ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 10f48
] Tataie b
Author: Laurent Lefebvre
Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.87

Overview: This is an architectural specification for the R400 Sequencer block (8EQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub~ |
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C:\perforce\rd00\doc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
N Dept . | .. . Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATl Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |
work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or

transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

Exhibit 2024, docRa00_Seeuencerdec 71269 Bytes*** @ AT Confidential. Reference Copyright Notice on Cover Page © »»

ATI 2024
LGv. ATI
IPR2015-00325

AMD1044_0257135

ATI Ex. 2107
IPR2023-00922
Page 1 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 20154 20148

i s MYV A

Table Of Contents

LB € A 1 PSSR

1.1 Top Level BIOCK DIagram

1.2 Data FIow graph (OP).

1.3 Control Graph. ..o

2. INTERPOLATED DATA BUS...

3. INSTRUCTION STORE

4. SEQUENCER INSTRUCTIONS.....

5. CONSTANT STORES ... oot ciiiiieiceiinnea s e e seacaseeasesameassesareaeamsaseeantaasssasenameanssssesanssssessnenn

5.1 Memory organizationS ... S

5.2 Management of the re-mapping tables ... 6
5. 2.1 DY DS 1918 -
52,2 Free LIS BIOCK ... 1948
523 DealloCate BIOCKoovveries e 204948
5.2.4 Operation of Incremental MOTEI..........oovoeiee e 204918

5.3 Constant Store INAeXING. ... 2019

54 Real Time CommMands. ... 212049

55 Constant Waterfalling ... 212009

6. LOOPING AND BRANCHES ..o ecceeinteeceeseeasee e sessscnneasesssensassssssssenssssssensnses 222420

6.1 Thecontrolling STate. ... 2221420

6.2 The Control FIOW Programi ... 222120

6.3 Data dependant predicate InStructions................ 2423

6.4 HW Detection of PV P S 252423 .

6.5 Register file INAEXING ... e 252423

6.6 Predicated Instruction support for Texture Clauses ... 224

6.7 Debugging the Shaders ... 262824
6.7.1 Method 1: Debugging regiSters ... 262524
6.7.2 Method 2: Exporting the values in the GPRS (12)..........coooiiiiii e 2625

7. PEXEL KILL MASK L. ciaeca et eemceeee s e mess e aase e ne e s s e x e s e e s e aaneenseseaeannnnnsen 272

8. MULTIPASS VERTEX SHADERS (HOS) .. oo 272625

9. REGISTER FILE ALLOCATION . ..cci it ceecmeecrceanesseesscnse e seesnensssessnsnsessnssnsensnses 272625

10. FETCH ARBITRATION

11. ALU ARBITRATION 2827

120 HANDLING STALLS et ee e ene s s meem e s aam e e e e s e nnsanean -

13. CONTENT OF THE RESERVATION STATION FIFOS.....ooiiieereeccieceescnsnensennennes 202827

14. THE OUTPUT FILE o

15, I FORMAT oo anees 2928

15.1 Interpolation of constant aliribules ... 302928

16. STAGING REGISTERS ...ttt as e ene s e menn s s aameane e e e nnsanean 302028

17. THE PARAMETER CACHE ..ot see e mese e st neme e e e snnanean 323430

18. VERTEX POSITION EXPORTING....cooriieicceeeemeencmenee e eeeennee e nnee s snaesnessnesnenses 333136

19. EXPORTING ARBITRATION ..o ieceseenceeeneecnenee e ss e nmeasne s seesnssnessnenses 333430

20, EXPORT TYPES ... coeeiiieeiireanaceraerameaaseeesseaseessesamsessessaensansssessnsnsnsssssnsasassnssnsenanses 333430

20,1 VertexX Shading. ..o 333430

| Exhibit 2024 docRAGS_ y 71260 Byes™** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257136

ATI Ex. 2107
IPR2023-00922
Page 2 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 30f48

202 PXel Shading oo 332230
21, SPECIAL INTERPOLATION MODES .. .oooeeeeeiviviceieesmissssnesnsssssnssssmsssmmssssssssssssssssssssses 343234
21,1 Realtime COMMENTS ..o 343234
21.2 Sprites/ XY screen coordinates/ FB information....................oooo 343234
213 Auto generated COUNTEIS. ... 343334
2131 Vertex Shagders oo 343332
2132 PIXEI SRS .o 343332
22 ST AT E MAN A GEMENT et irieseirieeusiiersssssieressssarrss st rssssnsrenssssssensssssnsssssssmnsssssnsnnnnns 353332
22,1 Parameter cache synchronization ... 363332
23, XY ADDRESS IMP O R T S . iiiiiiiisessenssssssssssssssmsssmssssssssmsssssssssssmssssssssssssssssssssssnsssssssnsssss 353432
23,1 VertexX INdexXes IMPOMS......ooi e 353433
24, REGISTERS oooeeioiiceieeiiiiiaaieissssssssssssasssssssassssssssssssssssnnsssssssssssssssssssinsensssssssssnnsssssisssnnns 363433
241 oMMl 363433
242 CON X . 363433
25, DEBUG REGISTERS . ..iisicceivvsuisiassisssssssssssssssssssssssssssssssssssssssnssssssssssssssssssssnsssssssssssns 373534
251 COM Xt 373534
26. INTERFACGES ..ot eeter et en et enesbses sttt asss st nssas s s st ansnsas 373534
261 External Interfaces. ..., 373534
2611 SCtoSQ:IJCoNtrol BUS ..o, 373634
26.1.2 8Qto SP: Interpolator BUS ... 383635
26.1.3 SQto SP: Parameter Cache Read control BUS ... 383635
26.1.4 SQto8X: Parameter Cache Mux control BUS ... 393736
26.1.5 SQto SP: Staging Register Data ... 393736
26. 1.6 PA1OSQ: VerexX INTEITACE ..o 393736
26.177 SQto CP:State report ... 424139
26. 1.8 SO 10 SX: CONTOIDUS ..o e 424439
26.1.9 SXtoSQ: Output file cONtrol ... 424439
26.1.10 SQ 10 TP CONIOl DUS ..o 424439
26111 TP 10 SQ: Texture Stall..oo oo 434240
26112 SQ10 8P TeXtUre Stall. oo e 434240
26.1.13 SQto SP: GPR, Parameter cache control and auto counter ..., 434240
26. 1. 14 SQ 10 SPX INSIUCHONS 1. oov oo 444341
26.1.15 SPtoSQ: Constant address 10ad ..o 454444
26.1.16 SQ 10 SPx: constant broadCast ... oo 454444
26.1.17 SP0O10 SQ: Kill VECIOI I08 .. .o, 454442
26,118 SQto CPIRBBM DUS ..o oo 454442
26.1.19 CP1oSQ RBBM BUS....cooo oo, 454442
27. EXAMPLES OF PROGRAM EXECUTIONScovvvvemssissssssssssssssssssnssssssssssssasssssssnsssns 464442
27.1.1 Sequencer Control of a Vector of Vertices ..., 464442
27.1.2 Sequencer Control of a Vector of PIX€IS ..., 474843
2T L. 3 NO S ..o 484644
Exhibit 2024, dlocRAG0_ ¥ 71269 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »* | -

AMD1044_0257137

ATI Ex. 2107
IPR2023-00922
Page 3 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
l 24 September, 2001 4 September, 20154
;] ba TIOUMNTI A
| 28, OPEN ISSUESoecvcevvosscsecesssssssesssssssseesesss s sssssss s sssss s ssssssasns
Exhibit 2024 docRAGS_ ¥ 71260 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257138

ATI Ex. 2107
IPR2023-00922
Page 4 of 260

ORIGINATE DATE EDIT DATE
24 September, 2001 4 September, 20154
£ b

DOCUMENT-REV. NUM. PAGE
GEN-CXXXXX-REVA 50f48

A

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Eschibit 20 06 >

First draft.

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ-SPO interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—38Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—-SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions,

71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257139

ATI Ex. 2107
IPR2023-00922
Page 5 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 6 of 48

A b MY A

1. Qverview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separale sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257140

ATI Ex. 2107
IPR2023-00922
Page 6 of 260

»er @ 96Bd I9A0D UO 321ION WBUAAOD 30UBISISY [RHUSPYUOD [LY @ wesoWa s, sopuesusnbes=ooryIor 7o0 ORI

ATI Ex. 2107
00922

IPR2023-

Page 7 of 260

AMD1044_0257141

AMITAIIAD J2ousNbag [RIuRN) 1] 2anSLy
7 4 pEOT UBISLED
g - g4 J g * gy ” ”
" i 7 _ HAAY XL [\
7 VLYa ALRM XL
AmO\On_ = 20f0d = g90/0d = o e | e
T 1 avoT ESY]
73 'y -+ INYLSNOD S 9e dl e
N ~ , | SHILINIO
| | Syad N&
avay Od 5
e o ot |
4]
| U~ 3LVLS HOL3d
W | ds ds ds | ds [«/| OISO faewd
T LSNDEL
~ N Hagy
AuvisL
] ¥aqv
e - e e Lsawvomang
NMMLTY Lum— L E—— R _—— i Lo my \
> ! | = ZHOLS LSNI
= LN = HALNI = HALNI [« * i
| . | o R
, ! JOMINGD 1
: avol
M», m _,». ' s — 160
e
HVESSONO T]
, H pesy 40
oo | | m e LGN
m%mw e8P SAVAD T TOMINGD TOHINGD !
53 ,.mvc_ ASUSA o h 40
| TOMINOD SINVLISNOD | pedien
XALMIA o
78 40
)
v TIviS
AT) A
8y 4o L YAZHXXXXXO-NIO FG1L0C 1equisides ¢ 100z “1equisjdes 7 . .
q90Vd WAN AFH-LNIWND0A 31va 1d3 JLvd JLYNIDIYO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 80f 48

A b MY A

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

A
Possible delay for available GPR’s
g

I?‘
e

Texture clause 0 | gy
Feservation station

FIFO
KLU clause 0
|a——eservation station

FIFO

l

[Fexture clause 1
keservation station

FIFO .
exture arbitrator

lag— 2 LU clause 1
Feservation station

FIFO
Fexture clause 2

eservation station

exture arbitrator

FIFO
f— LU clause 2
reservation station

FIFO
[Texture clause 3

reservation station

FIFO
«f— LU clase 3
reservation station

FIFO
[Texture clause 4

reservation station

FIFO
af— LU clause 4
reservation station

FIFO
[Fexture clause 5

reservation station

FIFO

lagg— (AL U clause §
reservation station

FIFO
IFexture clause 6
reservation station

FIFO
lagg— AL U clause 6
reservation station

FIFO
IPexture clause 7
eservation station

FIFO

NSSRRSRARRENANI
LI T

lag— AL U clause 7
feservation station

Figure 2: Reservation stations and arbiters
There are two sets of the above figure, one for vertices and one for pixels.
Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet

consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257142

ATI Ex. 2107
IPR2023-00922
Page 8 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 9of 48

s DY A

&
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level O fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 feich machine increments the counter of FIFO 1 to
signify to the ALU O that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level O shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can't be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn't have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state

machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

Exhibit 2024, dlocRAG0_ ¥ 71269 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257143

ATI Ex. 2107
IPR2023-00922
Page 9 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 20154

A b MY A

R400 Sequencer Specification

PAGE
10 of 48

| 1.2 Data Flow graph (SP)

| —— A
f scalar input/output
v

I
|
!
E—

instruction

tants from RE

Register File 4

Exj

MAC
pipeline stage i J\ te e reqy
<
o —
]
s A
g
= Register File < \
he A |
scalar input/output A I
s y 4 MAC - text{ |requed
pipeline stage !
=
c
)
e
< R —
S « A
3] Q]
= 12 - LN
! Register File -]
3
E— — i_ =
= @
o s’ B J> MA 1 texture| % quest %*ﬁ\
ar input/output 5
p) %jjﬁ
pipeline stage ! 5 %
A S e
i
w e 4
§| |5 ¥
k] = Register File
s 2 #
3 < y— N
=
=
o[__l__..dfq Al | texture rej pst
~ <\/I <scalar input/out ﬁ \}
V I
J
- S SO — Mux
b b @
@
Iy H
5]
@
4
2
3
2
~-

to Primitive Assembly Unit or RenderBackend

docR

hibit

05

Figure 3: The shader Pipe

71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257144

ATI Ex. 2107
IPR2023-00922
Page 10 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXAXXX-REVA 11 of 48
E.¥:) ISR TaTa\e V. I v
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
Clause # + Rdy
WrAddr IS SEQ CcsT WrAddr
CMD
csT
-
Phess oMD éST'CSTiCS% IBX A B CWec
RdAddr | L A WiSeal yragar
¥ k4 ¥ V k 4 V V
|
FETCH SP) OF
WrAddr s

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector

Figure 4: Sequencer Control interfaces

control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit docR400_

71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257145

ATI Ex. 2107
IPR2023-00922
Page 11 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 12 of 48
£ b IOV A
T
RE !
|
i
ToRB ‘
A0 Al
|
[
I 15 CROSSBAR (4x64 bits) |
| - T
s buffer (ping-pong buffer) T
1 AD Al A2 B0 (28 bits * 2 (14) + 8 bits * 6 (delta s)+4 exg
bits*6)* 16 (quads) * 2 (double-buffered) AQ Al A2 BO
4096 bits
2 B1 <o ¢t c2 32x128
B1 co ¢ c2
3 c3 c4 c5 DO XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 c4 =3 Do
768 bits
32324
4 Dt D2 E0 Et
D1 D2 EQ Et
1 ! 7 I
INTERPOLATORS ‘ 1 : 1 1
FIX-FLOAT + EXPANSION
! N—
N]
|
512 _/T\—
: s =
| N
|
|
N
i

o o [| | [[| || [| ﬂﬂﬁ jﬁﬁﬁ
!ULI‘ZUL‘ SRS 1UR};2UR‘ SUR‘ AUR || ILL 2L 3L L 1 AR || R LAR | X

_4_4_4

_4_4\~

Exchibit docRAD0_:

_4_4_1

_A\g_l

Figure 5: Interpolation buffers

71260 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257146

ATI Ex. 2107
IPR2023-00922
Page 12 of 260

»er @ 96 19100 UO 310N WBUAdOD 30UBIBISY [BHUSPYUOD [LY @ wnsoa 65712

wiziSerp Supup uopejodiduy (9 oMSL

g

ERTATA LTS

A
X1IA ¢d ld AX
€9/t | 18| SI €9l 1y | 1e | &b
-00-v¥ | -82| 21| 13| 0@ 20| o8 13| 0a| zo| o8 -09 vv |8z |-z | &
ANIALA XA A Ax | 98
65 eV | L2 | LI AR Rl I
-o5 -0y | -vz, -8| 03 19 50 2v| 03 19 50 ov |95 -ov vz | 8 | &
AN ALA AX| AX | AX | AX
s 6¢ | €z| . sslec ez, ||
2598 02| 00 zal vo Ly 00 za| ¥ W zs|-9¢ | -0z | 7| oo
AIN|A AX| AX | AX
15|58 | 61| oo 151G 16k Teg] O
v rze |01 © 1al €0 19| ov laj eo | 1a| ov|-ev ze -0t 0| as
AN A AX| AX | AX
) 0a SV 20) GE] €
AX = = AX 0a| od AX |20 | 20| Ay | 08 | 08 ds
03 1o 15 Fa z
ax | 03] 08 AX S0 150 | xx|lo | 10 x| & s
za 70 00 1Y)
w2020 15 190 |40 | |00 | 09 X YY) gs
1a %) X ov 0
Ax | 1aia ax|€0 | €0 ax | 1a 8| ux| Y| O] 4s
oedode § Ldf W L
€zlizzl 1zl 0zLi6hL (8bL|ZbL |9k 6Ll ¥il et bl biL]obl| 6L | 8L | L | 9L |SL|#L (€L |zl 1L | oL
grioct YATHHYOKXKXD-NID G102 _mQEMw mw v_: 100z “1equisjdes 7 . -
FOvd ANN AFY-LNIANND0J 3lva Lia3 FLvA JLYNIDIHIO \k

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257147

ATI Ex. 2107

IPR2023-

00922

Page 13 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 14 of 48
{2 !

A
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buifers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257148

ATI Ex. 2107
IPR2023-00922
Page 14 of 260

»er @ 96 19100 UO 310N WBUAdOD 30UBIBISY [BHUSPYUOD [LY @ wnsoa 65712

ATOWOW UOTISTLIJSUT 0} JO MIIA §,JD) oY, i/ mSp[

0 9p00 Sd

) 0 8poD SA
apoo auj} Bunoaxs
HEIS 0] 318UM SMOUY|
1sousnbes os syoolg

-gng sjeudoidde \/ g 9pod Sd
0} s95S8IpPE

MBS 8PO0 SOWM 4D g 2P0 SA

Y ®p00 Sd

Y 9p0D SA

" ovoopaels
9 SuWi|-[ey

Bury s|buis - L IAON

Assen "y uyor
LO0Z/PL/LL ‘porepdn

5601

‘9p0o0 ay} Bupnosxs
1S 0} 2I8UMm SMOUY
1sousnbeg 0s s)4o0lg

-gng ajeudoldde
0} 895S2IppE
1EJS 8P00 SBM gD

. ~33vE YIAVHS XILH3A

GEPHICE VEOC AT

T

J 8pod 8d

g 8p0d sd

V¥ 8p00 Sd

J8p03J SA

g 8poD SA

" epoo pereus
% Wi |-{eay]
Bury 1end - 0 IAON

V¥ 8p03 SA

S L

Aiowsy uononasu| Jo SMaiA S,d0D 00y

3svd MIAYHS 13XId

3SVE HIAVHS XILYIA

TVIMHLVIN d4dd0 JALLOHLOYUd

LT TV
sy oGl YATH-XXXXXO-NIO PSl0Z tequiRdeg ¢ L00Z ‘1equisidss 17 . -
ELL WAN "AZH-LNIWND0A 31va 1id3 31vd JLVYNIOIHO k

AMD1044_0257149

ATI Ex. 2107

IPR2023-

00922

Page 15 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 16 of 48

A b MY A

4. Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 bits. The memory thus holds
128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 32 lines
(each line addresses 1 texture state lines in the real memory). The CP write granularity is 1 texture state lines (or 192
bits). The driver sends 512 bits but the CP ignores the top 320 bits. It thus takes 6 clocks to write the texture state.
Real time requires 32 lines in the physical memory (this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a stale-change _in the control flow constants. Its size is 320*32 because it must
hold 8 copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants

The control flow constanis are register mapped, thus the CP writes fo the according register to sel the constant, the
50 decodes the address and writes to the block pointed by its current base pointer (CF WR_BASE). On the read
side, one level of indirection is used. A register (SQ CONTEXT MISC.CF RD BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5:25.3 Management of the re-mapping tables

5215 3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

P ,‘ = ‘[Formatted: Bullets and Numbering

- ,{ Formatted: Bullets and Numbering

AMD1044_0257150

ATI Ex. 2107
IPR2023-00922
Page 16 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 17 of 48
A

Py
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5-2-25.3.2 Proposal for R400LE constant management ﬂ T

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure-8:-De-allocation-mechanismFigure-8:-De
allocation-mechaniem). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

:‘{ Formatted: Bullets and Numbering

AMD1044_0257151

ATI Ex. 2107
IPR2023-00922
Page 17 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 18 of 48
fmeole TYOMYY A

Free List
Free
Address

Free_ptr—»

Current/Last

Renaming Table
Context 0=> N

Context N
(8 rows of 16- 8 e e .
1!;; pm{s_ical => gt cocksy Logical Address
entries copy o
in eight clooks) | Context 1 & Context
[]
@
@
i Context N 3 Physical
|
Address
cdlese |
used nex
Address
to Ailocats
Global Register
Data Bus Staging Data
Constants Buffer Physical
focation < Memory
available
WRTR Staging Write Addr
[—r—>
physical Dealloc
address COUAMS next
to physical
schedule address
for ready N
de-alioc } for allocate
] |
Logical address | i C Se? :
Onthe — p~ - onstan
GlbRegBus A L3 & Request
when Ish are zero This .
first word of write . Reset Context
Renaming Table Dirty Dirt |
for 1 Context or ery ! |
Cumentiast || P L | Context &
Physical ddgress Adgress kf [Logcal |
Address (Only (if set Address
Loi;ei;al de- don't }
Address allocate allocate
ifset) | or de-
] allocate) | Renaming
table
N-Contexts

Exchibit docRAD0_:

behind Set State load - 16 clocks)
all other Set States just write one

Copy Last held above to
Current Context on receipt
of Set Constant for a

new context (Hide loading —_—¥

entry to current state.

Figure 8: Constant management

71260 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257152

ATI Ex. 2107
IPR2023-00922
Page 18 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 19 of 48
BA DA
SQ_STATE#
ADDR
DEALOC
TALUE | e——WRITE_ENABLE
Free List le CNT VALUE COUNTERS - }
|
| PREVIOUS
e— NOT STATE
‘ NEW
! STATE
VALUE
!
— =
VALID
e
OR
fe———SQ IDLE
AND e——PA_IDLE
e CP_NEW_STATE_CNTL—
REqr\‘AﬁgféNG e———SET CTXBITS

Figure 9: De-allocation hanism for R460LE

L= Formatted: Bullets and Numberin

523533 Dirty bits ;zf — e)
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

52453 4 Free List Block T C:“"“a“‘””"e'sa"d N”“‘"e”"g -

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © » |

AMD1044_0257153

ATI Ex. 2107
IPR2023-00922
Page 19 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 20154 20 0of 48

A b MY A

l 525535 De-allocate Block T

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

i 5-2-65.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.35.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

I Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

s

e ‘f Formatted: Bullets and Numbering }:

‘, i { Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

AMD1044_0257154

ATI Ex. 2107
IPR2023-00922
Page 20 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 21 of 48

EeTatate]

Y]
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2X /I Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5455 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers aliocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.55.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 10: The instruction store

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

‘_,l , /“‘[Formatted: Bullets and Numbering

| i /{ Formatted: Bullets and Numbering }:

AMD1044_0257155

ATI Ex. 2107
IPR2023-00922
Page 21 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 22 of 48

6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.
We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

Examples of control flow programs are located in the R400 programming guide document.
The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.
The control program for a given clause is executed to completion before moving to another clause, (with the

exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven-nine basic instructions:

Execute
Conditionai_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call

Return

Loop_start

Loop_end

Epd-oi-clause
Gonditiopal-End-of-clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.

Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.

Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257156

ATI Ex. 2107
IPR2023-00922
Page 22 of 260

EDIT DATE

ORIGINATE DATE
24 September, 2001 4 September, 20154
b TN A

DOCUMENT-REV. NUM. PAGE
GEN-CXXXXX-REVA 23 of 48

B
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
el LB TRT mrlee e oo P

Cordition |-End-of clause-rmatks-the-end clause-ifthe dition-i £
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cnti_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cieared (0).

Execute
47 46... 42 414124 40 ... 24 23...12 11...0
Addressing | 00001 LastRESERVE RESERVED Instruction Exec Address
B count

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause,

NOP
a7 46 .. 42 41440 40 .0
Addressing | 00010 | LastRESERVE RESERVED
D

This is a regular NOP__If Last is set, this is the last instruction of the clause,

Conditional_Execute

47 46 ... 42 41 40 ... 33 32 31..24 23..12 11..0
Addressing | 00011 | RESERVEDR | Boolean Condition | RESERVED | Instruction count | Exec Address
Last address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)_!f Last is sel then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction,

Conditional_Execute_Predicates

47 46 ... 42 | 41 40 ... 35 34 ...33 32 31...24 23...12 11...0
35
Addressing 00100 | Last | RESERVED | Predicate | Condition | RESERVED | Instruction | Exec Address
RES vector count
ERV
ER

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid._If Last is
set, then if the condition is met, this is the last group of instructions 1o be executed in the clause. If the condition is not
met, we go on o the next control flow instruction.

71269 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

Exhibit 2024 docRA00=;

AMD1044_0257157

ATI Ex. 2107
IPR2023-00922
Page 23 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 24 of 48
dn ST A
Loop_Start
47 46 ... 42 41...17 16...12 11..0
00101 RESERVED loop ID Jump address
Addressing

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 ... 42 41..17 16 ... 12 11...0
00110 RESERVED loop ID start address
Addressing

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 46 ... 42 41...35 34..33 32 31..12 11...0
00111 RESERVED | Predicate | Condition RESERVED Jump address
Addressing vector

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return

47 46 ... 42 41...0

01000 RESERVED

Addressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47 46 ... 42 41 40 ... 33 32 31 30...12 11..0
01001 RESERVED | Boolean Condition FW only RESERVED Jump address
Addressing address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the APIL.

g d Hnization-in-the-o £ y hort-shaders by Fas L flowinstructi % O 2 icl BOEe
and-dh res. b i iy ol iz bygn ol ree 1 ol A pibirn e e ey dimen o f dbve
e ¥ - 7 EH 7 b 7 FHF H et
MMarks. th of.a-cl

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257158

ATI Ex. 2107

IPR2023-00922
Page 24 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 25 of 48

A SOOA

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# —~ SETEO
PRED_SETE1_# — SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interieave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing

Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit8

0 0 ‘absolute register’
0 1 ‘relative register’
1 0 ‘previous vector'
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.
We loop until loop_iterator = loop_count. Loop_step is a signed vaiue [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257159

ATI Ex. 2107
IPR2023-00922
Page 25 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 20154 26 0f 48

A s MIONTIA

| 6.6 Predicated Instruction support for Texture clauses

For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6.7.2 Method 2: Exporting the values in the GPRs (12)

The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal

2) Debug Kill

3) Debug Addr + Count
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug

vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

[Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257160

ATI Ex. 2107
IPR2023-00922
Page 26 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 27 of 48
A iaTalals V]

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch

requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and

PIXEL_REG_SIZE for pixels.

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257161

ATI Ex. 2107
IPR2023-00922
Page 27 of 260

ORIGINATE DATE EDIT DATE PAGE

R400 Sequencer Specification

24 September, 2001 4 September, 20154 28 of 48

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to O and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to O and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2024 docRAGO- y 7269 Byes*** @ ATl Confidential. Reference Copyright Notice on Cover Page @ »

AMD1044_0257162

ATI Ex. 2107
IPR2023-00922
Page 28 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 29 of 48

i MOV A

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFQOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. 1J Format

The I information sent by the PA is of this format on a per quad basis:

We have a vector of IJ's (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

A0 =I(H-1(0)
AOLT =J()-J(0)
AO2f =1(2)-1(0) PO P1
AO2J = J(2)-J(0)
AO3T =1(3)-1(0)
A03J =J(3)-J(0) P2 P3

PO=C+I(0)*(A-C)+J(0)*(B-C)

Pl=P0+A01I*(4A-C)+A0LJ *(B-C)
P2 =P0+A02I *(A~C)+A02J *(B-C)
P3=P0+A03I*(A~C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257163

ATI Ex. 2107
IPR2023-00922
Page 29 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 30 0f 48

A b MY A

} Adds: 8

FORMAT OF PU's IJ : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the 1Js (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A= B and B =C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
elseif (I=0)or (J =0)) and
((J =0)or (1-I-J =0)) and
((1-3-1=0)or (1=0)) {
if(1 1= 0) {
PO =A;
}else if(d 1= 0) {
PO =B;
}else {
PO=C;

/frest of the quad interpolated normally

}

else

{
}

normal interpolation

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415]]161718192021222324252627282930313233343536373839
40414243444546471|48495051525354555657 585960616263

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(/4567202122233637383952535455(/89101124252627
404142435657 5859|1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

[Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257164

ATI Ex. 2107
IPR2023-00922
Page 30 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 31 0f 48
B b T A

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure-12Figure-12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sgmm using the R300 process. The gate count estimate is shown in Figure 11FEigure-14Figure-14.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 116312 60.57813 u” per bit
Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712 per converter
Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 11:Area Estimate for VGT to

Shader Interface

doGRADG_ ¥ 71269 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

Exhibit

AMD1044_0257165

ATI Ex. 2107
IPR2023-00922
Page 31 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20154 32 of 48
#

e MOYYTDA

=

VGT BLOCK
(IN PA)

VECTOR ENGINE

VECTOR ENGINE

Figure 12:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER | ADDRESS \
4 bits | 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the verlex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17"‘) is going 1o have the address 00000001000, the 18" 00010001 000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257166

ATI Ex. 2107
IPR2023-00922
Page 32 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 33 of 48

18. Vertex position exporting

On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration

Here are the rules for co-issuing exporting ALU clauses.
1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?7}

20. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading

0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index

44:47 - Empty

48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode

61 - Empty

62 - position

63 - sprite size export that goes with position export

(point_h,point_w,edgeflag,misc)

20.2 Pixel Shading

- Color for buffer O (primary)
- Color for buffer 1
- Color for buffer 2
- Color for buffer 3

7 - Empty
- Buffer 0 Color/Fog (primary)
- Buffer 1 Color/Fog

10 - Buffer 2 Color/Fog

11 - Buffer 3 Color/Fog

12:15 - Empty

16:31 - Empty (Reserved?)

32:43 - 12 exports for multipass pixel shaders.

OQOObWN-Q

44:47 - Empty
48:59 - 12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61.62 - Empty
63 - Z for primary buffer (Z exported to ‘alpha’ component)
Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257167

ATI Ex. 2107
IPR2023-00922
Page 33 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 34 0f 48

s MY A

21. Special Interpolation modes

21.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are inthe in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information

When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_l0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_lO disable, snd_xy disable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy disable, gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, no gen_st — 10 = No modification

Param_Gen_|0 disable, snd_xy enable, gen_st — 10 = No modification

Param_Gen_|0 enable, snd_xy disable, no gen_st -~ 10 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st - 10 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, s, t

21.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2™ pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_l0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1 register (RO.x).

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257168

ATI Ex. 2107
IPR2023-00922
Page 34 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXAXX-REVA 35 0f 48
I A
STG 0
AUTO INTERPOLATORS
COUNT
STG1 i

¥
‘
AUTO COUNT | 000000 |

[] The Auto Count Value is

\ MUX broadcast to all GPRs. ltis
loaded into a register wich has

its LSBs hardwired to the
GPR number (0 thru 63). Then

if GEN_INDEX is high, the

mux selects the auto-count
value and it is loaded into the

GPRs to be either used to
retrieve data using the TP or
GPRO ‘ sent to the SX for the RB to
|
|
i
i
!

use it to write the data to
memory
|

Figure 13: GPR input mux Control

22. State management

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the |J data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257169

ATI Ex. 2107
IPR2023-00922
Page 35 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE R400 Sequencer Specification PAGE
4 September, 20154 36 of 48
¥} N YT A

24. Reqisters

24.1 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY

INST_STORE_ALLOC
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

2472 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE

VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO VERT

Dynamic allocation (pixel/vertex) of the register file on or off.

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

policy of the arbitration between vertexes and pixels

interleaved, separate

start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)

start point for the pixel shader instruction store

debug state register. Only allows one program at a time into the GPRs

debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)

256*4 ALU constants + 32*6 texture states? (physically mapped)

This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from O to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader in the instruction store

base pointer for the vertex shader in the instruction store

size of the vertex shader (# of instructions in control program/2)

size of the pixel shader (# of instructions in control program/2)

size of the pixel shader (entl+instructions)

size of the vertex shader (cntl+instructions)

number of GPRs to allocate for pixel shader programs

number of GPRs to allocate for vertex shader programs

One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

0O vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive

PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MASK
VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

PARAM_GEN_IO

Exhibit

docRADD:

71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

64 bits: for which parameters (and channels (xyzw)) do we do the ¢yl wrapping
(O=linear, 1=cylindrical).

Oxxxx : Normal mode

Ixxxx : Multipass mode

If normal, bbbz where bbb is how many colors (0-4) and z is export z or not

If multipass 1-12 exports for color.

which of the last 6 ALU clauses is exporting (multipass only)

0: position (1 vector), 1: position (2 vectors), 3:multipass

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR

of exported vectors to memory per clause in multipass mode (per clause)

Do we overwrite or not the parameter 0 with XY data and generated T and S values

AMD1044_0257170

ATI Ex. 2107
IPR2023-00922
Page 36 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 37 of 48
| ¥ A
GEN_INDEX Auto generates an address from O to XX, Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 2586 boolean bits

CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

DB_CLAUSE

_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

DB_CLAUSE

_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
25.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory

DB_TSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

26.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

26.1.1 SCto SQ . IJ Control bus

This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257171

ATI Ex. 2107
IPR2023-00922
Page 37 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 eptember, 20154 38 of 48
1 ¥ I A

Name Direction Bits | Description

SC_SQ_g_wr_mask 8C—-8Q 4 Quad Write mask left to right

SC_8Q_lod_correct SC—-8Q 24 LOD correction per quad (6 bits per quad)

8C_8Q_param_ptr0 SC—-8Q 1 P Store pointer for vertex 0

SC_8Q_param_ptr1 SC—-8Q 11 P Store pointer for vertex 1

SC_8Q_param_ptr2 SC—-8Q 11 P Store pointer for vertex 2

SC_SQ_end_of vect SC—-8Q 1 End of the vector

SC_8Q_store_dealloc SC—-8Q 1 Deallocation token for the P Store

SC_8Q_state SC—-8Q 3 State/constant pointer

8C_8Q_valid_pixel SC—-8Q 16 Valid bits for all pixels

SC_8Q_null_prim SC-38Q 1 Null Primitive (for PC deallocation purposes)

SC_8Q_end_of prim SC-8Q 1 End Of the primitive

SC_8Q_send_xy SC—-8Q 1 Sending XY information [XY information is going to be
sent on the next clock]

SC_SQ_prim_type 8C—-8Q 3 Real fime command need to load tex cords from
alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC—-8Q 1 This primitive comes from a new veclor of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_S8SQ_RTRn SQ—-8C 1 Stalls the PA in n clocks

SC_SQ_RTS SC—-8Q 1 SC ready to send data

26.1.2 8Q to SP: Interpolator bus

Name Direction Bits | Description

SQ_SPx_interp_prim_type SQ—-SPx 3 Type of the primitive
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_ijline SQ--8Px 2 Line in the 1J/XY buffer to use to interpolate

SQ_SPx_interp_buff_swap SQ—-SPx 1 Swap the IJ/XY buffers at the end of the interpolation

SQ_SPx_interp_gen_l0 SQ—-SPx 1 Generate 10 or not. This tells the interpolators not to
use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

26.1.3 SQ to SX: Interpolator bus

Name Direction Bits | Description

SQ_SPx_interp_flat_vix SQ—-SPx 2 Provoking vertex for flat shading

SQ_8Px_interp_flat_gouraud | SQ--»SPx 1 Flat or gouraud shading

SQ_SPx_interp_cyl_wrap SQ->8Px 4 Wich channel needs to be cylindrical wrapped

SQ_8Xx_muxD SQ--8SXx 11 Parameter Cache Pointer

SQ_SXx_muxi SG--8Xx 11 Parameter Cache Pointer

SQ SXx mux2 S5Q--8XX 11 Parameter Cache Pointer

SQ_8Xx RT switch SQ-8Xx 1 Selects between RT and Normal data

& ’l.AQ“ o SR ParameterCache-Read-contr L
by foull nin‘nqyfa <3 D, ,D Y It ‘.‘ Y) RONIZ L rey
Exhibit 2024 docRAGO- 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

- ‘[Formatted: Bullets and Numbering

AMD1044_0257172

ATI Ex. 2107
IPR2023-00922
Page 38 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 39 of 48

i b MO

. - -1 Formatted: Bullets and Numberin :
26-1-626.1.4 8Q fo SP: 8taging Register Data “1 { e)
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits | Description

SQ_SPx_vat_vsisr_data SQ—-8Px 96 Pointers of indexes or HOS surface information
SQ_S8Px_vgt_vsisr_double SQ--SPx 1 Q: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ—-SPO 1 Data is valid

SQ_SP1_data_valid SQ-»>SP1 1 Data is valid

SQ_SP2_data_valid SQ—-8P2 1 Data is valid

SQ_SP3_data_valid SQ—-S8P3 1 Data is valid

26172615 PA to SQ : Vertex interface +|-~ (Formatted: Buts and Numbering___)

26-1-7126.1.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name Bits Description

PA_SQ_vgt _vsisr_data 96 Painters of indexes or HOS surface information

PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert

PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of vector" is set on the second vector)

PA_SQ_vgt_vsisr_valid 1 Vsisr data is valid

PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“PA_SQ_vgt _end_of vector” is high.

PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

26-17:226.1.5.2 Interface Diagrams «|- - { Formatted: Bulkts and Numbering

Exhibit 2024.docR400_ y nizse Byest** ® ATI Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257173

ATI Ex. 2107
IPR2023-00922
Page 39 of 260

»er @ 964 19700 UO 301ION WBUAdOD 30UBIDIBY [EHUBPYUOD [LY @ e 65712

MIONINOIS
HIAYHS

i SRR A A R

1848 LEES
0 ad = T 9bA ¥a 68 % > o3 Z usd >
¥
T
am ————— O3Y | £ e OJY [QHw ““““““
7 QuEs pues 364 D5 wd 2 aNds e
< Alawd sy
19A

i < <@ <
il - s awis | o [g Toesaeae ba e wr | oo [7 THS BIVLS

EEEERE] —
- anis <.) <
h ¥ X 1oL om0 o | O3 [A Zoaoen 30 pus aba 0% wa | D0 [7 ¥OLOEA IO (NE
< s o <
el e Tnod weten | 0o [n STamop Teten aba o wa | oo [7 TTLNOT MEISA
< i i -
I i T wiud dsrea] oo [e Trtp dsTen A oo owa | oY [NIl HOTCL

AT v
.
8 o Oy ¥GL0Z Tequisides 100z ‘lequiaydes #Z . .
39vd uonyeoyads Jeousnbes Oory 31va La3 31va ILYNIOINO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257174

ATI Ex. 2107
IPR2023-00922

Page 40 of 260

»er @ 96 19100 UO 310N WBUAdOD 30UBIBISY [BHUSPYUOD [LY @ wnsoa 65712 0014509 207 T

"BOB[ISIU| IPA DS Vd 10} WEIBEI(] [Bo1bo] pajeiad } ainbig

NOISSIWSNYdL SdOLS dHANES
NOISSIWSNYAL SLUVLS-Hd JEATHDHY

3

v

NOISSIWSNYAL SdOLS HHAIHDHA

Hd OATA

XLAWE OAId

IND OAId

10O YIVA OAId

¥ YIVa
v ANES

¢ YIVd
¢ aNds

Z YIva
Z aNgs

SI¥ IDA

Z 41d s

T 414 08

0 d1d 08

MIM 08

8y o Iy
ELL

YATH-XXXXXO-NIO
WAN AFH-LNIWND0A

COT0™ LA

¥&10z 1equisides ¥ 100z “1equisjdes 7 . .
31va uad EZETNN 1] k

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257175

ATI Ex. 2107
IPR2023-00922
Page 41 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 | 4 September, 20154 42 0f 48 ..
{2 T A | . : 2 =
i ‘[Formatted: Bullets and Numbering J
26-1-826.1.6 SQ to CP: State report - e
Name Direction Bits | Description - o ‘
SQ_CP_vrtx_ state SEQ-CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ-CP 3 Oldest pixel state still in the pipe s :
K *{Formatted: Bullets and Numbering
26-1-926.1.7 SQ to SX: Control bus M S
Name Direction Bits | Description
SQ_SXx_exp_Pixel SQ—->SXx 1 1: Pixel
0: Vertex
SQ_S8Xx_exp_start SQ—>SXx 1 Raised fo indicate that the SQ is starting an exporting
clause
SQ_SXx_exp_Clause SQ—->8Xx 3 Clause number, which is needed for vertex clauses
f SQ_SXx_exp_State SQ—-8Xx 3 State ID-which-ig-needed-forvert &
|| 5Q_SXx_exp VDest SQ--8Xx 5] Export Destination
[SO SXx_exp_exportlD SQ--8Xx 1 ALUID
These fields are sent synchronously with SP export data, described in SPO0—SX0 interface
Hes) = 34 renthe B i XY S & SR
¥ e 7 T & - S -
26-1-1026.1.8 SX to SQ : Output file control - -~ { Formatted: Buliets and umbering
Name Direction Bits | Description .
SXx_SQ_Export_count_rdy SXx—-8Q 1 Raised by SXO to indicate that the following fwo fields
reflect the result of the most recent export
SXx_SQ_Export_Position SXx—>8Q 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx—8Q 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Y . = -| Formatted: Bullets and Numbering
26112619 SQ to TP: Control bus T
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits | Description
TPx_SQ_data_rdy TPx— SQ 1 Data ready
TPx_SQ_clause_num TPx— SQ 3 Clause number
TPx_SQ_Type TPx— SQ 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_const SQ-TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ--»TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end of clause SQ-TPx 1 Last instruction of the clause
SQ_TPx_Type SQ--»TPx 1 Type of data sent (Q:PIXEL, 1:.VERTEX)
SQ_TPx_phase SQ—-TPx 2 Write phase signal
SQ_TPO_lod_correct SQ--TPO 6 LOD correct 3 bits per comp 2 compenents per quad
SQ_TPO_pmask SQ—-TPO 4 Pixel mask 1 bit per pixel
SQ_TP1_led_correct SQ—-TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ-->TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ-TP2 6 LOD cotrect 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ-TP2 4 Pixel mask 1 bit per pixel

[Exhibit 2024.docRA400_ y e yest** ® ATI Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257176

ATI Ex. 2107
IPR2023-00922
Page 42 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE

4 September, 20154

PAGE
43 of 48

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

B DT A
SQ_TP3 led_correct SQ->TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ—-TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ--TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 | Index into Register file for write of returned Fetch Data

26-1-1226.1.10 TP fo SQ: Texture stall

The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SQ_SP_fetoh_Stall

SQ_SP_wr_addr

e SuUo F v
1 S L
| 1
51973
suU3 ‘
|
i
[Name [Direction [Bits | Description
I TP_SQ_fetch_stall TP 8Q 1] De not send more texture request if asserted

[Name | Direction [Bits | Description
| SQ_SPx_fetch_stall | SQ-SPx K | Do not send more texture request if asserted
26-1-1426.1.12 5Q to SP: GPR, Parameter cache control and auto counter T

Name Direction Bits | Description

SQ_SPx_wr_addr SQ—SPx 7 Write address

SQ_S8Px_gpr_rd_addr SQ--8Px 7 Read address

SQ_SPx_gpr_re_addr SQ—-SPx 1 Read Enable

SQ_SPx_gpr_we_addr SQ--»8Px 1 Write Enable for the GPRs

SQ_SPx_gpr_phase_mux SQ—-8Px 2 The phase mux (arbitrates between inputs, ALU SRC
reads and writes)

SQ_SPx_channel_mask SQ—SPx 4 The channel mask

SQ_SPO_pixel_mask SQ--»8P0 4 The pixel mask

SQ_SP1_pixel_mask SQ—-8P1 4 The pixel mask

SQ_SP2_pixel mask 5Q-»8P2 4 The pixel mask

SQ_SP3_pixel_mask SQ—-SP3 4 The pixel mask

SQ_SPx_pc_we_addr SQ—-5Px 1 Write Enable for the parameter caches

SQ_SPx_gpr_input_mux SQ—-8Px 2 When the phase mux selects the inputs this tells from
which source to read from: Interpolated data, VTXQ,
VTX1, autogen counter.

SQ_8Px_index_count SQ--»5Px 12?7 | Index count, common for all shader pipes

Exhibit

doeRADD:

71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

. = 5“{ Formatted: Bullets and Numbering J

‘ Formatted: Bullets and Numbering

S -{ Formatted: Bullets and Numbering

AMD1044_0257177

ATI Ex. 2107
IPR2023-00922
Page 43 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 20154 44 0f 48 = S 2 e
N l” A0004 — .7 Formatted: Bullets and Numbering B
[26-1-4526.1.13 SQ to SPx: Instructions < {Formatted oot nd turberng)
Name Direction Bits | Description
SQ_SPx_instruct_start SQ—->SPx 1 Instruction start
SQ_SP_instruct SQ—->SPx 21 Transferred over 4 cycles
0: SRC A Select 2:0
| SRC A Argument Modifier -3:3
SRC A swizzle 114
Unuse VectorDst
201712
Unused 20:18
1: SRC B Select 2:0
| SRC B Argument Modifier —3:3
SRC B swizzle 11:4
ScalarDst 17:12
Unused 2018 Llpused
20:42
2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12
3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 11:11
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
SQ_SPx_stall SQ--SPx 1 Stall signal
SQ_SPx_export_count SQ—-5Px 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ—SPx 1 Asserted on the first shader count of the last export
of the clause
SQ_SP0_export_pvalid SQ—-SPO 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_export_wvalid SQ—-SPO 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid 5Q—-5P1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid SQ—-SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ—-»SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

SQ_SP2_ export_wvalid SQ—-SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257178

ATI Ex. 2107
IPR2023-00922
Page 44 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXOO-REVA 45 of 48
i) dn DOWND AL
SQ_SP3_ export_pvalid SQ—-SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP3_ export_wvalid SQ—SP3 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors Comaamn e .
. . R == Formatted: Bullets and Numberin -
26-1-1626.1.14 SP to SQ: Constant address load/ Predicate Set 1 L“* . e J
Name Direction Bits | Description
SP0O_SQ_const_addr SP0O-3Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP0_SQ_valid SP0-5Q 1 Data valid
SP1_SQ_const_addr SP1-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP1_SQ_valid SP1-8Q 1 Data valid
SP2_SQ_const_addr SP2-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_SQ_valid SP2--8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_8Q_valid SP3-8Q 1 Data valid

f{ Formatted: Bullets and Numbering

26-1-1726.1.15 8Q to SPx: constant broadcast

[Name [Direction [Bits | Description [
| SQ_SPx_constant | SQ-SPx | 128 | Constant broadcast Fs = -
2611826.1.16 SPO to SQ: Kill vector load |£~_« Formatted: Bullts and lumberng)
Name Direction Bits | Description S Soinman :
SPO_SQ_kill_vect SP0-SQ 4 Kill vector load
SP1_SQ_kill_vect SP1-8Q 4 Kill vector load
SP2_SQ_kill_vect SP2--8Q 4 Kill vector load
SP3_SQ_Kkill_vect SP3-8Q 4 Kill vector load el = E :
. . ; . ’{ Formatted: Bullets and Numbering }
261-1926.1.17 SQ to CP: RBBM bus s s
Name Direction Bits | Description
SQ_RBB_rs SQ--CP 1 Read Strobe
SQ_RBB_rd SQ-CP 32 Read Data
SQ_RBBM_nrirtr SQ-CP 1 Optional
SQ_RBBM_rir $Q--CP 1 Real-Time (Optional) Shaa R
EE /if{ Formatted: Bullets and Numbering
26-1-2026.1.18 CP fo SQ: RBBM bus * [e
Name Direction Bits | Description f
rbbm_we CP-»8Q 1 Write Enable
rbbm_a CP—-8Q 15 Address -~ Upper Extent is TBD (16:2)
rbbm_wd CP-8Q 32 Data
rbbm_be CP—SQ 4 Byte Enables
rbbm_re CP—-8Q 1 Read Enable
rbb_rs0O CP—-5Q 1 Read Return Strobe 0
rbb_rs1 CP—-S8Q 1 Read Return Strobe 1
rbb_rd0 CP--8Q 32 Read Data 0
rbb_rd1 CP—-8Q 32 Read Data O
RBBM_SQ_soft_reset CP—SQ 1 Soft Reset
Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257179

ATI Ex. 2107
IPR2023-00922
Page 45 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE

4 September, 20154

A PICY.Y

A

R400 Sequencer Specification

PAGE
46 of 48

| 27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Veriices

1.

10.

1

-

PA sends a vector of 64 vertices (actually vertex indices ~ 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO

state pointer as well as tag into position cache is sent along with vertices

space was allocated in the position cache for transformed position before the vector was sent
also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
The vertex program is assumed to be loaded when we receive the vertex vector.

at this point the vector is removed from the Vertex FIFO

the SEQ then accesses the IS base for this shader using the local state pointer (provided to all

sequencers by the RBBM when the CP is done loading the program)
SEQ arbitrates between the Pixel FIFO and the Vertex FIFO - basically the Vertex FIFO always has priority

the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as
nothing else to do (ie no pixels are in the pixel fifo).

SEQ allocates space in the SP register file for index data plus GPRs used by the program
the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer that came down with the vertices
SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)

the 64 vertex indices are sent to the 64 register files over 4 cycles

the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

RFO of 8UQ, SU1, SU2, and SU3 is written the first cycle

RF1 of SUQ, SU1, SU2, and SU3 is written the second cycle

RF2 of S8UQ, SU1, SU2, and SU3 is written the third cycle

RF3 of SUQ, SU1, SU2, and SU3 is written the fourth cycle

SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of

fetch state machine 0, or TSMO FIFO)

the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received

once the TU has written all the data to the register files, it increments a counter that is associated with ASMO
FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU

clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

all instructions of ALU clause O are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

Exhibit

. the control packet continues to travel down the path of reservation stations until all clauses have been executed

position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is
shared with all four shader pipes) back to the PA's position cache
A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is
going to be in the parameter cache.
there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

doGRADG y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257180

ATI Ex. 2107
IPR2023-00922
Page 46 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 47 of 48

foYatata ¥

&
« the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
¢« parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

e parameter data is sent to the Parameter Cache over a dedicated bus

e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no
longer a need for the parameters (it is told by the PA when using a token).

e the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer
if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP
e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE's Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
¢ the state pointer and the LOD correction bits are also placed in the Pixel FIFO
¢ the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO - when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
¢ the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer
¢ SEQ will not allow interpolated data to be sent to the shader until space in the register file has been aliocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
¢ note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
¢ the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
e TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)

¢ TSMO does not wait for fetch requests made to the Feich Unit to complete; it passes the register file write
index for the fetch data to the TU, which will write the data to the RF as it is received

¢ once the TU has written all the data for a particular clause to the register files, it increments a counter that is
associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
¢ pixel data is exported in the last ALU clause (clause 7)
e tis sent to an output FIFO where it will be picked up by the render backend
¢ the ASM arbiter will prevent a packet from starting on ASM?7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Exhibit 2024 docRAGO- ¥ 71269 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257181

ATI Ex. 2107
IPR2023-00922
Page 47 of 260

ORIGINATE DATE
l 24 September, 2001

EDIT DATE

4 September, 20154

A PICYLY

4

R400 Sequencer Specification

PAGE
48 of 48

| 27.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real

threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS

static).
Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

Exhibit 2024 docRAGO- y 71269 Byres*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257182

ATI Ex. 2107
IPR2023-00922
Page 48 of 260

pei l WIRIRIHNATE WUATE EL/hE WATE LIAOVUNIEIN - V. INUIVL AU

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 1 of 50
B4 i 374 A
Author: Laurent Lefebvre
Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.98

QOverview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS!

Document Location: Cperforce\rd00\doc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
‘ . e - APPROVALS S :
- Name/Pept L ~ Signature/Date
Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATl Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

Exhibit 2025 docR400-Sequencerdoe 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page @ #+ |
ATI 2025

LG v. ATI
IPR2015-00325

AMD1044_0257183

ATI Ex. 2107
IPR2023-00922
Page 49 of 260

= URIOINATE UATE s DATE R400 Sequencer Specification FARLE
' [m 24 September, 2001 4 September, 201518 l 2 of 50 f
Table Of Contents
1. OV ERVIEW ...iiceuireeuiirinesrenesssssessnsssssmssssssnsessssssssssssssssnsssssssssssssssssssssssnsssssssssssnsssssssssssssssss 86
1.1 T oD Lavel BlOCK DA o e e ettt ettt e e ranaaeaas 108
1.2 Data FloW aramn (S P ettt eiit et irieieans 1240
L3 ONII Ol G BN ettt ettt ettt eeerereeietttiteeetieiereentiireeiiiiteeiiieeiies 1344
2. N T E R P O L AT ED DA T A B S ... iteiitemmicesmnssssmssssssnssmssossss s s oo s s msmosss asonssmmssssasssssmssssesnn 1344
3. INSTRUCTION ST ORE L. u v rrrsssssonnssussssnsrns s ssss o stxss ssss st s s 8L Le s aasssanes ssssaass txees 1644
4, SEQUENCER INSTRUCTIONSooiiiiieensensinnenzononneeriessennssssesnsnnsnsnonssessessessessssssssesnonaes 1816
5, CON S T AN T ST O RE S ..e.euiiiuussreensserrnssnnensssssssssnsnsssssenssssssssssssssssssssssnsnssssnsssssnsssssenssnesnsss 1816
3.1 MemoOry OrQamiZaliON S (oo i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiis 18486
5.2 Management of the Control Flow Constants oo e iee i ceieeeeas 1816
5.3 Managementofthe re-mapping tables 1846
5.3.1 RA00 Constant MaN@GEMENt.t eees e 1816
5.3.2 Proposal for R400LE constant management. ..o 1947
5.3 3 DY OIS ottt 2119
5.3 4 FEE LISt BIOCK. ..ottt ittt etttk eee et et e etk e etk e et e et et e et e et et e et et teeter et et et ett et e ereiteteatees 2149
5.3.5 De-alloCate BIOCK ..ottt ittt ettt etttk skttt et et it et it et et e e et e 2220
5.3.6 Operation of Incremental MO ... oo 2220
54 CONS AN S 0T N O MING oottt et ittt ik e ittt tttesotcere e tireteteteeeteeeeecrrestiieraaras 2220
5.5 Real Time ComMmMaNaS . oo ittt e et ey ettt rree e iiirstet i iireiiaeets i 2324
5.6 Constant WalerTalling . i iiiiiiiiiii.iiiiieiiirsiiiriiireoiiicrieies 2324
6. LOOPING AND BRANCHES..........coiieeiiieeniiieesirenesissesinsssssemesssssnsesssssssssssssssssssesssssssssss 2422
6.1 The controlling Stale. .o iiiiiiiieiiiii...s 2422
6.2 The Control FlOW PrOGr o o ettt ety et eer e eeeeeaeateeeesieseareesennes 2422
6.3 Data dependant predicate INStrUCHONS e iaeaaas 2624
6.4 HW DeteCtion Of PV P S ettt e et e iraiitaiess 2725
6.5 RegiSIer file INUeXING o ot iiiiiiiiiiiiiiiiiiiiiieiiieiiiiiiiis 2725
6.6 Predicated Instruction support for Texture ClausSes ... 2725
6.7 DEbUAGING e SNa OIS . o ettt e tereett e eettirreiieeieess 2825
6.7.1 Method 1: DebUQQING rEGISLEISoov oo, 2825
6.7.2 Method 2: Exporting the values in the GPRS (12) ..o 2826
7. PIXEL KILL INIA S L.ivemneunnnsssessssesnnnsssssssssnnss s ssss oo ssss st s s s LLss 8 d60Lxss Kxxas xeens 2826
8. MULTIPASS VERTEX SHADERS [HOScccuiiueeeriireniereesssrumesssssessessssssssnssssssesssssnsssses 2926
9, REGISTER FILE ALLOCATIONivvceiiiiemsremmnsrsensssnss 2926
10. FETCH ARBITRATION......oucveenssiesmmnssssssrsssssssnsssssnnssssesssssssssssssssssssssssssssssssssssssnssssssssssssss 3028
11. ALU ARBITRATION ...ciieeeecrnmseiesensssnessinrnzsssesssssssessssssssssnssssssssssssssssnssssssssssssssssssssssssnsssss 3028
12. HANDLING ST ALLS ..iiiiiiiiueuiirenesrrnuusmrrnssinnessrsresserssssssssssssssssssssnssessssssssssssssssssssnnsssssnss 3129
13. CONTENT OF THE RESERVATION STATION FIFOS........ccccvmmmessrsrreessmsnesssssnmnssssssssssss 3129
14, THE QUTPUT FILE......coivreuirreesiremssirescesssssssnssnsssssssnssssssssssssssssssssssssnsssssssssssssssnsssssnssssssss 3129
I8, B ORI AT e eeuutieeeuirreeusreenssnrenssssnnsssrssnsssnssssssnsessnsssssssssssssssssssssssssssssssssessssssssnsesssssnsessnn 3129
15.1 Interpolation of constant attribules ... 3230
16. STAGING REGISTERScoeceiiiimuiiireenirmeesserensssinsesstsssssessssssssnsssssssssnsssssssssssssssnsssssssesssnss 3230
17. THE PARANMETER CACHE.......c.ccuiiiiieeiirrnnereessiimneerrressnssssssrsessssnsssssssssesssssssssssssssssssssns 3432
| Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ***
AMD1044_0257184

ATI Ex. 2107
IPR2023-00922
Page 50 of 260

et WIRISHNATE WUATE DL AT LAV UIVIRIN -V, INUIVE FASL
} m , 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 3 of 50
LA

IaTale] Aenpenken

18. VERTEX POSITION EX P ORTINGceuunmiresssmssssssreessnnsssnnnsssssssssmmsnmssnssssnsssssssnnmnnnmssmmsssssss 3532
19, EXPORTING ARBITRATIONoccovessiiseeeerssscimsrsesssessnsnssnnssssssssssssssmsesssssssnssnns ssssssssssssmses 3532
20, B P O R T T PE S ... iiesiiissrsirsssmmmnnnsnnssnsssssssssssssssssnnssnssnnnssssssssisnsssssnssssnssssnssssssssssssssieessssnss 3532
20.1 B S AT N G oot eeeeheeeeeeeeeiisereeesesiisieresiiesesiecisiiiiieiieres 3532
20,2 PIXEL S NI NG oo iieiiiesiiiiriisiesiiisesisiiiirssssieiiiiesiiiiiiiesicss 3533
21. SPECIAL INTERPOLATION MODESoccvvvsmmmssssnsssnnssssssssssssssssssssssmssssnnssnsssssssssssossssssn 3633
21.1 Reeal M COMIM AN S . oottt ittt st isititieitiiresisssieesiiesiiesiiriiireiiieiriees 3633
21.2 Sprites/ XY screen coordinates/ FB information ... 3633
21.3 Auto generated COUNIEIS i iiiiiiiiiiiieiiiietiiireiiiresiiicciiiies 3634
DU 3.1 NVEAEX SNAUEES ..ooooooooo oottt ettt et ennane s e ans 3634
21 .3, PIXEl SIS oo e 3634
22, ST ATE M AN A GENENT oot viiisesssseisssssrsessssesssssnnsssssnsssssssssssssessssssssssssssssssssssssssssssssseessssins 3734
22.1 Parameter cache sSYNChIONIZatON L oottt etee et ireaiiiieiaees 3734
23, KY ADDRESS IV P O R T S .. uuuusssessessessrirssrrrrsrrsssmsnmnsssssssssssssssesssssssssssnssssnssssssssssssssersssnsss 3735
231 N e X INAEXE S M DO I S ottt it iiitiiiiiiisiiesiiiriiiriiiiiiiisas 3735
24, REGISTERSooeessssiiiissssrsssnnnnnssnssssssssssssssssssssnnssnnsnnsnnsssnssssssssssssssssssnnsnssnnsnnsssssssssissssssnss 3835
2] O OMRIOL i iiiiiiiiiiiiiiii..itiieess:ssiiiiiessieiiiirssssiiiitesisieiiisicsciiiiscirsics 3835
2.2 OME X L i iiiiiiiiiiiiiiiiii...ieiresiesescicerssiecs:reissosiressirorssiiircsiciriiiieris 3835
25, DEBUG REGIS T E RS . .o iisiiiiiiimssssssssssnssessssssissssssssmssnnsssssssssssssssssssssssssnnmssssnnssnssssssssssssssssns 3936
25] ON X e eeiiiiiiieeeiieeii.ieiiisesiiiiiriiriiiiiiessessesiiiieiiiies 3938
3 O ONI O ot eiiiieeieiiseei.ieersesiesiserieisisieserssiisssiiiicceiiiiciecies 3938
26. INTERFAQCES.o ooeoeeeeeeeeeeeeeeeeeeeeeeeeeereesmcnneessesessncncssasnnsesneessesnsaesasnrccrnes 3936
261 External INterfaCes. ... 3938
26.1.1 SCtoSQ :1JCONIOIDUS ..o 3937
26.1.2 SQto SP: INterpolator DUS ..ot iereieeans 4037
26.1.3 SQ10 SX: INEIDOIAION DUS ..ot an s 4037
26.1.4 SQto SP:Staging Register Dataoooo oo 4138
26.1.5 PA1toSQ :VerteX interface ..o 4138
26.1.6 SQ10 CP:State r€DOM oo 4444
26.1.7 SQ1t0 SX: CONIOIOUS ..o 4441
26. 1.8 SXtoSQ: QUIPULfIle CONIION .o oo 4444
26.1.9 SQ10 TP CONrOlDUS ..ot 4441
26.1.10 TP t0 SQ: TeXtUre Stall ..o oottt iraens 4542
26.1.11 SQto SP: TeXtUIe SEall. oo 4542
26.1.12 SQ 10 SP: GPR aNd QUIO COUNTET ...\ ses s e 4542
26.1.13 SQ 10 SPX INSUCHONS ..o 4643
26.1.14 SP to SQ: Constant address load/ Predicate Set ... 4744
26.1.15 SQto SPx: constant broadCast ... 4744
26.1.16 SP0to SQ: Kill vector 1080 ..o 4744
26.1.17 SQ 10 CP: RBBM DUS .ottt ettt ettt 4744
26.1.18 CPt0 SQ: RBBIM BUS oottt 4744
27. EXAMPLES OF PROGRAM EXECUTIONSoovveieemrsemeesesnssssssssssssssssssssnsnssssssssnssssssssssss 4845

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »»

AMD1044_0257185

ATI Ex. 2107

IPR2023-00922
Page 51 of 260

FALE
4 of 50

R400 Sequencer Specification

s DATE
4 September, 2015418

B Az

TATALSY; ¥, F-VY°N "3

URIGINATE DALE

24 September, 2001

4845

27.1.1

Sequencer Control of a Vector of VertiCes ..o e

27.1.2

4948
5047
5047

Sequencer Control of a Veclor of PiXelS. ..o iiii i

27.1.3

N O B S oo e e ettt et et et e e areans

28,

RSy =)

ock Disceam

¥

N o Fr\
Contro

ot)
14

o
o 4

=46

el i

%
I3

ez

T

W

Maomory - oroanizatio

of the re-mappina-tables

r=iaals
TS

18

hite

Diirt,

521

1ot Ble
e

18

=

520

A0

a-2llocate

ot

523

ol
£3464

antal
&

ot lnere

Oinarak

10

A a=s

LR~

5.2.4

Indexing

Constant S

-y

L= =ry

T

20

oammancs

o e
H
Cnn

ot A\ atert

AT

Ta)

LA~

24

0
P

iy

T

The-contr

1
T

(nganl

nradicates i

ats danancs

AVA™]

1

S O

LA Miatockion.o

P

v

Tt

Brodicatedd Inetructinn sunnort

Tendure-clauses

i f‘lfht) Qh Aﬂr L rrrrrrrrrrrrrrrrrrrrrrrrrrrsss

o

T

ottt o

iy

et

St

ST

- Dehunoino.reod

Method

671

tore
e

O S IS

25

the GPRs (12)

avalun

snortingg

lethad-2:

% T LA L TRl

o

=

L2

27

27

B A A T e
PR ATION

TRATIOWM

R R R R R R R R R R R R R R R R R

LA 4

LR~ s

I

A4

FEORMAT

SesTaanees
ant attrinutes

Internolation. of o

=

AN A A

24
R

[ee~Y . uulall
LA A4 A T WEEE R

L

71630 Bytest** @ ATl Confidential. Reference Copyright Notice on Cover Page © »»

Sequencer.doc

Exhibit 2025 docR460-

AMD1044_0257186

ATI Ex. 2107
IPR2023-00922

Page 52 of 260

WRROHNATD AT

24 September, 2001

ELJED AT E

4 September, 201518

B4 b VT A B A ek

LAVVUNVIEIN T -V, INUIVL

GEN-CXXXXX-REVA

% R R R R R R R R R E R R R R R R e

W N

W W W

B S LCIEmTol R Lok o e =T Lo N L 35
%H Cin SO L on hie 26
N - LW W W W " 4 LY A W g v g | L N N O O R O Oy ooy o
26-1-2— SQ to-SP-lnterpolatorbus e 36
26-1-3—SQ-to- SP:Parameter Cache-Read-controhbus————rrrrrrrrrrrrrrrerrrrrrrerees 36
’)6 1 4 QO tn SX- Daramaeter Cacrhe Minw control By 27
: =) > aran o Wi RO S o T T T T T T T T T T T T TR T TR T TR TR
D6 1 A5 AR ToN Cobommire riet Mat
" kst S-S ARG -egHS T L N L e L T S
261 PA to-SO-Martexinterface 27
A0t M BB XA CE T T T T T T T T T T TR TR TR T T T T T T T T T T T T T T T T TR T £
%—H SN I PR Sinte rorinrd A4
P St : PO O T =
L Y W ol o Yt T S — 44
26-1-9 SX 10-SQ+ Outputfile-60AtFoh e 44
26 110 S0 t0 TR: Control 44
P W R T i A L I L = £ B |
2@.4_44_ TR in SOy Tawviure ctall 4
- - 1] Wd T Vsl S, % LI AN |] ol ! L I e e i N R R R R R R R R O O O O O e "
26112 SQ10-SP: Texture-stal e 42
’)6 11 1"2 D in G- j») Daramotor roacho contresl amel oidbes o e A0
P e S s A = o1 St EHR S e +
26114 SQ 10-SPxASHUGHORS e 43
76 1 14 SRIn SO Coanstant addrese Inacd A4
= DO ORSEEP-EGAFE 88H0-d0 T T T T TR T T T T T TR T T T TR T T T T T TR IO TR T T TR T T |
26-1-16—SQ to- SPx-constant broadeast e 44
26117 SPO to-SQ: KilVeCtor 080 rrrrrrrrrrrrererrrrerrrrerers e e e 4
26118 SQ 10 CP-RBBM-bUS e 44
26119 CPto SQ- REBM bu 44

271 Sequencer Control-of-a-Vector of Vertices e erer e 44
2:7‘.—172“ guencer-ConptrolofaMestorof RPiels e 48

Exhibit 2025 docR40G—Seduencedoc

71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *»*

AMD1044_0257187

ATI Ex. 2107
IPR2023-00922
Page 53 of 260

= ‘ URIGINATEZ UATE cUH DATE R400 Sequencer Specification [FALE '

24 September, 2001 4 September, 201518 6 of 50
Ao 12 LA BB e eambs
e 7 7Y — 46
o | I L — 47

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © #**

AMD1044_0257188

ATI Ex. 2107
IPR2023-00922
Page 54 of 260

WRISHNATD AT

24 September, 2001

ELJED bATE

4 September, 201548

l i iy {307 Bllon ey

LAVVUIVIEIN T - V. INUIVEL

GEN-CXXXXX-REVA

‘ 7 of 50

Revision Changes: f

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre
Date :

Exhibit 2025 docR480_Sequencerdoc

First draft.

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ—SPO interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—8Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that werent
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement

71630 Bytest** @ ATI Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257189

ATI Ex. 2107
IPR2023-00922
Page 55 of 260

24 September, 2001 4 September, 201518 8 of 50

A by DDA B ey

URIGINATE DATE CUHE DATE R400 Sequencer Specification [FALE l

lmﬂ

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257190

ATI Ex. 2107
IPR2023-00922
Page 56 of 260

+x @ 9bed 190D uo 90130 YBLIAdOD) 90USISIBY [BIJUDSPHUOD | LY @ #++598 0801, sopieouenbes™o0yuS0D G202 T

MITAISA0 100UdNbog [edoudD) 1T 2UnSiy

ATI Ex. 2107
IPR2023-00922

Page 57 of 260

AMD1044_0257191

; 40 pEoT UBSUTD
g9y J g9y = =k > Sk
\ N
i i i i wdav XL
e YAVO SLIRM XL H
g0/0d g40/0d q40/0d =1 80/0d = NN
n I - 2 m INVLIENGO Mww%wmﬁ I dL e
0 e = = SHALNIOG
QvE Od
I
& 2 ot J
o~ 41V1S HO134 =
Mo gs < dS < dS || ds | OISO e[
- LSNIX3L
N - “Shaqy
=T
= = HAAY
o 180
N x N e
. . : if
i - > 3HOLS ISNI |«
* SN = d3LNI = d3LNI L
. ” ey
TOHLNOD 18N)
I) avol
ol .», ol w . 0S 18N
|
HYESSOMO 1 B . 7
pesy 40—
mug.r.no A T LS8N 7 ﬁ
oreh . e SE SOV 2 T0HiNOD TOHINGD ™
selkepUl XSUoA n D
TOHLINGD w|—.Z<._|wzoo paddepy
KILHIA [JgysiBey
S O m - O
TIVLS
A AT YA% RN
0Gio6 VATH-XXXXXO-NID 8EGLOC 1squeldss v L00Z ‘lequisdes vz
IOVd WAN 'AFH-LNIWND0A 31va la3z J1vd ILYNIDIFO

TVIMHLVIN d4dd0 JALLOHLOYUd

URIGINATE DAITE U DATE R400 Sequencer Specification FAbE
| 24 September, 2001 4 September, 201518 10 of 50

A by DDA B ey

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

4
Possible delay for available GPR’s |gg

l
FIFO
ITexture clause 0
escrvation station
i -FIFO -
ALU clause 0 -
g eservation station
‘ -FIFO B
IFexture clause 1
- reservation station
TIFO ron st)
a—[Uclause 1 exture arbitrator
eservation station
) FIFO
exture arbitrator Texture clause 2
reservation station
‘ -FIFO o
< ALU clause 2 -
eservation station
FIFO
Texture clause 3 =
eservation station
L -FIFO «
<& ALU clause 3 -
eservation station _
FIFO
Fexture clause 4
reservation station
< -FIFO >
LU clause 4 -
eservation station
FIFO
Texture clause 5
reservation station
- -FIFO e
ag— LU clause 5 -
eservation station
FIFO
Texture clause 6
Feservation station
gt -FIFO -
— LU clause 6 -
2 it tati
eservation station JSITe) L
- Texture clause 7
eservation station
- -FIFO <}
- LU clause 7 -
eservation station

Figure 2: Reservation stations and arbiters
There are two sets of the above figure, one for vertices and one for pixels.
Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet

consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257192

ATI Ex. 2107
IPR2023-00922
Page 58 of 260

-l WRISINATD UATE LA AT LAV OUIVIEIN L -IRID V. INUIVEL AL
m 24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 11 of 50
. b IO A RA 5

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state

machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

Exhibit 2025.docR400-Sequencerdoc 71630 ytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044

_0257193

ATI Ex. 2107

IPR2023-00922

Pa

ge 59 of 260

24 September, 2001 4 September, 201518 12 of 50

Azmeenlen 004 8 by

il

| 1.2 Data Flow graph (SP)

URIGINATE DATE CUHE DATE R400 Sequencer Specification l FALE l

instruction

c{ [tants from RE

Register File < I

!
- A
% scalar |nput/output} MAC T
[~ o B te] [re requ
‘ plpeﬂlE stage i —\
o
2
B
=
: : |
& Register File < !
A
{ scalar input/ou put'\ I N ¥
r 4 MAC | texty | reques
pipeline stage ™\
=
o
-]
S
= Y
2 T
g O < [
£ 2 —— -
@ Register File - =
= i / Ok
N\ i 5
MA] texturelE lquest |2 \
scalar input/outpﬁtj> iy & N
AQE g el
| pipeline stage i o) §
S | x
m
w -
¢ s
5| |5
B = Register File
A
g_ls 1| ¢]
— 1
s 1] A] texture re| gst
~~ ~~ scalar input/outp@
PN
S \M ux
W
] s W
j<
=
5=
«©
\ / ¢
>
%
L
N~

< to Primitive Assembly Unit or RenderBackend >

Figure 3: The shader Pipe

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257194

ATI Ex. 2107
IPR2023-00922
Page 60 of 260

e WRIESHNATD UATE LA AT LA UIVILLIN E=IRE V. INUIVEL
m l 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA

13 of 50
Wil I OOOTA Rl
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip). |
1.3 Control Graph
Clause # + Rdy
WrAddr IS SEQ CST WrAddr
CMD
CsT
Phiase oD CST'CSTﬁcs%tnx A B ¢ere°
RdAddr | Wiseal yyaqqr
v vy vy | v vy
&
B
FETCH SP PR | OF
WrAddr »|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an |J buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes®** ©® AT| Confidential. Reference Copyright Notice on Cover Page © »»»

AMD1044_0257195

ATI Ex. 2107
IPR2023-00922
Page 61 of 260

URIGINATEZD DATE cUH DATE R400 Sequencer Specification FALE
24 September, 2001 4 September, 201518 14 of 50
LW} Ia¥als] A emembs
RE
T T
ToRB
A0 At
IJs CROSSBAR (4x64 bits)
—
— T —_—
— e
T
IJs buffer (ping-pong buffer)
1 AD Al A2 BO (28 bits * 2 (1) + 8 bits * 6 (delta |Js)+4 ex
bits*6)* 16 (quads) * 2 (double-buffered) A0 Al A2 B0
4096 bits
2 B1 Co o] c2 32x128
B1 Co o] C2
3 C3 C4 (&3] Do XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 C4 c5 Do
768 bits
3224
4 D1 D2 EQ E1
D1 D2 EC E1
T T -
i i i T T T
INTERPOLATORS ‘ : 4 ! 1
FIX-FLOAT + EXPANSION 3
| pm——
[—
512 —]
77 e —
AN
7 N g
UL 2UL 3UL 4UL TUR ! 2UR ! 3UR § 4UR i 2LL } 3LL 4Ll 1R 4R ! X4
i I i i
| | | |

1LL }
|

Exhibit 2025 docR4BE_Sequencer.cdos

71630 Bytest** @ ATl Confidential. Reference Copyright Notice on Cover Page © »»

Figure 5: Interpolation buffers

AMD1044_0257196

ATI Ex. 2107
IPR2023-00922
Page 62 of 260

xx @ 9bEd JOA0D Uo 200N WBLAdOD SoUBIBISY BIIUSPIUOCYD | LY © »+»soKa0e9iL

wizideip sujwi) uopejodiojuy 19 aansig

20p8otenbesTOOYEIOP GL00 HOURT

\
X1A da ld AX
¢olv | 1e| Sl €ol /v | 1S | G
09-#v | -gz| -z1| 13 oa| zo| og 13| oa zo| od 09 v |8z |21 | €
AN AL A X AX | AX A] dS
65 €y | L2 LI 65 €v | 22| 1L,
96 oy | -vz| -g| 03 Ko e%o) zv| o3 1D %0 ev|-es -ov vz |8 | o
AN AN A AX| AX | AX | AX
g5 6 | €2 ss|ee ez, | |
-z6l-oe | -0z A 00 cal #o A7 00 2al vo IV | -z5|-9¢ |-02 x| as
AN A AX| AX | AX
1G/S€ | 61| oo 15168 6L o] o
8v|-2¢ | 9L 7\ \a| 0| 19| ov la| €0 18| ov| -8y -ze ok |0 | s
AN A AX| AX | AX
] o SSREL 78) 0d c
x| 4313 | oajoa % 20 | 20| ;% og | og as
03 i9) K] A Z
ax | 030 AX 1§D |80 | xx |40 | 10 Ax| &7 g
za %) 00 Y !
AX ¢d | ed AX 7O | ¥O | A\x 100 | 0D AX W LY ds
1a %) Ig ov 0
Ax | 1@ Ld x| €0 | €0 ax | b8 18| ax| O | OV 4o
e e § Lond ¥ 4
¢zlizzl Lzl ozL 6Ll |8k} 2Ll 9Ll |SLL Pl €bl ZbL bbl|obL| 6L |8l | 2L |9l |SL|#L el |zL| 1l | oL
0Ggio gl YATHXOOOKDO-NID 816 wmm Mm:&muhmmmw L00Z lequisides yz
H49vd WNN AFH-INIWND0AJ 41vQa Lid3 A1vAd F1YNIDIHO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257197

ATI Ex. 2107
IPR2023-00922

Page 63 of 260

= URIGINATE UALTE U DATE R400 Sequencer Specification FAbE
| 24 September, 2001 4 September, 201518 16 of 50
W, RN Y IaTaleV: N V. PEVYNN

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the |J
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around

points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257198

ATI Ex. 2107

IPR2023-00922
Page 64 of 260

‘apoo oy} Bupnoexs
HEIS 0} SI8UM SMOLD
Jsousnbag os s¥o0lg
-gng sjeudoidde

0} s9889Ippe

HBIS SpOD SIM dD

Aal

»2x @ 9bd Jon09) uo 200N JBLAdON) SoUBISIDY T[RIJUSPUUOYD | LY © #++S34a 0e9iL

0 8po)d sd

AIOUWIOUWI UOIIINIISUL O} JO MIIA §,) oYL :£ oanSig

G60¥y

O 8pod SA

"opo9 8y} Bunnooxe

g 3p0d Sd

HElS O} DIBUM SMmoL)|
1eousnbeg os sx4o0ig

g 8p0o0 SA

-qng ajeudosdde
0} S98S9IppE
HE}S 89P0 SBIUM D

Y 8p00 Sd

m

Y 8p00 SA

| gaunl-esy

< __—~3SYE ¥IAYHS XILYIN

8po0 paleys

Burd o1buIs - | IAOW

ED 'V uyor

L00Z/71L/LL palepdn

SopuesHenbes o0y HI0P GLOs HOMKT

B

0 8po0 Sd

g 8pod sd

¥ 8p0D Sd

0 8p0O SA

ISYE ¥IAYHS 13XId

g 8p0O SA

8poo paleus

. Baull-eay

V 8Pp03 SA

‘/\l — —
SV HIAYHS XILH3A

Bury reng - 0 IAOW

Aows|\ uononIsuU| JO SMaIA S,dD 007y

AT VOIS i A
0G40 /L VAT XXXXXONID 861 0c 1squisides ¥ 100Z ‘1equisides 12
3OVd WNAN AZH-LNIWNDO0A 31va a3 31vd 3LYNIOIHO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257199

ATI Ex. 2107
IPR2023-00922

Page 65 of 260

24 September, 2001 4 September, 201518 18 of 50

A by DDA B ey

all]

4. Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV, PV, PS,PS) if they have nothing else to do.

URIGINATE DATE CUHE DATE R400 Sequencer Specification [FALE l

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixelivertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 428x182-320x96 bits (128 texture states
for regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

I Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257200

ATI Ex. 2107
IPR2023-00922
Page 66 of 260

WIRISHNATED WATE ELJhE WATE LAVOUIVIEIN L - V. INUIVL

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA

A INEsTalale Vi V]

19 of 50

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with

the new state (this is depicted in Figure 9. De-allocation mechanismkigure-8:-De-allosation-mechanismFigure-9:-De
allocati echanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes®** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »»»

AMD1044_0257201

ATI Ex. 2107

IPR2023-00922

Pa

ge 67 of 260

= URIGINATEZD UATE cUH DATE R400 Sequencer Specification FALE
24 September, 2001 4 September, 201518 20 of 50
|

DA B Aol

Free List
Free
Address A 4
Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero H
Free_ptr;’ and roll around but Renammg Table
WritePtr can never pass each Context 0 => N

When a Logical
Address is written
that has been

other " Current/Last
Context !

written befare, (8 rows of 16 -8 > ?‘onit::it S:i ggw;g»gf;:;as b‘[:‘ .
Sitreos ot Stop_ptr 12‘; physical => | P et cacesy ;LOQICal Address
allocated by that - entries copy —
Logical Address ptr to first physical in eight clocks) | Context 1 & Context
address that is ! ®
scheduled to be de-
allocated but noty .
yet de-allocate. .
Advanced each time f 1 H
a context is freed by | Context N [Phy5|cal
the number of L i
Read ptr physical address Add ress
_— displaced by that
ptr to physical Context
address that will be
used next if the init
count is at
maximum number
Address of physical address
to Allocate
Global Register
Data Bus Staging Dat
aging Data
Buer > Physi
Constants — uiter Physical
location € FI;’:IS Memory
available (pass Phys »| Staging Write Add
aging Write r
WRTR Address if ging
~— Context
Dirty}
h éical Dealloc
2d¥iress Counts next
to physical
schedule address
for ready
de-alloc for allocate
Logical address J ! ‘ Coi:?ant
Onthe ——p~ B ‘
GlbRegBus A A A I Request
when Isb are zero This }
first word of write . Reset Context ‘
Renaming Table Dirt Dirt l ‘
for 1 Context ny iy | ‘ ;
Current/Last Lo%éi}(rzal Loi)?;al i | Context &
i | Logical
zg‘ésr’:il Address r— Address «— Adgress —]
per (Only (If set
Logical de- don't
Address allocate allocate
if set) or de-
allocate) Renaming
table
N-Contexts

Copy Last held above to
Current Context on receipt
of Set Constant for a
new context (Hide loading
behind Set State load - 16 clocks)
all other Set States just write one
entry to current state.

Figure 8: Constant management

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © #**

AMD1044_0257202

ATI Ex. 2107
IPR2023-00922
Page 68 of 260

s WIRBSHNATD WATE LA AT LAV UJIVIEDIN =RV INUIVEL FALoL
m l 24 September, 2001 4 September, 201548 l GEN-CXXXXX-REVA I 21 0of 50

AlAomppmls OONTIA BA

SQ_STATE#
-t ADDR

a

DEALOC

Free List <ONT VALUE | COUNTERS ra——WRITE_ENABLE

\
! PREVIOUS

NOT STATE
W NEW
! STATE
VALUE |
t—
=
VALID — N
| B ‘
OR
e« SQ IDLE
AND «— PAIDLE—
<« CP_NEW_STATE_CNTL—
REMAPPING
TABLE -« SET CTXBITS

Figure 9: De-allocation mechanism for R400LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »# \

AMD1044_0257203

ATI Ex. 2107
IPR2023-00922
Page 69 of 260

24 September, 2001 4 September, 201518 22 of 50

Azmeenlen 004 8 by

]

l 5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

URIGINATE UATE EUH DATE R400 Sequencer Specification [FALE l

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr = to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

I Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257204

ATI Ex. 2107
IPR2023-00922
Page 70 of 260

| A=) =

23 0f 50

& WRISHNATD UATE LA AT LA UIVIEIN L -V, INUIVEL
' m } 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA
A ISR Talaley: I ¥

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look |
like this

MOVA R1.X,R2.X /I Loads the sequencer with the content of R2.X, also copies the content of R2. X into R1.X
NOP /I latency of the float to fixed conversion
ADD R3,R4,CO[R2.X}// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don'’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Wirites are passing
thru a remaping table)

Figure 10: The instruction store

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes®** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »»»

AMD1044_0257205

ATI Ex. 2107
IPR2023-00922
Page 71 of 260

24 September, 2001 4 September. 201518 24 of 50

Azmeenlen 004 8

URIGINATE DATE EUH DATE R400 Sequencer Specification [FALE l

| 6. Loopmq and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256.0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.
We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

Examples of control flow programs are located in the R400 programming guide document.
The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0]7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute

Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call

Return

Loop_start

Loop_end

NOP

Execute, causes the specified number of instructions in instruction store to be executed.

Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.

Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257206

ATI Ex. 2107
IPR2023-00922
Page 72 of 260

EL/ D WATE

VRISHNAT D AT C
4 September, 201548

m 24 September, 2001
i1 IO A B A el

LAJOVUNIEIN G -IRE V. INUIVLL

GEN-CXXXXX-REVA 25 of 50

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the defaull) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46... 42 | 41 40 ... 24 23...12 11...0
Addressing 00001 Last RESERVED Instruction | Exec Address
count

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP

47 46 ...42 | 41 40... 0

Addressing 00010 | Last RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 ... 42 | 41 40 40-39 .. 3231 34-30 ... 24 23...12 11...0
3332
Addressing 00011 Last | RESERVED | Boolean | Condition | RESERVED Instruction Exec
address count Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute Predicates

47 46 ... 42 | 41 4040 ... 34-33 ... 3231 34-30... 24 23 ... 12 11..0
3534 3332
Addressing 00100 Last | RESERVED | Predicate | Condition | RESERVED | Instruction | Exec Address
vector count

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start

47 |46 . 42 | 41..17 | 1612 | 1.0

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#+

AMD1044

_0257207

ATI Ex. 2107

IPR2023-00922

Pa

ge 73 of 260

= URIGINATE DATE U DATE R400 Sequencer Specification FAbE
| 24 September, 2001 4 September 201518 26 of 50
Lk, D0 BA ko,
l 00101 RESERVED loop ID Jump address

Addressing

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants shouid be used with the loop.

Loop End
47 46 ... 42 41...17 16... 12 11..0
00110 RESERVED loop ID start address
Addressing

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal Call

47 46 ... 42 41 ... 3834 34-33 ... 312 3430 ... 12 11..0
3332
00111 RESERVED Predicate | Condition RESERVED Jump address
Addressing vector

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return

47 46 ... 42 41...0

01000 RESERVED

Addressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47 46 ... 42 41 ... 404 40-39 ... 3231 3430 3629 ... 12 11...0
3332
01001 RESERVED Boolean | Condition | FWonly | RESERVED Jump address
Addressing address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#- SETEO

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257208

ATI Ex. 2107

IPR2023-00922
Page 74 of 260

pd WRNSINATD UATE LA AT LAJLUIVIEIN -V, INUIVEL AL
' m ' 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA l 27 of 50
Blenpenbn <3 A BAes ek

PRED_SETE1 #- SETET ‘

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV ,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing

Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit6

0 0 ‘absolute register'
0 1 ‘relative register’
1 0 'previous vector'
1 1 '‘previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:
Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256] The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses

For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

Exhibit 2025.docR400-Sequencerdoc 71630 ytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044_0257209

ATI Ex. 2107
IPR2023-00922
Page 75 of 260

24 September, 2001 4 September, 201518 28 of 50

Bz ke DA B A S

alll

| 6.7 Debugging the Shaders

In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

URIGINATE UATE CUHE DATE R400 Sequencer Specification [FALE l

6.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6.7.2 Method 2: Exporting the values in the GPRs (12)

The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal

2) Debug Kill

3) Debug Addr + Count
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257210

ATI Ex. 2107
IPR2023-00922
Page 76 of 260

= WRIJNINATD LWATE LA WAl LAAACUIVIEIN [-IRE V. INWUIVEL FAOE

' m ’ 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 29 of 50
¥l n IOV A B4 i

MASK_SETGTE |

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Regqister file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#»

AMD1044_0257211

ATI Ex. 2107
IPR2023-00922
Page 77 of 260

URIGINATE DAIE U DATE R400 Sequencer Specification FALE
24 September, 2001 4 September, 201518 30 of 50

W Lol DO A RA ek

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 OinstO...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257212

ATI Ex. 2107

IPR2023-00922
Page 78 of 260

= WRISIINATD LWATE LA WA LAJUIVIEIN [-IRE V. INUIVL
m ' 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA

B4 oS T BA

31 0f 50

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?7). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. |J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of |J's (one |J per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0}, J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-1-J).

AOL = I(1) - I(0)
AOLT =J () - J(0)
A021 =1(2)-1(0) PO P1
A02J =J(2)-J(0)
A037 =1(3)-1(0)
A03J =J(B)-J(0) P2 P3

PO=C+I10)*(4-C)+J(0)*(B-C)

Pl=P0+A01*(A4~C)+A0LT*(B~-C)
P2=P0+A021*(4—C)+A02J *(B-C)
P3=P0+A03[*(4—C)+A03J*(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision). 6
Subtracts 19x24 (Parameters). 2

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044_0257213

ATI Ex. 2107
IPR2023-00922
Page 79 of 260

24 September, 2001 4 September, 201518 32 of 50

A by DDA B ey

el

l Adds: 8

URIGINATE DATE CUHE DATE R400 Sequencer Specification [FALE l

FORMAT OF PO's IJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise thatif A=B and B=C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
elseif (I =0)or(J=0))and
((J =0)or (1-1-d = 0)) and
(1-d-1=0)or (1 =0))){

if(l 1= 0){
PO =A,
lelseif(J 1= 0){
PO =B,
telse {
PO =C;
/frest of the quad interpolated normally
}
else
{
normal interpolation
}

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415] 1617 181920212223 242526 27 28 29 30 31| 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

01231617181932333435484956051(14567202122233637383952535455(18910 1124252627
404142435657 5859|1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

I Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257214

ATI Ex. 2107
IPR2023-00922
Page 80 of 260

WRISHINATD AT

24 September, 2001

ELJHE WAL

= I = =
m l 4 September, 201548
Jil dn IO A BA

LAOUNVIEINGG - V. INUIVL

GEN-CXXXXX-REVA

33 of 50

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit

floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure-42Figure-12. The area of the fixed-to-float converters and the VSISRs for this method is roughly ‘
estimated as 0.759sgmm using the R300 process. The gate count estimate is shown in Figure 11Figure-1iFigure-44.

8x24-bit

Area of 96x8-deep Latch Memory
Area of 24-bit Fix-to-float Converter

IMethod 1

Basis for 8-deep Latch Memory (from R300)

11631 2

46524 2

60.57813 u* per bit

4712 1® per converter

Block

Quantity

Area

F2F
8x96 Latch

3
16

14136
744384

Figure 11: Area Estimate for VGT to Shader Interface

Exhibit 2025 docR400_Seguencerdoc

meso Bytes*** @ AT Confidential. Reference Copyright Notice on Cover Page © »#+

AMD1044_0257215

ATI Ex. 2107
IPR2023-00922
Page 81 of 260

URIGINATE DAITE

24 September, 2001 4 September, 201518 34 of 50

fles ke DA B A S

EUNE DATE R400 Sequencer Specification [FALE

L

VGT BLOCK
(IN PA)

24-BIT
FIX2FLOAT

SHADER
SEQUENCER

VECTOR ENGINE

i

VECTOR ENGINE

Figure 12:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER ADDRESS
4 bits 7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17“‘) is going to have the address 00000001000, the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64} then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*'VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257216

ATI Ex. 2107

IPR2023-00922
Page 82 of 260

a WRISIINATD WUATE LA AT LA UIVIEDIN L - V. INUIVE
' m ' 24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA
L% b IO A B iy

18. Vertex position exporting |

On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

35 of 50 '

19. Exporting Arbitration

Here are the rules for co-issuing exporting ALU clauses.
1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.
{ISSUE: Do we move the parameter caches to the SX7}

20. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading

0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index

44:47 - Empty

48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode

61 - Empty

62 - position

63 - sprite size export that goes with position export

(point_h,point_w,edgeflag, misc)

20.2 Pixel Shading

- Color for buffer O (primary)
- Color for buffer 1
- Color for buffer 2
- Color for buffer 3
7 - Empty
- Buffer 0 Color/Fog (primary)
- Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.

O©ohwhN-~QO

44:47 - Empty

48:59 - 12 debug exports (interpret as normal pixel export)
60 - export addressing mode

61.62 -Empty

63 - Z for primary buffer (Z exported to ‘alpha’ component)

Exhibit 2025 docR400-Sequencerdoc 71630 Bytes®** © AT| Confidential. Reference Copyright Notice on Cover Page © »#»

AMD1044_0257217

ATI Ex. 2107
IPR2023-00922
Page 83 of 260

24 September, 2001 4 September, 201518 36 of 50

B Al 004 8 by

URIGINATE DATE eV DATE R400 Sequencer Specification [FALE l

)

| 21. Special Interpolation modes

21.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the 8X blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information

When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_l0 disable, snd_xy disable, no gen_st — |10 = No modification

Param_Gen_I0 disable, snd_xy disable, gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, gen_st — 10 = No modification

Param_Gen_l0 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st — |10 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — |10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — |0 = screen x, screeny, s, t

21.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2 pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1 register (R0.x).

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257218

ATI Ex. 2107
IPR2023-00922
Page 84 of 260

pd WIRNSINATD UATE LA AT AL UVIEIN -V, INUIVEL FALL
m ' 24 September, 2001 ' 4 September, 201518 GEN-CXXXXX-REVA I 37 of 50

Bllempaln DO A KA

STG O
AUTO INTERPOLATORS

COUNT

STG1

’ AUTO COUNT 000000 |

¥ The Auto Count Value is
MUX / broadcast to all GPRs. It is
loaded into a register wich has
its LSBs hardwired to the
GPR number (O thru 63). Then
if GEN_INDEX is high, the
¥ mux selects the auto-count
value and it is loaded into the
GPRs to be either used to
retrieve data using the TP or
GPRO sent to the SX for the RB to
use it to write the data to
memory

Figure 13: GPR input mux Control

22. State management

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the |J
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the 1J data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044_0257219

ATI Ex. 2107
IPR2023-00922
Page 85 of 260

URIGINATE DATE
24 September, 2001

S DATE
4 September, 2015418

A by DDA B ey

38 of 50

R400 Sequencer Specification [FALE l

| 24. Regtster
24.1 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC

INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

242 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO_VERT
PARAM_WRAP

PS_EXPORT_MODE

WS- EARORT-MAS]

Dynamic allocation (pixel/vertex) of the register file on or off.

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

policy of the arbitration between vertexes and pixels

interleaved, separate

start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)

start point for the pixel shader instruction store

debug state register. Only allows one program at a time into the GPRs

debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

512*4 ALU constants + 32"6 Texture state 32 bits registers (logically mapped)

256*4 ALU constants + 32*6 texture states? (physically mapped)

This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0O to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader in the instruction store

base pointer for the vertex shader in the instruction store

size of the vertex shader (# of instructions in control program/2)

size of the pixel shader (# of instructions in control program/2)

size of the pixel shader (cntl+instructions)

size of the vertex shader (cntl+instructions)

number of GPRs to aliocate for pixel shader programs

number of GPRs to allocate for vertex shader programs

One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

0 vertex 0, 1: vertex 1, 2: vertex 2, 3. Last vertex of the primitive

64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).

Oxxxx : Normal mode

Txxxx . Multipass mode

If normal, bbbz where bbb is how many colors (0-4) and z is export z or not

If multipass 1-12 exports for color.

VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

PARAM_GEN_I0

Exhibit 2025 docR400_Sequencer.dos

which alast s Al 3 ie ot tinas [IVA)
= + PO+ ek Y

0: position (1 vector), 1. position (2 vectors), 3:multipass

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR

of exported vectors to memory per clause in multipass mode (per clause)

Do we overwrite or not the parameter 0 with XY data and generated T and S values

7tes0 Bytest** @ ATl Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257220

ATI Ex. 2107
IPR2023-00922
Page 86 of 260

39 of 50

= WVRIIINATZD Al EilsD ATz LAV UIVIEIN - V. INUIVEL
' m ’ 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA
RA "eTatale V..V |

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders ‘
and R2 for vertex shaders

CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader

CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader

CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders

CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders

INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 256 boolean bits

CF_LOOPF_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers
25.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

DB_CLAUSE

_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

DB_CLAUSE

_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1. addr, 2: kill)
25.2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory

DB_TSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

26.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—S8Px it means that SQ is going to broadcast the same information to all SP instances.

26.1.1 SCto SQ : IJ Control bus

This is the control information sent to the sequencer in order to control the |J fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044_0257221

ATI Ex. 2107
IPR2023-00922
Page 87 of 260

il

URIGINATE DA CUHE DATE R400 Sequencer Specification [FALE l

24 September, 2001 4 September, 201518 40 of 50
LA Lo Tatale VIR V. PPN
Name Direction Bits | Description
SC_SQ_g_wr_mask SC—SQ 4 Quad Write mask left to right
SC_SQ_Jlod_correct SC—SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_param_ptr0 SC—-SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC—-SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC—-SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC—-SQ 1 End of the vector
SC_SQ_store_dealloc SC—8Q 1 Deallocation token for the P Store
SC_SQ_state SC—-SQ 3 State/constant pointer
SC_SQ_valid_pixel SC—-8Q 16 Valid bits for all pixels
SC_SQ_null_prim SC—-8Q 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of _prim 5C—8Q 1 End Of the primitive
SC_SQ_send_xy SC—S8Q 1 Sending XY information [XY information is going to be

sent on the next clock]

SC_SQ_prim_type SC—8Q 3 Real time command need to load tex cords from
alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.

000 : Normal

011 : Real Time

100 : Line AA

101 : Point AA

110 : Sprite

SC_SQ_new_vector SC—3Q 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ—8C 1 Stalls the PA in n clocks
SC_SQ_RTS SC—8Q 1 SC ready to send data
26.1.2 SQ to SP: Interpolator bus
Name Direction Bits | Description
SQ_SPx_interp_prim_type SQ—SPx 3 Type of the primitive
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite
SQ_SPx_interp_ijline SQ—8Px 2 Line in the IJ/XY buffer to use to interpolate
SQ SPx interp mode SQ—-8Px 1 0: Use centroid buffer
1. Use center buffer
SQ_SPx_interp_buff_swap SQ—-SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ—-SPx 1 Generate 10 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_|0 is high.

26.1.3 SQ to SX: Interpolator bus

Name Direction Bits | Description
SQ_SPx_interp_flat_vix SQ—SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | SQ—SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl wrap SQ-—S8SPx 4 Wich channel needs to be cylindrical wrapped
|| SQ_SXx_ptrimuxd SQ—5Xx 11 Parameter Cache Pointer
|| SQ_SXx_ptr2munct SQ—-8Xx 11 Parameter Cache Pointer
|| SQ_SXx_ptr3rmux2 SQ—-8Xx 11 Parameter Cache Pointer
SQ_SXx_RT_switch SQ—SXx 1 Selects between RT and Normal data
|| SQ_SXx_pc wr en SQ-—8Xx 1 Write enable for the PC memories
| SQ _SXx _pc wr_addr SQ-—>SXx 7 Write address for the PCs

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257222

ATI Ex. 2107
IPR2023-00922
Page 88 of 260

a WRIISHINATED UATE LA AT LA UIVIEIN -V, INUIVE
' m l 24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 41 of 50
B4 USSR 1] BA

26.1.4 SQ to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits | Description

SQ_SPx_vgt_vsisr_data SQ—8Px 96 Pointers of indexes or HOS surface information
SQ_SPx_vgt vsisr_double SQ—SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ—SP0 1 Data is valid

SQ_SP1_data_valid SQ—SP1 1 Data is valid

SQ_SP2_data_valid SQ—S8P2 1 Data is valid

SQ_SP3_data_valid SQ—SP3 1 Data is valid

26.1.5 PA to SQ : Vertex interface
26.1.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name Bits Description

PA_SQ_vgt vsisr_data 96 Pointers of indexes or HOS surface information

PA_SQ vgt vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert

PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of_vector” is set on the second vector)

PA_SQ_vgt vsisr_valid 1 Vsisr data is valid

PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt end_of vector” is high.

PA_SQ_vgt_send

Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_PA_vgt_rtr

Ready to
handshaking)

receive (see write-up for standard R400 SEND/RTR interface

26.1.5.2 Interface Diagrams

Exhibit 2025 docR400_Seguencerdoc

7e30 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*»

AMD1044_0257223

ATI Ex. 2107
IPR2023-00922
Page 89 of 260

=+ @ 9bed 19n0D uo aonoN 1YBIADOD 90UDISIOY [RIUDPHUOD LY © ##+soHa0801L sopuecuenbas™ooyyd0p G20 TG

ATI Ex. 2107
IPR2023-00922

Page 90 of 260

AMD1044_0257224

1SHS 154S
0 Hid > o34 131 2ba wd B8 i > o3 7 MM ¢ >
¥
e oanzs | 02 4 puss ba 05 wd | OO0 7 aNEs Y
ALAWE S
¥ION3INOIS
H3avHs % 5 e BERE - TR REENL e o
o o b OTES ALYLE e g T2s ejels 1ba 08 ¥d o Z 198 AIVLE
H3ddng
anis
sl . s <
o vxiol e Torom a0] o7 [T Togoon 1o pus JbA G5 wa | oo [7 ¥OLDIA IO AN
il <l il il
- o Tianod worea | oY [T otqnop T5TeA aba o5 wa | oo [¢ w1000 4SISA
. i) l
o o Tovivad dsioa | DY [b5 ®iED ISTSA 3bA 05 vd O3y =& 7 YLYd MSISA
IARAG AT R A
ogiocy &tGL0¢ 1equisides ¢ L0OZ “tequisideg ¢z
3ovd uoneayioads 1e0uenbas 00vY 31va 11a3 31va ALYNIDINO

TVIMHLVIN d4dd0 JALLOHLOYUd

wx @ 9BBd 19100 U0 9o1j0N WBLAdOD SoUSIDIRY "[BIUBPYUOD | LY © #xsoa0ssiL sopuestenbes™00y:Sop G207 HAKS

B0BlIBIU] DA DS vd Jol WEIBeI([eolbo| pajiereq | aInbig

NOISSIWSNYYL 5d0LS dHANHES

NOISSINSNYIL SIdVLS—-Hd YHATHDOHY
NOISSINSNYIL Sd0Ls dHATHDHEY

)

-

oy 0dTd
ALAWH OATd

IND OdT1d

INO YIVA 0414

v YIVd

7 ANFS
¢ YINda

¢ NS
7 Y¥Iva

Z aNgs

SId I9A

7 9Id 08
T ¥Id 08

0 ¥Id 08

¥Id 0%

osiocy
JOvVd

YATH-XXXXXO-NIO
WAN 'AFH-LNIWND0d

TVOOIC 9 LA

8EGL0C Tequisides &
31vd 1d4d

100T ‘tequieides 2
31vd 3LYNIOIFHO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257225

ATI Ex. 2107
IPR2023-00922
Page 91 of 260

URIGINATE DAITE U DATE

24 September, 2001 4 September, 201518

44 of 50

all]

A by DDA B

R400 Sequencer Specification [FALE

ey

| 26.1.6 SQ to CP: State report

Name Direction Bits | Description
SQ_CP_vrtx_ state SEQ—CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ-—-CP 3 Oldest pixel state still in the pipe
26.1.7 SQ to SX: Control bus
Name Direction Bits | Description
SQ_SXx_exp_Pixel SQ—SXx 1 1: Pixel
0: Vertex
SQ_SXx_exp_Clause SQ—8Xx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ—5Xx 3 State ID
8Q_SXx_exp_exportlD SQ—8Xx 1 ALU ID

These fields are sent synshronoushwith-BF-expor-data

cribed-in-8R20 KO-k seevery time the sequenc

picks an exporting clause for execution.

26.1.8 SXto SQ : Output file control

er

Name Direction Bits | Description

SXx_SQ_Export_count_rdy SXx—8Q 1 Raised by SXO0 to indicate that the following two fields
reflect the result of the most recent export

SXx_SQ_Export_Position SXx—8Q 1 Specifies whether there is room for another position.

SXx_SQ_Export_Buffer SXx—8Q 7 Specifies the space available in the output buffers.

0: buffers are full
1. 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

26.1.9 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write

the fetch return data.

Name Direction Bits | Description

TPx_SQ_data_rdy TPx— 8Q 1 Data ready

TPx_SQ_clause_num TPx— 8Q 3 Clause number

TPx_SQ_Type TPx— 8Q 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_const SQ—-TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ—TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of clause SQ—-TPx 1 Last instruction of the clause

SQ_TPx_Type SQ—-TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ—-TPx 2 Wirite phase signal

SQ_TPO_lod_correct SQ—-TPO 6 LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pmask SQ—TPO 4 Pixel mask 1 bit per pixel

SQ_TP1_lod_correct SQ—-TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ—-TP1 4 Pixel mask 1 bit per pixel

SQ_TP2 lod_correct SQ—-TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ—-TP2 4 Pixel mask 1 bit per pixel

SQ_TP3 lod correct SQ—-TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ—-TP3 4 Pixel mask 1 bit per pixel

I Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257226

ATI Ex. 2107
PR2023-00922
Page 92 of 260

WRBSIINATD AT ELJE WATE LAJOUVIEZIN - V. INUIVL

(il

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 45 of 50
Aldmemin 0 A R4 =9
SQ_TPx_clause_num SQ—TPx 3 | Clause number ‘
SQ_TPx_write_gpr_index SQ->TPx 7 | Index into Register file for write of returned Fetch Data

26.1.10 TP to SQ: Texture stall

The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SQ_SP_fetch_Stall

\
SQ_SP_wr_addr
— SuUo
1
Su2
|
|
SuU3 }
Name Direction Bits | Description
TP_SQ_fetch_stall TP— 8Q 1 Do not send more texture request if asserted
26.1.11 SQ to SP: Texture stall
Name Direction Bits | Description
SQ_8Px_fetch_stall SQ—S8Px 1 Do not send more texture request if asserted

26.1.12 SQ to SP: GPR; RParametercache-control-and auto counter ‘

Name Direction Bits | Description

SQ_SPx_gpr wr_addr SQ—S8Px 7 Write address |

SQ_SPx_gpr_rd_addr SQ—SPx 7 Read address

SQ_SPx_gpr_red_addren SQ—SPx 1 Read Enable ‘

SQ_SPx_gpr_wewr addren | SQoSPx 1 Write Enable for the GPRs

SQ_SPx_gpr_phase_mux SQ—S8Px 2 The phase mux (arbitrates between inputs, ALU SRC
reads and writes)

SQ_SPx_channel_mask SQ—SPx 4 The channel mask

SQ_SPO_pixel_mask SQ—SP0 4 The pixel mask

SQ_SP1_pixel_mask SQ—S8SP1 4 The pixel mask

SQ_SP2_pixel_mask SQ—SP2 4 The pixel mask

SQ_SP3_pixel_mask SQ—S8P3 4 The pixel mask

SQ_SPx_gpr_input_mux SQ—S8Px 2 When the phase mux selects the inputs this tells from
which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.

SQ_SPx_index_count SQ—SPx 127 | Index count, common for all shader pipes

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »#

AMD1044_0257227

ATI Ex. 2107
IPR2023-00922
Page 93 of 260

24 September, 2001 4 September, 201518 46 of 50

m
t | Ao 123 D04 BA ey

l 26.1.13 SQ to SPx: Instructions

URIGINATE DATE CUHE DATE R400 Sequencer Specification [FALE l

Name Direction Bits | Description
SQ_SPx_instruct_start SQ—SPx 1 Instruction start
SQ_SP_instruct SQ—SPx 21 Transferred over 4 cycles
0: SRC A Select 2:0
SRC A Argument Modifier 3.3
SRC A swizzle 11:4
VectorDst 17:12
Unused 20:18
1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 114
ScalarDst 17:12
Unused 20:18
2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12
3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 11:11
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
| SQ SPx exp exportlD SQ-—+SPx 1 ALUID
SQ_SPx_stall SQ—SPx 1 Stall signal
SQ_SPx_export_count SQ—S8Px 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ—SPx 1 Asserted on the first shader count of the last export
of the clause
SQ_SPO_export_pvalid SQ—S8P0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

SQ_SPO_export_wvalid SQ—8P0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid SQ—SP1 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

SQ_SP1_ export_wvalid SQ—SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ—-8P2 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

SQ_SP2_ export_wvalid 5Q—-8P2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP3_ export_pvalid SQ—8P3 4 Result of pixel kill in the shader pipe, which must be

I Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257228

ATI Ex. 2107
IPR2023-00922
Page 94 of 260

(Sl

WRISHIINATZD WATE

24 September, 2001

ELJtE WATE

4 September, 201548

LAV UNITIN G -IRE V. INUIVL

GEN-CXXXXX-REVA

]

IS Tal

A RA

I,

| =] =

47 of 50

clock

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

SQ_SP3_ export_wvalid

SQ—-SP3

vectors

Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or

26.1.14 SP to SQ: Constant address load/ Predicate Set

Name Direction Bits | Description
SPO_SQ_const_addr SP0—S8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP0_SQ_valid SP0—8Q 1 Data valid
SP1_SQ_const_addr SP1-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP1_SQ_valid SP1-8Q 1 Data valid
SP2_SQ_const_addr SP2—-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_8SQ_valid SP2—-8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_SQ_valid SP3-8Q 1 Data valid
26.1.15 SQ to SPx: constant broadcast
Name Direction Bits | Description
SQ_SPx_constant SQ—SPx 128 | Constant broadcast
26.1.16 SPO to SQ: Kill vector load
Name Direction Bits | Description
SP0O_SQ_Kkill_vect SP0—8Q 4 Kill vector load
SP1_SQ_Kkill_vect SP1-8Q 4 Kill vector load
SP2_SQ_Kkill_vect SP2—-8Q 4 Kill vector load
SP3_SQ_kill_vect SP3—-8Q 4 Kill vector load
26.1.17 SQ to CP: RBBM bus
Name Direction Bits | Description
SQ_RBB_rs 5Q—CP 1 Read Strobe
SQ_RBB_rd SQ—CP 32 Read Data
SQ_RBBM_nrtrtr SQ—CP 1 Optional
SQ_RBBM_rtr SQ—CP 1 Real-Time (Optional)
26.1.18 CP to SQ: RBBM bus
Name Direction Bits | Description
rbbm_we CP—8Q 1 Write Enable
rbbm_a CP—8Q 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—SQ 32 Data
rbbm_be CP—8Q 4 Byte Enables
rbbm re CP—S8Q 1 Read Enable
rbb_rs0 CP—8Q 1 Read Return Strobe 0
rbb_rs1 CP—SQ 1 Read Return Strobe 1
rbb_rd0 CP—SQ 32 Read Data 0
rbb_rd1 CP—8Q 32 Read Data 0
RBBM_SQ_soft_reset CP—S8Q 1 Soft Reset

Exhibit 2025 docR400_Seguencerdoc

7e30 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © #*+

AMD1044_0257229

ATI Ex. 2107
IPR2023-00922
Page 95 of 260

24 September, 2001 4 September, 201518 48 of 50

4 ke 0 BAe S

il

| 27. Examples of program executions

URIGINATEZ UATE CUHE DATE R400 Sequencer Specification [FALE l

27.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
e space was allocated in the position cache for transformed position before the vector was sent
e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex
shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.
¢ the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
e at this point the vector is removed from the Vertex FIFO
e the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as
nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles
e RFO0 of SUQ, SU1, SU2, and SU3 is written the first cycle
e RF1of SUQ, SU1, SU2, and SU3 is written the second cycle
e RF2of SUQ, SU1, SU2, and SU3 is written the third cycle
e RF3 of SUQ, SU1, SU2, and SU3 is written the fourth cycle
e the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w), the remaining data bits are setto zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)

e TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for
the fetch data to the TU, which will write the data to the RF as it is received

e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO
FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause O from the global instruction store

10. all instructions of ALU clause O are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)
11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (which is
shared with all four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is
going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257230

ATI Ex. 2107
IPR2023-00922
Page 96 of 260

(Ll

WIRBSHNATD AT D EL/EE WATE LAVUIVIEIN T -IRE V. INUIVEL

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA

il I NV A Rl ek

FAU

49 of 50

12.

s the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full]
e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
¢ the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no
longer a need for the parameters (it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer
if position is being exported) is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1.

10.

11

12.

13.

As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP
s At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
s the state pointer and the LOD correction bits are also placed in the Pixel FIFO
s the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

SEQ allocates space in the SP register file for all the GPRs used by the program

e the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer

e SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)

s note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
s the control packet contains the state pointer, the register file base pointer, and the LOD correction bits

s all other information (such as quad address for example) travels in a separate FIFO

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
s TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)

e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write
index for the fetch data to the TU, which will write the data to the RF as it is received

e once the TU has written all the data for a particular clause to the register files, it increments a counter that is
associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause O from the global instruction store

all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e tis sentto an output FIFO where it will be picked up by the render backend

e the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Exhibit 2025 docR400-Sequencerdoc 71630 Byes®** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »»

AMD1044_0257231

ATI Ex. 2107
IPR2023-00922
Page 97 of 260

24 September, 2001 4 September, 201518 50 of 50

B Ak 0048 BA by

L]

l 27.1.3 Notes

URIGINATE DATE CUHE DATE R400 Sequencer Specification l FALE l

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?
Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

Exhibit 2025.docR400-Sequencerdoc 71630 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*+

AMD1044_0257232

ATI Ex. 2107
IPR2023-00922
Page 98 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 10f52
NI A RA
Author: Laurent Lefebvre
Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.108

Overview: This is an architectural specification for the R400 Sequencer block (8EQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-~
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C:\perforce\rd00\doc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
N Dept . | .. . Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this

confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |

Exhibit 2026, docR400_Sequencerdec 75288 Bytes*™* @ AT Confidential. Reference Copyright Notice on Cover Page © »»

ATI 2026
LGv. ATI
IPR2015-00325

AMD1044_0257233

ATI Ex. 2107
IPR2023-00922
Page 99 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 2052

Table Of Contents

1. OVERVIEW ... iiiiiiiireiissmrsissssssrcorssssssreersrsssssasssneess s ssmnsssrssnssssssnsssnsanssnssnsersssssnseaees

L1 Top Level BloCK DIaliaim et ettt ettt

1.2 Data Flow graph (8P) e ieeeieeeeeie i

13 OOl GraD e et eeeee e eeeirees

2. INTERPOLATED DATA BUS....

3. INSTRUCTION STORE.

4. SEQUENCER INSTRUCTIONS.....

B, CONSTANT STORESiiiiiiiiireisiiisrrrressssstnssassssssssesssssssssassssssssnssnsssssessnnssssssssnsssssssss

5 M e IMOTY O OB Z A O S oo oottt ettt et et e et e et te ettt ieseieesrtrtees st ieaiias

5.2 Management of the Control Flow Constants ..o 1816 S

53 Management ofthe re-mappingtables ... 188
53.1 RA00 Constant ManaQement ..o s 1816
5.3.2 Proposal for R400LE constant management ..., 19
S 3 DI DS 2148
5.3 4 Free LISUBIOCK .o s 2149
535 Deallocate BIOCK oo 2228
53.6 Operation of InCremental MOGE! . .. oo e es ettt 2220 ‘

54 Constant SIore INGeXING . . oo e e ettt e e e e

5.5 Real TIme ComMImIan S, e eeieieiieieeieiiiiiieis

56 Constant Waterfalling oo

6. LOOPING AND BRANCHES

6.1 Thecontrollingstate. ..o

6.2 The Control FloW PrOO o oo ootttk et et it ettt e rta s s st iaas -

6.3 Data dependant predicate INStrUCHONS .. e 2624

6.4 HWDetection 0f PV PO i e 2726

6.5 RIS el f1e NGO NG o ettt ettt s et 2725

6.6 Predicated Instruction support for Texture ClauSes ... 2726

6.7 DebUgaing the ShBOEIS . ittt ettt ettt ettt enecs 2825 =
6.7.1 Method 1: Debugging reQiSters ..o 2825 o
6.7.2 Method 2: Exporting the values inthe GPRS (12) .00 28286

7. PIXEL KILL MASK ... it rass s s s s ssee s essmses s s e smsr s rr s s sens s ee s

8. MULTIPASS VERTEX SHADERS (HOS])...

9. REGISTER FILE ALLOCATION........ce.....

10. FETCH ARBITRATION .. ueiiiiiisereisissrrssissssssersssssssssssssssssssssrasssssssrssnssssssssnnnsssssssnnesssssnes

11 ALU ARBITRATION L.oiiuiiiiiiisississsssssssisssnsnssssssssnsssssssses

12, HANDLING STALLS ... s csiiinscssseeesssninees)

13. CONTENT OF THE RESERVATION STATIONFIFOS ... s 3128

14, THE OUTPUT FILE. ... oeerirrieiressrsssirrirsss s eersss s s ersrs s s ssns s s ssss s sssnssse s s sanss s ssssszznssss 3128

18, L FORM AT oot iiiitseii s erssseetss s e ssanansnssasnssssissassssssssisns s sesseninssssessnansssssesansssesessnnsasssssas 328

15.1 Interpolation of constant atlribULes . 3230

16. STAGING REGISTERS o.oiiiiiiiiiiiiiiiiiisiiissssssssissssssssssissssssssssssssssssssssssssssssssnssssssssnssssssssss 3236

17. THE PARAMETER CACHEooivooeececc s 3432

18. VERTEX POSITION EXPORTINGcoiiieerriiiirrrreiisnnrssseesnzsessssansssensnsssssssnsssssssennssssssesss 3%32 .

| Exhibit 2026 docRAGS_ y 75288 Bytes™* @ ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257234

ATI Ex. 2107
IPR2023-00922
Page 100 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 30f52

19, EXPORTING ARBITRATION oooooooeoooeeesoee s ossess oo seeseeesseeeees

P =D ol O NI =TSO

20.1 X OB NI o eieeiiiiieieieeeereiririiriiiiiiiiiiiiiiiiiii

20,2 PIXEL SN EUING ettt ettt eeeeeeeeas

21. SPECIAL INTERPOLATION MODES

21.1 REa] e SO AN S e e

21.2 Sprites/ XY screen coordinates/ FB information. ... 3633

213 AUto generated COUNIEIS o ettt e ettt 3634
213] VX Sha0erS oo 3734
2 3 D POl SNBOIS oieeeeeeteeeeeeeteteeetete ettt e et eteans 3734

22, STATE MANAGEMENT L.oiisiiisiiiiiiirniessssnsssssssssssmsssssssssssssssssssssssssssssssmsssssssssssssmssssss 3734

22.1 Parameter cache sSYNCHIONMIZa 0N .o o ettt aeeas 3734

23, XY ADDRESS IMPORT S ... o i iiiiiiereessiiirrarerrriresmesssssamrrrrsesrrrsssnsnssssrssrrrersmrsssssssssssassssmrsses 3835

23.1 e e N XS M DO S et 3835

24, REGISTERS L.iiiuuiiiiisiirerirsiusssmsnsssssissssssrssssssssmassssssssmssssssssssmsssssssssssssmssssssssssssssssssssmssssss 3835

24.1 0N O oo e eeee et eeeeeeeeeeeefieeiieieeeirrriies 3835

2 OME X i iiiiiiiiiieieeseiieisiiiisiieiieseesesssesiiiiiiisiisiscisisiiiiiiiiis 3835

25, DEBUG REGISTERSiiiiieiszrisssiirsiirisrssssszsssrssssssrsrssssssssssssssssrrnssnssssssssnzsnssssssmsorezmes 3936

25.1 O X ottt 3936

25 ONI O e ieeeeiieieieeeeeeseeeeeeeesseeeesisiieiieeiiiiieiiisiisiisiiis 3936

26. INTERFACES . .ottt s ee st s se e seesesessssesesesescssassssins 3938

261 External Interfaces . e, 3938
26.1.1 SCtoSQ :1JControl BUS .o 3937
2612 SQtoSP:Interpolator BUS ..o 4237
2613 8SQtoSX Interpolator BUS ... 4037
2614 SQtoSP:Staging RegisterData ... 4238
26 1.5 PAT0 SO VereX M a0 et a e 4338
26.1.6 SQtoCP.State repOrt o 4641
26 1.7 SQtoSX Control bUS ... 4644
2618 SXt0SQ:Outputfile comtrol. ... 4644
2619 8QtoTP. Control bUS ..o 4641
26.1.10 TPtoSQ: Texturestall ... 4742
26 L 1 S0 10 O TeXtUIE St ettt 4742
26 1.12 S0 10 SP: GPR and aUl0 COUMTET L e s e 4742
26,] 13 S0 10 S NS UG O NS oo ettt 4843
26.1.14 SPtoSQ: Constant address load/ Predicate Set ... 4844
26115 sQtoSPx constantbroadeast ... 4944
26.1.16 SPOtoSQ: Killvectorload 4944
26.1.17 8QtoCPRBBMbBUS. ..o 4944
26118 CP10SQ:RBBM BUS ..ot 4944

27. EXAMPLES OF PROGRAM EXECUTIONS. ... ooeeieeiiisssiirsiirsrsssinzsissssrsssssssssssssssnzssses 4945
27.1.1 Sequencer Control of a Vector of Vertices 4945
Exhibit 2026 clocRAG0_ ¥ 75288 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257235

ATI Ex. 2107
IPR2023-00922
Page 101 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 4 of 52

a4 OO A B !

27.1.2 Sequencer Control of a Vector of PIXeIS ..o

27 13 NOES. s
28. OPENISSUES ..o
A FEEEEéi i b e R A
1 Ton el B2 le 3
+ot P == 4
ol Dyt Tolenas o {
. = & {
3 Control-Graoh
: Fot A S S
2 INTERPOLATED DATA BL
o METRUCTION BTOMRE
4. SEQUENCERINST
5, ONSTANT STOR
g1 & orao i
Tt ¥t OFGH
5 Management-olth

50 De-allocate Block 1
r-n = ok A A LR e
50 Oine ion-oflncremental mod 1S9
r-n 1S B ¥ Hch R L
B B T B O B Y s g
5 4) T aT- W Aot aaYantotuly I3 20
g + P T
B L L L 20
G DR ING - AMND- B RAMOHES oo sy v 55 7 T T T T T N R T &1
61— The controlling 81ate e TR R TR R R T T 241
& The ntral Elow BProoram 2
& B e s L L e R

[

N TN N O

20,

2

1 Veorts: cin
= v +

G

Exhibit 2026 docRAGS_ ¥ 75288 Bytes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257236

ATI Ex. 2107
IPR2023-00922
Page 102 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 50f52

a8 £y ad by

2{:1 SQ-t Rarameter Cache-Read-control-buUs s
26-1- SQ-to-SX-Rarameter Cache-Mux-6ontFOlBUS e va
26-1-5——8Q-to-SP:-Staging-Register Date e 7
26- 16— PA6-SQ-Merexinterface e 7
26-17—8Q 10 CP-Sta N S ———— 4
261880 te SN ControlbUS e 4
26-1-9 sX oS0 Outputfilecontiob e 4
26-1-10-8Qte TP e .~ 4
O TR 16-SQ-Texture-stal e 4
O SQ-16-SP-Texttre-stal e 4
26-1-13—SQ16-SP-GPRRParametercache-controland-auto-counter —————————rre 4
gk ot e 3Ty ——— 4
26-1-15 SR 16 SQ: Constantaddressload—oooooooooo o 44
261168010 SR constantbroadeast e 44
26117 —SP0Ote-8QKillveetoroat e 44
26- 1188016 CPRBBM-BUS e 44
26119 CPR 16 SQRBBM-BUS 44
I R T 44
1 Seguencer-Contro aVe e Y Y 3T — 4
2712 Sequencer-Control-of-a- Ve etor 6f-PIXeIS e
T 1 4
Exhibit 2026 clocRAG0_ ¥ 75288 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257237

ATI Ex. 2107
IPR2023-00922
Page 103 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201525 8 of 52
¥} Tatais Y] o
L o S — 47
Exhibit 2026 docRAGS_ ¥ 75288 Bytes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257238

ATI Ex. 2107
IPR2023-00922
Page 104 of 260

ﬂ:} ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

.

. . 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 7 of 52
Y] b TYENY A

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.

Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ-SPO interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—8Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement,

Updated the interfaces and added a section on
exporting rules.

Exhibit 2026 00_Seq e 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257239

ATI Ex. 2107
IPR2023-00922
Page 105 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 8of 52
¥] Talaisl Y] by
1. Qverview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separale sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257240

ATI Ex. 2107
IPR2023-00922
Page 106 of 260

NN

AMD1044_0257241

xxx @ 20k 13007 UO 39110N WOUAdOD 20UBIDIDY "[BIUSPURUOYD |LY @ xxxsoVasszas oop: 00v4I0FOZ07 T
MIIAIIA0 J10UATIDAG [RISUR) 1] 2anSL
7 40 pEOT UBISLED
g - g4 J g * g4 | ”
i i i T e N L
7 ¥1Ya LM XL
AmO\On_ = 20f0d = g0/0d = o e | e
o ﬁ avot | sseppy
73 3 & INVLSHOD S 9e dl e
N ~ , | SHILINIO
| | Syad N&
avaY Od ¥
e o ot |
¥]
| U~ 3LVLS HOL3d
wed | ds ds ds ds JHOLSO | aowds
) , . LSNIXEL
I~ = Sad
alvlsL
o ¥agy
e L e e Lsawvomang
JEN X i i, i, LNy Al
................. - |
> ! | = ZHOLS LSNI
a LN = HALNI = d3LNI [« * !
| - o B
, JOMINGD it
, avon
w, m _,». ,, S e
-
HYESSONO)
H pEsy 40—
spoo | m e]
m%mw SOLSAYND T JOMINGD TOHINGD
53 ,.mvc_ ASUSA o Y 1 do
TOULNOD SINVLISNOD | pedien
PEIREN sy
78 40
)
, TIviS
e} 7Y PLUR ~ (A1
G406 YATHHYOKXKXD-NID SZG10C tequisasg ¢ 100z ‘tequieides 7 . -
FOvd ANN AFY-LNIANND0J 3lva Lia3 FLvA JLYNIDIHIO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ATI Ex. 2107

IPR2023-

00922

Page 107 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 10 of 52

LY OV A B by

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

A
Possible delay for available GPR’s
g

I?‘
e

Texture clause 0 | gy
Feservation station

FIFO
KLU clause 0
|a——eservation station

FIFO

l

[Fexture clause 1
keservation station

FIFO .
exture arbitrator

lag— 2 LU clause 1
Feservation station

FIFO
Fexture clause 2

eservation station

exture arbitrator

FIFO
f— LU clause 2
reservation station

FIFO
[Texture clause 3

reservation station

FIFO
«f— LU clase 3
reservation station

FIFO
[Texture clause 4

reservation station

FIFO
af— LU clause 4
reservation station

FIFO
[Fexture clause 5

reservation station

FIFO

lagg— (AL U clause §
reservation station

FIFO
IFexture clause 6
reservation station

FIFO
lagg— AL U clause 6
reservation station

FIFO
IPexture clause 7
eservation station

FIFO

NSSRRSRARRENANI
LI T

lag— AL U clause 7
feservation station

Figure 2: Reservation stations and arbiters
There are two sets of the above figure, one for vertices and one for pixels.
Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet

consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257242

ATI Ex. 2107
IPR2023-00922
Page 108 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 11 of 52

F) A BA

o
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level O fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 feich machine increments the counter of FIFO 1 to
signify to the ALU O that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can't be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn't have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state

machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

Exhibit 2026 clocRAG0_ ¥ 75288 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257243

ATI Ex. 2107
IPR2023-00922
Page 109 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 201525 12 of 52
Y OO A Blmvals

| 1.2 Data Flow graph (SP)

| —— A
f scalar input/output
v

I
|
!
E—

instruction

tants from RE

Register File 4

MAC
pipeline stage i J\ te e reqy
<
o —
]
s A
g
= Register File < \
1 i z |
scalar input/output A I
s y 4 MAC - text{ |requed
pipeline stage !
=
c
)
e
< R —
S « A
3] Q]
= 12 - LN
! Register File -]
3
E— — i_ =
= @
o s’ B J> MA 1 texture| % quest %*ﬁ\
ar input/output 5
p) %jjﬁ
pipeline stage 3 5 %
AR | z
w e 4
§| |5 ¥
k] = Register File
s 2 #
3 < y— N
=
=
o[__l__..dfq Al | texture rej pst
~ <\/I <scalar input/out ﬁ \}
14 1
J
- S SO — Mux
b b @
e
o
5]
@
4
2
3
2
~-

to Primitive Assembly Unit or RenderBackend

Exhibit 2026 docR400

Figure 3: The shader Pipe

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257244

ATI Ex. 2107
IPR2023-00922
Page 110 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXAXXX-REVA 13 of 52
1Y) Tata
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
Clause # + Rdy
WrAddr IS SEQ CcsT WrAddr
CMD
csT
L
Phess oMD éST'CSTiCS% IBX A B CWec
RdAddr | L A WiSeal yragar
¥ k4 ¥ V k 4 V V
|
FETCH SP “ OF
WrAddr s

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector

Figure 4: Sequencer Control interfaces

control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 6. docRA00

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257245

ATI Ex. 2107
IPR2023-00922
Page 111 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201525 14 of 52
] Tatals ¥] don
T
RE !
|
i
ToRB ‘
A0 Al
|
[
I 15 CROSSBAR (4x64 bits) |
| - T
s buffer (ping-pong buffer) T
1 AD Al A2 B0 (28 bits * 2 (14) + 8 bits * 6 (delta s)+4 exg
bits*6)* 16 (quads) * 2 (double-buffered) AQ Al A2 BO
4096 bits
2 B1 <o ¢t c2 32x128
B1 co ¢ c2
3 c3 c4 c5 DO XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 c4 =3 Do
768 bits
32324
4 Dt o2 E0 Et
D1 D2 EQ Et
1 : 1 1
INTERPOLATORS ‘ 1 : 1 1
FIX-FLOAT + EXPANSION
ANy
N]
|
512 _/T_
: s =
| N
|
|
N
i 1

o o [| | [[| || [| ﬂﬂﬁ jﬁﬁﬁ
!ULI‘ZUL‘ SRS 1UR};2UR‘ SUR‘ AUR || ILL 2L 3L L 1 AR || R LAR | X

_4_4_4

_4_4\~

Exhibit 2026 docR400

_4_4_1

Figure 5: Interpolation buffers

_A\g_l

75288 Bytes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257246

ATI Ex. 2107
IPR2023-00922
Page 112 of 260

»er @ 96 J19A00 UO 310N WBUAdOD 30UBISIBY [HUSPYUOD [LY @ wrsso¥a 8825

wiziSerp Supup uopejodiduy (9 oMSL

i

CETATATHE]

A
XAAN cd ld AX
€9\L¥ | 1E| SI €9 Ly | 1e | sl
-09-v¥ | -ez| -zy| 13| oa| 20| og 13| oa| 20| og -00-vv -8z |21 | ©
AN AL A AXIAX | AX | AX | 98
8S €V | L2 | 1L 65 €v |2 |,
96 ot | -vz| -g| 03 10 o) zv| 03 10 o) ev [-os|-0v |-v2 | 8 | o
AN ALA AX| AX | AX | AX
ss |6¢ | €2] ssiee ez |, |,
2grog | -0z|) 00 zal vo v 02 zal| vo W [-es|-oe -0z o) o
AN A AX| AX | AX
1SS | 6| o g 15 6e 16k o] o
-8y ze | ol 1a €0/ 19| ov la| €0 18| o¥| -8y ze -9t |y | ds
AA|A AX| AX | AX
] 0a pava 7} o8 €
AX 13| 14 AX 0a| od A 120 | 20| xx | 0g |08 ds
03 o) %) Zv 4
ax | 03] 08 AX S0 150 | xx|lo | 10 x| & s
zd) 09 I b
AX | Q|20 | 5 | ¥O | ¥ | xx |00 | 0D x| Y gs
Ia) ig ov 0
A talia ax|€0 | €0 x| ta| 18| x| Y| V] 45
el ek § Sk W 1
€ZL22)|1ZL 02161 [8LL 1L 9Ll |SLL | pLLl €bL|Zil L]0l 61 | 8L | ZL | 9L |SL | ¥l €L |2l |1l | oL
ZGgio gl YAZEHOOKXD-NID m,mum rm‘N @m%cmﬁmmw‘m 100z ‘tequieides 7 . -
FOvd TANN AZYE-LNIWND0d 31vad Lia3 31vAd JLYNIDIHO k

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257247

ATI Ex. 2107

IPR2023-
Page 113 of 260

00922

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 16 of 52

YA B ks

84
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

i TRV Y & o S opntroid-a ach i o Lo

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around

points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257248

ATI Ex. 2107
IPR2023-00922
Page 114 of 260

»er @ 96 J19A00 UO 310N WBUAdOD 30UBISIBY [HUSPYUOD [LY @ wrsso¥a 8825

ATOWOW UOTISTLIJSUT 0} JO MIIA §,JD) oY, i/ mSp[

0 9p00 Sd

) 0 8poD SA
apoo auj} Bunoaxs
HEIS 0] 318UM SMOUY|
1sousnbes os syoolg

-gng sjeudoidde \/ g 9pod Sd
0} s95S8IpPE

MBS 8PO0 SOWM 4D g 2P0 SA

Y ®p00 Sd

Y 9p0D SA

" ovoopaels
9 Ul [-lEoy

Bury s|buis - L IAON

5601

‘9p0o0 ay} Bupnosxs
1S 0} 2I8UMm SMOUY
1sousnbeg 0s s)4o0lg

-gng ajeudoldde
0} 895S2IppE
1EJS 8P00 SBM gD

. ~33vE YIAVHS XILH3A

QOPHYOR Bl WARKE

T

J 8pod 8d

g 8p0d sd

V¥ 8p00 Sd

J8p03J SA

3svd MIAYHS 13XId

g 8poD SA

" epoo pereus
% Wi |-{eay]
Bury 1end - 0 IAON

V¥ 8p03 SA

3ASvE HIAVHS XILH3IA

AsieD "y uyo
ooz pomedn MOWBIAl UORONIISU] JO SMBIA S,dD 00+

caio Ll
ELL

YATH-XXXXXO-NIO
WAN AFH-LNIWND0A

b IANAG " LAl

SZG10C tequisiaas ¥
31vd 11d3

100z ‘1equieldes 47 0l
31va ALYNIOINO k

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257249

ATI Ex. 2107

IPR2023-

00922

Page 115 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 18 of 52

LY OV A B by

4. Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128182 320x96 bits (128 fexture slates
for reqular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. lts size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
5Q decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257250

ATI Ex. 2107
IPR2023-00922
Page 116 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 19 of 52
i

SEYI A BA

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

532 Proposal for R400LE constant management

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure-8:-De-allocation-mechanismFigure-8:-De
allocation-mechaniem). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257251

ATI Ex. 2107
IPR2023-00922
Page 117 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 20 0f52
Y OYYA Bl

Free List
Free
Address

Free_ptr—»

Current/Last

Renaming Table
Context 0=> N

Context N
(8 rows of 16- 8 e e .
1!;; pm{s_ical => gt cocksy Logical Address
entries copy o
in eight clooks) | Context 1 & Context
[]
@
@
i Context N 3 Physical
|
Address
cdlese |
used nex
Address
to Ailocats
Global Register
Data Bus Staging Data
Constants Buffer Physical
focation < Memory
available
WRTR Staging Write Addr
[—r—>
physical Dealloc
address COUAMS next
to physical
schedule address
for ready N
de-alioc } for allocate
] |
Logical address | i C Se? :
Onthe — p~ - onstan
GlbRegBus A L3 & Request
when Ish are zero This .
first word of write . Reset Context
Renaming Table Dirty Dirt |
for 1 Context or ery ! |
Cumentiast || P L | Context &
Physical ddgress Adgress kf [Logcal |
Address (Only (if set Address
Loi;ei;al de- don't }
Address allocate allocate
ifset) | or de-
] allocate) | Renaming
table
N-Contexts

Exhibit 2026 docR400

behind Set State load - 16 clocks)
all other Set States just write one

Copy Last held above to
Current Context on receipt
of Set Constant for a

new context (Hide loading —_—¥

entry to current state.

Figure 8: Constant management

75288 Bytes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257252

ATI Ex. 2107
IPR2023-00922
Page 118 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXOXXAX-REVA 21 0f52
. ¥:) N A KA
SQ_STATE#
ADDR
DEALOC

Eree List |l ONT VALUE | COUNTERS ——WRITE_ENABLE

|
|
i
| PREVIOUS
NOT | STATE
‘ NEW
| STATE
VALUE
fog—
— =
VALID
. i
OR
le———SQ IDLE
AND la——PA_IDLE
ke CP_NEW_STATE_CNTL—
REMAPPING
TABLE e SET CTXBITS

Figure 9: De-allocation hanism for R460LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257253

ATI Ex. 2107
IPR2023-00922
Page 119 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201525 22 of 52

} 5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

[Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257254

ATI Ex. 2107
IPR2023-00922
Page 120 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 23 of 52

F) ke 7Y Y]

&
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2X /I Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers aliocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 10: The instruction store

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257255

ATI Ex. 2107
IPR2023-00922
Page 121 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201525 24 of 52

| 6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.
We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

Examples of control flow programs are located in the R400 programming guide document.
The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] / eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0])[7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.
The control program for a given clause is executed to completion before moving to another clause, (with the

exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute

Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call

Return

Loop_start

Loop_end

NOP

Execute, causes the specified number of instructions in instruction store to be executed.

Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.

Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

[Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257256

ATI Ex. 2107
IPR2023-00922
Page 122 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 25 of 52
AR des

RE
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46...42 | 41 40...24 23...12 11..0
Addressing 00001 Last RESERVED Instruction | Exec Address
count

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP

47 [46 ... 42 41 | 40...0
Addressing | 00010 | Last | RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46...42 | 41 40 40.39 .. 3231 3130 ... 24 23 .12 11...0 s

3332 -

Addressing | 00011 Last | RESERVED | Boolean | Condition | RESERVED Instruction Exec [
address count Address |

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 ...42 | 41 4040 ... 3433 ... 3231 31.30... 24 23 .12 11...0
3534 3332
Addressing 00100 Last | RESERVED | Predicate | Condition | RESERVED | Instruction | Exec Address
vector count

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified humber of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start E
47 |46 .42 | 41 .17 [16...12 | 11..0 o
Exhibit 2026 clocRAG0_ ¥ 75288 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »* | T

AMD1044_0257257

ATI Ex. 2107
IPR2023-00922
Page 123 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201525 26 of 52
} 84 NV A BE b

00101 RESERVED loop ID Jump address
Addressing

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 ... 42 41 .17 16 .12 11..0
00110 RESERVED loop ID start address
Addressing

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 46 ... 42 41 ... 3534 3433 ... 312 34-30...12 11...0
3332
00111 RESERVED Predicate | Condition RESERVED Jump address
Addressing vector

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return

47 46 ... 42 41..0

01000 RESERVED

Addressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47 46 ... 42 41...40% 40-39 ... 3231 3130 30-29...12 11...0
3332
01001 RESERVED Boolean | Condition | FWonly | RESERVED Jump address
Addressing address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the AP

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# — SETEQO

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257258

ATI Ex. 2107
IPR2023-00922
Page 124 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 27 of 52
3

Fil AR b
PRED_SETE1_# - SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interieave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing

Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit8

0 0 ‘absolute register’
0 1 ‘relative register'
1 0 ‘previous vector'
1 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:
Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses

For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257259

ATI Ex. 2107
IPR2023-00922
Page 125 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 28 of 52

a4 OV A B by

6.7 Debugging the Shaders

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6.7.2 Method 2: Exporting the values in the GPRs (12)

The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal

2) Debug Kill

3) Debug Addr + Count
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257260

ATI Ex. 2107
IPR2023-00922
Page 126 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201525
A Tl ;]

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
29 of 52

MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and

PIXEL_REG_SIZE for pixels.

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257261

ATI Ex. 2107
IPR2023-00922
Page 127 of 260

ORIGINATE DATE EDIT DATE PAGE

R400 Sequencer Specification

24 September, 2001 4 September, 201525 30 of 52

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to O and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2026 docRAG0- y 75288 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page @ »

AMD1044_0257262

ATI Ex. 2107
IPR2023-00922
Page 128 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 31 0of 52
Tal A

P}

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFQOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Quiput File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. 1J Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ's (one 1J per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

A0 =I(H-1(0)
AOLT =J()-J(0)
AO2f =1(2)-1(0) PO P1
AO2J = J(2)-J(0)
AO3T =1(3)-1(0)
A03J =J(3)-J(0) P2 P3

PO=C+I(0)*(A-C)+J(0)*(B-C)

Pl=P0+A01I*(4A-C)+A0LJ *(B-C)
P2 =P0+A02I *(A-C)+A02J *(B-C)
P3=P0+A03]*(A-C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257263

ATI Ex. 2107
IPR2023-00922
Page 129 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 32 of 52

LY OV A B by

} Adds: 8

FORMAT OF PU's IJ : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the 1Js (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A= B and B =C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
else if (I=0)or (4 =0)) and
((J =0)or (1-I-J =0)) and
((1-4-1=0)or (1=0) {
if(1 1= 0) {
PO =A;
Yelse if(d 1= 0) {
PO =B;
}else {
PO=C;

/frest of the quad interpolated normally

}

else

{
}

normal interpolation

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415]]161718192021222324252627282930313233343536373839
40414243444546471|48495051525354555657 585960616263

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(/4567202122233637383952535455(/89101124252627
404142435657 5859|1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

[Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257264

ATI Ex. 2107
IPR2023-00922
Page 130 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 20152 GEN-CXXXXX-REVA 33 of 52
¥ Talek I Jes.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure-12Figure-12. The area of the fixed-to-float converters and the VSISRs for this method is roughly

estimated as 0.759sgmm using the R300 process. The gate count estimate is shown in Figure 11FEigure-14Figure-14.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 116312 60.57813 u” per bit
Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712 per converter
Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 11:Area Estimate for VGT to

Exhibit 2026 docR400

Shader Interface

75288 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257265

ATI Ex. 2107
IPR2023-00922
Page 131 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 34 of 52

B4 VYA B by

=

VGT BLOCK
(IN PA)

VECTOR ENGINE

VECTOR ENGINE

Figure 12:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER ADDRESS

\
4 bits ‘ 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17"‘) is going to have the address 00000001000, the 18" 00010001 000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257266

ATI Ex. 2107
IPR2023-00922
Page 132 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 35 0f 52
k¥] {2 TaTa' E:3

18. Vertex position exporting

On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration

Here are the rules for co-issuing exporting ALU clauses.
1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

1SS UE: Do-we-moy e-para

20. Exporting Rules

20.1 Parameter caches exports

We support masking and out of order exports to the parameter caches. So one can export multiple times to the same
PC line using different masks.

20.2 Memory exports .

Memory exports don't support masking. However, you can export oul of order to memory locations.

20.3 Position exports T

Position exports have to be done IN ORDER and don’t support masking.

20.21. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20421.1 Vertex Shading 1

0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export
(point_h,point_w,edgeflag,misc)
20.221.2 Pixel Shading 1
o} - Color for buffer O (primary)
1 - Color for buffer 1

Extibit 2026 docR400_Sequencerdoc 75288 Bytes*** ® ATI Confidential. Reference Copyright Notice on Cover Page © ***

;: Formatted: Bullets and Numbering

-

o { Formatted: Bullets and Numbering

= ‘[Formatted: Bullets and Numbering }

; -1 Formatted

: Bullets and Numbering

Formatted:

AMD1044_0257267

ATI Ex. 2107
IPR2023-00922
Page 133 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE \:‘ o if o : Sl

24 September, 2001 4 September, 201525 36 of 52
& Talais) Y] by

2 - Color for buffer 2

3 - Color for buffer 3

4:7 - Empty

8 - Buffer 0 Color/Fog (primary)

9 - Buffer 1 Color/Fog

10 - Buffer 2 Color/Fog

11 - Buffer 3 Color/Fog

12:15 - Empty

16:31 - Emptly (Reserved?)
32:43 - 12 exports for multipass pixel shaders.

44:47 - Empty

48:59 - 12 debug exports (interpret as normal pixel export)
60 - export addressing mode

61:62 - Empty

63 - Z for primary buffer (Z exported to ‘alpha’ component)

-

“/‘ ‘[_I;;;matted; Bullets and Numbérinﬁ ‘ j
2122 Special Interpolation modes -

21122 1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering aliowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register

mapped memory. s
— ,;“{‘ Formatted: Bullets and Numbering]

21222 2 Sprites/ XY screen coordinates/ FB information

When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlied by the gen_lI0 register (in SQj) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_l0 disable, snd_xy disable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy disable, gen_st — |0 = No modification

Param_Gen_lO disable, snd_xy enable, no gen_st ~ 10 = No modification

Param_Gen_|0 disable, snd_xy enable, gen_st — |0 = No modification

Param_Gen_|0 enable, snd_xy disable, no gen_st -~ I0 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st — I0 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, s, t

21322 3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the o pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on

— /—-[Formatted: Bullets a\nd ‘Nq‘m‘bering _)

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257268

ATI Ex. 2107
IPR2023-00922
Page 134 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201525

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
37 of 52

LA T &
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to

keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for

all elements in the vector.

213122 3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means

that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

213222 3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|O is enabled, the data will be put in the x field of
the 2" register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1% register (R0.x).

AUTO

STGO

COUNT

STGH

INTERPOLATORS

3

| AUTO COUNT | 000000

3

MUX /

GPRO ‘
|
|
i
i

The Auto Count Value is
broadcast to all GPRs. ltis
loaded into a register wich has
its LSBs hardwired to the
GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count
value and it is loaded into the
GPRs to be either used to
retrieve data using the TP or
sent to the SX forthe RB to
use it to write the data to

memory

Figure 13: GPR input mux Control

22723, State management

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the

programs as they enter the last ALU clause.

22123 1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the

sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than O before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

Exhibit 6. docRA00

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

{Formatted: Bullets and Numbering j

'

Formatted: Bullets and Numbering

ﬁormatted: Bullets and Numbering £

{Formatted: Bullets and Numbering

[

AMD1044_0257269

ATI Ex. 2107
IPR2023-00922
Page 135 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 | 4 September, 201525 38 of 52 - i
1 YA B R iy ‘[Formatted: Bullets and Numbering

2324 XY Address imports“

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the |J data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.221:2 for details on how to control the interpolation in this mode.

23-124.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

2425 Registers
24125 1 Control

e j{ Formatted: Bullets and Numbering

: ;Qj{ Formatted: Bullets and Numbering

P

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

24225 2 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE

VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO_VERT

Exhibit 2026 docR400

Dynamic allocation (pixel/vertex) of the register file on or off.

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

policy of the arbitration between vertexes and pixels

interleaved, separate

start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)

start point for the pixel shader instruction store

debug state register. Only allows one program at a time into the GPRs

debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)

256*4 ALU constants + 32*6 texture states? (physically mapped)

This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from O to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

- ,}[Formatted: Bullets and Numbering

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader in the instruction store

base pointer for the vertex shader in the instruction store

size of the vertex shader (# of instructions in control program/2)

size of the pixel shader (# of instructions in control program/2)

size of the pixel shader (cntl+instructions)

size of the vertex shader (cntl+instructions)

number of GPRs to allocate for pixel shader programs

number of GPRs to allocate for vertex shader programs

One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

0:vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257270

ATI Ex. 2107
IPR2023-00922
Page 136 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 39 0f 52
RA AR
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the ¢yl wrapping
(O=linear, 1=cylindrical).
PS_EXPORT_MODE Oxxxx : Normal mode

xxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

A4 _‘F‘YD QT.—M!AQL(apdad s £ ALl el oy el rhine {rm 1 ‘:«\go Patiy i
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass

VS_EXPORT

COUNT{0...6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_IO Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the resuits into RO-1 for pixel shaders
and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 256 boolean bits

CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

,/‘{ Formatted: Bullets and Numbering

25.26. DEBUG Regqisters

25-126.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

DB_CLAUSE

_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

DB_CLAUSE

_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

- ,: :;f Formatted: Bullets and Numbering

25:226.2 Control T

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory

DB_TSTATE_MEMSIZE Size of the physical texture state memory

- 7| Formatted: Bullets and Numbering]:

2627 Interfaces

261271 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

272 SC to SP Interfaces

- ,f{ Formatted: Bullets and Numbering J

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257271

ATI Ex. 2107
IPR2023-00922
Page 137 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201525 40 of 52 : ; :
ia 0024 B lssals =~ | Formatted: Bullets and Numbering

2721 SC SP# v

There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the 1.J data for pixel interpolation. For the entire system, two guads per clock are transferred o the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref P | => 84 20 Floating Point | value

Ref P J => 84 20 Floating Point J value

Delta Pix | (x3) => 84 8 Floaling Poirt Delta | value

Delta P J (x3) => 84 .8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, XY data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additionsl clock, The XY data is sent on the lower 24 bits of the data bus with faceness in the msb,
Transfers across these interfaces are synchronized with the SC $Q 1J Control Bus fransfers,

The data transfer across each of these busses is controlled by a IJ BUF INUSE COUNT in the S8C. Each time the
SC has sent a pixel vector's worth of data to the SPs, he will increment the IJ BUF INUSE COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX _BUFER MINUS 2 if not
the SC will stall until the 8Q returns a pipelined pulse to decrement the count when he has scheduled a buffer free,
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |.J data and two buffers of XY data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers,

In _at least the initial version, the 8C shall send 16 guads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX 8P 8Q and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and mulliple new vector signals should cause a parlial vector and that this would not really be significant

performance hit.)

Name Bits | Description
SC SP# data 64 Winformation sent over 2 clocks (or XY in 24 L.8Bs with faceness in upper bif)
Type 0 or 1, First clock |, second clic J
Field ULeC URC LLC LRC
Bits 63,39 38:26 [25:13 12:0
Format SE4M20 SE4MS SE4M8 SE4MS
Type 2
Field Face X Y
Bits 63 [23:12 11:01
Format Bit Unsigned Unsigned
SC_SP# valid 1 Valid
SC_SP# last quad 1 This bit will be set on the last transfer of data per quad.
SC_SP# type 2 0 -» Indicates centroids
1.-> Indicates centers
2 -> Indicates XY Data and faceness on data bus
The SC shall look at state data o determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u# _in the verilog module statement for
the 8C and the 8P block will have neither because the instantiation will insert the prefic,

2722 8C 8Q

This is the control information sent fo the segquencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 46 bits.

- Formatted: Bullets and Numbering

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257272

ATI Ex. 2107
IPR2023-00922
Page 138 of 260

ORIGINATE DATE
24 September, 2001

B4

S

4 September, 201525
i,

YA B

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE
41 of 52

Nay

me

Bits | Description

8C _8Q data

48 Control Data sent to the 8Q

1 clk transfers
Event

-~ valid data consist of event id and

state id. Instruct SQ to post an

event vector to send state id and

event id through request fifo

and onto the reservation stations

making sure state id and/or event id

gels back to the CP. Evenis only

follow end of packets so no pixel

vectors will be in progress.

Empty Quad Mask ~ Transfer Control data

consisting of pc_dealloc

or new vector. Receiptofthisisto

transfer pc_dealloc or new vector

without any valid guad data. New

vector will always be posted fo

request fifo and pc_dealioc will be

attached to any pixel vector

outstanding or posted in request fifo

if no valid quad outstanding.

2 cliktransfers

Quad Data Valid ~ Sending quad daia with or

without new_vector or pc_dealloc,

New vector will be posted to request

fifo with or without a pixel vector and

¢ dealloc will be posted with a pixel

vector uniess none is in progress. In

this case the pc_dealloc will be

posted in the request gueye,

Filler quads will be transferred with

The Quad mask sef but the pixel

corresponding pixel mask set to

ZEVr0.

SC_8Q valid

Y

SC sending valid data, 2™ clk could be all zeroes

8C_8Q data ~ first clock and second clock transfers are shown in the table below.

Naime } BitField I Bits | Description
! |
[Clock Transfer
8C_8Q event sl 1 This transfer is a 1 clock event vector
Force quad _mask = new vector=pc_dealloc=0
SC 8Q event id 21 2 This field identifies the event
0 => denotes an End Of State Event
1==TBD
8C_8Q pe dealloc 3 1 Deallocation token for the Parameter Cache
SC_5Q new vector 4 1 The 8Q must wait for Vertex shader done count > 0 and after
dispatching the Pixel Vector the SQ will decrement the count.
SC 8Q guad mask 8:5] 4 Quad Write mask left o right SP0O => 8P3
8C_8Q end of prim 9 1 End Of the primitive
8C 80 state id 12101 13 State/constant pointer (6*3+3)
8C_8Q_pix_mask 28131 18 Yalid bils for all pixels SP0O=»8P3 (UL URLLLR)
SC _8Q prim type [31:28] ' 3 Stippled line and Real time command need to load tex cords from

Exhibit 2026 docR400

75288 Bytes*** ©

ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257273

ATI Ex. 2107
IPR2023-00922
Page 139 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201525 42 of 52
B4 DDA BE i
alternate buffer
000: Normal
100: Realtime
101: Line AA
110 Point AA (Sprite)
8C_8Q pec ptr0 42:32]1 | 11 Parameter Cache pointer for vertex 0
|t 2nd Clock Transfer
SC 5Q pe pirt 10:0 11 Parameter Cache pointer for vertex 1
8C _8Q pc ptr2 21410 1At Parameter Cache pointer for vertex 2
8C 80 lod correct 45221 124 LOD correction per quad (6 bits per guad)
Name Bits | Description
SQ_8C free buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
8Q _8C dec cntr ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event
sent to prevent SC from overflowing 8Q interpolator/Reservation request fifo,

The scan converter will submit a partial vector whenever:

1.3 He gets a primitive marked with an end of packet signal.

2. A current pixel vector is being assembled with at least one or more valid guads and the vector has been

-* ':f *‘{ Formatted: Bullets and Numbering

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial

vector (up to 16quads with zero pixel mask fo fill out the vector)

prior fo submitting the new vecior

marker'primitive,

(This will prevert a hang which can be demonstrated when all primitives in a packet three vectors are culled

except for a one quad primitive that

eis _marked pc dealloc (vertices maximum size). In this case two

new_vectors are submitted and processed, but then one valid guad with the pc dealloc creates a vector and then

the new would wait for another vertex vector to be

rocessed, but the one being waited for could never export

until the pc_dealloc signal made it through and thus the hang.)

= ‘[Formatted: Bullets and Numbering

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

6. C to-SQ IJ-Controlbus
igs by !n 4 mt {"x f' rd %, nrn!z Xfear{ !n EF ""?”f‘ o k7
exesuie-a-shaderpregraro sept-pheale-This-tnformation ¢) H-SEMDM Y Js-assertad-the
kel eleot i rpires g, rreyy ry N i feviy dm evenieses Fey e menind o e o (Fr i sathary
g El & ¥ -} El * = 4
jue nt-All-pixele-from-the p-of de-are-from-the-sam imitive—all de-of a-voctorare-from-4 a
repder-state.
ﬂ’ F &d:BIIis dN:b‘
6-1-2-8Q to-SP-Interpolatorbus N {orT e J
26-1-327.2.3 SQ to SX: Interpolator bus
Name Direction Bits | Description
[SQ_SEEX interp_flat_vix S5Q--»8Px 2 Provoking vertex for flat shading
|| SQ_SPXx_interp_flat_gourau | SQ—SPx 1 Flat or gouraud shading
d
SQ_SEXx_interp_cyl_wrap 5Q--»8Px 4 Wich channel needs to be cylindrical wrapped
SQ_SX0x_plrimud SQ—-8SXx 11 Parameter Cache Pointer
SQ_SXx_ptrermut SQ--»SXx 11 Parameter Cache Pointer
SQ_SXx_ptr3muxd SQ—8Xx 11 Parameter Cache Pointer
SQ_S8Xx_RT_switchit sel SQ--»8Xx 1 Selects between RT and Normal data
SQ 8Xx pc wr en SQ--8Xx 1 Write enable for the PC memories
SQ 8Xx pc wr addr SQ--8Xx 7 Write address for the PCs
[3Q_S8Xx_pc_cmask | 50 »SXx 4 Channel mask o e
) R - /—[Formatted: Bullets and Numbering
26-1-427.2 4 SQ to SP: Staging Register Data N = T

[Name

| Direction

| Bits | Description

I Exhibit 2026 docR400

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257274

ATI Ex. 2107
IPR2023-00922
Page 140 of 260

”/ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
L
. 24 September, 2001 4 September, 201525 GEN-CXXXXX-REVA 43 of 52
¥ N A
SQ_SPx_vgt-vsisrvsr_data SQ—-SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_wvgt-wsisrvgr double SQ—SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0O_ data-valid SQ-»SP0 1 Data is valid
SQ_S8P1_ data-valid SQ—-SP1 1 Data is valid
SQ_8P2_ data-valid SQ-8P2 1 Data is valid
SQ_8P3_ data_valid SQ--SP3 1 Data is valid
26-1.527 2.5 BAVGT to SQ : Vertex inferface -

2615127 2 5 1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant compilicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name Bits

Description

PAVGT SQ_-vgt-vsisr_data | 96

Painters of indexes or HOS surface information

VGTRA_SQ_-vgt-vsisr_doubl | 1
e

0: Normal 96 bits per vert 1: double 192 bits per vert

VGTPA.- 8Q_-vgt-end_of v |1
ector

Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of vector" is set on the second vector)

VGTRA_SQ_-vgt-vsisrindx_v
alid

-

Vsisr data is valid

VYGTRA SQ_-—vgt-state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“BAVGT SQ_vgt end_of vector” is high.

YGTRA SQ_-—vet-send 1 Data on the VGT_S8Q is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_VGT PA-vgtrtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

2615227 252 Interface Diagrams -

Exhibit 6. docRA00

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

4:‘ —[Formatted: Bullets and Numbering }

AMD1044_0257275

ATI Ex. 2107
IPR2023-00922
Page 141 of 260

»er @ 964 19700 UO 301ION WBUAdOD 30UBIDIBY [EHUDPYUOD [LY @ wnsoa 8025

MIONINOIS
HIAYHS

i SRR A LR

1848 LEES
0 ad = T 9bA ¥a 68 % > o3 Z usd >
¥
T
am ————— O3Y | £ e OJY [QHw ““““““
7 QuEs pues 364 D5 wd 2 aNds e
<& Alawd sy
19A

i < <@ <
hn o e mrvie] oad [g R e Z THS HIVAE

EEEERE] i
- anis <.) <
h ¥ X 1oL om0 o | O3 [A Zoaoen 30 pus aba 0% wa | D0 [7 ¥OLOEA IO (NE
<l s o <
had TN wIEA0d dSTSA o3y & g STCNOP ISTSA 1DA O Wi oR & Z ATA0 HSISA
< < < i
- i T wiud dsrea] oo [e Trtp dsTen A oo owa | oY [NIl HOTCL

AL ARATY Al
.
[4<F =R 474 SZGLOT Jequsidag ¢ 100z ‘lequiaydes #Z . .
39vd uoleoyioads Jeousnbes 00Ky 31va Lia3 31YA ILYNIOINO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257276

ATI Ex. 2107
IPR2023-00922
Page 142 of 260

»er @ 96 J19A00 UO 310N WBUAdOD 30UBISIBY [HUSPYUOD [LY @ wrsso¥a 8825

"BOE[ISIU| IPA DS Vd 10} WEIBEI(] [Bo1b0] palieiad

NOISSIWSNYdL SdOLS dHANES
NOISSIWSNYAL SLUVLS-Hd JEATHDHY
NOISSIWSNYAL SdOLS HHAIHDHA

3

v

"} BInbig

QOPHYOR Bl WARKE

AMD1044_0257277

Fd OALd
XLAWE OAId

IND OAId

10O YIVA OAId

¥ YIVa

v ANES
¢ YIVd

¢ aNds
Z YIva

Z aNgs

SI¥ IDA

Z 41d s
T 414 08

0 d1d 08

MIM 08

[@=F g=i4
ELL

YATH-XXXXXO-NIO
WAN AFH-LNIWND0A

<7

LA RASYY

31vd 11d3

v

¥
§CG10Z 1equisdss ¥

100z ‘1equieldes 47 ol
31va ALYNIOINO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ATI Ex. 2107
IPR2023-00922
Page 143 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 0
24 September, 2001 4 September, 201525 46 of 52 S : e
LY} VI A B b {.,__ : S i
. Formatted: Bullets and Numbering
26-1-627.2.6 3SQ to CP: State report ST
Name Direction Bits | Description
SQ_CP_vrix__ state SEQ-CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ-CP 3 Oldest pixel state still in the pipe : = G
s f;*{Formatted: Bullets and Numbering }
26-1-727.2.7 8Q to SX: Controf bus T here— T
Name Direction Bits | Description
|| SQ_SXx_exp_Rixelpix SQSXX 1 1: Pixel
0: Vertex
SQ_S8Xx_exp_cClause SQ—-SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_sState SQ—->8Xx 3 State ID
SQ_SXx_exp_exportibalu id | SQ-8Xx 1 ALUID
These fields are sent synehronoushy-wi P.axpert-data ibed-in-5R interfaceevery fime the sequencer
picks an exporting clause for execulion,
. - Formatted: Bullets and Numbering
l 26-1-827 2.8 SXto SQ : Output file control {Fo T
Name Direction Bits | Description
| SXx_SQ_Expertexp count_rdy SXx—8Q 1 Raised by SXO0 to indicate that the following two
fields reflect the result of the most recent export
l SXx_SQ_Exportexp Pposition_spac | SXx—8Q 1 Specifies whether there is room for another
2 position.
! SXx_SQ_expExpert_bBuffer_space SXx—8Q 7 Specifies the space available in the output
buffers.

0: buffers are full
pixels in a clause)
64: 128K-bits available (16 128-bit entries for

each of 64 pixels)
65-127: RESERVED

1: 2K-bits available (32-bits for each of the 64

261927 2 9 8Q fo TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write

the fetch return data.

. G f[Formatted: Bullets and Numbering

Name Direction Bits | Description

TPx_SQ_data_rdy TPx— §Q 1 Data ready

TPx_SQ_clause_num TPx— SQ 3 Clause number

TPx_SQ_tType TPx— S$Q 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_send SQ--TFx 1 Sending valid data

SQ_TPx_const SQ--»TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuctinstr SQ—>TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of _clause SQ--TPx 1 Last instruction of the clause

SQ_TPx_Type SQ-TPx 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ--TPx 2 Write phase signal

SQ_TPO_lod_correct SQ--»TPO 6 LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pmask SQ-TPO 4 Pixel mask 1 bit per pixel

SQ_TP1_lod_correct SQ--TP1 8 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ-TP1 4 Pixel mask 1 bit per pixel

SQ_TP2_lod_correct SQ-TP2 8 LOD correct 3 bits per comp 2 components per quad

Exhibit 2026 docR400

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257278

ATI Ex. 2107
IPR2023-00922
Page 144 of 260

” ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
.‘
' 24 September, 2001 4 September, 201525 GEN-CXXXXK-REVA 47 of 52
%) Ty
SQ_TP2_pmask SQ-TP2 4 Pixel mask 1 bit per pixel
SQ_TP3 lod_correct SQ-TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3 pmask SQ--TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ—-TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 | Index into Register file for write of returned Fetch Data

26-11627.2.10 TP to SQ: Texture stall <~ {Formatted: buets and Numbering

The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SQ_SP_fetch_Stall

SQ_SP_wr_addr

—_— sUo F
L st

—

51973 "
I

SU3 |
[Name | Direction | Bits | Description {;
| TP_SQ_fetch_stall | TP—SQ 1 | Do not send more texture request if asserted ¥
. . Y i /’[Formatted: Bullets and Numbering

26-1-H272.11 S5Q to SP: Texture stall * T —}

[Name [Direction [Bits | Description -
| SQ_SPx_fetch_stall | SQ-SPx 1 | Do not send more texture request if asserted E

4,,.1 /t = ;[Formatted: Bullets and Numbering

26-1-1227.2 12 8Q to SP: GFPR; RParametercache-contrel-and auto counter

Name Direction Bits | Description L
SQ_SPx_gpr wr_addr SQ-»>8Px 7 Write address [
SQ_SPx_gpr_rd_addr SQ—-SPx 7 Read address
SQ_SPx_gpr_red_addren SQ—>SPx 1 Read Enable [3
SQ_SPx_gpr_wewr_addren | SQ-->SPx 1 Write Enable for the GPRs [
SQ_SPx_gpr_phase_mux SQ—-SPx 2 The phase mux (arbitrates between inputs, ALU SRC | .

reads and writes)

SQ_SPx_channel_mask SQ--»SPx 4 The channel mask

SQ_SP0_pixel_mask SQ—-SPO 4 The pixel mask

SQ_SP1_pixel_mask SQ—-8P1 4 The pixel mask

SQ_8P2_pixel_mask SQ--SP2 4 The pixel mask

SQ_8P3_pixel_mask SQ—-SP3 4 The pixel mask

SQ_SPx_gpr_input_mux SQ—-SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXO,
VTX1, autogen counter. il
SQ_SPx_irdexauto_count SQ—-SPx 127 | ladex-Auto count_generated by the 8Q, common for all [:
shader pipes ¢

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257279

ATI Ex. 2107
IPR2023-00922
Page 145 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 201525 48 of 52
Y AN A Bl

2611327 2 13 SQ to SPx: Instructions

-{ Formatted: Bullets and Numbering j

Name Direction Bits | Description
SQ_SPx_instruct_start SQ—SPx 1 Instruction start
SQ_SP_instrust SQ—SPx 21 Transferred over 4 cycles
0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzle 114
VectorDst 1712
Unused 20:18
1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4
ScalarDst 17:12
Unused 20:18
2: SRC C Select 2:0
SRC C Argument Modifier 3.3
SRC C swizzle 11:4
Unused 20:12
3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 111
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20117
SQ _8Px exp alu id SQ--8Px 1 ALU D
SQ _SPx_exporting 5Q-—-8Px 2 0: Not Exporting
1: Vector Exporting
2: Scalar Exporting
SQ_SPx_stall SQ--»8Px 1 Stall signal
SQ_SP0_expert_pvalid SQ—-SPO 4 Resuit of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP1_ expert_pvalid SQ—-8P1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP2_ export_pvalid SQ—-SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP3_ expert_pvalid SQ—SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

2611427 2 .14 SP to SQ: Constant address load/ Predicate Set

Name Direction Bits | Description

SPO_SQ_const_addr SP0O—-SQ 36 Constant address load / predicate vector load (4 bits only)
to the sequencer

SP0O_SQ_valid SP0--8Q 1 Data valid

SP1_SQ_const_addr SP1-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer

Exhibit 2026 docR400

75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

3 ’[Formatted: Bullets and Numbering B

AMD1044_0257280

ATI Ex. 2107
IPR2023-00922
Page 146 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201525 GEN-CXOOOK-REVA 49 of 52
1Y) o} A
SP1_8Q_valid SP1-8Q 1 Data valid
SP2_SQ_const_addr SP2-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_8Q_valid SP2--8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_8Q_valid SP3--8Q 1 Data valid
26-1-1527.2.15 SQ to SPx: constant broadcast +|- - {rormatted: buletsand Numbering__]
[Name | Direction | Bits | Description
| SQ_SPx_consttant | SQ-8Px | 128 | Constant broadcast S L
264-4627.2.16_SPO to SQ: Kill vector load E o TTT .
Name Direction Bits | Description
SPO_SQ_kill_vect SP0—-8Q 4 Kill vector load
SP1_8Q_kill_vect SP1-8Q 4 Kill vector load
SP2_8Q_kill_vect SP2-8Q 4 Kill vector load
SP3_SQ kill_vect SP3-8Q 4 Kill vector load S . S .
. = {Formatted: Bullets and Numbering }i
26-4-4727.2.17 SQ to CP: RBBM bus T e <
Name Direction Bits | Description e 5
SQ_RBB_rs SQ—-CP 1 Read Strobe
SQ_RBB_rd SQ--CP 32 Read Data
SQ_RBBM_nrtrtr SQ—-CP 1 Optional
SQ_RBBM_rir SQ--CP 1 Real-Time (Optional) E_ : S G !
.)) | = -| Formatted: Bullets and Numbering }
26118272 18 CPto SQ: RBBM bus *l e :
Name Direction Bits | Description
rbbm_we CP-8Q 1 Write Enable
rbbm_a CP—-8Q 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP--5Q 32 Data
rbbm_be CP—-8Q 4 Byte Enables
rbbm_re CP-5Q 1 Read Enable
rbb_rs0 CP—-8Q 1 Read Return Strobe 0
rbb_rs1 CP-8Q 1 Read Return Strobe 1
rbb_rd0 CP—-8Q 32 Read Data O
rbb_rd1 CP-8Q 32 Read Data O
RBBM_SQ_soft_reset CP-8Q 1 Soft Reset

;;‘[Formatted: Bullets and Numbering J
PR e SR

27.28 Examples of program executions

27412811 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
¢ space was allocated in the position cache for transformed position before the vector was sent
* also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex
shader program (using the MH?)
¢ The vertex program is assumed to be loaded when we receive the vertex vector.
¢ the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
o at this point the vector is removed from the Vertex FIFO

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257281

ATI Ex. 2107
IPR2023-00922
Page 147 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201525 50 of 52

Y VI AR in.

10.

11.

12.

¢ the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as
nothing else to do (ie no pixels are in the pixel fifo).

SEQ allocates space in the SP register file for index data plus GPRs used by the program

¢ the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer that came down with the vertices

e SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
¢ the 64 vertex indices are sent to the 64 register files over 4 cycles
¢ RFO of SUQ, SU1, SU2, and SU3 is written the first cycle
¢ RF10of SUQ, SU1, SU2, and SU3 is written the second cycle
¢ RF2of SUQ, SU1, SU2, and SU3 is written the third cycle
¢ RF3of SUQ, SUT, SU2, and SU3 is written the fourth cycle
e the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, v, z)

SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
¢ the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)

¢ TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for
the fetch data to the TU, which will write the data to the RF as it is received

¢ once the TU has written all the data to the register files, it increments a counter that is associated with ASMO
FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause O from the global instruction store

all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (which is
shared with all four shader pipes) back to the PA’s position cache
¢ A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is
going to be in the parameter cache.
¢ there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
¢ the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
¢ the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no
longer a need for the parameters (it is told by the PA when using a token).
¢« the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer
if position is being exported) is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27122812 Sequencer Control of a Vector of Pixels

1.

As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e Atthis point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

Exhibit 2026 docRAGO- y 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

-«

, , = { Formatted: Bullets and Numbering

AMD1044_0257282

ATI Ex. 2107
IPR2023-00922
Page 148 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201525 GEN-CXXAXXX-REVA 51 of 52

A BH

BA s
2. the RE's Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
¢ the state pointer and the LOD correction bits are also placed in the Pixel FIFO
¢ the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
¢ the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer
o SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
¢ note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
¢ the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
¢ all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
¢ TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

© ®

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)

» TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write
index for the fetch data to the TU, which will write the data to the RF as it is received

¢« once the TU has written all the data for a particular clause to the register files, it increments a counter that is
associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)
e jtis sent to an output FIFO where it will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

i /(Formatted: Bullets and Numbering

274-328.1.3 Notes v

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

- : ‘ { Formatted: Bullets and ‘Nu;’nbe‘ring
28-29. Open issues —— <

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Exhibit 2026 docRAGO- ¥ 75288 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257283

ATI Ex. 2107
IPR2023-00922
Page 149 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
l 24 September, 2001 4 September, 2015256 52 of 52
1.¥.1 Tatais %] don
} Saving power?
Parameter caches in SX?
Using both IJ buffers for center + centroid interpolation?
Exhibit 2026 docRAGS_ ¥ 75288 Bytes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257284

ATI Ex. 2107
IPR2023-00922
Page 150 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 10f52
1] TaTa) £ B
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 1.110

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-~
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Overview: This is an architectural specification for the R400 Sequencer block (8EQ). It provides an overview of the =

Document Location: C:\perforce\rd00\doc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
N Dept . | .. . Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATl Technologies Inc. All rights reserved. The material in this document constitutes an unpublished

transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this o
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or |

Exhibit 2027, docR400_Sequencerdoc 68205 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »»*

ATI 2027
LGv. ATI
[PR2015-00325

AMD1044_0257285
ATI Ex. 2107

IPR2023-00922
Page 151 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 2052
iy

Table Of Contents

1. OVERVIEW ... iiiiiiiireiissmrsissssssrcorssssssreersrsssssasssneess s ssmnsssrssnssssssnsssnsanssnssnsersssssnseaees

L1 Top Level BloCK DIaliaim et ettt ettt

1.2 Data Flow graph (8P) e ieeeieeeeeie i

13 OOl GraD e et eeeee e eeeirees

2. INTERPOLATED DATA BUS....

3. INSTRUCTION STORE.

4. SEQUENCER INSTRUCTIONS.....

B, CONSTANT STORESiiiiiiiiireisiiisrrrressssstnssassssssssesssssssssassssssssnssnsssssessnnssssssssnsssssssss

5 M e IMOTY O OB Z A O S oo oottt ettt et et e et e et te ettt ieseieesrtrtees st ieaiias

5.2 Management of the Control Flow Constants ..o 1816 S

53 Management ofthe re-mappingtables ... 1845
53.1 RA00 Constant ManaQement ..o s 1815
5.3.2 Proposal for R400LE constant management ..., 199 .
S 3 DI DS 2147
5.3 4 Free LISUBIOCK .o s 2142
535 Deallocate BIOCK oo 2248
53.6 Operation of InCremental MOGE! . .. oo e es ettt 2248 ‘

54 Constant SIore INGeXING . . oo e e ettt e e e e

5.5 Real TIme ComMImIan S, e eeieieiieieeieiiiiiieis

56 Constant Waterfalling oo

6. LOOPING AND BRANCHES

6.1 Thecontrollingstate. ..o

6.2 The Control FloW PrOO o oo ootttk et et it ettt e rta s s st iaas -

6.3 Data dependant predicate INStrUCHONS .. e 2622

6.4 HWDetection 0f PV PO i e 2723

6.5 RIS el f1e NGO NG o ettt ettt s et 2723

6.6 Predicated Instruction support for Texture ClauSes ... 2723

6.7 DebUgaing the ShBOEIS . ittt ettt ettt ettt enecs 2723 =
6.7.1 Method 1: Debugging reQiSters ..o 2823 o
6.7.2 Method 2: Exporting the values inthe GPRS (12) .00 2824

7. PIXEL KILL MASK ... it rass s s s s ssee s essmses s s e smsr s rr s s sens s ee s

8. MULTIPASS VERTEX SHADERS (HOS])...

9. REGISTER FILE ALLOCATION........ce.....

10. FETCH ARBITRATION .. ueiiiiiisereisissrrssissssssersssssssssssssssssssssrasssssssrssnssssssssnnnsssssssnnesssssnes

11 ALU ARBITRATION L.oiiuiiiiiiisississsssssssisssnsnssssssssnsssssssses

12, HANDLING STALLS ... s csiiinscssseeesssninees A

13. CONTENT OF THE RESERVATION STATIONFIFOS ... s M2r

14, THE OUTPUT FILE. ... oeerirrieiressrsssirrirsss s eersss s s ersrs s s ssns s s ssss s sssnssse s s sanss s ssssszznssss M2r

18, L FORM AT oot iiiitseii s erssseetss s e ssanansnssasnssssissassssssssisns s sesseninssssessnansssssesansssesessnnsasssssas M2z

15.1 Interpolation of constant atlribULes . 3228

16. STAGING REGISTERS o.oiiiiiiiiiiiiiiiiiiiieisissssrssiissssssssssssssssssssissssssssssssssssssssssnssssssssnssssssssss 3228

17. THE PARAMETER CACHE ..o 4%

18. VERTEX POSITION EXPORTING.....ccoiieerriisirerressssnersseesssnsasssssnsssssssssssssanssssssssnnssssssesss 3% .

| Exhibit 2027, docRAGS_ y 63205 Bytes™** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257286

ATI Ex. 2107
IPR2023-00922
Page 152 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 30f52
i]

19. EXPORTING ARBITRATION

20. EXPORTING RULES

20.1 Parameter caches exports

20, MBI OTY X0 S Lottt ettt et tetiireeees

20,3 OGO X DO S, et eeeeee e e eeieetereies

P T =0 O S I I o = TR PPPPT

21.1 N e OB NI e ieeiiiiiiiiiiiiiiiiiiiiiiiii

212 PIXELSNAUING oo ettt

22. SPECIAL INTERPOLATION MODES ..oooioiiiiiiivssieiisinsiisnssssnsssssssssssssssssssssssssssssssssssasns 3634

221 Real M e oMM BN S L oo oottt ieaeeas 3631

222 Sprites/ XY screen coordinates/ FB information. ... 3631

223 AULO generaled COUNIEIS et 3632
2 3] VX SNaO OIS (et ittt e e st ee s 3732
2 3 PIXEL SNAOIS . o eeeeeeeiseieteeteierssins 3732

23, STATE MANAGEMENT Looiiiiiiiiiiriiiisiinrsrissesssssssssssssssssssssssssssmsssssssssssssssssssssssssssssssssssssss 3733

23.1 Parameter cache synChroniZation . . et eei 3733

24, KN A D D RE S M P O R T . i iiiiieusiiiirisssisessssiirrssssssssssssssessnansnssssnsssssssssssssssnssssssnssnsssssnss 3733

24.1 N X N XS I DO S et 3833

28, REGISTE RS Loiiiuiiressrrivsesirssssssesessssenssssanssssssssscssssssssssssxsnsssvassssxsssssss osssssssssssssssssssssssss 3833

25.1 CONI Ol e eeeiieiieeeesseeeieesessiesieiiiiieiiiieiiiiiiiiieis 3833

25 OM Xt e eeeeeeeeee e eeeeeeeeeeeeeeeeeeeoeieieiteesiiiiiiiiis 3833

26. DEBUG REGISTERSiiiiiiiiiiiiisiiiiiisisssesisssscrsssesrsssscrsssssrsssssssssrsssssrsssssssssssrsssssrsssessss 3934

26.1 O X e eeeiieeeseeeeeee et eeieeeas 3934

26, O OMI O o eeeiieiiiiieieeieeesseeeeeeseirseeisiiiisiiiesiiiesiisrieisiiiisiiis 3934

27. INTERFACGES.. ..o s s s 3935

271 External Interfaces. . .. 3935

27.2 SO 10 O I e OO S et 3935
2721 SO O PH e 3935
2722 SC SQ . 4038
27 2 3 8010 SX DO o Or DUS ot 4037
2724 S0Q1o SP: Staging Redister Datal . e 4237
2725 VETtoSQ : Vertexinterface. ..o 4038
2726 8SQtoSX Control bUS. ..o 4641
2727 8Xt0S8Q:Outputfile comtrol. ... 4641
2728 SQtoTP. Control bUS .. 4641
27 2.0 TP 10 SO TeXUIE SEal et 4742
27.2 10 S0 10 SP: TeXtUIE Stall e 4742
27211 SQtoSP:GPRandauto coumter ... 4742
27212 8010 SPX INSIUCHONS oo 4843
272 13 SPtoSQ: Constant address load/ Predicate Set. .. 4843
27214 sSQtoSPx constantbroadeast ... 4944
27215 SPO10 SO Kl VEOIOr 108G oottt 4944
27 2 16 SO 10 CP RBBM DUS oo ettt et 4944
Exhibit 2027 docRAG0_ ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257287

ATI Ex. 2107
IPR2023-00922
Page 153 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 4 0f 52
iy

A LY

55 RealTime Commands 24

56 ConstantWaterfalli

b L OOPING-AND-B
6-1 The-control ng 1
6. The Control-Elow
6-3 dependant

6- W . Detecti

6.5 Register file |

6

16— EETCH-ARBITRA
B NI 121 - T e — 28
HANDLING STA

Exhibit 2027 docRAGS_ ¥ 63205 Bytes*™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257288

ATI Ex. 2107
IPR2023-00922
Page 154 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201518

Asail DOV B

DOCUMENT-REV. NUM. PAGE
GEN-CXXXXX-REVA 50f52

relinates/ EB information

22 Parameler cache-synohromiZati 0N rrrr e T
23— KY-ADDRESS IMPORT S coccrcrmmmssrsvssssssrrsvssysssssssssvomssssss s s d3¥ s 55 s a5 w5558 § 55000000

23 Vierdew indeves imbo
St H 1S {2

24 REGISTERS

SEEN

********** A T

Controlb

&t : A i
26-1-2 SO t0-SPINterpolator BUS e R T T R T
26-1- oA o Ty T oY —
26-14—s0 P Staging-RegisterData e
264 PA16-SQ--Verex-iterfate e e e
261650 Y
’76.1.’7 SO tn.S e Vet & T
2618 SX 16- SO+ OUtpUt-File- GORFOl —rrrrrrrrrrrererer T TR T
26-1-9 8Qte TR e ——
26- 110 TPio s Tedtre st
26-1- SQ-te-SR:-Texture staleeeeeeeeee
26112 —SQ10-SP- GPRR-and- 60O e
2611380 10- SR RSHUEHORS
26114 SP 1o SO Constantaddressload/ Predicate-Setrrrrrrrrsrmrrerrersrsrersreres
26-1-15 80 10-SPx-constamt-broadCas e
26-1-168R0to SO Killvestordoat e
2618010 CPRBBM-BUS e
26118 cPiosQ-RBBMbBUS

B o N Lo L At i i L F L ———

Exhibit 2027 docRAG0_ ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257289

ATI Ex. 2107
IPR2023-00922
Page 155 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE

4 Beptember, 201519

R400 Sequencer Specification

A Tl 1]
2F--2— SeguencerControlobaMestorofRixels e
B e N S ——————————
T 2 B L O ——_—s
Exhibit 2027 docRAGS_ ¥ 63205 Bytes*™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257290

ATI Ex. 2107
IPR2023-00922
Page 156 of 260

ﬂ:} ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

.

. . 24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 7 of 52
A 4] Tt £ B4 by

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.

Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Rev 1.11 (Laurent Lefebvre)
Date :

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ-»SP0O interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—8Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—-SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.

Updated the interfaces and added a section on
exporting rules.

Added CP state report interface. Last version of the
spec with the old control flow scheme

Extibit 2027 docR400_Sequencerdoc 68205 Bytes*** ® ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257291

ATI Ex. 2107
IPR2023-00922
Page 157 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 8of 52
iy

A Y]

1. Qverview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separale sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257292

ATI Ex. 2107
IPR2023-00922
Page 158 of 260

wex @ 3Bd 19A0D UO 3ONON WBUAdOD 0UIBIBY "[RIIUSPYUOD LY @ weso¥a 50220

ATI Ex. 2107
00922

IPR2023-

Page 159 of 260

AMD1044_0257293

AMITAIIAD J2ousNbag [RIuRN) 1] 2anSLy
7 4 pEOT UBISLED
g - g4 J g * gy ” ”
" i 7 _ HAAY XL [\
7 VLYa ALRM XL
AmO\On_ = 20f0d = g90/0d = o e | e
T 1 avoT ESY]
73 'y -+ INYLSNOD S 9e dl e
N ~ | SHILINIO
| | Syad N&
avay Od 5
e o ot |
4]
| U~ 3LVLS HOL3d
W | ds ds ds | ds [«/| OISO faewd
) ry LSNDEL
I~ N Sad
AuvisL
] ¥aqv
e - e e Lsawvomang
NMMLTY Lum— L E—— R _—— i Lo my \
> ! | = ZHOLS LSNI
= LN = HALNI = HALNI [« * i
| . | o R
, ! JOMINGD 1
: avol
M», m _,». ,, S - e
e
HVESSONO T]
, H pesy 40
oo | | m e LGN
m%mw e8P SAVAD T TOMINGD TOHINGD !
53 ,.mvc_ ASUSA o h 40
| TOMINOD SINVLISNOD | pedien
XALMIA o
78 40
)
v TIviS
T SICLURT Tr
Zgjos YAZHXXXXXO-NIO 61510 1equisiass ¥ 100z “1equisjdes 7 . .
q90Vd WAN AFH-LNIWND0A 31va 1d3 JLvd JLYNIDIYO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 10 of 52
H Tt

A Y]

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

A
Possible delay for available GPR’s
g

I?‘
e

Texture clause 0 | gy
Feservation station

FIFO
KLU clause 0
|a——eservation station

FIFO

l

[Fexture clause 1
keservation station

FIFO .
exture arbitrator

lag— 2 LU clause 1
Feservation station

FIFO
Fexture clause 2

eservation station

exture arbitrator

FIFO
f— LU clause 2
reservation station

FIFO
[Texture clause 3

reservation station

FIFO
«f— LU clase 3
reservation station

FIFO
[Texture clause 4

reservation station

FIFO
af— LU clause 4
reservation station

FIFO
[Fexture clause 5

reservation station

FIFO

lagg— (AL U clause §
reservation station

FIFO
IFexture clause 6
reservation station

FIFO
lagg— AL U clause 6
reservation station

FIFO
IPexture clause 7
eservation station

FIFO

NSSRRSRARRENANI
LI T

lag— AL U clause 7
feservation station

Figure 2: Reservation stations and arbiters
There are two sets of the above figure, one for vertices and one for pixels.
Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet

consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257294

ATI Ex. 2107
IPR2023-00922
Page 160 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 11 of 52

i YT BA

iy
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level O fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level O fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 feich machine increments the counter of FIFO 1 to
signify to the ALU O that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level O shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can't be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn't have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).
All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

Exhibit 2027 docRAG0_ ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257295

ATI Ex. 2107
IPR2023-00922
Page 161 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201518 12 of 52
A H Tt ¥]
| 1.2 Data Flow graph (SP)
.
s 5
e 1 o "
- 117
- Register File (RN
[S R (—

— | N I
f scalar |nput/outputv MAC

i N ! tel jre requ
| ipeline stage 3 J\ \

o

nstruction

A
: Register File < \
1 i z |
scalar input/output A I
- 4 MAC text] |requeg

pipeline stage i B \\

-~

instruction

Register File

i_ =
— 1A MA] texturel= quest
AAQ i Ut%
v
i pipeline stage 3

i

T3 WOJ] E18p oA

" Scalar Unit

EJep o.

nts from RE

instruction

N
Register File L L
A

i
51 [__l__..d‘q Al texture ref pst

~ <\/I <scalar input/out ﬂ

- S SO — Mux
@
-y - 2
Iy H
O
«
4
=l
&

(! -~

< to Primitive Assembly Unit or RenderBackend >
J
Figure 3: The shader Pipe
Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257296

ATI Ex. 2107
IPR2023-00922
Page 162 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 13 of 52
e Tatalelis) %)
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
Clause # + Rdy
WrAddr IS SEQ CcsT WrAddr
CMD
csT
-
Phess oMD éST'CSTiCS% IBX A B CWec
RdAddr | L A WiSeal yragar
¢ + v v
|
FETCH SP) OF
WrAddr s

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257297

ATI Ex. 2107
IPR2023-00922
Page 163 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 Segtember 201518 14 of 52
‘ ¥
RE |
|
i
ToRB ‘
A0 Al
|
[
I 15 CROSSBAR (4x64 bits) |
| - T
s buffer (ping-pong buffer) T
1 A0 At AZ BO (28 bits * 2 (1J) + 8 bits * 6 (delta Ns)+4 exg
bits*6)* 16 (quads) * 2 (double-buffered) AQ Al A2 BO
4096 bits
2 B1 <o ¢t c2 32x128
B1 co ¢ c2
3 c3 c4 c5 DO XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 c4 =3 Do
768 bits
32324
4 Dt o2 E0 Et
D1 D2 EQ Et
1 ! 7 I
INTERPOLATORS ‘ 1 : 1 1
FIX-FLOAT + EXPANSION
ANy
N]
|
512 _/T_
: s =
| N
|
|
N
i 1

o o [| | [[| || [| ﬂﬂﬁ jﬁﬁﬁ
!ULI‘ZUL‘ SRS 1UR};2UR‘ SUR‘ AUR || ILL 2L 3L L 1 AR || R LAR | X

_4_4_4

_4_4\~

Exhibit 2027 docR400

_4_4_1

Figure 5: Interpolation buffers

_A\g_l

63205 Bytes*™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257298

ATI Ex. 2107
IPR2023-00922
Page 164 of 260

wex @ 3Bd 19A0D UO 3ONON WBUAdOD 0URIBIY "[RIIUSPYUOD LY @ wwd¥a 50280

wiziSerp Supup uopejodiduy (9 oMSL

sopHEsHRIteSTo0YHICH L 202 Tk

%
XAA ¢d ld AX
€9y | 1E| S €9l v | 1€ | 51
-09-v+ | -gz| -zl 13| 0al| 2o/ og 13| oal 2o/ og 09 ¥ -8z 2L | ©
AN AL A A AX | AX | AX | 98
6S (v | LZ| LI AR Rl I
o6 0¥ | -vz| -g| 03 1D eto) zv| 03 1D $0 ev|-os-0v |-z | 8 | o
AN AL A AX| AX | AX | AX
gs 6¢ €T ssiee ez ||
25 9¢ | 02| 7 02 za| vo LY 00 zal ¥o A RN AR A A
AN A AX | AX | AX
1S |SE | 61| o G ac 16l ieqgl 0
v2e | oL 1al €0 19| ov la| €0 18| ov| -y ze o1 o | s
ANAA AX| AX | AX
0 oa SSYH 79) 0g <
03 o) Ko} ATl Z
ax | 0308 AX S0 150 | xx|lo | 10 x| & s
za) 00 Y L
ax 20120 55 190 |40 | 4y 00 | 09 X YY) gs
Xa) I8 ov 0
Ax | 1aia A |€0 | €0 ax | 18 |8 | ux| Y| O] 4s
ch e § ek W}
czllzzl|izl|ozL 6Ll gbLyZ1l ot L vil|ebl|zil| il obL| 6L | 8L | 4L | 9L |SL | #L (€L 2L | 1L | oL
Z5i06l YATH-XXXXXD-NID % 100z ‘tequieides 7 . .
JOVd WAN AJH-LNIWND0d 31vQa La3s F1vA FLYNIDIO k

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257299

ATI Ex. 2107

IPR2023-
Page 165 of 260

00922

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 16 of 52

A POV B

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

he-next-picture-shows-the-various the-CR-san-load-the-memeryTh guenscerhas-to-keep-track-of

loadino modes.i relar. to.sa around.-th o t-boundaties.—h g iy e nitrans mnd fheor ars

F L
spescified-in-the VS-BASE-and-RI-BASE-controlregisters—The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257300

ATI Ex. 2107
IPR2023-00922
Page 166 of 260

BULIBGUINY PUE S}3(ing :poTIeIod w\\ ’

»xx @ 9bed Jan0D UO 301ON WBUAdOD 2oUDIBIDY [RHUBPLUOD |LY @ wosofacizey apuesvenbesTooyudon]

a4
Ke
pre
St
o
]
,)
w
[a N
(@]
a
@
}_-
N
a
Sodon

o A
0 8poD S8d
0 9po) Sd g epod sd
[-
_ 0 8pod SA Vv P00 Sd B B
9P 8} BLgNosxs 3sve ¥3aVHS TEXId
UBIS O 2I8UM SMOLY “apoo 8y} Buinoaxe
1eousnbag os o0lg LBIS O} 2IBUM SMOLD]
-gns eyeudoidde \'/ g 9p0D sSd 1s0usnbag 08 $00|g
0} s8ssalppe -gng apeudoidde
1IB1S 8P0D S8JLIM J4D g 9pod SA 0} s98s3ippE 0 8p0D SA
< 1E]S 8PO0 SBIUM D
opo o
Y ®p00 Sd g 9poD SA
Y 9p0D SA
— - apo
i3SV HIAVHS XILHIA v 8POO SA

e~ -
3ASVE JIAVHS XILH3A

o m_oco ,vm,,_,mn,m . 8pos peleus

B SWi ooy . moun-esy

Bury 8ibuis - | 3QON Bury jend - 0 IAOW

Asien vy uyor
L00Z/FLIL L (poYepdn

Aiows|y uononaisu| Jo SMaIA S,.dD 007y

bl ARG S 1B i
ZGio L) YATEXXKKXXO-NID 61510Z Jequisideg ¢ L00Z '1equis)deg 17
B WNN "AFH-LNIWND0J 31va Lid3 J1vA JLYNIOIHO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257301

ATI Ex. 2107

IPR2023-

00922

Page 167 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 18 of 52
H Tt

A Y]

54 Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS PS) if they have nothing else to do.

&5. Constant Stores

6-15.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

6-25.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
5Q decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

6-35.3 Management of the re-mapping tables

6315 3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257302

ATI Ex. 2107
IPR2023-00922
Page 168 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 19 of 52

Ampil SOEVINE B

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

6-3-25 3.2 Proposal for R400LE constant management

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:-De-allocation-mechanismFigure-8:-De
allocation-mechaniem). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257303

ATI Ex. 2107
IPR2023-00922
Page 169 of 260

ORIGINATE

DATE

24 September, 2001

EDIT DATE

A LY

4 September, 201519
H Tl

R400 Sequencer Specification

PAGE
20 0f 52

Free List
Free
Address

Free_ptr—»

Renaming Table
Context 0=> N
Current/Last

Context N
(8 rows of 16- 8 e e .
1!;; pm{s_ical => gt cocksy Logical Address
entries copy o
in eight clooks) | Context 1 & Context
[]
@
@
i Context N 3 Physical
|
Address
cdlese |
used nex
Address
to Ailocats
Global Register
Data Bus Staging Data
Constants Buffer Physical
focation < Memory
available
WRTR Staging Write Addr
[—r—>
physical Dealloc
address COUAMS next
to physical
schedule address
for ready N
de-alioc } for allocate
] |
Logical address | i C Se? :
Onthe — p~ - onstan
GlbRegBus A L3 & Request
when Ish are zero This .
first word of write . Reset Context
Renaming Table Dirty Dirt |
for 1 Context or ery ! |
Cumentiast || P L | Context &
Physical ddgress Adgress kf [Logcal |
Address (Only (if set Address
Loi;ei;al de- don't }
Address allocate allocate
ifset) | or de-
] allocate) | Renaming
table
N-Contexts

Exhibit 2027 docR400

Copy Last held above to
Current Context on receipt
of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

N

Figure 78: Constant management

63205 Bytes*™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257304

ATI Ex. 2107
IPR2023-00922
Page 170 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 21 0f 52

il SR BA

SQ_STATE#

ADDR

DEALOC
AL LIE | a—WRITE_ENABLE
Free List le CNT VALUE COUNTERS - }
|
| PREVIOUS
| NOT | STATE
‘ NEW
! STATE
VALUE
.
— 1=
VALID }
g————
OR
fa——SQ IDLE
AND |le—PA_IDLE
l CP_NEW_STATE_CNTL—
RE%_/[ﬁgféNG a—SET CTX BITS

Figure §9: De-allocation mechanism for R460LE

6:3-35.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

63453 4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257305

ATI Ex. 2107
IPR2023-00922
Page 171 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201518 22 of 52
if %]

l 6355 3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

i 63-65 3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the coniext is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

645 4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

[Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257306

ATI Ex. 2107
IPR2023-00922
Page 172 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 23 of 52

BAeeil DIOINE B A

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2X /I Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6-55.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers aliocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

6-65.6_Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 918: The instruction store

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257307

ATI Ex. 2107
IPR2023-00922
Page 173 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 24 of 52
H Tt

7.6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

7-16.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.
We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

7-26.2 The Control Flow Program

Examples of control flow programs are located in the R400 programming guide document.
The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] /I eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0}[7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.
The control program for a given clause is executed to completion before moving to another clause, (with the

exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute

Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call

Return

Loop_start

Loop_end

NOP

Execute, causes the specified number of instructions in instruction store to be executed.

Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.

Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257308

ATI Ex. 2107
IPR2023-00922
Page 174 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 25 of 52

Anseil YIS A

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46...42 | 41 40 ... 24 23...12 11...0
Addressing 00001 Last RESERVED Instruction | Exec Address
count

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP

47 |46 ... 42 41 | 40...0

Addressing | 00010 | Last | RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 ...42 | 41 40 39..32 31 30..24 23...12 11...0
Addressing | 00011 Last | RESERVED | Boolean | Condition | RESERVED Instruction Exec
address count Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates

47 46 ...42 | 41 40 ... 34 33..32 31 30..24 23..12 11..0
Addressing 00100 Last | RESERVED | Predicate | Condition | RESERVED | Instruction | Exec Address
vector count

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start
47 46 ... 42 41 .17 16 ... 12 11..0
00101 RESERVED loop ID Jump address
Addressing
Exhibit 2027 docRAG0_ ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257309

ATI Ex. 2107
IPR2023-00922
Page 175 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 26 of 52
i A

H A
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Alsc computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 ... 42 41...17 18...12 11..0
00110 RESERVED loop ID start address
Addressing

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 46 ... 42 41..34 33..32 31 30...12 11...0
00111 RESERVED Predicate | Condition RESERVED Jump address
Addressing vector

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return

47 46 ... 42 41..0

01000 RESERVED

Addressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47 46 ... 42 41... 40 39..32 31 30 29...12 11..0
01001 RESERVED Boolean | Condition | FWonly | RESERVED Jump address
Addressing address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the APIL.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

7-36.3 Data dependant predicate instructions

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# -~ SETEO
PRED_SETE1_# -~ SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257310

ATI Ex. 2107
IPR2023-00922
Page 176 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 27 of 52

Benil LN B

exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?} e
7-46.4 HW Detection of PV,PS l L
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non- S
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by

comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

7-56.5 Register file indexing

Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit6

0 0 ‘absolute register’
0 1 ‘relative register’
1 s} ‘previous vector'
1 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:
Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

7-66.6 Predicated Instruction support for Texture clauses

For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

7-76.7 Debugging the Shaders l .

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257311

ATI Ex. 2107
IPR2023-00922
Page 177 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 28 of 52

A £ a4

1671 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will hait execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
++-26.77.2 Method 2: Exporting the values in the GPRs (12)

The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal

2) Debug Kill

3) Debug Addr + Count
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

8.7, Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257312

ATI Ex. 2107
IPR2023-00922
Page 178 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 29 of 52
¥,y Gl TROMNTITNE B

9.8 Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

109 Regqister file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and

PIXEL_REG_SIZE for pixels.

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257313

ATI Ex. 2107
IPR2023-00922
Page 179 of 260

ORIGINATE DATE EDIT DATE PAGE

R400 Sequencer Specification

24 September, 2001 4 September, 201518 30 0f 52

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

11-10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

12-11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to O and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2027 docRAGO- y 68205 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page @ »

AMD1044_0257314

ATI Ex. 2107
IPR2023-00922
Page 180 of 260

” ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

"

. 24 September, 2001 4 September, 201519 GEN-CXXOOX-REVA 31 of 52
A Gl "INy ¥

13-12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

14-13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

15-14. The QOutput File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

16-15. |J Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ's (one 1J per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

A0 =I(H-1(0)
AOLT =J()-J(0)
AO2f =1(2)-1(0) PO P1
AO2J = J(2)-J(0)
AO3T =1(3)-1(0)
A03J =J(3)-J(0) P2 P3

PO=C+I(0)*(A-C)+J(0)*(B-C)

Pl=P0+A01I*(4A-C)+A0LJ *(B-C)
P2 =P0+A02I *(A~C)+A02J *(B-C)
P3=P0+A03I*(A~C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257315

ATI Ex. 2107
IPR2023-00922
Page 181 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 32 of 52
H Tt

A Y]

Adds: 8

FORMAT OF PU's IJ : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the 1Js (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

+6-115.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A= B and B =C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
else if (I=0)or (4 =0)) and
((J =0)or (1-I-J =0)) and
((1-4-1=0)or (1=0) {
if(1 1= 0) {
PO =A;
Yelse if(d 1= 0) {
PO =B;
}else {
PO=C;

/frest of the quad interpolated normally

}

else

{
}

normal interpolation

3216, Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415]]161718192021222324252627282930313233343536373839
40414243444546471|48495051525354555657 585960616263

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(/4567202122233637383952535455(/89101124252627
404142435657 5859|1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257316

ATI Ex. 2107
IPR2023-00922
Page 182 of 260

ORIGINATE DATE EDIT DATE
24 September, 2001 4 September, 2015189
51 W 1

A 3 R

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
33 of 52

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Eigure-12Figure-12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sgmm using the R300 process. The gate count estimate is shown in Figure 10Eigure-11Figure-14.

)

Basis for 8-deep Latch Memory (from R300)

8x24-bit 116312 60.57813 u” per bit
Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712 per converter
Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 101t:Area Estimate for VGT to Shader Interface

90 ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

Exhibit 2027 .

AMD1044_0257317

ATI Ex. 2107
IPR2023-00922
Page 183 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 34 of 52
i {3

4 a4

=

VGT BLOCK
(IN PA)

VECTOR ENGINE

VECTOR ENGINE

Figure 1132:VGT to Shader Interface

18-17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER | ADDRESS \
4 bits | 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17"‘) is going 1o have the address 00000001000, the 18" 00010001 000, the 19™ 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257318

ATI Ex. 2107
IPR2023-00922
Page 184 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 35 0f 52

Apoeil DOYOINE BA

19-18. Vertex position exporting

On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

20-19. Exporting Arbitration

Here are the rules for co-issuing exporting ALU clauses.
1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

21-20. Exporting Rules

21-120.1 Parameter caches exports

We support masking and out of order exports to the parameter caches. So one can export multiple times to the same
PC line using different masks.

212202 Memory exports

Memory exports don't support masking. However, you can export out of order to memory locations.

21.320.3 Position exports

Position exports have to be done IN ORDER and don't support masking.

22.21. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

22-121.1 Vertex Shading

0:15 - 16 parameter cache

16:3131 - Empty (Reserved?)

32 - Export Address

3233:43--40 - 12-8 vertex exports to the frame buffer and index
444147 - Empty

48:5955 - 12-8 debug export (interpret as normal vertex export)
60 - export addressing mode

61 - Empty

62 - position

63 - sprite size export that goes with position export

(point_h,point_w,edgeflag,misc)

22.221.2 Pixel Shading

o} - Color for buffer O (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
4:7 - Empty
Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257319

ATI Ex. 2107
IPR2023-00922
Page 185 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 36 of 52
3 olel~ Y]

8 - Buffer O Color/Fog (primary)

9 - Buffer 1 Color/Fog

10 - Buffer 2 Color/Fog

11 - Buffer 3 Color/Fog

12:15 - Empty

16:3431 - Empty (Reserved?)

32 - Export Address

3233:4340 - 42-8 exports for multipass pixel shaders.

4441:47 - Empty

48:5855 - 42-8 debug exports (interpret as normal pixel export)

60 - export addressing mode

61.62 - Empty

63 - Z for primary buffer (Z exported to ‘alpha’ component)

2322 Special Interpolation modes

23-122 1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

23.222 2 Sprites/ XY screen coordinates/ FB information

When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_l0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_lO disable, snd_xy disable, no gen_st — 10 = No modification

Param_Gen_IO disable, snd_xy disable, gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, gen_st — |0 = No modification

Param_Gen_l0 enable, snd_xy disable, no gen_st - I0 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st — 10 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, s, t

23-322.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2 pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257320

ATI Ex. 2107
IPR2023-00922
Page 186 of 260

ORIGINATE DATE

T
24 September, 2001

EDIT DATE
4 September, 201518

oy Y N

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
37 of 52

ik A
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

2331272 31 Vertex shaders

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

233292 3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|0 is enabled, the data will be put in the x field of
the 2 register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1 register (RO.x).

STG O
AUTO INTERPOLATORS

COUNT

STG1

¥
‘ AUTO COUNT | 000000 |

¥ k. The Auto Count Value is
MUX / broadcast to all GPRs. ltis
loaded into a register wich has
its LSBs hardwired to the
GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count
value and it is loaded into the
GPRs to be either used to
retrieve data using the TP or
GPRO sent to the SX forthe RB to
use it to write the data to
memory

Figure 1243: GPR input mux Control

2423 State management

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

24-123 1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

2524 XY Address imports

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257321

ATI Ex. 2107
IPR2023-00922
Page 187 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015189 38 of 52

A

£ ¥
interpolate the |J data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.2 for details on how to control the interpolation in this mode.

25124.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

26-25. Registers
261251 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST STORE.ALLD

Dynamic allocation (pixel/ivertex) of the register file on or off.

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

policy of the arbitration between vertexes and pixels

eriooy &

INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

EXPORT_LATE

262252 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE

VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PROVO_VERT
PARAM_WRAP

PS_EXPORT_MODE

Exhibit 2027 docR400

68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

7 L
start point for the vertex instruction store (RT always ends at vertex_base and

Begins at Q)

start point for the pixel shader instruction store

debug state register. Only allows one program at a time into the GPRs

debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)

256*4 ALU constants + 32*6 texture states? (physically mapped)

This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the feich state store (from O to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader in the instruction store

base pointer for the vertex shader in the instruction store

size of the vertex shader (# of instructions in control program/2)

size of the pixel shader (# of instructions in control program/2)

size of the pixel shader (cntl+instructions)

size of the vertex shader (cntl+instructions)

number of GPRs to allocate for pixel shader programs

number of GPRs to allocate for vertex shader programs

One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

0 :vertex O, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive

64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).

300 : Normal mode

Ixxxx : Multipass mode

AMD1044_0257322

ATI Ex. 2107
IPR2023-00922
Page 188 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 2015189 GEN-CXXXXX-REVA 39 of 52

il DOONNE

£
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0...6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_IO Do we overwrite or not the parameter O with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX, Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 256 boolean bits

CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

27.26. DEBUG Reqisters

27.126.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

DB_CLAUSE

_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE

_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

272262 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

28-27. Interfaces
281271 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

282272 SC to SP Interfaces

28212721 SC_SP#

There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the 1,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © » |

AMD1044_0257323

ATI Ex. 2107
IPR2023-00922
Page 189 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 40 of 52

i YT BA

} The actual data which is transferred per quad is
Ref Pix | => 84.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value
Delta Pix | (x3) => 84.8 Floating Point Delta | value
Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X)Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The XY data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlied by a [J_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector's worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined puise to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only 1J to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |,J data and two buffers of XY data, so if either X)Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,8Q and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits | Description

SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)
Type 0 or 1, First clock |, second clk J
Field uLc URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4MS

Type 2
Field Face X Y
Bits [63] [23:12) [11:Q)
Format Bit Unsigned Unsigned
SC_SP# valid 1 Valid
[SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -» Indicates centroids

1 -> Indicates centers

2 -> Indicates X,Y Data and faceness on data bus

The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

28222722 SC_SQ

This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 46-47
bits.

Name Bits | Description
SC_SQ_data 46 Control Data sent to the SQ
1 clk transfers
Event — valid data consist of event_id and
Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257324

ATI Ex. 2107
IPR2023-00922
Page 190 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 41 of 52

Asmeil SOOI BA b

state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo

and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
request fifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers

Quad Data Valid — Sending quad data with or
without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless none is in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

SC_8Q_valid 1 SC sending valid data, 2™ clk could be all zeroes

SC_SQ_data - first clock and second clock transfers are shown in the table below.

Name BitField Bits | Description

1 Clock Transfer

SC_SQ_event 0 1 This transfer is a 1 clock event vector S
Force quad_mask = new_vector=pc_dealloc=0 -
SC_8Q_event_id [2:1] 2 This field identifies the event =
0 => denotes an End Of State Event L
1=>TBD =
SC_8Q_pc_dealloc 532 31 Deallocation token for the Parameter Cache |
8C_SQ_new_vector 84 1 The SQ must wait for Vertex shader done count > O }i :

and after dispatching the Pixel Vector the SQ will
decrement the count.

SC_8Q_quad_mask [108:78] 4 Quad Write mask left to right SPO => 8P3 (=

SC_38Q_end_of prim 118 1 End Of the primitive I S ;

SC_S8Q_state_id [142:128] 3 State/constant pointer (6*3+3) S

SC_SQ_pix_mask [3028:153] 16 Valid bits for all pixels SP0=>8P3 (UL,UR LLLR) S

SC_8Q_prim_type [334:3128] 3 Stippled line and Real time command need fo load fex i :
cords from alternate buffer A
000: Normal :
100010: Realtime [
101: Line AA

Exhibit 2027 docRAG0_ ¥ 63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »* | 2

AMD1044_0257325

ATI Ex. 2107
IPR2023-00922
Page 191 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE R400 Sequencer Specification PAGE

4 September, 201518 42 of 52

Ta A 1Y]
110: Point AA (Sprite)

SC_8Q provok vix8C-S5Q-pe-p 35:34142:321 | 244 | Provoking vertex for flat shadingParameter—Cache
o :
SC 8Q pc phD A6:36] 11 Pareéme‘cer Cache pointer for vertex O
2nd Clock Transfer
SC_SQ_pc_ptrt [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pec_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
8C_8Q_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)
Name Bits | Description

SQ_8C_free_buff

Pipelined bit that instructs SC to decrement count of buffers in use.

8Q_SC_dec_cntr_cnt

Pipelined bit that instructs SC to decrement count of new vector and/or event
sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been
marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector

marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

28232723 8Q to SX: Interpolator bus

Name Direction Bits | Description
SQ_SXx_interp_flat_vix SQ-SPx 2 Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud | SQ—>5Px 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap 5Q—-8Px 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr01 SQ—-S8Xx 11 Parameter Cache Pointer
SQ_SXx_pc_ptri2 SQ--»8Xx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr23 SQ—->8Xx 11 Parameter Cache Pointer
SQ_SXx_rt_sel S5Q--»>8Xx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ--»SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ—>SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask | SQ—-SXx 4 Channel mask

282427 2.4 SQ fo SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits | Description

SQ_SPx vsr_data SQ—-SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ--SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0O_ vsr valid SQ—-S8PO 1 Data is valid

SQ_SP1_vsr_valid SQ--SP1 1 Data is valid

SQ_SP2_ vsr_valid SQ—-SP2 1 Data is valid

SQ_SP3_vsr_valid 80-8P3 1 Data is valid

SQ 8Px vsr read SQ--8Px 1 Increment the read pointers

28280725 VGT to SQ : Vertex interface

2825127 2 5 1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

Exhibit 2027 docR400

68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257326

ATI Ex. 2107
IPR2023-00922
Page 192 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 43 of 52
A] I BA
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.
Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of vector" is set on the second first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6"3+3 for constants). This signal is guaranteed to be correct when
“VGT_SQ_vgt end_of vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

2825227 2 52 Interface Diagrams

Exhibit 2027 docR400_

63205 Byes*™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257327

ATI Ex. 2107
IPR2023-00922
Page 193 of 260

xex @ 3bed 19A0D UO 200N WBUAdOD 30UBISIRY [RIUSPUUOD LY @ wwsovacozsy oop P50

ATI Ex. 2107
IPR2023-00922
Page 194 of 260

AMD1044_0257328

L89S LEAS

x 9% T
¥
fesie
am ————— O3 [# P Y oY (A= DHw ““““““
7 QuEs pues 364 D5 wd 2 aNds e
- LA [_|_ san
MIONINOIS 19A
HAAVHS il - il ot
e " bEG ALVLE RELEN 3 Tos =3u3s 3bA Of W o 2 IS5 HIVLE
REEERE] - 1
anis
) -) &
i ¥ X104 S aciom o am | O [A Zor00a 30 pas WA o5 wa | oo [W 2 HOLDEA 40 1N3
<l i o <
o T Trmnod weten | 020 [" STamop istea abA o5 wd | 020 [7 TTIAOT MSISA
< o < i
hl h T wiud dsIea] oo [s Tiep aotea abA o wa | O3 [® Z WIWI ¥BISA
TV JLAUUL T v
.
[4<F =R 474 81GL0Z Jequeldag ¢ 100z ‘lequiaydes #Z . .
39vd uogeoyosds seausnbas 00Ky 31va Lia3 31vQ 3LYNIDINO

TVIMHLVIN d4dd0 JALLOHLOYUd

wx @ 3Bd 19A0D UO 3ONON WBUAJOD SOURIBIOY [RIUSPUUOD [LY @ w5080 copsouenbes oopyios /267 T

"BOB[ISIU| IPA DS Vd 10} WEIBEI(] [Bo1bo] pajeiad } ainbig

NOISSIWSNYdL SdOLS dHANES
NOISSIWSNYAL SLUVLS-Hd JEATHDHY
NOISSIWSNYAL SdOLS HHAIHDHA

|

v

AMD1044_0257329

Fd OALd
XLAWE OAId

IND OAId

10O YIVA OAId

¥ YIVa

v ANES
¢ YIVd

¢ aNds
Z YIva

Z aNgs

SI¥ IDA

Z 41d s
T 414 08

0 d1d 08

MIM 08

LA LRT Tr

[@=F g=i4 YATH-XXXXXO-NIO 81G10Z 1equisidas ¥ L00Z ‘1equisidss 17 . -
ELL WAN "AZH-LNIWND0A 31va 1id3 31vd JLVYNIOIHO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ATI Ex. 2107
IPR2023-00922
Page 195 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁca[ion PAGE
l 24 September, 2001 4 September, 201518 46 of 52 i
A o FY) : = g =
. i - - {l;;:rmatted: Bullets and Numbering J
27-2727.2.6 SQ to SX: Control bus
Name Direction Bits | Description
SQ_SXx_exp_pix SQ—8Xx 1 1: Pixel
0: Vertex
SQ_SXx_exp_clause SQ—->8Xx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_state SQ--»>SXx 3 State ID
SQ_SXx_exp_alu_id 5Q-—-8Xx 1 ALUID
|| SQ_SXx_exp_valid SQ-»SXx 1 Valid bit

These fields are sent every time the sequencer picks an exporting clause for execution.

272827 2.7 SXto SQ : Output file control

_f[Formatted: Bullets and Numbering]

Name Direction Bits | Description

SXx_SQ_exp_count_rdy SXx—8Q 1 Raised by SXO to indicate that the following two
fields reflect the result of the most recent export

SXx_SQ_exp_position_avallspas | SXx—5Q 1 Specifies whether there is rocom for another

e position.

SXx_SQ_exp_buifer_availspace SXx—8Q 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each
of 64 pixels)
65-127: RESERVED

272927 28 8Q to TP: Control bus

- = f&ornilatted: Bullets and Numbering‘

Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs

is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write

the fetch return data.

Name Direction Bits | Description

TPx_SQ_data_rdy TPx-> $Q 1 Data ready

TPx_SQ_clause_num TPx— SQ 3 Clause number

TPx_SQ_type TPx-» 8Q 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ-TPx 1 Sending valid data

SQ_TPx_const SQ--TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ—-TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of clause SQ-TPx 1 Last instruction of the clause

SQ_TPx_Type SQ--»TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr phase SQ—-TPx 2 Write phase signal

SQ_TPO_lod_correct SQ--»TPO 6 LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pix_mask SQ—-TPO 4 Pixel mask 1 bit per pixel

SQ_TP1_lod_correct SQ--TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ-TP1 4 Pixel mask 1 bit per pixel

SQ_TP2 lod_correct SQ-TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2 pix_mask SQ--TP2 4 Pixel mask 1 bit per pixel

SQ_TP3 lod_correct SQ-TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ-TP3 4 Pixel mask 1 bit per pixel

SQ_TPx_clause_num SQ-»TPx 3 Clause number

Exhibit 2027 docR400

68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257330

ATI Ex. 2107
IPR2023-00922
Page 196 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXOOK-REVA 47 of 52 s . L =
il OAE B A % s S
I SQ_TPx_write_gpr_index | $Q->TPx |7 | Index into Register file for write of returned Fetch Data ! o SN : S =
272102729 TP to SQ: Texture stall . 1.3»{ Formatted: Bullets and Numbering -
The TP sends this signal to the SQ_and the SPs when its input buffer is full. The-SQ-ie-going-to-send-i - - -
clooks Prrrn:&ina’m v e 3 lees of. iyfj{p Ala}_

TP_SP_fetch_Stall

SQ_SP_wr_addr

— SuUo =
1 su1 +

. |
suz -
SU3 1
[Name | Direction | Bits | Description
| TP_SQ_fetch_stall | TP—8Q 1 | Do not send more texture request if asserted
Y . 8 ’{ Formatted: Bullets and Numbering j
27214272 10 SQ to SP: Texture stall e e
[Name | Direction | Bits | Description
| SQ_SPx_fetch_stall | SQ-»8Px 1 | Do not send more texture request if asserted
) .. i ‘[Formatted: Bullets and Numbering
27242272 11 85Q to SP: GPR and auto counter N e
Name Direction Bits | Description
SQ_SPx_gpr_wr_addr SQ—SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ—-SPx 7 Read address
SQ_SPx_gpr_rd_en SQ-+8SPx 1 Read Enable
SQ_SPx_gpr_wr_en SQ—->SPx 1 Write Enable for the GPRs - S
SQ_SPx_gpr_phase—msx SQ—->SPx 2 The phase mux (arbitrates between inputs, ALU SRC [:5 : -

reads and writes)

SQ_8Px_channel_mask SQ-->SPx 4 The channel mask

SQ_SPx_gpr_input_muxsel | SQ—-SPx 2 When the phase mux selects the inputs this tells from [1 .
which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.

SQ_SPx_auto_count SQ—-8Px 127 | Auto count generated by the SQ, common for all shader
pipes

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257331

ATI Ex. 2107
IPR2023-00922
Page 197 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 48 of 52
A i Ta' ¥]
243272 12 SQ fo SPx: Instructions -
Name Direction Bits | Description
SQ_SPx_instr_start SQ—SPx 1 Instruction start
SQ_SP_instr SQ—SPx 21 Transferred over 4 cycles
0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzle 114
VectorDst 1712
Unused 20:18
1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4
ScalarDst 17:12
Unused 20:18
2: SRC C Select 2:0
SRC C Argument Modifier 3.3
SRC C swizzle 11:4
Unused 20:12
3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 1111
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
SQ_SPx_exp_alu_id SQ—SPx 1 ALUID
SQ_SPx_exporting SQ—->SPx 2 0: Not Exporting
1: Vector Exporting
2: Scalar Exporting
SQ_SPx_stall SQ--»SPx 1 Stall signal
SQ_SPO_exp-pvalidwrite mas | SQ—-SPO 4 Result of pixel kill in the shader pipe, which must be
k output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP1_ SQ—-SP1 4 Result of pixel kill in the shader pipe, which must be
write maskexp-pyvalid output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP2_ 5Q—-S8P2 4 Result of pixel kill in the shader pipe, which must be
write _maskexp-pvalid output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP3_ SQ—-SP3 4 Result of pixel kill in the shader pipe, which must be
write_maskexp--pvalid output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
2721427 2 13 SP to SQ: Constant address load/ Predicate Set T
Name Direction Bits | Description e
SPO_SQ_const_addr SP0O—-SQ 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SPO_SQ_valid SP0-5Q 1 Data valid
SP1_SQ_const_addr SP1-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer

Exhibit 2027 docR400

68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

i ,_—[Formatted: Bullets and Numbering B

S {Formatted: Bullets and Numbering }

AMD1044_0257332

ATI Ex. 2107
IPR2023-00922
Page 198 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXOOOK-REVA 49 of 52
.y il VT BA
SP1_8Q_valid SP1-8Q 1 Data valid
SP2_SQ_const_addr SP2-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_8Q_valid SP2--8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_8Q_valid SP3--8Q 1 Data valid
27.2.1527.2.14 SQ to SPx: constant broadcast o {Formatted: pulets and Mumbering____J
[Name | Direction | Bits | Description . - -
| SQ_SPx_const | 8Q—-SPx | 128 | Constant broadcast g .-
27.21627.2.15 SPO to SQ: Kill vector load *’1 - {Fomattnd S _J
Name Direction Bits | Description S S Sl
SPO_SQ_kill_vect SP0—-8Q 4 Kill vector load
SP1_8Q_kill_vect SP1-8Q 4 Kill vector load
SP2_SQ_kill_vect SP2-8Q 4 Kill vector load
SP3_SQ_Kkill_vect SP3-8Q 4 Kill vector load SOl R SEE
. = { Formatted: Bullets and Numbering
2724927216 SQ to CP: RBBM bus 1 0 T
Name Direction Bits | Description :
SQ_RBB_rs SQ—-CP 1 Read Strobe
SQ_RBB_rd 5Q—-CP 32 Read Data
SQ_RBBM_nrtrtr SQ—-CP 1 Optional
SQ_RBBM_rir SQ-»CP 1 Real-Time (Optional) G niE G W :
. . - *f Formatted: Bullets and Numbering]
272148272 17 CPto SQ: RBBM bus ‘I e ‘
Name Direction Bits | Description s
rbbm_we CP-8Q 1 Wiite Enable
rbbm_a CP—-8Q 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP-8Q 32 Data
rbbm_be CP—-8Q 4 Byte Enables
rbbm_re CP—5Q 1 Read Enable
rbb_rs0 CP—-8Q 1 Read Return Strobe 0
rbb_rs1 CP-8Q 1 Read Return Strobe 1
rbb_rd0 CP—-8Q 32 Read Data O
rbb_rd1 CP-8Q 32 Read Data 0
RBBM_SQ_soft_reset CP--5Q 1 Soft Reset - e
. ~ ,» ‘[Formatted: Bullets and Numbering
27.2.18 SQ to CP: State report T
Name Direction Bits | Description
8Q _CP vs event 8Q—-CP 1 Yertex Shader Event
8Q _CP vs _eventld SQ—-CP 2 Vertex Shader Event 1D
8Q CP ps event 8Q—CP 1 Pixel Shader Event
8Q CP ps eventid 8Q--CP 2 Pixel Shader Event 1D

eventid = 0 =» *sEndOfState (i.e. VsEndOfState
eventid = 1 => *sDone {i.e. VsDone

S0, the CP will assume the Vs is done with a state whenever it gefs a pulse on the SQ _CP_vs event
and the 8Q CP vs eventid = 0,

Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257333

ATI Ex. 2107
IPR2023-00922
Page 199 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 | 4 September, 201518 50 of 52 e
Al NS BB v {Formatted: Bullets and Numbering }
EEE I E l— R SN 3 0 T i
1.PA sends-a-vectorof 84-verti actuallyvertex-indi bite/index-for 2048 bit-total)y-to-the RE's Verex-EIEQ
sstate-pointer-as-well-as tag-into-position-cache-is-sent-along with-vertices
‘eea%%%u%aad i ot rne't' 1 e lf:» neform d it afor t reotorans. ¥y

»also-before-the vestoris-sent-to-the RE; the CP-has-loaded-the global-instruction-store with-the vertex

shader Cram

Ll |
oty orog
L

by, Elithan
et

ina-the k2
& ?

Th 13 ssumed-io.beload e coive-th oex. Voot

base-forthis-shaderusing the-local-state-pointer(orovided :

he-]
o

by BBM-w £

{w 31 oy clino.t
54 +

DrOGESMY
ProgT 7

Gr-arbitrates-bebw rihe B LEEO and-the Mertex B i 1Y fa? By ol B

@b
sat-this-point-the-vector-is-removed-from-the Verdex FIFO
th i

isnobaol io-soleg v 7o

fully

transformed-itthe-par er-cac

fifoy-

nothin o-liep reden b i

inthe SP reqister file-forind

data-plus-GPRs-used-by-the-program

Q allocates-sp
4 et et B g,r i e I ! i ta& g L ioh

ofGRERs reguite

S@E* AL A h h i
«SECQ-will-not-send verdex-data-until-space-intheregisterfile-has-been-allocated

Grsendeth rto-the SR registerfile-ov inter:

ot Elymtd nms e

s

he-84-vertex-indices-are-sen &84 registerfiles-over4-6)

RED 6FSUD-SUL-SU2 and-SUZ s written-the-first cyol
UO-SU4. SU2 and SUZ iswrilten-the-s
o SU1 - SU2 _and third-oy

WA R H’QIH' } oY

of ol o

] g WX 3 173 is apurittonn fhy

written-to-the

petructs-a] 7y

which-has-a-bandwidth-o£ 2048 bits/oy

8.1

it
stal MO E ﬁ}

maching. 0
FHF 5

#» control o oantai
£ ro-p LEHY +

MO acocantsthe by

F-a

naoket and. fo o
P

TEMO was-fi sel F=¥s) h,/ Y]

Hastructions-of felch-cla G-are-i Mo

TSMO-doss notwalt-forreou madet
fetch-data-to-the- TU - which-will-write-th

moa-the- Tl -has {3k tato-d

the-Felch-Unit-to-complate he-regist
ata-fo-the RE.asitis-r iy

oeiad

: file-write-index-forthe

=i 'r\st
cladse

3 ante b bred 172

gie_te;_fu L STaYa FRTaY At i
7 eI
2y

riha indicates-that the-ALL state-machin

with-ASMO

10.all-inst

11ihe-control-packet-continues to-travel down-the-path-of reservation-stations-unti-all-clal h b

Exhibit 2027 docR400_Secquencer.doc

O.frn he alobalingt
)

Hey of Al 3 dioih %

ion

Q.ar ved-by ASMO, the o Loacketi
station-{the FIEC- in-front-of felch-state-machine 1-or TSMAEIEQ)

aailion £ acin Al bl ol

pe-S-Lord2y the da tan
o-the-PA's-position

theta it
inpelba

shared-wi Lfoursh
sA-parametercache pointeris-also-sent-along-with-the-p

deor oy

o
sition data. This tel

to-be-in-the parameter cache.

hera.is wh LB by

12 At

data-is-going

£

{<T-Y. itHon 14 Ffe itiey 3 heafore. i

68205 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257334

ATI Ex. 2107
IPR2023-00922
Page 200 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 510f52
Awil AIE B A
sthe-ASM-arbiter-willpreventap ot-from-starting-an orting-clause-ifthe-position-export FIEO s-full
® a-is-expnortedincla Lz Las it atadf il oy nodead i
L ¥
PYar-te r.odata-is-sentioth 3 et he. 4 adicated b
(4
wthe SEQLa ss-storage-inthe Para ache-and-the SEQ deallocates that space-when there is-no
NOer-a-n forthe parameters(tis-told by the PA when using a-token).
ethe ASM iterawill vent-a-packet from-starting-on- ASMZEL meter by rihe-position-bufferif
osition-is-belng-exported)-is-full

12-after the-shader program-has-completed, the BEQ will free-up the GPRs so-that they-can be-used-by-another
shader-program

WWWW i 7 i W&MWMW i i

»Ab-this-point-it-is-assumed-that the pixel-program-is-loaded-into-the-instruction-store-and-thus-ready-to-be-read:

the RE's Pixe CrisJoaded-with-the barvecentric-coordinates forpixelauads by the detailed walke
sihe-state noint nd-the. oo tion-bits-are-also-nl d-inthe Pixel FIED
athe-Rixel FlEC s wide. on ughlr L £ uadis.s, Z3EL FaTat= Y

by L i ; f ; L ary £ f

3.8EQ arbitra bah B2 EE nd-Verk 1EC enthe e-no-ert ding-OR B-5-00-6
loftin-thy gisterfiles-forvertices, the-Pixel EIEO- e

SEQ allocates-space in-the-SP.register-file-for.all GPRs-used-by-th a
sthe-pumberolGRRs-required-by-t FOgFam Fed-in al-slate-register-whish- = th

«SEQwill-not-allow-interpolated-data-to-be-sent-to-the-shader-until-space-in-the register-file-has-been-allocated

5.8EQ conirols-the-fransfer of-interpolated-data fo- the B8P register file-overthe RE- 8P interface (which-has-a
bandwidth-of 2048-bits/eyele)-See-interpolated-data-bus-diagrams-for- delails.

G‘ EO oo te FoIote S:q nfn TRV 5 nrl ‘rj {:axt ar\e'r\ ta\‘i +!1 FEﬁgfpnf(rln
state-machine-O.-or AO-FIED)
spote-that eis-a et of reservation stations/arbilers/state machines forvertices and forpixels
atl Tt et e okt Yo=Y thy tat iry »Hn g il base-nolny - o the i) wolionbits
sall-otherinformation-(such-as-guad-address-forexample)-travels-in-a-separate-FIFO
‘?‘TQ'MIH +' ntrol p ol £ f ol l 1 t ot foteh-olaus f m%h g; by i '.' i 4
»F8MA-was-fret-seloctod-by-th Mrarbiter-beforo-tcould-stadt
S.alinstructions-of feteh-claus o4 d-by- TSM
S.th 12 106 od-fo-the treservation station-(t IFQ-in-front-of ALU-state machine-0,-0r-ASM
FIFG)
+»T2M0-dass-netwali-forfat gheste-rradeto-the-Foteh-Unitlo-completasit the-register-file-wite-index
for-the data-to-the-TU -which-willwrite-the-data-to-the as-itisreceied
LY B TS b saipithes 1§ 3 2y for pﬁ' TS VRIS NE Tk & o raifrm . mants o countor ik
oointadasith dhe & A0 EIEC: a countgreateri o indicatas-thatthe-AlLllsiale T o
7 k)
b, and o FlEO and.start he ALl
10 ASMO &ty ontrolnacket {afin iry lmotodd by e AQRA o elnit Ag fe 4 iyt e Fiy
o e froumdhe olobalinet ior-ad
14.allinstruction ALL clause 0 are issued by ASMO, then the control packet is passed to the next reservation
cg'nh\% =y in front of felo o machi ‘I{ r TSM1 =)
2 the-control ntinues-to-tra wn-the-path-of reservation stations-unti-all clauses-have-beer cyted
epbieldatais noded.d e daet ALLL e oy TT A
o jtis-sent-to-an-outpul-FIFQ-v itwill-be-picked-up-by-the-render-backend
othe ASM-arbiterwill prevent a ot from-starting-on-ASMZ it the output- EIEQ is-full
13.after-the-shader-program-has-comp Ahe-SEQwill-free-up-the-GRPRs-so-that-they-can-be-used-by-another
shaderprogram
Exkibit 2027 docRAGO- ¥ 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257335

ATI Ex. 2107
IPR2023-00922
Page 201 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201518 52 of 52
A H Tt ¥]
2813 Notes
TFhe-state-mschinas-and-arbiers-wil ate-ahead-of bme-so-that-they-willbe-able-lo-lmmedistely-slartthereal
threade-orstalk
4 = inter file nointerforgveo et VL i vactorthrouah dhe reservation siat bk iy
. i poi § By i hrought va ; b

instruction store-base pointerdoes not—thisis- because the RE pointeris different forall threads, but the 18

us-can be accessed via the state pointer.

pointer-is-only-different for-each-state-and

2928 Open issues

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS

static).
Saving power?

Parameter-caches in-SX7?

Using-both-l)-buffers-for center+centroid-interpolation?

Exhibit 2027 docRAGO- y 68205 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

. { Formatted: Bullets and Numbering }

‘[‘ Formatted: Bullets and Numbering

AMD1044_0257336

ATI Ex. 2107
IPR2023-00922
Page 202 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 10f 58

1] Tatalel
Author: Laurent Lefebvre

Issue To: Copy No:

R400 Sequencer Specification

SQ

Version +-412.0

Overview: This is an architectural specification for the R400 Sequencer block (8EQ). It provides an overview of the

blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub- | -

Document Location: C:\perforce\rd00\doc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
N Dept . | .. . Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

“Copyright 2001, ATl Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |
work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this

Exhibit 2028, docRa00_Sequencerdec 73201 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »»

ATI 2028
LGv. ATI
IPR2015-00325

AMD1044_0257337
ATI Ex. 2107

IPR2023-00922
Page 203 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201519 2 of 58
e

I

Table Of Contents

LB € A L PSSR

1.1 Top Level BIOCK DIagram ...

1.2 Data Flow graph (SR). 13

1.3 Control Graph. ..o 14

2. INTERPOLATED DATA BUS...

3. INSTRUCTION STORE

4. SEQUENCER INSTRUCTIONS.....

5. CONSTANT STORES ... oot ieeeeie e e e sensneass e e s e e nees s essneamseaaeeanansansessneansnsssenn 17

5.1 Memory organiZationSoo i

5.2 Management of the Control Flow Constants ... B

53 Management of the re-mapping tables ... 8
53.1 R400 Constant Management ... 1845
53.2 Proposal for R40OLE constant management ... 855
5. 3.3 DIy DS 2042
5304 Free LISEBIOCK ..ot 2047 -
5.3.5 De-allocate BIOTK ..ot 2148 .
5.3.6 Operation of Incremental MOdE! ... 2148 o

54 Constant SIOre INAEXING. ..o

5.5 Real Time COMMENGS. ... e

5.6 Constant Waterfalling ... 22

6. LOOPING AND BRANCHES

6.1 The controlling state................... 23

6.2 The Control FIOW PIOgram ..o 23 S

6.3 Data dependant predicate instructions............o 2022 o

6.4 HW Detection of PV, PGS 2023

6.5 Register file INJEXING e 2923

6.6 Predicated Instruction support for Texture clauses ... 3023

6.7 Debugging the Shaders ... 3028
6.7.1 Method 1: Debugging registers ... 3023
6.7.2 Method 2: Exporting the values in the GPRs (12).............................. 3024

7. PIXEL KILL MASK Lo emce e ee e en en e n e e nn e e e e e ennen 31

8. MULTIPASS VERTEX SHADERS (HOS)...

9. REGISTER FILE ALLOCATION.....ccovcenne

10, FETCH ARBITRATION .o ettt re e sn e seemtaas e emeaen s e anemannenas 32

11, ALU ARBITRATION Lottt see ek ee e s anemtaas e s emenen s e enemnansnaas

12, HANDLING STALLS et 3327

13. CONTENT OF THE RESERVATION STATION FIFOS ..o iiieeeeieeccemeececmenneeamen e 3327

14, THE OQUTPUT FILE ... oot eeme e en e s s nn s mn s ames smssnnex e s ansmnsanennssnsessn 3ZF2r

15, I FORMAT e eeeeit e et ar e e e nmeaae e s eaneeeaseaameane £ e e senameaaseeaneaneneassnsamnnnnnnnenameananins 322 ..

151 Interpolation of constant attributes ... 3428

16, STAGING REGISTERS ...ooiiiiciiieicteaece e aeea e seessessen et e aas e senastansessneanansssesnsensesas 3428

17. THE PARAMETER CACHE ..o ene s e e s s ensneenenns 3636 0 e

18. VERTEX POSITION EXPORTING ..ccooriieererrcrecrresre e s mesr s asceame s sseassen s ssneasnssnsesne 7% ..

| Exhibit 2028 docRAGS_ y 73201 Byes™** @ ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257338

ATI Ex. 2107
IPR2023-00922
Page 204 of 260

1A

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 30f58
A HERaTala

19. EXPORTING ARBITRATION
20. EXPORTING RULES
20,1 Parameter caches exports

20,2 MEMOTY ©XPOTS ..ot 38
203 POSIION @XPOMS. oo 38
2 R =5 € e @ 2 B I o PSSP 38.
211 VerexX Shading. ..o
21.2 0 PIXEIShading ..o 38
22, SPECIAL INTERPOLATION MODESooiiiicecieecceccte e eeasese st e e e e s cnennees 3934
22,1 Realtime COMMEANTS ... e 3934
22.2 Sprites/ XY screen coordinates/ FB information.................. 3934
223 Auto generated COUNTEIS..........iiii e 3932
2231 Vertex Shaders ... 3932
22.3. 2 PIXIShAUEIS.....ooo oo 3932
23, STATE MANAGEMENT .ot ciceseciccinreemcaecasesesscseseesaneaseseesannssensssnmaenneessnnsenseesnes 4033
23.1 Parameter cache synchronizalion ... 4033
24, KY ADDRESS M P O R T . i ccee e et s e e e e s ena e an e e e eannssnnennnnnnnee 4033
241 VertexX iINdexXes IMPOS. ... 4033
25, REGISTERS ..iiiiiiiieeicaicteniaeaeenaseamcaasasenecoecaseanesanaosansesansasesessansasansssnmasanessannneaseasses 4133
251 OOl 4133
252 CONIEXE. oo 4133
26. DEBUG REGISTERS ...oiiiiiieiareaccaie e are e ame s s e sas e aseseessensesanaaeanessansneanessnes 4234
261 oML 4234
262 CONITOL 4234
27. INTERFACGES ...ttt ettt 4235
271 External Interfaces. o, 4235
272 SCH0 S INeIfaces. .. 4235
2T 2 SO SPH 4235
27 2. 2 SO S 4336
2723 SQtoSX: Interpolator BUS ... 4537
2724 SQto SP: Staging Register Data. ... 4537
2725 VGT10SQ : VereX iNteITaCE. ..., 4538
2726 SQtoSX Control BUS. ... 4944
27277 SXto SQ: Output file CONTrOl ... 4941
2728 SQIO TP CONrol BUS ... 5044
27.2.9 TP1o SQ: TexXtUre Stall......oooe oo 5142
27.2.10 SQ 10 SP: TeXtUIE StAll...oo oo 5142
27.2.11 SQtoSP: GPR and auto COUNLETovovieoeoe oo, 5142
27212 SQ 10 SPX INSUCHONS ..o oo 5243
27.2.13 8P to SQ: Constant address load/ Predicate Set............................. 5243
27.2.14 SQto SPx: constant broadcast ... 5344
27.2.15 SP0Oto SQ: Kl VECIOr 1080 ..o 5344
27216 SQ 1o CP:RBBM BUS ... 5344
Exhibit 2028 docRAG0_ ¥ 73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257339

ATI Ex. 2107
IPR2023-00922
Page 205 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
l 24 September, 2001 4 September, 201519 4 0f 58
A it
27217 CP1oSQIRBBM DUS.....oov oo 5344
27218 SQ 10 CP: State rePOr ... 5344
28, OPEN ISSUES ... e encie e e e e e e e nman e e e easnnce e e e e anne s ee s sa e eeans e e e e te e e e nannenann 5844
Exhibit 2028 docRAGS_ ¥ 73201 yes™* ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257340

ATI Ex. 2107
IPR2023-00922
Page 206 of 260

J ORIGINATE DATE
70
24 September, 2001

EDIT DATE

4 September, 201518
A 1 Tatal

DOCUMENT-REV. NUM. PAGE
GEN-CXXXXX-REVA 50f 58

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

Exhibit 20 00_Seq e

First draft.

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ-»SP0O interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—8Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.

Updated the interfaces and added a section on
exporting rules.

Added CP state report interface. Last version of the
spec with the old control flow scheme

New control flow scheme

73201 Bytes*** © ATl Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257341

ATI Ex. 2107
IPR2023-00922
Page 207 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 6 of 58
A i Talal
Overview
SgLen ig-b d-on-the-R300-design-liThe sequencer chooses two ALU ¢lauses-threads and a fetch slause

hread to execute, and executes all of the instructions in a elause-block before looking for a new clause of the same
type. Two ALU clauses-threads are executed interleaved to hide the ALU latency. Eaeweewu}av&eeg?m

and-eight-A ALBESbi auses-do-not-need-t stain-4 stione.—A-veot fp otk ping-pengs
al ng i que p r:r\' houn lng o Sat orsabiog abetio o ol sarvation-stetion-A-EIED iste-heby r
& £ rating ateo ‘hndjrp I oot pakil Fhy 4 ourrant L ines o py st ation-has-lefA ote
at.a e eabioy ebodi hosenio-execuie-Th OLIBI0 ke {3 Hm‘gh? roasorsation.stali AVaYaY

an-ah-claduse-to ard-all-sight-felch-slations-to-¢ fetch-clause ecute—The arbitrator will give
priority to clauses/ ryath tatiops-clo the-bottorm-ol-the-plpelinaolder threads. will-pob-exesute-an-aly
clause-until-the-fetch-fetches-ipitiated Fed toh-clause-hav mpleted—-There are two separate sets-of

reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257342

ATI Ex. 2107
IPR2023-00922
Page 208 of 260

-00922

ATI Ex. 2107

IPR2023

Page 209 of 260

AMD1044_0257343

xxx @ 90k I9A0D 1O 32110N WBUAOD DOUBIDITY “[EIIUSPHUOD |1 @ wexdoVa lozeL oo “o0ra30P 202 TNKT
AMITAIIAD J2ousNbag [RIuRN) 1] 2anSLy
7 4 pEOT UBISLED
g - g4 J g * gy ” ”
" i 7 _ HAAY XL [\
7 VLYa ALRM XL
AmO\On_ = 20f0d = g90/0d = o e | e
T 1 avoT ESY]
73 'y -+ INYLSNOD S 9e dl e
N ~ | SHILINIO
| | Syad N&
avay Od 5
e o ot |
4]
| U~ 3LVLS HOL3d
W | ds ds ds | ds [«/| OISO faewd
) ry LSNDEL
I~ N Sad
AuvisL
] ¥aqv
e - e e Lsawvomang
NMMLTY Lum— L E—— R _—— i Lo my \
> ! | = ZHOLS LSNI
= LN = HALNI = HALNI [« * i
| . | o R
, ! JOMINGD 1
: avol
M», m _,». ,, S - e
e
HVESSONO T]
, H pesy 40
oo | | m e LGN
m%mw e8P SAVAD T TOMINGD TOHINGD !
53 ,.mvc_ ASUSA o h 40
| TOMINOD SINVLISNOD | pedien
XALMIA o
78 40
)
v TIviS
AT L v
8G 40 L YAZH-YXXXXXONID 6160 1equielaes v L00Z ‘1equisides $Z . .
q90Vd WAN "AFH-LNIWND0A 31va 1a3 J1vd JLYNIDIHO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201519 8 of 58
A it
Exhibit 2028 docRAGS_ ¥ 73201 yes™* ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257344

ATI Ex. 2107
IPR2023-00922
Page 210 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 9 of 58
A HERsTalal

1.1 Top Level Block Diagram

Exhibit 20208 docR400_

,~ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257345

ATI Ex. 2107
IPR2023-00922
Page 211 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
24 September, 2001 4 September, 201519 10 0f 58
3. Talaiel
Input Arbiter T
v
= VTX RS PIX RS -
Exec Arbiter
ALU Texture E—
Exhibit 2028 docRAGS_ ¥ 73201 yes™* ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257346

ATI Ex. 2107
IPR2023-00922
Page 212 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXK-REVA 11 0f 58
i o)
A
vertex/pixel vector arbitrator
Possible delay for available GPR’s <
A
FIFO
fereaion siaton |
> FIFO |ag
ALU clause 0
lagl——teservation station
—>| FIFO » .
Texture clause 1
reservation station
P FIFO g
a— LU clanse 1 exture arbitrator
eservation station
—>I FIFO f o —
exture arbitrator Cexture clause 2
eservation station
i L ETEQ L
«g— LU clause 2 il |
eservation station
,»i FIFO &_.. i -
[Pexture clause 3
eservation station
FIFO
L g—ALU clause 3 <« <«
eservation station
>l FIFO t_ — S
[Texture clause 4
reservation station
- FIFO g
legg—ALU clause 4
eservation station
B FIFC B -
[Texture clause 5
eservation station
> FIFO >
leg—ALU clause 5
eservation station
. S—. FIFO | — B>l
[Fexture clause &
eservation station
i FIFO o
g ALU clause 6
reservation station
>l FIFO B i
[Texture clause 7
eservation station
- FIFO >
gt LU clause 7
eservation station

\
Figure 2: Reservation stations and arbiters

oro-are-hwo-sete-ofth re-figure-one-forverdices-an forpixels-
Depending-on-the-arbitrati tate -t eauencer-will-either choos vertex-or-a-pixel-packet-The-con =
o Ihite nf e ; it ribhe bhae ciel ofth byzries program ol e i f ion.on A g k?
doterminefotoh LOD Fhpny Pt smallstate-bits.
ﬁn, int.nf p . i"}{-} i eé“n "}H” yay pi £ Yol i itist. 3 e m t 15 . i catoied e by in
£ Fininiy ¥ o intarnnloted ynlome amed o] Fnlmud i 4 Y, rybrd rdinates—{and

terp f 2) o R : £
2 an nositine if n eh-ar ¢ fom by devben ater asdie s Iy irvtopemtobe Fe mnespey ety opmed g io e by
2 i : ; e re-a

results-into-t Re.Then. the-inputsta ine-stacks-the-packetin-the-first EIEO.

Exhibit 2028 docRAG0_ ¥ 73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257347

ATI Ex. 2107
IPR2023-00922
Page 213 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 12 of 58
if Tat
[7o k;}-r‘ £ orarpanc . the Loy fe o bl g £ 7% o TR and oo sponding-GRE
addross-forthe f deress-{a)-A-smal d-ftemd) i o-the-fel identifving-the current level
B O)-as-well-as-the-GPR-write-ad r-the-fetch-return-dataOne-fetch-request-is-sent-every-4-clocks
causing the-texturing-of sixteen-2x2s-worth-of data-{or 84 -verices)-Once-all-the-requests-are-sent the-packet-is-put-
EIEO-1.
i pon oaint-of-ih ot aia' fatohunitsar he-dats the-reoister-file-usino-the-yrit { ab-was
Favaecnit gl dhe Joared Sk machin ol) It Faat 3} Elos £ foky YT ITar-) icinih,
= 7
a5 AT SRT YL el ang dat £ i ety £ sremokl i ments-the-counter-of & L7
i i, A Dihat the g ig acheto he neo 7
signi f is-rea B -
[T jesd o Y the devel O ALLL machine -fi sraments-the-input oy a en-BeUes-3
complete -set-of level -O-shader-inst one—For-e inetr i the--All-state machine-nenerstes 350
- 7
dd T f1e-gk i i ddres ne-an-d Hon-One: alast-instruction-has 148 o the-packel-is-ou
ke RIEC2,
e e e L Sro-srbiters) - Ona-atbitarsillarbitrat &
add e i Ao L and-the-oth will-arbitrate-ove var-instrget 4ol y 3 o
onlvconetrainte-bebween the-ba rhiters-is-that-they.a not-allowed-i iole-dhe-same-clay RTes) as-the-othe
by i 4 they : o & . .
fithe packet i 7 n-raaching AU 14 r ot psosition-iithe-oositich-is-ready
Lig 4 L L ¥
j ¢ e ALl olau by clected- itk tonalbufferis-full-{o Pl Y assedi-Alon ik
positionaldata.id iho-aorit i £¥ radoe-flace Fat by
Ji3 izl case. s for.am p e rhene ah £ sazhsie ry .42 na (7 £y g s con-to-the-outou
2 e £ £ aEa } :
buffer—-the-output-bufferis-full-ardossn't-hav ough-spasce-the-sequencer-will-p At-sUe rertex-—group-t
Multinass '_,' hadors-can-export-42 paramete O rom-thel clais iy 17)'
i therolh =X L in-the 259 3 by acketfinaslbv-reach thedast-Alll-machin (
Cnby-ena-pair-ebntersaved-Alblb-slate-machin i se-to-the—registerfile-addres or-tha-instustien
decode-bus-at-one-time.-Similarly-only-one-felch-state machine-may-have-access-to-the-register-file-add oo
mach) rhiters-abuay avordby igba FaTRTosy state oY Y ring-a-bun f half finished iobe-from
F o4 & ¥

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
{pixel, vertex) that we call the reservation station (RS).

Exhibit 2028 docRAGS_ ¥ 73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257348

ATI Ex. 2107
IPR2023-00922
Page 214 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 13 of 58

1.2 Data Flow graph (SP) —

tants from RE

instruction

Register File 4 ‘;m
of i {

— | N I
f scalar |nput/outputv MAC

i N ! tel jre requ
| ipeline stage 3 J\ \

o

nstruction

A
: Register File < \
he A |
scalar input/output A I
T 4 MAC

{] text| |requeg
pipeline stage !

-~

instruction

Register File

T

T3a] WOJ} EJep SARIUIL

" Scalar Unit

ar input/outy

=
" MA - texture| % Quest
ALl (= ;|
i pipeline stage 3 5
W e
W A
5l |5 v
k] = Register File
s 2 *
3 < y— N
=
] b

i
51 [__l__..d‘q Al texture ref pst

~ <\/I <scalar input/out ﬂ

Lo
- S SO — Mux
@
-y - 8
Iy S
52l
«©
4
2
&
(! -~
< to Primitive Assembly Unit or RenderBackend >
J
Figure 3: The shader Pipe
Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257349

ATI Ex. 2107
IPR2023-00922
Page 215 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬁcation PAGE
l 24 September, 2001 4 September, 201519 14 of 58
3 TaTal
i
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
Clause # + Rdy
WrAddr IS SEQ CcsT WrAddr
CMD
csT
-
PR omp éST'C_STiCS% IDX A B CWec
RdAddr | L A WiSeal yragar
¢ v v s v v
|
FETCH SP “ OF
WrAddr s

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

Figure 4: Sequencer Control interfaces

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028 docR400

73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257350

ATI Ex. 2107
IPR2023-00922
Page 216 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201510 GEN-CXXXXK-REVA 15 of 58
A HERaTatal
T
RE !
|
i
ToRB ‘
A0 Al
|
[
I 15 CROSSBAR (4x64 bits) |
I = e
s buffer (ping-pong buffer) T
1 A0 At AZ BO (28 bits * 2 (1J) + 8 bits * 6 (delta Ns)+4 exg
bits*6)* 16 (quads) * 2 (double-buffered) AQ Al A2 BO
4096 bits
2 B1 <o ¢t c2 32x128
B1 co ci c2
3 c3 c4 c5 DO XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 c4 =3 Do
768 bits
32324
4 Dt D2 E0 Et
D1 D2 EQ Et
1 3 1 —
INTERPOLATORS ‘ 1 : 1 1 .
FIX-FLOAT + EXPANSION |
ANy
N]
|
512 _/T_
: s =
| N
|
0% rE
i

oo oo [| [rom | Foom e | [|
tUL |‘2UL‘ L || 4o 1UR};2UR‘ SUR‘ 4UR

_4_4\~

Exhibit 2028 docR400

_4_4_4

_4_4_1

Figure 5: Interpolation buffers

LL, 2L ‘3LL “ 4L 1 2LR‘ 3R ‘4LR X4

_A\g_l

73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257351

ATI Ex. 2107
IPR2023-00922
Page 217 of 260

»er @ 964 19700 UO 301ION WBUAdOD 30UBIDIBY [EHUBPYUOD [LY @ wnsod L0722

wieiSep Sunup vonejodisuy (9 oSN

g

PRCOC WA

AMD1044_0257352

A
X1A ¢d ld AX
€|y | 1E| SI €9l ¥ | 1€ | Sl
-09-v¥ | -8z| 2yl 13| 0a| zo| og 13| oa| zo| og -09 -v¥ -8z -zL| ©
AN A| A AX AX | AX A 93
6S €V | LZ| LI 65 €V L2 L],
-9 0¥ | ¥z| -g| 03 10 o) ev| 03 10 SO ev[-9s/-0v |-v2 | 8 | o
AN ALA AX| AX | AX | AX
ss|6¢ | €2 |,] ssiec ez |, |,
25 roe | 0| 7, 00 zal vo A 00 zal vo W [-es|-oe -0z o) o
AN A AX| AX | AX
15 (S€ | 61| oo 151G 16k Teg] O
SR ZARTIRA lal €0 19| ov la| €d| 18| ov|-gy/ze oL | | ds
AN A AX| AX | AX
) 0a SEvd F20) GE] €
03 o) Xo) A 4
ax | 03] 08 AX | S0 |50 | xx|1O | 10 x| & s
Za 78 09 v P
ax 20120 | 5 190 |40 | 4y |00 | 00 X YY) gs
Ia %) Ig ov 0
AX | +a |1 Ax|€0 €0 | ax | el ax| OV | OV 4g
o N [FATAY
€zlizzl| 1zl 0zl 6l |8kl ZLL|9LL|SLL|PLL €l |2l Lil|ObL| 6L | 8L | ZL | OL |SL|¥l €L |ZL|LL oL
85409l 61510¢ TSAWSIES T | 100E equisides vz . .
Jovd uoneoyloads Jeousnbas 001y 31va 1ia3 31va ILYNIDIHO n‘

TVIMHLVIN d4dd0 JALLOHLOYUd

ATI Ex. 2107
IPR2023-00922
Page 218 of 260

”) ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

.

' 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 17 of 58
A

TR Tara

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257353

ATI Ex. 2107
IPR2023-00922
Page 219 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 18 of 58
A Fal

5.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
5Q decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management

To make this scheme work with only 5124256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:-De-allocation-mechanism). Note that in
the case a state is cleared a value of 0 is written to the corresponding de-allocation counter location so that when the
5Q is going to report a state change, nothing will be de-allocated upon the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257354

ATI Ex. 2107
IPR2023-00922
Page 220 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 19 of 58
A HERaTala

Free

Free List

Address

Free_ptr—»

Renaming Table
Context 0=> N

CurrenLast
Context o
(8 rows of 16- 8 e e .
1!;; pm{s_ical => gt cocksy Logical Address
entries copy o
in eight clooks) | Contaxt & Context
[]
@
@
i Context N 3 Physical
|
Address
cdlese |
used nex
Address
to Ailocats
Global Register
Data Bus Staging Data
Constants Buffer Physical
focation € Memory
available
WRTR Staging Write Addr
[—r—>
physical Dealloc
address COUAMS next
to physical
schedule address
for ready 3
de-alioc } for allocate
] |
Logical address | i C Se? :
Onthe — p~ - onstan
GlbRegBus A L3 & Request
when Ish are zero This .
first word of write . Reset Context
Renaming Table Dirty Dirt |
for 1 Context or ery ! |
Cumentiast || P L | Context &
Physical ddgress Adgress kf [Logcal |
Address (Only (if set Address
Loi;ei;al de- don't }
Address allocate allocate
ifset) | or de-
| gllocate) | Renaming
table
N-Contexts

Copy Last held above to
Current Context on receipt
of Set Constant for a

new context (Hide loading
behind Set State load - 16 clocks)
all other Set States just write one

N

Exhibit 2028 docR400

entry to current state.

Figure 78: Constant management

73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257355

ATI Ex. 2107
IPR2023-00922
Page 221 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 20 of 58
SQ_STATE#

ADDR

DEALOC

Eree List |l ONT VALUE | COUNTERS ——WRITE_ENABLE

|
|
i
| PREVIOUS
NOT | STATE
‘ NEW
| STATE
VALUE
fog—
— =
VALID
. i
OR
le———SQ IDLE
AND la——PA_IDLE
ke CP_NEW_STATE_CNTL—
REMAPPING
TABLE e SET CTXBITS

Figure §9: De-allocation mechanism for R460LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028 docRAGO- 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257356

ATI Ex. 2107
IPR2023-00922
Page 222 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 21 0of 58

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the coniext is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257357

ATI Ex. 2107
IPR2023-00922
Page 223 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 22 of 58

A T
" between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2X /I Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers aliocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 918: The instruction store

[Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257358

ATI Ex. 2107
IPR2023-00922
Page 224 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 23 of 58

6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]

Loop_count[7:0][31:0]

Loop_Start[7:0][31:0]

Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

We'd like to be able to code up a program of the form:

1 Loop

2: Exec TexFeich
3: TexFetch
4: ALY

5: ALY

6: TexFetch
7 End Loop

8: ALY Export

But realize that 3: may be dependent on 2: and 4. is almost certainly dependent on 2: and 3., Without clausing
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate texture
clauses' and 'ALU clauses' we need o know which instructions to dispatch to the Texture Unit and which fo the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
ay ALU or Texture
b) Serialize Execution

{b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been feiched. Given the allocation of reserved bits, this would mean that the count of an 'Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed a second Exec (with the
same conditions) would be issued.

Anpther function that relies upon 'clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exporied uniil space is allocated. A new conirol flow instruction;

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruclion(s) following the serialization due fo the
Alloc will oceur in order - at least untll the next serializalion or change from ALU to Texture. In most cases this will
allow the expors to occur without any further synchronization. Only 'final’ allocations or position allocations are

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257359

ATI Ex. 2107
IPR2023-00922
Page 225 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 24 of 58
Al DNy

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these struclures. Vertex exporis to memory do not require ordering during allocation and so multiple

‘allocs’ may be done,

6.2.1 Control flow instructions table

Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

— e ‘{ Formatted: Bullets and Numbering

Execule
47 48... 43 40 ... 34 33..16 15...12 11...0
Addressing 0001 RESERVED Instructions type + serialize (9 Count Exec Address
instructions)

Execute up to 8 instructions at the specified address in the instruction memory, The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texiure, 0 = ALU and whether fo serialize or nof the execution (MSB
(1 = Serialize, 0 = Non-Serialized).

NOP

47 [46 ... 43] 42 .0

Addressing | 0010 | RESERVED

This is a reqular NOP.

Conditional Execute

47 46 ... 43 42 41 ...34 33 .16 15 .12 11...0
Addressing 0011 Condition | Boolean | Instructions type + serialize (9 Count Exec Address

address

instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified

instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute Predicales

47 46 ... 43 42 41...36 35..34 33...16 15..12 11..0
Addressing 0010 Condition | RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Check the AND/OR of all current predicate bits If AND/OR matches the condition execute the specified number of
instructions. We need to ANDJ/OR this with the kill mask in order not fo consider the pixels that aren't valid, If the
condition is not met, we go on to the next control flow instruction,

Loop Start
47 146 . 43 | 42 .17 [1612 | 11..0
Addressing | 0101 | RESERVED | loop D | Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump fo the address. Forward
iump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257360

ATI Ex. 2107
IPR2023-00922
Page 226 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXOOOK-REVA 25 of 58
A IR AT
Loop End
47 (46 .. 43 | 42 . 2047 19.. 17 [16..12 | 11..0
Addressing | 0011 | RESERVED Predicate break | loop D | start address

Loop end. Increments the counter by one, compares the loop count with the end value, If loop condifion met
continue, else, ump BACK to the star of the loop. If predicate brealk = O, then compares predicate veclor n
(specified by predicate break number). if all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy fo do.

Conditionnal Call
47 46 ... 43 42 41 .37 35..34 33..12 11...0
Addressing o111 Condition RESERVED Predicate vector RESERVED Jump address

If the condition is met, jumps fo the specified address and pushes the control flow program counter on the stack.

Return

47 46 .43 | 42 .0

Addressin 1000 | RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

47 46 ... 43 42 41...34 33 32..12 11...0
Addressing 1001 Condition | Boolean | FWonly RESERVED Jump address
address
Allocate
47 | 46 .43 | 42..41 [40... 4 | 3.0
Debu | 1010 | Buffer Select | RESERVED | Allocation size

Buffer Select takes a value of the following;

01 ~ position export (ordered export)

10 - parameter cache or pixel export (ordered export)
11 — pass thru (out of order exports).

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

End Of Program

47 [4643] 42..0

RESERVED | 1011 | RESERVED

Marks the end of the program.

6.3 Implementation

The envisioned implementation has a buffer that maintains the stale of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 eniries for pixels,

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

Formatted: Bullets and Numbering }

AMD1044_0257361

ATI Ex. 2107
IPR2023-00922
Page 227 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 SBeptember, 201519 26 of 58

EYaYate!

A
From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU o TEX or visa-versa or a Serialize Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored ina 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be fermed 'status’,

‘State Bits' needed include:

Control Flow Instruction Pointer (12 bits i
Execution Count Marker 4 bits) ;
Loop lterators (4x9 bits),
Call return pointers (4x12 bits
Predicate Bits(4x64 bits

. Export 1D (1 bit)
7. Parameter Cache base Pir (7 bits),
8. GPR Base Pir (8 bits)
9. Context Plr (3 bits).
10. LOD corrections (6x16 bits

Formatted: Bullets and Numbering

SREIENTRYNTE

Absent from this list are 'Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs, The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return pirs, Predicate
bits, PC base plr and expert 1D} are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execulion. GPR Base Pir, Context Pir and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

e Valid Thread

Formatted: Bullets and Numbering

Texture/ALU engine needed

Texture Reads are oulstanding

Waiting on Texture Read fo Complete

Allocation Wait (2 bits)

00 ~ No allocation needed

01 ~ Position export allocation needed (ordered export
10 - Parameler or pixel export needed (ordered export)
11 — pass thru (out of order export)

» Allocation Size (4 bits)

e Position Allocated

o First thread of a new context

e Eventihread (NULL thread that needs fo trickle down the pipe
e Last (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done beitween the two. But the rest of this implementation
summary only considers the 'first’ level selection which is similar for both pixels and vertices,

Texture arbitration reguires no allocation or ordering so it is purely based on selecling the ‘oldest thread that requires
the Texture Engine.

ALU arbitration is a litle more complicated. First, only threads where either of Texture Reads oulstanding or
Waiting on_Texture Read to Complete are 'O’ are considered, Then if Allocation Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position aliocation, then the thread is only

Exhibit 2028 docRAGS_ ¥ 73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257362

ATI Ex. 2107
IPR2023-00922
Page 228 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 27 of 58
s TaTa

considered if all 'older’ threads have already done their position allocation (position allocated bits sel). If the
allocation is parameler or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First thread of a new context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest’ of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine 'clauses’ o mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum number of clauses needed is 2 - one to perform
the allocation for exports (execulion automatically halls after an 'Alloc’ instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the "Alloc’ instruction could be parf of a texiure clause
(presumably the final instruction in such a clause), a thread could still execule in this minimal number of 2 clauges
even if it involved texture fetching.

The Texiure Reads Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not vet had there dafa returned. Any number
above O results in this bl being set, We could consider forcing synchronization such that two texture clauses fora
given thread may not be outstanding at any fime (that would be myv preference for simplicity reasons and because it
would require only very little change in the fexiure pipe interface). This would allow the sequencer to set the biton
execution of the texiure clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

Examples-ofconttol-flow-programs-are-located-in-the-RAC0 programming-guide-dosumen
[= g = 4
basi doli follows:

he-render-state-defined the clause-boundares:

Vertex_shader fetoh[Z:0[Z:01 /L sight 8 bit pointers-to-the location- where each-clay ontrol- program-is tad

Vertex_shaderalu[7Z:0)17:0] L eight-8-bit-pointers-to-th ation sach-clauses-control program-is-Jocat

Pix ader fetchlZ:007Z:01 L eight-8-bit-pointers-to-the-location-where-each-clauses controlprogram-is-Jocated
- s L] L L

=1 aderalul 70070} L eight-8-bit-pointers-fo-the location where-each-clauses-control-progtam-is ed

A-peintervalue of FR-means-that the clause doesn’t contain-any-instructions.

The-control-program-for-a-given-clause-is-executed-to-completion-before--moving-to--another-clause;(with-the
excention-of the pick bve- 11 of-the-aly cutiony o ntrol-orocram-is-th i program f the clau

ick u he-aly) trol-program Y hy-p r-aware-of
boundaries.

The-control-program-has-pine-basie-instructions:

Execute

Conditional-execute
Conditional-Execute- Predicales
Conditional-jump
Conditionnal-Call

Return

Loop. start

Loop.-end

NP

Execute, causes-the-specified-number-of instructions-in-instruction-store to-be-executed.:
Conditional-execute-checks-a-condition-first,-and-if-true,-causes-the-specified-number-of-instructions-in-instruction
store-to-be-executed.

Loop.statt-resets-the-corresponding -loop-counter-to-the-start-value-on-the -first-pass-after-it-checks-for-the-end

r\né'l\ ndif‘(\("h Tel 1.5 p 'f”A“d .
Loop-endincrements (decrements?)-the loop-counterand-jumps-back the specified numberofi ions.

Conditionnal-Call-jumps-to-an-address-and-pushes-the-1P-counter-on-the-stack-if- the-condition-is-met-On-the retum
instruction; the-1P-is-popped-from-the-stack.

Exhibit 2028 docRAG0_ ¥ 73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257363

ATI Ex. 2107
IPR2023-00922
Page 229 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 28 of 58
A i Iataiel
Condiional-exesute—Predicate 2 } instructions-i-all-bite-in-the-predicate-ved eet-the-condition:
Conditienaltumps-lurmpse-to-an-address-ithecondiionle-meb
MNOTE THAT AL A] MUST JUMPRTO EVEN CERADDRES e} thn ra-hain nirol flow - insbuction =
RSN ine-Thus-th ombilermi insert-MMORs where-needed liorsthe-i P naven-OFR add
A i ihe-d Wégiﬂ i, h;gn r4 oaha P % 4 S Ve el 4 TN b 12y 7atatasYas) 2 !
4 L ! e e e -
sotihodebug Sgedens £ oo i oot i a oy T owra igg Y 1 ate) g o-brasle
& - } - : el igger-iha reak
the-program-fola and-set-the-debug-registers:
We-have-fo-fitinstructions-into-48-bits-in-orderto-be-able-to-putt ntrol-flowcinstruction line-in-the-instruction
slara.
3 o34 he-Add ‘:t aans-that-the-addres: sacified-in-the oS .| - Feld rin-tha-ium ddress
fimh n ARG T dd L da i"‘g ieldds (eh 7] a-defaub-thenthe-add H It

to-the-base-of the-currentshader-prograrm.

Note that whenevera-field-is-marked-as RESERVED it is-assumed-that all the bits-of the field-are cleared (0}

Execute-up-to-dk-instuctions-at-the-specified-address-in-the-instruction-memory.- I Last-is-setl;-this-is-the-last-group-of

instructions-of the-claus

This-ig-a-recy By aat s nie s tha laat instruction the olaus
g A 5 ¥ a3 f ¥

H-the-specified-Boolean-(8 bits-can-address-256-Booleans)-meets-the-specified-condition-then-execute-the-specified
instructions-(up-to-4k-instructions).-H Last-Is-set;-then-if the-condition-is-met;-this-is-the-last group-of instructions-to-be
e ted-in-the-clause. i the condition-is-not-met; we-go-on-to-the-next-control-flow-instruction.

Check-the-ANDIOR-of-all-current-predicate-bits.- i AND/OR-matches-the-condition-execule-the-specified-number-of
instructions-\We-need-to-ANDI/GR-this-with-the-kill- mask-in-order-not-to-consider-the-pixels-that-arent-valid-f-Lastis
set, - then-if the-condition-is-met, this-is the-last group-of instructions-to-be-executed-in-the-clause - - the-condition-is-not
met-we-go-on-to-the-next-control-flow-instruction.

Ln Qtﬁr‘(‘mp ohl nitraérxghinn 1§n‘il d}t +"f‘.‘{v’"}}3 th d ~EOR }'"
jump-only-Also-computes-the-index-value-The loop-ld-must-mateh-betwesn the slartlo-end, and also-indicates-which
control-flow-constants-should-be-used-with-the-loop-

Loop-end.Increments-the-counter-by-one;-compares-the-loop-count-with-the-end-value.f-loop-condition-met;
continue,-else, jump-BACK to-the-start-of the-loop.

The way-this-i ibed-do not-nreven stad-) and-thei usion-ofthe | i this-easyio-do-

H-the-condition-is-metljumps-to-the-specified-address-and-pushes-the-control - flow-program-counter-on-the-stack:

Pops-the-topmost-address-from-the-stack-and-jumps-to-that-address. Hf-nothing-is-on-the-stack;- the-program-will-just
continue-to-the-next-instruction:

f-condition-met-jumps-to-the-address-FORWARD-jump-only-all if-bit-31-set-Bit-31-is-only-an-optimization for
compiler-and-should-NO exposed-to-the AP
Exhibit 2028 docRAGS_ ¥ 73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257364

ATI Ex. 2107
IPR2023-00922
Page 230 of 260

ﬁ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
o)
. 24 September, 2001 4 September, 2015189 GEN-CXXOXXX-REVA 29 of 58
A HERsTalal
revent-infinite loops—we-will-k G bits-loop-i re-instead-0i-8 o % 5256 -Hmesi-i-the
countergoes-highe #2565 thenthe 5-end-or-the art-instruction-is-going-to-b s-and-set-the
k=] | g o 3 L4
debug-GRRe-
; . . . e Formatted: Bullets and Numbering E
6-36.4 Data dependant predicate instructions = SEEE s J

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported’ to the sequencer.
PRED_SETNE_# - similarto SETNE except that the resuit is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# - SETEO
PRED_SETE1_# — SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6-46.5 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

*'l , = fLF_ormatted: Bullets and qube‘ring —

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

. " B . i ,» Formatted: Bullets and Numbering

6:56.6 Register file indexing 1 i e —
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the : - S
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit6

0 0 ‘absolute register'
0 1 ‘relative register’
1 0 ‘previous vector'

1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257365

ATI Ex. 2107
IPR2023-00922
Page 231 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 30 of 58
A

TR YaYate)

The sequencer is going to keep a loop index computed as such:
Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Predi ao-lnstryet ooort-f lauss
d } £ p f 1
F -3 £ L LYr v followd ook iono s i buie-d-bite f ks fi oraci aoto
pp . p : keep-1-bi ‘ f : v
perpradicat orir-the-resenation-stations—A-val 1 rreans-that ore-ore-more-elerments-in-the-vector hav
value-of fthus-we-have-to-do-the-& fate rihe whole vestor).-A-val £04 that-no inthe

vector-have-his-predicate-bit-set-and-we-can-thus-skip-over-the-texture-feleh.-We-have-to-make-sure-the-invalid
pixels-aren’t-considered-with-this-oplimization.

6-66.7 Debugging the Shaders

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

6:6-16.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overfiow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will hait execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6:6-20.7.2 Method 2: Exporting the values in the GPRs {12}

The sequencer will have a debug active, count register and an address register for this mode-and-3-bils-per-clause
ecifying-the-execution-rode-for ause.-Fhe-modes-can-be-:
MNeormal

Debug-Addr+-Count

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

2)Debug Kill -

T ’[Formatted: Bullets and Numbering B

AMD1044_0257366

ATI Ex. 2107
IPR2023-00922
Page 232 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXXXK-REVA 31 of 58
A sl ala

Under the normal mode execution follows the normal course. the-kill-m . trol-flow-instructions-ar
Naotiba b (g 3 L«M (nimgn‘nnfh LS renbae y L) . hi-debua. o nﬁ‘p{ ot o
clause-Z-willbe-executed-underthe-debug-kill-setling- rthe othermode; mal-e tion-is-done-unti-we-reach
an-address-spacifi vthe-add reaister-and-instryction Ai-fuseful-for-loops)-specified-by-the-count register-
Afte son bymasses Inib dlves dpmeden pndion ey Rievs {rmemis lr) 30 sl $i, fog s by, lmode.
Under the debug mode—{ Kil-GR--dabug-Addr unb); it is assumed that the programeclause-7 is always

exporting 42-n_debug vectors and that all other exports to the SX block (position, color, z, ect) will been turned off
(changed into NOPs) by the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257367

ATI Ex. 2107
IPR2023-00922
Page 233 of 260

ORIGINATE DATE EDIT DATE PAGE

R400 Sequencer Specification

24 September, 2001 4 September, 2015189 32 of 58

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to O and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2028 docRAGO- y 73201 Byes*** @ ATl Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257368

ATI Ex. 2107
IPR2023-00922
Page 234 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 33 of 58

Asail IOy

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFQOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Quiput File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. 1J Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ's (one 1J per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in 1J
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

A0 =I(H-1(0)
AOLT =J()-J(0)
AO2f =1(2)-1(0) PO P1
AO2J = J(2)-J(0)
AO3T =1(3)-1(0)
A03J =J(3)-J(0) P2 P3

PO=C+I(0)*(A-C)+J(0)*(B-C)

Pl=P0+A01I*(4A-C)+A0LJ *(B-C)
P2 =P0+A02I *(A~C)+A02J *(B-C)
P3=P0+A03I*(A~C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257369

ATI Ex. 2107
IPR2023-00922
Page 235 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 34 of 58
A i Tl

" Adds: 8

FORMAT OF PU's IJ : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the 1Js (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A= B and B =C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
else if (I=0)or (4 =0)) and
((J =0)or (1-I-J =0)) and
((1-4-1=0)or (1=0) {
if(1 1= 0) {
PO =A;
Yelse if(d 1= 0) {
PO =B;
}else {
PO=C;

/frest of the quad interpolated normally

}

else

{
}

normal interpolation

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415]]161718192021222324252627282930313233343536373839
40414243444546471|48495051525354555657 585960616263

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(/4567202122233637383952535455(/89101124252627
404142435657 5859|1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

[Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257370

ATI Ex. 2107
IPR2023-00922
Page 236 of 260

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201518
V.Y

L Yatatel

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
350f 58

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure-12. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as

0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure-11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 116312 60.57813 u” per bit
Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712 per converter
Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 101t:Area Estimate for VGT to Shader Interface

Exhibit 2028 docR400

73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257371

ATI Ex. 2107
IPR2023-00922
Page 237 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015189 36 of 58
Talal

=

VGT BLOCK
(IN PA)

VECTOR ENGINE

VECTOR ENGINE

Figure 1132:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS 1

7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT-% (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT--Z = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17“‘) is going to have the address 00000001000, the 18" 00010001 000, the 19™ 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT
—#to Current_Location and reset the memory count to O before the next vector begins).

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257372

ATI Ex. 2107
IPR2023-00922
Page 238 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 37 of 58

P

17.1 Export restrictions

17.1.1 Pixel exports:

Pixels can export 1,2.3 or 4 color buffers to the SX{ +z). The exports will be done in order. The PRED OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the §X.

17.1.2 Vertex exports: 1

Position or parameter caches can be exported in anv order in the shader program. It is always betler fo export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texiure instructions interleaved.
The PRED OPTIMIZE function has to be turned of if the expors are done using interleaved predicated instructions to

{ Formatted: Bullets and Numbering J

{ Formatted: Bullets and Numbering

the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the 8X.

17.1.3 Pass thru exports:

Pass thru exports have to be done in groups of the form:

They cannot have texture instructions interleaved in the export block These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to reqular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencer arbifration restrictions:

1) Cannot execule a seriglized thread if the corresponding texture pending bit is set -
Cannot allocate position if any older thread has not allocated position
3) I last thread is marked as not valid AND marked as last and we are about to execute the second to oldest
thread also marked last then:
a._Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread
4y Cannot execute a texture clause if texiure reads are pending
5y Cannot execute last if texture pending (even if not serial)

18\ i _

Qn clause-3-the-vertex-shader-can-export-to-the PA-both-the verex-position-and-the point-sprite- It can-also-do-so-at

ise-7-i-not-done-at-clause-3. The-storage-needed-to-perform-the-position-export-is-at-least-64x 128 -memories-fo
i ition-and 32-memories-for-the sprite-size. Itis-going-to-be taken-in-the-pixel-output-fifo-from-the-SX-blocks.
lause-whe the-position- fad ORI ocif h’ e RO LATE g I i1 el it ne-tha
f i b kAT E- - H-turned-on;-it ns-tha
th - O to-o t-ALL-clau WA BT position-exnort e £ ol e
b herulos for i Tatel Liolais
£ : g g
1iRPosit & ar itiey v vyt el -y,]

Adlothertypes-ofexpeds-canb isewad-as-long-as-there-e-place-inth bring-buffer:

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

L= —“[Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

o j"{Formatted: Bullets and Numbering

{ Formatted: Bullets and Numbering

, n{ Formatted: Bullets and Numbering :

- *v‘[Formatted: Bullets and Numbering

AMD1044_0257373

ATI Ex. 2107
IPR2023-00922
Page 239 of 260

ORIGINATE DATE
24 September, 2001 4 September, 201518
A i Talal

EDIT DATE

R400 Sequencer Specification

PAGE
38 of 58

20—Exporing-Rules

20-1-Paramet

A noon ki

ou rd s to-the ot ches.-S

rt-raultiple-times-to-the-sa

;{Formatted: Bullets and Numbering }

PC-liry ing-different

Memory-exports don't support-masking. However, youcan-exportout-of order to memory locations.

3 Posili

Position rha by

ks one-IN-ORDER and et roasking.

21-18. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the

ALU instruction. Here is a list of all possible export modes:

21+-1+18.1 Vertex Shading

0:15
16:31
32
33:40
41:47
48:55
60

61

62

63

- 16 parameter cache

- Empty (Reserved?)

- Export Address

- 8 vertex exports to the frame buffer and index

- Empty

- 8 debug export (interpret as normal vertex export)

- export addressing mode

- Empty

- position

- sprite size export that goes with position export
(point_h,point_w,edgeflag,misc)

212182 Pixel Shading

o]

1

2

3

4:7

8

9

10

11
12:15
16:31
32
33:40
41:47
48:55
60
61:62
63

Exhibit 2028 docR400

- Color for buffer O (primary)

- Color for buffer 1

- Color for buffer 2

- Color for buffer 3

- Empty

- Buffer 0 Color/Fog (primary)

- Buffer 1 Color/Fog

- Buffer 2 Color/Fog

- Buffer 3 Color/Fog

- Empty

- Empty (Reserved?)

- Export Address

- 8 exports for multipass pixel shaders.

- Empty

- 8 debug exports (interpret as normal pixel export)
- export addressing mode

- Empty

- Z for primary buffer (Z exported to ‘aipha’ component)

73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

[Formatted: Bullets and Numbering 1

. ,‘ —{ Formatted: Bullets and Numbering

, {’[Formatted: Bullets and Numbering

e

*[Formatted: Bullets and Numbering }

- : {Format‘ted: Bullets and Numbering

AMD1044_0257374

ATI Ex. 2107
IPR2023-00922
Page 240 of 260

ﬂ« ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
' 24 September, 2001 4 September, 201519 GEN-CXOOO0-REVA 39 of 58 = _
YT = 5;{Formatted: Bullets and Numbering

3

22.19. Special Interpolation modes

22.119.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

22.219.2 Sprites/ XY screen coordinates/ FB information

When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_l0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

e «\’[i Formatted: Bullets and Numbering

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_lO disable, snd_xy disable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy disable, gen_st — |0 = No modification

Param_Gen_l0 disable, snd_xy enable, no gen_st — 10 = No modification

Param_Gen_l0 disable, snd_xy enable, gen_st — [0 = No modification

Param_Gen_l0 enable, snd_xy disable, no gen_st -~ I0 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st — I0 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, s, t

22-319.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2™ pass. .
The count is always generated in the same way but it is passed to the shader in a slightly different way dependingon ==
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to ;
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

22-3-119.3.1 Vertex shaders ﬂ

. ’[Formatted: Bullets and Numbering

i *[Formatted: Bullets and Numbering

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

2232193 2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1% register (R0.x).

-, ’[Formatted: Bullets and Numbering }

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257375

ATI Ex. 2107
IPR2023-00922
Page 241 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 40 of 58
i Tataiel
STG O
AUTO INTERPOLATORS
COUNT
STG1 |

¥
‘
‘ AUTO COUNT | 000000 |

[] The Auto Count Value is
\ MUX broadcast to all GPRs. ltis
loaded into a register wich has
its LSBs hardwired to the
GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count
value and it is loaded into the
GPRs to be either used to
retrieve data using the TP or
GPRO sent to the SX forthe RB to
use it to write the data to
memory

Figure 1213: GPR input mux Control

/ { Forlﬁatted: Blﬂlets énd ‘Numbe‘rir‘\g J
23-20. State management -

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

23-120.1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

e «‘{ Formatted: Bullets and Numbering

-

;. ‘[Formatted: Bullets and Numbering]
24-21. XY Address imports IR SRR N

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the |J data or pass the XY data thru a Fix—float converter and expander and write the converted values to

the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19,2222 for details on how to control the interpolation in this mode.

24-121.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

— = 4‘{ Formatted: Bullets and Numbering

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257376

ATI Ex. 2107
IPR2023-00922
Page 242 of 260

ﬁ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
' 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 410158 | ‘ s
Avil Y = {Formatted: Bullets and Numbering }

2522 Registers

25122 1 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU
INSTRUCTION
CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

o

Dynamic allocation (pixel/vertex) of the register file on or off.

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

policy of the arbitration between vertexes and pixels

start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)

start point for the pixel shader instruction store

debug state register. Only allows one program at a time into the GPRs

debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped

512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)

2564 ALU constants + 32*6 texture states? (physically mapped)

This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from O to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT._LATEControls-whet or-not-we-are-exporting-position-from-clause set,-position exports-ocour-a
clause-7Z.
23 Formatted: Bullets and Numberin

25222 2 Context - {Formated: Btesand umberng_

V8. FETCH. 0. ig bit-pointers-to-the-location- wher ch-clau trol-program-islocated

VS ALY 0.7} eiaht-8 bi inters-to-the location-whe 3 lauses-control prograum-is-located

PS_FETCH. {0...7} eight 8 bit pointers to the-location where each-claus trol program-is-located

PS_ALU_{0,..7} eight 8 bit pointers to the location where sach clau ontrol-program-is-located

PS_BASE base pointer for the pixel shader in the instruction store

VS_BASE base pointer for the vertex shader in the instruction store

VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)

PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)

PS_SIZE size of the pixel shader (cntl+instructions)

VS_SIZE size of the vertex shader (cntl+instructions)

PS_NUM_REG number of GPRs to allocate for pixel shader programs

VS_NUM_REG number of GPRs to allocate for vertex shader programs

PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROV ERT 0-rvertex-0,1:verex 1, 2. vett t vert fthe-primiti
PARAM_WRAP 64 bits: for Whlch parameters (and channels (xyzw)) do we do the cyl wrapping

PS_EXPORT_MODE

VS_EXPORT_MODE
VS_EXPORT

_COUNT___Number of !ocatlons ex orted by the VS (and thus number of interpolated

PARAM_GEN_I0

Exhibit 20208 docR400_

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © » | k &

(O=linear, 1=cylindrical).

Oxxxx : Normal mode

Ixxxx : Multipass mode

If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

0: position (1 vector), 1: position (2 vectors), 3:multipass

parameters)-{0...6} rs-representin # of interpolated
parametersexgoy{e in-clause 7.4 ated-in) W DT LIN R =]

—#-of-exported-vectors-fo-memory-perclause-in mumpass mode {pe; clause)
Do we overwrite or not the parameter 0 with XY data and generated T and S values

AMD1044_0257377

ATI Ex. 2107
IPR2023-00922
Page 243 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 42 of 58
AT
! GEN_INDEX Auto generates an address from O to XX, Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 2586 boolean bits

CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

S { Formatted: Bullets and Numbering }

-

26-23. DEBUG Reqisters

26-123.1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB ON turns on an off debug method 2

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

DB-CLALSE

A Al i) LIS odefordebio taaTa¥al O nommal-doadd : ;”_}
e s P 2] g 0] T T g
DB-CLAUBE

MODE. FETOM. L defordebucs-mell 2 A0 novmal-deaddr i(m}
s - o i3 g T o

— ,—{ Formatted: Bullets and Numbering

26223 2 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

Formatted: Bullets and Numbering }

2724 Interfaces

27124 1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

. [Formatted: Bullets and Numbering }

27224 2 SC to SP Interfaces =

=] Formatted: Bullets and Numberin
27212421 SC_SP# < { Formatiad butes and Murberng
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the 1,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => 84.20 Floating Point | value

Ref Pix J => §4.20 Floating Point J value

Delta Pix | (x3) => 54.8 Floating Point Delta | value

Delta Pix J (x3) => 84.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

[Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257378

ATI Ex. 2107
IPR2023-00922
Page 244 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 43 of 58

TEEYarst

Additionally, X)Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The XY data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the 8C. Each time the
SC has sent a pixel vector's worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only |J to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of XY data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,8Q and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits | Description

SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)
Type 0 or 1, First clock |, second clk J
Field ULc URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4MS

Type 2

Field Face X Y

Bits [63] [23:12) [11:0]

Format Bit Unsigned Unsigned
SC_SP# valid 1 Valid
SC_SP# last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP# type 2 0 -> Indicates centroids

1 -> Indicates centers

2 -> Indicates X,Y Data and faceness on data bus

The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

. 4— ~ {Formatted: Bullets and Numbering
272224272 SC_SQ il S
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or =

loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name Bits | Description
SC_8Q_data 48 Control Data sent to the SQ
1 clk transfers
Event - valid data consist of event_id and
state_id. Instruct SQ to postan
event vector to send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.
Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257379

ATI Ex. 2107
IPR2023-00922
Page 245 of 260

ORIGINATE DATE EDIT DATE
24 September, 2001 4 September, 201519
e

R400 Sequencer Specification

PAGE
44 of 58

Empty Quad Mask - Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
request fifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers

Quad Data Valid — Sending quad data with or
without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless none is in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

SC_8Q_valid

1 SC sending valid data, 2™ clk could be all zeroes

SC_8Q_data - first clock and second clock transfers are shown in the table below.

Name

BitField | Bits | Description

1 Clock Transfer

SC_8Q_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0
SC_8Q_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1=>TBD
SC_SQ_pc_dealloc [5:3] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.

SC_8Q_quad_mask [10:7] 4 Quad Write mask left to right SPO => SP3
SC_8Q_end_of_prim 11 1 End Of the primitive
SC_SQ_state_id [14:121 | 3 State/constant pointer (6*3+3)
SC_8Q_pix_mask [30:15] | 18 Valid bits for all pixels SPO=>3P3 (UL,UR LLLR)
SC_8Q_prim_type [33:31] |3 Stippled line and Real time command need to load tex cords from
alternate buffer
000: Normal
010: Realtime
101: Line AA

110: Point AA (Sprite)

SC_8Q_provok_vix

[35:34] | 2 Provoking vertex for flat shading

SC_8Q_pc_ptr0

[46:36] | 11 Parameter Cache pointer for vertex 0

2nd Clock Transfer

SC_SQ_pc_ptr1

[10:0] 11 Parameter Cache pointer for vertex 1

SC_8SQ_pc_ptr2

[21:11] 11 Parameter Cache pointer for vertex 2

SC_8Q_lod_correct

[45:22] | 24 LOD correction per quad (6 bits per quad)

Name

Bits | Description

Exhibit 2028 docR400

73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257380

ATI Ex. 2107
IPR2023-00922

Page 246 of 260

” ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

A

' 24 September, 2001 4 September, 2015189 GEN-CXOOOGC-REVA 45 of 58
A il TNy

SQ_8C_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.

SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.

2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been
marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector)

marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culied
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size).
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export

until the pc_dealloc signal made it through and thus the hang.)

272324 2.3 8Q to SX: Interpolator bus

prior to submitting the new_vector

In this case two

Formatted: Bullets and Numbering

Name Direction Bits | Description
SQ_SXx_interp_flat_vix SQ—-SPx 2 Provoking vertex for flat shading
SQ_8Xx_interp_flat_gouraud | SQ--»8Px 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ—SPx 4 Wich channel needs to be cylindrical wrapped
SQ_8Xx_pc_ptr0 SQ-8Xx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ-SXx 1 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ--»>8Xx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ—-8Xx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ—-8Xx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ--»8Xx 7 Write address for the PCs
5Q_8Xx_pc_channel_mask | $Q-»8Xx 4 Channel mask

272424 2 4 SQ fo SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

e ”[Formatted: Bullets and Numbering

Name Direction Bits | Description

SQ_SPx_vsr_data SQ—8Px 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ—-S8Px 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SPO_ vsr_valid SQ-SPO 1 Data is valid

SQ_SP1_vsr_ valid SQ—-SP1 1 Data is valid

SQ_SP2_vsr_ valid SQ--SP2 1 Data is valid

SQ_SP3_ vsr_ valid SQ—-SP3 1 Data is valid

SQ_8Px_vst_read SQ--SPx 1 Increment the read pointers

2725242 5 VGT to SQ : Vertex interface

27251242 5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

e

= = f[Formatted: Bullets and Numbering)

VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Exhibit 20208 docR400_

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257381

ATI Ex. 2107
IPR2023-00922
Page 247 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 486 of 58
A HEe ataw]
Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of vector" is set on the first vector)
VGT _SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“VGT_SQ_vgt end_of vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

2725224 252 Interface Diagrams

Exhibit 2028 docR400

73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

g -[Formatted: Bullets and Numbering

AMD1044_0257382

ATI Ex. 2107
IPR2023-00922
Page 248 of 260

»er @ 96 19100 UO 310N WBUAdOD 30UBIBIBY [RHUSPYUOD [LY @ wnso¥d L0222

HIONINOIS
HIAYHS

GOPHICR BCOC WARKE

1848 1848
0 ubd B O TTE wr os O3 =y
¥
fitse
o4 T— DIy & % e
7 QNES puss 364 05 wd |
] ALdAT [:
1OA
i < il il
i h e moes] O3 (W e Tomeqene aba oo A] O3 [T A5 FLVLS
¥addng — —
il anis) <l il
o yX oL A woroms o am | O30 [A ioi0A 3o pus 164 03 wa | o0 [W 7 SCLOEA J0 GHE
i o < i
h e Tranoq wetea | O3 [d ey e R 2 TTanO0 MEISh
i s < il
hl - Twivd wsiea] O3 [i TheD TeTea 1bA Oo wa | ooY [2 WIWI MSISA
UUCTTY
f
8540 Ly YATHEXOXXO-NID 61GLOT Jequieideg ¢ 100z H1equsides yz . -
JOVd WAN "AZA-LNIWND0A 3Lva 11a3 J1vA FLYNIDRIO

TVIMHLVIN d4dd0 JALLOHLOYUd

AMD1044_0257383

ATI Ex. 2107

IPR2023-
Page 249 of 260

00922

»er @ 964 19700 UO 301ION WBUAdOD 30UBIDIBY [EHUBPYUOD [LY @ wnsod L0722

"SOB[ISIU| IBA DS vd 10] WEIBelq [BoIbo] pajieieq | 2inbig

NOISSIWSNYdL SdOLS dHANES

)

NOISSTWSNYdL SLUYLS-Hd

v

JHATHDHT

“Q0vaI0P BE0E T _

AMD1044_0257384

NOISSIWSNYAL SdOLS HHAIHDHA

T 04T
ALAWE OdId

IND OAId

100 YIVA OAId

v YIVd

v aNEs
¢ YIVd

¢ aNEs
7 YIva

Z angs

SIM IDA

Z 41d s
1 414 0S
0 dId 08

MIM 0S8

8Gio 8y
JOvd

uoljesiyoadg Jsousnbasg QoY

TATR L i

816107 1equisidas
3J1va Lia3

100z ‘1equisides g ol
31va LYNIDINO k

TVIMHLVIN d4dd0 JALLOHLOYUd

ATI Ex. 2107
IPR2023-00922
Page 250 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE

Asail IOy

4 September, 2015189

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
49 of 58

2726242 6 8Q to SX: Control bus

. ﬂ«‘f Formatted: Bullets and Numbering

Depending on the type the number of export location changes:

* Type 00 : Pixels without Z

o 00 =1 buffer
01 = 2 buffers

10 = 3 buffers
o 11 =4 buffer

s Type 01: Pixels with Z
o 00 = 2 Buffers (color +2)

01 = 3 buffers (2 color + Z

10 = 4 buffers (3 color + Z)

11 =5 buffers (4 color + 2

+ Type 10 : Position export

o 00 =1 position
o 01 =2 positions
o 11X = Undefined

e Type11: Pass Thry

o 00 =4 buffers
s 01 = 8 buffers
o 10 =12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id These fields

are avang i k3 SAOLIA ¥ orbiryes oo for.aveoution

e : et = G b

2FR2T24.2.7 SX to SQ : Quiput file control “

Name Direction Bits | Description

SXx_SQ_exp_count_rdy SXx—8Q 1 Raised by SXO0 to indicate that the following two fields
reflect the result of the most recent export

SXx_8Q_exp_pos_avail SXx-»8Q 1 Specifies whether there is room for another position.

SXx_SQ_exp_buf_avail SXx—8Q 7 Specifies the space available in the output buffers.

0O: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Exhibit 20208 docR400_

73201 Bytes*** @ ATl Confidential.

Reference Copyright Notice on Cover Page © *+

Name Direction Bits | Description
508X exp iype SQ-»8SXx 2 00; Pixel without z (1 to 4 buffers
01. Pixel withz (1 to 4 buffers)
10; Position (1 or 2 results)
11: Pass thru (4.8 or 12 results aligned)
SQ_SXx_exp number 2 Number of locations needed in the export buffer || =
{encoding depends on the type see bellow).
SQ _SxXx exp_alu id 1 ALUID _ - -| Formatted
SQ 8SX exp valid 1 Valid bit 1o { Formatted]
S0 8Xx _exp siate 3 State Context .
e S) e = Stm— 7| Formatted]
SQ SX free done L1 _ | Pulse to indicate that the previous export is finished ||
{ihis can be sent with or without the other fields of the || | Formatted .]
interface S - -
SQ_SXx_free alu id SQ5Xx 1 TAUD { Formatted)

y ;f | Formatted: Bullets and Numbering

B { Formatted: Bullets and Numbering }

AMD1044_0257385

ATI Ex. 2107
IPR2023-00922
Page 251 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201518
A i Talal

R400 Sequencer Specification

PAGE
50 of 58

2728242 8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which clause-RS line it is now working and if the data in
the GPRs is ready or not. This way the sequencer can update the fetch valid bits counters-flags for the reservation
station-fifes. The sequencer also provides the instruction and constants for the fetch to execute and the address in

the register file where to write the fetch return data.

EE { Formatted: Bullets and Numbering

Name Name DirectionDirection | BitsBits DescriptionDescription
TPx _8Q data rdyTPx- 80 data_rdy TPx— 8QTPx— | 11 Data readyData ready
B3Q : :
JPx _SQ rs line num¥Px-8Q-slause_num IPx-— SQFPx— | 63 Line number in _ the | . {Formatted
280 Reservation stationClause T
number
TPx_SQ typeTPx-8Q-type TPx— _ SQTPx— | 11 Type of data sent (ORPIXEL
8Q IVERTEX Type--of-datasent
(GRPIXEL-BVERTEG
B0 TPx _sendSG-TRx-send SQ--TPx80--TRx | 14 Sending valid dataSending
valid-data
80 TPx constS8C-TPx_const SQ--TPx80--Thx | 4848 Fetch state sent over 4 clocks
{192 bits total)Felch slate sent
over 4 clocks (192 bi tal)
SQ _TPx_instr8Q-TRx-ipstr SQ-TPx8Q—-TPx | 2424 Fetch instruction sent over 4
clock i tion £
Q TPx_end of group8Q-TPx—end-ef-clause SQ-TPx8Q—FPx | 14 Last instruction of the | \‘[Formatted };
groupkast-instruction—of-the | i e T
clause i
SQ _TPx_TypeSQ-Thx-Type SQ-TPx8Q--FRx | 14 Type of data sent (O:PIXEL
TVERTEX) Fype—of-data-sent
SQ TPx_gpr phaseSQ-TPx-gpr-phase SQ—-TPx8Q—TRx | 22 Write phase signalWrite phase
signal
S5Q TPO lod correctSG-TRO-Jod-correet SQ—-TPOSQ-—-TRD | 66 LOD correct 3 bits per comp 2
components per duad LGB
cou ffo—por rp—2
8Q _TPO pix_maskSQ-TRO-pix-mask 8Q-TPOSQ—TRO | 44 Pixel mask 1 bit per pixelPixel
mask-1-bit perpixel
8Q TP1 lod correct8G-TR-Jod-correect SQ-TP180-—TRY | 66 LOD correct 3 bits per comp 2
components per quad LGB
oo 3--bits—per—comp—2
compenenis-perguad
8GQ TP pix_maskSQ-TR1 phcmask 8Q--TP18Q—TRY | 44 Pixel mask 1 bit per pixelPixel
mask-1-bitper-pix
SQ _TP2 lod correct8Q.TR2 Jod.correct 8Q-TP28Q--TP2 | 66 LOD correct 3 bits per comp 2
components per quad LOD
correct--3--bits—per—comp--2
compenenis per-quad
SQ _TP2 pix maskSQ-FR2-pix— SQ-TP28Q--TR2 | 44 Pixel mask 1 bit per pixelPixel
SQ _TP3 lod correct8QTR3 Jod.correct 8Q-—-TP35Q--TP3 | 66 LOD correct 3 bils per comp 2
components per quad LOD
correc itspercomp.2
components per-quad
8Q TP3 pix maskSQ-TR3-pix—mask SQ-TP38Q--TR3 | 44

Pixel mask 1 bit per pixelPixel
> :

Exhibit 2028 docR400

73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257386

ATI Ex. 2107
IPR2023-00922
Page 252 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 51 of 58
Apneil DOV S S 5
SQ TPx 1s line numSQTPx clause_num | 8A-TPx8Q—TPx | 63 Line number in _ the || ﬂFormatted }
Reservation stationClause || S T
rumber
S0 TPx_write gpr index8GQ- TR viite-gpr-ind SQ->TPx8Q-=Thx | 77 Index_into Register file for write
* of returned Fetch Datalndex
i =] it m ites £
relurned-Feteh-Dala

242924 2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

TP_SP_fetch_Stall

e 4[Formatted: Bullets and Numbering

SQ_SP_wr_addr
R sUo L
\—b S r
| Y
su2 L
\
sUs }

i
[Name | Direction | Bits | Description
| TP_SQ_fetch_stall | TP— SQ 1 | Do not send more texture request if asserted |

2721024 2. 10 SQ to SP: Texture stall

{Formatted: Bullets and Numbering

| Name [Direction [Bits | Description

| SQ_SPx_fetch_stall | SQ-»8Px 11 | Do not send more texture request if asserted

211242 11 8Q to SP: GPR and auto counter

kl ,« *[lformatted; Bullets a\nd Numper?ng

Name Direction Bits | Description

SQ_S8Px_gpr_wr_addr SQ--SPx 7 Write address

SQ_SPx_gpr_rd_addr SQ—-SPx 7 Read address

SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable

SQ_SPx_gpr_wr_en SQ-»SPx 1 Wirite Enable for the GPRs

SQ_SPx_gpr_phase SQ—-SPx 2 The phase mux (arbitrates between inputs, ALU SRC
reads and writes)

SQ_SPx_channel_mask SQ-»8Px 4 The channel mask

SQ_SPx_gpr_input_sel SQ—-SPx 2 When the phase mux selects the inputs this tells from
which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.

SQ_SPx_auto_count SQ—-8Px 127 | Auto count generated by the SQ, common for all shader
pipes

Exhibit 20208 docR400_

73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257387

ATI Ex. 2107
IPR2023-00922
Page 253 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 52 of 58
24224 2 12 SQ fo SPx: Instructions -
Name Direction Bits | Description
SQ_SPx_instr_start SQ—SPx 1 Instruction start
SQ_SP_instr SQ—8Px 21 Transferred over 4 cycles
0: SRC A Select 2:0
SRC A Argument Modifler 3:3
SRC A swizzle 114
VectorDst 17112
Unused 20:18
1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4
ScalarDst 17:12
Unused 20:18
2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 114
Unused 20:12
3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 1111
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
SQ_SPx_exp_alu_id SQ—SPx 1 ALUID
SQ_SPx_exporting SQ—->SPx 2 0: Not Exporting
1: Vector Exporting
2: Scalar Exporting
SQ_SPx_stall SQ--»SPx 1 Stall signal
SQ_SP0_write_mask SQ—-SPO 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP1_ write_mask SQ—-8P1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP2_ write_mask SQ—-SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP3_ write_mask SQ—-S8P3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

2721324 2 13 SP to SQ: Constant address load/ Predicate Set

Name

Direction Bits | Description

SPO_SQ_const_addr

SP0—-SQ 36

Constant address load / predicate vector load (4 bits only)
to the sequencer

SP0O_SQ_valid

SP0--8Q 1

Data valid

SP1_SQ_const_addr

SP1-8Q 36

Constant address load / predicate vector load (4 bits only)
to the sequencer

Exhibit 2028 docR400

73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

g { Formatted: Bullets and Numbering J

3 ’[Formatted: Bullets and Numbering B

AMD1044_0257388

ATI Ex. 2107
IPR2023-00922
Page 254 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXOOOK-REVA 53 of 58
A L Oy
SP1_8Q_valid SP1-8Q 1 Data valid
SP2_SQ_const_addr SP2-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_8Q_valid SP2--8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_8Q_valid SP3--8Q 1 Data valid
224424 2 14 SQ to SPx: constant broadcast 1 1 Fomatte Brlets nd tumema_)
[Name | Direction | Bits | Description FE
| SQ_SPx_const | sQ-8Px | 128 | Constant broadcast rFr SR
27-21524.2.15 SPO to SQ: Kill vector load *'1 - Bt Y
Name Direction Bits | Description :
SPO_SQ_Kkill_vect SP0—-8Q 4 Kill vector load
SP1_8Q_kill_vect SP1-8Q 4 Kill vector load
SP2_SQ_kill_vect SP2-8Q 4 Kill vector load
SP3_SQ_Kkill_vect SP3-8Q 4 Kill vector load 2 3 S S
§ i}) :{Formatted: Bullets and Numbering _J
27216242 16 SQ to CP: RBBM bus M = T
Name Direction Bits | Description
SQ_RBB_rs SQ—-CP 1 Read Strobe
SQ_RBB_rd SQ--CP 32 Read Data
SQ_RBBM_nrirtr SQ—-CP 1 Optional
SQ_RBBM_rir $Q--CP 1 Real-Time (Optional) S S _}
. . ji= ‘4{ Formatted: Bullets and Numbering
2724724 2 17 CP to SQ: RBBM bus *l T e
Name Direction Bits | Description i
rbbm_we CP-8Q 1 Write Enable
rbbm_a CP—-8Q 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP-8Q 32 Data
rbbm_be CP—8Q 4 Byte Enables
rbbm_re CP-8Q 1 Read Enable
rbb_rs0 CP—-8Q 1 Read Return Strobe 0
rbb_rs1 CP-8Q 1 Read Return Strobe 1
rbb_rd0 CP—-8Q 32 Read Data O
rbb_rd1 CP-8Q 32 Read Data O
RBBM_SQ_soft_reset CP-8Q 1 Soft Reset = :
. . ~ _« f{ Formatted: Bullets and Numbering
2721824 2 18 SQ to CP: State report il
Name Direction Bits | Description
3Q_CP_vs_event SQ—CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ—-CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ—-CP 1 Pixel Shader Event
8Q_CP_ps_eventid SQ—-CP 2 Pixel Shader Event ID

eventid = 0 => *sEndOfState (i.e. VsEndOfState)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Exhibit 2028 docRAGO- ¥ 73201 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257389

ATI Ex. 2107
IPR2023-00922
Page 255 of 260

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201518
A i Talal

R400 Sequencer Specification

PAGE
54 of 58

24 3 Example of control flow program execution

We now provide some examples of execution to better illustrate the new design.

Given the program:

Alloc Position 1 buffer
Alu 8 Export

Tex 4

Alloc Parameter 3 buffers
Alu 9 Export O

Tex 5

Alu 10 Serfal Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP
Execution Count Marker (3 or 4 bits), (ECM)
Loop Merators (4xD bits), (L]

Call return pointers (4x12 bits), (CRF)
Predicate Bits(4x84 bits), (PB)

Export 1D (1 bity, (EXID)

GPR Base Plr (8 bits), (GPR

Export Base Pir (7 bits) (EB)

Context Ptr (3 bits).(CPTR)

LOD correction bits (16x6 bits) (LOD

P

e “[Formatted: Bullets and Numbering]

State Bits
CRP PB

o o

Valid Thread (VALID)

Texture/ALU engine needed (TYPE)

Texture Reads are oulstanding (PENDING
Waiting on Texture Read to Complete (SERIAL)
Allocation Wall (2 bits) (ALLOC)

Exhibit 2028 docR400

73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257390

ATI Ex. 2107
IPR2023-00922
Page 256 of 260

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 55 of 58
A

YL

00 — No allocation needed
01 ~ Position export allocation needed {ordered expor!
10~ Parameler or pixel export needed (ordered export)
11~ pass thru (oul of order export)

Allocation Size (4 bits) (BIZE

Position Allocated (POS ALLOC

First thread of a new context (FIRST)

Last (1 bit), (LAST

Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST e
L1 | ALY 1o 1o |0 lo 1o 11 |0 i

Then the thrgad is pigked up for the execution of the ﬁrst control flow iﬁstruction:

Execute Alu 0 Alu 0 Tex ex O Alu vl Tex O

It executes the first two ALU instructions and goes back o the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM Ll CRP PB {EXID GPR EB | CPTR LOD
[0 2 o |10 10 |0 |0] 1o |0 |
Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST o
[1 | TEX 10 L0 |0] o i1 I i

Then when the texiure pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
back in this state;

State Bits

Status Bits =

VALID TYPE | PENDING SERIAL ALLOC SIZE | POS_ALLOC FIRST LAST i
L1 [ALU 1] 0 lo 1o L1 o |

Because of the serial bit the arbiter must wait for the texiure to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

Status Bits Il -

VALID TYPE PENDING | SERIAL | ALLOC | SIZE | POS ALLOC | FIRST | LAST
L1 | TEX ‘g ‘9 9 lo [0 i1 [0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

Exhibit 2028 docRAG0_ ¥ 73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257391

ATI Ex. 2107
IPR2023-00922
Page 257 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Speciﬂcation PAGE
24 September, 2001 4 September, 201519 56 of 58
.
State Bits
Ll C PB EXID EB
[0 L7 o Lo 10 10 [0 o 10]
Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
[1 | ALU 11 o |0 lo o L1 [0

Now, even if the texiure has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back o the RS for the second ALU instruction because it has the serial bit

set.

State Bits
| CFP ECM L CRP

GPR

EB

LOD

Lo '8 10 o

PB EXID
1o 10

[0

10

CPTR
S

IS]

Status Bits
VALID TYPE | PENDING

SERIAL ALLOC

SIZE | POS_ALLOC

FIRST

LAST

L1 [ALY L1

i1

o

o

o

1

[o

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

Status Bits
VALID TYPE | PENDING

SERIAL ALLOC
i

SIZE

FIRST

LAST

| TEX 0

|
‘0

Y]

o

POS _ALLOC
0

5

o

Picked up by the TP and returmns:

State Bits]
[CFP ECM Ll CRP PB EXID GPR EB CPTR LOD g

L1 0 10] 10 10 10 |0 10 10
Status Bils

| VALID TYPE | PENDING SERIAL ALLOC SIZE | POS _ALLOC | FIRST LAST
L1 [ALU L1 0 o [0 |o K o

Picked up by the ALU and returns (lets say the TP has not returned yet):

State Bits

Exhibit 2028 docR400

73201 Byes™** ©® ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257392

ATI Ex. 2107
IPR2023-00922
Page 258 of 260

m ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
L

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 57 of 58
A if DI
Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
1 [ALU 1 o o1 1 1o K o

If the $X has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns fo
the RS in this state:

State Bits

CFP ECM L CRP FB EXID GPR EB CPTR LoD
[3 1 10 o o 10 [0 [0 10 o
Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
[1 | TEX 1 lo o o 11 [[o

Now, since the TP has not returned vet, we must wait for it to return because we cannot issue multiple texiure
reguests. The TP returns, clears the PENDING bit and we proceed;

State Bits

Status Bits
VALID TYPE | PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
L1 [ALY 1 ‘o 10] [1 1 o

Once again the SQ makes sure the 8X has enough room in the Parameter cache before it can pick up this
thread.

State Bits

Status Bits 1
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
[1 | TEX 11 o o lo 1[4 [|0 |

This executes on the TP and then refurns:

State Bits

Status Bits |

Exhibit 2028 docRAG0_ ¥ 73201 Byes™** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257393

ATI Ex. 2107
IPR2023-00922
Page 259 of 260

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201518 58 of 58
VALID TYPE | PENDING | SERIAL ALLOC SIZE | POS ALLOC FIRST LABT i
K [ALU 1 L1 10 lo 11 L1 11 |

Waits for the TP to refurn because of the textures reads are pending (and SERIAL in this case). Then exscutes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the 8Q notifies the SX of export completion,

5 /[Formatted:‘ Bullets and Numberir‘lg‘
28.25. Open issues ~ e

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Exhibit 2028 docRAGO- y 73201 Byres*** @ ATI Confidential. Reference Copyright Notice on Cover Page © »

AMD1044_0257394

ATI Ex. 2107
IPR2023-00922
Page 260 of 260

