
ATI Ex. 2106
IPR2023-00922

Page 1 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201516 GEN-CXXXXX-REVA 1 of 35" - i ot
Author: Laurent Lefebvre

 issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 1.24

Qverview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforcer400\archidoc\gik(RE\R400_Sequencer.dec
Current Intranet Search Title: R400 Sequencer Specification

: 28 APPROVALS. Sos
Name/Dépt ce Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rignts reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2018 decR400_Sequencer.des 63168 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** nonins oad

PHA GANOFABOAGAOdoBM

ATI 2018

LGv. ATI

IPR2015-00325

AMD1044_0256912

ATI Ex. 2106

IPR2023-00922

Page 1 of 223

ATI Ex. 2106
IPR2023-00922

Page 2 of 223

ORIGINATE DATE

24 September, 2001

EDIT DATE

| 4 September, 201516L 2 UA

R400 Sequencer Specification PAGE

2 0f 35

Table Of Contents

OVERVIEW...
Top Level Bloc

 a we
7 lagrarn
12 Data Flow graph..........
1a Control Graphcececeeeeereeerteetteers 9
2 INTERPOLATED DATA BUS.
3.
4

INSTRUCTION STORE...
* SEQUENCER INSTRUCTIONS..

5. CONSTANT STORE...
6. LOOPING AND BRANCH
61 The controlling state...
6.2 The Control Flow Program... Me

63 Data dependant predicate instructions bees“AT
64 HVY Detection of PV|PS 184646
64 Registerfile indexing...... 18:
66 Predicated instruction support for Texture
CHAUSEBcette cate etesenevevae eeaepraepenaeens » 1846

67 Debugging the Shaders..... 1846
6.7.1 Method 1: Debugging registers vevnaee 18416
6.7.2 Method 2: Exporting the values in the
GPRe (12) 19442
6.7.3 Method 3: Selective export of a 32 bit
Dword, TO4e47

7 PIXEL KILL MASK...
8. HOS SURFACESocc
% REGISTER FILE ALLOCATION.
10. FETCH ARBITRATION...
ti. ALU ARBITRATION...
12. HANDLING STALLS...... 2248:
13. CONTENT OF THE RESERVATION STATION
FIFOS 224920
I4. THE OUTPUT FILE
15. bE FORMAT...ecw eee
16. THE PARAMETER CACHE....
17. VERTEX POSITION EXPORTING...
18. EXPORTING ARBITRATION...
19. REAL TIME COMMANDS.
20, REGISTERS..

wenn 204718

a2241920
224920

20.1 Control...
20.2 Contextoe

21. DEBUG REGISTERS. 2522
211 COMMPOL.eeeee eerste rere reeeoeeae

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Exhibit 2018 dock400_Sequencer.doc

21.2 Context...
22. INTERFACES...
22, External Interfaces .

22.4.1
22.1.2
22.1.3
22,14

22.1.8
control Bus
22.1.6
bus
22.1.7
22.1.8

22.1.9

22.1.10

22,111

22112

22.41.16

Bus)
22A417
Bus)

PA/SC to SPO: LL) bus oo.

PAISC to SEQ: Li Contral bus 262223
SEQ to SPO: interpolator bus .262323
SEQ to SPO: Parameter Cache bus
2ieded
SEG to SXO: Parameter Cache Mux
272304
8X0 to SPO: Parameter Cache Return
2ie324
VGT to SPO/SEQ : Vertex Bus 282324
CP to SEQ : Constant store load
282424
CP to SEQ): Fetch State store load
282424
CP to SEQ : Control State store load
282424
MH to SEG: Instruction store Load
262425
SFO to SXO: Pixel read from RBs

282425
SEG to SMO: Control bus... 262425
SXO to SEQ : Output file control
292425
SPO to SX0: Position return bus
302828
Shader Engine to Fetch Unit Bus (Fast
302526
Sequencer to Fetch Unit bus Slow
302526

23. EXAMPLES OF PROGRAM EXECUTIONS
D12826

23.1.1 Sequencer Control of a Vector of

Vertices 322626
23.1.2 Sequencer Control of a Vector of
Pixels
23.1.3 -

24. OPEN ISSUESiceeereeeteeees382828

First draft.

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the

latinnens Ok LAMA GABIOALASPM.53168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsns oe”

AMD1044_0256913

ATI Ex. 2106

IPR2023-00922

Page 2 of 223

ATI Ex. 2106
IPR2023-00922

Page 3 of 223

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date: November 16, 20014

Exhibit 201.docR400_Sequencerdec 83168 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © *** pjoosus 195

ORIGINATE DATE

24 September, 2001 4 September, 201515es

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

PAGE

3 of 35

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes madein the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SPO interfaces. Changed delta
precision. Changed VGT—SP0 interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec,

PMIGNS010 AMIONBIOO46BM

AMD1044_0256914

ATI Ex. 2106

IPR2023-00922

Page 3 of 223

ATI Ex. 2106
IPR2023-00922

Page 4 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201546 4o0f35fh

1. Overview

The sequencer first arbitrates between vectors of 64 vertices thal arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencerwill not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and consiant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuctieninstruction thus there is only one sequencer for the
whole chip.

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256915

ATI Ex. 2106

IPR2023-00922

Page 4 of 223

ATI Ex. 2106
IPR2023-00922

Page 5 of 223

HeOPPOLOEHOTRYOTTOTENGPCTSLPUOOLeBya6ed19A04UOVDIIONIGUAdODDOUSISJOY"[ENUSPYUOD[LY@wsae01cs—sopeouanbeg“gorwsePSiOzTal

5ovo)Sve.y»gy»gy&ayapoorerodifo_—LLyPOTEETXm—eeeT—‘eVBLMXL_—_ gor0d|go/od-Old+)BODa>4rr|INVISNODonan——SNISNSv|ineHOLS!|SHELNIOd

avsaOd‘SLVLSHOLSad

dsdS

LSNIXGL

aSeaa

oeSYOLSISN
dani~~)ean

x!yo)A6LENI
MVESSONOPI

bomenESCREZo

A

TOMLNODXELUSA

 BL209CIT-O

aucA

, forenamewis!TOSLNODfinsnanaeEVOreereepySEJOGVATEKXXXXO-NADSrGLOdJequiees7Lo0g‘IequaydespzdoVdWON(AdaLNSWNOOdalydLigaaLvdSLVYNISIO

AMD1044_0256916

 TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2106

IPR2023-00922

Page 5 of 223

ATI Ex. 2106
IPR2023-00922

Page 6 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 201546 Sof 35i fh

1.1 Top Level Block Diagram

vertox/pixel vector arbitrator

Possible delay for available GPR’s «

‘oxture clause 0

FIFO eservation station
ALI clanse 0 <@-——teservation station|

‘pe FIFO ‘exture clause 1
ty eservationstation

wg AT clanse 1 extire arbitratorreservationstation
pe FO >| +[Pexture clause 2

cc — eservationstation
[FFT]g—_QA clanse 2res ervation station

oxture arbitrator

TIPO pe,CLiPexture clause 3
eservationstation

 I FIFO

hag —ALU clause 3
Feservaiion station TiO| Prexture clause 4

nS eservation station
‘ag ALU clause 4

reservationstation. TS $$$(eee Texture clause 5eservation station

ATL clanse 4
reservation station
 (Pexture clause 6

reservation station.
i a FIFOog ALU clanse 6 FEDeta -
reservation station “BIRO -Ld oorextre clause 7eservation station

i fen, FLEE itleg—ALUclause 7reservation station!

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
| consists of 243 bits of state, 6-7 bits for the base address of the Shader program and some information on the

coverage to determine fetch LOD plus other various small statebits.

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM :

AMD1044_0256917

ATI Ex. 2106

IPR2023-00922

Page 6 of 223

ATI Ex. 2106
IPR2023-00922

Page 7 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA (of 35 Saas a 2 FR
On receipt of a packet. the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texuretexiure request and corresponding register
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices), Once all the requests are sent the packetis put in
FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packetis put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrersarbiters). One arbitrerarbiter
will arbitrate over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even
instructions (4 clocks cycles). The only constraints between the two areitrersarbiters is that they are not
allowed to pick the same clause number as the other one is currently working on if the packet is not of the
same type (render state).

if the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitverarbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along
with the positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. If the output
buffer is full or doesn't have enough space the sequencerwill prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 pararneters to memory from the last clause only (7).

All other level process in the same way until the packetfinally reaches the last ALU machine (7). On completion of the
level 7 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arstrerarbiter blocks (two for the ALU state machines and onefor the fetch state machines).
The arbtrerearbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the registerfiles.

Exhibit 2018.docR4G0_Sequencerdec 83168 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMIGNS010 AMIONBIOO46BM

AMD1044_0256918

ATI Ex. 2106

IPR2023-00922

Page7 of 223

ATI Ex. 2106
IPR2023-00922

Page 8 of 223

Exhibit 2018.docR400_Sequencer.dec

| ORIGINATE DATE
| 24 September, 2001

1.2 Data Flow graph

EDIT DATE R400 Sequencer Specification

4 September, 2075416iat

ae

re requi

tevil |}

scalar inputoutput

fs |
33x oO

uest_ igstl
3
3)
BiTH

—~ epee _texture re| pst

Us«en
c £
S| £
8 g
a §= |- #21.

Register File

(s@ lar input/output MAC1
pipeline stage | 'Le ! |

§ if
53} |
2= _. _ een Register File

(scalar inputfoutout .MAC |
pipeline stage i |

2
& i
2 |bee i

s & fe21 fai]oS o

8 | pn Register File

a scalar inout/cutput
pipeline stage

Luor

S| 15Go! eS2! &
BI S2 s a_h

Co)
Pop pe

nd NS
to Primitive Assembly Unit or RenderBackend

a ao

PMSINS/04-10:3 7AMONBO}OLARM

= cS Ea
textureadcress
(

PAGE

8 of 35

ssieg Byers © ATI Confidential. Reference Copyright Notice on Cover Page © *** psoas isa

AMD1044_0256919

ATI Ex. 2106

IPR2023-00922

Page 8 of 223

ATI Ex. 2106
IPR2023-00922

Page 9 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201545 GEN-CXXKXKX-REVA 9 of 35Yaratl
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

be

Ciause # + Rady
iS CST :

WrAddr | SEQ WrAddr|

oMD | | | “i| | |cst
| i

Phase| | Bo
emp CS8Tcstzcstipx “ C Wrvec |

RdAddr | | WrScal Wwraddr

v yw y _ ‘ ¢ i $ ‘ _ Y

|

FETCH SPO Re OF

WrAddr ||
| |
|||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the InterpolatedV/ector

control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256920

ATI Ex. 2106

IPR2023-00922

Page 9 of 223

ATI Ex. 2106
IPR2023-00922
Page 10 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
 | 24 September, 2001 4 September, 201516 | 10 of 35a fut i

RE |||

To RB || AG Al

=

lo
>ee cae eo ae
a

se bus Oblis butfer (ping-pong buffer}
{26 bits * 2 (10) + 8 bits * 6 (delta [Js)+4 ex) .

bits*6)* 16 (quads) * 2 (double-buffered) 0 Al Aa BO4096 bits

32x 128
Bt co ct C2

nnn
Ys buffer (ping-pong buffer}

24 bits * 16 quads *2 C3 Ce cS Do
+ 766 bits
| 32x24 {—

4 ot b2 E0 i EI
/ ' of D2 EO EIT T TI 1 1

! i ! i 1 | !

 : . 1 i \
INTERPOLATORS ' i t !

512

Exhibit 2018.decR400_Sequencerdec 83188 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page @ *** gasis izsaPMIGAN O47ABI OFB04AOBM

AMD1044_0256921

ATI Ex. 2106

IPR2023-00922

Page 10 of 223

ATI Ex. 2106
IPR2023-00922
Page 11 of 223

HeOPPOLOEHOTRYOTTOTENGPCTSLPUOOLeBy36eq19A045UOVDIIONIGUAdODDOUSISJON"ENUSPYUOD[LY@wxcaecrcs—sop-wousnbog“gopysePRAZTHT coZr|l6)SL)cOldp|LeoSb¢-OO-pr|-82Z|-ZL)-O9l-pr|-@Z-ZL|lS)00|2D)0gl3|}0q20)/0¢ddsANIAATAXAXAXAXP|tit|ft-65tp|42]LL?69|Cr|ZeLb-9S-OF|-PZ|-21-96/-OF-pz-@|OSLDSOev|0aLDSOevéAAAIALAAAXAPJf}|||oeSS6E|C2reSS/6e|¢c2i+L-25-9€|-02A-@G|-9€|-02AX00Za|vOLy002d|vOLWdsANALOATAXAXAX||fttp||teLGSe|6L6-0Lg|S¢|6L6-0“BF-ZE|-OLA“BP|-ZE|-OLAX1d|}co|La|ov1d|}¢O/]1d|ov0AALAAX|AX|AXds EZLZZL/LZLIOTLIGLL|SLL|ZLLQOLLESLLI|PLLIELL|ZLL/EEL/OLL)GL)@LypZL)OLGL)PL)EL}ZL]dL|OL

 ooLIEHCTTGEHOLLVATEKXXXXO-NADSrGLOdJequiees7Lo0g‘IequaydespzdoVdWON(AdaLNSWNOOdalydLigaaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256922

ATI Ex. 2106

IPR2023-00922

Page 11 of 223

ATI Ex. 2106
IPR2023-00922
Page 12 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September. 20" 516 12 of 35

Above is an example of a tile we might receive. The IJ information is packed in the lJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quadsto interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

 A -{t is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

The instruction store is loaded by the CP thru the INSTRUCTION DATA, INSTRUCTION INDEX PORT control
registers, The INSTRUCTION INDEX PORT is aute-incremented on both reads and writes to the
INSTRUCTION DATA register.

The next picture shows the various modes the CP can load the memory, The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries, The MSB of the INSTRUCTION INDEX PORT
register contains the packet type for the seauencer to know where it must wrap around. The wrap around peints are
arbitrary and they are specified in the VERTEX SHADER BASE and PIXEL SHADER BASE registers.

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256923

ATI Ex. 2106

IPR2023-00922

Page 12 of 223

ATI Ex. 2106
IPR2023-00922
Page 13 of 223

HeOPPOLOEHOTRYOTTOTENGPCTSLPUOOLeBy36eq19A045UOVDIIONIGUAdODDOUSISJON"ENUSPYUOD[LY@wxcaecrcs—sop-wousnbog“gopysePRAZTHT

|s60rS607a38PODSdoe98p09SALon¥8P09Sd;;“9podol)Guynsexeasvd@asgqvHsTaXld-MBqS.0]GudSMouy‘gpo9ayyBuynoexeenb:HOTS0]SSLSOLD]:eeeveudosdde@8P0DSdJequanbesossyoigo}sesseippe-qngayeudoidde|)YYepoosemddqdapoynsan0]Sesselppe3Bp0DSAoeHEIspooSomadOa}¥8Pp0DSd§9p09SAWY9PODSAapolrASVUACWHSXALYSA|vepoosn|POOSA|vaepcosA|2PodPeleuspoopareysaSV@YSCVHSXSLYaA2ae2ewIPod0
0Bury2|Ouls-|SGOWBurylend-03GOWforoor,MOWAIA]UOIJONIJSU|JOSMAIS.dDdOOTY

LOOZ/PL/LEL‘pajepdn

porecaeraeraEELSROUeererrrGEOELVATEKXXXXO-NADSrGLOdJequiees7Lo0g‘IequaydespzdovdANN(AdaLNSINNOOdsalvaLidsaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256924

ATI Ex. 2106

IPR2023-00922

Page 13 of 223

ATI Ex. 2106
IPR2023-00922
Page 14 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 201546 14 0f 35i fh

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores

The-constant-slore-ie-managed-by-ihe-GP-The sequencer is aware of where the constants are using a remaping
table-alee-managed-by-the-GF. A likely size for the constant store is S/2x/28-1024x 128 bits.The-censiantelere-ia
alec-planned-ie-be-shared.-The read BW from the constant store is 126 bits/clock and the write bandwith is 32/4
bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires fram the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.*
NOP // latency of the float to fixed conversion
ADD R3,R4,CO/R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencerin order to support this feature is 2*64"9 bits = 1152bits.

The texture state is also kept in a similar memory. The size of this memory is 192x128. Which lets us load a texture
statein277?

The control flow constant memory docsn’t sit behind a renaming table. itis register mapped and thus the driver must
reload its content each time there is a state change.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be deall with at lhe sequencerlevel. VVe plan on
supporting constant loops and branches using a control program.

The controlling state.
As per Dxthe following state is available for control flow:

Boolean(15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

Wewill extend that in the R400 to:
Boolean[255:0]
Loop_count[7:O][15:0]
Loop_Start[7:0) [15:0] times 2-3(one for constant,registert1, register?)
Loop_Step[?:0] [15:0] times 2-3(ane for constant, register, regisier2zregiater)
Loop_End[7:0] [15:0]

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM :

AMD1044_0256925

ATI Ex. 2106

IPR2023-00922

Page 14 of 223

ATI Ex. 2106
IPR2023-00922
Page 15 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201545 GEN-CXXXXX-REVA | 15 of 35
{ISSUE: Howis the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elementsfor calling subroutines and 4 loop counters to allow for nested loops.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the contro! table can redirect operations in
the program.

The Method chosenfor the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
NOP

Execute, causes the specified numberofinstructionsin instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberof instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructionsif all bits in the predicate vectors meet the condition.
End_of_clause marks the end ofa clause.
Conditional_jumps jumps to an addressif the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cnt_size (or vshader_cnitl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

Execute

47 464 4. 24 B.A
Addressing | 00001 RESERVED | Instruction count | Exec Address

Execute up to 4k instructions at the specified addressin the instruction memory.

NOP
47 46... 42 41...0

Addressing 00010 RESERVED

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256926

ATI Ex. 2106

IPR2023-00922

Page 15 of 223

ATI Ex. 2106
IPR2023-00922
Page 16 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201516 16 0f 35B

This-MUSTbeafonvardiume-This is a regular NOP,

Conditionnal_Execute

41... 34 | 33 32...24 | 23... 12 | 11...0a 46 48

Addressing | 00011 Boolean address Condition RESERVED| Instruction_count | Exec Address

instructions (up to 4k instructions)
lf the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified

Conditionnal_Execute_Predicates

47 ' 46... 42 41... 38 ' 37 | 36...24 | 23... 12 | 11.90
|Addressing 007100 | Predicate vector

Check the AND/OR of all current predicate bits. if AND/OR matches the condition execute the specified number of
instructions. VWe need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid.

— “Loop_Start 7

| Condition RESERVED | Instruction count | Exec Address
a

41... 16 15... 4 [3...0|IRESERVED Jump addressa7 [a642

00101
Addressing

only. Also computes the index value.
Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump

Loop End

 00111 RESERVED Start address -2 oI:Si: o
 47 [46... 42 41... 16 15...4 3...0|||

Addressing

Loop end. Increments the counter by one and jumps BACKonily to the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.
Cail

47 | 46. 42 41...12 | 11...0
| O7000 RESERVED | Address

Addressing | '

Jumpsto the specified address and pushes the IP counter on the stack.
Retum

47
01001 RESERVED

 46.42 | 41.0
|IAddressing

Pops the topmost address frorn the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump_
47| 46.4234 P33 32.182 8

01010 “Boolean address|Condition | RESERVED | FWonly Address
Addressing i |

if condition met, jumps to the address. FORWARD jump only allowedif bit 12 set. Bit 12 is only an optimization for the
compiler and should NOT be exposed to the API.

Exhibit 2012. docR400_Sequencerdoc 83168 Bytac*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** josie i954)PMIGNS010 AMIONBIOO46BM

AMD1044_0256927

ATI Ex. 2106

IPR2023-00922

Page 16 of 223

ATI Ex. 2106
IPR2023-00922
Page 17 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 17 of 35Aan
End_of_Clause

47] 46 ADT 41.0
 01011 RESERVED =

Addressing

Marks the end of a clause.

To preventinfinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set thde

debug registers.FeaRoeMGISSR ngoxee aos:
AS index er conetant indexiingiebite

the-index axoseds the nurnber of requested regiisters.
The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:O0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] #/ eight 8 bit pointers to the location where each clauses control program is located

Apointer value of FF meansthat theclause doesn't contain any instructions. __ — de(Formatted
The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependantpredicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support thoseis by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#-—SETEO
PRED_SETE1_#~-SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencerwill
maintain 4 sets of 64 bit precicate vectors (in fact 8 sets because we interleave two programsbut only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells us if
we execute on 1 or QO. For example, the instruction:

PO_ADD_# RO,R1,R2

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256928

ATI Ex. 2106

IPR2023-00922

Page 17 of 223

ATI Ex. 2106
IPR2023-00922
Page 18 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201576 18 0f 35obese
| Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# wouldonly write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the

sequencerwith a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencerwill insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
i 0 ‘previous vector’
1 1 ‘previous scalar’

In the case of an absolute register we just take the address asis. In the case of a relative register read we take the
base address and we acid toit the loop_index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such,

__index=Loop_counter*Loop_iterator+Loop_init

The index is going to return O if it is out of the range.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elemenis in the vector have a
value of one (thus we haveto do the texture fetches for the whole vector. A value of O means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid _ . a4 Formatted
blnels aren’l considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 3-2methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- jump error

relative jump address > size of the control flow program
relative jurnp address > length of the shader program

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM SSeS

AMD1044_0256929

ATI Ex. 2106

IPR2023-00922

Page 18 of 223

ATI Ex. 2106
IPR2023-00922
Page 19 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September. 201548 GEN-CXXAXKX-REVA | 19 of 35Jn Yatatl

- constant overflow
- register overflow
- call stack

call with stackfull
return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-caselimits.

If indexing outside of the constant range, causing an overflow error, the hardware is specified fo return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth register (or
constant)for errors.

ISSUE | Interrupt to the driver or nor?

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be:

1) Normal
2) Debug Kill
3) Debug Addr_+ Count

4)Debug-Count ee
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debugkill setting. Under the Ave-other modes, normal execution is done until we

reach an address specified by the address register erand instruction: count (useful for loops) specified by the countregister. Afte a e After we have
nit the instruction n times(n==count we switch the clause to the killmnode. >

Thethird Gebuig:oper‘wil bepeanyAdeedt for HAY. debug. Forthis mode;the-sequencervAll keep the-following-control

_— (Formatted6Bullets and Numbering

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256930

ATI Ex. 2106

IPR2023-00922

Page 19 of 223

ATI Ex. 2106
IPR2023-00922
Page 20 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201576 20 of 35Biles. des, ze!

lL

le GPR
| @

Lo.
lL.

| Vecter Engines Scalar Engine
|
|
|
|E

——DWerd_Select—

FlagSelectps :

————+} From left SUS =
(a
yy

 To right SU—te

Flag Select is-a-cembination of Shader_pipe, clause_+count address, /ecior_number and render_state.His-only
active for] _sheder_pine-alaiime-andfort vectorofa-given-_state.Thedrveris responsibleto-resel the-output
registerte-0-before-execuiing-3-ghven-program.

7. Pixel Kill Mask

A vector of 54 bits is kept per group of pixels/vertices. Its purpose is to optimize the texture feich requests and allow
the shaderpipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETGT
MASK_SETGTE

8. HOS surfaces
HOS surfaces are able to export from the 6 last clauses but to memory ONLY.If they want to export to the parameter
cache they haveto doit in the last clause (7). They can also export position in clause 3.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZEfor vertices and 256-
VERTEX_REG_SIZEforpixels.

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256931

ATI Ex. 2106

IPR2023-00922

Page 20 of 223

ATI Ex. 2106
IPR2023-00922
Page 21 of 223

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201518Pt

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 35

Above is an example of how the algorithm works. Vertices come in from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos fromm 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einsti Oinstl Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

‘BdoeR4OlSequencerdes §316d Byas*** © AT] Confidential. Reference Copyright Notice on Cover Page © ==PMIAIMN8/01 16:47AM IOAS/O1ORERM

AMD1044_0256932

ATI Ex. 2106

IPR2023-00922

Page 21 of 223

ATI Ex. 2106
IPR2023-00922
Page 22 of 223

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201546 22 Of 35i fh

| 12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (437). The sequencerwill
set the OUT_FILE_FULLsignal n clocks before the output file is actually full and thus the ALU arsitrerarbiter will be
able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

21 bits of Render State 7 bits for the base address of the GPRs, somebits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (ane for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when wewill know
the size of the smail fifos between the reservation stations.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just

before this output file are staging fealsters with write BVV Si2 bits/clock and read BW 256 bite/clock.-Forthis reason; The staging registers are ax128 (and there are16“of those on the whole chip).

5. |J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(Q) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with I, B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AOL = I(1)- I)

AOL = J) -J(0)

AO2E = 1(2) - 1(0) P4

AO2S = J(2)-J(0)

AO3I = 1(3)— 1(0)

AO3J = J(3)—J(0) P2 P3

PO=C £I(O)*(A-C)4 IO) *(B-Pre POFADL*Ud ye AOL B_C)
P2 = PO+A021 *(A~C) + AO2I *(B-C)

P3 = P0+ A031 *(A—-C)+A03 *(B-C)

PO is computed at 20x24 mantissa precision and P11 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256933

ATI Ex. 2106

IPR2023-00922

Page 22 of 223

ATI Ex. 2106
IPR2023-00922
Page 23 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201515 GEN-CXXAXX-REVA | 23 0f35ow it t

Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 19*2 + 8°6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision lJs don't. This means that in the case of the deltas we MUSTbe able
to shift 8 right (exponent value of O means number = 0, exponent value of 1 means shift right 8). This means that the
maximum range for the IJs (Full precision) is +/- 64 and the range for the Dellas is +/- 128.

16. The parameter cache
The pararneter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (/R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

(7. Vertex position exporting

On clause 4-er-8)2 the vertex shader can export to the PA both the vertex position and thePoint sprite. It canalso do
so at clause &/if not done at clause 43.- “The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from
the SX blocks.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exporis and Z/Color exports cannot be co-issued.
5) Memory exporis and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and 2/Color exports CAN beco-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Real time commands

We are unable to use the pararneter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only prablern | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsef'sMicrosoft's high priority stream to |
the realtime strearn), then the PA/sequencer need to support a realtime-specific mode where we need to address 32
vectors of parameters instead of 16.

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256934

ATI Ex. 2106

IPR2023-00922

Page 23 of 223

ATI Ex. 2106
IPR2023-00922
Page 24 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201546 24 of 35i fh

 20, State management
Every clock, the sequencer will report to the CP the oldest statesstill in the pipe. These are thestates of the
programsastheyenter thelastALUclause.

te

21. XY Address imports a
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the Is (fo the IJ
buffer) with XY writes (to the XY buffer), Then when writing the data to the GPRs, the sequencer is going to
iptercolete the | date or pasa ins XY data thru a Fix--floal converter and exoander and write ihe converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap.

20-22 Reaisters

26-42?.1Control

: 9) Formatted: Bullets and Numbering
ae renee eae Scere ReuRSREE

DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on oroff.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the registerfile's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
ARBITRATION_policy policy of the arbitration between vertexes and pixels
C8T_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes
INST_STOR_ALLOC interleaved, separate, interleaved+shared,separate+shared
VERTEX WRAP start point for the vertex instruction siore (RT always ends al vertex wrap and

Begins at0)
PIXELWRAP=—-——-— start point for the pixel shader instruction store-(veriex-shader alwaye-etarts

ato}

RTVYUR bo 3 i i i a slipper G3 2

NO_INTERLEAVE debug state register. Only allows one program at a time into the GPRs
NO INTERLEAVE ALU debug state register, Only allows one ALU program at a time to be executed (instead
of2)

NOPREDOPTIMIZE turns off thepredicate bit optimization (conditionalexecutepredicates is always
executed,

INSTRUCTION INDEX
PORT This is where the CP puts the base address of the instruction writes and type (aulo-

incremented on reads/writes)
INSTRUCTION DATA This is where the CP puts the actual data going to the instruction memo

CONSTANT DATA This is where the CP outs constant data Soe : ae

ees { Formatted: Bullets and Numbering }
20-222.2 Context ee

Vshader_fetch[7:0][7:0] sight 8 bit pointers to the location where each clauses contro! program is located
Vshader_aluf[?:O][7:0] eight 8 bit pointers to the location where each clauses contro! program is located
Pshader_fetch[?:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_alu{7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
PSHADER base pointerfor the pixel shader
VSHADER base pointerfor the vertex shader
Vshader_cnitl_size size of the vertex shader(# of instructions in control program/2)
Pshader_cntl_size size of the pixel shader (# ofinstructions in control prograrm/2)
Pshader_size size of the pixel shader (cnti+instructions)
Vshader_size size of the vertex shader (cntl+instructions)
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT numberof registers to allocate for vertex shader programs
FLAT_GOURJO...15] which parameters are to be gouraud shaded
CYL_WRAP[O...63] for which parameters (and channels (cyzw)) do we do the cyl wrapping.
P_export_mode Oxxxx : Normal mode

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM SSeS

AMD1044_0256935

ATI Ex. 2106

IPR2023-00922

Page 24 of 223

ATI Ex. 2106
IPR2023-00922
Page 25 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201545 GEN-CXXAKX-REVA | 25 of 35L Sor 2

1xxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

vshader_export_mask which of the last 6 ALU clauses is exporting
vshader_export_mode 0: position (1 vector), 1: position (2 vectors), 3:multipass
vshader_export_count/6] # of interpolated parameters exported in clause 7 OR

of exported vectors to memory per clause in multipass mode (per clause)
Control Flow 24 Dwords that contain the control flow constants.ringtatohe

. st

24.23. DEBUG registers

Dwerd—select_._.__channe_seleciformethod3
Mode ——__ operating mode formethod 3. .

24-223.1 Context ~

PROB_ADDR instruction address where thefirst problem occurred
PROB_COUNT number of problems encountered during the execution of the program
Count instruction counter for debug method 2
Addr __._break address for method number2
Clause_mode[3] clause mode for debug method 2

a

22.24. Interfaces

22.124.1 External Interfaces

Whenever an x is used. it means that the bus is broadcast to all units of the same name. For example, if a bus is
neared 8O--8Px i means that 8O is going io broadcast! the same information to all SP instances.

22-41-14241.1 PASC fo SPO: I bus “
This is a bus that sends the [J information to the IJ fifos on the top of each shader pipe. At the same time the contral
information goes to the sequencer. There are 4 of these buses over the whole chip (SPQ thru 3)

helower 24 LS8s ofthe interlace;Kk

$¢ SPi wr mask
S¢_SP 1 desi
SC_SP2data

 | Idinformation sentover2clocks (or XY infosentover1

| clock in the lower 24 LSBsof the interface
[i | Write Mask

4 _ Controls the write destination CY buffer, |J buffer)
64 | lJ information sent ever 2 clocks (or XY info sent over 1

SC _SP2dest
SC _SP3 date

Exhibit 2018.docR40G_Sequercerdoc 83168 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nos5 sd

Name | Direction |Bits _Description
LisSC SPO data PASC—SPO 64 | IJ information sent over 2 clocks for XV info sent over 4

| clack in the lower 24 LSBsof the interface :

MaskSCSPOgq.wemask| PASC-SPO| 1. |WhiteMask ||SCSPOdest. /SC—-SP0 |i.Controlsthewritedestination(XYbuffer,|Jbuffer)
$C _SP1 data $C-3SP1 84 (J information sent over 2 clocks (ar XY info sent over 1

PMSINS/04-10:3 7AMONBO}OLARM

8 -| Formatted: Bullets and Numbering

ve] Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Ea al Formatted: Bullets and Numbering

AMD1044_0256936

ATI Ex. 2106

IPR2023-00922

Page 25 of 223

ATI Ex. 2106
IPR2023-00922
Page 26 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201546 25 of 35fh

4 woe GRMRALLed: DU isan Jumberin22.4.224.1.2 PAMSC to SEQ :ld Contro/ bus :aeee
This is the control information sent to the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXYis asserted the next

control packet is going to be ignored and XY information is qoing to be sent.on the IJ bus (for the quads that where
just sent).

Name -_| Direction [Bits |Description-
Write-MaskSC 5@ 9 wr mask PASC-—-SEQiSP) 4 Quad Write mask left to right
LOD-CORRECTESS SO lod correct 8C-SOPRA-BEGISR|24 PLOD correction per quad (6 bits per quad)

} |.
EASTNSC SQ flat verlex SC--SOPA—-SEQiSP|2 Provoking vertex for flat shading

}
PFEROSC SQ param ptro SC-SQRA-SEGHSP|11 [P Store pointer for vertex 0

} [/
SC 80 param otriPeRT4 SC—SOQPA—-SEQGP|11 P Store pointer for vertex 1
aa

SC 80 paramorePPrag 8C—SOPA--SEGQSE|11 | P Store pointer for vertex 2
} -

SCE-OFE_VECTOR SQ end of vec|SC--SOPA—-SEGHSP|1 End of the vector
t t }
DEALLOCSC 30 store deallog SC--SGQPA--SECUSP|1 | Deallocation token for the P Store

} I
STATESC SQ state SC--SQPA-SEQSP|243 | State/constant pointer (6*3+3)

} ~
VALIDSC SQ. valid pixel SC—-SQPA—-SEGISP|16 Valid bits for all pixels

} i
SC--SQPA-—SEGSP|1 | Null Primitive (for PC deallocation

NULLSC SQ null prim

 } |purposes) _
SC SQ end of primeOFFPRIM SC -SGQPA--SEGUSE|1 End Ofthe primitive

}

EBEAGESC SQ fbface 8C-—-SOPA--SEQGe | Front face = 1, back face = 0} |
SC_SQ_sendxy SC-SQ Sending XY information [XY informationis

_ going te be sentonthe next clock
TYPESC SQ prim ivpe SC--SOPA--SEQIGP Stippled line and Real time command need

} to load tex cords from alternate buffer
000 : Normal

011: Real Time
100: Line AA

| 107: Point AA
. | 110: Sprite

SCSORTRn BEQ-—-PABO--SC 4 Stalls the PA in n clocks
S¢ 30 RTS PASC-SEQUISPSOQ 1 | BASCready to send data

’ ’ _ « 4 ‘ormatted: Bullets an om rin22-+-324.1.3 SEQ to SPO. interpolator bus - c = = “s : = Te
Name | Direction Bits | Description

FTYPESG SPx intern prim type SEQ—SPxG 3 Type of the primitive

000 : Normal
004-:Stippledline/Paly
011: Real Time
100 : Line AA
101 : Point AA
110: Sprite

PASSO SPx intero flat vix [SEQ >SPOx [2 | Provoking vertex for flat shading

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM SSeS

AMD1044_0256937

ATI Ex. 2106

IPR2023-00922

Page 26 of 223

ATI Ex. 2106
IPR2023-00922
Page 27 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 2f of 35

FLATGOURAUDSG SPx interop flat gouray|SEQ—>SPGx 1 Flat or gouraud shading
d

SQ SPx Interp cyl wrapGy.WRAP SEQ—SPQx ra Wich parameter needs to be cylindrical
L Le wrapped ;

SQ SPx_ interp iilineld--Line- number SEQ—SPx0 | 2 Line in the WOCY buffer to use to
| interpolate

SQ SPx interop buff swapswas-Buffers | SEO—SPOx 4 Swap the lJ/X¥ buffers at the end of thei interpolation

SQSPx_interpjixy “8O-55Px | 4 Read from the[J buffer or fromthe XY| buffer
SGQ_SPx_intero paramOParam-o S2OQ—SP0x 1 Weare interpolating parameter 0

22-+-424|4 SEQ to SPO-: Parameter-Cache Read control bus “Te
The four following interlaces (SQ@--SP, SQ--SX,SP-—-SX and SX—Interpolators) are all SYNCHRONIZED together,

Name | Direction . | Bits | Description
$0_3Px Pptrd4 SEQ >SPxO | 79__| Pointer of PC (7-LSBs-0f- Pointer)
SQ SPxBotri2 | SBQ--SPxPo [#9 | Pointer of PC ELS Bs-ofPeintes.
$o SPx_Potro? | 9? _ Pointer of PC (¢-LSEs-of Pointer}
8Q_ SPO read ena La | Read enables for the 4 memories in the SPO

SPi_fead ena [4 d_ enables for the 4 memories in the SP1: V4
S0_5P3 read _ena ra Read«enables for the 4 memories in the“SP3

22-+-324.1.5 SEQ to SXO: Parameter Cache Mux control Bus “

Name | Direction L _ Description
o4Mm | SEQ—SXx0 _ Mux control for PC (4 MSbsof Pointer)
$Q_5Xx_ Mmux2t | SEQ .SXxO _ Mux control for PC (4 MSbsof Pointer)

 $Q Ske Mmux3g2 2SXxD

24.1.6 SP to SX: Parameter data

_SEQ-

| Mux contral for PC (4 MSbs of Pointer)

Name Direction Bits | Description

SEO SXO datad |SPO--SXO 1128 | Parameter data 0SFO _SxX0 datat Parameter data 1

“SPO SXO data?_

Parameter data?—

 SFO SX0 data3

| Parameter data 3

ilSF4

| Pararneter data 0 SX1_datad

SP1_SX1_datal | Parameter data 1

 SP2_8x0 datal | Parameter data 1

SP2_SX0data? Parameter data 2
SP2 SXO data3 Parameter data 3

Parameter

Parameter data 1

 Parameter data 2
SP3.SX1_ daie3 TSP3—-SX1 | Parameterdata3

gaet-624.1,7 SXO to SPG_Interpolaters: Parameter Cache Return bus *

Name | Direction |Bits _ Description
OXxX_SPxVutx_data_10 SXxXO—S Px 128 | Vertex data to interpolate
SAX SPx Myxdata 27 | SAXESSPxO ; 128 | Vertex data to interpolate
SAX _SPx Vyix_data_32 | SXxG--SPxd 1128 | Vertex data to interpolate

Exhibit 201 8.docR400_Secuencer.dec 53168 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** ponsis oad :PMSINS/04-10:3 7AMONBO}OLARM

 csc] Formatted: Bullets and Numbering

<<] Fermatted: Bullets and Numbering :

oe 4 Formatted: Bullets and Numbering :

oe _ | Formatted:Bullets and Numbering

AMD1044_0256938

ATI Ex. 2106

IPR2023-00922

Page 27 of 223

ATI Ex. 2106
IPR2023-00922
Page 28 of 223

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 207516bn iat

PAGE

28 of 35
R400 Sequencer Specification

22.43241.8VGT to SPOO/SEQ : Vertex Bus

Name Direction | | Bits Description _VGT_ SPO vrix_IndexesVerlex VGT—SPO 128|Pointers of indexes or HOS surface information

indexes a
VST SPO end of veclEOFvector|VGT--SPOGEG 4 End of the vector
VGT_SPO vr format inguts_vert|VGT—SPO/SEG | 1 QO: Normal 128 bits per vert

| ‘i double 256 bits per vert
VGT_S@_end_ofyect VGT-»SO i End of the vector
VGT_ SQ vrbc format VGT-»S@ 1

VOGTSQstatesTATE VGT--SEQ L243 | Render State (6°3+3 for constants)

22-18-Ce4te-SEQ-Censiantstore-joad- -

PSSUE:-How,Who-and-whal-is-thesize-efthis-bus?}

24.1.9 SEQ to CP: State report

a . <--| Formatted: Bullets and Numbering

--=| Formatted: Bullets and Nurmbering :

Formatted: Bullets and Numbering

“« a a Formatted: Bullets and Numbering

 Name |Direction | Bits | Description

3Q_CPvitstate SEQCP [3 _| Oldestvertexstatestillinthepipe
$O_ CP pix state | SEQ--CP 3 _ Oldest pixel state still in the pipe

22-41-1224 1.10 SPO to SXO: Pixel/Vertex read-from-RBswiite to 8X

Name Direction Bits _ Description
SPOSXOExportdata SPO—>SXO 64516256|432- pairss of 32 bits channel values
SPO SxO Shader Dest — SPO->SXO 4 | Specifies one of the of up to 12 exoortdestinations
SPUSX1Exportdata SPISX 296 4pairsof32bitschannelvalues
SP1_SX1_ Shader Dest SP1->SX1 4 | Specifies one of the of up lo 12 exporl desiinations
SP25X0Exportdata SP28X0 255
SP2 SXO Shader Dest SP2-2SX0 4
SPSAIExportdate SPoSH1 206
SP3 SX1 Shader Dest SP3-2SX1 4 ||
SPx_SXx_ Shader_Count SPO—SXO 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
_ that sequence.

SPx_SXx_Shader_Last SPO—SX0 1 The—currentexport clauseis—over_tiruefor_one

| instruction-of-ihe-next-clause.Asserted on the first
; | shader count of the last export of

SPO SAO Shader_PixelValid SPO >SX0 4x4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

Exhibit 2018.docR400_Sequencer.dec

woes Formatted: Bullets and Numbering

PMSINS/04-10:3 7AMONBO}OLARMssieg Byers © ATI Confidential. Reference Copyright Notice on Cover Page © *** psoas isa

AMD1044_0256939

ATI Ex. 2106

IPR2023-00922

Page 28 of 223

ATI Ex. 2106
IPR2023-00922
Page 29 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

la/ 8 24 September, 2001 4 Seplember, 201516 GEN-CXXKXX-REVA 29 of 35— bh incense NettantILE. - J
SPO SXO Shader_WordValid|SPO—SX0 2 Specifies whether to write low and/or high 32-bit

word of the 64-bit export data from each of the 16
| pixels or vectors

Result of pixel kill in the shader pipe, which must be“SP SX Shader PixelValid | SP1-SX1 i

buffers), 4x4 because 16 pixels are computed per
clock
Specifies whether to write low and/ar hi

SPL Sx Shader Wordvalic|SP1--5%1 h Se-bitIna

SP2SXOShaderPixelValid SP2--5X0 4 : Result of pixelkill in the shader pipe,which must be
output for all pixel exports (depth and all color
buffers), 4x4 because 16 pixcis are computed per

clock

 SP2 SXO Shader Wordvalic|SP2--SX0 2 Specifies whether to write low and/or high 32-bit

| word of the 64-bit export data frorn each of the 16| pixels or vectors
SP3 SAT Shader PixelValid SPS 5X1 4 Result of pixel killin the shader pipe, which must be

outoul for al) pixel exports (depth and ail color
buflers). 4x4 because 16 pixels are compuled per

| clock
SP3_ 5X1 Shader WordValic|SPO-5X1 2 Specifies whether to write low and/or high 32-bit

| word of the 64-bit export data from each ofthe 16
| pixels or vectors Ss

. . J | Formatted: Bullets and Numberin22-44324.1.11SEQ to SXX0-: Control bus oo a
Name Direction Bits|Description
8Q Sx» Expor_Pixel | SEQSXx8 1 1: Pixel

| 0: Vertex
8 Sx%x_ Export SEND SEQ—SXx0 1 Raised to indicate that the SQ is starting an export
$Q_SxXx_Export_Clause | SEQ--SkxO 3 Clause number, which is needed for vertex clauses
|SQ _SxXx ExportStatess |SEQ—SxxG|2473| State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SPO-—SX0interface
{ISSUE: Where are the PC pointers}

22-14-4424 1.12 S&@ to SEQ : Outputfile control SE = La

Name _ Direction ‘Bits Description
Bxx_ SO Exporl_PFScount ro|BA0R4xSEO 1 Raised by SXO0to indicate that the following twofields

j ee reflect the result of the most recent export |
320C8Q@_Export_Position SXx0--SEQ 1 Specifies whether there is room for another position.
Soc 8Q_Export_Buffer SAGK-SEQ 7 Specifies the space availbleavailable in the output

buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPMSINS/04-10:3 7AMONBO}OLARM

AMD1044_0256940

ATI Ex. 2106

IPR2023-00922

Page 29 of 223

ATI Ex. 2106
IPR2023-00922
Page 30 of 223

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 207546 30 of 35

“ . aye = ae a~ =<|Formatted: Bullets and Numbering :

22+4624.1.13Shader Engine to Fetch Unit Bus-Gast-Bus)
Four quad's worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The registerfile index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
TexRegFile-Read_DataSPO TPO fetch addr|SPO->-TEXPO 2048512|46-4Fetch Addresses read from the

Registerfile
Tex_RegFileWrie—DateTPO SPO data TPOEM-»SPO 2048512|16-4texture results
SP1 TPi fetch adedr SP1->TPi 512 4 Fetch Addresses read from the
rs. _ Register file . ee

TPTSP1data TPi--SP1 812 4texture resultsSP2 TP2 fetch addr SP2->TP2 B12 read from the£

Tee 22 dala TP2-2SP¢ Si2 | 4 texture results |
SP3_ TP3_fetch addr SP3->TPS S12 4 Fetch Addresses read from the

“TP3_SP3data TP308P3 Biz
[TPxSPxgprdst TPxoSPKLP Write adcress intothe gprs

TPxSPxoprcmask TPx-SPx 4 Channs| mask

2244724.1.14 Sequencer to Fetch Unit bus (SlowBus) — Ts

Once every four-clock, the fetch unit sends to the sequencer on wichwhich clause it is now working and if the data in
the registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos.
The sequencer also provides the irtructioninstruction and constants for the fetch to execute and the address in the
registerfile where to write the fetch return data.

Name Direction Bits|Description
Tex-ReadyTPxSQ data rey _TEAPx— SEQ 1 _| Data ready _
TPxSQclausenumtexClauseNum TEXPx— SEO 3 | Clause number
SO TPx constTex—est SEQ—TEMPx 4064 | Fetch state adcrese—1Q—bis—sent

_ over 4 clocks
Fex-nsiSQ_TPx_instuct SEQ—TEXPx 4224 | Fetch instruction adedrese—i2—bits

7 ; | sent over 4 clocks
SQ_TPx endofclauseEOCLAUGE SEQ—TEXPx 1 Last instruction of the clause
PHASESO TPx phase SEQ-—-TEMPx 42 | Write phase signal
SQ@_ TPO lod correctLOD-CORRECT SEQ—TEXPO 696 |LOD correct 3 bits per comp 2

|components per quad “46-quads
MaskSQTROpmask SEQ—TEXPO 644|Pixel mask 1 bit per pixel
SQ_TPt lod carrect SO-9TPT 8 LOD correct 3 bits per comp 2

ee a| gom onents erquadquadsS$C_TP1_pmask SQ->TP1 4 oP
BQ TP? Joc correct $Q--TP2 6

$Q_TP2 pmask _SQ-»TP2 A Pix
SQTP3 Jod correct SQ->TP3 6

SQUTP3 pmask$Q0--TP3 4 |
Tex_Clause_NurS@ TPx clause num SEQ—TEXPx 3 | Clause number
TexVWriteRagister_IndexSQ_TPxwritegorindex SEQ->TEXPx 7 Lindex into Register file for write of

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM :

AMD1044_0256941

ATI Ex. 2106

IPR2023-00922

Page 30 of 223

ATI Ex. 2106
IPR2023-00922
Page 31 of 223

 241.15 Seguencerto SP: GPR contro!

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201515 GEN-CXXXAX-REVA 31 of 35eeerenceen1ktwMEPerener veeheen
_returned Fetch Data

Name Direction Bits|Description

8Q_SPx apr wr addr | $Q--SPy 7 | Write address
$Q_SPx_gpr rd addr | $Q-2SPx 7 | Read address
SQ_SPx_apr re addr SG SPx i Read Enable
SQ SP. gor we addr (BQ -3e% A Write Enable

prophase mux $0 >SPx 2 The phase mux
2 3BPX 14 |

SPO 4
4 Thepixel mask

a 4 | Thepixelmask
SOSPsgprpixelmask 4 Thepixelmask

24.1.16 Seguencerio SPx: Parameter cache write control .
Name Direction Bits | Description a oe
SQ SPx pc wraddr 7 Wite address
SQ_SPxpeweaddr i Write Enable

x 1

241.17 Sequencer to SPx: Instructions

Name | Dir
ection

SQ 8Fx instruct start $0—

instruction sent over 4 clocks_

“SQ. _SPx Shader Count $Q-3SP)
 “|Stall signal

Each set of four pixels or vectors is exported over
| eight clocks. This fleld specifies where the SP is in
| that sequence,

SQ SPx Shader Last [sa Asseried on the first shader count of the last export
| of the clause

S0_SP0 Shader PmelVald | SQ. hi Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depin_ and all color
buffers),414because 16 pixels are computed per

| glock

SQ_SPO0 Shader WordValid | SQ 2oSPO Ina Specifies whether to write low and/or high 32-bit
| Word of the 64-bit export data fromeach of the 16
| pixelsorvectors

$Q_SF me Shader, PixelValid 10} SPI Result of pixel kill in the shader pipe, which must be
output for all pixel experts (depth andall color
buffers), 4x4 because 16 pixels are cormputed_per

| glock

SQ_S8P od Shader WordValid | SQ Specifies whether to write low and/or high 32-bit

| word of the 64-bit export data from each of the 16
|_ pixelsorvectors

$0_SF2ShaderPxelValid |$0 3BP2 Result of pixel Kill in the shaderclos, which must be
output for all pixel exports (depth and all color
buffers), 4x4 because 16 pixels are computed _per

| Glock

SQ_8F? Shader WordValid | SQ Ina “Specifies whether to write low and/or _high 32-bit
| word of the 64-bit export data from each of the 16ixels or vectors

SQ SP3 Shader PixelValid $o

Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers), 4x4 because 16 pixels are computed per

| clock

$Q_§P3. Shader WerdValid SQ—SPa

2

‘Specifieswhethertowritelowand/orhigh32-bit

Exhibit 2018.dacR400_Sequencerdec 53169 Bytas*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** joan sdPMSINS/04-10:3 7AMONBO}OLARM

_=°| Formatted: Bullets and Numbering

ee _--| Formatted: Bullets and Numbering

Ye 4 Formatted: Bullets and Numbering

AMD1044_0256942

ATI Ex. 2106

IPR2023-00922

Page 31 of 223

ATI Ex. 2106
IPR2023-00922
Page 32 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 201516 32 of 35K fi.

| word of the 64-bit export data from each of the 16 |.) ss oe/ eee or vectors a Coe : : :
. cee 4 Formatted: Bullets and Numbering

24.1.18 SPtoSequencer Constant address load “ ———

Name i Direction i Bits | Description : ‘ Se es :
SPO SQ constadd, SPO 2SQ,.iBG Constant address loadtothe sequencer, = {Formatted

Seren Spree 4s j b=20 SPi--S2 36 | Constant address load to the sequencer Ny
[SPS [1 | Data valid
SP2SQ 26___| Constantaddress oad to the sequencer -\ Formatted

SP2 SO valid | §P2->8Q im | Data valid oe
SF3_SQconstaddr | SES250. 36 | Constantaddress load to the sequencer
SE3 SQ valid | SPS. 8Q Ta | Data valid

 es Formatted: Bullets and Numbering :

241.19 Sequencer to SPx: constant broadcast “ee oe

Name | Direction T Bits _Description : : :

241.20 SPOtoSequencer: Kill vector load es
SPO es pis | pain =SPO SQ_kill vect | SPO-SQ | Kill vector load (Formatted

: Formatted: Bullets and Numbering

: | SP3380, | [Kil — ee
. a 4 Formatted: Bullets and Numbering

241.21 SQ to CP: RBBM bus — ==

Name | Direction |Bits|_Besctiption_oo: aSQ RBB rs | §O-20P !4 | Read Strobe :

 8Q RBB id 32 Read Data

SOQRBBM_nrtrtr : _ Optional
SG REBM oor

24.1.22 CP to SQ: RBBM bus ee

 Name | Direction — |Bits (Description

rbbm_we | CP5Q i WriteEnable _
rbbm_a CP»SO aa ss -- Upper Extent is T8D
rbbm wd | CP-38O | 32

Spbmbe _ nn a
thomreCP 29SQ | i -ReadEnable
rbb_rs0 | GP.»SQ id _ Read Return Strobe 0
robb rst CP-3S5Q 1 | Read Return Strobe 14
robb rdO | GP280 | 32 | Read Data 0
rob rd4 CPS | 32 | Read Data G
RBBM_SQ_ soft reset [CPW05Q ii | Soft Reset

ee 4 Formatted: Bullets and Numbering
23-25, Examples of program executions a — a

23-1425.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
* state pointer as well as tag into position cacheis sent along with vertices
® space wasallocated in the position cache for transformed position before the vector was sent

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM :

AMD1044_0256943

ATI Ex. 2106

IPR2023-00922

Page 32 of 223

ATI Ex. 2106
IPR2023-00922
Page 33 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201518 GEN-CXXXXKK-REVA 33 of 35 ae Les des. A

e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex
shader program (using the MH?)

e The vertex program is assumed to be loaded when we receive the vertex vector.
® the SEQ then accesses the IS base for this shader using the locai state pointer (providedto all

sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always haspriority
* atithis point the vector is rernoved fram the Vertex FIFO -
e the arbitrerarbiter is not going to select a vector to be transformed if the parameter cacheis full unless the | :

pipe as nothing else to do (ie no pixels are in the pixel fifo). a

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRsrequired by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
« SEQ will not send vertex data until spacein the registerfile has been allocated

4. SEQ sends the vectorto the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFOQof SU0, SU1, SU2, and SU3 is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
e RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycie

e the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (, y, Z)

5. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMQ FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO0wasfirst selected by the TSM arbiter beforeit could start

all instructions of fetch clause 0 are issued by TSMO
oN the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. ali instructions of ALU clause O are issued by ASMO, then the control packetis passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
® position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
« the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFOis full

® parameter data is exported in clause 7 (as well as position dataif it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM? if the parameter cache(or the position buffer

if position is being exported) is full

Exhibit 2018.docR4G0_Sequencerdec 83168 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMIGNS010 AMIONBIOO46BM

AMD1044_0256944

ATI Ex. 2106

IPR2023-00922

Page 33 of 223

ATI Ex. 2106
IPR2023-00922
Page 34 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 207516 34 of 35Pah A Je.

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

| 23-4225 1.2 Sequencer Control of a Vector of Pixels oe = ==
1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP S = :

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixe| quads by the detailed walker
*® the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
® SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (he FIFO in front of
fetch state machine 0, or TSMO FIFO)
® note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
* the control packet contains the state pointer, the register file base pointer, and the LOD correction bits

| e ali other informationsinformation (such as quad address for example) travels in a separate FIFO
7. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store

e TSMO0wasfirst selected by the TSM arbiter beforeit could start

all instructions of fetch clause 0 are issued by TSMO

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMQ
FIFO)
e TSMO0does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received
* once the TU has written all the data for a particular clause io the register files, it increments a counter thatis

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the conirol packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
* pixel data is exported in the last ALU clause (clause 7)

e it is sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has cornpleted, the SEQ will free up the GPRsso that they can be used by another
shader program

23.1325 1.3 Notes Ee
14. The state machines and arbirerearbiters will operate ahead of time so that they will be able to immediately start

the real threadsorstall.

Exhibit 2018.docR400_Sequercerdec 83168 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponans isaPRIAOt SOFAM OASOLOhSGRM :

AMD1044_0256945

ATI Ex. 2106

IPR2023-00922

Page 34 of 223

ATI Ex. 2106
IPR2023-00922
Page 35 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXAXX-REVA 35 of 35es, OEP

 15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the

instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out. . . : es oe . oe Se
_ccc| Formatted: Bullets and Numbering; Pe . 7 7 — een

24-26, Open issues ee
There is currently an issue with constants. If the constants are not the same for the whole vector of veriices, we don't
have the bandwithbandwidth fram the fetch store to feed the ALUs. Two solutions exists for this problem: foe

1) Let the compiler handie the case and put those instructions in a fetch clause so we can use the ~~
bandwithbandwidth there to operate. This requires a significant amount of temporary storage in the | :
register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallelparalie|. This might in the worst case slow us down bya factorof 16. | :

Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Enhibit 2018.decR(00_Sequencerdoc 83169 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** jonas psdPRIAOt SOFAM OASOLOhSGRM oS

AMD1044_0256946

ATI Ex. 2106

IPR2023-00922

Page 35 of 223

ATI Ex. 2106
IPR2023-00922
Page 36 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE Coo 24 September, 2001 4 September, 20158 GEN-CXXXXX-REVA 4 of 43
Author: Laurent Lefebvre

 issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 1.43

Qverview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location:

‘fos seh Rese, Cperforcer400\doclib\designiblocksisq\R400Sequencer.docCAperforcalr400\
“ 4 fy 4 7 : z :

fy és,

APPROVALS oe
ce Signature/Date Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATi Technologies Inc. All rights reserved. The material in this document constitutes an unpublished - :
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2020 decRA00_Sequencer.dec 62852 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jog.nssd

PHA208/01 04-68PMUABE84AM

ATI 2020

LGv. ATI

IPR2015-0032

AMD1044_0256947

ATI Ex. 2106

IPR2023-00922

Page 36 of 223

ATI Ex. 2106
IPR2023-00922
Page 37 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20155 20f 43fatat

Table Of Contents

i OVERVIEWesecceseeeees 23.2 Cormtext ooee
l Top Level Block Diagram. eis 24, DEBUG REGISTERS .
l Data Flow grach.. ness 24, Context
L. Control Graph ou 25. INTERFACES
2. INTERPOLATED DATA BUS 25.1 External Interfaces
5 INSTRUCTION STORE SC to SP: i bus

25 S¢ to $Q° IJ Control bus
5G to SC: Veriov/Pixel shader

s nchronization bus wp eror Bookmark not
- defined.29

vatuuuasnnens WBE 25.1.4 SQ to SP: interpolator bus... S229

25.16Sk8G to SPx: Parameter cache write
contral S338
25.1.7 SQ ta SP: Parameter Cache Read
contrel bus 3330

_Datadependant predica 25.1.8 SG io SX: Parameter Cache Mux
contre! Bus 3330

HW. Detection of PY PS

15.19 SP to SX: Parameter data...3330

6.6 Predicated Instruction support for Texture 25,119 SA to interpolators: Parameter Cache
CAUSES cece eee eee teeeteteeetseeetetssentstnesateetententsetenates2248 Return bus 3430
6.7 i 254.41 SQ to SPO: Staging Register Data

3434

672 Method 2: Exporting the values in the PA to SQ: Vertex interface wu... 3434
GPRs (12) 2220 _SQto CP:Statereport.

7. PIMEL KILL, MASK ocesecrncenscnn er renneereas 2320 ane SP to SX: Pel/Vertex write to SX
8. MULTIPASS VERTEX SHADERS (HOS)..2320 3734
9.REGISTERPILEALLOCATION
10,__FETCH ARBITRATION
li. ALU ARBITRATION...
12. HANDLING STALLS oooscence2522
13.___ CONTENT OF THE RESERVATION STATION

FIFOS2528
14. THE OUTPUT FILE
15, id FORMAT.

2320 251.15SQtoSXControlbus S784SX te 8Q : Quiput file control

 403%

15.1 interpolation of constant allributes _SequencertoSPx:constantbroadcast
16. THE PARAMETER CACHE 4037
LT. VERTEX POSITION EXPORTING 25.1.23SPOtoSequencer:Kill vectorload
18, EXPORTING ARBITRATION...... 4037
19. EXPORT TYPES... 25.124SOQioCP:RBBMbusAOSF

Vertex Shadin .23.125EPtoSQ:RBBMbusMOSS
19.2 Pixel Shadini 2724 26, EXAMPLES OF PROGRAM EXECUTIONS
20, SPECIAL INTERPOLATION MODES vacaSE

commands 26.1.1 Sequencer Control of a Vector of
LY BC 0 Vartices A132

oe2926, 26.1.2 Sequencer Control of a Vector of
Auto generated counters. Pixels 4238

Vertex shaders... Notes..

 20.3.2 Pixel shaders. 27.___QPENISSUES..

21. STATE MANAGEMEN *
22. XY ADDRESS IMPORTS ° s = “
22. Vertex indexes imports. 2Data-Flow-graph-.-.
23. REGISTERS *
23.3 Control... ae ANTERPOLATED-DATA-BUS

Exhibit 2020.docR400_Sequencer.doc 62852 Bytac*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** poi i955)PMEHOGAN04:68PMEBOAOAM :

AMD1044_0256948

ATI Ex. 2106

IPR2023-00922

Page 37 of 223

ATI Ex. 2106
IPR2023-00922
Page 38 of 223

24 September, 2001 ORIGINATE DATE EDIT DATE

4 September, 20155ey

DOCUMENT-REV. NUM. PAGE

GEN-CXXXKX-REVA 3 of 43

~The controling states
4HWDetectionofPY,PS

6.6-PredicatedJnstruction.supportfor-Teaxture.
 GUSOScreer

644Method-1:-Debugging-registers.
pay

PIXEL-KILL-MASK..

fild)-ARBITERTION.

12.---HONDLING STALLS... weed
13.----CONTENT-OF-THE- RESERVATIONSTATION.
FIFOS22
14.--—---FHE-OQUTPRUT-FILE eccccreesrvicseescreevervece crverieseoe

ULVERTEXPOSITION EXPORTING
1i----EXPORTING ARBITRATION seco:

SPECIAL INTERPOLATIONMODE

— Realtime coramands

informationer #3
20. STATE MANAGEMENT.

control. bus—-28
24:4,6-———-SGHe-3S%ParameterGache-Mix
contrelBus—29

2b BGSPeeGIOEered
24 SX45-Int tora:-2. tera
Returh-bus—29

24.4.9—- ~-VGTteSPOBQ »Verlex-Bus—.

24444-————-BP46 SX+PixalVertex.wriieto3h.33

thdek SGHO-S%:-COntel bubs
24:14:13BX 16-SGQuipulfie-contel.

Exhibit 2020.docRA0_Sequencerdoc 62852 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** penane isd |

 24.4416-——-SeaquencertoSP:-GPR-contrat-
244,17 Sequencer-toSPx:-Inetructions..
241.18 $Pio Sequencer: Constant eddrees

Verices 3B
23.12_SequencerControlofaVector-of

 = OPEN ISSUES.
OVERMEWccc
—Tap-LevelMock-Diagram.

--GontrolGraph...
INTERPOLATEDDATA.BU.
INSTRUCTION STORE wecvsss
SEQUENCER INSTRUCTIONS...

~The controling elatenncsn
-The-ContrelFlew-Pregran

RY.Detection.of.PN; Pp

causes Cheese beeysveeene cane cneecaeees

—-Bebugging the-‘Shader

Dwerd.47
BMLALLMASK

-Ald-ARBITRATION...
HANDLING STALLS.

FIFOS49
14,THE-QUTPUT-FILE

-EXPORTINGARBITRATIONcecscvs
REAL TIME COMMANDS... :

20,2 COMOXeeee eet eee rer rae ee rape caeeced 21

PMAEYOSIN 04:88PMSO47AM

AMD1044_0256949

ATI Ex. 2106

IPR2023-00922

Page 38 of 223

ATI Ex. 2106
IPR2023-00922
Page 39 of 223

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 20155os Ey

4

22,----INTEREAGE Sevensve
22.4-——-Extemalnieraces 2:
2244 PASC10 SHO) bug 2

SEG4te-SPO--interpelater-bus.é a .

224.4BEG-to-Sx.0.ParameterGache-Mux
cortroel Bus—23
22.1.6 S40 to SPO : Parameter Cache Return:

goblet - AlaaEiBeresrey
2AR-CPtoSEQ. Constant store-load_..24

22410-—-GP-4oSEG.-ControlState-storeload.
vo ea

Exhibit 2020. docR400_Sequencerdoc 62852 Bytac*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joan i955)

BAG—— Shader-Engineto-FetchUnitBus-(Faet
Bue}

Bus}——---28
23.EXAMBLESOF PROGRAMEXECUTIONS..26

23,41Sequencer-ControlotaVector.of
MRSBennett

Pixele—————~oP
23-..3-—-Notes

PMAEYOSIN 04:88PMSO47AM

AMD1044_0256950

ATI Ex. 2106

IPR2023-00922

Page 39 of 223

ATI Ex. 2106
IPR2023-00922
Page 40 of 223

ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015: GEN-CXXXXX-REVA 5 of 43eg rod H

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rey0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant preciication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ—SPO interfaces. Changed delta
precision. Changed VGT-—SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters, Changed
the VGT--SQ interface. Added content on constant
management, Updated registers.

Exhibit 2020.docR400_Sequencerdoe 62882 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonas 12aPhi42/06/04 64:50PMB6AM.

AMD1044_0256951

ATI Ex. 2106

IPR2023-00922

Page 40 of 223

ATI Ex. 2106
IPR2023-00922
Page 41 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155 Sof 43EEsYa

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and ail eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256952

ATI Ex. 2106

IPR2023-00922

Page 41 of 223

ATI Ex. 2106
IPR2023-00922
Page 42 of 223

RULROPOSHTTSCSPITOOTEidS71TPO,©36egJ9A04UOsdIION)WHUAdODosUdINJON‘JEHUSPILUOD[Ly@xex5eMazs0z0 -—i|go/od+‘04~

 gO/od.-—-,—_

dO|ifMdPOLITICXLmpnfWLWSLUMXEiL

 sseippy

sepussuanbag“ggPNOORC202WakaTE]SLLS

“I

 AYOLSLSNI

 peedJO--

|—aoSINVLSNOOavor45LN)OoLo0g‘Iequaydespz

_‘_ee_. SIWAROdUefoSHELl.FYOLSOmds)wave|dSdSdsdSawa|—#1_A4a4i—LEN]nwvaJ|]>|YELLNI}¢--|SSLNIYSNaaLNI**TOMLNOOM7ISN&nQPyrlYVESSONudFl

5|srySaenioZTORLLNODTOMLNOG7tS
FO4LNOOMALUSA

—ssonnneenonnnenae~|i|a“eis![WEBUpeeoyepJolWAAY-XXKXXO-NAOSG102Jequiaydes7avdWAN(AS&-LNSIINOOdFLVLida
aLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256953

ATI Ex. 2106

IPR2023-00922

Page 42 of 223

ATI Ex. 2106
IPR2023-00922
Page 43 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155 Sof 43Ares

1.1 Top Level Block Diagram

oxture arbitrator

Tro
Irexture clause 0 —s

fro eservationstation
ALI clanse 0 <

@-——teservation station ES| <n Posture clause 1ty eservationstation

wg AT clanse 1 extire arbitrator
reservationstation TiSi TO pl
! aaa Phoxture clause 2eservationstation
L beg} FIFOUl clanse 2
reservation station
/ FIFO| ><a Phroxture clause 3= eservationstationI FIFO

hag —ALU clause 3
reservaiion station Tro: > 6 —Pexture clause 4

— eservationstationI FIFO
bag —ALU clause 4reservationstation. ~

Fro —

ATL clanse 4 oa eeene
reservation station

vertox/pixel vector arbitrator
Possible delay for available GPR’s <

Texture clause 5
reservation station.

 iPexture clause 6

eservation station

| TU) clanse 6reservation station
(Pexture clause 7
reservation station

{

Lg—ALU clause 7reservation station!

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY

Exhibit 3 O.xiocR400_Sequencer.doc 82882 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** josu5 yo.55 - :PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256954

ATI Ex. 2106

IPR2023-00922

Page 43 of 223

ATI Ex. 2106
IPR2023-00922
Page 44 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 9 of 43
screen position if needed) are sent to the interpolator buffers which are going to use these barycentric coordinates to
interpolate the parameters and place the interpolated values into the GPRs. Then, the input state machine stacks the
packetin thefirst FIFO.

On receipt of a command, the level 0 fetch machine issues a texture request and corresponding register address for
the fetch address (ta). A small command (temd) is passed to the fetch system identifying the current level number (Q)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 14.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packetis put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause numberas the other one is currently working on if the packet is not of the same type (renderstate).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

{ISSUE: Howdo we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for multipass vertex shaders-whienshaders, which can export 12 parameters per last 6 clauses to
the output buffer. If the output buffer is full or doesn't have enough space the sequencer will prevent such a vertex
group to enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other level process in the same way until the packetfinally reaches the last ALU machine (7). Upen-completion.of
avertex ehader,abitissenticthe SC io Jeti inow thetitcen beginsending pixele of this-group tothe sequencer,

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state machines). The
arbiters always favor the higher number state machines, preventing a bunch ofhalf finished jobs from clogging up the
registerfiles.

Exhibit 2020.docR4G0_Sequencerdec 62882 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosn5PMAEYOSIN 04:88PMSO47AM

AMD1044_0256955

ATI Ex. 2106

IPR2023-00922

Page 44 of 223

ATI Ex. 2106
IPR2023-00922
Page 45 of 223

Exhibit 2020 docR400_Sequencer.dec

| ORIGINATE DATE
| 24 September, 2001

1.2 Data Flow graph

EDIT DATE

4 September, 20155Aes

R400 Sequencer Specification

scalar inputoutput

to Primitive Assembly Unit or RenderBackend ao

a

Us«|
c £
5) g
g gZ a a
& 52|—_i81

Register File 1 |7 _!

(s@ lar input/output MAC \ L |1 al __|pipeline stage | , _tel fre requi ——~\

< cy8
S|
a

= _. _ een Register File |
(scalar input/output . ET |

MAG | text) [reque >pipeline stage i i ~
a
=
2bee i

< B lant21 fai]
oS o a

g | pn Register File to |
—— 3c 24 oO

— uest_
a Scalar iInputoutput =

pipeline stage 8“ Zz
my

Luor

S| 15Go! ec
g, of /
eeee4k |

a tecure rel BSE \\ |
icog |

i 1

||

= cS Ea

textureadcress
(

PRSOSI04 64:58PRAIAS/TO47AM

PAGE

10 of 43

82882 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** josu5 yo.55 - :

AMD1044_0256956

ATI Ex. 2106

IPR2023-00922

Page 45 of 223

ATI Ex. 2106
IPR2023-00922
Page 46 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20155 GEN-CXXKXKX-REVA 11 of 43i PY rau 1rm

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

be

Ciause # + Rady
iS CST :

WrAddr | SEQ WrAddr|

oMD | | | “i| | |cst
| i

Phase| | Bo
emp CS8Tcstzcstipx “ C Wrvec |

RdAddr | | WrScal Wwraddr

v yw y _ ‘ ¢ i $ ‘ _ Y

|

FETCH SPO Re OF

WrAddr ||
| |
|||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the InterpolatedV/ector

control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256957

ATI Ex. 2106

IPR2023-00922

Page 46 of 223

ATI Ex. 2106
IPR2023-00922
Page 47 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
 | 24 September, 2001 4 September, 20155 12 of 43Ped ae i

RE |II

To RB || AG Al

=

lo
>ee cae eo ae
a

se bus Oblis butfer (ping-pong buffer}
{26 bits * 2 (10) + 8 bits * 6 (delta [Js)+4 ex) .

bits*6)* 16 (quads) * 2 (double-buffered) 0 Al Aa BO4096 bits

32x 128
Bt co ct C2

nnn
Ys buffer (ping-pong buffer}

24 bits * 16 quads *2 C3 Ce cS Do
+ 766 bits
| 32x24 {—

4 ot b2 E0 i EI
/ ' of D2 EO EIT T TI 1 1

! i ! i 1 | !

 : . 1 i \
INTERPOLATORS ' i t !

512

Exhibit 2020.decR400_Sequencerdec 62852 Bytest** © ATI Confidential. Reference Copyright Notice on Cover Page @ *** gasis inesPMI2/06/01-04-60PITABAIOSAM

AMD1044_0256958

ATI Ex. 2106

IPR2023-00922

Page 47 of 223

ATI Ex. 2106
IPR2023-00922
Page 48 of 223

RENOTOOITNCESTOMUCINGSECTSUP.@a6eg19A05UOSOIIONJYBUAdODsoUdIDJOY“[ENUSPYUOD[LY@vvSeMaz20z0—sopussuenbeg“oorysonTRIWaT

69LyLe|SLeo|dble(st|g-09-pr|-92|-zi]baoazo|oala|oq|zo}og09/-bb|-82|Z|agNASATAT||esesa|LAKAXJAXAX6Gcy|2Z/LL6sch|zz|ut-9¢-op|-bz|-9|03LD$9zv|03re)SOZV|-9s|-op-pz|-@|©AA|ALAAXAX[AX[AX|ESog6feZ,gooeez||yzg-96|-02)*09zd|vOWW09zd|49WW]-zg-9¢1-02SY|a6AAAIofae:tofta_AXIAX[AX1gGE6b|ogIsSE6bLn-ey-zeor©la|¢o1a|ovld£01a/Ov]-ar-ze-o1RY|9AAA!|ofoff|LL AXAX[AX| dsEZLZZL|LZLOZLISLLSLLZVL/QLLSLL|VELCLLIZELIELL/OlL6L|SL)ZL;OL|SL|pL}eL|ZLLL]OLeylocWAAE-XXXXXO-NADSSLOZToqUIS}aS7Loozuequerdespz|aydoVdTAQNAdeLNSANO0dslvdLidsSLV0SLYNISINO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256959

ATI Ex. 2106

IPR2023-00922

Page 48 of 223

ATI Ex. 2106
IPR2023-00922
Page 49 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4iSeptember 204 22 14 of 43
Above is an example of a tile we might receive. The IJ information is packed in the lJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quadsto interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the INST DATAINSTRUCTION-DATA, INST INDEX PORT
INSTRUCTIONINOEMBomRL-control registers. The INSTINDEMPORTINGTRUCTIONHNDEM-BORT is auto-

incremented on both reads and writes to the INST DATAINSTRUCTION.OATA register.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INST INDEX PORT

INSTRUCTIONINDEX.PORT-register contains the packet type for the sequencer to know where it must wrap
around. The wrap around points are arbitrary and they are specified in the VERTEX-SHADERVSBASE and
PIXELSHADERSBASE registers.

For the Real time commands the story is quite the same but for some small differences. The CF will use the
INST INDEX PORT RT and INST DATA RT register pair instead of the requiar ones and there are no wrap around
oints for real time so the driver must be careful nol to overwrite regular shader data. The shared code (shared

subroutines) uses the same path as real time,

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256960

ATI Ex. 2106

IPR2023-00922

Page 49 of 223

ATI Ex. 2106
IPR2023-00922
Page 50 of 223

JHeISepodSelMdDeeeA, :foUIsepoossamJD0dD”QA¥8P09Sd
RENOTOOITNCESTOMUCINGSECTSUP.@a6eg19A05UOSOIIONJYBUAdODsoUdIDJOY“[ENUSPYUOD[LY@vvSeMaz20z0—sopussuenbeg“oorysonTRIWaTG60V

1o607

98PpoDSd

38p0dSd@8p09Sd7{foapo(—Y8podSd2809ouSunnooxooN 2PodSASarT ~~asveYaVHSTaxidUeIS0]S18yMSMOUY“apoosu}Buynoexs
PRIS0}SISASMOUY

||yeousnbesossysoig eee

ee=Gnssyeucoiddefod9P9dSdJaauenbasossysoigee0}sesseippe[oe-qngeyeudoidde€@8PoDSAo}sesseippe

38poDSA

@8podSA

VW8PODSA

imASWMACVWHSXALHSA¥8P09DSA‘eapodpoleus3po9paleusSaSVaUa0vVHSXELUSAVea)poured|BuryajBuis-|SCOWBuryjend-0SGOW

 foroWtorAIOWSIAUOIJONIJSU]JOSMBI/AS,dDOOPY
LOOZ/PLLL‘pezepdn

£v20SLWAREXXXXXO-NADEGJequejaasyLo0g‘IequaydespzdovdANN(AdaLNSINNOOdsalvaLidsaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256961

ATI Ex. 2106

IPR2023-00922

Page 50 of 223

ATI Ex. 2106
IPR2023-00922
Page 51 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155 16 0f 43EEsYa

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores oe a

5] Memory organizations eee
i j A likely size for the ALU constant store is

1024x1238 ‘bits. The read BW from theALU constant store is 128 bits/clock and the write bandwidth is 32 bits/clack
(directed by the CP bus size noi by memory ports)32/4-bile/clock.

air. The size of the remaving table is 128 lines (each lineaddresses 4 constants).Thewritegranularityis4
constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kepi ina similar memory. The size of this memory is 192x128. The memory thus halds 128
texture slates (192 hits per state), The logical size exposed 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the remaping table to for the texture state memory |s 16 lines
each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture state lines (or 384

bits). Thedriversends512bitebuttheCPignoresthetop.128bills.Itthustakes12clockstowrite thetwotexturestates.

The control flow constant memory doesn't sil behind a renaming table. It is register rmaoped and thus the driver must
reload its content each time there is a slate change. Its size is 256°32 because it must held 8 caples of the 32 dwords
of control flaw constants.

The CP is loading the constant store using the CONST DATA and CONST ADDR registers. it does so by writing to
the CONSTADDRregisterthelogical address for theconstant blockitwantstoupdate and then writes16times to
the CONST DATA register, The CONST ADDR is auto-incremented on both reads and writes to the CONST DATA
register. ee ae a co

5.2 Managementof the remaping tables SS
The sequencer is responsible io manage two remaping tables (one for the constant store and one for the texture
state), On a stale change (by the driven, the sequencer will broadside copy the contents ofits remaping tables to a
new one. We have & different remaping tables we can use concurrently. More details and a diagram to come...

$45.3 Constant Store Indexing “a———<==
In order to do constant store indexing, the sequencer must be loaded first with the indexes (hat come from the oe =: |
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
betweenthe time the sequencer is loaded and the time one can index into the constant store. The assemblywill look
like this

MOVA RLX.R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.*
NOP #f latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256962

ATI Ex. 2106

IPR2023-00922

Page 51 of 223

ATI Ex. 2106
IPR2023-00922
Page 52 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201 5¢ GEN-CXXAXX-REVA | 17 of 43i i iOu
ae

55 Real Time Commands
The real time commands constants are written by the CP using the CONST DATA RT and CONST ADDR RT
registers. It works is the same way than when dealing with reguiar constant loads BUT in this case the CP is not
sending a logical adgress bul rather a physical address and the reads are nol passing thru the remaping tabie but are
directly read from the memory. The boundary between the two zones is defined by the CONST EO RT control

register.

CONST_EO_RT

RT SECTON }
(ReadsAViites are direct)

REGULAR SECTION
(Reads/VWrites are passing

thru a remaping table}
 292x428.Which lete-usload-atexture
stete-in 2 clocks.Thememonthushelde96 texturestates (2*128bisperstate)

The-control-flow-constant-memorydoasrisit-behind-atrenaming-table—itis-registar-mapped-and-thus-the-driver-must
reloac-lis-content each-time-thereis-a-state-change.\Its-size-is-102°32-because-it-must-hold-8-copies-ofthe24.dwords
obcontrolowconsiantie.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling slate consisis of:
48-per-Dic8-the-following-state-is-avallable-forcontralflaw:

Boglean|15:0)
loop..count]Z-O)7:0}

in addition:

cee] Formatted: Bullets and Numbering :

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284 :PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256963

ATI Ex. 2106

IPR2023-00922

Page 52 of 223

ATI Ex. 2106
IPR2023-00922
Page 53 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 | 24 September, 2001 4 September, 20155 18 0f 43Aes

lopeterAay

Boolean(2$52560]
Loop_count[7:0][284:031:0]
Loop_Start[7:0)-(734-037:0)
Loop_Step[7:0]-{24:31:0]

Thatis 256 Booleans and 32 loops.

Wehave a stack of 4 elements for nested callings ofsubroutines and 4 loop counters to allow for nested loops.

6.2 The Control Flow Program
ett Gi ea beats

The basic model is as follows:

The render state defined the clause boundaries:
Vertexshaderfeteh[7:OU7:01__/ eight &bitpointersto the locationwhereeach clausescontrolprogram is located
Vertex shader alu[7:017:0 # eight & bit pointers to the location where cach clauses control program is located
Pixel shader fetch[7:017:0 J eight 8 bit pointers to the location where each clauses control program is located

 _Given clauseis executed to completion before

tureofthealexecution).Thecontro! program istheonlyprogramawareoftheclause

 exception ofthepicktwo!

boundaries.

The-Method-chosen-for-the R400is-a-“contre!pragram”-The control program has ten-eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified numberofinstructionsin instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is popped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block ofinstructions if all bits in the predicate vectors meet the condition.

| End_of_clause marks the end of a clause.

Exhibit 2020 docRAGO_Sequenser.dec 62862 Bytes*** @ AT! Confidential. Reference Copyright Notice on Cover Page © *** soasis ios50PREAOSOt 04:80PR CASALICHEAM :

AMD1044_0256964

ATI Ex. 2106

IPR2023-00922

Page 53 of 223

ATI Ex. 2106
IPR2023-00922
Page 54 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember. 20" 22 GEN-CXXXAX-REVA 19 of 43
Conditional End _of clause marks the end ofa clause if the occondition |is met.
Conditional_jurnmps jumps to an addressif the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than entl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flowinstruction perline in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0

“o| Formatted

| ; Execute ;een AP AB42 AA 2812 |Addressing | 00001 | RESERVED instruction Exe‘aianass |
| --count

Execute up to 4k instructions at the specified address in the instruction memory.

NOP |
47 46... 42 41... 0 oe

Addressing | 00010 | RESERVED be

This is a regular NOP.

Conditionnal_Execute

47 46.42 | 4444-34 40... 33 3322 | S231... 24 23... 12 \ 11....0
Addressing 00011 RESERVED|Boolean Condition | RESERVED Instruction | Exec Address

Boolean address —count
L._ address | i

if the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_ Execute_Predicates

I

a7 42] 41.35|4434... 3732|3631...24 23..12 | 471...0 |3833 |
Addressing | 00100 | RESERVED | Predicate | Condition | RESERVED instruction~ | Exec Address ||

| | | vector | count |

Check the AND/OR of all current predicate bits. | AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to considerthe pixels that aren't valid.

Loop_Start 1 _
47 | 46... 42 | 41... 47 | 46-81612 | fo O1 LO |)60101 RESERVED durae | Loop oJump | 8

Addressing | | addressioop ID | address |

Loop Start. Comparesthe loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

— nnnPaPo i.47 146... 42 | 41... 17 | 16... 512 | 4-811Of

Exhibit 2020.docR4G0_Sequencerdec 62882 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosn5PMAEYOSIN 04:88PMSO47AM

AMD1044_0256965

ATI Ex. 2106

IPR2023-00922

Page 54 of 223

ATI Ex. 2106
IPR2023-00922
Page 55 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 20155. 20 of 43node v= ete ™

lo00114 RESERVED Slag | LeepiDetart
Addressing | addressioan 1D address
Loop end. Increments the counter by one and jumps BACKonly to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call

47 (46... 42 | 41...12 [41.0
01000 RESERVED Jump

Addressing | addressAddres8

Jumps to the specified address and pushesthe IP counter on the stack.

Return
47 | 46... 42 | 41....0

| 01007 | RESERVED
Addressing |

Pops the topmost address frorn the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal,eee

 || 47 42|4144. | 40..338 | 3332 | 322.4381 | 1230. 12, 11

Sai RESERVED | Boolean | Condition if FW RESERVEDEW | JumpAddressing | | Beclean address | | onlyRESe en | addressAddres
| | address | | RBVER | | & |

| If condition met, jumps to the address. FORWARD jumponly allowedif bit 42-37set. Bit 42-31_is only an optirnization
for the compiler and should NOT be exposed to the API.

Conditional_End_of_ Clause

| 47 46. a2 | 4 [4033 | 3332 | 2231001074 [RSESERVED Boolean | Condition | RESERVED
Addressing| | Beclean | address | !address |

This is an optimization inn the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are notfree. In this case,if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of,Clause

47 | 46... 42 41... 0

Addressing | 01011 | RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug registers.

Vartex“shader=alul?:OZ:Oh. i” eight 8 bit pointers. to the. location where each Causes control programs.s located
peel,shaderaresmey— oteight. & it.pointers.49 the locationwhere: each.Clauses.controlprogram. is located

Exhibit 2020. docR400_Sequencerdoc 62852 Bytac*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joan i955)PMAEYOSIN 04:88PMSO47AM

AMD1044_0256966

ATI Ex. 2106

IPR2023-00922

Page 55 of 223

ATI Ex. 2106
IPR2023-00922
Page 56 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 201 5¢ GEN-CXXAXX-REVA | 21 of 43i i iOu
4 -pointer-value-of FF-means-thatihe-clausedoesn‘t-contain-any-instructions.

The-contrel-pragram-—far-a—given-clause-is-execuied-to-—completion-beflore-_moving-ie-another-clause,—twiththe
exception-ofthe-pick two-nature-ofthe-alu-execulion).The-centrol_program-is-the-enly-pregram-aware-ofihe-clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED SETNE # -similarto SETNE exceptthat the result is ‘exported’ to the sequencer.
PREDSETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_#- similar to SETGTEexceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#— SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs bul only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencerwill insert uses of PV,PS as needed. This will be done by
comparing the read address anc the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant readMrite.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and weaddto it the loop_index and this becomes our new address that we give to the shader pipe.

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256967

ATI Ex. 2106

IPR2023-00922

Page 56 of 223

ATI Ex. 2106
IPR2023-00922
Page 57 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155 22 of 43aA Ses

The sequenceris going to keep a loop index computed as such:

Index = Loop_counter*Loop_iterator + Loop_init.

The index is going to returnOif it is out of the range.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (hus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we haveto do the texture fetches for the whale vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
- count overflow
- jump error

relative jump acdress > size of the control flow program
relative jump address > length of the shader program

- constant overflow
- register overflow
- call stack

call with stackfull
return with stack emply

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

If indexing outsice of the constant range, causing an overflowerror, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will nave a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be:

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256968

ATI Ex. 2106

IPR2023-00922

Page 57 of 223

ATI Ex. 2106
IPR2023-00922
Page 58 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 23 of 43eemy iu
Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(evenif they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allowthe shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK SETNE
MASK_SETGT
MASK_SETGTE

8. HOS-surfacesMultipass vertex shaders (HOS)

: oe

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZEfor vertices and 256-
VERTEX_REG_SIZE for pixels.

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256969

ATI Ex. 2106

IPR2023-00922

Page 58 of 223

ATI Ex. 2106
IPR2023-00922
Page 59 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155. 24 of 43ry ch

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos fromm 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einsti Oinstl Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

Exhibit 2020.docR400_Sequencerdec 62882 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** naan 19PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256970

ATI Ex. 2106

IPR2023-00922

Page 59 of 223

ATI Ex. 2106
IPR2023-00922
Page 60 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20155 GEN-CXXXAX-REVA | 25 0f 43| - | 12. Handling Stalls "
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shacer pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (97). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

24-3 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (ane for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when wewill know
the size of the smail fifos between the reservation stations.

14. The OutputFile
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

1S. J Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates I(Q), J(@) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (7-I-J).

AOL = Fa) — (0)

AOLT = JA) - J(0)

AO2T = 1(2) - [(0) PO Pt

AOZS = F(2) - F(0)

AOBI = FG) (0)

AOBd = 1()- /(0) P2 PS

P0=C+I(0)*(A-C)+ JO) *(B-C)

Pl=PO+A0U *(4—-C)+ AOL *(B-C)

P2 = PO0+A021 *(A-C) + AOD *(B-C)

P3 = PO+A03F *(A-C)+ A037 *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256971

ATI Ex. 2106

IPR2023-00922

Page 60 of 223

ATI Ex. 2106
IPR2023-00922
Page 61 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20155 25 of 43EEsYa

Subtracts 19x24 (Parameters): 2
Adds: &

FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 4@20°2 + 246-447944°25"6 + 4*8 + 4*2 -= 128

The Deltas have a leading 1, the Full precision Js don’t. This means that in the case of the deltas we MUSTbe able
to shift 8 right (exponent value of O means number = 0, exponent value of 1 means shift right 88). This means that the
maximum range for the IJs (Full precision) is +/- 634 and the range for the Deltas is +/- 1287.

15.1 Interpolation of constant attributes — —— Ts
Because of the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that ifA= Band B=C and C =A, then P0,1,2.3=A, Since one or more of the LW terms
may be zero, so we extend this to:

if(A=Band B=candC=A)
PO 1232 A

fd i=0
POS A

} else ifd '= 0) f
cere BY

helse {
POR:

a
jirest of the quad interpolated normally

b
else
{
_ _normal interpolation

i

i6. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel outputfifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT LATE register. If turned_on, it means that
the export is going to sccur at ALU clause 7 if unset pesition export eccurs al clause 3,

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256972

ATI Ex. 2106

IPR2023-00922

Page 61 of 223

ATI Ex. 2106
IPR2023-00922
Page 62 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20755 GEN-CXXXXAX-REVA 27 of 43
1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and 2/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

O15 - 16 parameter cache

iii1A831- Empty (Reserved?)
32:43 _- 12 vertex exports to the frame buffer and index
A&A] - Empty
ARBO - 12 debug export (interpret as normal veriex export
60 ~ export addressing mode
61 - Empty
62 - sprite size export that goes with position export

(poeint_h,point_ w.edgeflag misc)
_63__=position

So - Color for buffer 0 (primary)
i ~ Colorfor buffer 1
2 ~ Calor for buffer 2
3 - Color for buffer 3

coh7 Empty
8 ~ Buffer 0 Color/Foa (orimary)
9g - Buffer 1 ColorFog
10 ~ Buffer 2 Color/Fog
11 - Buffer 3 ColorFog
1255 -Empty
18:31 - Empty (Reserved?
32:43 _- 12 exports for multipass pixel shaders.

cnth?-Empty
45:50 ~ 12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Emply
63 ~ 2 for primary buffer (Z exported to ‘alpha’ component

19.20. Special Interpolation modes

419.120.1 Real time commands

We are unable to use the pararneter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the

= od Formatted: Bullets and Numbering

cc) Fermatted: Bullets and Numbering 5

19.2 Pixel Shading ~a

2 > Formatted: Bullets and Numbering

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284 :PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256973

ATI Ex. 2106

IPR2023-00922

Page 62 of 223

ATI Ex. 2106
IPR2023-00922
Page 63 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20155 28 of 43Oued

other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME.

When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|O register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control registers. Here is a list of all the modes and howthey
interact together:

Gen_stis a bit taken from the interface between the SC and the SQ.This is the MSBofthe primitive type. If the bit is

set, it means we are dealing with Point AA, Line AA or Sprite and in this casee the vertex values are going to be-readhevenerated between 0

Param _Gen_l0 disable, snd_xy disable, no gen_st — 10 = No modification
Param Gen_l0 disable, snd_xy disable, gen_st — !0 = No modification
Param Gen_I0 disable, snd_xy enable, no gen_st — 10 = No modification
ParamGen_lO disable, snd_xy enable, gen_st — 10 = No modification
Param Gen_l0 enable, snd_xy disable, no gen_st— 10 = garbage, garbage, garbage, faceness
Param Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage, garbage,s, t
Param Gen_lO enable, snd_xy enable, no gen_st — 10 = screen x, screen y, garbage, faceness
Param _Gen_lO enable, snd_xy enable, gen_st — 10 = screen x, screen y, , t

both use thiscountto write the 1” pass dala to memory andthenuse thecounttoretrieve the data onthe 2”pass.
The count is always generated in the same way but il is passed to the shader in a slightly different way depending on
the shadert ixel or vertex). This is toggled on and off using the GEN INDEX register. While there is only one
court broadcast io the registers, the LSB are hardwired lo specific values making the index different for all elements
in the vector,

20.3.1 Vertex shaders

that the compiler must allocate 3 GPRsin all multipass vertex shader modes),

20.3.2 Pixel shaders

in the case of pixel shaders, (GEN INDEX is set, the data will be pul in the x fleld ofthe 2register (10),

Exhibit 2020.docR400_Sequencerdec 62882 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosus 19-56) |PRSOSI04 64:58PRAIAS/TO47AM

oe | Formatted: Bullets and Numbering49.220.2 Sprites/ XY screen coordinates/ FB information ~

oo] Formatted: Bullets and Numbering
20.3 Auto generated counters “

a{Fomatedsd

“en -4 Formatted: Bullets and Numbering

. Le Formatted: Bullets and Numbering

tea { Formatted

AMD1044_0256974

ATI Ex. 2106

IPR2023-00922

Page 63 of 223

ATI Ex. 2106
IPR2023-00922
Page 64 of 223

 DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA |

PAGE| ORIGINATE DATE EDIT DATE 29 of 43| 24 September, 2001 4 September, 20755| sy Ss.
 INTERPOLATORSAUTO

COUNT

oe
AUTO COUNT | 00000 |

The Auto Count Value is
Mux broadcast to all GPRs.It is

loaded into a register wich has
its LSBs hardwired to the

GPR number(6 thru 63). Then
if GEN_INDEXis high, themux selects the aute-count

value and it is loaded inte the
GPRsto be either used te

retrieve data using the TP or
sent to the SX forthe RB to

use it to write the cata to
memory

20-21, State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

241-22, XY Adcress imports
The SC will be able to send the XY addresses to the GPRs. Ii does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequenceris going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted vaiues to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 20.249.2 for details on howto control the interpolation in this mode.

22.1 Vertex indexes imporis ~
In order to import vertex indexes, we have G4y2x96 staging registers. These are loaded one at a time by the VGT
block, They are loaded in floating point format and can be transferred in 4 or $ clocks to the GPRs.

22.23 Registers

2423.1Control
DYNAMIC-REG DYNAMIC
VERTEXREG 0
REG SIZE PIXPIXELMIN_SIZE SMinienalsize of the register fifile’s pixel portion vninirnalsize whendynarnic¢ allocation turned on)

_VERTEM-MIN-SIZE-—Vinimal-eSize of the register file's vertex portion (minimal
sige when dynamic allocation turned on)iaynamic-caky)

ARBITRATION_polisyPOLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
VERTEMBASEINST BASE VTX start point for the vertex instruction store (RT always ends at

vertex_base and

Dynamic allocation (pixelvertex) of the registerfifile on orr off.

REGSIZEVTA.

Exhibit 2020 docR400_Secuencer.dec
PRSOSI04 64:58PRAIAS/TO47AM62882 Byes*** © AT Confidential. Reference Copyright Notice on Cover Page © ** sosu5 io5

 | Formatted: Bullets and Numbering :

oe | Formatted: Bullets and Numbering

= 4 Formatted: Bullets and Numbering :

See 4 Formatted: Bullets and Numbering

AMD1044_0256975

ATI Ex. 2106

IPR2023-00922

Page 64 of 223

ATI Ex. 2106
IPR2023-00922
Page 65 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE | 24 September, 2001 4 September, 20155 30 of 43
Begins at 0)

PIXEL-BASEINST BASE PIX start point for the pixel shader instruction store
NQUINTERLEAVEONE THREAD debug state register. Only allows one program at a time into the

GPRs
NOUINTERLESVE-ALUONE ALU debug state register. Only allows one ALU program at a time to be executed

(instead of 2)
INSTRUCTION_INDEX
_PORT This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANT_DATA This is where the CP puts constant data (32bits)
CONSTANT_ADDR This is where the CP puts the logical constant address (9 bits) : — ae :
INSTRUCTION INDEX : ‘ : BS ee

PORT RT This is where the CP puts ine base address of the instruction writes and type for oo = 4 Formatted
Real Time (auto-incremented on reads/writes) — = : ee

INSTRUCTION DATA RT This is where the CP outs the actual date going te the instruction memory for oe oe :
Real Time

CONSTANT DATA RT This is where the CP puts constant data for Real Time (32 bits)
CONSTANT ADDR RT This is where the CP puts the logical constant address for Real Time (bits
CONSTANT EQ RT This is the size of the space reserved for real tirne in the constant store (from 0 to

CONSTANT EG RT). The remaping table operates onthe rest ofthe memory
EXPORT LATE Controls whether or not we are exporting position from clause 3. If set, position

exportsoccur at clause 7. —— -

eos <<] Formatted: Bullets and Numbering

22.2232Context

Vehaderfeteh[ZOLOVS FETCH (0.73 eight 8 bit pointers to the location where each clauses
control program is located

Vehader-alufZ0UC-0IVS ALU {0.7} eight 8 bit pointers to the location where each clauses
control program is located

PSFETCH10...7} Pshader_fetchi7-O1F:0) eight 8 bit pointers to the location where each clauses control
program is located

PS ALU {0.7} Pehaderailsoreg) eight 8 bit pointers to the location where each clauses control
program is located

PSHADERPS BASE base pointer for the pixel shader in the instruction store
VBHADERVS BASE base pointer for the vertex shader _in the instruction store
VehbadercnilelzeVS CF SIZE size of the vertex shader (# of instructions in control program/2)
PshadercotlisgePS CF SIZE size of the pixel shader(ofinstructions in control program/2)
PehadersizePSSIZE size of the pixel shader (cntl+instructions)
Venader-czeVS SIZE size of the vertex shader (cntl+instructions)
REG-ALLOGPIMPS NUM REG numberof registers to allocate for pixel shader programs
REG-ALLOG-VERTYVS NUM REG numberof registers to allocate for vertex shader programs
ELATGOUR[S..-IBIPARAM SHADE One 16 bit register specifying which parameters are to be

gouraud shaded (6 = flat, 1 = gouraud)
CYLWIRAPIO...BB]PARAM VWRAP 64 bits: for which parameters (and channels (xyzw)) do we

do the cyl wrapping (Q=linear, T=cylindrical).
PiexpertmedePSEXPORTMODE—_—— Oxxxx : Normal mode

1xxxx : Multipass mode
lf normal, bbbz where bbb is how many colors (0-4) and z is export z or not
lf multipass 1-12 exports for color.

vehadarexcortmaskVS EXPORT MASK which of the last 6 ALU clausesis exporting (multipass only)
yehaderoxgormede/S EXPORT MODE0: position (1 vector), 1: position (2 vectors), 3:multipass
yvehaderexperl_count6lySEXPORT

COUNT {0.6} Six 4 bit counters representing the —#¥ of interpolated parameters exported in
clause 7 (ecated in VS_ EXPORTCOUNT6)OR

of exported vectors to memory per clause in multipass mode (per clause)

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM as

AMD1044_0256976

ATI Ex. 2106

IPR2023-00922

Page 65 of 223

ATI Ex. 2106
IPR2023-00922
Page 66 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September. 20"[DS GEN-CXXRAK-REVA 31 of 43
GEN“10 Do we overwrite or not the parameter O with XY data and generated T and S values
GEN_ INDEX Aulo generates an address from 0 to X&. Puts the results into Ri for pixel shaders

and RS for vertex shaders
CONST BASE VIMOOA7X-CST-BASE bits) Logical Base address for the constants of the Vertex shader
PiIXStBASECONST BASE PIX (9 bits) Logical Base address for the constants of the Pixel shader
PIX-CST-SIZECONST SIZE PIX (8 bits) Size of the logical constant store for pixel shaders
VECST_SIZECONSTSIZEVT(8 bits) Size of the logical constant store for vertex shaders
INST PRED OPTIMIZE Turns on the predicate bit optirnization Gf of, conditional execute predicates is

always executed),
CE BOOLEANS 228 boolean bite
CF LOOP COUNT 32x8 bit counters (numberof times we traverse the loa
CF LOOP START 32x86 bit counters (init value used in index computation
CF LOOP STEP 32x8 bit counters (step value used in index computation)

23-24, DEBUG registers

23-124.]Context

ae 4 Formatted: Bullets and Numbering

DBPROBADDR— instruction address where thefirst problem occurred
DBPROB_COUNT--— numberof problems encountered during the execution of the program
GouniDB INST COUNT instruction counter for debug method 2
AdedrDe BREAK ADDR break address for method number2
DB CLAUSE

MODE ALU (0... 7iGlause—rmoedel3] clause mode for debug method 2.(0: normal, i: addr, 2: kil)
DB CLAUSE

MODE FETCH 10...7 clause mode for debug methed 2 (O nermal, 1 addr, 2: kill

24.25. Interfaces S—iisC

24.125.1 External Interfaces

Wheneveran x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

24-4425.1.1SC to SP: Li bus -

_ >| Formatted: Bullets and Numbering

This is a bus that sends the IJ information to the [J fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whale chip (SPQ thru 3)

Name | Direction i Bits | Description
S$C_SP0_data SC—SPO 64 | lJ information sent over 2 clocks (or XY info sent over 7

_ clock in the lower 24 LSBsofthe interface)
$C_SP0_q_wr_mask | SC-»SPO 1 | Write Mask
SC_SPO_dest | SCSPO ia _ Controls the write destination (XY buffer, IJ buffer)
SC_SP1_data SC—SP1 64 | LJ information sent over 2 clocks (or XY info sent over 1

_ | _ clock in the lower 24 LSBsoftheinterface)
SC_SP1_q_wr_mask |SC->SP1 4 | Write Mask
SC_SP1_dest $SC—SP1 1 _ Controls the write destination (XY buffer, |J buffer)
SC_SP2_data SC >SP2 64 iJ information sent over 2 clocks (or XY info sent over 1
ee __| ¢lock in the lower 24 LSBs ofthe interface) |

|SC_SP2_q_wr_mask | SC >$P2 L1 | Write Mask
SCSP2dest SC—SPF2 1 _ Controls the write destination (XY_ buffer, lJ buffer)

SC_SP3_data | SC>SP3 64 | iJ information sent over 2 clocks (or XY info sent over 1
. _ clock in the lower 24 LSBsoftheinterface)

SC_SP3_q_wr_mask SC—SP3 1 | Write Mask
SC_SP3_dest | S$C—SP3 14 | Controls the write destination (XY buffer, [J buffer)

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284 :PRSOSI04 64:58PRAIAS/TO47AM

AMD1044_0256977

ATI Ex. 2106

IPR2023-00922

Page 66 of 223

ATI Ex. 2106
IPR2023-00922
Page 67 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 20155 32 of 43i Ang

24.1225 1.2 SC to SEQ: IJ Control bus

This is the control information sent te the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where

a S =| Formatted: Bullets and Numbering

just sent).

Name | Direction Bits |Description
SC_SQ_q_wrmask SC-5Q 4 _ Quad Write maskleft to right
SC_SQ_lod_correct ! 8C-—-5Q | 24 | LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex SCS 2 Provoking vertexfor flatshading
$C_SQ_param_ptrO | SC--SQ 14 Store pointer for vertex 0
SC_SQ_param_ptri SC-—SQ 11. P Store pointer for vertex 1
SC_SO_param_ptr2 | $C-—SQ 141 | P Store pointer for vertex 2
SC_SQ_end_of_vect _|SC>80 [1 End ofthevector

SC_SQ_store_dealloc [SC-SQ 1 | Deallocation token for the P Sto
SC_SQ_state | SC—SQ 3 | State/constant pointer (6*3+3)
8C_80valid_pixel 8C—80 16 | Valid bits for all pixels
8¢_SQ_null_prim | $C-—-80 4 | Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim $050 1 | End Of the primitive
SC_SQ_fbface |SC-SQ i1 | Front face = 1, back face = 0 |
S8C_S80_sencd_xy 8Cc-80 4 | Sending XY information [XY information is going to be

| sent on the next clock]
SC_SQ_prim_type sC-SQ 3 Real time command need to load tex cords from

_alternate buffer. Line AA, Point AA and Sprite reads
| their parameters from GEN_T and GEN_Sregisters.
| OOO : Normal
| O11: Real Time
| 100: Line AA

| | 107: Point AA
| 110: Sprite

SC_SQ_newvector SC--SG 4 | This primitive comes froma new vector ofvertices.
| Make sure that the corresponding vertex shader has
_finished before starting the groupof pixels.
|SC_SQ_RTRn ‘|SQ-SC_ Stalls the PA in n clocks

8C_SQ_RTS _8C--SQ a | SC ready to send data ae
. ge es] Formatted: Bullets and Numberin

| ee3251.3_SQ fo SP: interpolator bus - ee ee eee a aes
Name Direction Bits | Description
SQ_SPx_interp_prim_type SQ—SPx 3 | Type of the primitive

| 000 : Normal
| 011: Real Time— 100: Line AA

| | 101: Point AA
Po 110: Sprite ee

SQ_SPx_interp_flat_vix | SQ—SPx 2 | Provoking vertex for flat shading
8Q_SPx_interp_flat_gouraud|SQ—-SPx 1 | Flat or gouraud shading
SQ_SPx_interp_cyl_wrap | SQ>SPx | 4 | Wich parameter needsto be cylindrical wrapped
8Q_S5Px_interp_ijline SQ—SPx 2 | Line in the IJ/XY buffer to useto interpolate
8Q_SPx_interp_bufhswap | SQ-SPx 1 | Swap the 1J/XY buffers at the endof the interpolation
5Q_5Px_interp_gen_l0 SQ—SPx 1 i Generate 10 or not, This tells the interpolators net to

| | | use the pararneter cache but rather overwrite the data
| with interpolated 7 and 0. Overwrite if gen 10 is high.

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256978

ATI Ex. 2106

IPR2023-00922

Page 67 of 223

ATI Ex. 2106
IPR2023-00922
Page 68 of 223

This interface is synchronized with the Interpolater bus, This centrois the input mux to the GPRs. The three types of

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20755 GEN-CoOOOO-REVA | 33 af 43i at ce i

2] Formatted: Bullets and Numbering :

 *| Formatted

data are: generated index, Interpolated data. vertex index dala (coming from the slaging registers).

Name | Direction | Bits | Description
SQ SPx data type, | SQSPx, 4 | OO: interpolateddata

| | | OL Staging register data

50.SPxindexcount | SQ25Px iz? _| inde:
SQ SPx slage addr $Q->5Px 4 | Staging reqister address

| | O: First staging register

t _lusecond staging register

es") Formatted: Bullets and Numbering

25.15 SQ to SPx: Parameter cache write control * =m

Name | Direction Bits|Description
SOSPxpewraddr SO-28Px i Writeaddress : ee :
SQ SPx pc we addr _ [30 SPX 1 WriteEnable ee oe me eee a

SQ_SPx_pcphasemux | SQ-2SPx 1 | The output selector min igor ys parametercache) oe Fe Se oo4 J. Formatted: Bullets and Numbering
24.4-425.1.6 SQ to SP: Parameter Cache Read contro! bus er
The four following interfaces (SQ-SP, SQ—-5X,SP—SX and SX-—interpolators) are all SYNCHRONIZED together. ae o — a :

Name “Direction | Bits | Description oe :
$Q_SPx_ptrO | SQ-»SPx Lg | Pointer ofPC oe
SQ_SPx_ptrt | $Q-3SPx 19 Pointer of PC :
$Q_SPx_ptr2 SQ—SPx 9 _ Pointer of PC .
SQ_SP0_reacd_ena | SQ-3SP0 L4 _Read enables for the 4 memories in the SPQ
5Q_SP1_read_ena | SQ—SP1 | 4 _ Read enables for the 4 memories in the SP1 one ce
SQ_SP2_read_ena| SQ OUSP2 4_Read enables forthe 4memories inthe SP20 0 : es : ee
8Q_SP3read_ena _$0-.SP3 L4 | Read enables for the 4 memories in the SP3 es es : ee

+-325.1.7 SQ to SX: Parameter Cache Mux contro! Bus | —— eT
Name Direction Bits | Description oe ee oe
SQ_SXx_mux0 | SQ-»SXx L4 Mux contral for PC (4 MSbs of Pointer) :

SOSkxmuxt |SQ>SXx_ | 4 |Mux controlfor PC (4MSbsofPointer) :
SQ_SXx_mux2 | $Q-3SXx L4 | Mux controlforPC(4MSbsofPointer)

+ eS -[Formatted: Bullets and ‘Numbering oe —

Name Direction Bits | Description
SPO_SXO_datad | SPO--SXO | 128 | Parameter data 0
SP0_SX0datat SPO0—SXO 128 | Parameter data 1
SPO_SX0_data2 | SPO--SXO | 128 | Parameter data 2

SPO_SX0_data3 SPO—-SXO 128 _ Parameter data 3
SP1_SX1_dataO | SP1--SA1 | 128 | Parameter data 0
SP1_SX1_datat SP1—SX1 128 | Parameter data 1
SP1_SX1_data2 | SP1--SX1 [128 | Parameter data 2
SP1_SX1_data3 SP1—Sx1 126 | Parameterdata 3
SP2_SX0_data0 | $P2-SX0 1428 | Parameter data 0
5P2_SX0_datat “SP2—8X0 128 | Parameter data 1
SP2_SX0_data2 $P2-3SX0 | 128 | Parameter data 2

[SP2.SX0.data3t—“‘CéC~S™S‘|SP25SxXO0i”'428 | Pararneter data 3
SP3_SX1_datad SP3—SxX1 128 | Parameter data 0

SP3_SXi_datai SP3-SX1 | 128 | Parameter data 1
SP3_SXi_data2| SPBSXT (128 | Parameterdata2=#=|

62962 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © »**PMIAOS04:88PMAG/OIIG47AM
Exhibit 2020 docR400_Secuencer.dec

ogiogris i284 :

AMD1044_0256979

ATI Ex. 2106

IPR2023-00922

Page 68 of 223

ATI Ex. 2106
IPR2023-00922
Page 69 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20155 34 of 43w J eereneeennnnnnenennmecnuneneetaeneTeeseteed2Aeneeeeee :

SP3_SX1_data3 | SP3-+SX1 | 128 | Parameter data 3 iE oe
4 Formatte lets and Numberin

241725 1.9 SX to Interpolaters: Parameter Cache Return bus - (formate —— —
Name Direction Bits | Description : :
SXx_SPx_vb_data_0 | SXx»SPx |128 | Vertex data to interpolate : : : : &
SXx_SPx_vix_data_1 SXx—SPx 128 | Vertex data to interpolate ee Ses
SXx_SPx_vix_data_2 | SXx-»SPx 1128 | Vertex data to interpolate oe : See :

. . . ane = -| Formatted: Bullets and Numbering
25.1.10 SQ to SPO: Staging Register Data eee

‘Name |Direction ‘Bits[Description- : aa Soe ES :
|SQSPOvatvsisrdata| S@- SPO | 96 | Pointers of indexes or HOS surface Information

80 SPO vat vsisr couble $Q-2SP0 1 _@: Normal 96 bits per vert 1: double 192 bits per vert
$0 SFO data valid LSO-3SP0 ima | Data is valid

= gee orma ei Bull an umberin25.1.1] PA to SQ : Vertex interface - =ae leanMien= “ = =<
25,1. 11.1 Interface Signal Table ee a
The area diflerence between ihe bwo methods is nol sufficient to warranl complicaling the interface or the siale
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
YSISKs (via the Shader Sequencen in full, 32-bit floating-point format, The VGT can transmit up to six 32-bit
floating-point values io each VSISR where four or more values require bye ansmissien clocks, The date bus is 96

bits wide.

Name Bits Description

| PASQvatvsisrdata $6 Pointers of indexes or HOS surface information
PA SQ vot vsisr double 1 0: Normal 96 bits per vert 1; double 192 bits per vert

PA SQ vot end of vector 1 indicates the last VSISR date set for the current process vector (for double vector

PA_SQ votstate 3 Render State (6°3+3 for canstants). This signal is guaranteed to be correct when
s high.

 PA SG vat send 1 Data on the VGT_SQis receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ PA vat rir 1 Reedy to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

251.112 Interface Diagrams «-—[FormatedBueandtaberng

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256980

ATI Ex. 2106

IPR2023-00922

Page 69 of 223

ATI Ex. 2106
IPR2023-00922
Page 70 of 223

AOLEOTTSHTTSSFPTHSUCIN9S71YaONENOSSHaQVHS

 Ole@SHVJBAODUOSOONWGUAdODsoUssajoy‘}EHUSPYUOD[Ly@vxeszeezo
sepussuBnbag“ggPHoGRCcoe

ip

——ALAND

MadangamsvxLOL

preanoocneeaccentcnceccrnecaneeannISTESESESIRUUiepeewor
cy10Sedovd

bTESTLYLS&BOMIEAFONTHbaranod

SISA

 vywLWdUSLSA
 WAREXXXXXO-NADWON(AdaLNSWNOOd

aaa45avaOS

OrooeSagpuesjaGsvaTeseqeqe4a63wd

ZojOaAJOpueWahewa

B[CMosALTA4OAOSWal

Uyeodstsa4aDeWal
 EGJequejaasyaLvd1103

merenee

Lo0g‘Iequaydespz ZAOMORAJO.CNTRZWIdnNcCdUSTSAGWLWUSLSA

LDA

aLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256981

ATI Ex. 2106

IPR2023-00922

Page 70 of 223

ATI Ex. 2106
IPR2023-00922
Page 71 of 223

AVERODETOSTTNEBSPOTOGOTMOS71SLPONGO@abedJ8A05UOsONION1UBUAdeasusiajey‘JENUSPYUODLLY@vxx3M'925079 PELL]HAHSVdIslWEEESHSTPaeiSG
YS

_

1

SOUT

PULL

 eyJo9e

49Vduoijeayioadsuaouenbesoor

—SGROUGTeyeewrewryGGL0dsequiajaespalvdLids

|

sepvasuanbeg“gqrysepC20eWa

——-NOISSINSNVaLSdoOLsdadaNngs
NOISSINSNWALSLAVLS-adadaaHATHOdd

NOISSIASNVaLSdOLsWHATaOE
qaOdaRLIWHODAINOOFTGINOWLIWO4IaPpwivaypaNas€WLvd¢aNgsZwLwaZaNgsSiuLDAZulaOsTunaosQOdbOsabyOsLoog‘lequieydespzO:eo3LVGSLYNISINOLs

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256982

ATI Ex. 2106

IPR2023-00922

Page 71 of 223

ATI Ex. 2106
IPR2023-00922
Page 72 of 223

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20756 GEN-CoO000¢-REVA | 37 of 43i ray is i

24-18-VGL--SPO60.VetexBus *

SEQ to CP: State report

Name | Direction | Bits | Description
SQ_CP_vrbx_ state SEQ--CP 13 | Oldest vertex state still in the pipe
SQ_CP_pix_state | SEQ..CP [3 | Oldest pixel state still in the pipe

24-1-4025.1.13 SP to SX: Pixel/Vertex write to SX “

Name Direction Bits Description
SPO_SX0_Export_data | SPO-+3X0 | 256 4 pairs of 32 bits channel values .
SPO_SX0_Shader_Dest SPO=SX0 4 Specifies one of the of up to 12 exportdestinations
SPi1_SX1_Export_data _SP1>SX1 | 256 4 pairs of 32 bits channel values

| SP1_SX1_Shader_Dest SP1—SX1 4 Specifies one of the of up to 12 export destinations
SP2_SXA0_Export_data | SP2--SX0 | 256 4 pairs of 32 bits channel values
SP2_SX0_Shader_Dest SP2—SX0 4 Specifies one of the of up to 12 export destinations
SP3_SX1_Export_data LSP3-2341 (256 4 pairs of 32 bits channel values .
SP3_SX1_Shader_Dest SP3—Sx1 4 Specifies one of the of up to 12 export destinations _
SPx_SXx_Shader_Count SP0—SX0 3 Each set of four pixels or vectors is exported over

| eight clocks. This field specifies where the SP is in that
_ I sequence.

SPx_SXx_Shader_Last SP0—SxX0 1 Asserted on the first shader count of the last export of
the clause

SPO_SX0_Shader_PixelValid|SPO—SXO | 4 Result of pixel kill in the shader pipe, which must be
| output for all pixel exports (depth and all color buffers).

: | 4x4 because 16 pixels are computed per clock
SPO_SXO_Shader_WordValid|SPO—-SX0O 2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
vectors

SP1_SX1_Shader_PixelValid|SP1—5SX1 4 Result of pixel kill in the shader pipe, which must be
\ output for all pixel exports (depth and all color buffers).
| 4x4 because 16 pixels are computed per clock

SP1_SX1_Shader_WordValid|SP1—5SX1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or

: vectors
SP2_SX0_Shader_PixelValid|SP2—SX0O 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP2_SX0_Shader_WordValid|SP2—-SX0 | 2 Specifies whether to write low and/or high 32-bit word
\ of the 64-bit expart data from each of the 16 pixels or

. [vectors |
SP3_SX1_Shader_PixelValid|SP3—SX1 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color buffers).
| 4x4 because 16 pixels are computed per clock

SP3_SX1_Shader_WordValid|SP3—-5X1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit expart data from each of the 16 pixels or
vectors

24-4+4425.1.14 SQ to SXControl bus ‘

Name Direction [Bits _ Description

62962 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © »**PMIAOS04:88PMAG/OIIG47AM
Exhibit 2020 docR400_Secuencer.dec

F

ogiogris i284 :

Jo < > Formatted: Bullets and Numbering

—=°| Formatted: Bullets and Numbering P

Formatted: Bullets and Numbering

AMD1044_0256983

ATI Ex. 2106

IPR2023-00922

Page 72 of 223

ATI Ex. 2106
IPR2023-00922
Page 73 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20155 33 of 43| ty Elalas

| SQ_SX_exp_Pixel | SQ—>SXx [1 | 1: Pixel| | | 0: Vertex

$Q_SXx_exp_start SQ>8Xx -1 | Raised to indicate that the SQ is starting an export
SQ_SXx_exp_ Clause | SQ->SXx 3 _ Clause number, which is needed for vertex cla
SQ_5Xx_exp_State SQ >SXx C3 _ State ID, which is needed for vertex clauses

Thesefields are sent synchronously with SP export data, described in SPO—SX0Ointerface
{ISSUE: Where are the PC pointers}

 F

oe ‘ormatted: Bullets and Numberin

| 2444225.1.15SX to SQ: Output file contro! oe =< “
Name _ Direction | Bits | Description]
SXx_SQ_Export_count_rdy SXx-5Q 1 | Raised by SX0to indicate that the following twofields

| reflect the result of the most recent export
S8Xx_SQ_Export_Position SXx-»SQ 4 | Specifies whether there is room for anotherposition.
SxXx_SQ_Export_Buffer SXx—-38Q 7 | Specifies the space available in the output buffers.

| O: buffers are full
1: 2K-bits available (32-bits for each of the 64

| pixels in a clause)

| 64: 128K-bits available (16 128-bit entries for each of
| 64 pixels)
| 65-127: RESERVED

4 4 . . | orma ed: ulle and Numberin -2444325.1.16 Shader Engine to Fetch Unit Bus - f = = = cn _ = =
Four quad's worth of addressesis transferred to Fetch Unit every ciock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The registerfile index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quads worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel

of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signalis sent.

Name [Direction Bits|Description . .
SPO_TPO fetch addr SPO0->TPO 512|4 Fetch Addresses read from the Registerfile
TPO_SPO_data | TPO-SPO 512|4 texture results oo
SP1_TP1_fetch_addr _SP1->TP4 512 4 Feich Addresses read from the Registerfile
TP1_SP1_data TP1 >SP4 512 4 texture results
SP2_TP2_fetchaddr |SP2->TP2 5i2_|4 Fetch Addresses read from the Registerfile
TP2_SP2_data TP2—>SP2 512 4 texture results
SP3_LTPSfetchaddr SP3->TPSss| B42 | 4 Fetch Addresses read from the Register file
TP3_SP3_data | TP3—SP3 512|4texture results
TPx_SPx_gpr_dst TPx—SPx 7 Write address into the gors
TPx_SPx_gpr_cmask | TPx>SPx 4 Channel mask

4 4 . - 4 Formatted: Bullets and Numbering :
24-4+4425.1.17 Sequencer to Fetch Unit bus —ne
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name | Direction | Bits | Description
TPx_SQ_data_rdy TPx— SQ 4 | Data ready
TPx_SQ_clause_num | TPx-» SQ 13 | Clause number

|SQTPx_const_| SQ>TPx __| 64 __| Fetchstate sentover 4 clocks
SQ_TPx_instuct | SQ->TPx (24 | Fetch instruction sent over 4 clocks —
$Q_TPx_end_of_clause | SQ—TPx Li | Last instruction ofthe clause

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256984

ATI Ex. 2106

IPR2023-00922

Page 73 of 223

ATI Ex. 2106
IPR2023-00922
Page 74 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CAAKAX-REVA 39 of 43=sevebMicosrt,Pe
SQ_TPx_phase _SQ—TPx 2 _ Write phase signal
SQ_TPO_loc_correct SQ—TPO 6 _LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pmask |SQ--TPO 4 _ Pixel mask1 bit per pixel ;
SQ_TP1_lod_correct SQ—TP 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask | 8Q->TP 4 | Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ—TP2 6 _ LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask | SQ-sTP2 4 | Pixel mask1 bit per pixel _
SQ_TP3_lod_correct | $Q-5TP3 16 | LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ—TP3 4 _Pixelmask 1 bitperpixel
SQ_TPx_clause num SQ--TPxLB_ Clause number — ;
SQ_TPx_write_gpr_index | SQ->TPx L7 | Index into Register file for write of returned Fetch Data

2441525 1.18 Sequencer to SP: GPR contro! he
Name Direction Bits|Description :
SQ_SPx_gpr_wr_addr | 8Q--»SPx 7 | Write address
8Q_SPx_gpr_rd_addr SQ—>SPx 7 Read address
80_SPx_gpr_re_addr {8Q—.8Px 1 | ReadEnable

'SQ_SPx_g | SQ5SPx_ 1Write Enable
|SQ_SPx AMX| SQ>SPx 2.)The phasemux
SQ_SPx_gpr_channel_mask | SQ-+SPx 4 | The channel mask
$Q_SP0_gpr_pixel_ mask SQ—SPO0 4 The pixel mask
$Q_SP1_gpr_pixel_mask |SQ >SP1 4 The pixel mask
SQ_SP2_gpr_pixel_mask SQ >SP2 4 The pixel mask
SQ_SP3_gpr_pixel_mask | SQ->SP3 4 The pixel mask

os) Formatted: Bullets and Numbering

24.114 Sy: Le rl ot

24-44-7725 1.19 Sequencer to SPx: Instructions
Name

T = =
| Direction Bits |Description

|SQ_SPx_instruct_start
$Q_ SF _instruct

SQ>SPx 1 _[instruction startInstruction sent over 4 clocks |SQ-3SPx [20

$Q_ SPx_ stall $Q—SPx 1 _ Stall signal

SQ_SPx_Shader_Count SQ—SPx 3 Each set of four pixels or vectors is exported over
eight clocks. This field specifies where the SP is in
that sequence.

8Q_SPx_Shader_Last “S0Q—SPx Asserted on the first shader count of the last export
_ of the clause

$Q_SP0_Shader_PixelValid SQ—SP0 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_Shacer_WordValid “SQ—SP0 Specifies whether to write low and/or high 32-bit
| word of the 64-bit export data from each of the 16
Lpixels or vectors

SQ_SP1_Shader_PixelValid SQ-SP1 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

$Q_SP1_Shader_WordValid “SQ—SP1 “Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP2_Shader_PixelValid SQ—SP2

Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clack

Exhibit 2020 docR400_Secuencer.dec

$Q_SP2_Shader_WordValid [SQ—5P2
|

Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16

62862 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** pooais i284 :PRSOSI04 64:58PRAIAS/TO47AM

ees 4 Formatted: Bullets and Numbering

AMD1044_0256985

ATI Ex. 2106

IPR2023-00922

Page 74 of 223

ATI Ex. 2106
IPR2023-00922
Page 75 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20155. 40 of 43ADE.

| pixels or vectors
$Q_SP3_Shacer_PixelValid SQ—SP3 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

Po clock
SQ_SP3_Shader_WordValid | SQ—SP3 2 | Specifies whether to write low and/or high 32-bit

' | word of the 64-bit export data from each of the 16
| pixels or vectors

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM

Name | Direction Bits | Description
SPQ_SQ_const_addr | SPO >SQ 136 | Constant address load to the sequencer
SP0_SQ_valid |SPO>SQ 1 |_ Data valid
SP1_SQ_const_addr [SP1i-SQs«| 36 ~——s Constant address load to the sequencer
SP1_SQ_valid _SP1-SQ 1 | Data valid
SP2_SQ_const_addr | SP2—SQ 36 _| Constant address load to the sequencer
SP2_SQ_valid | SP2-»SO 4 | Data valid
SP3_SQ_const_addr | SP3—SQ 36 _| Constant address load to the sequencer
SP3_SQ_valid | 8P3—80 i 14 _ Data valid

| 2444925.1.21 Sequencer to SPx: constant broadcast we
Name | Direction| Bits | Description ee
SQ_5Px_constant _SQ--SPx 128 | Constant broadcast

| 244-2025 1.22 SPO to Sequencer Kill vector load “
Name Direction Bits | Description
SP0_SQ_kill_vect | SPO—=SQ L4 _Kill vector load

-SP1SQkillvect|SPISSQ_4Killvectorlead
SP2_SQ_kill_vect _SP2--8Q 4 | Kill vector load
SP3_SQ_kiil_vect | 8P3—8Q 14 | Kill vector load

Name Direction Bits | Description
SQ_RBB_rs | SQCP 14 | Read Strobe
SQ_RBB_rd SQ—CP | 32. | ReadData|

|SQ_RBBN_nrirr| 1| Optional - Be
SQ_RBBM_rir i | Real-Time (Optional) | =

| 244.2225 .1.24 CP to SQ: RBBM bus “
[Name|Direction Bits |DescriptionJ]

rbbm_we | CP.»SO 114 _ Write Enable .
rbbm_a CPSQ 18 | Address -- Upper Extent is TBD

LCPSQ Dat
_tbbm_be | CP>SQ 4 ByteEnables
rbbm_re CP—SQ 1 | Read Enable
rpb_rs0 | CPSQ 14 | Read Return Strobe O
rbb_rsit CP=SQ 1 | Read Return Strobe 1
rbb_rdO | CP-.SQ 132 | Read Data 0
robrd CP-SOQ 32 | Read Datagd
RBBM_SQ_soft_reset _ CP >5Q 4 _ Soft Reset

24.4-4825.1.20 SP to Sequencer Constant address load SS es = = = ——

-_» (Formatted:Bullets andNumbering

| 24-251.23 SQ to CP: RBBM bus ooas es

7) Formatted: Bullets and Numbering

AMD1044_0256986

ATI Ex. 2106

IPR2023-00922

Page 75 of 223

ATI Ex. 2106
IPR2023-00922
Page 76 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 20155 GEN-CXXAXX-REVA | 41 of 43few oy Lat |

25.26. Examples of program executions

2o-+-126.1.1 Sequencer Controi of a Vector of Vertices
41.

10.

11.

PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cacheis sent along with vertices
® space was allocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

« the SEQ then accesses the IS base for this shader using the local slate pointer (providedto all
sequencers by the RBBM whenthe CPis done loading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always haspriority
e at this point the vector is removed from the Vertex FIFO
e the arbiter is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

SEQ allocates space in the SP register file for index data plus GPRs used by the program
® the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2046 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFOQ of SU0, SU1, SU2, and SU3 is written the first cycle
e RF1 of SUO, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
e RF3of SU0, SU1, $U2, and SU3 is written the fourth cycle

* the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, 2)

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete: it passes the register file write index for

the fetch data to the TU, which will write the data to the RF asit is received
® once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

ail instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
® position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (which is

shared with ail four shader pipes) back to the PA’s position cache
e A parameter cachepointeris also sent along with the position data. This tells to the PA wherethe data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

PRSOSI04 64:58PRAIAS/TO47AM

 | Formatted: Bullets and Numbering

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284 :

AMD1044_0256987

ATI Ex. 2106

IPR2023-00922

Page 76 of 223

ATI Ex. 2106
IPR2023-00922
Page 77 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20155 42 of 43PiedPen.

| e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFOis full
e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

e parameter data is sent to the Parameter Cache over a dedicated bus
« the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters(it is told by the PA when using a token).
« the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has cornpleted, the SEQ will free up the GPRsso that they can be used by another
shader program

2or+-226.1.2 Sequencer Controi of a Vector of Pixeis
en o 4 Formatted: Bullets and Numbering

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
® the Pixel FIFO is wide enough to source four quad’s worth of barycenirics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
® the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEQ will not allow interpolated data to be sent to the shaderuntil spacein the register file has been allocated

5. SEQ controls the transfer of interpolated cata to the SP registerfile over the RE_SP interface @vhich has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
*® all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
* TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO0

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
® TSMO doesnotwait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASMO FIFO: a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. ail instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO where it will be picked up by the render backend
® the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is fuil

13. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

Exhibit 2020 docR400_Sequencerdec 62882 Bytos*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pansies iosPRSOSI04 64:58PRAIAS/TO47AM :

AMD1044_0256988

ATI Ex. 2106

IPR2023-00922

Page 77of 223

ATI Ex. 2106
IPR2023-00922
Page 78 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 201 5¢ GEN-CXXAXX-REVA | 43 0f 43{ i t

25-+-326.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out.

26:27, Open issues
There is currently an issue with constanis. If the constants are not the same for the whole vectorof vertices, we don’t
have the bandwidth fram the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the
bandwidth there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
paralle!. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2020 docR40G_Sequercerdoc 62882 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns i284PRSOSI04 64:58PRAIAS/TO47AM

Pa +4 Formatted: Bullets and Numbering

<2¢) Formatted: Bullets and Numbering

AMD1044_0256989

ATI Ex. 2106

IPR2023-00922

Page 78 of 223

ATI Ex. 2106
IPR2023-00922
Page 79 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 1 of 48- - rs, ft
Author: Laurent Lefebvre

 issue To: | Copy No:

R400 Sequencer Specification

SQ

Version 1.54

Qverview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Cc\perforce'r400\doc_libidesigniblocksisq\R400,Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

: 28 APPROVALS. Sos
Name/Dépt ce Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rignts reserved. The material in this document constitutes an unpublished .
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |.
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2021. dech400_Sequencer.des 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonins joado

PHA2OG01 02creBMH2054404:522M

ATT 2021

LGv. ATI

IPR2015-00325

AMD1044_0256990

ATI Ex. 2106

IPR2023-00922

Page 79 of 223

ATI Ex. 2106
IPR2023-00922
Page 80 of 223

ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 2015474 2 of 48fatanens R400 Sequencer Specification PAGE

Table Of Contents

L._ OVERVIEW os cccccecccceneccnensuscncueerusecsssusesustsensurnsestsnsusnsetsentersnststeuseruttenatucensesssensucecteteuce 86.
Li Top Level Block Digi a eececeeseeeeseee teste LSE EGU EMULE ELLA ELLDEEEULUIULEEEEto Mb UDEtELaaatiEteituaasitists 108

1.2 Datla Flow grapheeecece ce een et tt ee atbetbettd tot tt tte ieununbatpentetsetttttttettetteeeses 1240 .
13. Control Graph 1344
2. INTERPOLATED DATA BUS.. 1344
3 INSTRUCTION STORE........... cee
4, SEQUENCER INSTRUCTIONS oon cceceeesecc screens cecsseennes cenannnenensesanenesensesssenenmnesstunsannentnts 1846
§. CONSTANT STORES. encccsscrresezcarsereneen een sennanenenninunnnnsEensenennetinnnnnanuntuasensnnauneaanennnsasesss 1816

MeMory OFQaNiZAtlonsooeee eee eeseeceeuneeesnseeeeneses su sunsisettssiesesesestssassecestsssasessunesens 1846
Management of the re-mapping tablescece eeeeects ees 1846 ==

5.2.2 Free List BloCkccccsscssssecssssessissscsssssesessussessesesssssessisssssasetesisetiteseestsospse208
5.2.3 De-allocatte BlOCK ooo ccccccsccccececesussesssuesevssustssvisesussisussevssuivssissevisisvessisestssvivisisesiss 2048

___ PIKEL KILL MASK oo eeeccseseeeeeteereseemesseserteseeseneersnpenees Bl 2S

 MULTIPASS VERTEX SHADERS (HOS

9. REGISTER FILE ALLOCATION... ses =
10. FETCH ARBITRATION. ..cccscecssnensnecsenunmenneccmuauunsuasuanuunencuececwuuasaeasimuuuuneyeeueuaueaeyeeacauuasass 2826
iL. ALU ARBITRATION......
12. HANDLING STALLS.....

THE OUTPUT FILE...
LD FORMAT on cceceoceccscceeonesssneeounenns sees

. interpolation of constant attributes oooeee eee esas eeee tees ttetesniuensausneiegensineinetenss
i6. THE PARAMETER CACHE.cecceccccccscensscescsnnnsescsnnnnnencesnnnusunnesensunnessntsssnnsseuncestersunnnstss 3028
17. VERTEX POSITION EXPORTING............

. EXPORTING ARBITRATION.....
19. EXPORT TYPES... ccccccceessscceee

20. SPECIAL INTERPOLATION MODES a ecccccseccccecescesereesessseceeeereseseeeeueeeceseeeuenssessueenenenens 3i2e

Evhibit 2021. docR400_Sequencar.dos 64782 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** senaisisyPMAEHOGIO22TBM05/0104:882

13. CONTENT OF THE RESERVATION STATION FIFOS.. .

AMD1044_0256991

ATI Ex. 2106

IPR2023-00922

Page 80 of 223

ATI Ex. 2106
IPR2023-00922
Page 81 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

' » 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 3 of 48
20.1 Real TIME COMMANGS oeeee cece eee eee cttbte btn etetbbeetiittttttittpitibnnenuneteeteteestes 3128
20.2 Sprites/ XY screen coordinates/ FB information... 3230
20.3 Auto generated COUNTESS ooneeeee eee eteubb tibet tibiitintutsiiiitesiuagenunnennegenis 3239

ZO 31 Vertex Sars eeeeee eee eee cate eee cess eee eta ea eesupsensasesecpeueaseseyusesisnines 3239

ZO3.2 Preah Shaders.cecece ccc cesses csesveseesssseeseseesessessusssisusetetuetestpstesesestuseussnestises 3230
21. STATE MANAGEMENT............
21.
22.
22.
BS. REGISTERS. ooo eeceecccceeeeeeneceeneeeeeeessssnnnrnrstenannnnnueessnnnnnanstsusnennnnnsnssaaaunnessssenenerncessnnerrnn ines 33at
23.1 COMO cece eee eee ee eee esse anes tee tet et tt tebe subeteseeetustteessetststtneteeteessetnensetiitttttettttstttetteeeteess 3334
23.2 Context. 3432
24. DEBUG REGISTERS.
24) Context... 3583

25.INTERFACESouncecececccscccseeecceceeseeeecseseeeeectaseeaeenesespenesesuresuneenenniteennrenunnnenseS833
251 External Interfaces...“

25.1.1 SC to SQ: lJ Control bus.

28.1.2 SQ to SP: [nterpolator DUS occcccececesescesuecssusussusssssssvssvesessesassanesssatnavesususis 3634

25.1.3 SQ to SP: GPR Input Mux select occ cece ceccseecesvscnesssasevvevstusesteventitsaveninerns 3634

25.1.4 SQio SP: Parameter Cache Read control bus... 3738

25.1.5 SQ to SX: Parameter Cache Mux control Bus oo. csseeesssvsesvovsscsssvsnssevsns 3735

25.1.6 SQ to SP: Staging Register Data o.oo vsescsesssvesusvsesavsvsvasanvsssavsvesnvssunsnvivesues 3735

25.1.7 PA to SQ: Vertex Interface oie ccc ccessso ses senvsvssnevssunnnvivytustasunvivsssssrsanensisunsoisinnses 3735

25.1.8 SQ to CP: State reportcece eevee epee vesa eae vscunsepstapsptutantitsepisstuagetisinestnisatens 4139

ZS 19 SOQ to SX: Control DUSccccree es eees eevee vesensecsestespesertesesttsteapersinsermerenrens 4139

251.10 SX to SQ: Output file COMEOL ccc ccs cesses sesssensecvsvssanvevssvsesvannnvssanvivivensesunnnssverises 4139

QS LLL SQ to TP: Comtrol bus occ cccsccesesssscsuecoscssansavenessssasasvavssssasunsavsssupissunvisnuasssnnvsss 4139

2S 112 TP to SQ: Texture Stallocc cecccc es ceeeescs sas saeeeecsssasassatssstasnnpntsisusisnunasssuntseaisnssss 4240

25. 1.13 SQ to SP: Texture Stalloccsce ee ees caessesne css uaenasassssaeutunpatsisasitninitsseneseitanisss 4240

25.1.14 SQ to SP: GPR and Parameter cache COMtOL ccc cess eee escae teen ees cer geaesnee ness 4249

ZS VAS SQ to SPx: INStructhons oocece es ceee ee cescesenverecussesossnysspevsantetviveverenseversersisssaes 4344

25.1.16 SP to SQ: Constant address IOooo cvcescsessvsussasvsusecsvsvesunersanvivsssuseunensatenvess 4444

251.17 80 to SPx constant broadcast, 4544

2S1B SPO to SQ: Kill vector lodocc eee ec cesses esse vasa epaessstasuneatsijatitutunsssantaestanisss 4542

251,19 SQ to CP: RBBM DUS ono ccccce cc ccccecescessusescutssusevesssessessvesestusseisusuisusssnsnivisusesss 4542

251.20 CP to SQ: RBBM BUS occcccc cc ceccecussscescssusesscueustusessusssutussesssesuiisusssatiseesusssss 4542
26. EXAMPLES OF PROGRAM EXECUTIONS.ccccccccnceeecceccecscreceeesesesenennessnnunnnneeneeees 4542

LL Sequencer Control of a Vector of VerticeS neceee cece cepeeeecsepeescnesss 45AZ

Exhibit 2021 docR40G_Sequencerdee 64782 Bytas*** © AT] Confidential. Reference Copyright Notice on Cover Page © *+*PRAe/06(04 0227RMA2/06/4104:582M

AMD1044_0256992

ATI Ex. 2106

IPR2023-00922

Page 81 of 223

ATI Ex. 2106
IPR2023-00922
Page 82 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201514. 4of 48AeA

OPEN ISSUES

— Sentral-Graph.
INTERPOLATED DATA.BUS ciciinninniinnnesimnrnniT

INSTRUCTION STOREui.

fe

S.22-—-—-Free-ListBloc.
5.2,3------De-allosateBlock.

 Register-file-indexing...
6.6 Predicated Instruction support for Texture ClAUSESoccccce cee eeeeeeeeeesoeeeneesoeeseaeenesvnesevervanisasaenrnrssaeenes 23
6) Debuggingthe-Shaderect

64AMethed-+:-Debugging-registers

10.FETCH ARBITRATION.;
11.ALU ARBITRATION...

VERTEX POSITION-EXPORTIN
18. EXPORTING ARBITRATION...

2 ne-LO-COFAIABrrcreeneenereneres
20,2 Sprites/ XY screen coordinates/ F

-_-~iito-generated-counters.
 information .

‘

REGISTERS...
——Coniral..

 DEBUG REGISTER
24,4-—-—-Gonterxtesr

Evhibit 2021 docR400_Sequencar.dos 64782 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMEYOGO1 O227RMBOG04:88BM :

AMD1044_0256993

ATI Ex. 2106

IPR2023-00922

Page 82 of 223

ATI Ex. 2106
IPR2023-00922
Page 83 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXKX-REVA 5 of 48Pe

Conirol_bus-.. 8C-4o-S8Q+1

npullViuneelect.. iGE-40-S. PGP. FR

8G to SP: StagingRegisterData.

BGO. CP:State report...
-- 8G)o-S.%:- Contrel-bus...
>%-£0-SG)-Outpute-cortrol

..SQ toSP:-Texturestall...

 25.4,15 SG tO SPR: INSHUCHONS ooceceete e eee enneerseeenneeseeesessapnaseeetaeetaepsvaesvaeaeveseeenayene

Boe. SPx: censtanl-breadesst
-SPO41oSQ-Kill-vectorload.

OPto SO:RBBMbus...

~-Batea-Flew-gragh.

-INTERPOLATED-DO&TA BUS...
INSTRUCTION STORE wv vccsecves

&,2.Managernent-oftheremaping-tabl Ad

 LOOPINGAND-BRANCHES
-The-cantralling-state...-

Data-dependanl-predicaleinsinictions.
HWDetection of PVPS ..

Predicated InstructionsupportforTextureclauses.

POE KlikMAG Bo vccveccissevieeevicnsvaesnerraneeseries
MULTIPASSVERTEX SHADERS (HOS).

AdARBITRATION
HANDLINGSTALLS-.;

Exhibit 2021 docR40C_Sequencerdec 64782 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © *** pagans 19.5PRM IBOGO4 OF27RAMOS04:58PM

AMD1044_0256994

ATI Ex. 2106

IPR2023-00922

Page 83 of 223

ATI Ex. 2106
IPR2023-00922
Page 84 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 201544 6 of 48ot

EXPORTING ARBITRATION...
EXPORT-TYPES

VertexShading

SPECIAL INTERPOLATION MODES.
Realtime command$.vscssx
Sprites <¥screen coordinates/ FB information.
-Austo-generaied-counters.

INTERFACES.
External interfaces.Lng «

3C1oSQ--1-Controal-bu
$010 -3C:Verex/Pixel shadersynchronizationbus...

-$P+4oS%;- Parameter-data..,
$*-to-Imerpelaters:Parameter Cach:

SP-4o-SX- Pixel/Vartaxwriteto-SX
SQ:H4o SxCentre| bus.

Evhibit 2021 docR400_Sequencar.dos 64782 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMEYOGO1 O227RMBOG04:88BM

AMD1044_0256995

ATI Ex. 2106

IPR2023-00922

Page 84 of 223

ATI Ex. 2106
IPR2023-00922
Page 85 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 7 of 48i: ee H
Revision Changes:
Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre) Added timing diagrams (Vic)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev0.7 (Laurent Lefebvre)
Date : October 5, 2001

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registersregisters. |

Rev 1.0 (Laurent Lefebvre) Refined interfaces to RB. Added—state =
Date : October 19, 2001 regislersregisters. |.
Rev 1.1 (Laurent Lefebvre) Added SEQ-—-SPO interfaces. Changed delta
Date : October 26, 2001 precision. Changed VGT—-SPO0interface. Debug

Methods added.
Interfaces greatly refined. Cleaned up the spec.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.2 (Laurent Lefebvre)
Date . November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—-SQ interface. Added content on constant
management. Updated ragistersGFRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
consiantmanagement. AddedPA
synchronization fields and explanation.

Rev 15 (Laurent Lefebvre)
Date : December 17, 2001SReeaet

Exhibit 2021 docR400_Sequencerdoe 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ¥** jonas 12aPRs2/0604 02-27-OR 4OBAG4:68PM.

AMD1044_0256996

ATI Ex. 2106

IPR2023-00922

Page 85 of 223

ATI Ex. 2106
IPR2023-00922
Page 86 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 24 September, 2001 4 September, 207574 8 of 48Ed ES

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and ail eight
fetch stations to choose a fetch clause to execuie. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0256997

ATI Ex. 2106

IPR2023-00922

Page 86 of 223

ATI Ex. 2106
IPR2023-00922
Page 87 of 223

WerestrotOrsOeNeZECOTOONTHN2577SUTOGO©26€418005UOsoNONWHUAdODsDUsIBJOY"JENUSPIUOD[LY@xx8VGza1v9—sopuessenbes“gorseTAITNS|-7—_dOPEO]LUEGSU")TA—)—
poKOxi—4ODcnYOYXLSN

/WLCSLINMXL/_
_|soregO/od08|FO/OdSe:7oe=|euntoa-|CaqYOLSDwave|dSdsdSdsawpa

—4_. a_~aaLSNiay>>»|3YOLSLSNIYSNasiniYaniaa.LNiow"TOMLNOOTr”1hEaNgqfiHVESSONDwoapeay4o~snico9coLoosSPLSAYNOZToMINOD—TOMLNOG

WelNODxaLISA

eee7

SiSNOS—rennEREPEGLOdsequelesLo0g‘IequaydespzaLvd1103aLvdSLVYNISIO

Tris!

WAREXXXXXO-NADWON(AdaLNSWNOOd

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0256998

ATI Ex. 2106

IPR2023-00922

Page 87of 223

ATI Ex. 2106
IPR2023-00922
Page 88 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 207574 10 of 48A

1.1 Top Level Block Diagram

vertox/pixel vector arbitrator

Possible delay for available GPR’s «

Tro
‘oxture clause 0

IEG eservation slabon
ALI clanse 0 <@-——teservation station ay
| -————B, FIFO Bs‘el ‘exture clause 1
ty eservationstation
Alli clanse 1 extire arbitrator

reservationstation Aooxture arbitrator | > ‘exture clause 2cc — eservationstation
ffFPgg-______QA clanse 2

reservation station
TIPO pLiPexture clause 3

eservationstation

 I FIFO

hag —ALU clause 3
Feservaiion station TiO
| Phoxture clause 4= reservationstationI FIFO

bag —ALU clause 4reservationstation. ey
i MPC ssTexture clause 5

eservation station
Lg——_____[FIFOATL clanse 4 cence

reservation station a ———FOvtec clause 6eservation station
i ‘fg FIFO. <<

ag —Aliclnse6 PL.—reservation station

pe, FIFO pel — po‘exture clause 7
eservation station

| PEE|g

Lg—ALU clause 7 it-reservation station!

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
| the registersGGPRs to store the interpolated values and ternporaries. Following this, the barycentric coordinates (and

 Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PREOGOt OneeRMAOSL04:88PM SSeS

AMD1044_0256999

ATI Ex. 2106

IPR2023-00922

Page 88 of 223

ATI Ex. 2106
IPR2023-00922
Page 89 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 11 of 48Pathsoe

xv screen position if needed) are sent to the interpolator bulfers-which are-geing-lewill use these—barycentis
soordinatesthemto interpolate the parameters and place the interpolated-valueresults into the GPRs. Then, the input
state machine stacks the packet in the first FIFO.

On receipt of a command, the level O fetch machine issues a texture-fetch request to the TP_and corresponding
register-GPR address for the fetch address (ta). A small command (tcmd)is passed to the fetch system identifying the
current level number (0) as well as the register GPRwrite address for the fetch return data. One fetch request is sent
every 4 clocks causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the
packet is put in FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU +0that the data is ready to be processed.

On receipt of a command, the level OQ ALU machine first decrements the input FIFO (1counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU slate machine generates 3 source
addresses, one destination address (¢-eyclee-ater and an instruction. Once the last instruction has been issued, the
packetis put into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause numberas the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

{ISSUE: Howdo we handle parameter cache pointers (computed, semi-computed or not computed)7}

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clausesieve! process in the same way until the packet finally reaches the last ALU machine (7).

Only tve-one pair of interleaved ALU state machines may have access to the register file address bus or the
instruction decode bus at one time. Similarly, only one fetch state machine may have access to the register file
address bus at one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for
the fetch state machines). The arbiters always favor the higher number state machines, preventing a bunch ofhalf
finished jobs from clogging up the registerfiles.

Exhibit 2071 docR4G0_Sequencerdec 64782 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMEYOGO1 O227RMBOG04:88BM

AMD1044_0257000

ATI Ex. 2106

IPR2023-00922

Page 89 of 223

ATI Ex. 2106
IPR2023-00922
Page 90 of 223

scalar inputoutput

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 207574 12 0f 48i Pd

| 1.2 Data Flow graph

lu
poses we

g| is
g 2 oe a
eB) ish
- Register File i |pp

(scarnaaeuleu’y —yac cH |
pipeline stage | : Ldirerequ, >a ! | \

§ iEeI2@

= _ Register File |
{scalar inputfoutout . SoMAC | text) | reque ~

pipeline stage | : Y
#
© i
3

« 8 jaS| ©
o Q]2 wa
B _ Register File Fs |
fh 3

~ uest_ ig
a scalar inout/cutput Ev

pipeline stage 3~ zi
my

1 ior

S| 15Sle2) B !
eneekh

Co) texture rel Bet \\ |a |
||

Exhibit 2021 docR400_Sequencer.dec

to Primitive Assembly Unit or RenderBackend

 ao

a

= cS Ea

textureadcress
(

PRA206/01 O227BM 4206/01OF: 68PM4722 Bytaere* © ATI Confidential. Reference Copyright Notice on Cover Page © *** poss i257"

AMD1044_0257001

ATI Ex. 2106

IPR2023-00922

Page 90 of 223

ATI Ex. 2106
IPR2023-00922
Page 91 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 Septernber, 201544 GEN-CXXXXKX-REVA 13 of 48fant Out
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

be

Ciause # + Rady
iS CST :

WrAddr | SEQ WrAddr|

oMD | | | “i| | |cst
| i

Phase| | Bo
emp CS8Tcstzcstipx “ C Wrvec |

RdAddr | | WrScal Wwraddr

v yw y _ ‘ ¢ i $ ‘ _ Y

|

FETCH SPO Re OF

WrAddr ||
| |
|||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the InterpolatedV/ector

control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257002

ATI Ex. 2106

IPR2023-00922

Page 91 of 223

ATI Ex. 2106
IPR2023-00922
Page 92 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
 | 24 September, 2001 4 September, 201544 | 14 0f 48=~ Pt i

RE |||

To RB || AG Al

=

lo
>ee cae eo ae
a

se bus Oblis butfer (ping-pong buffer}
{26 bits * 2 (10) + 8 bits * 6 (delta [Js)+4 ex) .

bits*6)* 16 (quads) * 2 (double-buffered) 0 Al Aa BO4096 bits

32x 128
Bt co ct C2

nnn
Ys buffer (ping-pong buffer}

24 bits * 16 quads *2 C3 Ce cS Do
+ 766 bits
| 32x24 {—

4 ot b2 E0 i EI
/ ' of D2 EO EIT T TI 1 1

! i ! i 1 | !

 : . 1 i \
INTERPOLATORS ' i t !

512

Exhibit 2021 dec400_Sequencerdec 64782 Bytest** © ATI Confidential. Reference Copyright Notice on Cover Page © *** gosisner >PMI206/01 D2EPMA264468BM

AMD1044_0257003

ATI Ex. 2106

IPR2023-00922

Page 92 of 223

ATI Ex. 2106
IPR2023-00922
Page 93 of 223

WerGROTOROEERETERTTORIC150)SUP.@OBE,|19A0DUOSOON1YBUAdOysoUsIAJON“FENUSPIUOD[Ly@xxSdZaLv0—sopuesuenbes“oorysoPTAIZINS
e9|ly|Le-0glbr|-82ANALAas|er|22-9S}-0F|-7zAIATAgs|6e|€z-zg|-96|-0z

 ETLISZL]LZL)

Sy10SLWAREXXXXXO-NADdovdWON(AdaLNSWNOOd

 PEGLOdsequelesaLvd1103

Lo0g‘IequaydespzaLvdSLVYNISIO TWIRELVANeaddoAATLOaLOdd

AMD1044_0257004

ATI Ex. 2106

IPR2023-00922

Page 93 of 223

ATI Ex. 2106
IPR2023-00922
Page 94 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 16 of 48ry Hes

Above is an example of a tile we-the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and lJ buffers. the read side is how the data is passed to ne GPRs. The IJ information is packed in the IJ
buffer 24 quads at a time_or two clocks. The sequencerallows at any given time as many as four quadsto interpolate
a parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the
ragieter-GPRs to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the INST_DATA, INST_INDEX_PORTcontrol registeraregister. The
INST_INDEX_PORTis auto-incremented on both reads and writes to the INST_DATAregister.
The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INST_INDEX_PORTregister contains
the packet type for the sequencer to know where it must wrap around. The wrap around points are arbitrary and they
are specified in the VS_BASE and PIX_BASE regietereregisters.

Fer the Real time commands the story is quite the same but for some small differences. The CP will use the
INST_INDEX_PORT_RT and INST_DATA_RTregister pair instead of the regular ones and there are no wrap around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257005

ATI Ex. 2106

IPR2023-00922

Page 94 of 223

ATI Ex. 2106
IPR2023-00922
Page 95 of 223

JHeISepodSelMdDeeeA, :foUIsepoossamJD0dD”QA¥8P09Sd
WerGROTOROEERETERTTORIC150)SUP.@OBE,|19A0DUOSOON1YBUAdOysoUsIAJON“FENUSPIUOD[Ly@xxSdZaLv0—sopuesuenbes“oorysoPTAIZINSG60V

1o607

98PpoDSd

38p0dSd@8p09Sd7{foapo(—Y8podSd2809ouSunnooxooN 2PodSASarT ~~asveYaVHSTaxidUeIS0]S18yMSMOUY“apoosu}Buynoexs
PRIS0}SISASMOUY

||yeousnbesossysoig eee

ee=Gnssyeucoiddefod9P9dSdJaauenbasossysoigee0}sesseippe[oe-qngeyeudoidde€@8PoDSAo}sesseippe

38poDSA

@8podSA

VW8PODSA

imASWMACVWHSXALHSA¥8P09DSA‘eapodpoleus3po9paleusSaSVaUa0vVHSXELUSAVea)poured|BuryajBuis-|SCOWBuryjend-0SGOW

 foroWtorAIOWSIAUOIJONIJSU]JOSMBI/AS,dDOOPY
LOOZ/PLLL‘pezepdn

TTrennERESy0LLWAREXXXXXO-NADPEGLOdsequelesLo0g‘IequaydespzdovdANN(AdaLNSINNOOdsalvaLidsaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257006

ATI Ex. 2106

IPR2023-00922

Page 95 of 223

ATI Ex. 2106
IPR2023-00922
Page 96 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 207574 18 0f 48i Ae

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the remasingre-mapping table is 128 lines (each line addresses 4 constants). The write granularity is
4 constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kept in a similar memory. The size of this memory is 192x128. The memory thus holds 128
texture states (192 bits per state). The logical size expased-exposes 32 different states total, which are going to be
shared between the pixel and the vertex shader. The size of the remapingre-mapping table to for the texture state
memory is 16 lines (each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture
state lines (or 334 bits). The driver sends 512 bits but the CP ignores the top 128bits. It thus takes 12 clocks to write
the two texture states.

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 286320*32 because it must hold 8 copies of the 32
dwords of control flow constants and the loop construct constants must be aliqned.

The CPis loading the constant store using the CONST_DATA and CONST_ADDR registersregisters. It does so by
writing to the CONST_ADDRregister the logical address for the constant block it wants to update and then writes 16
times to the CONST_DATA register. The CONST_ADDRis auto-incremented on both reacs and writes to the
CONST_DATAregister.

5.2 Managementof the remapingre-mapping tables
The sequencer is responsible to manage two remasingre-mapping tables (one for the constant store and one for the
texture state). On a state change (by the driver), the sequencerwill broadside copy the contents of ifs remapingre-
mapping tables to a new one. We have 8 different semapingre-mapping tables we can use concurrently. Mora-details

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PREOGOt OneeRMAOSL04:88PM SSeS

AMD1044_0257007

ATI Ex. 2106

IPR2023-00922

Page 96 of 223

ATI Ex. 2106
IPR2023-00922
Page 97 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CARXAKA-REVA 19 of 484 rma

. Free Lis
shits———y|_ . Number of ertries1 equals Max Number of .

[4 Physical Blocks. All |
NTFTassie | Renaming TableWhiter ean never pass each _. | Coritext O => N

Whena Logical other CurrentLast iAddressis written Context '

that has been
written before,

store the physicaladdress that was

 «TF

allocated by that So ptrto first physteat
Logical Address ae. ackiress thatis

Lo scheduled to be de.Se allocated but notyee yet de-allocate
7 Advanced each time

a context is freed by

Contexd 0(8rows of 16 - & bit
physical => 128 entries copy insight docks}

(8 rows of 15-8
bit physical =>

128 entries copy
in eight clocks) |Saar

|
|

| Logical Address
Context 1 | = & Context

Context N | L-» Physicai

Ce the numberof by Addressa physical address !
es < NTA displacedbythat J_ ptr to physical Context| address that will

—fp be used next ifthe init count fs
at mneaxirnurit

Address number of
te Allocate physicaladdress

Globai Register >
Data Bus Staging Dat

ing Date
Bute . >

Constants ey !, ree |
tocation <j i: list | |
avaliable {pass Phys | _—_______» Staging Write Adar!

(eas Phys |. r "
WRTR Addressif | are |

r——>} Context |Dirty |

hysical Dealloc |
aires Counts |
acres rextse physical |
Sehedule address !

‘e-alloc ready
oe oc for allocate 5Logical address | | eg4 | Constant

On the | RequestGlbRegBus A _ A '
whenIsb are zero This | |first word of write - Reset|Context i o

Renaming Table Dirty Dirk | |
for 1 Context ‘er - ' a L |
Current/Last Le ical Leaical | | Context &

: \ cal i '

Physical pont | maa i _| bogical |Address Accress ress Address(Only Of setper aon"
: de- | don't |

Logical allocate|allocate —_————————*Address “
if set} | or de-| allocate}

Copy Last held above to
Current Context on recieptof Set Corstant for a

-—_________ newcontext (Hide loading
behind Set State load - 16 clocks)
all other Set States just write one

ertry to current state.

Exhibit 2021 docR400_Sequencerdee 64782 Bytas*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** sensi 12.

Renamingtable
N-Contexte

PMEYOGO1 O227RMBOG04:88BM

AMD1044_0257008

ATI Ex. 2106

IPR2023-00922

Page 97 of 223

ATI Ex. 2106
IPR2023-00922
Page 98 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 8 | 24 September, 2001 4 September, 207574 20 of 48

5.2.1Dirtybits B : SSeS a eee
Twe sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero when ever a new context is written and set for

require de-allocation of whatever address stored in the renaming table. Ifitis set and the context dirty is not set, then
the physical address store needs to be de-allocaied and a new physical address is necessary to store the incomin
dala, fthey are both sel, then the data will be writien Into the physical address held in the renaming for the current
logical address, No de-allocation or allocalion takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical mernory and thus hang because a context will not fit for

rendering to start and thus free up space. pe Goes oe a
. SS 4 Formatted: Bullets and Numbering

5.2.2 Free List Block ee
A free list block that would consist of a counter (called the [FC or Initial Free Counter) that would resetto zero and = a oe a :
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter,
Storage of a free list big enough to store all physical block addresses,
Maintain three pointers for the free list that are reset to zero. The first one we will call NTF (Next To Free). This

free more physical memory locations than we have. Once recording address the pointer will be incremented to walk
the free list like a ring.
The second pointer will be called YTF (Yet To Free). The YTF pointer will be advanced by the number of address
chunks de-allocates when _a context finishes. The address between the YTF and NTF cannot be reused because
they are still inuse, But as soon as the context using then is dismissed the YTF will be advanced.
The third pointer will be called NTA (Next Te Allocate). This pointer will oint to the next address that can
be used for allocation as long as the NTA does not equal the YTF and the IFC Is at ils maximum count.

5.2.3 De-allocate Block

This block will maintain a freephysicaladdress bleck countforeach context. Whileincurrent context, acountshall
be maintained specifying how many blocks were written inte the free list at the NTF pointer. This count will be reset
upon reset or when this context is active on the back and different than the previous context, it is actually a count of
blocks in the previous context that will no longer be used. This count will be used to advance the NTF pointer to
rnake available the set of physical blocks freed when the previous context was done, This allows the discard or de-

allocation of any numberof blocks In one clock, Les

5.2.4 Operation of Incremental model
=| Formatted: Bullets and Numbering

The basic operation of the model would start with the NTF, YTF, NTA pointers in the freelist set to zero and the free
list counter is set to zero, Also all the dirty bits and the previous context will be initialized to zero, When the first set
constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list counter
because its nol atthe max value. The data will be written into physical address zero, Both the additional copyof the
renaming table and the coniext zeros of the big renaming lable will be uodaled for the logical address thal was written
by set start with physical address of 0. This process will be repeated for any logical address that are not dirty until

the conlext changes, [fa Jogical address is hit Inet has ils dirty bits sel while in the same context, bolh cirty bis
would be set, so the new data will be over-writien to the last physical address assigned for this logical addregs.
When_a set constant comes with a different than last context, the previous context stored in the additional renaming
table will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy _and if the reset dirly was set, the physical
adcress it replaced in the renaming table would be entered at the NTF pointer location on the free list and the NTF
willbe incremented, The de-allocaten counter for ihe previous context (zero) wil be incremented. This as sel siaies

come in for this context one of the following will hapnen: ees : & : SESS oe
updated. Aline will be allocated of the free-list counter ore~ = =

— re (Formatted: Bullets

1.) No dirty bits are set for the logical address bein
the free list at NTA pointer If NTA|= to YTF .

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PREOGOt OneeRMAOSL04:88PM SSeS

AMD1044_0257009

ATI Ex. 2106

IPR2023-00922

Page 98 of 223

ATI Ex. 2106
IPR2023-00922
Page 99 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | 21 of4850
2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the ohysical address in the

renaming lable is pul on the free list at NTF and if is incrernented along with the de-allocate counter for ihe
last context,

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will centinue as long as set states arrive. This block will provide back pressure te the CP when ever he

contexts of constants in use and prevent more than max constants contexis from being sent,
Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thal left. (nil le zero) Jf they differ than the older coniext will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the YTF pointer. This will make all the physical addresses used by this context available to the NTA allocate
pointer for future allocation,

also allows the second context to be represented as the first set plus some new additional data by just storing the
delia’s, it allows memory to be efficiently used and when the constants updates are email it can store multiple
context, However, ifthe updates are large, less contexts will be stored and potentially performance will be degraded,
Although it will still perform as well as a ring could in this cage,

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
between the time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X.R2.X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.*
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.*]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

5.4The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits. woes

5.55.4 Real Time Commands

The real time commands constants are written by the CP using the CONST_DATA_RT and CONST_ADDR_RT
registersGPRs. It works is the same way than when dealing with regquiar constant loads BUTin this case the CP is
not sending a logical address but rather a physical address and the reads are not passing thru the remasingre-
mapping table but are directly read from the memory. The boundary between the two zones is defined by the
CONST_EO_RTcontrol register.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257010

ATI Ex. 2106

IPR2023-00922

Page 99 of 223

ATI Ex. 2106
IPR2023-00922

Page 100 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2075474 22 of 48Jao SU ES

CONST_EO_RT

RT SECTON
(ReadsWrites are direct)

te—

REGULAR SECTION
(Reads/\Writes are passing

thru a remaping table)

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[{256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

Wehave a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This stete is available on a per shader program basis.

6.2 The Control Flow Program
Examoles of control low programs are located in ihe R400 programming guide document,

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257011

ATI Ex. 2106

IPR2023-00922

Page 100 of 223

ATI Ex. 2106
IPR2023-00922

Page 101 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201814 GEN-CXRXKK-REVA 23 of 48

Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] Hf eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro] program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified numberofinstructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberofinstructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified nurnberofinstructions.
Call jumps to an address and pushesthe IP counter on the stack. On the return instruction, the IP is popped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an addressis the condition is not met.
Conditional_execute_Predicates executes a block of instructionsif all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clauseif the condition is met.
Conditional_jurnps jumps to an addressif the condition is met.
NOPis a reguiar NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsince there are two contro! flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses. oo

Alsoif the jump is logically bigger than pshader_cnti_size (or vshader_cntl_size) we break the program (clause) and =~
set the debug regisiersregisters. If an execute or conditional_execute is lower than cntl_size or bigger than size we
also break the program (clause) and set the debug registersregisters.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

Note that whenevera field is marked as RESERVED,it is assumed thatall the bits of the field are cleared (0).

; Execute |

47 46... 42 | 41... 24 23...12 [11.0 oe
Addressing | 00001 | RESERVED Instruction count | Exec Address |.

Execute up to 4k instructions at the specified address in the instruction memory.
NOP

47 [46... 42 | 41... 0 [oe

Exhibit 2071 docR4G0_Sequencerdec 64782 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMEYOGO1 O227RMBOG04:88BM

AMD1044_0257012

ATI Ex. 2106

IPR2023-00922

Page 101 of 223

ATI Ex. 2106
IPR2023-00922

Page 102 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE | 24 September, 2001 4 September, 201514. 24 of 48_ a ~ re. AG sexes

| Addressing | 00010 | RESERVED

This is a regular NOP.

i Conditioanal_Execute |

47 46... 42 } 41 40... 33 32 31... 24 23... 12 —14...0 ||I

 | Addressing|00011 | RESERVED|Boolean|Condition | RESERVED instruction count | Exec Address| address | |

If the specified bocleanSoolean (6 bits can address 256 booleansBooleans) meets the specified condition then
execute the specified instructions (up to 4k instructions)

I. Conditionnal_Execute_Predicates
47 | 46

Addressing 6016

ts
So| RESERVED Predicate Condition | RESERVED|Instruction count | Exec Address

| || vector

Check the AND/OR of all current predicate bits. if AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid.

Loop Start. Compares the loop sauntiterator with the end value. If loop condition not met jump to the address.
Forward jump only. Also computes the index value.value. The loop id must match between the start io end, and also
indicates which control flow constants should _be used with the loop.

 Loop_End

47 (46... 42 | 41.7? 16... 12 11...0
001114 RESERVED loop ID | startaddress |

Addressing |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met
continue, else, encjumps BACK erlte the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Pops the topmost address from the stack and jumpsto that address. If nothing is on the stack, the program will just
continue to the next instruction.

47 [46... 42 41 40... 33 | 32 | 31 30... 12 11...0

010710 | RESERVED | Boolean | Condition | FVWV only | RESERVED Jump address
Addressing | | address | |

Evhibit 2021 docR400_Sequencar.dos 64782 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMEYOGO1 O227RMBOG04:88BM

|

2| 4 34... 33 32 [31..24 | 23..12 | 11...0 F
| ||

- Loop_Start / [ee

47 [48 42 44...17 16... 12 W..00 060]00101 RESERVED loop ID | Jump address |
Addressing | |

Call : =
47 |46... 42 | 41...12 _ | 11...0 pee

01000 [RESERVED | Jump address |Addressing I:

| Jumps to the specified address and pushesthe #@-controlflow pregramcounter on the stack

Return

47 | 46... 42 | 41....0

01001 | RESERVED
Addressing | |

Conditionnal Jump be .

AMD1044_0257013

ATI Ex. 2106

IPR2023-00922

Page 102 of 223

ATI Ex. 2106
IPR2023-00922

Page 103 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXKX-REVA 25 of 48a SE

If condition met, jurnps to the address. FORVVARD jumponly allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

Conditional End_of_ Clause

47 | 46... 42 [_ 41 40... 33 5 32 31.0o1011 RESERVED|Boolean Condition RESERVED
Addressing address
This is an optimization in the case of very short shaders (where the control flow instruction can't be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of Clause

47 (46...42700 41....0

Addressing |O1071_| eoORESERVED
Marks the end of a clause.

To preventinfinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug registereGPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is 'exported' to the sequencer.
PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_#-similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#— SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interieave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which precicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the resull of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PV.PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257014

ATI Ex. 2106

IPR2023-00922

Page 103 of 223

ATI Ex. 2106
IPR2023-00922

Page 104 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 207574 25 of 48* ra

| The sequencerwill also have to insert NOPs ‘between PRED_SET and MOVAinstructions and their uses.
6.5 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 4 ‘relative register’
4 0 ‘previous vector’
4 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

| Index = Loop_seurteriterator* Loop_Heraterstep + Loop_inistart.

The index is going to return0if it is out of the range. We loop until loop iterator = Joop count. Loop step is a signed
yale (128... 127),

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (hus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we haveto do the texture fetches for the whale vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registersregisters
Current plans are to expose 2 debugging, or error notification, registereregisters:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
- count overflow
- jump error

relative jump address > size of the cantrol flow program
relative jump address > length of the shader program

- constant overflow
- register overflow
- call stack

call with stackfull
return with stack emply

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257015

ATI Ex. 2106

IPR2023-00922

Page 104 of 223

ATI Ex. 2106
IPR2023-00922

Page 105 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXAXKX-REVA 27 of 48sce ud

If indexing outsice of the constant range, causing an overflowerror, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will nave a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (evenif they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allowthe shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEforpixels.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257016

ATI Ex. 2106

IPR2023-00922

Page 105 of 223

ATI Ex. 2106
IPR2023-00922

Page 106 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 207514 28 of 48cat fataulas

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos frorn 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbirerearbiters, one for the even clocks and one for the odd
clocks. For exaemple, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Odd sets
of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Aliso note that the interleaving also occurs across

clause boundaries,

Exhibit 2021 docR400_Sequencerdec 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** poss 1287PRA206/01 O22 7BM 4206/01OF: 68PM

AMD1044_0257017

ATI Ex. 2106

IPR2023-00922

Page 106 of 223

ATI Ex. 2106
IPR2023-00922

Page 107 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 201544 GEN-CXXAXX-REVA | 29 of 48fatanwal
12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to-selectirom selecting the last clause | oS
(this way nothing can exit the shaderpipe until there is place in the outputfile. If the packet is a vertex packet and the
position buffer is full (POS_FULL) then the sequencer also prevents a thread to-esterfrom entering the exporting |
clause (37). The sequencerwill set the OUT_FILE_FULL signal n clocks before the outputfile is actually full and thus
the ALU arbiter will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs coniain the state of the vector of pixels and vertices. We have two sets of those: one for

pixels, and one. for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registersregisiers with write BW 512 bits/clock and read BW 256 bits/clock. The
staging registersregisters are 4x128 (and there are 16 of those on the whole chip).

5. |J Format

The IJ information sent by the PAis ofthis format on a per quad basis:

We have a vector of lJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(Q) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (7-I-J).

AOE = FO) — 70)

AOL = JO) — J(0)

AO2T = [(2) — 10) PO PA
AO2S = J(2)- J(0)

A037 = £3) - 1(0)

A037 = J(3)- J(0) p2 P3

PO=C +41(0)*(A-C)+J(0)*(B-C)

Pl= P0+A0U *(A-C)+A0L) *(B-C)

P2 = PO+A02T *(A—C) + A027 *(B-C)

P3 = P0+A03F *(A-C)+A03 *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257018

ATI Ex. 2106

IPR2023-00922

Page 107 of 223

ATI Ex. 2106
IPR2023-00922

Page 108 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 207574 30 of 48A

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF PO's [J : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 8°6 + 4*8 + 4*2 = 128

bey

to- enSight exponent value of 0. means number =0, exponentvalue-of | meane shift right GLAll numbers are kept
using the un-normalized floating point convention: if exponent is different than O the numberis normalized if net, then
the number is un-normalized. -This-means-thatiThe maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constantattributes
Becauseof the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that ifA= Band B=C and C =A, then PO0,1,2,3 =A. Since one or more of the IJ terms
may be zero, so we extendthis to:

if (A=B and B=G and C=A)
PO,1,2,3 = A;

else if (1 = 0) or (J = 0)) and
(J = 0) or (1-I-J = 0)) and
((1-J-1 = 0) or (7 = 0))) {

f@ = Of
PO=A;

else if(J ‘= 0) {
Po =B:

helse {
PO=C;

/irest of the quad interpolated normally
}
else
{

normal interpolation
}

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will makeit so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. it is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257019

ATI Ex. 2106

IPR2023-00922

Page 108 of 223

ATI Ex. 2106
IPR2023-00922

Page 109 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2004 4 September, 201544 GEN-CXXAXX-REVA | 31 of 48i dn fataue t

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

19.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 - 12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - sprite size export that goes with position export

(point_h,point_w,edgeflag misc)
63 - position

19.2 Pixel Shading
0 - Color for buffer 0 (primary)
4 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
47 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
42:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.
44:47 - Empty
48:59 -12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component)

20. Special Interpolation modes

20.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the

Exhibit 2021 docR400_Secuencer.dec
64782 Byos*** © AT Confidential. Reference Copyright Notice on Cover Page © ** jooiu5 2sPRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257020

ATI Ex. 2106

IPR2023-00922

Page 109 of 223

ATI Ex. 2106
IPR2023-00922

Page 110 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 207514 32 of 48 ae =

register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the realtime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loacied, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME.

20.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shaderusing the same control registereregisier. Here is a list of all the modes and howthey
interact together:

Gen_stis a bit taken from the interface between the SC and the SQ.This is the MSBofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_]0 disable, snd_xy enable, no gen_st— 10 = No modification
Param_Gen_|0 disable, snd_xy enable. gen_st — 10 = No modification
Param_Gen_|0 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — IO = garbage, garbage,s,t
Param_Gen_|0 enable, snd_xy enable, no gen_st — lO = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st — IO = screen x, screen y, s,t

20.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2™ pass.
The countis always generated in the same waybutit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. While there is only one
count broadcast to the registereGPRs, the LSB are hardwired to specific values making the index different for all
elements in the vector.

20.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

20.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEXis set, the data will be putin the x field of the on register (11.x).

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257021

ATI Ex. 2106

IPR2023-00922

Page 110 of 223

ATI Ex. 2106
IPR2023-00922

Page 111 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | 33 of 48I Ace

AUTO iINTERPOLATORSCOUNT

STGt | || I
|'

AUTO COUNT opeoco |

The Auto Count Value is
Mux broadcasi to all GPRs.Itis

/ loaded into a register wich has
its LSBs hardwired to the

GPR number (C thru 63). Then

| if GEN_INDEXis high, themux selects the auto-count

value and it is loaded inte the
GPRsto be either used te

retrieve data using the TP or
GPRO sent to the SX forthe RB to

| use it to write the data toi memory

|

21. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21.1 Parameter cache synchronization
of

ates 4 Formatted: Bullets and Numbering

ixels before the associated group of vertices has finished, the in order for the sequencer not te begin a grou
seguencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and ever

the count is greater than O before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive), Then the sequencer waits for the count to go to one and decrements it, The sequencer can then

issue the group of pixels to the internolators. Every lime ihe stale changes, the new slate counter is inilialized fo 0.

22. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the [J
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 20.2 for details on how to control the interpolation in this mode.

22.1 Vertex indexes imports
In order to import vertex indexes, we have 64x2x96 staging registersregisters. These are loaded one at a time by the | a
VGTblock. They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

23. RegistersKegisters

23.1 Control

REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257022

ATI Ex. 2106

IPR2023-00922

Page 111 of 223

ATI Ex. 2106
IPR2023-00922

Page 112 of 223

ORIGINATE DATE EDIT DATE
R400 Sequencer Specification PAGE 24 September, 2001 4 September, 2017574 34 of 48Jes.

Exhibit 2021 docR400_Sequencer.dec

REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_STORE_ALLOC
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION_INDE*
~PORTADOR

INSTRUCTION_DATA
CONSTANT_DATA
CONSTANT_ADDR

INSTRUCTION_INDE*
PORTADDR_RT

INSTRUCTION_DATA_RT

CONSTANT_DATA_RT

CONSTANT_ADDR_RT
 CONSTANT_EO_RT

EXPORT_LATE

3.2 Context

VS_FETCH_{0...7}
VS_ALU_{0...7}
PS_FETCH_{0...7}
PS_ALU_{0...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PS_CF_SIZE
PS_SIZE
VS_SIZE
PS_NUM_REG
VS_NUM_REG
PARAM_SHADE

PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MASK
VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
interleaved, separate
start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debug state register. Only allows one ALU program at a time to be executed (instead
of 2)

This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes)
This is where the CP puts the actual data going to the instruction memory
This is where the CP puts constant data (32 bits)
This is where the CP puts the logical constant address (9 bits)

This is where the CP puts the base address of the instruction writes and type for
Real Time (auto-incremented on reads/writes)
This is where the CP puts the actual data going to the instruction memory for
Reai Time
This is where the CP puts constant data for Real Time (2 bits)
This is where the CP puts the logical constant address for Real Time (G bits)
This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EO_RT). The remapingre-mapping table operates on the rest of the
memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

eight 8 bit pointers to the location where each clauses control program is locaied
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointerfor the pixel shader in the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader (# of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cntltinstructions)
size of the vertex shader (cntitinstructions)
numberof registereGPRs to allocate for pixel shader programs
numberof registersGPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Ooo : Normal mode
txxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.
which of the last 6 ALU clauses is exporting (multipass only)
0: position (1 vector}, 1: position @ vectors), 3:multipass

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6} OR
of exported vectors to memory per clause in multipass mode (per clause)

84782 Bytaere* © ATI Confidential. Reference Copyright Notice on Cover Page © * poosis i257)PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257023

ATI Ex. 2106

IPR2023-00922

Page 112 of 223

ATI Ex. 2106
IPR2023-00922

Page 113 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 Septernber, 2001 4 September, 201544 GEN-CXAXKAX-REVA 35 of 48_ oe

PARAM_GEN_!0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R1 for pixel shaders

and R3 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Tums on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

24. DEBUG registersRegisters

24.1 Context

DB_PROB_ADDR instruction address where thefirst problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_LINST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2
DB_CLAUSE
_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill

25. Interfaces

25.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

2 s 1 | «|= =o Formatted: Bullets and Numbering

,] S a4 Formatted: Bullets and Numberin25.4295. 1.1 SC to SQ: lJ Control bus “| cS es
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to |
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where —
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same :
renderstate.

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257024

ATI Ex. 2106

IPR2023-00922

Page 113 of 223

ATI Ex. 2106
IPR2023-00922

Page 114 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 207514 36 of 48a ct LE AL

| Name Direction Bits | Description
SC_S80Q_q_wr_mask | $C--SQ 4 _ Quad Write maskleft to right
S8C_8_lod_correct sC-50 24 | LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex | SC-3SQ [2 _ Provoking vertex for flat shading
SC_SQ_param_ptrO sC-8GQ 11 | P Store pointer for vertex 0
SC_SQ_param_ptr1 | 8C--8Q 1441. | P Store pointer for vertex 1
SC_SQ_param_ptr2 sc—SQ 11__| P Store pointer for vertex 2
8C_SQ_end_of_vect | $cC—-8Q 4 | End of the vector
SC_SQ_store_dealloc SC—SQO i | Deallocation token for the P Store

|| SC_SQ_state | SC-+SQ |3 | State/constant pointer (6°3+3)
SC_SQ_valid_ pixel sCc—SQ 16__| Valid bits for all pixels :
SC_SQ_nuilprim| 8C-8Q (1 _Null Primitive (for PC dealiocationpurposes)
$C_SQ_end_of_prim _SC—SQ uw | End Of the primitive
8C_S0_fbface 8C-8Q 41 | Front face = 1, back face =O
SC_SQ_send_xy | SC-SQ 4 | Sending XY information [XY information is going to be

; a |__| sent on the next clock] -
SC_SQ_prim_type SC—S8Q 3 |Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
‘their parameters from GEN_T and GEN_S

| | registersGPRs.| O60 : Normal
| O11 : Real Time
| 100: Line AA
| 101: Point AA
| 110: Sprite

8C_3Q_new_vector $C—8Q 4 This primitive comes from a new vector of vertices.
| | | Make sure that the corresponding vertex shader has
| | finished before starting the group of pixels.

SC_SQ_RTRn $Q—5C 41 _ Stalls the PA inn clocks
SC_SQ_RTS | 8C—S5Q 14 _SC ready to send data

23-1225.1.2 SQ to SP: interpolator bus

Name _ | Direction [Bits _ Description .
SQ_SPx_interp_prim_type SQ—SPx 3 Type of the primitive

| 000: Normal| O11: Real Time
| 100: Line AA
| 101: Point AA
_ 110: Sprite

SQ_SPx_interp_flat_vtx | $Q--SPx 12 | Provoking vertex for flat shading
SQ_SPx_inierp_flat_gouraud|SQ—SPx q | Flat or gouraud shading
SQ_SPx_interp_cyl_wrap $Q-3SPx 14 _ Wich parameter needs to be cylindrical wrapped
8Q_SPx_interp_ijline $Q—SPx 2 | Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap | SQ—SPx 14 | Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_|0 SQ—SPx 1 | Generate 10 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_10 is high.

25-4.425 1.3 SQ te SP: GPR Input Mux select

data are: generated index, Interpolated data, vertex index data (coming from the staging registersregisters).

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PRA206/01 O227BM 4206/01OF: 68PM

a <4 Formatted: Bullets and Numbering

gone 4 Formatted: Bullets and Numbering

This interface is synchronized with the Interpolator bus. This controls the input mux to the GPRs. The three types of

AMD1044_0257025

ATI Ex. 2106

IPR2023-00922

Page 114 of 223

ATI Ex. 2106
IPR2023-00922

Page 115 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 37 of 48Pre. OO

Name _ Direction | Bits | Description
SQ_SPx_data_type SQ—SPx 2 | 00: Interpolated data

| 01: Staging register data
| 4x: Count

SQ_SPx_index_count | SQ->SPx 112? | Incex count, commonfor all shader pipes
SQ_SPx_stage_addr SQ—SPx 1 | Staging register address

| | 0: First staging registerI \ _ 1: second staging register

2515-SQteSPx-Parametercachewiite-control Sececrcnsceiada

25-1-625.1.4 SQ to SP: Parameter Cache Read contro! bus

The four following interlaces (GSQ--SP, $Q-+5X,SP--SX and SX—interpolators) are all SYNCHRONIZED together.

Name |Direction Bits | Description
5Q_SPx_ptro SQ—SPx 9 _ Pointer of PC
SQ_SPx_ptr1 | §Q->SPx iz) | Pointer of PC
5Q_SPx_ptr2 SQ—SPx 9 _ Pointer of PC
SQ_SP0_read_ena | SQ--SP0 L4 | Read enablesfor the 4 memories in the SPO
SQ_SP1_read_ena SQ—SP1 4 _ Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ—SP2 La | Read enables for the 4 memoriesin the SP2
SQ_SP3_read_ena | SQ—SP3 14 | Read enables for the 4 memories in the SP3

a | 7|Formatted: Bullets and Numbering
28-+725.1.5 SQ to SX: Pararneter Cache Mux control Bus - eeee

Name sd«Direction ‘| Bits | Description —
SQ_SXx_muxd $Q—SXx | 4 | Mux control for PC (4 MSbsof Pointer) : :
SQ_Sxkxmuxt| BQBX [4_Muxcontralfer PC (4 MSbs of Pointer)pees ees : ee :
SQ_SXx_mux2 | SO-3SXx L4 | Mux contral for PC (4 MSbsof Pointer) eS eS Cees : oe
35 18. SP io Sx Pavamotor dat <|- (Formatted:slesardninbeing+)

ry . . eae Formatted: Bullets and Numbering

23-1-1025.1.6 SQ to SPO: Staging Register Data

Name | Direction |Bits _ Description
$Q_SP0_vgt_vsisr_data |SQ>SPO0 96 _| Pointers of indexes or HOS surface information
SQ_SP0_vat_vaisr_double [| SQ--SPO 1 __| 0: Normal 96 bits per vert 1: double 192 bitspervert
SQ_SP0_data_valid | SO-»SP0 i | Data is valid

[96 _| Pointersofindexes or HOSsurface information
L (4

4 |
(96 | Painters of indexes or HOS surface information

SOSP2vatvsisrdouble |i O:Normal 96bits per vert i double192bits pervert
SQ SP2 data valid i — im i Data is valid
SO SP3 vat vsisr data | $Q-3SP3 | 96 | Pointers of indexes or HOS surface information
SO_SP3vatvsisrcouble | SQ>SP3 1____ O Normal96bitspervert1: double192bitsper vert es : :SQ_SP3_ data_valid [SQ >SP3 [4 | Data is valid & Se

a. . JESS 4 Formatted: Bullets and Numbering
25-1+-4425.1.7 PA to SQ: Vertex interface . Soee

28-4+-14-425.1.7.1 Interface Signal Table

The area difference between the two methodsis not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

Exhibit 2021 docR40G_Sequercerdoc 647£2 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** goss 19-5PRt2/06104- G227BMI2/05OSERM

AMD1044_0257026

ATI Ex. 2106

IPR2023-00922

Page 115 of 223

ATI Ex. 2106
IPR2023-00922

Page 116 of 223

ORIGINATE DATE

| 24 September, 2001
EDIT DATE R400 Sequencer Specification PAGE

4 September, 201514 38 of 48

ssc Ee A

| VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. Tne VGT can transmit up to six 32-bitfloating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96

bits wide.

Name | Bits|Description
PA_SQ_vgt_ vsisr_data | 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 4 QO: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vot_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector" is set on the second vector
PA_SQ_vgt_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be carrect when

“PA_SO_vot_end_of_vector’is high.
PA_SQ_vgt_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgi_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

| 25-4-44225.1.7.2 Interface Diagrams

Evhibit 2021 docR400_Sequencar.dos 64782 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMEYOGO1 O227RMBOG04:88BM

wth SRT 4 Formatted: Bullets and Numbering 2

AMD1044_0257027

ATI Ex. 2106

IPR2023-00922

Page 116 of 223

ATI Ex. 2106
IPR2023-00922

Page 117 of 223

WeCSOTOMESECOTORT2°07S

Ooae@DBCJADUOBdI}ONIYBUAdODsoUdIBJOY"JENUSPYUOD[LY@«sea29270

sopussuanbeg“ggrEson1207TALS

YaONENOSSHaQVHS

te4]ALGAL

YWaddndOMSexLOLSy10BEdovd

bTESTLYLSbWlanodusTsa

 vpwLWdYSLSA
 WAREXXXXXO-NADWON(AdaLNSWNOOd

aaa45avaOS

OrooeSagpuesjaGsvaTeseqeqe4a63wd

ZojOaAJOpueWahewa

B[CMosALTA4OAOSWal

Uyeodstsa4aDeWal
 nnDRFerreeyp PEGLOdsequelesaLvd1103

mereneeLo0g‘Iequaydespz
LDA

ZAOMORAJO.CNTRZWIdnNcCdUSTSAGWLWUSLSA

aLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257028

ATI Ex. 2106

IPR2023-00922

Page 117 of 223

ATI Ex. 2106
IPR2023-00922

Page 118 of 223

 “SOSLSIU]IBABSVa10]Webegedb]balelsq”7Sinaiy
——-NOISSINSNVaLSdoOLsdadaNngs

 NOISSIASNVaLSdOLsWHATaOE

[NOISSINSNWALSLAVLS-adadaaHATHOdd1

FLAP—— ||||i|

TUTSb$0OF

49Vduoijeayioadsuaouenbesoor

 FESLO?Jequiejaas¢alvdLids

WaOdaALINHOTAINOOFIALNOWIVdO4rayWLWd?yanus€Wawa€aNgsZWLWZanusSLdLOAZulyOsTulyosQOwlOsulaOs
SaLVGSLYNISIYO TWIRELVANeaddoAATLOaLOdd

AMD1044_0257029

ATI Ex. 2106

IPR2023-00922

Page 118 of 223

ATI Ex. 2106
IPR2023-00922

Page 119 of 223

 3 ‘Formatted: Bullets and Numbering_OO

=<°| Formatted: Bullets and Numbering :

f = Fermatted: Bullets and Numbering

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24September, 200% 4 September, 201544 GEN-CAXKXX-REVA 41 of 48! ks PUA

25-1-4225.1.8 SQ to CP: State report “
Name | Direction |Bits | Description
SQ_CPvrix_state[SEQCP[30| Oldest vertex state stillinthe pipesd
SQ_CP_pix_state _SEQ.CP LS | Oldest pixel state still in the pipe

ry aS

25-1-4425.1.9 SQ to SX: Contro! bus “

Name ssi| Direction ‘Bits[Descriptionbos
SQ_SXx_exp_Pixel SQ—>SXx 4 | 1: Pixel

_ | O: Vertex _
$Q_SXx_exp_start | SQ--SXx i | Raised to indicate that the SQis starting an export
SQ_SXx_exp_Clause | SQ>5EXx | 3 _ Clause number, which is needed for vertex clauses
8QSoexpState SQ—8Xx (3 | State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SPO—SX0interface
{ISSUE: Where are the PC pointers}

25-14525.1.]0 SX to SQ: Output file control
Name |Direction ‘Bits _ Description4

SXx_SQ_Expart_count_rdy=| SXx-SQ [| Raised by SX0 to indicate that the following twofields

| | | reflect the result of the most recent export
SXx_SQ_Export_Position | SXx—50 | Specifies whetherthere is room for anotherposition.
SXx_SQ_Export_Buffer SXx-SQ 7 _ Specifies the space available in the output buffers.

| 0: buffers are full
| 1: 2K-bits available (32-bits for each of the 64
| pixels in a clause)

| 64: 128K-bits available (16 128-bit entries for each of
| | 64 pixels)65-127: RESERVED

FourQuac's worth-of FetehDate-maybewriters-ic_theRegister fieover cieck,_These-are-directedto-a-diferentpixel
of the-sub-engines repeating-every-4-clecks.-The registerfle indexto writemust- accompanythe-daia.Dais-andtindex
asseciated-s4ihthe-Quad-O-must-be-sent3clocks-afttertheictructionStart-signalis-sent.

Z5-+14725.1.11 SeguencertoFeich Unit busS@ to TP: Control bus a
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the
registersGPRsis ready or not. This way the sequencer can update the fetch counters for the reservation station fifos.

The sequenceralso provides the instruction and constants for the fetch to execute and the addressin the registerfile
where to write the fetch return data.

Name [Direction

 TPx_SQ_data_rdy | TPx— SQ
| Bits|Description —
i _ Data ready

Exhibit 2021. docR400_Secuencerdec 64782 Bytas*** © AT] Conf

e S =7 | Formatted: Bullets and Numbering

Jc Formatted: Bullets and Numbering

: Formatted: Bullets and Numbering :

idential. Reference Copyright Notice on Cover Page © *** joosus 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257030

ATI Ex. 2106

IPR2023-00922

Page 119 of 223

ATI Ex. 2106
IPR2023-00922

Page 120 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201574 42 of 48eee DNewesenanenbentteUOCaan

| TPx_SQ_slause_num _TPx— SQ 3 | Clause numberSQ_TPx_const SQ—TPx 64 __| Fetch state sent over 4 clocks
SQ_TPx_instuct | 8Q-2TPx | 24 | Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ—TPx i | Last instruction of the clause _
SQ_TPx_phase | SQ-»TPx L2 _Write phase signal .
SQ_TPO_locd_correct SQ—TPO 6 _ LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pmask | $Q-3TPO 14 | Pixel mask 1 bit per pixel ;
SQ_TP1_lod_correct | $Q-.TP1 6 | LOD carrect 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ—TP1 4 | Pixel mask 1 bit perpixel ee .
$Q_TP2_lod_correct | $Q-»TP2 5 LOD correct 3 bits per comp 2 components per quad
SQ_TP2pmask $SQ—TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct ss|| SQ--»TP3 6 _| LOD correct 3 bits percomp2componentsperquad
SQ_TP3_pmask _SQ—>TP3 4 | Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ—TPx 3 | Clause number
SQ_TPx_write_gpr_index | SQ->TPx imi | Index into Register file for write of returned Fetch Data

5 «----{Formate:BuendNamberng+)25.112 TP to SQ: Texture stall ee
The TP sends this_si nal to the 8Q when its input buffer is full, The 3Q is going lo send it to the SP X clocks after

Name Direction Bits | Description B

JP_SQ_fetchstall _ TP»SQ it | Donotsendmoretexturerequestifasserted Oo Ae —

25.1.13 SQ to SP- Texture stalj _——
Name | Direction | Bits | Description | S : : :
SQ SPx fetch stall | 8Q-9SPx 4 | Oo not send more texture request if asserted | cc . ESR Eigen

2o-++825.1.14 SequencerQ to SP: GPR and Parameter cache control “Se og.
Name _ Direction Bits | Description Dee oe : S
SQ_SPx-gpr_wr_addr SQ—SPx 7 Write address
SQ_SPx_gpr_rd_addr | SQ->SPx 7 | Read address .
SQ_SPx_gpr_re_addr SQ—SPx 1 Read Enable
SQ_SPx_gpr_we_addr | SQ-9SPx 1 Write Enable for ihe GPRs
SQ_SPx_gpr_phase_mux SQ—SPx 2 The phase mux
SQ_SPx_ger-channel_mask | SQ-+SPx 4 The channel mask
SQ_SP0O_gpr..pixel_mask | SQ—>SP0 4 The pixel mask
SQ_SP1_gor-pixel mask 5Q—SPi 4 The pixel mask
$Q_5P2_gpr--pixel mask | SQ->SP2 4 The pixelmask
$Q_SP3_gpr—pixel_mask [SQ >SP3 4 The pixel mask
8G _SPx pe we addr | §Q->SPx 1 Write Enable for the parameter caches

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700PREOGOt OneeRMAOSL04:88PM SSeS

AMD1044_0257031

ATI Ex. 2106

IPR2023-00922

Page 120 of 223

ATI Ex. 2106
IPR2023-00922

Page 121 of 223

 |ORIGINATE DATE24 September, 2001

somabe,“4

EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 201514 GEN-CXXAXKX-REVA | 43 of 484

Name Name DirectionDirection
| Daseri YonDescrpican

$9 _SPx_instruct_statsQ.35Px_instruct.stan $Q--5PxSG-—SPx Instruction Startinstruction
| start

SG SP_instruct$o-$P_instrust SQ-SPXSQ--SPx Instruction sent over 4
clocks!
clocks

$Q_SPx stalisQ-sPy—stal SO -SPxXSOSRK

$Q_SPx exoor countec-Sex-Shader-Count $Q--SPxS0--5Px
“Stall signalStal-eignal
Each set_of four pixels or
vectors ig exported over
ejght clocks, This field
specifies where the SP is in
that sequence Each-set-of
four-—pixele—or-—vectors—is
exporied-over-eight-clocks.
Thie—field_soecifies where

| the SPisin-that- sequence.

SQ_SPx export lastSQ.SPx.Shader-Last $0 oS ONEGBx Agserted on thefirst shader
count of the last export of
the clauseAsserted-on—the

8G SPO export pvalidSa-SRo-Shader-PxeMalid|SQ--SPOSQ-9SPC Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
depth and all color

buffers), 4x4 because 16
pixels are computed per
clockResuiofpixeltil-is
the —shader—sipe,—_-whieh
must-beoutpulforallpixel

bublere}_in4_becauee16
plele—are—compuied—per

loel<

SG SPO expor walidSOSFOShaderWerrdVal|SQ--SPOSQ—880
d Specifies whether io write

of_the 64.bit export data
from each of the 16 pixels
or yectorsSpecifies
whetherlowrle lowand/or
high-22-bitword-of-ihe-Gd-
bit-export-data-from-each-of

the-16 pixels-or-vectors

$@SFi exoorpvalidSO8P1Shader_PixelValild|SQSP1S0-.3F4 44 Resull ofpixel Kill in the
shader pipe, which must be
output for all pixel exports
depth and all color

buffers), 4x4 because ispixels are compuled pe
blockResull-of_pixel_Kllia
the —shader—ploe.—whieh
roet-be-outoulforallpixel
expore-iests-andaiodler

bulhore)-bolpaGablegLG

Pieleato—coinpuled par

8Q--SP1$4-SP4

22 | Specifics whether to write

bt 2024 docR4OU_Sequencer.decExhibi
64782 Byes*** © AT Confidential. Reference Copyright Notice on Cover Page © ** soosu5 io5PRA206/01 O227BM 4206/01OF: 68PM

co] Formatted: Bullets and Numbering

AMD1044_0257032

ATI Ex. 2106

IPR2023-00922

Page 121 of 223

ATI Ex. 2106
IPR2023-00922

Page 122 of 223

ORIGINATE DATE

24 September, 2001
EDIT DATE

4 September, 201544 R400 Sequencer Specification PAGE

44 of 48

export wvalidSo.SP41_ShaderWordValid

OF

low and/or high 32-bit word
of the G4-bil exporl cate
from each of the 16 pixels

whether-towrite-low-and/or

| high 32-bit word of the 64-
| bit-export-data-from-each-of
| the-16-pixels-or-vectars

vactorsSpecifies

SO SP2 export pvalidSQGP?ShaderPialValid SO-SP250--SE2|44

|Glock

Result of pixel Kill in the
shader pipe, which must be
output for all pixel exports
depth and all color

pixels are _computed per
clockResut-of-pinelidi-in
the-—-shacer—pige-—_whies

buflare).—dx4becausa—16
pivels—are—compuled——per

$Q SFe
export wvalidSQ-SP2_shaderWordValid
SO9SP250-Sha|22

or

Specifies whether to write
lew and/or high 32-bit word
of the 64-bit export data
from_each of the 16 pixels

whether-towrite-low-and/or
high 32-bit word of the 64-

| bit-export-cata-from-each-of
_ the-16-pixels-or-vectors.

vectorsSpecifies

SO SP3 export pvalidSOSPSGhader-Pimalialid $O--5P38O-—8P3|44

clock

4. Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
depth and all~—scolor

buffers). 4x4 because 16
pixels are computed per

ekeeee

$Q_SP3_
export wvalidSG-$P3-Shader-VWordValid

-SP3SQ5R3|22

OF

Specifies whether to write
lew and/or high S2-bil werd
of the 64-bit export data
fromm each of the 16 pixels

whether-to-write-low-and/or
high-32-bit- werd-of the-64-

| bit-export-data-from-each-of
| the-46-pixels-or-veotors je

vectorsSpecifies

an

Name | Direction —TBits | Description
SPO_SQ_const_addr | §P0-SQ | 36 — Constant address load to the sequencer
SP0_SQ_valid | SPO>SQ [4 Data valid
SP1_SQconst_addr | SP1—S0 | 36 | Constant address load to the sequencer

Exhibit 2021 docR400_Sequencerdec 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** poss 1287PRA206/01 O227BM 4206/01OF: 68PM

=| Formatted: Bullets and Numbering

AMD1044_0257033

ATI Ex. 2106

IPR2023-00922

Page 122 of 223

ATI Ex. 2106
IPR2023-00922

Page 123 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201514 GEN-CXXXKX-REVA 45 of 48= wokwhutarn5300)hesce DE ns vetheenenereeucunanraeunensentceeee

SP1_SQ_valid | SP1—SQ Lt | Data valid
SP2_SQ_const_addr I SP2—SQ 36 _| Constant address load to the sequencer
SP2_SQ_vailid | SP2--SQ 4 | Data valid
SP3_SQ_const_addr | SP3—SQ 36 _| Constant address load to the sequencer
SP3_30_valid | SP3—80 4 _ Data valid

it:

2or+-2125.1.17 SequencerS@to SPx: constant broadcast
Name | Direction

SQ_SPx_constant

“| SQ-2SPx | Bits _| Deseription128 | Censtant broadcast

235-4+2225.1.18 SPO to SequenserS@: Kill vector load

Name Direction Bits | Description
SP0_SQ_kill_vect |SPO-»SQ 14 | Kill vector load

“SP1SQ-kilvect «|SPITSQ_«4 Killvectoroad SSCS

SP2_SQ_kill_vect $P230 4 Kill vector load] :SP3_SQ_kill_vect | SP3--SQ [4 | Kill vector load

23-+2325.1.19 SQ to CP: RBBM bus

Name Direction Bits | Description
SQ_RBB_rs | SQ-»SP i1 | Read Strobe
8Q_RBB_ rd SQ—CP (32. | ReadData
|SQ_RBBM_netrtr 1 Optional

SQ_RBBM_rr i1 | Real-Time (Optional)

254-2425 1.20 CP fo SQ: RBBM bus

 Name Direction Bits | Description
rbbm_we _ CP-»SQ 4 _Write Enable :
rbbm_a CP50 18 | Address -- Upper Extent is TBD
irbbmiwd CP-SQ.00[32| Data ee

robbm_be | CPSQ [4|Byte Enables
robbm_re CP—SQ i Read Enable
rpb_rs0 | CP--S8Q 11 | Read Return Strobe 0
rbb_rsit CPS5Q 1 | Read Return Strobe 1
rbb_rdO | CP-»SQ | 32 Read Data 0
robrd CP—5Q 32. | Read Datad
RBBM_SQ_soft_reset | CP—-SQ 14 _ Soft Reset

26. Examples of program executions

26.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
* state pointer as well as tag into position cache is sent along with vertices
® space was allocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

e the SEQ then accessesthe IS base for this shader using the local state pointer (provided toail
sequencers by the RBBM whenthe CPis done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Verlex FIFO — basically the Vertex FIFO always has priority
e at this point the vector is removed from the Vertex FIFO
* the arbiter is not going to select a vector to be transformed ifthe parameter cacheis full unless the pipe as

nothing else to co (ie no pixels are in the pixelfifo).

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPRs2/06iet GeeTRM T205(0104:58PM

- {Formatted: BulletsandNumbering

“ oe Formatted: Bullets and Numbering

“ _ 24 Formatted: Bullets and Numbering :

“| Formatted: Bullets and Numbering

AMD1044_0257034

ATI Ex. 2106

IPR2023-00922

Page 123 of 223

ATI Ex. 2106
IPR2023-00922

Page 124 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 46 of 48

10.

44.

12.

Ee.

SEQ allocates spacein the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state painter that came down with the vertices
¢ SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent io the 64 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SU3is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
e RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (, y, Z)

SEQ constructs a control packel for the vector and sendsit to the first reservation station (he FIFO in frani of
fetch state rmachine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
® TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete: it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
® position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA's position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

® parameter data is exported in clause 7 (as well as position dataif it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
* the SEQ allocates storage in the Parameter Cache, and the SEQ dealiocates that space whenthere is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.2 Sequencer Contro! of a Vector of Pixels

1.

2.

Exhibit 2021 docR400_Sequencerdec 6472 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns i700

As with vertex shader programs,pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
*® the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

PRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257035

ATI Ex. 2106

IPR2023-00922

Page 124 of 223

ATI Ex. 2106
IPR2023-00922

Page 125 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 47 of 48Jes, Re 3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
* the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEQ will not allow interpolated data to be sent to the shaderuntil space in the register file has been allocated

5. SEQ controls the transfer of interpolated cata to the SP registerfile over the RE_SP interface (which has a

bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector anc sends it to the first reservation station (he FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
* the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e ail other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructians for fetch clause 0 from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO@

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMOQ
FIFO)
e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received
® once the TU has written all the data for a particular clause to the register files, it increments a counterthatis

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO,then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
® pixel data is exported in the last ALU clause (clause 7)

e it is sent to an output FIFO whereit will be picked up by the render backend
e the ASN arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. The register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer.

46,-\Wlaterfalling-slill neede-to-be-epecked-out eee 4 Fermatted: Bullets and Numbering

27. Open issues
‘There-ie-currently.an-issue-with-constants.|i-ihe-constants-are-nol-the-same-orthe-whole-vectorofvertices, .we-don't :
have-the-bandwidth-from-the-fetch-store-te feed-the ALUs.-Two-selutiens-exisis-for-this-problem: ef 2 S ees

Letthecompilerhandie ihe case andpul those instructions inafeichclause se.ve-can.use thebandwidine |=— 4 Formatted: Bullets and Numbering
thereto operate_Thisrequires asignificantamount of temporarystorageintheregister store. : 8 : See aS :

Exhibit 2021 docR40G_Sequercerdoc 64782 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePRA206/01 O227BM 4206/01OF: 68PM

AMD1044_0257036

ATI Ex. 2106

IPR2023-00922

Page 125 of 223

ATI Ex. 2106
IPR2023-00922

Page 126 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201514. 48 of 48Le. Pd

Need to do sometesting on the size of the registerfile as well as on the register file allocation method (dynamic VS
static).

Saving power?

Evhibit 2021 docR400_Sequencar.dos 64782 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMEYOGO1 O227RMBOG04:88BM :

AMD1044_0257037

ATI Ex. 2106

IPR2023-00922

Page 126 of 223

ATI Ex. 2106
IPR2023-00922

Page 127 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA 4 of 47_ 7 AL ry
Author: Laurent Lefebvre

 issue To: | Copy No:

R400 Sequencer Specification

SQ

Version 1.65

Qverview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Cc\perforce'r400\doc_lib\designiblocks'sqiR400,Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

: 28 APPROVALS... : es
Name/Dépt ce a Signature/Date

Remarks:

 THIS DOCUMENT CONTAread ptrINS CONFIDENTIAL INFORMATION THAT
COULD BE SUBSTANTIALLY DETRIMEN+Aread_ pir TO THE INTEREST OF ATI

TECHNOLOGIES INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rignts reserved. The material in this document constitutes an unpublished -
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithout the prior written permission of ATI Technologies Inc.”

Exhibit 2022.decR400_Sequencer.des 67798 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** pois id”

PHO VO4/0202:67PMI2084402:27RM

ATI 2022

LGv. ATI

IPR2015-00325

AMD1044_0257038

ATI Ex. 2106

IPR2023-00922

Page 127 of 223

ATI Ex. 2106
IPR2023-00922

Page 128 of 223

as

ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 20152 2 of 47Ny R400 Sequencer Specification PAGE

Table Of Contents

To OVERVIEW ooocccccnece tre cece cette cee tnedEEREdeeneneeee nee 6

1.1 Top Level Block Diagram oooccccece e cee ee tt teeeebetteeeeestciteesesssieeeeecseisesestetesenenaees 8
1.2 Dates FlOW Graonceeect teenie ee reer ent e eet r ttt bitte ebcotieteetsciateeetstsiteseetriiensees 10
LB COMPO) Granceceeect ee ene cree cnt eee tr bt bitte eDbobtteeeticitteestistseeeettssienenies 11
2. INTERPOLATED DATA BUS Li cesescsnensnecesanensanessesananaanesscannnaaeseeanannanessiaannaaanensnaan VW
3. INSTRUCTION STORE ooo ccccccccccccnneecceneerenenecureeesenerecieeeeneercermenenneeccensenenstecenesenneseetenes 14
4, SEQUENCER INSTRUCTIONS...cccescentian eeireaerneeeeenaneeneneeeeni 16
§. CONSTANT STORES occcccieieiREEannniee econerent 16

S.1 Memory Organizationsocceee ce ieee cere eee t tte ee bo botetttebbboitteettiiteettteteneeee 16 —
5.2 Management of the re-mapping tableseeeeee t tt tere ttttetceeenes 16 0

S201) Dirty itscececece cece eer bebe evrnatititie se tenetiviniviwitwttnvitrnnnrns1948 a
5.2.2 Free List BOCK oooccs cs cee ceees esse sevsceseeveesvennsvevscstisveievensitevaneesnnneevisn1948
5.2.3 De-allocate Block oooccccece ccc cece cence eee tetttrcetrtrttetetivatttttettvsutttrene 4948

5.2.4 Operation of Incremental modelooccccc ee cece es tttettttttter tien 2048
$3.3. Constant Store INCOM...ccccece eset ttseeebeeteseeeeccttseeeestsseteeettiaeeenettesass 2149
$4 Real Time Commands...ccccee ce cee cc tent tte eee b eee eetbbbbebbbtetttteerssataaateeteeeeeeeeeeceee 2149
6& LOOPING AND BRANCHEScecececerceesire eneanen ee enenaen cece nennenenees 2220 |.
G.1 TRE COMTONING SEALEleeeeLeet bbe ee cet tt beet te dttteeeetne Zee ee
6.2 The Control Flow Program ooo.ccece s cee eeeeeceeeeuusseeceecusteeescetsseeeecea 2220 ©
6.3 Data dependant predicate InStrucliOns......teeteretre eet reeerraeerreeennee 2523 5
64 HW Detection OF PVPS ooocece ccc ce eee tn tect nb tnt EE EEE HE tt tbbbbbbbbbttbttbtrtbttaaaaetees Zoed
6S Register fle indexing.eeece eect netee seer ev ueeeeee nt teseeestteeeseenttreesetntttreessntnrrerrerea 2623 =
6.6 Predicated Instruction support for Texture ClAUSEScccctteeeeer ties 2624
6.7 Debugging the Shaders oooeeeeet ttre ttt ttet tt tieetetttiteeeertttteeeencra 2624

6.7.1 Method 4: Debugging registersoooeeecece tetetteeetetttstetrerttnettietes 2624

6.7.22 Method 2: Exporting the values in the GPRs (12).ee2725
7 PIXEL KILL MASK occeerirneOnE Ended oneeeeeeeneneietee 2726 |

8 MULTIPASS VERTEX SHADERS (HOS)... cccccccsssseeceseesnennecsenesneneestseneanencessnncuneecss 2i26
9. REGISTER FILE ALLOCATIONocceee cne ec enen ee neaee ennanaeneaennnaan neces sunanenneasaanaanences 2726
10. FETCH ARBITRATION oocccccccccccccncececneceecee cece een eee cee ece ee caeecec tees aedeean ees ceceeeectceeceaneeenees 2826
LL ALU ARBITRATIONocciiierneOnneReEc ienetaen cece nennenetees 2826 2
12. HANDLING STALLSoceees senennerees te neaieeceneueenenee ss seneaneneescannenaeeeeseueuneaeessnanennanes 2927
13. CONTENT OF THE RESERVATION STATION FIFOS Lo. ccccceccccssetcsneccsssnenssncessnanennenens 2927
14. THE OUTPUT FILELoeeennn canine onion nncoin oo nooon aeronanan2927
18. IU FORMATceceenterennanaeeennanenaeesaaannaetanaecanes tnaaannn nate naaaaee 2927
15.1 Interpolation of constant attriDUtes ooecteeeettteetteettteeeerttteeeenrea 3028
16. THE PARAMETER CACHE. cccccescsscecseiseecetienenien ces seuseneeciseneaneneeeiencaensesenene 323028

17. VERTEX POSITION EXPORTING Lo. ciccccccccesneecccecnseeeecseeneuseneessnensnnenerseaencaeeessenenes 323028
18. EXPORTING ARBITRATION Qocccccceccseccssceentescssnesseeensnnnsnenessnuenanneessneueunaneesaneneas 323628
19. EXPORT TYPESLooeceene cnnnenenaan en cna enna ne cn nannnnaneecnaaa nna ine caaaaanaaneencaannnaaeesnaanna 32o029 |

194 VEITOX SAINccccece eee es cee e bee ccs cece sc cseeecsssseeeeussseeceeersssencesersssees 333829 a
19.2 Pixel SHAGINGceceeect te cere bitten ebb e tt beet eecttiateeetcateeeeteteseesteesstenenies 333029 Gs
20. SPECIAL INTERPOLATION MODES. oo.sss cece ssseneecssneussnenessanesssuesvsnenensauscessnasanensosi20

Evhibit 2022. docR400_Sequencar.dos 67798 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** senaisiosyPMO10402O2:57RMISOBO227BM :

AMD1044_0257039

ATI Ex. 2106

IPR2023-00922

Page 128 of 223

ATI Ex. 2106
IPR2023-00922

Page 129 of 223

y ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

be 24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA 3 of 47

20.1 Real TIME COMMANGS ooo.cececee eeeeeeeeeee ess aneeeeeeeesseeeeeeenectttettteteaeeeaeees 333429
20.2 Sprites! XY screen coordinates/ FB information...etetteeeees 333436
20.3 Auto generated COUNTETSccceect rte e etter ttteetttttetnetttteteeertttiteees 343430

20.3.1 Vertex SHADEPScete ees rete tsernsetentisiiniseserrinisieerrinassnsnes 343230
ZO3.2—Pivel Shaderocccc cece ttt tr cteetitetittetrettrtrtititintitttiiteititecsusree 342230.

21. STATE MANAGEMENT........cceeccccse

21.1 Parameter cache synchronization......
22. XY ADDRESS IMPORTS.........000.00..

22.1 Vertex indexes imporis... S528.
23. REGISTERS ...cccscsscccssessecssccsssssssscecssseseessssssesnssnstsssseeseresscesvunusesseetessenceseauutsensecenesees 353334
DBD COMOeeecece cette tte e er ree ee Eb bbbbbbbbi bbb HED GLHHEEEEEECcctbetbttcctetttaaaasanaaaeeess 353334
23.2 Gomext.
24. DEBUG REGISTERS......

24.1 Gontext 3634

28. INTERFACESLecceccssseessescsssssesasscsssessnceesecsnennsncessssemsnatsessssnsannotseronnenen 373433
25.1 External Interfaces.ceceees eesiestcstesiestesnesterissnenesneesee 373433

25.1.1 SC to SQ: 1 Cantrob buscececece teesnststeseseeteeeesnens 373433

25.1.2 SQ to SP: interpolator BUSoceee ceee treet titetttnettitteitittenteteeees 373534

25.1.3 SQ to SP: GPR Input Mux select oooccceee etttttttte tte 383534

25.1.4 SQ to SP: Parameter Cache Read control BUS ooo ccc 383635

25.1.5 SQ to SX: Parameter Cache Mux control BUS oooteeter: 383635

25.1.6 SQ to SP: Staging Register Dataocceee cs etttettttttttretee: 383635

25.1.7 PAto SQ: Vertex Interfaceoccects tees tr tetettitittitttititernteree 383635

25.1.8 SQ to CP: State report oocecetes cette treet titetttteetittestettersttreee 424639

25.1.9 SQ to SX: Control BUScecetect ttt trtttititetittittitttstttrermtteeee 424539

25.1.10 SX to SQ: Output file COMMONocccette tte tettenttttttttrer ntti 424039

2S 111 SQ to TP: Control busoccect ttetstttrestrtitttitttttestetersteeeee 424039

25.112 TP to SQ: Temture Stallceceeter eetsesestes:434440
25.1.13 SQ to SP: Texture stallceceeter esestestes:434440
25.1.14 SQ to SP: GPR and Parameter cache Control ooocccctttt434449

25.115 SQ to SPx: Instructions ooocccccc eect tetttee tr teettetteettttttttrestteete: 444244

25.1.16 SP to SQ: Constant address load ooocccete tec eee tre ttttttttetttrente: 444244

25.1.17 SQ to SPx: constant broadcast ooccccccsesescseeestetsustsesestetseetsesnens 444244.
25.1.18 SPO to SQ: Kill vector loadocccece eee tere esteteteeestineteteteteteitees 454342
25.1.19 SQ to CP: RBBM BUSccccc cseseessestetstesstssesesesesiststseastseeeeseees 454342
25.1.20 CP to SQ: RBBM BUS eecccccccscssccssssssseeessssvrsessssvspasssvesesvasvvretsassvenesesvsuasseveen 454342

36. EXAMPLES OF PROGRAM EXECUTIONS.cccccccceccccncceeeeceereneeneceecenneneesceseennenens 454342

26.1.1 Sequencer Control of a Vector ofVertices 454342
26.1.2 Sequencer Control of a Vector ofPixels 464443
ZEAL B NOSccccece eve ee ee tetas ee veteveveve tite es tvivevatinivivintnitevnetnaes 474544

Exhibit 2022. docR40G_Sequencerdec 67798 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © *** pagans 19.5PMOU04/02O257RMBOBO}O27BM

AMD1044_0257040

ATI Ex. 2106

IPR2023-00922

Page 129 of 223

ATI Ex. 2106
IPR2023-00922

Page 130 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20152 4of 47of

27. OPEN ISSUESoooenerein cr nonin in nobaibon na onan a iontia ir boboiit tribe 474544

Exhibit 2022 docR400_Sequencer.doc 67798 Byts*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMOU04/02O257RMBOBO}O27BM

AMD1044_0257041

ATI Ex. 2106

IPR2023-00922

Page 130 of 223

ATI Ex. 2106
IPR2023-00922

Page 131 of 223

 ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE |
GEN-CX200X-REVA 5 of 47 24 September, 2001 4 September, 20152Ey Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rey 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev_1.5 (Laurent Lefebvre)
Dale. January 7, 2002

First draft.

Changedthe interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—-SPO interfaces. Changed delta
precision. Changed VGT-SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—-SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added more details on the staging register, Added
deta aboul tne parameter caches. Changed the
call instruction to a Conditionnal call instruction,
Added details on constant management and
updated the diagram.

Exhibit 2027.docR400_Sequencerdoe 67798 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ¥** nosis 12aPRG) 0410202-57BR OGMO22?PM.

AMD1044_0257042

ATI Ex. 2106

IPR2023-00922

Page 131 of 223

ATI Ex. 2106
IPR2023-00922

Page 132 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 6 of 47oNi -_

1. Overview

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can passa pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257043

ATI Ex. 2106

IPR2023-00922

Page 132 of 223

ATI Ex. 2106
IPR2023-00922

Page 133 of 223

HeereeCOVOORLECOCEPOAONGLECTSLICEDBy36eq19A045UOVDIIONIWGUAdODdoUSJSJOY"eNUSPUUOD[Ly@vx5\G86220

sopussuanbag“goresop202Vay

 |repeejuesuec»aa»gal|*dal-oySeo
a~——aE4aMOCXLOn[_YCSLRIMXdee__gOIddgO/9d+0/04=|d0/ddoy~/LL-eeLd/esauppy|TtaeeSeA|BMOddlau4 “|SUBINOd|avaDaa|eefs=e :_aleALVLSHOLS4svedsdsds<«ds

LSNDYGLL

==|peepatx—ST4»—_>>»»SYOLSLSNIaS.LNi--~SSLNIeSLNIaSLNI=sal=|H!|!TOMINOOFEz

f6rirMVASSONOFi|| -|
apeey39-7Lome]SGYNOZoTONLNOOD—\a“Y

JORLNODSLNV.LSNOS
XSLMBA

|

’ee)ARSaee:CeEAR|yaeeieancnserarisesooAb4olWARYXXKXXO-NADEGLOJequigjaagyLooguequieydespz“a39vdANNAseLNAWNSOdalvdLigadLvVdSLYNISINO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257044

ATI Ex. 2106

IPR2023-00922

Page 133 of 223

ATI Ex. 2106
IPR2023-00922

Page 134 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 Sof 47oNi -_

1.1 Top Level Block Diagram

vertox/pixel vector arbitrator

Possible delay for available GPR’s «

Tro
‘oxture clause 0

IEG eservation slabon
ALI clanse 0 <@-——teservation station ay
| -————B, FIFO Bs‘el ‘exture clause 1
ty eservationstation
Alli clanse 1 extire arbitrator

reservationstation Aooxture arbitrator | > ‘exture clause 2cc — eservationstation
ffFPgg-______QA clanse 2

reservation station
TIPO pLiPexture clause 3

eservationstation

 I FIFO

hag —ALU clause 3
Feservaiion station TiO
| Phoxture clause 4= reservationstationI FIFO

bag —ALU clause 4reservationstation. ey
i MPC ssTexture clause 5

eservation station
Lg——_____[FIFOATL clanse 4 cence

reservation station a ———FOvtec clause 6eservation station
i ‘fg FIFO. <<

ag —Aliclnse6 PL.—reservation station

pe, FIFO pel — po‘exture clause 7
eservation station

| PEE|g

Lg—ALU clause 7 it-reservation station!

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencerwill either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and someinformation on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257045

ATI Ex. 2106

IPR2023-00922

Page 134 of 223

ATI Ex. 2106
IPR2023-00922

Page 135 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXXXK-REVA 9 of 47oh Sd
screen position if needed) are sent to the interpolator which will use therm to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices), Once all the requests are sent the packetis put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level O shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause numberas the other one is currently working on if the packet is not of the same type {renderstate).

lf the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 pararneters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packetfinally reaches the last ALU machine(7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one tirne. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and onefor the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunchofhalf finished jobs from
clogging up the registerfiles.

Exhibit 2022. docR4G0_Sequencerdec 67798 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMOU04/02O257RMBOBO}O27BM

AMD1044_0257046

ATI Ex. 2106

IPR2023-00922

Page 135 of 223

ATI Ex. 2106
IPR2023-00922

Page 136 of 223

| ORIGINATE DATE
| 24 September, 2001

EDIT DATE

i a

R400 Sequencer Specification

4 September, 20757ar

PAGE

10 of 47

| !
| 1.2 Data Flow graph (SP)

ae

re requi

tevil |}

scalar inputoutput

fs |
33x oO

uest_ igstl
3
3)
BiTH

—~ epee _texture re| pst

Us«en
c £
S| £
8 g
a §s |- #21

Register File

(s@ lar input/output MAC1
pipeline stage | 'ne ! |||5 i.
53} |
2~ — ae Register File

{scalarinputioutpit ,MAG i
pipeline stage i i

2
=
2ee i

« & ka21 fai]oS o

8 | pn Register File

a scalar inout/cutput
pipeline stage

Luor

S| 15Go! eS2! &
BI S2 s a_h

Co)
Pop pe

SF “S
to Primitive Assembly Unit or RenderBackend

a ao

Exhibit 2022 docR400_Sequencer.dec
e778 Byers © ATI Confidential. Reference Copyright Notice on Cover Page © *** pooss i257"PMOU04102G2:57PM 4208/01O22?RM

= cS Ea
textureadcress
(

AMD1044_0257047

ATI Ex. 2106

IPR2023-00922

Page 136 of 223

ATI Ex. 2106
IPR2023-00922

Page 137 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September. 20157 GEN-CXXXXKX-REVA 11 of 47i re !
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

be

Ciause # + Rady
iS CST :

WrAddr | SEQ WrAddr|

oMD | | | “i| | |cst
| i

Phase| | Bo
emp CS8Tcstzcstipx “ C Wrvec |

RdAddr | | WrScal Wwraddr

v yw y _ ‘ ¢ i $ ‘ _ Y

|

FETCH SPO Re OF

WrAddr ||
| |
|||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the InterpolatedV/ector

control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257048

ATI Ex. 2106

IPR2023-00922

Page 137 of 223

ATI Ex. 2106
IPR2023-00922

Page 138 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20152 1208 47oh

onre

AO At AZ BO (28 bits * 2 (J) + @ bits * 6 (aita Ws)r4 & |
bits*6)* 16 (quads) * 2 (double-butfered) AD At AZ BO4096bits

2 Bt co ct c2 32x 128
Bt co ci C2

3 cs | CA cs Do Xs buffer (pirig-pong butfer)
! 24 bits * 16 quads * 2 3 C4 C5 DO+ 768 bits

saad ‘
4 DI b2 EO Et i! Dt D2 EO EI ijo i

a ae re T LEi | 1 7 i T i
INTERPOLATORS i | 1FDC FLOAT + EXPANSION 1

L

PN lV |i
—— L_|

512 | ™rm mm. A fot
| | ||

— — fp |

Evhibit 2022. docR400_Sequenca.dos 67798 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMOU04/02O257RMBOBO}O27BM

AMD1044_0257049

ATI Ex. 2106

IPR2023-00922

Page 138 of 223

ATI Ex. 2106
IPR2023-00922

Page 139 of 223

WeaLeotoreMeTNTSCOCOOONLSCTSPOOL®o6e_19A04UOVDNONWGUAdOSIUSISJOY‘JENUSPIUOD[Ly@wasMae6220—sopssowandos“porudonE02TaN

egllyleSI“oolby|-9%-Zi3AJATAALesey|ZUb-agorpz-9]04A|A|AAgg|6eez2G98-02AATA|Isise|6hev-ze-o,©AINA

 eelicclbelOeL/6hLOLLIGILCLLIZLLILLL/OLL)GL)OL]ZL|OL|GL|pL|ob[oraceceancacnerecreateSASSEREEESESSICTESSSCOSESBRACESTraerrLvIOELWAREXXXXXO-NADZGL0dJequejaesyLo0g‘IequaydespzdovdANN(AdaLNSINNOOdsalvaLidsaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2106

IPR2023-00922

Page 139 of 223

AMD1044_0257050

ATI Ex. 2106
IPR2023-00922

Page 140 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20157 14 0f 47i uy

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the cP thru the eeeee ane weeCaconabWel-fegister—-ThePORT. egister_ mapped

 veers.
The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the

loading modes in order to wrap around the correct boundaries. ~The -MSB-of theINST_INDE*PORT register: né-The wras-arcund-peimte-arewrap
around points are arbitrary and they are specified innthe VS_BASE and PIX.BASE registers.

For the Real time commands the story is quite the same but for some small differences. The-CP—will-use-the
INGTIN DEX BPORT.ETandtNstDAtTA kTregister-pairinetead—oftheregular-cnes-and-Tthere are no wrap

around points for real time so the driver must be careful not to overwrite regular shader data. The shared code
(shared subroutines) uses the same path as real time.

Exhibit 2029 docR400_Sequencerdec 67768 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nosis 1257PMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257051

ATI Ex. 2106

IPR2023-00922

Page 140 of 223

ATI Ex. 2106
IPR2023-00922

Page 141 of 223

WeLECCOOTTTCOORONGLECTSUPCOOLLBya6ed19A04UOVDIIONIGUAdODDOUSIOJOH“[ENUSPYUOD[LY@wxtVaessl9—sepreonanbag“goresoPE20

S607=S600 2DSp02Sd
28P0DSdg8podSdfo—(cao“apo0o98u}Bulnoexe9BPDSAan—:LBs0]BIsYySACUaooJsquanbssossyoojqpo

~qngayudoidde

0}sassalope-qngeeudoidde[EISEPOSdIUMAOa,g8PODSA0]sessauppe
AsvV@YSQVHSVaxid

‘a0003uyBunnosaxeLe}S0]aiaSMOUy

gd89podSdJsquanbasossyo01g
3D8podSA

LBSSPODSAMGOVW8P0DSAYY8P0DSA

Om3SVGYAGVHSXSLYSA

tlmare_~ASVYSQVHSXALYSA

|2P0OPslEYS||BeuLLesd

BuryajBuis-|3GOWBuryeng-0ACOWseve©AJOWS\UOIONISU]JOSMAIAS,dDOOH

LOOZ/PL/LL‘peyepdn

porcineaEEEISIESOSCESIISacanaanceoaacecasoaccoceeccaccsoecascacosccraaZVOSLWAREXXXXXO-NADZGL0dJequejaesyLo0g‘IequaydespzdovdANN(AdaLNSINNOOdsalvaLidsaLvdSLVYNISIO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257052

ATI Ex. 2106

IPR2023-00922

Page 141 of 223

ATI Ex. 2106
IPR2023-00922

Page 142 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| | 24 September, 2001 4 September, 20157 16 of 47i oNi -_

4, SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The reacl BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximurn logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the rée-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kept in a similar memory. The size of this memory is 192x128. The memory thus holds 128
texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 16 lines
(each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture state lines (or 384
bits). The driver sends 512 bits but the CP ignores the top 128 bits. It thus takes 12 clocks to write the two texture
states.

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 320*32 because it must hold 8 copies of the 32 dwords
of control flow constants and the loop construct constants must be aligned.

 ae aainter the lociwaladdrase forthe cone nlocl. i waste to update andthe tas 18 tienes

theCONST_DATA registerThe CONST_ADDR is aute-Incrementedon_bothreade-and writes to-the CONST_DATA
register-The constanl re-mapping lables for lexture state and ALU constants are logically register mapped for regular
mode and physically register mapped for RT operation.

5.2 Managementof the re-mapping tables
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
newone. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the twe state changes.

For this model to work, the requirement is that the physical memory MUST be at least twice as large as the logical
address space. In our case, since the logical address space is 512, the memory must he of sizes 1024 and above,

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPROUOsIO2C287PMAOS2:27PM SSeS

AMD1044_0257053

ATI Ex. 2106

IPR2023-00922

Page 142 of 223

ATI Ex. 2106
IPR2023-00922

Page 143 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXXKXX-REVA 17 of 47

_ Free List
silts, ——y

Context 0 => N

 | Renaming Table

~CurrenvLast|| |Context i
(8 rows of 16-8|| eri ;
bit physical => " Logical Address128 entries copy
in eight clocks) & Context

Physical
Address

 Global Register |Data Bus

Staging Data

Constants ' Buffer | > Physical
location <——_—_ | Memoryavailable i i . i
WRTR f —Staging Write Addr|

physical
address next

to physical
schedule address

for ready
deallac | for allocate|

Logical address i ~, Seq
Onthe peNN ConstantGlbRegBus _ aA _4 a | Requestwhen Ish are zero This !

first word of write , | Context |
Renaming Table Dirt |

for 1 Context yy |
Current/Last Logical i | Context &Physical i _L Logical

Address Address | Address Address —]er (Only | ditset | |
Le ‘cal de- | don't | |

Address|allocate allocate -—____| ifset) | or de| | allocate)| Renaming: table
N-Contexts

Copy Last held above to
Current Context onreceipt

of Set Constant for a
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry te current state.

Exhibit 2022. docR4G0_Sequencerdec 67798 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jo4), |Puetip4ih2G2 he LR/DYOz:27BM

AMD1044_0257054

ATI Ex. 2106

IPR2023-00922

Page 143 of 223

ATI Ex. 2106
IPR2023-00922

Page 144 of 223

 ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 20152Ni

R400 Sequencer Specification PAGE

18 of 47

Free LisFree
Address ¥ . Number of ertries

1 equals Max Number of
\~ | Physical Blocks. All Pointers start at z .

NTEleery etdroloruntout Renaming TableWitePtr can never pass each Coritext 0 => N

When a Logical otherAddress is written
that has been

 ~Current/Last
Context

(rons of 18-8

Contexd 0 rows of 16 - ¢ bit

|

| Logical Address

i
written before, bt cburninal physical => 728 entries copy in |

store the physical bit physical => eight clocks} i
adatess that was S < YTF 128 entries copy i & Contextallocated by that SS ptrto first physteat in eight clocks) | Context 7 | ontexLogical Address Ee oe addressthat is — :

Le S scheduled to be de é !
oe allocated but noty 6 |
Ee- oe yet de-allocate. @i Advanced each time i 1 i
2 ze a context Is freed by | Context N | L-» PhysicaiCe the number of by Addressa physical address |
es é NTA displaced by that !_ ptr to physical Context| address that will

—fp be used next ifthe init count fs
at mneaxirnurit

Address number of
te Allocate physicaladdress

Globai Register >
Data Bus Staging Dat

ing Data
Bute >Constants i !i Free |tocation <j i1 list | ss

available {pass Phys | Staging Write Addr|
WRTR Addressif | gre |

[Context |Dirty; |

hysical Dealloc |
aires Counts |
-. physical |

Sehedule address !
‘e-alloc ready
oe oc for allocate sLogical address ' | eg: Constant

On the | RequestGlbRegBus 5 " p | 4
whenIsb are zero This | |first word of write - Reset|Context i o

Renaming Table) “ni, Dirk ' |
for 1 Context on ny ' a L |
Current/Last Logical bucaical | | Context &Physi i oa i 1 Logical

Prysical Address|Address ; te >Address Address(Only Of setper Son"
: de- | don't !Logical ~

Addtess _| allocete | allocate| if set} | or de-
I [allocate) Renamingtable

Copy Last held above to
N-Contexte

Current Context on recieptof Set Corstant for a
-—_________ newcontext (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

ertry to current state.

Evhibit 2022. docR400_Sequenca.dos 67798 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisy

Puetip4ih2G2 MOSTOa:27PME

AMD1044_0257055

ATI Ex. 2106

IPR2023-00922

Page 144 of 223

ATI Ex. 2106
IPR2023-00922

Page 145 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2004 4 September, 20157 GEN-CXXXKX-REVA | 19 of 47
5.2.1 Dirty bits
Two sets of dirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero when ever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. [fit is set and the context dirly is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.2.2 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counten that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter,
Storage of a free list big enoughto store all physical block addresses.
Maintain three pointers for the free list that are reset lo zero. The first one we_will call write ptr. This pointer will

physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be calied stop ptr. The stop ptr pointer will be advanced by the number of address chunks
de-allocates when_a context finishes. The address between the stop ptr and write pir cannot be reused because
they are still in.use. But as soon as the context using then is dismissed the stop ptr will be advanced.

allocation as long as the read _pir does not equal the stop pir and the [FC is at its maximum count,
A-freeist block that would consist of a counter(calied the 1EFC-or initial Free Counter) that vould reset (6 zero-and

incremented:every: time-a chunk. ofphysicalmemory ig-used:until they-nave all-been-used-eence.This. counterAMedldh

free more physical fnemery jocationethan SA. have. Once recording‘address the pointer wil be. incremented to-walk
the.fraatietiike-&ring

5.2.3 De-allocate Block

This block will maintain a free physical address block count for each context, Vvhile in current context, a count shall
be maintainedspecifying how many clocks werewritten into thefreelist af thewrite_ptrpointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context, It is actually a
count of blocks in the orevious context that will no longer be used. This count will be used to advance the write pir
cointer io make available the sel of physical blocks freed when the orevious coniext was done. This allows the

discard or de-allocation of ar number of blooks jsin one clock,

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nosis 19-5PMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257056

ATI Ex. 2106

IPR2023-00922

Page 145 of 223

ATI Ex. 2106
IPR2023-00922

Page 146 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20157 20 of 47i i Ny

5.2.4 Operation of Incremental model
The basic operation of the model would start with the write ptr, slop ptr, read ptr pointers in the freelist set to zero

and the free list counter is set to zero. Also all the dirty bits and the revious context wil be initialized to zero, When

counter because its not at the max value, The data will be written into_physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set slart with physical addresa of 0. This process wil be repeated for any logical address that are noi
dirty until the context changes. [fa logical address is hit that hasits dirty bits set while in the same context, both dirt

address it replaced ‘inthe renaming iable would be entered at the write pir pointer, location on the free list anid the
write ptr will be incremented. The de-allocation counter for the previous context (sight) will be incremented. This as
set slates come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address bein
the free list at read ptr pointer ifread_otr |= to stop ptr.
Reset dirty set and Context dirly not. set. A new physical address is allocated, the ohysical address in the

thelastcontext, EEE
3.) Gontext dirty is set then the data will be written inte the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and sto _ The command strearn will keeo a count

the previous context that left, Unit te zero) if they differ than the older context will no longer be referenced and thus
can be ce-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop pir pointer, This will make all the physical addresses used by this context available to the read pir
allocate pointer for future aliocation.

itThis device allows representation of multiple contexts of constants data with N copies of the logical address space,
also allows the second context to be represented as the first set plus some new additional data by just storing the
detia's. ht allows memory to be efficiently used and when the constants updates are small if can stere multiple

context, However, if the updates are large, jess contexis willbe stored and potentially performance will be degraded.
Atewreiwi st perform as well a8 2 ring meu in this case.cemasiccperaionone mes

be repeated jorany.logical address that-aare not dirty unt the contextchanges. tha logical "aadrece |48."hit “hat has its
ony.bits setawhlie inthegame Context, -both-ditybis-would be.Set, 60-otheewedata.Wil -be-overwritentothelast

updated. Aline will be allocated of the free-list counter or-"> —>|Formatted: Bullets and Numbering

Exhibit 2029 docR400_Sequencerdec 67768 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nosis 1257PMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257057

ATI Ex. 2106

IPR2023-00922

Page 146 of 223

ATI Ex. 2106
IPR2023-00922

Page 147 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 S5eptember, 2001 4 September, 20757 GEN-CXXXXX-REVA | 21 0f 47! f i

Although 4 ‘wilsti it performa26.5 wall28-8ing couldi4A this.GaSe.

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires fram the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
betweenthe time the sequenceris loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RLX.R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.% into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64°9 bits = 1152 bits.

54 Real Time Commands

The real time commands constants are written by the CP using the CONSTDATART and-GCONST.ADDR_RT
GPReregister mapped registers allocaied for RT. It works is the same way than when dealing with regular constant
loads BUT in this case the CP is not sending a logical address but rather a physical address and the reads are not
passing thru the re-mapping table but are directly read from the memory. The boundary between the two zonesis
defined by the CONST_EO_RT control register.

5.5 Constant Waterfalling “
incorder to have a reasonable perforrnance in the case of constant store indexing using the address register, we are

ging to have the possibility of using the physical memo ort for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall moce of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent te the
sequencer)beforeit can allowthe first vector ofpixelsor verticesof the state togo thru the ALUs. Todose, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last renderstate is written fo memo
and clears the bit whenevera state is freed.

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPMOU04102G2:57PM 4208/01O22?RM

ioas| Formatted: Bullets and Numbering

AMD1044_0257058

ATI Ex. 2106

IPR2023-00922

Page 147 of 223

ATI Ex. 2106
IPR2023-00922

Page 148 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 22 of 47SA

CONST_EO_RT

RT SECTON
(ReadsWrites are direct)

te—

REGULAR SECTION
(Reads/\Writes are passing

thru a remaping table)

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

Wehave a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examplesof control flow programs are located in the R400 prograrmming guide document.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257059

ATI Ex. 2106

IPR2023-00922

Page 148 of 223

ATI Ex. 2106
IPR2023-00922

Page 149 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20157 GEN-CXRXKK-REVA 23 of 47mn _ wit
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] Hf eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execuite
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump : : eo
Conditionnal Call & Se : : HesReturn : : : : : :
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified numberofinstructionsin instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberofinstructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
ConditionnalCall jumps to an address and pushes the |P counter on the stack if the conditionis met. On the return
instruction, the IP is popped from the stack.
Conditional_execute_or_Jump executes a biock of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructionsif all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jurmps jumps to an addressif the condition is met.
NOPis a reguiar NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsince there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Alsoif the jurnp is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or canditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

Note that whenevera field is marked as RESERVED,it is assumed thatall the bits of the field are cleared (0).

; Execute |

47 46... 42 | 41... 24 23...12 [11.0 oe
Addressing | 00001 | RESERVED Instruction count | Exec Address |.

Execute up to 4k instructions at the specified address in the instruction memory.
NOP

47 [46... 42 | 41... 0 [oe

Exhibit 2022. docR4G0_Sequencerdec 67798 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMOU04/02O257RMBOBO}O27BM

AMD1044_0257060

ATI Ex. 2106

IPR2023-00922

Page 149 of 223

ATI Ex. 2106
IPR2023-00922

Page 150 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
 | 24 September, 2001 4 September, 20152 24 of 47_ - J ~ Sb4 4 sexes

| Addressing | 00010 | RESERVED

This is a regular NOP.

Conditional_Execute

 | 47 46... 42 ls 44 | 40... 33 32 31... 24 23.12 | 11...0Addressing 00011 | RESERVED | Boolean Condition|RESERVED|Instruction count|Exec Address || address ' | |

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditional_Execute_Predicates |

47 | 48 4e| 4 35 | 34... 33 | 32 31...24 | 23...12 11...0 peAdcressing | 60166 | RESERVED | Predicate | Candition RESERVED Instruction count | Exec Address | :| |:
|
| vector |

Check the AND/OR of all current predicate bits. if AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid.

 ; LoopStart |

47 42 | (41.417 16...12 — 11...0 |

“S001 | RESERVED loop ID Jump addressAddressing |
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

 LoopEnd

47 [46.42 | 41... 17 16... 12 | 11....0
| 00141 RESERVED loop ID : Start address

Addressing | |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACKto the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

GonditionnalCall

| |

47. ——C«| «4G Ae 44... | 342.335 32 31... 2 fo 11..0 FO_ B42 | i i be
| 01000 | RESERVED "Predicate | Condition RESERVED Jump address |

Addressing | stor |bo4

ifthe condition is met, dumps to the specified address and pushes the contro! flow program counter on the stack.

Return

146... 42 | 41...0 | Es

| 01001 RESERVED ba :

47

Addressing

Pops the topmost address from the stack and jumpsto that address.If nothing is on the stack, the program will just
continue to the next instruction.

Evhibit 2022. docR400_Sequenca.dos 67798 Bytas*** ©@ ATI Confidential. Reference Copyright Notice on Cover Page © *** senansisyPMOU04/02O257RMBOBO}O27BM :

AMD1044_0257061

ATI Ex. 2106

IPR2023-00922

Page 150 of 223

ATI Ex. 2106
IPR2023-00922

Page 151 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20757 GEN-CAXKXX-REVA 25 of 47a - neeeeccens _ L a eis Ad _ — _ |

o1010 RESERVED|Boolean Condition FYY only RESERVED Jump address
Addressing address |
If condition met, jurnps to the address. FORVVARD jumponly allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

ConditionalEnd_of_Clause
47 | 46 ... 42 i_ A4 40... 33 5 32 31.90

| 01011 RESERVED|Boolean Condition RESERVEDAddressing address |
This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of Clause
47 | 46... 42 | 41...0

 Addressing|01071|—~—~<CSCSstC‘“Cs~SstSRESERVEDS
Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicateinstructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PREDSETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PREDSETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_8#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the resuit is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_# - SETEO
PRED_SETE1_#-~SETE1

The export is a single bit - 1 or O thatis sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit precicate vectors (in fact 8 sets because we interleave two programsbut only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbittells us if
we execute on 1 or O. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.4 HW Detection of PV.PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257062

ATI Ex. 2106

IPR2023-00922

Page 151 of 223

ATI Ex. 2106
IPR2023-00922

Page 152 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20157 26 of 47i Aa

comparing the read address anc the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register’
0 1 ‘relative register
4 0 ‘previous vector’
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

The index is going to return 0 if it is out of the range. VVe loop until loop_iterator = loop_count. Loop_step is a signed
value [-128...127].

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elemenis in the vector have a
value of one (thus we have to do the texture fetches for the whole vector}. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the numberoferrors

The sequencerwill detect the following groups oferrors:
- count overflow
~LDB-@rrOr
+elative jurip- address > size of thecontre flow sregram

relative jump addresslength oftheshaderprogram
~-~constant overflow

~ tegister overflow

~oal-siack
~caliwitheleck-full

return-with stack emply
Compiler recognizableerrors.
_rdumeerrors

 4 2.055) Formatted: Bullets and Numbering

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257063

ATI Ex. 2106

IPR2023-00922

Page 152 of 223

ATI Ex. 2106
IPR2023-00922

Page 153 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24S5eptember, 2001 4 September, 20157 GEN-CXXAXX-REVA | 27 of 47| = |
relative jurnp address > size of the control flow program
relative jump address > length of the shader program

~ call stack
call with stack full
return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-caselimits.

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shaderinstructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer(even if they occur before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEforpixels.

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2sPMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257064

ATI Ex. 2106

IPR2023-00922

Page 153 of 223

ATI Ex. 2106
IPR2023-00922

Page 154 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
28 of 47 24 September, 2001 4 September, 20157se, Ny

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos frorn 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinstt Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hices the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

ink 2022.docRAQO_Sequencerdes 67788 Bytwa*** © ATI Confidential. Reference Copyright Notice on Cover Page © ©* nonce jo57PMOU04102G2: 57PM 4208/01O22?RM

AMD1044_0257065

ATI Ex. 2106

IPR2023-00922

Page 154 of 223

ATI Ex. 2106
IPR2023-00922

Page 155 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA | 29 of 471 fo i
12. Handling Stalls
When the outputfile is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. if the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Rencer State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

is. LJ Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of lJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit}. The interpolation is done at a different precision across the 2x2. The upper lefi pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how wedo it:

Assuming POis the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(O0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AOU = I()-1(0)

AOL = J) - JO)

AO2l = /(2)- 0) PA

AOS = J(2)- J)

AOBI = 1(3)— 1(0)

AB = J(3)— J) P2 P3

P0=C +1(0)*(A-C)+J(0)*(B-C)

Pl=P0+A0U*(A-C)+A01L*(B-C)

P2= PO+A02I *(A—C) + A027 *(B-C)

P3 = PO+A03f *(4—C) + A038*(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Muttiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257066

ATI Ex. 2106

IPR2023-00922

Page 155 of 223

ATI Ex. 2106
IPR2023-00922

Page 156 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 20157 30 of 47

| FORMAT OF PO's lJ: Mantissa 20 Exp 4 for 1 + SignMantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 20*2 + 86 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constantattributes
Becauseofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that if A= Band B=C and C =A, then P0,1,2,3=A. Since one or more ofthe IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
PO,1,2,3 = A;

else if (| = 0) or (J = 0)) and
(J = 0) or (1-I-J = 0)) and
((1-J-1 = Q) or (7 = 0))) {

f@ = Of
PO=A;

belse if(J '= 0) {
Po = B:

} else {
Po=C;

/irest of the quad interpolated normally
}
else
{

normal interpolation
}

16. -Staging Registers
inorder for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be allaned with the parameter cache memory arrangement, Given the following group of vertices sent by
theVGT:

0123456785 1011 1213 14151 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
40 41 42 43 44 45 AG 47 |) 48 49 SO 51 52 53 S54 59 58 57 58 59 60 61 62 63

32,33 34 35 36 37 38 39

The sequencer will re-arrange themin this fashion:

0123 16 17 18 19 32 33 34 35 48 49 50 511) 456 7 20 21 22 25 36 37 38 39 52 BS B4 55 8 8 1011 24 25 26 27
40 41 42 43 56 5758 59 | 12 1314 15 28 29 30 31 44 45 4647 60 61 82 63

The||markers show the SP divisions. In the event_a shader pipe is broken, the VGTwill send padding to account for
the missing pipe, For example, if SP1 is broken, vertices 45 6 7 20 27 22 23 36 3/7 38 33 52 53 54 55 will still be sent
by the VGT to the SQ BUT willnot be
VGT.

PMOU04102G2:57PM 4208/01O22?RM

processedby the SP and thus should be considered invalid(by the SUand

a ed Formatted: Bullets and NumberingoF me * : . : oe

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poy

AMD1044_0257067

ATI Ex. 2106

IPR2023-00922

Page 156 of 223

ATI Ex. 2106
IPR2023-00922

Page 157 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXXXKX-REVA 31 of 47_—— —— i re
The most straightforward, non-cempressed interface method would be to convert, in the VGT, the data to 32-bit
floating point orior to transmission to the VSISRs. In this scenario, the dala would be tranarnitied to (and slored in) the
VSISRs in full 32-bit floatin, oint, This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3.072 bits of storage across the VSISRs. This interface is illustrated in
Figure 2. The area of the fixed-to-float converters and the VSISKsfor this methed is roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 1.

118342 60.57813 uper bit

 Areaof 96x8-deep Latch Memory

Area of 24-bit Fix-to-float Converter 4712.7 per converter

Block Quantity Area

F2F 3 14136
8x96 Latch 16 744384

Figure l:Area Estimate for VGTto Shader Interface

VO BLOCK
(IN PA)

SHADER
SEQUENCER|—

VECTOR ENGINE

VEOTOR ENGINE

Figure 2:VGTto Shader Interface

Exhibit 2022. docR40G_Sequencerdec 67798 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © *** pagans 19.5PMOU04/02O257RMBOBO}O27BM

AMD1044_0257068

ATI Ex. 2106

IPR2023-00922

Page 157 of 223

ATI Ex. 2106
IPR2023-00922

Page 158 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 32 of 47oNi -_

__-(Fotmatted:ietsndnamierog+)
46-17, The parameter cache ee _
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories._The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memary.

| MEMORY NUMBER | ADDRESS |
4 bits | 7 bits '

The PA generates the parameter cache addresses as ihe positions comes from the SQ. All it needs to do is keep a
Current Location pointer (7 bits only) and as the positions comes increment the memory number. When the memo

number fleld wraps around, the PA incremenis the Current Location by VS EXPORT COUNT 6 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with anc ihe vertex shader is exporting 8

OOB00000000 the second one 00070000000, third one 00100000000 and so on up to 11170000000. Then the next==
sition reecived (the 17, is going to have the address 00000001000, ihe 18” 00010001009,the 19" 00100001000 = = | Farmatted

 is

and so on, The Current location isNEVER reset BUT on chip resets. The only thing fo be careful about is that ifthe “
SX doesn't send you a full group of positions (<64) then you need to fil tne address space so thal the next group x.
starts correctly aligned (for exarnple if you receive only 33 positions then you need to add 1*VS EXPORT COUNT 6 : Formatted
to Current Location and resel the memory count to 0 before the next veclor begins).

 Formatted

m _- {[Formetted: Bulets andHumberng
17.18, Vertex position exporting ce Slee
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the export is going to occur at ALU clause7 if unset position export occurs at clause 3.

48-19, Exporting Arbitration
S “| Formatted: Bullets and Numbering“7

Any iype of exporting clause can be co-isaued. The sequencer will have to make sure back lo back memory exporis
ition/strai exports) are interleaved with NOPs as we don't have the bandwidth to service them at full

Here-are-therules-for-co-iesuing-experiing ALU clauses,

Position exporis-andposition exporis-cannol-be-co-issued. en
2Position exposand-memereqoriscannot be-co-lesued. =
Peston expors-and2/Golerexpors-cannel-_be-ce-issued-

Formatted: Bullets and Numbering

8)Parameter-exports-and- parameter exporis-CAN-be-co-lssued-
S)Parameter-exports-and-memory-exporis-CANbe-co-issued.

19.20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereisalist of all possible export modes:

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPROUOsIO2C287PMAOS2:27PM SSeS

AMD1044_0257069

ATI Ex. 2106

IPR2023-00922

Page 158 of 223

ATI Ex. 2106
IPR2023-00922

Page 159 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20137 GEN-CoO000¢-REVA | 33 of 47e | ray i

49.120.1Vertex Shading To
0:15 -16 parameter cache :
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 -12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - sprite size export that goes with position export

(point_h,point_w,edgeflag, misc)
63 - position

19.220.2 Pixel Shading “
0 - Color for buffer 0 (primary)
4 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
4:7 - Empty
8 - Buffer 0 Color/Fog (primary)
9 - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
42:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.
44:47 - Empty
48:59 -12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (2 exported to ‘alpha’ component)

20-21. Special Interpolation modes

20.-121.1Real time commands

We are unable to use the pararneter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing orly two interpolated scalars per cycle, the only prablem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME.

20.221.2Sprites/ XY screen coordinates/ FB information “fo
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_|O register Gm SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereis a list of all the modes and how theyinteract
together:

<>] Formatted: Bullets and Nurnbering

7] Formatted: Bullets and Numbering

= 4 Formatted: Bullets and Numbering

2] Formatted: Bullets and Numbering

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257070

ATI Ex. 2106

IPR2023-00922

Page 159 of 223

ATI Ex. 2106
IPR2023-00922

Page 160 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September 201 Bz 34 of 47

Gen.stiisabit taken from the interface between the SC and the SQ. This is the MSB ofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_|0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_]l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_lO disable, snd_xy enable, no gen_st — 10 = No modification
Param_Gen_lO disable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — IO = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — IO = garbage, garbage,s,t
Param_Gen_|0 enable, snd_xy enable, no gen_st — 10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, s,t

20-321.3_ Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be abie to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2 pass.
The count is always generated in the sare way butit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer's going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented, Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

20-3-421.35.1Vertex shaders =
In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x fleld of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

In thecase of pixel shaders, if GEN_INDEX is set and Params Gen_[0 is enabled, the data will be put in the x field of
the 2™register (Rix), else if GEN INDEX is set the data will be put inte the x field of the iresister(ROM.

AUTO INTERPOLATORSCOUNT
STGt | |

¥ | |

AUTO COUNT | goooca |

 The Auto Count Value is
broadcast to all GPRs.It is

loaded into a register wich has
its LSBs hardwired to the

GPR number(6 thru 63). Then
if GEN_ INDEXis high, the
mux selects the auto-count

value and it is loaded inte the
GPRsto be either used to

retrieve data using the TP or
GPRO sent to the SX forthe RB touse it to write the data to

memory

Exhibit 2029 docR400_Sequencerdec 67768 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nosis 1257PMOU04102G2:57PM 4208/01O22?RM

cco =| Formatted: Bullets and Numbering

= a Formatted: Bullets and Numbering

20-3-221.3.2Pixel shaders SE

aed Formatted

AMD1044_0257071

ATI Ex. 2106

IPR2023-00922

Page 160 of 223

ATI Ex. 2106
IPR2023-00922

Page 161 of 223

| 24 September, 2001 4 September, 20154 GEN-CoOOOO-REVA | 35 0f 47o. |
| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24.92. State management *
Every clock, the sequencer will report to the CP the oldest siates still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21.122.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to O and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the 5C_SQ_new_vector bit asserted, the sequencerwill first check if
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

22.23, AY Adcress imporis
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequenceris going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted vaiues to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.224.220.2 for details on how to control the interpolation in this mode.

22.423.1 Vertex indexes imports .
In order to import vertex indexes, we have 64x2x96 16 &x96 staging registers. These are loaded one Jingat a time by
the VGTblock (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

23-24 Registers

23.124.1 Control

REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY_policy of the arbitration between vertexes and pixels

INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION_ADDR This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
GONSTANT.DATA-
GCONSTANTADBR

This is- wheretheCP-pute-constant-data(32bits}
-This--is-where-the-CP—putsthe—ogical_consiant-address—(O-bisJCONSTANTS

5i2*4 ALU constants + 32°6 Texture stale 32 bits registers (logicall
mapped)

INSTRUCTION_ADDR_RT This is where the CP puts the base address of the instruction writes and type for
Real Time (auto-incremented on reads/writes)

INSTRUCTION_DATA_RT This is where the CP puts the actual data going to the instruction memory for
Real Time

GONSTANT.DATA-RT---This-is-where the-GP-ouie-consiant-dataforRealTime(32-biis}

 Formatted: Bullets and Numbering

 _pes= =| Formatted: Bullets and Numbering

ey | Formatted: Bullets and Numbering

4 Formatted: Bullets and Numbering

‘2 -| Formatted: Bullets and Numbering

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257072

ATI Ex. 2106

IPR2023-00922

Page 161 of 223

ATI Ex. 2106
IPR2023-00922

Page 162 of 223

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 20157 36 of 47ary. C “ey ~ es i £4 CQ

He &

bHSCONSTANTS RT 286*4 ALU constants + 32*°6 texture states? (physically
mapped)
This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EOQ_RT). The re-mapping table operates on the rest of the memory
Controls whether or not we are exporting position from clause 3. If set, position
exports occurat clause 7.

CONSTANT_EO_RT

EXPORT_LATE

23.2942 Context

VS_FETCH_{0...7}

ae “>| Formatted: Bullets and Numbering
eight 8 bit pointers to the location where each clauses control program is located

VS_ALU_{0...7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0...7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0...7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader(# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntitinstructions)
PS_NUM_REG number of GPRsto allocate for pixel shader programs
VS_NUM_REG number of GPRsto allocate for vertex shader programs
PARAMSHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal made
txxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.
which of the last 6 ALU clauses is exporting (multipass only)
0: position (1 vector), 1: position @ vectors), 3:multipass

PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MASK
VS_EXPORT_MODE
VS_EXPORT
COUNT{0...6}

Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode(per clause)

PARAM_GEN_IO Do we overwrite or not the parameter 0 with XY data and generated T and 3 values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R4+-RO-1 for pixel

shaders and R2-R2for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
256 boolean bits
32x8 bit counters (numberof times we traverse the loop)
32x8 bit counters (init value used in index computation)
32x8 bit counters (step value used in index computation)

CF_BOOLEANS
CF_LOOP_COUNT
CF_LOOP_START
CF_LOOP_STEP

24.25. DEBUG Registers Oo

24.125 1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2

Exhibit 2029 docR400_Sequencerdec 67768 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nosis 1257PROUOsIO2C287PMAOS2:27PM :

AMD1044_0257073

ATI Ex. 2106

IPR2023-00922

Page 162 of 223

ATI Ex. 2106
IPR2023-00922

Page 163 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 20157 GEN-CXXARX-REVA | 37 of 47ce “chin |

DB_CLAUSE
_MODE_ALU_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0...7}

25-26, Interfaces

25-426.1 External interfaces

clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

Whenever an x is used, it means that the bus is broadcast to all units of the samme name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the sameinformation to all SP instances.

2$-4+426.1.1 SC to SQ: i/ Control bus
This is the control information sent to the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXYis asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the sameprimitive, all quads of a vector are from the same
renderstate.

Name Direction Bits | Description
SC_SQ_g_wr_mask | SC-+SQ 4 | Quad Write maskleft to right
8C_80lod_correct 8C-80 24 | LOD correction per quad (6 bits per quad)
$C_3Q_flat_verlex 8C8Q 2 | Provoking vertex for flat shading
SC_SQ_param_ptrO | S$C>SQ L11 | P Store pointer for vertex 0
SC_SQ_param_ptri SC—-SQ 11._| P Store pointer for vertex 1
SC_SQ_param_ptr2 | SC-—-8Q (44. P Store poirter for vertex 2
SC_SQ_end_of_vect SC—SQ 1 | End ofthe vector .
SC_SQ_store_dealloc | $C—SQ 1 | Deallocation token for the P Store
5C_SQ_state SC—SQ 3 | State/constant pointer
SC_SQ_valid_pixe! | $8C-—SO 146 | Valid bits forall pixels _ .
SC_SQ_nullprim SC-—8Q 41 i Null Primitive (for PC deallocationpurposes)
SC_SQ_end_of_prim |SC-8Q 1 | End Of the primitive
SC_SQ_send_xy SC-SQ 1 | Sending XY information [XY information is going to be

| sent on the next clock]
SC_SQ_prim_type S080 3 | Real time command need to load tex cords from

_alternate buffer. Line AA, Point AA and Sprite reads
| their pararneters from GEN_T and GEN_S GPRs.
| 000 : Normal
! O11 : Real Time
| 100: Line AA

| | 101: Point AA
fe | | 110 : Sprite

SC_SQ_new_vecior sC—SQ 1 | This primitive comes from a new vector of vertices.
| Make sure that the corresponding vertex shader has
_ finished before starting the group of pixels.

|8C_SQ_RTRn SQ—-SC, 1Stalls thePAinnelocks
8C_SO_RTS _SC—SQ SC ready to send data

23-+-226.1.2 SQ to SP: Interpolator bus *

Name _ | Direction |Bits | Description
$Q_SPx_interp_prim_type SQ >SPx 3 | Type of the primitive

| OOO : Normal
| 011: Real Time
| 100: Line AA
| 101: Point AA

Exhibit 2022.docR40G_Secuoncerdec 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © »*PMOUO4(022567PM 42/06/0102:27RM

 10 : Sprite

GaO4i18 12:87

ae a Formatted: Bullets and Numbering

=| Formatted: Bullets and Numbering

| Se " Formatted: Bullets and Numbering

AMD1044_0257074

ATI Ex. 2106

IPR2023-00922

Page 163 of 223

ATI Ex. 2106
IPR2023-00922

Page 164 of 223

ORIGINATE DATE EDIT DATE

| 24 September, 2001 4 September, 20157LA

PAGE

38 of 47
R400 SequencerSpecification

| SQ_SPx_interp_flat_vix SQ—SPx 2 | Provoking vertex for flat shading
8Q_SPx_interp_fiat_gouraud | SQ--SPx 4 | Flat or gouraud shading __
SQ_SPx_interp_cyl_wrap SQSPx 4 | Wich parameter needsto be cylindrical wrapped
SQ_SPx_interp_ijline | SQ >SPx i _ Line in the IJ/XY buffer to use to interpolate
5Q_SPx_interp_buff_swap | SQ>SPx 4 _ Swap the |J/XY buffers at the end of the interpolation
8Q_SPx_interp_gen_l0 SQ—-SPx 4 | Generate 10 or not. This tells the interpolators not to

| | use the parameter cache but rather overwrite the data
| | _with interpolated 1 and 0. Overwrite if gen_I0 is high.

*

This-interfaceis-synchronizged-with-the_Interpelater-bus.This-contrels the_inpul-muxio-the-GPRe.The-three-types-of
date-are:-generatedindex, imersoiaied-data,verex-index-dala-(eoming-rom-the-slaging-regisiers).

23-1-426.13 SQ to SP: Parameter Cache Read contro! bus “

The four following interfaces (SQ-SP, SQ—-5X,SP—SxX and SX—Interpolators) are all SYNCHRONIZED together.

Name [Direction |Bits | Description

SQ_SPxptro LPointerofPO
SQ SPx_ ptr’ . | Painter of PC
$Q_SPx_ptr2 ; Pointer of PC

$Q_SPOread_ena _ Read enables for the 4 memorigsin the SPO

$Q_SP1 reacd_ena | Read enables for the 4 memoriesin the SP1

SQ_SP2_read_ena

_ Read enables for the 4 memoriesin the SP2

$Q_SP3_read_ena | SQ—SP3 | _Read enables for the 4 memories in the SP3

25-+-326.1.4 SQ to SX: Parameter Cache Mux control Bus -

Name | Direction [Bits _ Description .

SOSmu { SQ>S%A Mux control for PC (4 MSbsofPointer)$Q_SXx_mux1 | SQ--SXx 14 ux contral for PC (4 M&bsof Pointer)
SQ_SxXx_mux2 | SO-»SXx L4 | Mux contral for PC (4 MSbs of Pointer}

23-4.626.1.5 SQ te SP: Slaging Register Data
Thisisa broadcast bus that sendstheVSISK informationto the stagingregisters of the shader pipes.

Name Direction Bits | Description

|| SQ_SPx0_vgt_vsisr_data | SQ--SPx0 | 86 | Pointers of indexes or HOS surface information
| 50_SP0x_vgt_vsisr_double | SQ—>SPxd. 14 Oo: Normal96 bits per vert 1: double 192 bits per vert
“SQ_SP0_data_valid: SQ>SPO (1 Dataisvalid
SQ_SP1_data_valid | $Q->SP1 14 | Data is valid
SQ_SP2_ data valid SQ—SP2 1 _ Data is valid

SQ_SP3_data_valid | SQ—SP3 [1 | Data is valid

254+726.1.6 PA to SQ: Vertex interface

23-4.7-126,1.6.1 Interface Signal Table

*

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2022 docR400_Sequencer.dec
PMOU04102G2:57PM 4208/01O22?RM

2 = | Formatted: Bullets and Numbering

 25) Formatted: Bullets and Numbering

us <4 Formatted: Bullets and Numbering

eee Formatted: Bullets and Numbering

wee { Formatted: Bullets and Numbering

s77e8 Byaer** © AT Confidential. Reference Copyright Notice on Cover Page © * poosis i257)

AMD1044_0257075

ATI Ex. 2106

IPR2023-00922

Page 164 of 223

ATI Ex. 2106
IPR2023-00922

Page 165 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CAXXKA-REVA 39 of 47a SAAB AA

| Bits[|Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert __ ;
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

; data, "end_of_vector" is set on the second vector) |
PA_SQ_vgt_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

“PA _SQ_vgt end of vector” is high.
PA_SQ_vot_send Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

interface handshaking) SESE
$Q_PA_votrtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface|oo

handshaking) :

 25.1.7.226.1.6.2. Interface Diagrams +|-~(Formatted: Bullets and Numbering)

Exhibit 2022. docR4G0_Sequencerdec 67798 Bytas*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joosnsPMOU04/02O257RMBOBO}O27BM

AMD1044_0257076

ATI Ex. 2106

IPR2023-00922

Page 165 of 223

ATI Ex. 2106
IPR2023-00922

Page 166 of 223

MALOCOPOUTNATELCOPOG26C1STPOBO,

LSUS

YSONSMOSSHaqVvHS

TWIRELVANeaddoAATLOaLOdd

——#

ALaWa

 xxx@OBEJBAODUOBO1JONWBUAdODsoudisjay‘jENUSPYUSD[LY@weve06220

TeseguyeyaSswad

 YadaaiseXLOL

§HIALODUSTBAvWLYdUSLEA

Ly3°OPAqoVvd

uoijeayioadsuaouenbesoor
ST244

TOlD8AJOPuaIDA
 Say

ZGLO0sequigjaesalvdLids

ET[imeem
copusnisabeg=porysopZENEINS

@wlancdWSisAGWLWMBSA

LO0Z‘“IequiaydespzSaLVGSLYNISIYO
LDA

AMD1044_0257077

ATI Ex. 2106

IPR2023-00922

Page 166 of 223

ATI Ex. 2106
IPR2023-00922

Page 167 of 223

WeaLeotoreMeTNTSCOCOOONLSCTSPOOL®36ed1J9AODUOBDdIION1461AdoDOIUDISION"[ENUSPYUOD[LY@wxtMaeesl9—sepssonenbag“goresoyVEN2THT “SOSLSIT]JOABSVo10]WEIBEIG[EdbO7palejeqTTSindy
NOISSINSNWaALSdOLSdadaNgs

NOISSIASNVaALSLUVLS-ddaaATaHOdd

[

“LLL

n

Lvoledovd

WAREXXXXXO-NADWON(AdaLNSWNOOd

a|

NOISSINSNVaLsdoilsdA

THog

COnnnnnnne ponerFPOeerere2102Jequisjdas7aLvd1103

Lo0g‘IequaydespzaLvdSLVYNISIO
WaOdaALIWHO41LNOOFLALOVIVaOdraywawa?yaNnas€Wivd€aNagsZWawaZzaNasSLdLOAZulaosTuyOs0wayOsalaOs

Ty|

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257078

ATI Ex. 2106

IPR2023-00922

Page 167 of 223

ATI Ex. 2106
IPR2023-00922

Page 168 of 223

| ORIGINATE DATE
| 24 September, 2001 4 i =

25-1-826.1.7 SQ te CP: Slate report

EDIT DATE

September, 20152£3

PAGE

42 of 47
R400 Sequencer Specification

a275 Formatted: Bullets and Numbering

Name Direction |Bits | Description

 |SQ_CP_vitx_stateLS
SQ_CP_pix_state

25-4+9261.8 SQ to SX: Control bus

 _| Oldest vertex state still in the pipe
_ Oldest pixel state still in the pipe

oe “4 Formatted: Bullets and Numbering

| Name _ Direction | Bits | Description :

SQ_SXx_exp_Pixel SQ >SXx 1 i 1: Pixel| O: Vertex

SQ_SXx_exp_start | SQ->8Xx 14 | Raised to indicate that the SQis starting an export
SQ_SXx_exp_Clause SQ—S8xXx 3 _ Clause number, which is needed for vertex clauses
SQ_SXx_exp_State | $Q->SXx [3 | State ID, which is needed for vertex clauses

Thesefields are sent synchronously with SP export data, described in SPO—SX0Ointerface
{ISSUE: Where are the PC pointers}

| 23-4+4026.1.9SX to SQ: Output file contro! que oe Formatted: Bullets and Numbering

Name |Direction | Bits | Description ;
SXx_SQ_Export_count_rdy SXx-5Q | 1 Raised by SX0 to indicate that the following two fields

_ reflect the result of the most recent export
5X%x_SQ_ExportPosition SXx-5Q | i | Specifies whether there is room for anotherposition.
SxXx_SQ_Export_Buffer SXx8Q 7 | Specifies the space available in the output buffers.

| 0: buffers are full
| 1: 2K-bits available (32-bits for each of the 64
| pixels in a clause)

| 64: 128K-bits available (16 128-bit entries for each of
| 64 pixels)
| 65-127: RESERVED

234+H26.1.10 SQ to TP: Contro/ bus
“ oe Formatted: Bullets and ‘Numbering _ : }

Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the addressin the register file where to write
the fetch return data.

Name Direction Bits|Description
TPx SQ data rey | TPx— SQ i Data ready
TPx_SQ_ clause num TPx— SQ 3 Clause number
$Q_TPx_const SQ >TPx 6448|Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ _>TPx 24 Fetch instruction sent over 4 clocks

SQ_TPx_end ofclause | SQ>TPx i Last instruction of the clause
SQ_TPx_phase SQ—TPx 2 Write phase signal
SQ_TPQlod_correct SQTPO {8 | LOD correct 3 bits per camp 2 components per quad
SQ_TPO_pmask | SQ—TPO 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ—TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask | SQ-»TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ—>TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask | SQ-»TP2 4 Pixel mask 1 bit per pixel _ ;
SQ_TP3_lod_correct SQ—TPS 6 LODcorrect 3 bits per comp 2 cormponents per quad
SQ_TP3pmask | SQ-TP3 4 Pixel mask 1 bit per pixel
$Q_TPx_clause_num SQ—TPx 3 Clause number
SQ_TPx_write_gerindex | SQ->TPx 7 | Index into Register file for write of returned Fetch Data

Exhibit 2022 docR400_Sequencer.dec
PMOU04102G2:57PM 4208/01O22?RMs77e8 Byaer** © AT Confidential. Reference Copyright Notice on Cover Page © * poosis i257)

AMD1044_0257079

ATI Ex. 2106

IPR2023-00922

Page 168 of 223

ATI Ex. 2106
IPR2023-00922

Page 169 of 223

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA | 43 of 47ae ann ! ia :

23-14226.1.11 TP to SQ: Texture stall ”

The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

Name —‘(isiszY[Direction _ | Bits| Description _
TP_SQ_fetch_stall LTP-» SQ im | Do not send more texture requestif asserted

23-4+4326.1.12 SQ to SP: Texture stall

Name | Direction | Bits | DescriptionSQ_SPx_fetch_stall | SQ—>SPx 1 _ Do not send more texture requestif asserted

2314426113 SQ to SP: GPR, anc-Parameter cache control and auto counter “|
Name|Direction Bits|Description cae
SQ_SPx_wr_addr SQ—SPx 7 Write address
SQ_SPx_gpr_rd_addr | SQ->SPx |7 | Read address
SQ_SPx_gpr_re_addr SQ—SPx 1 Read Enabie
SQ_SPx_gpr_we_addr SQ->SPx i _ Write Enable for the GPRs
SQ_SPx_gpr_phase_mux | SQ>SPx 2 The phase mux_(arbitrates between inputs, ALU SRC

teadsandwrites)

 SQ_SPx_channel_mask SQ—SPx 4 The channel mask
$Q_ SPO pixel_mask | SQ-»SPO 4 | The pixel mask
SQ_SP1_pixel_mask SQ—SP1 4 The pixel mask
$Q_SP2_pixel_mask | $Q--5P2 4 | The pixel mask
$Q_SP3_pixel_mask SQ—SP3 4 | The pixel mask
$Q_SPx_pe_we_addr _SQ-+SPx 1 | Write Enable for the parameter caches
SG SPs apr input mux $O--SPx 2 When the phase mux_selects the inouts this tells from

which source to read from: Interpolated data, VTAO
ee VIX autogencounter. ceeee

SQ_SFsxindexcount | $Q-2SPx 127|index count, common for all shaderpipes

Exhibit 2022 docR400_Secuencer.dec 67798 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »**PMOUO4(022567PM 42/06/0102:27RM

GaO4i18 12:87

-<='5| Formatted: Bullets and Numbering

“ 2a] Formatted: Bullets and Numbering

| =. +{ Formatted: Bullets and Numbering :

AMD1044_0257080

ATI Ex. 2106

IPR2023-00922

Page 169 of 223

ATI Ex. 2106
IPR2023-00922

Page 170 of 223

| ORIGINATE DATE
t =

EDIT DATE

24 September, 2001 4 September, 2015ey Zz

PAGE

44 of 47
R400 Sequencer Specification

qo | Fermatted: Bullets and Numbering

Name Direction
Bits | Description _

$Q_SPx_ instruct, start SQ—SPx 1 Instruction start

$Q_5SP_instruct “SQ—>SPx 20 Instruction sent over 4 clocks
$Q_SPx_stall $Q >SPx 1 _ Stall signal

SQ_SPx_export_count SQ >SPx 3 Each set of four pixels or vectors is exported over
eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_expori_last “SQ—SPx | Asserted on the first shader count of the last export_of the clause

SQ_SP0_export_pvalid SQ—-SP0 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

$Q_SP0_export_wvalid “SQ—SP0 ‘Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP1_ export_pvalid SQ—SP1 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

clock

SQ_SP1_ export_wvalid “SQ—>SP1 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP2_ export_pvalid

SQ_SP2_ export_wvalid

SQ—SP2

SQ—SP2

Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
Specifies whether to write low and/or high 32-bit
word of the 84-bit export data from each of the 16
pixels or vectors

8Q_SP3_ export_pvalid [SQS8R3 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

_ clock

SQ_SP3_ export_wvalid SQ—SP3

Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

23-4+1626.1.15 SP to

SQ: Constant address load

gee | Formatted: Bullets and Numbering

Name _ Direction Description _
SPO_SQ const_addr | SPO—SQ _36 | Constant address load to the sequencer
SPO0_SQ_valid SPO0—SQ 1 | Data valid
SP1_SQ_const_addr SP1 >SQ | 36 Constant address load to the sequencer
SP1_SQ_valid SP1—SQ i _ Data valid
SP2_SQ_const_addr | SP2--SQ | 36 | Constant address load to the sequencer
SP2_SQ_valid SP2—SQ 1 _ Data valid
|SPS_SQ_constaddr _LSP39SQ 00[36"|ConstantaddressloadtothesequencerJ

SP3_SQ_valid|SP3--S0 4 | Data valid

 25-4+-4+726.1.16 SQ to SPx: constant broadcast
a oes 4 Formatted: Bullets and Numbering :

Name
|Direction |Bits | Description

SQ_SPx_constant lS$Q—>SPx | 128 _ Constant broadcast

Exhibit 2022 docR400_Sequencer.dec
PMOU04102G2:57PM 4208/01O22?RMs77e8 Byaer** © AT Confidential. Reference Copyright Notice on Cover Page © * poosis i257)

AMD1044_0257081

ATI Ex. 2106

IPR2023-00922

Page 170 of 223

ATI Ex. 2106
IPR2023-00922

Page 171 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

ded «| «(24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA | 450847 |
= — 7 = {FermentBesandnobong

2or-+326.1.17 SPO to SQ: Kill vector load “SSSe
Name | Direction | Bits | Description . oe .SP0_SQ Kill vect SP0—SQ 4 _Kill vector load

SP1_SQ_killvect _SP1--SQ 4 | Kill vector load
SP2_SQ_Killvect SP2 >SO 4 _ Kill vector load Es : ‘ : ES
SP3_SQKill_vect SP3 -SQ [4 | Kill vector load oe : aS oe

. ; Jos) Formatted: Bullets and Numbering

25.4.1926.1.18 SQ to CP: RBBM bus ee
Name | Direction | Bits | Description oe
SQ_RBB_rs SQ—CP 1 | Read Strobe
SQ_RBB_id SQ—cP | 32 | Read Data : :
SQ_RBBM_onrtrtr SQ—>CP 1 _ Optional oe — me = oe
8Q_RBBM_rir | §Q-CP 14 _ Real-Time (Optional) S oe = ess :

. . pee 4 Formatted: Bullets and Numbering23-4+2026.1.19 CP to SQ: RBBM bus “| ee =
[Name | Direction —s_si| Bits_| Description ee r—ise

rbbm_we | CP—>SQ 4 | Write Enable
rbbm_a CP—5Q 18 | Address -- Upper Extent is TBD
rbbm_wad | CP-8Q 132 | Data
rbbm_be CP_SQ 4 __| Byte Enables
robm_re | CP->SQ 1 ReadEnable
rbb_rsO CP—5Q 1 Read Return Strobe 0
rbb_rst | CP.»SQ 14 | Read Return Strobe 1
rob_rdO CPSQ 32. | Read Data 0

robbordt| CP-SQ.[32|ReadDataQ
RBBM_SQ_soft_reset | CP.»5Q if | Soft Reset |

26-27, Examples of program executions ———

26-4+427.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
e space was allocated in the position cache for transformed position before the vector was sent
® also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when wereceive the vertex vector.

* the SEQ then accessesthe IS base for this shader using the local state pointer (providedto all
sequencers by the RBBM whenthe CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always haspriority
* at this point the vector is removed from the Vertex FIFO
e the arbiter is not going to select a vector to be transformedif the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
® SEQ will not send vertex data until spacein the register file has been allocated

4. SEQ sends the vector to the SP registerfile over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
* the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFO of SU0, SU1, SU2, and SU3 is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
e RF3 of SUO, SU1, SU2, and SU3 is written the fourth cycle

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257082

ATI Ex. 2106

IPR2023-00922

Page 171 of 223

ATI Ex. 2106
IPR2023-00922

Page 172 of 223

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20157 46 of 47 Sh

* the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packet for the vector and sendsit to the first reservation station (ihe FIFO in front of
fetch state rnachine 0, or TSMO FIFO)
e the conirol packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSMO

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wail for requests made to the Fetch Unit to complete: it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
® once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO, then the control packetis passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
*® position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA's position cache
e A parameter cachepointeris also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

* parameter data is exported in clause 7 (as well as position dataif it was not exported earlier)
e parameter data is seni to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

26-1-227.1.2 Sequencer Control of a Vector of Pixels oo 2

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e Atthis point it is assured that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
*® the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
® the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEQ will not allow interpolated cata to be sent to the shaderuntil space in the register file has been allocated

5. SEQ controls the transfer of interpolated cata to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

Exhibit 2029 docR400_Sequencerdec 67788 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** joss poyPROUOsIO2C287PMAOS2:27PM SSeS

AMD1044_0257083

ATI Ex. 2106

IPR2023-00922

Page 172 of 223

ATI Ex. 2106
IPR2023-00922

Page 173 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXAKX-REVA 47 of 47A.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of

fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
® all other information (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
* TSMO wasfirst selected by the TSM arbiter before it could start

&. all instructions of fetch clause O are issued by TSMQ

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
® TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data for a particular clause to the register files, it increments a counterthat is

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU

clause 0 from the global instruction store

11. ail instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO whereit will be picked up by the render backend
® the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

264327.1.3 Notes ee
14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real

threads orstall.

15. The register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer.

27.28, Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

=c-<| Formatted: Bullets and Numbering

Saving power?

Exhibit 2022.docR40G_Sequercerdoc 67798 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** noosns 2s SePMOU04102G2:57PM 4208/01O22?RM

AMD1044_0257084

ATI Ex. 2106

IPR2023-00922

Page 173 of 223

ATI Ex. 2106
IPR2023-00922

Page 174 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 1 of 50" - i. 4. oy
Author: Laurent Lefebvre

 issue To: | Copy No:

R400 Sequencer Specification

SQ

Version 1.76

Overview: This is an archiectural specification for ihe R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\werforce’r400\doc_lib\designiblocks'sq\R400,Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

PEERS “APPROVALS = : eS
-Name/Dept a Signature/Date

Remarks:

 THIS DOCUMENT CONTAread—ptiINS CONFIDENTIAL INFORMATION THAT
COULD BE SUBSTANTIALLY DETRIMENTAread—pirL TO THE INTERESTOF ATI

TECHNOLOGIES INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technolegies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2023.decR40¢_Sequencendes 71499 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** qioworo257aM

ATI 2023

LG v. ATI

IPR2015-00325

AMD1044_0257085

ATI Ex. 2106

IPR2023-00922

Page 174 of 223

ATI Ex. 2106
IPR2023-00922

Page 175 of 223

ORIGINATE DATE | EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 2 of 50| bs : AAO

Table Of Contents

. OVERVIEW .cccccccccocnccrecueensusescerensuueserssnsuuesesssitunecessssuussnensrstusecunnnesetsunnuaustssennuuuessrrnnuuueetes 76
Top Level Block DIGQrarteen eeeeceeeete tee e eee te tapueetteiatttiettiteuttuuuuintuunannsnnianigiitestetsos 98

4. SEQUENCER INSTRUCTIONS ou pecceessecrreneseseenernensrunnnrasuntuazonsnenesiaznnnenneniainnnsanentazannenes 1746
5. CONSTANT STORESoon eerencsesseeenennssnneneannaesennannenes sisunnaneneeesseanannastusnnnannensenannenensstsnensnses 1716

SL Memory Organizations occ cece ccc eeeeeceens esses eu ueeststenbnaee stu sunsesesessenesseseevssiseetssesseseeesies 1746
5.2 Management of the re-mapping table 74S

2.

S22 Free List Blow occas cee cscs ectecuesscecesssssetasupsssiueuecuenssesissusasseseqisesageseiususupessissuptisass 2048

5.2.3 De-allocate Blok occeee svcnsessecsussssessussessevsvsnsseusenversissmssssivesiieseeuassesipaveversss 2148

S24 Operation of Incremental modelaccess ee ceeeee eee eee teeett 2148
5.3

5.5 Constant Waterfalling... 2249
LOOPING AND BRANCHES...

6.7.1 Method 1: Debugging registers once cecee cee ccceeseses ess sesuneesesiestustestistsstntestesssusesess 2724

6.7.2 Method 2: Exporting the values in the GPRs (12) ooo ocecccccccceccccecscesesvseseusesssses
7. PIREL KILL MASI ooo cccccccscesccceceusnsansenssnsusesessssusennnsessunuseensessusueupunsnssusssususstssanunanessannuusens 2828
8. MULTIPASS VERTEX SHADERS (HOS
9. REGISTER FILE ALLOCATION.oo... cccccccesccesensnncesunnsnsnanetssaunusnnssssunnauaustennnnnnunsnssnununns 2828
10. FETCH ARBITRATION...

ALU ARBITRATION...
12. HANDLING STALLS.......
13. CONTENT OF THE RESERVATION STATION FIFOS..
14. THE OUTPUT FILE...........

LD FORMAT0cccccccccseenccssesenenetesrsnees wes
15.) Interpolation of constant AtiDULOScenceeee eee e ceases eset cette ette ne stnnnnneetsapesseneess 3128
16. STAGING REGISTERS. qn ccccccccocecesenerceressentsssressenensestssnnnnssensanennens consnnnnrersensenensnnenesunersnen 3128

17. THE PARAMETERCACHE.....
8. VERTEX POSITION EXPORTING.

19. EXPORTING ARBITRATION..
20. EXPORT TYPES... cccccccseeserees
20.1 Vertex Shadin

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM oS

AMD1044_0257086

ATI Ex. 2106

IPR2023-00922

Page 175 of 223

ATI Ex. 2106
IPR2023-00922

Page 176 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 3 of 50

oH

21. SPECIAL INTERPOLATION MODES. ...o.. cccencccsececenecessecensenursersnanauecemneuuuesecenseuursene 3534
21.) Real time COMMONS ooo cece cece eeeeeeentetteetetasigetustuitneneeteniinuataginisitttuistueusuennnnenss 3534
21.2 Sprites/ XY screen coordinates/ FB information...eeeeee cette estes 3534
213

22
22
23. XY ADDRESS IMPORTSoa cccceccccuenccnnnenssnnnnnnanseseuereenenstusnnnanananiinnnenensevenntesenerisensnnens 3632
23,1 Vertex Indexes WMPOMSec c ec eeee eee eeeeseces estetettassesseteeessinsistuunneniestesnestestsuueeesiiueeesnees 3633
24. REGISTERS keeeeeeeeseeeenennennes ebbgeeeeeeeeuueeeeseccesensuneeescensnnnnsssseseuns 3f3d
24 Control... 3733
24 Contextee we
28 DEBUG REGISTERS..

26. INTERFACES. ccescscccsesssssssseseosessssusnnonessssassnsucnnssssnonenssssssnneensssenssunsessnsuuneenees 3834

26.1 Extermel Ute Pegesanaeeepitas3834

26.1.1 SC to SQ: il Control buseeeects seeetapatepstauetsaseseseenetans 3834

2O.1.2 SQ to SP: [nterpolator DUS occcece esee vers cessco snes svansvavevssazunapnatusuesisnuessiasenviats 3935

26.1.3 SGto SP: Parameter Cache Read control busceceeects reese 3935

26.1.4 S@to SX: Parameter Cache Mux control BUS ceceeee nreesensersne reverses 4036

26.1.5 SQ to SP: Staging Register Data oes cecescccsssessesssssesvsnsessunssasisstsnunssussssisatunians 4036

26.1.6 PAto SQ: Vertex interface... 4036

ZO.L.7 SQ to SPx State report cnc ccc ceeccees ccs suevsenvesssasapssaesseansvagatssupusatsnisstasiysestisusuniaans 4439

ZOAS SQ to SX. Control Dus acess cscs ens suevessvasasosasssepvavivssazivasstasusuasssnesssiasunsians 4439

26.1.9 SX to SQ: Output file COMtrOleeeeee eee eee teeaeenesas tps etenpesuissestinasesnaes 4439

2G1L10 SQ to TPL Control DUS occcee scene ssesvensessesseesssvessvessvevssssapssnisevsvessessuussssisess 4439

2G.) TP to SQ: Texture Stalhcniccccccecccesec cs evacseevepscusaessusssseneuasivisasutasnnissuesitnsesssasuniias 4546

261.12 SQ to SP Texture Stall occ ccc cue ses caeaeevar sea venstnsss sats cupsessupstasunnsssuapitntesisusenuias 4546

26.113 SQ to SP: GPR. Parameter cache control and auto COUNTEDceceeee 4549

ZOLA SQ to SPH IMStrUCtlons ooo cecescsccses cea senvsssnasanesessssansussecosinssasitetinunsiusssssiatnians 4844

26.1. 15 SP to SQ: Constant address load ooo cece eee cee cesecacevesnsspasstaeseeetissustssasinsnans AT44

26.1.16 SQ to SPx: constant broadcast ooo eee cee ees ee esses sesvesassuasasapsaesepesuiuasensiass A744

Z2G.1.17 SPO to SQ: Kil VeCtOr LOao cecccese esse vetsen ves casanseaesssaunvasiesipvsasunytssussinesstisasuniians 4742

26,1.18 SQ te CP: RBBM DUSnceccc ceeseeeeeuesseupssuessssasetutstsutustatitutesintuissiussisuteetess 4742

CP to SQ: RBBM bus...

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** gi91,9999.62py :

AMD1044_0257087

ATI Ex. 2106

IPR2023-00922

Page 176 of 223

ATI Ex. 2106
IPR2023-00922

Page 177 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | oo
 24 September, 2001 | 4 September, 20154 4 of 50 :L fw 2 iy a’ i .

28. OPEN ISSUES | once ccccccennscessesennssessasennassstusinnsstnnuusunanstansunssannannnanizitaannngannianannagessannnnnns5044

65-—-Registeriile

9,REGISTER FILEALLOCATION
10. FETCH ARBITRATIONvicccnunn

194 Vertex-Shading-
19.2-PinelShadINg-nnssrneereereereereerrrrrere rrrrrrrrrrrrrerrrverersrrrrireseerrrrry .

20.3---Auto-generated-counlers...

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM oS

AMD1044_0257088

ATI Ex. 2106

IPR2023-00922

Page 177 of 223

ATI Ex. 2106
IPR2023-00922

Page 178 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 5 of 50

203-1Merlex-shad668neerserentneersde

25-1-SQ-toSPx-constant-broadcast...

25-18 SPO to SQ Kill vect

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : oles :

AMD1044_0257089

ATI Ex. 2106

IPR2023-00922

Page 178 of 223

ATI Ex. 2106
IPR2023-00922

Page 179 of 223

ORIGINATE DATE | EDIT DATE R400 Sequencer Specification PAGE | :
| 24 September, 2001 | 4 September, 20154 6 of 50| bs :

| Revision Changes: ~ |
Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rey 0.2 (Laurent Lefebvre)
Date : July 9, 2004
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : Septernber 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev0.7 (Laurent Lefebvre)
Date : October 5, 200%

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date . November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev_1.7 (Laurent Lefebvre)
ebruary4,2002

First draft.

Changed the interfaces to reflect the changes in the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow methed to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 contro/
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SPO interfaces. Changed delta
precision. Changed VGT-SP0 interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQinterface. Added content on constant
management. Updated GPRs.
Removed from the spec ail interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instructian.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the 3%
interface.Updatedthecontrolflowsection,

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257090

ATI Ex. 2106

IPR2023-00922

Page 179 of 223

ATI Ex. 2106
IPR2023-00922

Page 180 of 223

|

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 7 of 50 [i 9 f44 e . :

1. Overview

The sequencer is based on the R300 design. It chooses bvo ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vectorwill have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shaderinstruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencerfor the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257091

ATI Ex. 2106

IPR2023-00922

Page 180 of 223

ATI Ex. 2106
IPR2023-00922

Page 181 of 223

WeZSCOTONOLL.@OHldABAODUOSOONJUBLAdODSoUaIajoY“TEMUSPYUCT[Ly@xeMasori,—sepussuenbesmenrusenezo7I

AMOTATOAGJAGUGTIOIGTEAGUGS)C7TES

—_>O82)URISLED
~~geofgap}gyy=)aa|fhnnnA- A_44_ SOxoML|| go/oddo/od-g0/0d| dO/Odpm)|\—_~eT=o—_-INVISNODsen|di“culiNiog|OWAOcvateFLVLSHOLES+nerveldsdsds|; ISNXLOTia

JnIMOLSLSNI
YaLLNIMALNI|||

aVvessoyorl ||L
peesp]

“SPTSCNBooTORLLNOD SNJ.-rouinoo§=—sSLNWLSNOO9s_xa4dTHLE

coeARESTeaeaepanneSaoaaaVGLOgsequigjaesLO0Z‘“IequiaydespzalvdLidsSaLVGSLYNISIYO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257092

ATI Ex. 2106

IPR2023-00922

Page 181 of 223

ATI Ex. 2106
IPR2023-00922

Page 182 of 223

i

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXM-REVA 9 of 50 iEOEY
1.1 Top Level Block Diagram

vortox/pixcl veetor arbitrator

‘Possible delayfor available GPR’s

PIO :
Pexture clause 0— reservaiionstalion
|wa FIFO tf /ATI clanse 0

eservationstation

 FIFO i
pLFPO ©roxture clause 1t. a :

coon reservation station
EIBO jag JLs

PPO :
p[Fre|3 Texture clause 2— reservationstation
aq——__{FPOagi

PPO /
pLFRO|Texture clause 3nn - reservationstation

FIRS :

eservation station Tro —
Leen BLT|Texture clause 4re reservation station.

FEEO |g :LU clanse 4 !
egervationstation ey

TIPO i .iTextare clause 5
— - reservation station

FIEO genes5 bccn L ,
jg AUeservation. station Vv

FIFO peneennnnnnnmen,LeannenerdTexture clause 6

HC reservation station26 I be
lag[ATCT eteeservation station a ce :

fnFERC! ‘Texture clause 7
FIG reservation station; |g Seegg— ALUclause 7 ! 1vation station,

 ATT clanse 1 extare arbitrator

eservation station

oxture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the abovefigure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

AMD1044_0257093

ATI Ex. 2106

IPR2023-00922

Page 182 of 223

ATI Ex. 2106
IPR2023-00922

Page 183 of 223

ORIGINATE DATE | EDIT DATE R400 SequencerSpecification PAGE :
| 24 September, 2001 4 September, 20154 10 of 50 foe Lente bos a

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY

| screen position if needed) are sent to the intereclater-whichinterpolator, which will use them to interpolate the
parameters and place the results into the GPRs. Then, the input state machine stacks the packetin thefirst FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number(0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level OC ALU machinefirst decrements the input FIFO 1 counter and then issues a
complete set of level QO shader instructions. For each instruction, the ALU state machine generates 3 source

| addresses, one destination address -and an instruction. Once the last instruction has been issued, the packet is putinto FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause numberas the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selectedif the positional buffer is full (or can't be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the cutout
buffer. If the output buffer is full or doesn’t have enough space the sequencerwill prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packetfinally reaches the last ALU machine(7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus ait one time. Similarly, only one fetch state machine may have access to the registerfile address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch ofhalf finished jobs from
clogging up the register files.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257094

ATI Ex. 2106

IPR2023-00922

Page 183 of 223

ATI Ex. 2106
IPR2023-00922

Page 184 of 223

:

| pipeline stage

JORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE :

i oh ot 24 September, 2001 4 Sepiember, 20754 GEN-CXXXAX-REVA 11 of 50 | . S - SSSSee : APE SNES

1.2 Data Flow graph (SP) Le

re
5 &

~ . Register File Ao Al \6 AL

| “y iy
= | ‘scalar inpubfoutput MAC

a — a

c ; |2 |
S : i
2 ! _| |
8 Lt di |= Register File A | |

ac scalar inpuioutput [
a / MAC Teques ~pipeline stage | |L - ! i |

=
24

< | & bam
3 | wo
S ! oS
EB ”oO I2)1 ! A... ab
TT K | clio+ | elrz, 6I “4 oBuest|

' 7 i MAS texture 5 uest 2= = ! 2 !
gig

pipeline stage i * 3
. —_——_ a

| |us peo
1 ee ~ _

s| 5 eter 4
8 | e Register File5 re A i
2) is } ~ |i |

3 _oKi 1A] | texture re} est|

— |
See (Salat input/output |

ETa

bide °
ae giSoo

oan - 53
i 2

<b
fn . we4

to Primitive Assembly Unit or RenderBackend /

Figure 3: The shader Pipe

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257095

ATI Ex. 2106

IPR2023-00922

Page 184 of 223

ATI Ex. 2106
IPR2023-00922

Page 185 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE |
24 September, 2001 4 September, 20154 12 of 50LO |

| The gray area represents blocks that are replicated 4 times per shacer pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rdy

[

|
|

| is SEQ CST WrAddr
|
|

WrAddr

cmp |
CST |

Phase cmp ostesticstiox B C Wivec |
RdAddr | | _WrScal WrAddr

* ev |

Figure 4: Sequencer Contre) interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an |J buffer to pack the information as much as possible before writing it to the register file.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

Toa, peg - |

FETCH SP Sore OF -

WrAddr |
| | -

AMD1044_0257096

ATI Ex. 2106

IPR2023-00922

Page 185 of 223

ATI Ex. 2106
IPR2023-00922

Page 186 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September 20154 GEN-CXXXXX-REVA 13 of 50cata! rae

RE ||I

|ToRB ! |
|ijt

Hs CROSSBAR (4x64 bits)

| ESa.iE ae _

Eeee
[Js buffer (ping-pong buffer)~ o

1 Ad Ai AZ Bo (28 hits * 2 (ib) + 8 bits * 6 (delta Lisjed

bits*éy’ 16 (quads) * 2 (double-buffered Ag At AZ BO4036 bits
2 Bt co et c2 a2 y 128

Bt co ct C2

3 C3 ca ch bo XYs puffer (ping-pong buffer)
24 bits * 16 quads * 2 C3 C4. c8 bo758 bits

32xaA
4 Dt b2 EO Et |

| Oo D2 EO EI

i ~
INTERPOLATORS —1 i | 1a FIX-FLOAT + EXPANSION |

L t | |
- | |

B12 A a, | yd| fl |I | Hl
| | cs :
A ch Aii th I

 mTCallan] (| 4LL |I I| |

Figure 3: laterpolation buffers

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

AMD1044_0257097

ATI Ex. 2106

IPR2023-00922

Page 186 of 223

ATI Ex. 2106
IPR2023-00922

Page 187 of 223

NEUSLOTONee@GHGJADUOSOIONJUBUAdODSoUsIBJayY“PEUSPHUOT[Ly@xseriz

 WEEESURLYWORTOdIU](9SIM

sopusousnbag“garysepCz0eUAT|

celcel

OLL|

 0SJOFL

49Vduoijeayioadsuaouenbesoor

VGLOgsequigjaes alvdLids

 LO0Z‘“IequiaydespzSaLVGSLYNISIYO TWIRELVANeaddoAATLOaLOdd

AMD1044_0257098

ATI Ex. 2106

IPR2023-00922

Page 187 of 223

ATI Ex. 2106
IPR2023-00922

Page 188 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and [J buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 13 of 50 |of

{ISSUE : Do we do the center+centroid approachusingboth {J buffers?)

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1_-port memory; we use -1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around poinis are arbitrary and they are
specified in the VS_BASE and PIX_BASE contre! registers. The VS_ BASE and PS BASE context resisters are used
to specify for each context whereits shaderis in the instruction memory.

For the Real time commands the story is quite the same but for some smail differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path asreal time.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257099

ATI Ex. 2106

IPR2023-00922

Page 188 of 223

ATI Ex. 2106
IPR2023-00922

Page 189 of 223

NEUSLOTONee@GHGJADUOSOIONJUBUAdODSoUsIBJayY“PEUSPHUOT[Ly@xseriz AOUUOTDILUISULSU7JOMIAS,4,)OUD°2ORGY

 S60P=)S60728podSd
D8p0DSdgepodSd(™2peoSA¥SP09SdaposouyBuyynoexers-“Bis0}SusySMOUYNal‘apooey}BuynoaxeaeeeLobeiOLIB}S0]BJOSMOLYeeanevieudoudsefo™@8podSdJaquanbeg08SHOOIE]/-—oO]Sasseuppe-qnsojeudoidde[218aN0dSAMdOa,|gdepoDSA0}sesseippe0SpoDSAHESSPOSAMdOedneOXF¥2p0DSdpodSA¥SPp0DSA

lemSVGYACWHSKALYSAVSPDSAeeeTSapopeleusaeBowles|,

BuryajBuis-|3GOWBuryjeng-03COW
Aasied“wyuyorLOOZ/rL/LL‘perepdn

Ajows|\|UOHONIISU]10SMSIAS.dDOOH

OSJ°OLAqoVvd

VGLOgsequigjaes
uoijeayioadsuaouenbesooravdLida

sopieouenbag“gOPEsapezOe|

SVGYSQVHSTax!3SV@YSCQVHSXGLUSAcoceecrereceneaasanaeonceeensRESISFTcaeerapeeanoseasoacccscensboannnsLO0Z‘“IequiaydespzSaLVGSLYNISIYO

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257100

ATI Ex. 2106

IPR2023-00922

Page 189 of 223

ATI Ex. 2106
IPR2023-00922

Page 190 of 223

\

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE ‘

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 17 of 50 |
OEY | a

4. SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (his is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 492x428128x192 bits. The memory thus | :
holds 128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going tobe
shared between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is
46-32 lines (each line addresses 2-1 texture state lines in the real memory). The CPwrite granularity is 2-7 textures
state lines (or 384-192 bits). The driver sends 512 bits but the CP ignores the top 722-220bits. it thus takes 42-6
clocks to write the-#ve texture states. Real time requires 32 lines in the physical memory {this is physically register
mapped).

The control flow constant memory doesnt sit behind a renaming table. it is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 320*32 becauseit must hold 8 copies of the 32 dwords
of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Managementof the re-mapping tables

5.2.1 R400 Constant management
The sequencer is responsible to manage two re-rmapping tables (one for the constant store and one for the texture
state). On a state change(by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

4 vs] Formatted: Bullets and Numbering

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work_in iis simplest form, the requirement is that the physical memory MUSTbe at least twice as
large as the logical address space_+ the space allocated jor Real Time. in our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 4024-1280 and above.
Similarly the size of the texture store must be of 32°2+32 = 96 entries and above.

3-2-145.2.2 Proposal for RAQ00LE constant management
To makethis scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replace it with
the newstate (this is depicted in Figure 9: De-allocation mechanismFigure-9-De-~allacation_mechaniamFigure-2:-De-
allocation-mechanism Figure—1:_Dealocation.mechanism). Note that in the case a state is cleared a value of 0 is
written to the corresponding de-allocation counter location so that when the SQ is going to report a state change,
nothing will be de-allocated uponthefirst report.

elese Formatted: Bullets and Numbering

Extibit 2023.doeRs0G_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** ip.202.6704

AMD1044_0257101

ATI Ex. 2106

IPR2023-00922

Page 190 of 223

ATI Ex. 2106
IPR2023-00922

Page 191 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE | :
| 24 September, 2001 4 September, 20754 18 of 50OASO i

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to

reuse these physical 2addresses ifneeded).eeee ee eeeeeeeen wokiodace boone tune

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257102

ATI Ex. 2106

IPR2023-00922

Page 191 of 223

ATI Ex. 2106
IPR2023-00922

Page 192 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20154 GEN-CXXXXM-REVA 19 of 504 9 f44 os

Free Listbree
Address

Free_ptr—|

Current/Last

Context
(rows of 16-8 ;
bit physical => [1 Logical Address128 entries copy| | |
in eight clocks)||| & Context

Physical
Address

 phys!

GigplaeContext

— Read_ptrnt

Global Register

||

|Pi
Data Bus

Staging
Buffer | PhysicalConstants | sical

~—________ Free | Memory
location list | ¥
available Staging Vwrite Add |WRTR - Staging Write Addr|

physical “Dealloc
address _Gounts| ! nextto physical
schedule address

for ready
de-alloc for allocate

| Seouical address | | ‘4
Logical ath ess ! ! ConstantonesaaS3 Peauestwhen Isb are zero This

first word of write , 1, meset Context |
Renaming Tabie Dirt Dirt |

for 1 Context a ed |
Current/Last Legical Leuical | Context &Physical i Lot Logica!

Address Address | Address i Address —](Only | (if set | |
. de- | don't |i ' Po

Aderess allocate allocate
ifset) | or de-

| allocate)| Renaming| table
N-Coniexts

st held above to
‘ontext on receiptof Set Constant for a

new context (Hide loading
behind Set State toad - 16 clocks}
all other Set States just write one

entry te current state.

Figure 3: Constant management

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : oles

AMD1044_0257103

ATI Ex. 2106

IPR2023-00922

Page 192 of 223

ATI Ex. 2106
IPR2023-00922

Page 193 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20754 20 of 50i : a

SQ_STATE#
DEALOG

Free List CNT VALUE COUNTERS
| PREVIOUSN STATE

NOT ie |
|
| | !

| | NEW| STATE

VALUE———____- |; aIs] |pe

VALID oe| | |

| | | OR|

wpHooseeI. AND PA_|OLE———

eCP_NEW_STATE_CNTL —REMAPPING *
TABLE SET CTX BITS

Figure 9: De-allocation mechanism for K400LE

 ~ 5 9 3 Dirty bits « al: Bullets and Murr
Two sets of dirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero when-ever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If itis set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure : aS : :
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for — ee ee es
rendering to start and thus free up space. ee oS ee

_:2=5| Formatted: Bullets and Numbering3.2:25,2.4 Free List Block * ormatted Bleandtuberin ___)
A free list block that would consist of a counter (called the IFC or Initial Free Counter) -that would reset to zero and aoe : eee oe
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked eachtime a physical block is needed, andif the original ones have not been used up, us a new one,else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical biock addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the poinierwill be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257104

ATI Ex. 2106

IPR2023-00922

Page 193 of 223

ATI Ex. 2106
IPR2023-00922

Page 194 of 223

Veen

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE ae

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 210f50 |
a sees Jemmatig)
3-2-3525 De-allocate Block See
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. If is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

- . ade L t Formatted: Bullets and Numbering
3-2-45.2.6 Operation of incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will beinitialized to zero. When
thefirst set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. Ifa logical address is hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthe first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated.Aline will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also Wfihe next context uses lessconstants than the current one all exceedinglinesare movedtcthe
free listtobede-allocatedlater.Thishappensinparalle!withthewritingofthere-mappingtabletothecorrect
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However,if the updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shaderpipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257105

ATI Ex. 2106

IPR2023-00922

Page 194 of 223

ATI Ex. 2106
IPR2023-00922

Page 195 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20154 22 of 50 BAAS. ee

| between the time the sequenceris loaded and the time one can index into the constant store. The assembly will looklike this

MOVA R1.X,R2.X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X% is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152bits.

54 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT.It
works is the same way than when dealing with regular constant loads BUTin this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary betweenthe two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, ine boundary belween ihe two zones is defined by the TSTATE EO RT control register.

5.5 Constant Waterfalling
In order to have a reasonabie performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT
|

RT SECTON /(Reads/Writes are direct) /

_

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}

Figure 10: The instruction store

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257106

ATI Ex. 2106

IPR2023-00922

Page 195 of 223

ATI Ex. 2106
IPR2023-00922

Page 196 of 223

 EVOL

Loops and branches are planned to be supported anc will have to be dealt with at the sequencerlevel. VVe plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_couni[7:0][31:0]
Loop_Start[7:0]/31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The renderstate defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 3 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified numberofinstructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number ofinstructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberof instructions.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

Pes

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | :

24 September, 2001 4 September, 20154 GEN-CXXXAX-REVA 23 of 50 | —
6. Looping and Branches

AMD1044_0257107

ATI Ex. 2106

IPR2023-00922

Page 196 of 223

ATI Ex. 2106
IPR2023-00922

Page 197 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20154 24 of 50 ! "AAAS

|SConditionnal_|Call Jumps to an address and7 pushes the IP counter on the stack if the condition is met. On the return
 Conditionalexecute”Predicates executes a block of instructions if all bits in1 the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end ofa clauseif the condition is met.
Conditional_jumps jumps to an addressif the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSESsincethere are two controlflow instructions per
memory line. Thus the compiler must insert NOPs where neededto align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cnt|_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenevera field is marked as RESERVED,it is assumedthatall the bits of the field are cleared (0).

; ; Execute

47 46... 42 | 41... 24 23... 12 | 11... 0
Addressing 00001 _| RESERVED instruction count | Exec Address

Execute up to 4k instructions at the specified addressin the instruction memory.
NOP

47 146... 42 | 41... 0
Addressing | 00010 | RESERVED |

This is a regular NOP.

Conditional_Execute

 47 [| 46... 42 41 40 ... 33 32 31... 24 23... 12 11...0
Addressing|00011 RESERVED|Boolean Condition|RESERVED|Instruction count | Exec Address

| address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditional_Execute_Predicates

47 46...42) 41... 35 34... 33 | 32 31... 24 23... 12 17...0
Addressing 00100 | RESERVED|Predicate|Condition|RESERVED|Instruction count|Exec Address

/ vector | |
Check the AND/ORofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren't valid.

LoopStart
47 | 46... 42 | 41... 17 | 16... 12 1120

| 00101 | RESERVED loop ID | Jump address
Addressing |
Loop Start. Compares the loop iterator with the end value. if loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257108

ATI Ex. 2106

IPR2023-00922

Page 197 of 223

ATI Ex. 2106
IPR2023-00922

Page 198 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |
24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 25 0f 50. |Sl ks APES

Loop_End
47 146... 42 | 4417 | 16... 12 1... 0

| 001104 | RESERVED loop ID | startaddress ||
Addressing |
Loop end. Increments the counter by one, compares the loop count with the end vaiue. If loop condition met,
continue, else, jump BACKto the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

47 | 46... 42 | 41 ...0

Addressing | + |

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

 47 46. 42 | 41 40... 33 | 32 31 | 30... 12 |[0atteaRESERVED|Boolean Condition FW only | RESERVED | jump Siexe
Addressing | address | |

If condition met, jumps to the address. FORWARD jump only allowedif bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

Conditional_End_of Clause |
47 42| 41 | 40... 383 32 31...0 :OT0tb! | RESERVED|Boolean | Condition RESERVED |.

Addressing | address | :
This is an optimization iin the case of very short shaders (where the control flow instruction can't be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

/ End_of_Clause |
47 46... 42 | 410

Addressing 010130 RESERVED |a
Marks the end of a clause.

To prevent infinite loops, we will keep 2-9bits loop sounters-ilerators instead of 8 (we are only able to loop 256 |
times). If the counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop
and set the debug GPRs.

6.3 Data dependantpredicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

[Conditionnal_Call | a47 (46..42] 41..35 [34.33 [32 31... 12 i 1...0

| seit | RESERVED | Predicate | Condition RESERVED | Jump addressAddressing eo. | vector!

“0710000 | RESERVED L

AMD1044_0257109

ATI Ex. 2106

IPR2023-00922

Page 198 of 223

ATI Ex. 2106
IPR2023-00922

Page 199 of 223

 24 September, 2001 | 4 September, 20154 25 of 50L counaed, oO

| PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.PRED_SETGT_#- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_# —- SETEO
PRED_SETE1_#~SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the secondbit tells us if
we execute on 1 or ©. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
orily write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

6.4 HW Detection of PVPS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV.PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PREDSET and MOVAinstructions and their uses.

6.5 Registerfile indexing
Because we can haveloopsin fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
Q 4 ‘relative register’
1 0 ‘previous vector
4 4 ‘previous scalar

In the case of an absolute register we just take the address asis. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

Theindex-is-going-to-return Gitiiie- out-ofthe-range.
Weloop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed Index value is a 10
bit counter that is also signed. lis real range is [-256,256], The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” se that it knows when the provided index is out of range and thus can make the
neceseary arrangements.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

| he
ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE |

AMD1044_0257110

ATI Ex. 2106

IPR2023-00922

Page 199 of 223

ATI Ex. 2106
IPR2023-00922

Page 200 of 223

1

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE :

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 27 of 50 | -EVIL

6.6 Predicated Instruction support for Texture clauses |
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of O means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/Vvertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the nurnberof errors

The sequencerwill detect the following groups of errors:
- count overflow

~ constant incexing overflow “| == 5) Fermatted: Bullets and Numbering- register indexing overflow

Compiler recognizable errors:
- jump errors

 ~ call stack |
call with stackfull
return with stack empty

\Alith-bveoHhe-erers,2A jump error er-a-registeroverfiou-will always cause the program to break. In this case, a | .
break means that a clause will halt execution, but allowing further clauses to be executed. :

With alithe other errors, program can continue to run, potentially to worst-case limits. The program will only break if

If indexing outside of the senstant-consiant or the register range, causing an overflow error, the hardware is specified fe AES :
to return the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing
the Oth register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Uncer the kill rnode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debugkill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and Instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257111

ATI Ex. 2106

IPR2023-00922

Page 200 of 223

ATI Ex. 2106
IPR2023-00922

Page 201 of 223

ORIGINATE DATE | EDIT DATE R400 SequencerSpecification PAGE
| 24 September, 2001 | 4 September, 20154 28 of 50: iL 7

| Under the debug mode (debug kill OR debug Addr + count), it is assumed thai clause 7 is always exporting 12 debugvectors and thatall other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (evenif they occur before the address stated by the ADDR debugregister).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. lis purpose is to optimize the texture fetch
requests and allow the shaderpipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static caseit is fixed to 128-VERTE_REG_SIZE for vertices and 256-
VERTEXP MEL REG_SIZEfor pixels.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257112

ATI Ex. 2106

IPR2023-00922

Page 201 of 223

ATI Ex. 2106
IPR2023-00922

Page 202 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXAXXX-REVA 29 of 50PE

Aboveis an example of how the algorithm works. Vertices come in from top to bottom; pixels comein from bottorn to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the twolines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127,

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking thefirst one ready to execute. Once chosen, the clause state machine
willsend one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to hancle up to X(7?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 EinstO Cinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : oles

AMD1044_0257113

ATI Ex. 2106

IPR2023-00922

Page 202 of 223

ATI Ex. 2106
IPR2023-00922

Page 203 of 223

ORIGINATE DATE | EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20154 30 of 50| bs : AAO

12. Handling Stalls
Whenthe output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe uniil there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in orderto fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BYV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. LJ Format

The lJ information sent by the PA is of this format on a per quad basis:

We have a vectorofIJ’s (one [J per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how wedo ft:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates [(Q), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with |), B is the parameter value at V1
(interpolated with J) and C is the parametervalue at V2 (interpolated with (1-I-J).

AOL = 1(1)-1(0)

AOL =JM)-JO)

AO2T = 1(2)—I(0) Pp

AOS = J(2)— J(0)

AO3I =1()—1(0)

AOBS = .1@)-F(0) P2 P3

PO=C+I(0)*(4—C)+ JO) *(B-C)

Pl=P0+A01*(A—C)+A0lJ *(B-C)

P2 = P0+ A021 *(A—-C) + A02*(B-C)

P3 = P0+ A031 *(A-C)+ AOR *(B-C)
PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Muttiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257114

ATI Ex. 2106

IPR2023-00922

Page 203 of 223

ATI Ex. 2106
IPR2023-00922

Page 204 of 223

Vee

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 31 of 50 | .OEY
Adds: 8 |
FORMAT OF PO's IJ: Mantissa 20 Exp 4 for 1+ Sign

Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberofbits : 20*2 + 8*6 + 4°38 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

(5.1 Interpolation of constant attributes
Becauseof the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if wo of the barycentric coordinates are the same.

We start with the premise that if A= Band B= C and C = A, then P0,1,2,3 = A. Since one or more ofthe IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
PO.1,2,3 2A;

else if (= 0) or (J = Q)) and
((J = 0) or C-1-J = 0) and
((1-J-1 = 0) or (= 0){

if(!= 0) {
PO= A;

Felse if [= 0)
PO = 8B:

}else {
PO=C;

}
/frest of the quad interpolated normally

}
else
{

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12 13 1415 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47|| 48 49 50 51 52 53 54 55 56 57 58 59 G0 61 62 63

The sequencerwill re-arrange them in this fashion:

0123 16 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 89 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. in the event a shaderpipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257115

ATI Ex. 2106

IPR2023-00922

Page 204 of 223

ATI Ex. 2106
IPR2023-00922

Page 205 of 223

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
24 September, 2001 4 September, 20154 32 of 50SA

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interfaceis illustrated in

Figure12Figurei2Figure-2. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 11 Figure44Figure—1.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 ye 60.57813 2perbit

Area of 96x8-deep Latch Memory 46524 7
Area of 24-bit Fix-to-float Converter 47122 per converter

Method 1 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384

 Oe

Figure 11141:Area Estimate for VGT te Shader Interface

AMD1044_0257116

ATI Ex. 2106

IPR2023-00922

Page 205 of 223

ATI Ex. 2106
IPR2023-00922

Page 206 of 223

oe

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 24 September, 2001 4 Seplember, 20154 GEN-CXXXAX-REVA 33 of 50 | aTal PACA SS

ee ~ L

SHADER

SEQUENCER '

VECTOR ENGINE

Figure 12322:VGTte Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1V¥).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBsare the address within this memory.

MEMORY NUMBER | ADDRESS |
4 bits 7 bits

The PA generates the parameter cache addresses as the positians comes from the SQ. All it needs to dao is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_67 (a snooped
register from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is
exporting 8 parameters per vertex (VS_EXPORT_COUNT_6-7= 8). Thefirst position received is going to have the
PC address 00000000000 the second one 00010000000, third one 00700000000 and so on up to 11770000000.
Then the next position received (the 17°) is going to have the address 00000001000, the 18° 00010001000, the igh
00100001000 and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful
aboutis that if the SX doesn't send you a full group of positions (<64) then you needto fill the address space so that
the next group starts correctly aligned (for example if you receive only 33 positions then you need to add
42S_EXPORT_COUNT_6@-7to Current_Location and reset the memory count to 0 before the next vector begins). fe

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

AMD1044_0257117

ATI Ex. 2106

IPR2023-00922

Page 206 of 223

ATI Ex. 2106
IPR2023-00922

Page 207 of 223

ORIGINATE DATE | EDIT DATE

| 24 September, 2001 4 September, 20754fw Lra Yatatetat

| 18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATEregister. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued,

All ociher types of exports can be co-issued as long as there is place in the receiving buffer.

(ISSUE:Dowe movetheparametercaches to the SX?)
Artype-ofexporting -clause-can-be-ce-iesued. The -sequenser wilhavete-make-sure-backio-back-memontexpots
(positionetraight-memoery-experis}-ars_iniereaved-withNOPe-as-we-den'thavethe-bandwidihto-service-them-alfull
speed.

20. Export Types
The export type (or the location where the data should be put) is specified using the destination addressfield in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading
0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32:43 - 12 vertex exports to the frame buffer and index
44:47 - Empty
48:59 -12 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position serte-sizeexperthalgeeswith poeiionexport
OILApointwedgefagmise)
63 - postionsoprite size export that goes with position export

(point hb. point wedgefiag misc)

20.2 Pixel Shading
- Color for buffer 0 (primary)
- Color for buffer 1
- Color for buffer 2
- Color for buffer 3

oF - Empty
- Buffer 0 Color/Fog (primary)
- Buffer 1 Color/Fog

10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32:43 - 12 exports for multipass pixel shaders.

©oORWN=0
44:47 - Empty
48:59 -12 debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer 2 exported to ‘alpha’ component)

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

R400 Sequencer Specification

te =| Formatted: Bullets and Numbering

AMD1044_0257118

ATI Ex. 2106

IPR2023-00922

Page 207 of 223

ATI Ex. 2106
IPR2023-00922

Page 208 of 223

 1
ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 35 of 50 |4 cata! rae
21. Special Interpolation modes |

21.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (ihe sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameterstore. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with thisis, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the 3% blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_l0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Hereisalist of all the modes and howthey interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSBof the primitive type. if the bit is
set, ii means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 7.

Param_Gen_]0 disable, snd_xy disable, no gen_st — 1O = No modification
Param_Gen_l0 disable, snd_xy disable, gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy enable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy enable, gen_st — [0 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness
Param_Gen_lO enable, snd_xy disable, gen_st — [0 = garbage, garbage, s, t
Param_Gen_!0 enable, snd_xy enable, no gen_st — [0 = screen x, screen y, garbage, faceness
Param_Gen_lO enable, snd_xy enable, gen_st— 10 = screen x, screen y, $s,

21.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the count to retrieve the data on the Qn pass.
The count is always generated in the same way butit is passed to the shader in a slightly different way depending on
the shadertype (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counteris reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEXis set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

21.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|0 is enabled, the data will be put in the x field of
the 2 register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 4" register (RO.x).

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257119

ATI Ex. 2106

IPR2023-00922

Page 208 of 223

ATI Ex. 2106
IPR2023-00922

Page 209 of 223

ORIGINATE DATE EDIT DATE

24 September, 2001 | 4 September, 20154L fea L fatateto

R400 Sequencer Specification PAGE
36 of 50

INTERPOLATORS

22. State management

The Auto Count Value is
broadcastto all GPRs. tis

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRsto be either used to

retrieve data using the TP orsent to the SX for the RB to
use it te write the data to

memory

Figure 13:G@ PR input mux Contre!

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bil asseried, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it wi lLin fact accept the transmission but then lowerits
ready to receive). Then the sequencer waits for the count to go to one and decrementsit. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counterIs initialized to 0.

23. AY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (fo the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY daia thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
biock (96 bits). They are loaded in floating point format and can be transferred in 4 or & clocks to the GPRs.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257120

ATI Ex. 2106

IPR2023-00922

Page 209 of 223

ATI Ex. 2106
IPR2023-00922

Page 210 of 223

ye

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 37 of 50 | x = 9 f44 os

24. Registers |

24.1 Control

REGDYNAMIC Dynamic allocation (pixelVvertex) of the register file on or off.
REG_SIZE_PIX Size of the registerfile's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the registerfile's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY__policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASEVTX start point for the vertex instruction store (RT always ends al vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program ai a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)

incremented on reads/writes) Register mapped
INSTRUCTIONDATA This is where the CF puts the actual data going to the instruction memory
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
INSTRUCTIONADDRRTThisis-wheretheCPputsthebaseaddrese-_oftheinstruction_-wites-andtypefor

RealTimetauic-incremented onreadsAvrites}

INSTRUCTION.ADDR This is where the CP puts the base address of the instruction writes and type (auto- :

INSTRUCTION.DATARTThis is-wherethe-CP-puts-the actual-data-gaing-tothe-instruction-mamory: for
Real-Time

CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE EO RT This is the size of the space reserved for real time in the feich state store (from 0 to

TSTATE EO RT), The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occurat clause 7.

242 Context

VS_FETCH_{0...7} eight & bit pointers to the location where each clauses control program is located
VS_ALU_{0...7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0...7} eight & bit pointers to the location where each clauses control program is located
PS_ALU_{0...7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointerfor the pixel shaderin the instruction store
VS_BASE basepointerfor the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader(# of instructions in contro! program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in contro! prograrn/2)
PS_SIZE size of the pixel shader (cntl+insiructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRsto allocate for pixel shader programs
VS_NUM_REG number of GPRsto allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (O=flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(=linear, 1=cylindrical).
PS_EXPORT_MODE Oxxxx : Normal mode

1Ixxxx | Multipass mode
If normal, bobz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

AMD1044_0257121

ATI Ex. 2106

IPR2023-00922

Page 210 of 223

ATI Ex. 2106
IPR2023-00922

Page 211 of 223

ORIGINATE DATE | EDIT DATE R400 SequencerSpecification PAGE
 | 24 September, 2001 | 4 September, 20154 38 of 50Le es Su fh

| _COUNT_{0...6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7(located in VS_EXPORT_COUNT_6) OR
of exported vectors to memory per clause in multipass mode (per clause)

PARAM_GEN_IO0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (& bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX ©bits) Logical Base address for the constanis of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit aptimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 booleanbits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context

DB_PROB_ADDR instruction address wherethe first problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB PROB BREAK break the clause if.an error is found,
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number2
DB_CLAUSE
_MODE_ALU{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kil}
DB_CLAUSE
_MODE_FETCH_{0...7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

DB ALUCST MEMSIZE Size ofthe physical ALU constant memory
DB_TSTATEMEMSIZESizeofthephysicaltexturestalememory

eee Formatted: Bullets and Numbering

26. Interfaces

26.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—5Pxit means that SQ is going to broadcast the sameinformation to all SP instances.

26.1.1 SC to SQ: 1/ Control bus

This is the control information sent to the sequencerin order to control the LJ fifos and ali other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
renderstate.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257122

ATI Ex. 2106

IPR2023-00922

Page 211 of 223

ATI Ex. 2106
IPR2023-00922

Page 212 of 223

ORIGINATE

DATE

24 September, 2001

EDIT DATE DOCUMENT-REV. NUM.

4 September, 20154 GEN-CXXXXX-REVA 39 of 50LEV
PAGE |

26.1.3 S@ to SX: Interpolator bus

Name Direction Description
SC_SQ_9_wr_mask | $C-—SO | Quad Write mask left to right ;
SC_SQ_lod_correct SCc—3Q LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex | $C-»8Q Provoking vertex forflat shading
SC_SQ_param_ptrO sCc-8Q P Store pointer for vertex 0
8C_SQ_param_ptri | SC-—8Q | P Store pointer for vertex 1
SC_SQ_param_ptr2 SC—SQ P Store pointer for vertex 2
SC_SQ_end_of_vect 1 $C--8Q \ End of the vector .
SC_SQ_store_dealloc SC—SQ Deallocation token for the P Store
8C_SQ_state | $C--SQ [State/constant pointer
$C_SQ_valid_pixel SC—5Q | Valid bits for all pixels
SC_SQ_nuilprim SC--8Q _| Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim | SC-5Q End Ofthe primitive
8C_S8Q_send_xy 8c—38Q Sending XY information [XY information is going to be

; . sent on the nextclock]
SC_SQ_prim_type sc--SQ Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.
000 : Normal
011: Real Time
100: Line AA

| 107: Point AA
; i [| 110: Sprite

SC_SQ_new_vector $Sc—$Q This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

|SC_SQ_RTRna| SQ Stalls the PA in n clocks
SC_SQ_RTS LSC--5Q SC ready to send data

26.1.2 SQ to SP: Interpolator bus
Name Direction Description
$Q_SPx_interp_prim_type SQ—-SPx Type of the primitive

000 : Normal
011: Real Time
100 : Line AA
101: Point AA

110: Sprite
SQ_SPx_interp_ijline SQ >SPx Line in the IJ/XY buffer to use to interpolate
8Q_SPx_interp_buff_swap | SQ—SPx 4 Swap the 1JOcY buffers at the end of the interpolation
SQ_SPx_interp_gen_l0 SQ—SPx Generate [0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_!0 is high. J

e-

Name Cirection | Description
SOS interp flat_vic | $O--SPx [2 Provoking vertex for flat shading
$Q@_SPx_interp flatgouraud|$Q->SPx 4 Flat or gouraud shadin
Si | $O-S8Px f4 Ww

26-1-326.1.4 SQ to SP: Parameter Cache Read control bus

The four following interfaces (SQ--SP, SQ--SXSP--SX and 3X—Interpolators) are all SYNCHRONIZED together.

Name Direction Bits|Description

SO_SPxptrOsO-SkxpkO SPxS00SPx 72 CPeinterof PC
 SQ_SPx pyisQ-3Px_pi4 PxSQSPx 79 C Pointer of PC

Extibit 2023.doeRs0G_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** ip.202.6704

: 2 -| Formatted: Bullets and Numbering

 Boe 4 Formatted: Bullets and Numbering

AMD1044_0257123

ATI Ex. 2106

IPR2023-00922

Page 212 of 223

ATI Ex. 2106
IPR2023-00922

Page 213 of 223

ORIGINATE DATE | EDIT DATE R400 SequencerSpecification PAGE ds 24 September, 2001 4 September, 20154 400f50 |
§Q SPx_ptr250-SPxptr2 SQ-+SPxSQ—SPx [79|Parameter Pointer intoParameter

CachePemerelLRS

SQ. SPx pod addr ssikGQSPO+reacena|SQOSPxSO-SP9|24 Selection one of the pointers for parameter
cache ORead-enablesforthe-4 memories inthe

SFO
$0 SPx pel_addr seisO-St+read-ene|SQOSPxSa-SR4|24 Selection one of the pointers for parameler

cache 1Read-enables-forthe-4 memeres inthe
SP4

$0Q SPx pe? addr ssisQ-SPa-read-ena|SQOSPxSa-—-SR2|24 Selection one of the pointers for parameter
cache 2Read-cnablestorthe4memoresinthe
SP2

SO. SPx peo addr selsOQ-eM3-read—ana|SQOSPxSG--SEB|24 Selection ene of the pointers for parameter
cache 3hced-onsbies-iorthe--+-momenesinthe

| SP3
4
4

ne 4 Jee 8

- _=) Formatted: Bullets and Numberin
26-4+-426.1.5SQ to SX: Parameter Cache Mux control Bus — Se = =———

|Name oe

SQ_SXx_muxd (4 MSbs of Pointer
' 1 case)

$Q_SXx_mux1 SQ—SXx 4 Mux control for PC or RT (4 MSbs of Pointer_in the PC
_ | case)

SQ_SXx_mux2 SQ—-SXx 4 Mux control for PC or RT (4 MSbs of Pointer_in the PC
case)

SQ SAx RT switch | BSQ--5X% Li Selects between RT and Normal date

26-1526.1.6 SQ to SP: Staging Register Data —— = ae
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name |Direction | Bits|Description ; _
SQ_5Px_vgt_vsisr_data SQ—SPx Pointers of indexes or HOS surface information
SQ_SPx_vgt_vsisr_double| SQ-SPx 0: Normal 96 bitspervert1:double192bitspervert
SQ_SP0_data_valid | SQ—SP0 Data is valid
SQ_SP1_data_valid SQ-SP1_ Data is valid
SQ_SP2_datavalid $Q-33P2[4|Dataisvalid
$Q_SP3_data_valid | $Q-.SP3 i Datais valid SS

. . as =>) Formatted: Bullets and Numbering
26-1-626.1.7 PA to SQ: Vertex interlace : = = =

26-4+6-426.1.7.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requiremenis of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencerin full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257124

ATI Ex. 2106

IPR2023-00922

Page 213 of 223

ATI Ex. 2106
IPR2023-00922

Page 214 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CAXXAX-REVA 41 of 50: : 4 SAAS.

Name Bits Description
PA_SQ_vagt_vsisr_data 9966|Pointers of indexes or HOS surface information
PA_SOQ_vgt_vsisr_doubie 1 OG: Normal 96-9¢bits per vert 1. double 422-192bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PASOvolvsisrvalid 1 Vsisr dataisvalid
PA_SQ_vagt_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

“PA SQ vgt_end_of_vector’is high.

PA_SQ_vgt_send Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_PA_vot_rtr

1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

2646226.1.7.2 Interface Diagrams

-

 == =| Formatted: Bullets and Numbering

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

AMD1044_0257125

ATI Ex. 2106

IPR2023-00922

Page 214 of 223

ATI Ex. 2106
IPR2023-00922

Page 215 of 223

YSONSMOSSHaqVvHS

NEUSLOTONee@GHGJADUOSOIONJUBUAdODSoUsIBJayY“PEUSPHUOT[Ly@xseriz
Lsus

——#Ya4dnaamseXLOL
aM 0G3°CyAqoVvd

bHIACOIUSTBA

pyWL¥dUSLEAuoijeayioadsuaouenbesoor

 crocrcnencereeangersAerapeey

VGLOgsequigjaesalvdLids

sapussusnbag“ggpysoye726

|

@wlancdWSisAGWLWMBSA LO0Z‘“IequiaydespzSaLVGSLYNISIYO

LDA

 TWIRELVANeaddoAATLOaLOdd

AMD1044_0257126

ATI Ex. 2106

IPR2023-00922

Page 215 of 223

ATI Ex. 2106
IPR2023-00922

Page 216 of 223

REUSTOTOMONeee@BHCJBACDUOSOONIUHUAdODsouslajay“[EUSPYUCD[Ly@+-°°VGooriz “SOSLSIT]JOABSVo10]WEIBEIG[EdbO7palejeqTTSindy
NOISSINSNWaALSdOLSdadaNgs

NOISSIASNVaALSLUVLS-ddaaATaHOdd

 SUTUAUPAU

OG40erdovd

WAREXXXXXO-NADWON(AdaLNSWNOOd

anne
|

sopussusnbas“gopysopCogHag

AMD1044_0257127

NOISSINSNVaLSdolsawATaord

WaOdaALIWHO41LNOOFLALOVIVaOdraywawa?yaNnas€Wivd€aNagsZWawaZzaNasSLdLOAZulaosTuyOs0wayOsalaOs

 soccerOUrasoperpolosJequiaidasg7aLvd1103

Lo0g‘IequaydespzaLvdSLVYNISIO
Ty|

 TWIRELVANeaddoAATLOaLOdd

ATI Ex. 2106

IPR2023-00922

Page 216 of 223

ATI Ex. 2106
IPR2023-00922

Page 217 of 223

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20154 44 of 50bs YAM i

26-14-7261. 8 S@ to CP: State report
a7 [| Formatted: Bullets and Numbering

eed Formatted: Bullets and Numbering

Name Direction | Bits|Description
SQ_CP_vrtx_ state SEQ-—>CP 13 Oldest vertex state still in the pipe
|SQ_CP_pix_state “|SEQ-3CP (3 Oldestpixel state still in the pipe

| 26-+826,1.9 SQ to SX: Contro/ bus
Name | Direction | Bits Description
SQ_SXx_exp_Pixel SQ >SXx 1 1: Pixel0: Vertex

SQ_SXx_exp_start | 8Q-95Xx [1 Raised to indicate that the SQ is starting an export
SQ_5Xx_exp_Clause SQ—Sxx 3 Clause number, which is needed for vertex clauses
SQ_5x%x_exp_State | SQ->SXx L3 State ID, which is needed for vertex clauses

Thesefields are sent synchronously with SP export data, described in SPO—SXOinterface
{ISSUE: Where are the PC pointers}

 gee -| Formatted: Bullets and Numbering

26-+-926.1.10SX ta SQ: Output file contro!

Name |Direction | Bits|Description
SXx_SQ_Export_count_rdy SXx-SQ | 1 Raised by SX0 to indicate that the following twofields

reflect the result of the most recent export
SxXx_SQ_Export_Position SXx-SQ | 1 Specifies whether there is room for another position.
SxXx_5Q_Export_Buffer SXx8Q 7 Specifies the space available in the output buffers. 0: buffers are full

pixels in a clause)

64 pixels)
65-127: RESERVED

 1: 2K-bits available (32-bits for each of the 64

64: 128K-bits available (16 128-bit entries for each of

2614026.1.1]1 SQ to TP: Contro/ bus

Once every clock, the fetch unit sends to the sequencer on which clauseit is now working and if the data in the GPRs

« oe (Formatted: Bulletsand Numbering -)

is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the addressin the registerfile where to write
the fetch return data.

Name Direction Bits|Description
TPx_SQ_data_rdy _TPx-> SQ 1 Data ready

| TPx SQ clause num | TPx-- SOQ 3 Clause nurnber|

TPx_SQ TypeTPx80_clause_num | TPx. > SOTPx—|13 Type of data sent (PIXEL, PVERTEXClause| S& AuAbsE
$Q_TPx_const SQ—TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct |SQ>TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ-»TPx 1 Lastinstruction of the clause

| [SOTex Type SG TPs ii | Type of data sent OF KEL. TVERTEX)
SQTPxphase |SQ>TPx 2 | Writephasesignal
SQ_TPO_lod_correct SQ—TPO 6 LOD correct 3 bits per comp 2 components per

quad
SQ_TPO_pmask | SQ--TPO 4 Pixel mask1 bit per pixel .
SQ_TP1_lod_correct | SQ>TPI1 6 LOD correct 3 bits per comp 2 components per

/ quad
SQ_TPi_pmask SQ—TPI 4 Pixel mask 1 bit per pixel
$Q_TP2_lod_correct SQ—TP2 6 LOD correct 3 bits per comp 2 components per

I quad

deriv 2023.doch400_Bequencer.dec viage Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** giouooone7eu

AMD1044_0257128

ATI Ex. 2106

IPR2023-00922

Page 217 of 223

ATI Ex. 2106
IPR2023-00922

Page 218 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

cet 24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 45 of 50

SQ_TP2_pmask _SQ—TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ-TP3 6 LOD correct 3 bits per comp 2 components per

quad
SQ_TP3_pmask | $Q-5TPS 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ5TPx 3 Clause number

SQ_TPx_write_gpr_index SQ->TPx 7 Index into Registerfile far write of returned Fetch|| Data

2614426.1.12 TP to SQ: Texture stall
a

The TP sends this signal to the S@ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

Name | Direction | Bits Description

TP_SQ_fetch_stall | TP SQ 4 Do not send more texture request if asserted

26-4+-1226.1.13 SQ to SF: Texture stall

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

Name |Direction Bits| Description _ | ne
SQ_SPx_ fetch stall _SQ-2SPx i Do not send more texture request if asserted | ee

26-1-1326.1.14 SQ to SP; GPR, Parameter cache control and auto counter we
Name Direction | Bits | Description
SQ_SPx_wr_addr | §Q—S5Px 7 Write address
SQ_SPx_gpr_rd_addr SQ—SPx 7 Read address
SQ_SPx_gpr_re_addr |SQ->SPx 1 Read Enable

SQ SPx_gpr_weaddr SQSPx 1__| Write Enable for the G
SQ_SPx_gpr_phase_mux SQ—SPx 2 The phase mux (@

reads and writes)
SQ_SPx_channel_mask | SQ—SPx 4 The channel mask
S$Q_SPO0_pixel mask SQ—SP0 4 The pixel mask
$Q_SP1_pixel_mask $Q-»SP1 4 The pixel mask
SQ_SP2_pixel_mask $Q >SP2 4 The pixel mask
SQ_SP3_pixel_mask __SQ--SP3 [4 The pixel mask ;
SQ_SPx_pe_we_ader _SQ—5SPx 4 Write Enable for the parameter caches
$Q_SPx_gpr_input_mux SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0O,
VTX1, autogen counter.

SQ_SPx_index_count $Q—SPx Index count, commonfor all shader pipes

= >| Formatted: Bullets and Numbering

" coo) Formatted: Bullets and Numbering

S| Formatted: Bullets and Numbering

AMD1044_0257129

ATI Ex. 2106

IPR2023-00922

Page 218 of 223

ATI Ex. 2106
IPR2023-00922

Page 219 of 223

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20754 46 of 50AAO
R400 Sequencer Specification PAGE

Name Direction | Description

$Q_SPx_ instruct start SQ—SPx

_ Instruction start

$Q_SP_instruct SQ—SPx Transferred over 4 cycles
0: SRC A Select 2:3

SRC A Argument Modifier 3:3
SRCAswigzle 14
Unused 20.12

4. SRC B Select 20
SEC B Argument Macifier 33SECS swiezie 14
Unused 20:12

2: SRC C Select 28
SRC CS Argument Modifier 3
SRC C swzgie :
Unused

3: Vector Opcode 40

Scalar Oocode 10:3
Vector Clamp 144
Scalar Clamp V212
Vector Write Mask 16:13
Scalar Witte Mask 20:1 7insinicten-sentover

Aes

SQ_SPx_stall SQ—SPx

~_| Stall signal

$Q_SPx_export_count SQ—SPx Each set of four pixels or vectors is exported over
| eight clocks. This field specifies where the SP is in
| that sequence.

SQ_SPx_export_last SQ—SPx | Asserted on the first shader count of the last export
of the clause

SQ_SP0_export_pvalid SQ—SP0 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers}. 4x4 because 16 pixels are computed per
clock

SQ_SPO0_export_wvalid SQ—SPO0 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or

_vectors

$Q_SP1_ export_pvalid SQ—SP1 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid 8Q—SP1
Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or

_vectors

$Q_SP2_ export_pvalid $Q—SP2 Resuit of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers}. 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_wvalid SQ—SP2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP3_ export_pvalid

SQ >SP3 Result of pixel Kill in the shader pipe, which must be

output for all pixel exports (depth and all color

| buffers). 4x4 because 16 pixels are computed per

deriv 2023.doch400_Bequencer.dec

% = “= >| Formatted: Bullets and Numbering

viage Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** giouooone7eu

AMD1044_0257130

ATI Ex. 2106

IPR2023-00922

Page 219 of 223

ATI Ex. 2106
IPR2023-00922

Page 220 of 223

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |

24 September, 2001 4 September, 20154 GEN-CXAKAX-REVA 47 of 50ee daa

| clock
SQ_SP3_ export_wvalid SQ—SP3 (2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
_ vectors

26-14526,1.16SP to SQ: Constant address load/ Predicate Set “

Name | Direction | Bits | Description
SPO_SQ_const_addr | SPO—SQ | 36 Constant address load / predicate vector load (4 bits only)

Lo to the sequencer
SP0_SQ_valid SP0—S50 1 Data valid
SP1_SQ_const_addr SP1—SQ 36 Constant address load / predicate vector load (4 bits only)

I te the sequencer
SP1_SQ_valid -|SPi58Q(4. |[Datavaid
SP2_SQ_const_addr SP2—S8Q 36 Constant address load / predicate vector joad (4 bits on)

to the sequencer
SP2_SQ_valid | §P2-SQ 14 Data valid
SP3_SQ_const_addr “SP3=SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_S$Q_valid | SP3—8Q 4 Data valid

26-+4626,1.17SQ to SPx: constant broadcast ee
Name | Direction | Bits | Description
$Q_SPx_constant _SQ->SPx 128|Constant broadcast

2611726118 SPO to SQ: Kill vector Joad °

\Name | Direction _ Bits |Description ss—‘“sSSSCSCisS
SPO_SQ_kill_vect | SPQO>SQ | 4 Kill vector load
SP1,SQ_ kill vect SP1=SQ 4 Kill vector load

SP2_SO_Kkill_vect | SP2--8Q i4 Kill vector load
SP3_SQ_Kill_vect | SP3 >SQ 4 Kill vector load

26-14826.1.19 SQ to CP: RBBM bus

Name Direction Bits|Description
SQ_RBB_rts | SQ-»CP i 1 Read Strobe
SQ_RBBoid SQ—CP 32 Read Data

S$Q_RBBM_nrirtr $Q>CP 1 Optional |SQ_REBM_rir 5Q--CP im Real-Time (Optional)

2644926.1.20 CP to SQ: RBBM bus .

Name Direction Bits |Description
rbbm_we CP-SQ 1 Write Enable
rbbrm_a CP—SQ 1815|Address -- Upper Extent is TBD (16:2) |
robbruwd CP-SQ. 32.| Data :

lrbbmbe_| CPSQ 4 Byte Enables
robm_re CPS 4 Read Enable
rbb_rsO | CP-»SQ 4 Read Return Strobe 0
rbb_rs1 CP—SO 1 Read Return Strobe 1
rbb_rdO | CP-SQ 32 Read Data 0
rbb_rdi CP3a | 32 Read Data 0
RBBM_SQ_soft_reset | CP—SQ 1 Soft Reset

Exhibit 2024.docR400_Sequencendes 71499 Bytes*** @ AT] Confidential. Reference Copyright Notice on Cover Page © ***go.oo.02oul :

eee Formatted: Bullets and Numbering

| ee EI Formatted: Bullets and Numbering

=| Fermatted: Bullets and Nurnbering

=| Formatted: Bullets and Numbering

“ “--") Formatted: Bullets and Numbering

AMD1044_0257131

ATI Ex. 2106

IPR2023-00922

Page 220 of 223

ATI Ex. 2106
IPR2023-00922

Page 221 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | :
24 September, 2001 | 4 September, 20154 48 of 501 fw L AA i

| 27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Vertices
4.

11.

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

PA sends a veciorof 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
e space was allocated in the position cache for transformed position before the vector was sent
e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

e the SEQ then accesses the [S basefor this shader using the local state pointer (provided toall
sequencers by the RBBM when the CPis done loading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basicaliy the Vertex FIFO always haspriority
e at this point the vector is removed from the Vertex FIFO
e the arbiter is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

SEQ allocates spacein the SP register file for index cata plus GPRs used by the program
e the number of GPRsrequired by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send veriex data until spacein the registerfile has been allocated

SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFO of SU0,SU1, SU2, and SU3 is written the first cycle
® RF of SU0, SU1, SU2, and SUSis written the second cycle
® RF2 of SU0, SU1, SU2, and SU3is written the third cycle
e RF3 of SUO0,SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w): the remaining data bits are set to zero (x, y, Z)

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data te the TU, which will write the data to the RF as it is received
e once the TU has written all the data to the registerfiles, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
« A parameter cache pointeris also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
® there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

AMD1044_0257132

ATI Ex. 2106

IPR2023-00922

Page 221 of 223

ATI Ex. 2106
IPR2023-00922

Page 222 of 223

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20194 GEN-CXAXXX-REVA 49 of 50

12.

27

1.

Exhibit 2077 dock4tG_Sequencerdes 71400 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © *** 5,.92oo.02oul : S

— ts if

e® the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFOisfull
e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

e parameter data is sent to the Parameter Cache over a dedicated bus
« the SEQ allocates storage in the Parameter Cache, and the SEQ dealiocates that space when there is no

longer a need for the parameters(it is told by the PA when using a token).
® the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

after the shader program has completed, the SEQ will free up the GPRs so thal they can be used by another
shader program

.L.2 Sequencer Control of a Vector of Pixels

As with vertex shader programs,pixel shaders are loadedinto the global instruction store by the CP

e=At this pointit is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
« the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the registerfiles for vertices, the Pixel FIFO is selected

SEQ allocaies spacein the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEQ will not allowinterpolated data to be sent to the shader until space in the register file has been allocated

SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrarns for details.

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e all other information (such as quad address for example) travels in a separate FIFO

TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as itis received
e once the TU has written all the data for a particular clause to the register files, it incrernents a counter thatis

associated with the ASMO FIFO: a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

® itis sent to an output FIFO whereit will be picked up by the render backend
» the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

AMD1044_0257133

ATI Ex. 2106

IPR2023-00922

Page 222 of 223

ATI Ex. 2106
IPR2023-00922

Page 223 of 223

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 20154 50 of 50| bs :

| 27.1.3 Notes
14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real

threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointeris different for all threads, but the [S
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need fo do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

deriv WUdocRscGSequencerdee 71400 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** g.,o202.67pM

AMD1044_0257134

ATI Ex. 2106

IPR2023-00922

Page 223 of 223

