter will submit a partial
vecior (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

ec] Formatted: Bullets and Numberin

etd24.2.3 SQ to SX: Interpoiator bus “re { — ——
Name | Direction | Bits | Description _
8Q_5Xx_interp_flat_vix SQ—SPx 2 | Provoking vertex for flat shading
SQ_SXx_interp_fiat_gouraud | SQ-SPx 4 | Flat or gouraud shading ;
$Q_SXx_interp_cyl_wrap SQ—SPx 4 | Wich channel needsto be cylindrical wrapped
SQ_SXx_pe_ptrQ | $Q-9SXx [11 | Parameter Cache Pointer
$Q_SXx_pe_ptri $Q—S8xXx 11 _ Parameter Cache Pointer
SQ_SXx_peptr2 SQoSXx[11 | Parameter Cache Pointer ee
$Q_SXx_isel _SQ—SXx i | Selects between RT and Normal data |
5Q_SXx_pe_wr_en SQ—SxXx 1 _ Write enable for the PC memories
SQ_SXx_pe_wraddr |SQ>SXe|7|Writeaddress forthePCs
SQ_SXx_pe_channel_mask | SQ->SXx 14 | Channel mask

242-424,24 SQ to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.

a eee + Formatted: Bullets and Numbering

 Name __ _ Direction | Bits | Description -
$Q_SPx_vsr_data | SQ-SPx | 96 _| Pointers of indexes or HOS surface information
$Q_SPx_vsr_double SQ—SPx 1 0: Normal 96bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid | $Q-»SP0 14 _ Data is valid
$Q_SP1_ vsr_ valid SQSP1 i | Data is valid
SQ_SP2_vsr_ valid | SQ>SP2 14 | Data is valid
SQ_SP3_ vsr__ valid | SQ—SP3 i | Data is valid
5Q_SPx_vsr_read | SQ-»SPx 4 [increment the read painters _ :

24-2:524.2.5 VGT to SQ: Vertex interface
2 * S| Formatted: Bullets and Numbering :

27-2:3424,2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257381

ATI Ex. 2107

IPR2023-00922

Page 247 of 260

ATI Ex. 2107
IPR2023-00922

Page 248 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| : 24 September, 2001 4 September, 201549 46 of 58_— geeih HAE

Name | Bits Description - “|
VGT_SO_vsisr_data | 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisrt_double | 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_S@Q_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector"is set on the first vector)
VGT_SQ_indx_valid i Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be carrect when

‘VGT_SQ_vgt_end_of_vector"is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface| | | handshaking)

| 27-2.5.274.7.5.2 Interface Diagrams an 4 Formatted: Bullets and Numbering

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257382

ATI Ex. 2107

IPR2023-00922

Page 248 of 260

ATI Ex. 2107
IPR2023-00922

Page 249 of 260

YEONSNDSSYEQVHS

xxx@BHC1BAODUOSOHONJUBUAdODsoUdIaJOY"JEUSPHUOD[LY@«8aLoze

sessusrbes“gapysop8702

waadnaaysbxLOL

 Dau

BOYONDIAAOGNA

bHTaAnodwersa

PpWLYUHSLSA

 8G40LPdvd

WAREXXXXXI-NAODWAN‘AdaLNSNNOO"d

pues45a&Tessqeqs75aGewa| aejosaJopusIAAewaSTericpIe7A4aGy

cyepasisajoaOS
 |O84aO50.raeho8SGbGlOcJequisyaesdivdLida

 (t=:

nr! aNaSCI~

ZTignhodASISA@MovYSLsA

LEA

L00g‘equiaydaspZSLYSLVNIOIO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0257383

ATI Ex. 2107

IPR2023-00922

Page 249 of 260

ATI Ex. 2107
IPR2023-00922

Page 250 of 260

vax@OGBq1DAODUOOHONJYGBUAdODsoudIIjSY"JEHUSPIUOD[Ly@x8-VGloze,—oopteowenbss“pqruseavETHI|
AMD1044_0257384

 "SOBLSU|IBABSVoIG]WieibeIG(esIbo7PaleisqTTSno
NOISSINSNVWaLSdoOLsSdadadNgs

NOISSINSNVALSLYVLS-dddHATHOdd
[NOISSINSNVGLsdOLsGuATHodd

adO31KLANO41INDOFLAINOWEWdCHIyWowdydNgSsZuluosTulyosQOulyOsulaOs

 TUTTOeeeeeeeeeeeeeaeeeeeeeeeeGeaiieiemememmoicdL00Z‘Jequaydespz

8S10erBrSlOzISsquedssF4OWduoleoylosdsseouenbesOO7YaLvdLidaFLVSLYNIOIUO

 TVIELVNdadoAALLOdLOUdd

NNOSARNOKHx9G2oo=akINoroaa8—-fO

ATI Ex. 2107
IPR2023-00922

Page 251 of 260

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

ae 4 Formatted: Bullets and Numbering

pS 4 Formatted

a | Formatted

2 2 . -{Formatted
{Formatted

Vane | Formatted .

 a : a Formatted 7

| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 49 0f58L Fieseil A i

2t-2-624.2.6 SQ to SX: Control bus -

Name | Direction | Bits | Description
SQ SXx exp type 2, OO:Pixelwithout2(to4buffers)

| OL Pixel with2(7 to 4buffers)
| 10: Position (1 or 2 results)

| Lit: Pass thru (4.8 or 12 results aligned)
SQ_SXexpnumber SQ-28Xx 2... Numberoflocations needed inthe export buffer

L _ fenceding depends on the type see bellow).
SOSexp aluid | SQ SAX 1 ALU ID
SQ Sx exp. valid BQ-2SXx 1. | Malidbt Lt Bermatted
SGSxexpstate SQ->SXX 3. | State Context SA eee

SQ Sx free done[$Q2S%% _t__ | Bulse to indicate that the previous export is finished|}
' (this can be sent with or without the other fields of the |]

| _ interface)
SO SX free alu_id 8O->8Xx i ALU ID

Depending on the type the number of export location changes:
o Type 00 : Pixels without Z -

oe. 00 = 1 buffer
OT = 2 buffers

©, 10 = 3 buffers
oo. 11 = 4 buffer

elype 01: Pixels with Z
© 00 = 2 Buffers (color + Z)
o_O1 = 3 buffers (2 color + 2)
o 10 = 4 buffers (3 color + 2)
e111 = 5 buffers (4 color + 2)

o Type 10: Position export
o 00 = 1 position
oo. 01 = 2 positions
ox = Undefined

® Type 11: Pass Thru

 O1=8buffers
©. 10 = 12 buffers

» 11 = Undefined

Below the thick black line is the end of lransier packet thal jelle the SX thal a given export is finished. The repart
packet will always arrive eilher before or at the same time than the next export to the same ALU id TheseHelds

27-2924,2.7SX to SQ: Output file contro! *
Name | Direction _Bits | Description I
SXx_SQ_exp_count_rdy SXx—5Q 1 | Raised by SX0 to indicate that the following twofields

reflect the result of the most recent export

SXx_SQ_exp_pos_avail | SXx--SQ_ 4 Specifies whetherthere is room for another position.

SXx_SQ_exp_buf_avail SXx-SQ 7 | Specifies the space available in the output buffers.
| 0: buffers are full

| 4: 2K-bits available (32-bits for each of the 64
| Pixels in a clause)

| 64: 128K-bits available (16 12-bit entries for each of
| 64 pixels)
| 65-127: RESERVED

Exhibit 2029 dockt4o0_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

son 3) Formatted: Bullets and Numbering

Joo=-] Formatted: Bullets and Numbering E

AMD1044_0257385

ATI Ex. 2107

IPR2023-00922

Page 251 of 260

ATI Ex. 2107
IPR2023-00922

Page 252 of 260

 tO OAA
| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201542 50 of 58i A

27-2-824.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which slause-RS line it is now working andif the data in

station-fiee. The sequencer also provides the instruction and constants for the fetch to execute and the address in
the register file where to write the fetch return data.

Name Name

| Direction Direction BilsBits

TPx SG data rdyTPx80deta_roy TPx-> SQTPx—
180

4
DescriptionDescription

Data readyData ready

Px SO 1S Jine numtex-30-clause—num TPx- SQTPx-»

| SG
63 Line number in the

Reservation stationClause
number

TPx SQ typeTPxSQ—type [Tex SQTPx>
sO

44 Type of data sent (O:PIXEL
UVERTEATyoe-of data-sent
(G-PIMEL. 1VERTEX

SO TPx sendSQ-Tex-sead | SO--TPxSQ-—TPx 44 Sending valid dataSending
validdata

5Q_TPx consiSQ—TPx—const | SQ3TPxSQ—TRx 4848 Fetch state sent over 4 clocks
(192 bits total\Fetch-state-sent
over 4 clocks -(i92 bis total)

SQ. TPx instrS6.-TPxneeS0nTExSo—TEx24e4 Fetch instruction sent_over 4
clocksFeich—instruction—_gent
overdclocks

SO Tex ene of groupSG.7e-end—ofclause 8Q--TPXSGFRx Last instruction of the
groupl-ast-inetruction--of-theclause

8Q_TPx_ TypeSGRcTypeSQTPxSG--Tex

Type of data sent (O:PIXEL
LVERTEX)Pyoe—of-date—sent

SQ_TPx goer phaseSO-Trx--gpr-phase SQ—-TPxXSQ—-TFPx {hoNo Wire phase signabAdie-shase
signal

SO TPO led correctSQ.TPG_led-carrect | SQ—TPOSG—TROIDa LOD correct 3 bits per comp 2
components per quad LOD

8Q_TPO pix maskSQ--TrO—pix_masi SQ—TPOSQ—-TRO
components-perquad
Pixel mask 7 bit per pixelPrcel
mask-l-bit-per-pixel

8 TP lod correcteaTP1_led-carrect SQ-TP1SG-—-TPR4 LOD correct 3 bits per comp 2
components per quad LOD

3 bi 5

SQ TP1 pix masksQtP4—pix_mask ' SQ3TPISQ—TAt
componente-perauad
Prel mask 7 bit ber pixelPixel
paseDitooroled

SO TP? lod correct@Q.7TP2_lod_carrect | SQ5TPISQ—TP2 LOD correct 3 bits per comp 2
components per quad LOD
corfect.3._biie—_per—_comp.2
componente per-quad

SQ_TP2 pix masksQ-Te2-pie_asicSQ—-TP2SQ—FR2 Peel mask 1 bit oer ome!iel

SO TPS led correctS@O_TPS_lod_correct “8Q--TP38Q--TR3 LOD correct 3 bits per comp 2

components per quad LOD
correct.3.-_hile—_per—comp-—2
components per.quad

SQ_TPS pix maskSO-+3--phemacic

Pel mask 1 bit per oixelRixel

: ita :

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

pee Formatted: Bullets and Numbering

AMD1044_0257386

ATI Ex. 2107

IPR2023-00922

Page 252 of 260

ATI Ex. 2107
IPR2023-00922

Page 253 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 51 of 58a aE

SQ Tex is line numSOTPxclausenum SQ--TPx80-TPx|63 Line number in ibe Lp
Reservation stationClause

| number
SQ TPx write gor indexSQ:-TeyweHte-ger-inde|SQ->TPyBQ--TPx|74 index into Register file for write
% of returned Feich Detaindex

returmed-EaichData.+ te

2A24292 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stali

SQ_SP_wr_addr

ot

 ane “Formatted: Bullets and Numbering

Name

“TP.SQfetchstall

27-23-10242

Direction
[1Bits |_DescriptionTPSQ '4 | Do not send moretexturerequest ifasserted=

242.10SQ to SP: Texture stall
Name

| Direction | Bits |Description

 SQ_SPx_fetch_stall

 _SQ- | Do not send more texture requestif asserted ——|
hee 4 Formatted: Bullets and Numbering

* ce] Formatted: Bullets and Numbering :

2124.211 SQ to SP: GPR and auto counter

Name Direction Bits|Description
SQ_SPx_gprwraddr SQOSPX 7 _| Write address
SQ_SPx_gpr_rd_addr _SQ >SPx 7 | Read address
SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable
$Q_SPx_apr_wr_en | SQ-+SPx 1 Write Enable for the GPRs :
SQ_SPx_gpr_phase SQ—>SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask | SQ-»SPx 4 | The channel mask
SQ_SPx_gpr_input_sel | SQ>SPx 2 When the phase mux selects the inputs this tells from

| | which source to read from: Interpolated data, VTXQ,
oe __| VTX1, autogen counter, |

SQ_SPx_auto_count ' 12? Auto count generated by the SG, commonforall shader

Gchiblt 2028 cock405_Sequencer.cec

"SQ—>SPx
| L pipes

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©

AMD1044_0257387

ATI Ex. 2107

IPR2023-00922

Page 253 of 260

ATI Ex. 2107
IPR2023-00922

Page 254 of 260

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE|

' 24 September, 2001 4 Seplember. 2078's 52 of 58 ; Se : = oo

ee | Formatted: Bullets and NumberinPee A4212SOQ to SPx: instructions ee—
Name | Direction [Bits |Description oe
SQ_SPx_instr_start $Q—SPx 1 Instruction start
SQ_SP_instr SQ—-SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzle 11:4
VectorDst W742
Unused 20:18

1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 1712
Unused 20:18

2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp W111
Scalar Clamp 12:12

| Vector Write Mask 16:13 :
; ee | Scalar Write Mask 2047

SQ_SPx_exp_alu_id | SQ5S8Px i | ALU ID
SQ_SPx_exporting SQ—SPx 2 QO: Net Exporting

1: Vector Exporting
2: Scalar Exporting _

SQ_SPx_stall |SQ>SPx 1 | Stall signal
8Q_SP0_write_mask SQ—SPO0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are computed per

_ _ clock
SQ_SP1_ write_mask SQ—SP1 4 Result of pixel kill in the shader pipe, which must be

cutout for all pixel exports (depth and all color

| | buffers). 4x4 because 16 pixels are computed per| | clock
$Q_SP2_ write_mask SQ—SP2 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are computed per_ clock

SQ_SP3_ write_mask SQ—>SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| | clock : a
Formatted: Bullets and Numberin

2724324.2.13SP to SQ: Constant address load/ Predicate Set “{FormattedbestoningJ
Name | Direction | Bits | Description : ES ee
SPO0_SQ_const_addr SP0-SQ | 36 | Constant addressload / predicate vector load (4 bits only)

| _ to the sequencer
SPO_SQ_valid | SP0—SQ '1_| Data valid
SP1_SQ_const_addr | SP1-SQ | 36 =| Constant address load / predicate vector load (4 bits only)

| | to the sequencer

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257388

ATI Ex. 2107

IPR2023-00922

Page 254 of 260

ATI Ex. 2107
IPR2023-00922

Page 255 of 260

a Formatted: Bullets and Numbering

 | _ =| Formatted: Bullets and Numbering

 | = a 4 Formatted: Bullets and Numbering

Sc] Formatted: Bullets and Numbering

dee 4 Formatted: Bullets and Numbering

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: | 24 September, 2001 4 September. 2015418 GEN-CXXXXX-REVA 53 of 58l neers a Ley
SP1_SQ_valid | SP1—80 a | Data valid
SP2_SQ_const_addr SP2—S8Q 36 | Constant address load / predicate vector load (4 bits only)

: to the sequencer
$P2_SQ_valid | 8P2--8Q 14 | Data valid
SP3_SQ_const_addr SP3—S8Q 36 | Constant address load / predicate vector load (4 bits only)

ce | come tothesequencer
“SP3_S0_valid _SP3-SQ | Datavalid

2-4242.14 SOQ to SPx: constant broadcast “

Name | Direction _Bits | Description
SQ_SPx_const | SQ—SPx [128 | Constant broadcast

ototA7S24.215.SPO fo SQ: Kill vector load *
Name "| Direction |Bits[Description=——COCOC~™~™~™OSP0_SQ_ kill vect SPO—SQ 4 |_Kill vector load
SP1_SQ_killvect | SP1-SQ 4 |_ Kill vector load
SP2_SQ_Killvect SP2 SQ 4 _ Kill vector load
SP3_ SQkillvect SP3—-S80 4 _ Kill vector load

27-246242.16SQ to CP: RBBM bus .

Name | Direction [Bits | Description
SQ_RBBis _ SQ>CP 1 | Read Strobe
SQ_RBB_rd | SQ>CP [32 | Read Data
SQ_RBBM_onrtrir SQ CP | 1 | Optional
SQ_RBEBM_rir _8Q--CP 4 _ Real-Time (Optional)

ateeeli242.17 CP to SQ: RBBM bus *

Name Direction Bits | Description
robm_we P3SQ i4, Write Enable :
rbbm_a CP—5Q 15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd CP->8Q 132 | Data
robbm_be CPSQ 4 _ Byte Enables
robbm_re | CP-+5Q 14 Read Enable
rbb_rsO CP—SQ i | Read Return Strobe 0
rob_rs1 |CP-»SQ 4 _ Read Return Strobe 1
rbb_rdO CP—SQ|32 _ Read Data 0
rbb_rd4 ; CP >SQ|32,
RBBM_SQ_soft_reset | CP»5Q if

ere1824.21824.2.18SQ to CP: State report .
‘Name [Direction [Bits |Description —ss—‘—sSSCSCS™S
SQ_CP_vs_event SQ—>CP 1 _ Vertex Shader Event
SQ_CP_vs_eventid | SQ—CP 2 | Vertex Shader Event ID
8Q_CP_ps_event SQ—CP 4 | Pixel Shader Event
SQ_CP_ps_sventid | SQ-—CP L2 | Pixel Shader Event ID

eventid =O => *sEndOfState (Le. VsEndO/State)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state wheneverit gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Gchiblt 2028 cock405_Sequencer.cec 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©

AMD1044_0257389

ATI Ex. 2107

IPR2023-00922

Page 255 of 260

ATI Ex. 2107
IPR2023-00922

Page 256 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201548 54 of 58Aeset a!

 24.3 Example of control flow program execution ee
We now provide some examples of execution to better illustrate the new design.

Given the program:

AluO
Ald
Tex0
Tex 1
Alu 3 Serial
Alu4
Tex 2
Alu S
Alu 6 Serial
Tex 3
Alu?
Alloc Fosition 1 buffer
Alu 3 Export
Tex 4
Ajloc Parameter 3 buffers
Alu 9 Export o
Tex 5
Alu 10 Serial Export 2
Alu11Export1End

Would be converted into the following CF instructions:

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow instruction Pointer (12 bits), (CFP
Execution Count Marker (or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI
Call return pointers(4x12 bits), (CRP)
Predicate Bite(4x64 bits), (PB
Exeort JD (1 bib, (EXD)
GPR Base Ptr (8 bits), (GPR
Export Base Ptr (7 bits), (EB
Context Ptr (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

Valid Thread (W/ALID)
Texture/ALU engine needed (TYPE)
Texture Reads are oulstanding (PENDING
Waiting on Texture Read to Complete (SERIAL)
AllocationWait(2bits)(ALLOC)

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257390

ATI Ex. 2107

IPR2023-00922

Page 256 of 260

ATI Ex. 2107
IPR2023-00922

Page 257 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 55 of 58A i OAS
00 — No allocation needed
01 — Position export allocation needed (ordered export
10 — Parameter or pixel export needed (ordered export
11pass thru (out of order export)

Allocation Size (4 bits) (SIZE
Position Allocated (POS ALLOC)
Firat threac of a new context (FIRST)
Last (1 bith, LAST)

Status Bits “WALID TYPE ENDING | SERIAL [ALLOC SIZE [POS ALLOC FIRST|LAST|

Status Bits

VALID PE PENDING | SERIAL | ALLOC SIZE|POS ALLOC FIRST LAST
A TE 9 [9 Ie Q Q 1 g

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backinthis state:

State Bits

| CFP | ECM [kl [CRP | PB EXID «GPR EB CPTR LOD eS
o A [9 2 Lo 8 10 0 8 9

Status Bits

JVALID TYPE NDING | SERIAL|ALLOC|SIZ
i ALU i il 19 Q Q i

Because of the serial bit the arbiter must walt for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns iin

 i [CRP | PB | EXID reptR |LoD
‘9 (9 [9 io ro [go

| Status Bits

[VALID| TYPE
i Q

Again the TP frees up, the arbiter picks up the thread and executes. Il returns in this state:

Exhibit 2028.doch409_Sequeneerdas 73201 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257391

ATI Ex. 2107

IPR2023-00922

Page 257 of 260

ATI Ex. 2107
IPR2023-00922

Page 258 of 260

31 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
ak ok 24 September, 2001 4 September, 201519 56 of 58ce a 4Sepiember,20'2
State Bits

CEP ECM LL CRE PB Exp _GPR EB CPTR LOD
5 [7 ro 6 6 ro 10 Q 6 0

Status Bits po
VALID TYPE PENDING |SERIAL |ALLOC [SIZE |POS ALLOC FIRST|LAST Jo
1 ALU 1 [9 [9 Q Q 1 Q Je

isnot_sel. The thread wil however come back fo the RS for the second ALU instruction because it has the serial bit

set.

Status Bits

VALID| TYPE

1

State Bits

CFP | ECM (iu [CRP PB [EXID Gi | EB [SPTR|LOD
Q IE [9 Q Q [9 /o [9 [9 g

Status Bits Je

VALID TYPE PENDING | SER! L ALLOC|SIZE|POS ALLOC FIRST LAST Joe
1 TEX o Lo 10 Q 0 1 g [ee

Picked up by the TP and returns:

[StateBits ann ;

CFP [ECM [i CRP | PB [EXID | GPR FEB [CPTR | LOD
rt ro ro ro ro ro ro ro ro ro

Status Bits |

VALID TYPE SIZE| POSALLOGEIRST| LAST|
1 ALU 0 0 1 o
 Picked up by the ALU and returns

State Bits

Exhibit 2028.dochUoo_Sequencerdos 73201 Bytes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257392

ATI Ex. 2107

IPR2023-00922

Page 258 of 260

ATI Ex. 2107
IPR2023-00922

Page 259 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 57 of 58eet 2

TYPE PENDING|SERIAL | ALLOC SIZE|POS_ALLOC FIRST|LAST
ALU 1 ro | O4 1 0 j Q |

ifthe SX has the
the RS in this state:

Exe

lace for the export, the 5Q is going to allocate and ick up the thread for execution. It returns fo

State Bits

CEP

Status Bits

VALID|TYPE PENDING

POS _ALLOC FIRST

 i TEX i | SERIAL | ALLO
[0 me 4 i

L190

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

State Bits

CFP ECN ul CRE PB ExXIG GPR EB CPTR Lop
5 id 19 1o 8 Li Q | 190 Q [Q

Status Bits |

VALID TYPE PENDING | SERIAL [ALLOC|SIZE|POS ALLOC FIRST | LAST ||
a TEX A [0 [9 8 i i 1e He

This executes on the TP and then returns:

State Bits

| Status Bits

Echibit 2029 doch403_Sequeneerdsc 73201 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257393

ATI Ex. 2107

IPR2023-00922

Page 259 of 260

ATI Ex. 2107
IPR2023-00922

Page 260 of 260

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201519 58 of 58feet SEE

POS _ALLOC | FIRST
PALU Lt [4 Q io 4 i [4Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes

and does not return to the RS because ihe LAST bit is set, This is the end_of this thread and before dropping it on the
floor,theSQnotifiestheSXofexportcompletion.

te

28.25, Open issues —
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2028 doct#00_Sequercerdes 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

AMD1044_0257394

ATI Ex. 2107

IPR2023-00922

Page 260 of 260

