
ATI Ex. 2105
IPR2023-00922

Page 1 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

7 May, 2007 8 September, 20153 GEN-CXXXXX-REVA 4 of 16a 2 e x4
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.32

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcey400iarchidocigik\RE\R400Seauencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS.

Signature/Date Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

 SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2009 decR400_Sequencerdos 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** poansoro4

POS W/O01 OS:17 PMOG01 02.15 PM

ATI 2009

LGv. ATI

IPR2015-00325

AMD1044_0256673

ATI Ex. 2105

IPR2023-00922

Page 1 of 239

ATI Ex. 2105
IPR2023-00922

Page 2 of 239

Vat ORIGINATE DATE EDIT DATE<a

| 8 7 May, 200% | 8 September, 20153i 4, bs 4A

R400 SequencerSpecification PAGE
2 of 16

Table Of Contents

1. OVERVIEW ooo ccccceeeecceceecseeeecrsseeeeeneees 3
Li Top Level Block Diagram... 4
12 Data Flowgraph.. Be
13. Control Graph. 1146
2. INTERPOLATED DATA BUS....... 1340

3. INSTRUCTION STORE 1140
4. CONSTANT STORE000 {2i4
4. LOGPING AND BRANCHES........ 1244
6. REGISTER FILE ALLOCATION... 1244
7. LEXTURE ARBITRATION... 1342
8.
9,
1b. CONTENT OF THE RESERVATION
STATION FIFOS ..wweeee1443

li. THE OUTPUT FILE (RB FIFO AND

12.1 External Interfaces... 1443

12.1.) Sequencer to Shader
EngineBUS.TALS

12.1.2 Shader Engine to Output
File 1442

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus

644 Sequencer to Texture Unit bus
(SIOW- BUS) reereerreeneerrrererrerrrrerniee: td
6-4-5-Shader EnginetoREIPA Bus 44

12.1.4 Sequencerto Texture Unit bus
(Slow Bus) 1574

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date: August 6, 2001

Exhibit 2009.doch400_Sequence-des 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** perens 91.03

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2007.

PMOS/SIO1 03:47 MOTH3/01 02:10 PM

AMD1044_0256674

ATI Ex. 2105

IPR2023-00922

Page2 of 239

ATI Ex. 2105
IPR2023-00922

Page 3 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 7 May, 2001 8 September, 20153 GEN-CXXXXX-REVA | 3o0f 16i % p iyA

1. Overview

The sequencer first arbitrates between vectors of 16-4aybe-32) vertices that arrive directly from primitive assembly
and vectors of $4-quads (16 pixels) (f2-pixels}-that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses as-twoALU clauses and a texture clause to execute, and
executesall of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen te execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the tep-bottern of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will beshared amongthe four shader
pipSs.

Exhibit 2008. doeR400_Sequencerdee 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponen5 9.93 oePMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM

AMD1044_0256675

ATI Ex. 2105

IPR2023-00922

Page 3 of 239

ATI Ex. 2105
IPR2023-00922

Page 4 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 7 May, 2001 8 Septernber, 20153 4 of 16

| 1.1 Top Level Block Diagram

vertex’pixel vector arbitrator
Possible delay for available GPR |.gagfannmnnnmmnnsnnnnnnininnninannenns

Texture clause 0 ——B— eservation station

lee——[TO ng(ALU clause 0
hadj—teservation station [nntnnnnennannnnnnng

pee |___ gE »! L Texture clanse 1
eservation station

i ot FIFO LeggALU clause 1 exture arbitrator

reservation station eS ——extnre arbitrator Re jrexture clanse 2poe a eservation station
4 Fro

hag——ALU clause 2 Ledkeservationstation
: Fro »(rexture clanse 3

reservation station

:

| <i FIFO
jg——ALU clause 3reservationstation

r pel FES > »1 ‘extre clanse 4
‘eservation station

i FIFOALU clause 4 {eel

reservationstation fro eni : iPexture clause 5

reservationstation
latfat————|FEO

‘LUclause 5 |reservation station eee: |___ FIFO iPexture clause 6
eservation station.

i << FIFO
e ALU clause 6

reservation station HD ennd [FES] PF rexnure clause 7 ‘
ARO eservation station<—

 | :ALU clause 7

reservation station

ilxio =1D ‘2 gOo oe=Go @a=iB 2° sn fete> @ aao=oO Pa fo) S sy® oS 3oO = s <@es ‘Oo io iD Bg 5a Qo 3a ¢s 3xaKd

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is emply then, the rasterizer takes the first entry of the pixel FIFO (@ vector of 32-16pixels) and
sends it to the interpolators. Then the sequencer takes contral af the packet. The packet consists of 3 bits of state, 6-
7 bits for the base address of the Shader program and someinformation on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishesits last clause.

Exhibit 2008 JocR400Gequeacerdes 16178 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** gsnensg93PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM ns

AMD1044_0256676

ATI Ex. 2105

IPR2023-00922

Page 4 of 239

ATI Ex. 2105
IPR2023-00922

Page 5 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

7 May, 2001 8 September, 220153 GEN-CXXXXK-REVA 5 of 16 - iA

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin thefirst FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (temd) is passed to the texture system identifying the current level number
(0) as well as the register set-being-usedwrite address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 1G vertices). Once all the requests are sent the packetis
put in FIFO 1.

Upon recept of the return data (identified by the temd containing the level number 0), the level 0 texture machine
issues a register address for the return value (td). Then, it increments the counter of FIFO one-1 to signify to the ALU

‘that the data is ready to be processed.

On receipt of a command, the level OQ ALU machine first decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,

one destination address (2-3cycles later) and an instruction‘d-wich-is-tised-teJndex-inio.the.inskaiction store. Once
the last instruction as been issued, the packet is put into FIFO 2. th
There will always be two active ALU clauses al any given time (and two arbitrers)in-thic-cacetheinsituctoné-ofa
yectorare-interleaved-with-the-instructions-ofthe-other-vecter, One arbitrer will arbitrate over the odd clock cycles and
the other one will arbitrate over the even clock cycles. The only constraints between the two arbitrers is thai they are
not allowed to pick the same clause number as they other one is currently working on if the packet os of the same
pe.

if the packel Is a vertex packel, upen reaching ALU clause 4 a can export the position ifthe position!is(ead. So the

positional data, the location wherethe vertex datais to be out iis also sent (parameter data pointers).

All other level process in the same way until the packetfinally reaches the last ALU machine (8). On completion of the
level 8 ALU clause,a valid bit is sent to the Render Backend which picks up the color data. This requires that the last

instruction writes to the output register — a condition that is almost always true. If the packetwas a vertex packet,instead of sending the valid bit to the RB, itis sent to the PA,
so it can know that the data present in the parameter store is valid.

Only one-two ALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the SRAMreqister file address bus at
one time. Arbitration is performed by tve-three arbitrer blocks (eme-hwofor the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch ofhalf
finished jobs from clogging up the Sk.AMregister Sfiles.

Each state machine maintains an address pointer specifying where the 16-or-32} entries vector is located in the
SRAMregisterfile (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address pointer for the first state machine in the chain
(the input state machine}, and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocatedSRAMreqgister file memory is available

Exhibit 2008.doeRA00_Sequencendes 16178 Bytes** © AT! Confidential. Reference Copyright Notice on Cover Page © ** onano.n3)PMGGH WO1 OS. 17 PNORNGIOT O20 PM

AMD1044_0256677

ATI Ex. 2105

IPR2023-00922

Page 5 of 239

ATI Ex. 2105
IPR2023-00922

Page 6 of 239

ORIGINATE DATE

7 May, 2001 EDIT DATE R400 SequencerSpecification

& September, 20153£. is

PAGE

6 of 16

 interpolated data trom RE

 Register File
512x128 (built as 4:1

 <j

Address to texure

control from RE
x 128 or 16 128x32

or vertex parameter data to RE through texture block
or pixel data to RB through texture block

W382
128 bit data

 constants irom RE

432 bit MAC units
128 bit scatar/vector | control from REALU

Exhibit 2000 docRAte.toquenserdsc 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sopensoinsPMGGH WO1 OS. 17 PNORNGIOT O20 PM

AMD1044_0256678

ATI Ex. 2105

IPR2023-00922

Page 6 of 239

ATI Ex. 2105
IPR2023-00922

Page 7 of 239

 pipeline stage

ORIGINATE DATE

7 May, 2001

pipeline stage

iblLo~

ScalarUnit

4
scalar inpuvoutput

aI

pipeline

 L (scalar iInputfoutput

& September, 20153

|I

Register File ||
|

Registe file

EDIT DATE

WEES Yat

Register File

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

texture request

 eftiles

MAG | texture req

J|datawimitivedatafromREinto]S$8regis.
texture reques

(
Exhiblt 2008 docR400_Sequencendec 16178 Bytes*** © ATI Confidential. Reference Copyright dotice un Cover Page © *** sonansound)

v

PMGGH WO1 OS. 17 PNORNGIOT O20 PM

PAGE

7 of 16

AMD1044_0256679

ATI Ex. 2105

IPR2023-00922

Page 7 of 239

ATI Ex. 2105
IPR2023-00922

Page 8 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | ? May, 2001 8 Septernber, 20153 8 of 16en et

Exhibit 2008 JocR400Gequeacerdes 16178 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** gsnensg93PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM ns

AMD1044_0256680

ATI Ex. 2105

IPR2023-00922

Page8 of 239

ATI Ex. 2105
IPR2023-00922

Page 9 of 239

 PMGGH WO1 OS. 17 PNORNGIOT O20 PM

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

7 May, 2001 8 September, 20153 GEN-CXXXXX-REVA 9 of 16iene} sR

uw
RENEE ce£

2

2 — a

Register File

frereggy (TT
€ reg ~\

Register File
nn(

scalar Tiputioutput LL text] [reques ~
pipeline stage | .

ifs>

&
8 Lt

w# . 7 L
RegisterFile is3

a ("| Esft 5 & ~

| i 7 oo fexture|S quest 12.< | scalar inpubfoutput c Pa
aa a a '
| pipeline stage | 2 § |— mo 2 \' ity i

| LL! |
| _ | |

Register File a |aq

No |
es _ texture rel pst i

TTT
(Sak input/output |

| wo
———— cr 8

{ oe
i £

to Primitive Assembly Unit or RenderBackend)

Exhibit298¢rbrctOG-Sequemcer: 5 iec-on-GoverPage-O-—sorp40 91.5 S

AMD1044_0256681

ATI Ex. 2105

IPR2023-00922

Page 9 of 239

ATI Ex. 2105
IPR2023-00922
Page 10 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 7 May, 2001 8 September, 20153 10 of 164 et

Interpolated
data / Vertex indexes

a |
|
|||
||: | - -

F| see | INSTRUCTION CONSTANT
REGISTER FILE <— STOREICACHE STORE

OPERAND MUX

SCALAR

. ALU Wee ALU ALU TEXTURE

4-yae,

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

Exhibit 2000 docRAte.toquenserdsc 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sopensoinsPMOBH Q/O1 OS: 57 PMOR13/01 O2:10 PM :

AMD1044_0256682

ATI Ex. 2105

IPR2023-00922

Page 10 of 239

ATI Ex. 2105
IPR2023-00922
Page 11 of 239

 | ORIGINATE BATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 7 May, 2007 & September, 20153 GEN-CoO000¢-REVA, | 11 of 16L 4, p Pes L

1.3 Control Graph

Be

Ciause # + Rdy

WrAddr IS | SEQ CST | WrAddr| I

eMD | | RdAddr
| PARB

CST , |7 I

Phase CME esti Gers A B CWrvec |
RdAddr WrSeal wraddr

™ SP | OF
WrAddr ||

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
Since each of the register file is actually physically divided (one 32x 128 per MAC) and we don’t have the
a maximum size vector of vertices in the parameter buffer, we need fointerpolate on a parameter basis rather than on
a quad basis. So the order to the registerfile will be:

QOPO Q1P0 G2P0 OSP0 QOP1 GIP1 G2P1 Q3P2 GOP3 Q1P3 ..

3, Instruction Store
There is going te be only one instruction store for the whole chip. It may contain up te 2000 instructions of 96 bits
each, The instruction store is loaded by the sequencer using the memory hub. The read bandwith from this store is
24 bits/clock/pipe. To achieve this this instruction store is likely to be broken up into 4 blocks. An ALU instruction
section CO R/1W) split in bve and a texture section (1R/1W) also solil in two, The bandwith out of those memories is 98
bits/clock,

Exhiblt 2000. doc t40G_Sequencer.dec

PMO8/1 9/01 03:47 PMOTNS/01 02:10 PM

tted: Bullets and Numberin

>| Formas

i Formatted: Bullets and Numbering

16178 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonen5 91.93 ee

AMD1044_0256683

ATI Ex. 2105

IPR2023-00922

Page 11 of 239

ATI Ex. 2105
IPR2023-00922
Page 12 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

7 May, 2001 8 September, 20153 ote | —

hen GYanecs J. {FormattedBulletsandNumbering
4. Constant Store Oe
The constant store is managed by the CP. The sequencer is aware of where the constanis are using a remapin
table also managed by the CP. A likely size Jor the constant siore ie 512x128 bits. The constant siore is also planned
to be shared. The read BWfrom the constant store is 512/4 bits/clock/pipe and the write bandwith is 32/4 bits/clock,

5. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. However, itis
still unclear if we plan on supparting data dependent branches ornot,

6. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic, In both cases, the registerfile in
managed using two round robins (ene for pixels and one for vertices). In the dynamic case the boundary between
pixels and verticesis allowed to move, in the sltatic caseitis fixed to VERTEXREGSIZEfor vertices and 256-
VERTEXREGSIZEforpixels.

“ 2 id Formatted: Bullets and Numbering

ose) Formatted: Bullets and Numbering
OS as = : : oo * ~

Exhibit 2008 JocR400Gequeacerdes 16178 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** gsnensg93PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM ns

AMD1044_0256684

ATI Ex. 2105

IPR2023-00922

Page 12 of 239

ATI Ex. 2105
IPR2023-00922
Page 13 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

7 May, 2001 8 September, 20153 GEN-CXXXXX-REVA 13 of 16es A Ra

Above is an example of how the algorithm works. Vertices come in from top to botiom: pixels come in from botiom to
top. Vertices are in orange andpixels in creen. Theblue line Is the tall of the verlices and thegreenlineis the tallof
the pixels. Thus anything between the two lines is shared. When pixele meets vertices the line turns white and the
boundary is static until both vertices and pixels share fhe same “unallocated bubble”. Then the boundary as allowed
to move again.

2-7. Texture Arbitration

The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state

machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to +20X(’?) in flight texture fetches and thus there can be a fair numberof active clauses
waiting for their texture return data.

3-8. ALU Arbitration

ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of

the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first ¢one ready to execule = ,

state. mashine-4isgues- the first instruction for the. first. sub-vector and then, 4.-elooks. later, the.fi rst instruction of the
second-cub-vecter-and-so-on-until-the-siause-is-finished.. There are two ALU arbitrers, one for the even clocks and

ee = Formatted: Bullets and Numbering

sos Formatted: Bullets and Numbering

Exhibit 2009 doc R400_Sequencondec 16178 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jonons 9.9 ee

PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM

AMD1044_0256685

ATI Ex. 2105

IPR2023-00922

Page 13 of 239

ATI Ex. 2105
IPR2023-00922
Page 14 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 7 May, 2001 85September, 201 53 14 0f 16shen

onefor the add clocks. For exemple, hereiis the seg uencin “of twointerleaved ALUclauses (E and © stands for Even
and Odd):

Elnst0 OinstO Einett Oinsti Einst2Oinsi2Einst0 OinstS Einst) Oinst4 Elnsit2 Oinetd..
Proceeding this way hides the latency of 8 clocks of the ALUs.

4-9. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If we-have-the-abilityto-export-etanyclausethe packet is
a vertex packet and the position buffer is full (POS FULL) then the sequencer also prevents a thread to enter the
exporting clause(47). The sequencerwill set the OUT_FILE_FULL signal n clocks before the outputfile is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5-10. Content of the reservation station FIFOs
3 bits of Render State-and 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the
quad exits the shader pipe to enter in the outputfile buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shaderpipe latency. This
size will be determined later when we will Know the size of the small fifos between the reservation stations.

The output file is where program results are exported when the pixel/vertex shaderfinishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. Each-section-is-aregular-FIEO.-The outputfile has
1 write port and 1 read port. The sequenceris responsible for managing the addresses of this output file and for
stalling the shader pipe should this outputfile fill up. The managementis done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the blocks).

7-12. Interfaces

7-+12.1 External interfaces

$4+412.1.1Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a newinstruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
these 4 clocks.

Name Direction Bits | Description

Instruction Start | SEQ-> SP ic High on first cycle of transfer
Constant 0 SEQ-> SP 32 | 128bits transferred over 4 cycles, alphafirst... blue last
|Constant1_SEQSP[32 | 128 bits transferred over 4 cycles, alpha first. bluelast

Instruction [SEQ->SP_> SP .30 || 120 bits transferred over 4 cycles (order TBD) 7

12.1.2Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (7). This
data will be compressed into 128 bits total prior to storage in output file.

“UL_Vector_Out | SP-> OF | 128 | Vector Data out Name _ f Direction_ [Bits [Description |

| Exhibit 2008 JocR400Gequeacerdes 16178 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** gsnensg93PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM

eo) Formatted: Bullets and Numbering

abe : Formatted: Bullets and Numbering

S & Formatted: Bullets and Numbering :
6-11. The Output File (RB FIFO and Parameter Cache) s

p= <| Formatted: Bullets and Numbering

ao Formatted: Bullets and Numbering

AMD1044_0256686

ATI Ex. 2105

IPR2023-00922

Page 14 of 239

ATI Ex. 2105
IPR2023-00922
Page 15 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

7 May, 2001 8 September, 20153 GEN-CXXKXX-REVA 15 of 16- 1 pecteenrennanneanrennennesnnen - vonesoswireke FNnesennaeneeereesn anernaeneeenseneencreteneveanrerturran wuneiemameeswanenanunenanneewens
ULScalarOut _SP.> OF 32 _| Vector Data out

URVectorOut_ SP->OF i
UR_Scalar_Out | SP-> OF

[Namei s—~—“—*;~s~*~C=sCirco[Bits|Description
LL_Vecter_Out | SP-> OF | 128 | Vector Data out
LL Scalar Out SP-> OF | 32____ Vector Data out
|LR_Vector_Out [SP->OF[128|VectorDataout

LR_Scalar_Out | SP-> OF |32 | Vector Data out : : : aS :

F+4312.1.3 Shader Engine to Texture Unit Bus (Fast Bus) a ce :
One quad's worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register-fleregister file index to read must precede the
data by 2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocks after the Instruction Start.

One Quad's worth of Texture Data may be written to the Register FileRegisterfile every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register fleregister file index to write must accompany
the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction | Bits | Description ;
Tex_Read_Register_Index SEQ->SP |8 Index into Register-FileR: r files for reading Texture

| | Address
Tex_RegFile_Read_Data SP->TEX 5i2 | 4 Texture Addresses read from the RegisterFleRegister

| | file : :

Tex_Write_Register_Index | SEQ->TEX |8 Index into RegisterfieRegister file for write of returned eeI | Texture Data : : : ee |

7+412.1.4 Sequencer to Texture Unit bus (Siow Bus) —

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequenceralso provides the intruction and constants for the texture fetch to execute and the address in the register
fileregister file where to write the texture return data.

Name | Direction BitsDescription ee
Tex_Ready _TEX— SEQ 4 | Data ready
Tex Clause Num TEX— SEQ 3 | Clause number

[Texcst 7 SEQ--TEX| Po_Texture constants Xbitssentover4clocks
Tex_inst | SEQ-»TEX L? | Texture fetch instruction X bits sent over 4 clocks

- . __[- = Fommatted: Bullets and Numbering
7+312.1.5 Shader Engine to RE/PA Bus Se =

Name Direction Bits | Description
Interpolator_Register_Index [SEQ->SP 8 -Index into Register-FileRegister files for write of

_ | __Interpolator/index Data . :
Interpolator_Write_Mask SEQ->SP 1 | Write Mask. The same write mask is usedforall 4 pixels see : ae : oe Sas
Interpolator_Write_Data RE/PA->SP | 512 | 4interpolated vectors or vectors of indices : : : Ss eae

. . ed Formatted: Bullets and Numbering
12.1.6 PA to sequencer “| Ser e = =

Name | Direction | Bis | Description{Formatted——S™~C~S~S
Adress, __. PASE, 2, , Dealocation adresssent by the PAtelling the Sequencer || 700 pe--eeseeee a

| | thet tis now possible io free this space in ihe parameter [pl © Formatted _
| | buffer, This token is a pointer in the parameter cache and | {Formatted| | 4 bits to tell the size wichis to be freed up SR

Exif2009. docR400_Sequencendee 16178 Btes** © ATI Confidential. Reference Copyright Notice on Cover Page © ** poponsgnd Ee es : .PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM

AMD1044_0256687

ATI Ex. 2105

IPR2023-00922

Page 15 of 239

ATI Ex. 2105
IPR2023-00922
Page 16 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE Sadia | 7 May, 2001 8 September, 20153 16 of 16 — —— - -

| 8-13. Open issues a rrr
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don't
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storagein the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to de some testing on the size of the register-Heregister file as well as on the registerflerecister file allocation
method (dynamic VSstatic).

| Abilityto-exportatanyclause?
Saving power?

| Are we working on 32 vertices at a time or 167
Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

SequencerInstruction memory, and constant memory.

Arbitration policy for the outputfile.

Loops and branches.

The parameter cache may end up in the PA rather than in ine RS. Parameter cache management thus may change.

Exhibit 2008 JocR400Gequeacerdes 16178 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** gsnensg93PMOS/1 B01 OS: 17 PMONIS/O1 02:10 PM ns

AMD1044_0256688

ATI Ex. 2105

IPR2023-00922

Page 16 of 239

ATI Ex. 2105
IPR2023-00922
Page 17 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

14 Auguel, 200144 4 September, 201524 GEN-CXXXXX-REVA 4 of 20Lu
Author: Laurent Lefebvre

issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.42

Overview: This is an archiectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal stale diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Ciiperforcer40Q\archidoc\whiRE\R400_Sequencerdec
Current intranet Search Title: R400 Sequencer Specification

: - oo : HOSE APRROVALS : :
ES : eee ene “ Name/Dept © ees Signature/Date

Remarks:

 THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or |:
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2010 docR400_Sequencerdos 25504 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page @ *** poping youdPMG843/01.054 7 PMOTHI0245BM

ATT 2010

LGv. ATI

TPR2015-00325

AMD1044_0256689

ATI Ex. 2105

IPR2023-00922

Page 17 of 239

ATI Ex. 2105
IPR2023-00922
Page 18 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE SEs

14August,2001444September,2015242 of 20

Table Of Contents

1. OVERVIEW oo cccccccecccsecusssecetsseeeenneeees 43
1.1 Top Level Block Diagram........ D4
12 Data Flow graph. oF
13. Control Grapnaees {240
2. INTERPOLATED DATA BUS....... 1249
3. INSTRUCTION STORE....... 1240
4. CONSTANT STORE.......-...-- 1344
a, LOOPING AND BRANCHES........ 1344
cas»._MEGISTER FILE ALLOCATION... 1344

TEXTURE ARBITRATION...
.__ALU ARBITRATION o

9. HANDLING STALLS oes: 1543
10. CONTENT OF THE RESERVATION
STATION FIFOS oneee eee seeeeeeeeeenseaees 1543

li. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE), .oc:cucesesesreeenes 1543

vw. INTERFACES.)........... 1543

121 External Interfaces............. 1543

12.11 Sequencer te Shader
Engine BUS.es1513

12.1.2 ShaderEngine to Output
Elle 4543 +2-14-—-Sequencer-to-Texture-Unit-bus
T4349epe-. (Slow-Bus}-44
12.1.3 Shader Engine to Texture 1245

db-6. 10-SOQUERORbree

 So}

12.1.4 Sequencerto Texture Unit bus
(Slow Bus) 1644

12.1.5 Shader Engine te RE/PA Bus
1644

12.1.6 PA? to sequencer............
13. EXAMPLES OF PROGRAM
EXECUTIONS... ccccccucceccesseusnmeecersnerenans 1744

13.1.1 Sequencer Control of a Vector
of Vertices 1744

13.1.2 Sequencer Control of a Vector
of Pixels 1846

13.1.3 Notesoccccseeeeseess 1942
14. OPEN ISSUES.
1OVERVIEW sevcsssseceveses= wend

1644

12. Data-FGW- GLAPAerreerenrrerererrerererereerre 6-+3 :

ol Gr Bus-(FaSt- BUS)eee10

Exhibit 201 0.docR40GGequencerdos 28604 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © © nencs 9.49 :PMOSA 3AM OS) 7 OMOFH S01 0216 PR :

AMD1044_0256690

ATI Ex. 2105

IPR2023-00922

Page 18 of 239

ATI Ex. 2105
IPR2023-00922
Page 19 of 239

ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE
Cd 14 August, 200144 4 September, 201524 GEN-CXXXXX-REVA 3 of 20A fi erat A i

6-+4 Sequencer to Texture Unit bus FeoQPEN ASSUES csssvseves
(SIOW BUS)ceceetteeee 14

Revision Changes:

Rey 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre) Changed the interfaces to reflect the changesin the
Date : July 9, 2007 SP. Added some details in the arbitration section.
Rev 0.3 (Laurent Lefebvre) Reviewed the Sequencer spec after the meeting on
Date: August 6, 2001 August 3, 2001.
Rev 0.4 (Laurent Lefebvre) Added the dynamic allocation method for register
Date : August 24, 2001 file and an example (written in part by Vic) of the

flow of pixels/vertices in the sequencer,

Exhibit 2010 docR400_Sequencendec 26584 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noysns 12aPMOS/IS/O1 03:17 MOT3/01 02:10 PM

AMD1044_0256691

ATI Ex. 2105

IPR2023-00922

Page 19 of 239

ATI Ex. 2105
IPR2023-00922
Page 20 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | | | 14 August, 200114 4 Seplember, 201524 4 of 20
| L A £ SA aA A $y A e2

1. Overview

The sequencer first arbitrates between vectors of 16-(maybe-32} vertices that arrive directly from primitive assembly
and vectors of 84-quads (16 pixels) -(@2-pixele}-that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses ar-bwoALU clauses and a texture clause to execute, and
executesall of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen te execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the top-bottorn of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will beshared amongthe four shader
pipSs.

Exhibit 2010.docRA00Gequencerdes 25504 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** seosis ioga :PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256692

ATI Ex. 2105

IPR2023-00922

Page 20 of 239

ATI Ex. 2105
IPR2023-00922
Page 21 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 44 August, 200144 4 September, 201524 GEN-CXXXXX-REVA | Sof20L $$ Sr Aa A 4 SAA A sed t

i Top Level Block Diagram

vertex’pixel vector arbitrator
Possible delay for available GPRSgg)nmnnnmmnnnuninnnunnnninnnnannnnnananeinien

‘exture clause 0
eservation station

Bel FIFO > pel—— extire clanse 1
eservation station

(ALU clause 0
leg@—teservation stationi

 i FIFO
LejaLU clause 1 re < exture arbitratorreservation station =

| Ip FIFO ™ I>extnre arbitrator exture clanse 2

proc “HOT reservation station,i a "TPO fag 4
hag——ALU clause 2 akeservationstation

: p) FIFO

extire clanse 3
‘eservation station

i a FIFO
jg——ALU clause 3reservationstation

i pel FIFO »1 exhire clanse 4
‘eservationstation

i egg|FIOALU clause 4

reservationstation nDLl [Pexture clause 5 ;eservation station
1eg——————| PHO

‘LUclause 5 benereservation station —
: FIFO —(Pexture clause 6

ey HES reservation stationi g- *
j—(\LU clause 6

fpeservation station ae CO: > [FRO » >| {FRO|Texture clause 7eservation station

| :ALU clause 7 La
reservation station

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (@ vector of 32--16pixels) and | Sek
sendsit to the interpolators. Then the sequencer takes contral of the packet. The packet consists of 3 bits of state, 6- |
7 bits for the base address of the Shader program and someinformation on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishesits last clause.

Exhibit 2010 dock40G_Sequoncondec 25584 Byes** © AT] Confidential. Reference Copyright Notice on Cover Page © =* nonce i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256693

ATI Ex. 2105

IPR2023-00922

Page 21 of 239

ATI Ex. 2105
IPR2023-00922
Page 22 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 200144 4 Seplember, 2071 524 6 of 20

 — Cu? BS. Deere, OAS A £

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin thefirst FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (temd) is passed to the texture system identifying the current level number
(0) as well as the register selt-being-usedwrile address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 16 vertices). Once all the requests are sent the packetis
put in FIFO 1.

 address that was rovided by ‘the level G tomate machine andsendsthe clause number(0) to the level 0 texture state
machine to signify that the write is done and thus the data is ready. Then, the level 0 texture machine-# increments
the counter of FIFO ere-1to signify to the ALU_1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (2-3cycles later) and an instruction-id-wich-is-usedto-index_into-theinstruction clare. Once
the last instruction as been issued, the packet is put into FIFO 2.-Note-thatinathe oase-ofapixel packel, the iwe

There will always be two active ALU clauses at any given time (and two_arbitrers)-in—this—case,-theinstructions-of-a-vector-are-_interleaved—with-the-instructions-of-the-other-vector, One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints

between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same tyne,

ifthe packet is a veriex packet, upon reaching ALU clause 4, it can export the position if the position is ready, Se the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can't be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (pararneter data pointers).

All other level process in the same way uniil the packetfinally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB,it is sent to the PA-whieh-picke-up-the-data-and-pute-#inte-the-vertex-siore
so it can know that the data presentin the parameter store is valid.

Only ere-hwoALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the $RAMregister file address bus at
one time. Arbitration is performed by #ve-three arbitrer blocks (ene-two_for the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the SRAMregister Sflies.

Each state machine maintains an address pointer specifying where the 16-ior-32) entries vector is located in the
SRAMregister file (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address painter for the first state machine in the chain
(the input state machine), and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocated SkAMregister file memory is available

Exhibit 2010. docR400.Gequencerdec 25564 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noma io.agPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

Us ao Formatted

AMD1044_0256694

ATI Ex. 2105

IPR2023-00922

Page 22 of 239

ATI Ex. 2105
IPR2023-00922
Page 23 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 14 August, 200114 4 September, 201524 GEN-CXXXXX-REVA 7 of 20AO i fk A as es

interpolated data trom RE

Register File control from RE
512x128 (built as 4 128x128 or 16 128x32 i

 <j

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

W382
128 bit data constants itom RE

432 bit MAC units

128 bit scatar/vector | control from REALU

Exhibit 20°0.docR400_Sequencendes 25684 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** nous. 244 aPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256695

ATI Ex. 2105

IPR2023-00922

Page 23 of 239

ATI Ex. 2105
IPR2023-00922
Page 24 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 200144 4 Seplember, 201524 8 of 20AAA, Afar,

tantsfromRE
pipeline stage

sro]
Register File

xe ibI

| ipeline stagepip i)

ScalarUnit

| ia< Scalar input/output MAC
| texture request
| i ~|| || |

| i| |ry i
| |
|

| g /an | = |
__. Register File | 5

| | mi /
: 1 | a

Scalar Inpulloutput + | 7

| MAC texture reque ~\ie \| ©

 imitvedatafrom
 Registe)

 |data

at
pipeline stage

texture reque:a

(
Exhibit 2010. docR400..Gequencerdec 28564 Bytes*** © ATI Confidential. Reference Copyright Jotice unt Cover Page © *** nonans ioe

v

PMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256696

ATI Ex. 2105

IPR2023-00922

Page 24 of 239

ATI Ex. 2105
IPR2023-00922
Page 25 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 14 August, 200114 4 September, 201524 GEN-CoO000¢-REVA, | 9of20L £ sie L

1.2 Data Flow graph :

Exhibit 2010 dock40G_Sequoncondec 25584 Byes** © AT] Confidential. Reference Copyright Notice on Cover Page © =* nonce i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256697

ATI Ex. 2105

IPR2023-00922

Page 25 of 239

ATI Ex. 2105
IPR2023-00922
Page 26 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 200714 4 Seplember, 201524 10 of 20AAA A AAA A

tantsfromRE
C

| f

neSb(Seiner

| pipeline stage |I !

scalar Tmputoutput

3a® = wafiao

ScalarUnit

~< (saeTpinaaa
ae
r

pipeline stage

 lantsfromRE

 scalar input/output

; |i |
Ragisier File

MAC
re requ o™!,

| ~)|
|
|
|| i

banat |
Register File

text] [reques \| a
Register File hes

3

—§ 3,
| texture Squest_ 1 \\i o at

i & = |
| | BL| aw ii ity i

| | 'LW |7 |

— |

Ragister File a
i | |texture rel est |

i

wao&2PsPs%
£3Ss&a8

 to Primitive Assembly Unit or RenderBackend)

Crist20teiociseoScqpencersioe—25686-B;tes**-Q-ATLConfidentialReference-Copyright Notiee-on-CoverPage-6-—rysmevuePMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256698

ATI Ex. 2105

IPR2023-00922

Page 26 of 239

ATI Ex. 2105
IPR2023-00922
Page 27 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 14 August, 200114 4 September, 201524 GEN-CXXXXX-REVA 41 of 20£ OA dF 8 A nh OP, fA 4

Interpolated
data / Vertex indexes

a |
|
|||
||: | - -

F| see | INSTRUCTION CONSTANT
REGISTER FILE <— STOREICACHE STORE

OPERAND MUX

SCALAR

. ALU Wee ALU ALU TEXTURE

4-yae,

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

Exhibit 20°0.docR400_Sequencendes 25684 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** nous. 244 aPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256699

ATI Ex. 2105

IPR2023-00922

Page 27 of 239

ATI Ex. 2105
IPR2023-00922
Page 28 of 239

 A $A RA A OF: A £

1.3 Control Graph

Be

Ciause # + Ray
is CST

WrAddr | SEQ || I

cMD | |
cst | | i ||

Phase CMB esti eetp=ABC WIV|

RdAddr |WiSeal

™ SP |
WrAddr ||

| |

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 14 August, 200114 4 Seplember, 201524 12 of 20

WrAddr

RaAddr
PA/RB

OF

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
Since each of the register file is actually physically divided (one 128x128 per MAC) and we don't have the place to
held a maximum size vector of verticesin the parameter buffer, we need fo interpolate on a parameter basis rather
than on a quad basis. So the order to the registerfile will be:

QOPO G1PO G2P0 OSPO GOP1 OIP1 G2P1 Q3P1 OOP2 @71P2 ...

3. Instruction Store

each,

ISSUE : The instruction store is loaded by the sequencer using the memory hub 7.

 into 4 blocks, An ALU instruction section CIR/1W) split in two and a texture section
bandwith out of those memories is 96 bits/clock,

Exhibit 2010.docRA00Gequencerdes 25504 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** seosis ioga :PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

atted: Bullets and Numberin

4 Formatted: Bullets and Numbering Beo Serer en

There is going fo be only one instruction stere for the whole chip, It may contain up to 2000 instructions of 96 bits

TRA) also s

AMD1044_0256700

ATI Ex. 2105

IPR2023-00922

Page 28 of 239

ATI Ex. 2105
IPR2023-00922
Page 29 of 239

ORIGINATE DATE

14 August, 200114AA

4 Constant Store ~
Th
table also managed by the CP. A likely size Jor the constant siore ie 512x128 bits. The constant siore is also
to be shared. The read BWfrom the constant store is 512/4 bits/clock/

5. Looping and Branches

EDIT DATE DOCUMENT-REV. NUM.

4 September, 201524 GEN-CoO000¢-REVA, |sie LA $ OANA A

Loops and branches are
still unclear if we plan on supparting data dependent branches ornot,

6. Register file allocation
The register file allocation for vertices and
managed using two round robins (ene for

ixels and one for vertices). In the dynamic case the bounda

pixels and verticesis allowed to move, in the sialic caseitis fixed to VERTEXREGSIZEfor vertices and 256-
VERTEXREGSIZEforpixels.

255¢4 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © «+PMOS/ WOT O21? PMOM1S/01 G2:10 PR
Exhibit 2010 docR40G_Sequencer.dec

e constant store is managed by the CF. The sequencer is aware of where the constanis are using a remapin

ipe and the write bandwith is 32/4 bits/clock.

larnned to be supported and will have to be dealt with at the sequencer level. However, itis

ixels can either be static or dynamic. In both cases, the register file in

PAGE

13 of 20
ae "| Formatted: Bullets and Numbering

lanned

_-/7| Formatted: Bullets and Numbering

2] Formatted: Bullets and Numbering

between

BGOSF1E 4 za :

AMD1044_0256701

ATI Ex. 2105

IPR2023-00922

Page 29 of 239

ATI Ex. 2105
IPR2023-00922
Page 30 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

{A August, 200714 4 September, 201 S24 14 0f 20A £ rs nN PAE A

Above is an example of how the algorithm works. Vertices come in from top to botlom: pixels come in from bottom to
top, Verlicesarein orange andpixels in green. The blueline iethe tall of theverticesandthegreen lineisthe tail of
the pixels, Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share fhe same “unallocated bubble”. Then the boundary as allowed
moving again.

2-7. Texture Arbitration

The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to 400X(’?) in flight texture fetches and thus there can be a fair numberof active clauses
waiting for their texture return data.

3-8 ALU Arbitration “
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of

the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to o and
picking the first onere ready to execute

state machine-4jesues-the- first inctruction. fot the first “eub-vector and then, 4 plocks. later, the. first. instruction. of. the
secend-eub-yector-and-eo-er-untl-the-ciause-ie-finished., There are two ALU arbitrers, one for the even clocks and

Exhibit 2010.docRA00Gequencerdes 25504 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** seosis ioga :PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

 4 Formatted: Bullets and Numbering

-| Formatted: Bullets and Numbering

AMD1044_0256702

ATI Ex. 2105

IPR2023-00922

Page 30 of 239

ATI Ex. 2105
IPR2023-00922
Page 31 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 14 August, 200114 4 September, 201524 GEN-CXXXXX-REVA 45 of 20“SPAY Rha SA A

onefor the odd clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even
and Odd):

Elnst0 OinstO Einett Oinsti Einst2Oinsi2Einst0 OinstS Einst) Oinst4 Elnsit2 Oinetd..
Proceeding this way hides the latency of 8 clocks of the ALUs.

4.9. Handling Stalls
When the outputfile is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shaderpipe until there is place in the output file. If we-have-the-abiilyio-export-at-eanyclausethe packet is
a vertex packet and the position buffer is full (POS FULL) then the sequencer also prevents a thread to enter the

exporting clause (47). The sequencerwill set the OUT_FILE_FULL signal n clocks before the outputfile is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5-10. Content of the reservation station FIFOs
3 bits of Render State-and. 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the
quad exits the shader pipe to enter in the outputfile buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This
size will be determined later when we will Know the size of the small fifos between the reservation stations.

The output file is where program results are exported when the pixel/vertex shaderfinishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. Each-section-is-areguwar-FlF@.The outoutfile has
1 write port and 1 read port. The sequencer is responsible for managing the addresses of this output file and for
stalling the shader pipe should this outputfile fill up. The managementis done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the biocks).

7-12. Interfaces

7-+12.1 External Interfaces

71412.1.1Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a newinstruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
these 4 clocks.

Name Direction Bits | Description
Instruction Start | SEQ-> SP 14 High on first cycle of wansfer
Constant 0 SEQ-> SP 32 | 128 bits transferred over 4 cycles, alphafirst... blue last
|Constant1__)SEQ>SP[32 | 128 bits transferred over 4 cycles, alphafirst...bluelast_

Instruction _SEQ-> SP .30 || 120 bits transferred over 4 cycles (order TBD) 7

#+:212.1.2Shader Engine fo Output File ;
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (7). This
data will be compressed into 128 bits total prior ta storage in outputfile.

Name | Direction_ Bits |Description
“UL_Vector_Out | SP-> OF 1128 | Vector Data out

 oo Formatted: Bullets and Numbering

oe 4 Formatted: Bullets and Numbering

 -4 Formatted: Bullet and wanbarng -
6-11, The Output File (RB FIFO and Parameter Cache) “|

Sy) Formatted: Bullets and Numbering

Soo] Formatted: Bullets ard Numbering

Exhibit 2010 dock40G_Sequoncondec 25584 Byes** © AT] Confidential. Reference Copyright Notice on Cover Page © =* nonce i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256703

ATI Ex. 2105

IPR2023-00922

Page 31 of 239

ATI Ex. 2105
IPR2023-00922
Page 32 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 20071 14 4 September, 207524 16 of 20fel thAEF A8ellLEIS fh sus nnernineteen
ULScalarOut | SP.> OF 32 _| Vector Data out

URMectorOut000|SP->OF iz 28 |VectorDataout ce
UR_Scalar_Out | SP.> OF | 32 | Vector Data out

Name|Direction | Bits | Description
LL_Vecter_Out | SP-> OF | 128 | Vector Data out
LLScalar Out SP-> OF [32 | Vector Data out
|LR_Vector_Out [SP>OF128Vector Dataout

LR_Scalar_Out | SP-> OF |32 | Vector Data out

#4+312.1.3 Shader Engine to Texture Unit Bus (Fast Bus) . = — — oe =<
One quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register-Hleregister fle index to read must precede the
data by 2 clocks. The Read address associated with Quad O must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocksafter the Instruction Start.

One Quads worth of Texture Data may be written to the Register-FileReaister file every clock. These are directed to a

the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name | Direction | Bits | Description
Tex_Read_Register_Index SEQ->SP | 8 | Index into Register-Fil ter files for reading Texture

[. _ Address _
Tex_RegFile_Read_Data SP->TEX 512 4 Texture Addresses read from the Register-FileRegister

| | fle
Tex_Write_Register_Index | SEQ->TEX

7-+412.1.4 Sequencer to Texture Unit bus (Slow Bus)

& Index into Register-AieRedister file for write of returned
_ Texture Data

aoe = *| Formatted: Bullets and Numbering :

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
fleregister file where to write the texture return data.

Name ____ | Direction ss Bits
Tex_Ready _TEX— SEQ 4
Tex_Clause_Num | TEX SEQ 3

[SEQ—TEX ?

Description
Data ready

| Clause number

| SEQ--TEX| _ Texture constants Xbitssentover4 clocks
| SEQ-»TEX L? | Texture fetch instruction X bits sent aver 4 clocks

_- { Formatted:Bullets andNumbering J
#+312.1.5Shader Engine to RE/PA Bus ee : : —e

Name Direction Bits | Description
Interpolator_Regisier_Index | SEQ->SP | 8 -Index into Register-FieRegister files for write of

| ; __Interpolator/index Data .
Interpolator_Write_Mask SEQ->SP 1 _ Write Mask. The same write mask is used for all 4 pixels
Interpolator_Write_Data RE/PA->SP | 512 | 4 interpolated vectors ar vectors of indices

12.1.6 PA? to sequencer —— =

Name | Direction [Bits | Description {FormattedSSsS™S~SSYAdress, _ PA SEO %, | Dealocation adresssentby the PA telling the Sequencer |<“ en omen
4 acnetes

| | that itis now possible to free this space in the parameter | Formatted .| buffer, This token js @ pointer in the parameter cache and

| Formatted — || 4 bits in tell the size wich is to be freed un, i “

—_—~E—_— ES + Formatted

Exhibit 2010.docRA00Gequencerdes 25504 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** seosis ioga :PMOS/ WOT O21? PMOM1S/01 G2:10 PR mes

AMD1044_0256704

ATI Ex. 2105

IPR2023-00922

Page 32 of 239

ATI Ex. 2105
IPR2023-00922
Page 33 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 14 August, 200114 4 September, 201524 GEN-CoO000¢-REVA, | 417 of 20L $s aa A $ AA A sss ! ae

13. Examples of program executions

13.1.1 Sequencer Centro! of a Vector of Vertices

e__ Slate pointer as well as lag into position cache is sent along with vertices
® Space was allocated in the position cache for transfarmed position before the vector was sent
» alse before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MA?)
*___he veriex program is assured io be loaded when we receive the verlex vector.

e the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is doneloading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priori
*__atthis pointthe vectoris removed from theVertex FIFO
« __ihs arbltrer is not going to select a vecior to be transformed ifthe parameter cache js full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in ihe SP register file for index data plus GPRs used by the program
« the nurmber of GPRs required by the prograrn is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
» SEQ will not send vertex data until space in the register file has been allocated

4, SEQ sends the vector to the SP register file over the RE SF interface (which has a bandwidth of 512 bits/cycle)
e _the 16 vertex indices are sent to the 16 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SUS is written the first evcle
« RF) of SUG, SUT, SU2, and SUG is wrtien ihe second cycle
e RF2 of SUQ, SUT, SUZ. and SUS is written the third cvcle
« FS of 8U0 SUT, Bue and SUS is written the fourth cycle
the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
ofthe 128-bit location within the register file (w); the remaining data bits are set to zero (%, y, 2)

2.

SEQ constructs a control packel for the vector and sends It to the first reservation station (the FIFO in frant of
texture state machine 0, or TSMO FIFO)
» _the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
e SMO wasfirst selected by the TSM arbiter before it could start

7,allinstructions oftexture clause OareissuedbyTSMO
8.

5.

 assed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMQ

e SMO does not wait for requesis made to the Texture Unit to complete: it passes the register file write index
for the texture data to the TU, which will write the data to the RF as it is received
once the TU has written all the data to the registerfiles, it increments a counterthat is associated with ASMO
FIFOa count greater than zero indicates thatthe ALU state machine can go ahead slart te execute the ALU
clause

3. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction stere

10, all Unstructions of ALU clause 0 are lssued by ASO, ihen the control packel is passed to the next reservation
station (ihe FIFO in front of texture state machine 1, ar TSM1 FIFO

11. the contro! packet continues to travel down the path of reservation stations untilall clauses have been executed
ogition can be exported in ALU clause 3 (or 47), the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA’s position cache
» A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Exhibit 2010 docR400_Sequencondec 26504 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jomsue sogdPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

coo] Formatted: Bullets and Numbering

AMD1044_0256705

ATI Ex. 2105

IPR2023-00922

Page 33 of 239

ATI Ex. 2105
IPR2023-00922
Page 34 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| isAugust 200714 4 September. 201324 18 of 20SO Asses

the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

parameter data is exported in clause 7 (as well as position data if it was not exported earlier
arameter data is sent to the Parameter Cache over_a dedicated bus

ihe SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

the ASMarbiter will. revent a vacket fromstarting on ASM7if the arameter cache (orthe position buffer
if position ja being exporied) is ful

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.2 Sequencer Control! of a Vector of Pixels

1._AsS with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e _Ai this point itis assumed that the pixel program is loaded into the instruction store and thus readyto be read.

2.._ the RE’s Parameter Buffer is loaded from the Parameter Cache before the SEQtakes control of thevector
after the HZ culling stage a request is made by the RE to send parameter data to ihe Parameter buffer

» the Parameter buffer is wide enough to source 3 vertices worth of a particular parameterin one cycle

s__at inis moment the right sequencer will free up the parameter store locations not used anymore using
the token provided by the PA,

3. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
o _the state cointer and the LOD correction bits are also placed in the Pixel FIFO
« the Pixel FIFO is wide enaugh to source one quad’s worth of barycentrics per cycle

4, SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no verlices pending OR there is no space
lef in Ine register fles for verlices, the Piel FIFO is selecied

5. SEQ allocates space in the SP register file for all the GPRs used by the program
« __ihe number of GPRs required by ihe program is stored in a local stale register, which js accessed using the

slate painter

6. 8EQ contro! starts with, the interpolation of parameters (up to 16 per thread) b sending the barycentric

OO Li and k are joadedinto the interpolator from the Pixel FIFO

« The interpolator then generates the parameter value for each pixel in QO (OOPO)
eo _POi, PO), and P0k are sent to the interpolator for G1 only if @1 is from a different primitive: if Q1 is

from the same primitive as QO, then the PO), PO), and POk values loaded for QO are held by the
interpolator and reused for Q1
s a different prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO

that indicates whether new parameter data needs to be loaded inio the interpolator
e Qi Liand k are then loaded into the interpolator from the Pixel FIFO
» The interpolator then generates ihe parameter value for each pixel in Q1 (QiPO

» The next set of parameter data - P ii, Pil, and Pik - is then loaded into the interpolator
s GOL) and kk now must be re-read from the Pixel FIFO — this means thet ine ouloul of ihe Fixel FIFO loops

through the top four entries on each read command until at the end a final “block pop”signal is asserted
causing the top four sets of barycentric coordinatesto finally be removed

» 86 the order of parameter info generated is QOPO, @1PO, O2F0, GSP0, QOP1, Q1P1, ete.

bandwidth of S12 bits/evele)
* 16 pixels worth of interpolated parameter data_is sent to the 16 register files over 4 cycles

e RFO of SU0, SU1, SUZ, and SUS is written with QOPO the first cycle
e RFI of SU0, SUT, SU2. and SUS is written with @1P0 second cyele
« RF2 of SU0,SU1, SUZ, and SU3 is written with G2P0 third cycle
e RFS of SU0,SU1, SU2, and SUS Is written with O3P0 fourth cycle

Exhibit 2010.docRA00Gequencerdes 25504 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** seosis ioga :PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256706

ATI Ex. 2105

IPR2023-00922

Page 34 of 239

ATI Ex. 2105
IPR2023-00922
Page 35 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE c 14 August, 200114 4 September, 201524 GEN-CXXXXX-REVA | 19 of 20. i fA NY Bon SYA BA i

8. SEQ constructs a control packet for the vector and sends ft to the first reservation station (the FIFO in front of
texture state machine 0, or TSMO FIFO)
®_note that there is a separate set of reservation stations/arbitere/state machines for vertices and for pixels
« ihe contre! packet coniains the state sointer, the register file base pointer, and ine LOD correciion blie
®_alother informations (such as quad address for example) travels in a separate FIFO

 3. TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
«® TSMO wasfirst selected by ihe TSM arbiter beforeit could start

10. all instructions of texture clause 0 are issued by TSMO
11. the contro! packel is passed fo the next reservation station (ihe FIFO in front of ALU state machine 0, or ASMG

FIFO)
«® TSMO does not wail for texture requesis made to the Texture Unit to complete: |t passes the register file write

index for the texture data to the TU, which will write the data to the RF asit is received

® once the TU has written all the data for a particular clause to the register files, it increments a counter that is
associated with ihe ASMO FIFO: a counl greater than zero Indicates thal ine ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

12. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global Instruction store

13,_all instructions of ALU clause 0 are issued by ASM, then the control packet Is passed to the next reservation
station (ihe FIFO in front of texture state machine 1, or TSM1 FIFO)

14,thecontro!packet continues te traveldown thepathofreservationstationsuntilallclauseshavebeenexecuted
» _bixe! data ie exported in the last ALU clause (clause 7)

e _itis sent to an output FIFO where it will be picked up by the render backend
*__theASMarbiterwillpreventa packet fromstarting onASM7if the output FIFOis full

15, after the shader
shader program

rogram has completed, the SEQ will free up the GPRs so that they can be used by another

13.1.3 Noles aye

16. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threacsorstall.

17, the register file base pvinter for a vector needs to travel with the vector throughthe reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the |S
pointer isonly different for eachstate and thus can be accessed viathe state pointer

18. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to

be specked oul,

8-14. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don't
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and pul those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the registerfileregister file as well as on the registerfleregister file allocation
method (dynamic VSstatic).

Ablib-tie-expor-atanyelause?

Saving power?

Arewe-working-on-32-verlices-at-atime-ort6?

me a4 Formatted: Bullets and Numbering

Exhibit 2010 dock40G_Sequoncondec 25584 Byes** © AT] Confidential. Reference Copyright Notice on Cover Page © =* nonce i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256707

ATI Ex. 2105

IPR2023-00922

Page 35 of 239

ATI Ex. 2105
IPR2023-00922
Page 36 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | i 14 August, 200144 4 September, 201524 20 of 20A be A“? Ba. A + : A

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

SequencerInstruction memory, and constant memory.

Arbitration policy for the outputfile.

Loops and branches,

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Exhibit 2010. docR400.Gequencerdec 25564 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** noma io.agPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256708

ATI Ex. 2105

IPR2023-00922

Page 36 of 239

ATI Ex. 2105
IPR2023-00922
Page 37 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 14 August, 2007144 4 September, 20152 GEN-CXXXXX-REVA 41 of 26— A AF BS oh. 2
Author: Laurent Lefebvre

 Issue To: Copy No:

R400 Sequencer Specification

SEQ

Version 0.82
Overview: This is an archilectural specification for ine R400 Sequencer block (GEQ). It provides an overview of the

required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcev400Q\archidocig ik \RE\R400_Sequencer.doc
Gurrent intranet Search Title: R400 Seguencer Specification

: oe o oe “APPROVALS : : :
“Name/Dept. Se “ Signature/Date =

"Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2014 decR400_Soquencerdoe 31302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page @ ** pagansi242PORNOA DA42 BMOTMNSIOO2-45Ba

ATI 2011

LGv. ATI

IPR2015-00325

AMD1044_0256709

ATI Ex. 2105

IPR2023-00922

Page 37 of 239

ATI Ex. 2105
IPR2023-00922
Page 38 of 239

EDIT DATE

14 August, 200144 2 of 26A OA ORS
ORIGINATE DATE

 R400 SequencerSpecification PAGE os

4 September, 20157i= ve OE

Table Of Contents

1. OVERVIEW oo ccccccecccsscseseerersseerneeeees 42
Ll. Top Level Block Diagram... 4
1.2. DataFlowgraph.. oF
13. Control Graphes1210
2. INTERPOLATED DATA BUS....... 1246
3. INSTRUCTION STORE................ 12416
4. CONSTANT STORE.................0- 1344
4. LOOPING AND BRANCHES.......... 1344
é. REGISTER FILE ALLOCATION... 1344
7. TEXTURE ARBITRATION............ 1442

8. ALU ARBITRATION. 1442 14.--THE-GUTPUTFILE(REFIFOAND
9. HANDLING STALLS.................... 1543

10. CONTENT OF THE RESERVATION 12 INTEPEACES
STATION FIFOSeee eeceneeeeeceeneees 1643 a External Interfaces
it. THE OUTPUT FILE (RB FIFO AND

12.1-1—Sequencerto-Shader

21 External Interfaces. 1543 +2-+2—ShaderEngineto-Output

12.1.1 Sequencer to Shader File—48
Engine BUS.eeeee 1543 42-1-3—Shader-EnginetoTexture

File 4543 2-14...Sequencer-to-TextureUnit-bus
Y912.Gh(Slow-Bus}4412.1.3 Shader Engineto Texture

12.1.4 Sequencerto Texture Unit bus +246 2O-SEGUEROG Foreeererererreren
(SlowBus)1644

12.1.5 Shader Engine to RE/PA Bus
1644

12.1.6 PA? to sequencer... 1644
13. EXAMPLES OF PROGRAM
EXECUTIONS w.oescceseseressrseeeeneceteeeneees 1744

[3.1.1 Sequencer Control of a Vector
of Vertices 1744

13.1.2. SequencerControlof a Vector
ofPixels 1846

13.13 Notes 194E
14. OPEN ISSUES Wocceceeecercnenevene 2612

BusStFaSt BUS) reccrceereerrdO

1.1---Top-LevelBloek-Diagrar =
Exhibit 201 1docR40GGequencerdos 31902 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page ©nencs i949 :PMOGH3401 OS: 7 PMORN SO1 0216 PM :

AMD1044_0256710

ATI Ex. 2105

IPR2023-00922

Page 38 of 239

ATI Ex. 2105
IPR2023-00922
Page 39 of 239

ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE

ed id August, 200114 4 September, 20157 | GEN-CXXXXX-REVA 3 of 26- A p POP Ll

6-+4 Sequencer to Texture Unit bus FeoQPEN ASSUES csssvseves
(SIOW BUS)ceceetteeee 14

Revision Changes:

Rey 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre) Changed the interfaces to reflect the changesin the
Date : July 9, 2007 SP. Added some details in the arbitration section.
Rev 0.3 (Laurent Lefebvre) Reviewed the Sequencer spec after the meeting on
Date: August 6, 2001 August 3, 2007.
Rev 0.4 (Laurent Lefebvre) Added the dynamic allocation method for register
Date : August 24, 2001 file and an example (written in part by Vic) of the

flow of pixels/vertices in the sequencer,
Rey0.4(LaurentLefebvre) Addedtimingdiagrams(Vie)
Date : September 7, 2001

Exhibit 2011 docR400_Sequencerdec 31302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © + coals 24PMOS/IS/O1 03:17 MOT3/01 02:10 PM

AMD1044_0256711

ATI Ex. 2105

IPR2023-00922

Page 39 of 239

ATI Ex. 2105
IPR2023-00922
Page 40 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | i | 14 August, 200114 4 September, 20157 4 of 26
| L A £ Ory BA nest, ee ES

1. Overview

The sequencer first arbitrates between vectors of 16-Gnaybe-32} vertices that arrive directly from primitive assembly
and vectors of 84-quads (16 pixels) (@2-picele)-that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses an-twoALU clauses and a texture clause to execute, and
executesall of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen te execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the top-bottorn of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will beshared amongthe four shader
pipSs.

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256712

ATI Ex. 2105

IPR2023-00922

Page 40 of 239

ATI Ex. 2105
IPR2023-00922
Page 41 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 14 August, 200114 4 September, 20157 GEN-CoO000¢-REVA, | Sof 26L é fu L$3 Aa

i Top Level Block Diagram

vertex’pixel vector arbitrator
Possible delay for available GPRSgg)nmnnnmmnnnuninnnunnnninnnnannnnnananeinien

‘exture clause 0
eservation station

Bel FIFO > pel—— extire clanse 1
eservation station

(ALU clause 0
leg@—teservation stationi

 i FIFO
LejaLU clause 1 re < exture arbitratorreservation station =

| Ip FIFO ™ I>extnre arbitrator exture clanse 2

proc “HOT reservation station,i a "TPO fag 4
hag——ALU clause 2 akeservationstation

: p) FIFO

extire clanse 3
‘eservation station

i a FIFO
jg——ALU clause 3reservationstation

i pel FIFO »1 exhire clanse 4
‘eservationstation

i egg|FIOALU clause 4

reservationstation nDLl [Pexture clause 5 ;eservation station
1eg——————| PHO

‘LUclause 5 benereservation station —
: FIFO —(Pexture clause 6

ey HES reservation stationi g- *
j—(\LU clause 6

fpeservation station ae CO: > [FRO » >| {FRO|Texture clause 7eservation station

| :ALU clause 7 La
reservation station

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (@ vector of 32--16pixels) and | Sek
sendsit to the interpolators. Then the sequencer takes contral of the packet. The packet consists of 3 bits of state, 6- |
7 bits for the base address of the Shader program and someinformation on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishesits last clause.

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256713

ATI Ex. 2105

IPR2023-00922

Page 41 of 239

ATI Ex. 2105
IPR2023-00922
Page 42 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 200114 4 September, 20157 6 of 26

 oe &
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin thefirst FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (temd) is passed to the texture system identifying the current level number
(0) as well as the register sel-being-usedwrile address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 16 vertices). Once all the requests are sent the packetis
put in FIFO 1.

address that was rovided by the level tQ texture machine and sends the clause number(0) to the. level 0 texture state
machine to signify that the write is done and thus the data is ready. Then, the level 0 texture machine-# increments
the counter of FIFO ere-1to signify to the ALU_1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (2-3cycles later) and an instruction-id-wich-is-usedto-index-into-theinstruction clare. Once
the last instruction as been issued, the packet is put into FIFO 2.-Note-thatinathe oase-ofapixel packel, the iwe

There will always be two active ALU clauses at any given time (and two_arbitrers)-in—this—case, the{Formattedid
instructions-of.avectorare-interleavedwith-the-instructionsof the-other-vector, One arbitrer will arbitrate—9° CSS
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints ae
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same tyne,

ifthe packet is a veriex packet, upon reaching ALU clause 4, it can export the position if the position is ready, So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can't be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (pararneter data pointers).

All other level process in the same way uniil the packetfinally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA-whiehpicke-up-the-data-and-pute-#inte-the-vertex-siore
so it can know that the data presentin the parameter store is valid.

Only ere-hwoALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the $RAMregister file address bus at
one time. Arbitration is performed by #ve-three arbitrer blocks (ene-two_for the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the SRAMregister Sflies.

Each state machine maintains an address pointer specifying where the 16-ior-32) entries vector is located in the
SRAMregister file (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address pointer for the first state machine in the chain
(the input state machine), and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocated SkAMregister file memory is available

Exhibit 2011 docR460.Gequencerdoc 31302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** soma i949PMOBH 3/01 OS:37 PMOR13/01 O2:10 PM :

AMD1044_0256714

ATI Ex. 2105

IPR2023-00922

Page 42 of 239

ATI Ex. 2105
IPR2023-00922
Page 43 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 14 August, 200114 4 September, 20157 GEN-CXXXXX-REVA 7 of 26AO enesbramine OU

interpolated data trom RE

Register File control from RE
512x128 (built as 4 128x128 or 16 128x32 i

 <j

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

W382
128 bit data constants itom RE

432 bit MAC units

128 bit scatar/vector | control from REALU

Exhibit 2011 dock40G_Sequencendes 31202 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «* nonce 244 aPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256715

ATI Ex. 2105

IPR2023-00922

Page 43 of 239

ATI Ex. 2105
IPR2023-00922
Page 44 of 239

ORIGINATE DATE

14 August, 200144NF

|||wl

ms

pipeline stage

CoE
scalar inputfcutput

ae

| ipeline stagepip 9

ScalarUnit

scalar input/output

pipeline

(scatrinpiycescalar inpulfoutput

R400 Sequencer Specification

4 September, 20157+ SA

ortiles
 SBreginn

| ivedatafromREinto
oO i

 text!41datarpy

 in I

ee si} vl ee
to Primitive Assembly Unit or RenderBackend

V

Exhibit 2011 docR40G_Sequenceries 31302 Bytes*** © AT] Confidential. Reference Copyright otice un Cover Page © «=PMOSH MOL OS 17 MORNIS/01 G2:10 PM

PAGE

8 of 26

BOOSNG 1248

AMD1044_0256716

ATI Ex. 2105

IPR2023-00922

Page 44 of 239

ATI Ex. 2105
IPR2023-00922
Page 45 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 14 August, 200114 4 September, 20157 GEN-CoO000¢-REVA, | 9 of 26L £ é fu L

1.2 Data Flow graph ~

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256717

ATI Ex. 2105

IPR2023-00922

Page 45 of 239

ATI Ex. 2105
IPR2023-00922
Page 46 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

14 August, 200714 4 Septemiber, 20157 10 of 26ANA ke AAAI S

tantsfromRE
C

| f

neSb(Seiner

| pipeline stage |I !

scalar Tmputoutput

3a® = wafiao

ScalarUnit

~< (saeTpinaaa
ae
r

pipeline stage

 lantsfromRE

 scalar input/output

; |i |
Ragisier File

MAC
re requ o™!,

| ~)|
|
|
|| i

banat |
Register File

text] [reques \| a
Register File hes

3

—§ ——
MAS | texture Squest_ 1 \\i o at

i & = || s 3 |i 3 !| aw ii ity i

| | '~ |
—

Register File a
i | |texture rel est |

i

wao&2PsPs%
£3Ss&a8

 to Primitive Assembly Unit or RenderBackend)

Crist2014cuceseeascqpencersiae1802Djtes**-G-ATLConfidentialReference-CopyrightNotiee-on-CoverPage-©-—rymevouePMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256718

ATI Ex. 2105

IPR2023-00922

Page 46 of 239

ATI Ex. 2105
IPR2023-00922
Page 47 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 14 August, 200114 4 September, 20157 GEN-CXXXXX-REVA 11 of 264,£$ OTB

Interpolated
data / Vertex indexes

a |
|
|||
||: | - -

F| see | INSTRUCTION CONSTANT
REGISTER FILE <— STOREICACHE STORE

OPERAND MUX

SCALAR

. ALU Wee ALU ALU TEXTURE

4-yae,

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

Exhibit 2011 dock40G_Sequencendes 31202 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «* nonce 244 aPMOGH WO1 OS.) 7 PMORNGIOT O20 PM

AMD1044_0256719

ATI Ex. 2105

IPR2023-00922

Page 47 of 239

ATI Ex. 2105
IPR2023-00922
Page 48 of 239

| ORIGINATE DATE EDIT DATE
| 14 August, 200114 4 September, 20157A $A RA sxesh ee

1.3 Control Graph

R400 SequencerSpecification PAGE
12 of 26

Be

Ciause # + Rdy

WrAddr IS | SEQ CST | WrAddr| I

eMD | | RdAddr
| PARB

CST |

Phase CME esti Gers A B CWrvec |
RdAddr WrSeal wraddr

™ SP | OF
WrAddr ||

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
Since each of the register file is actual divided (one 128x128 per MAC) and we con't have the
held a maximum sizevector ofverticesin the parameter buffer, we need to interpolate on a parameter basis rather
than on a quad basis. So the order to the registerfile will be:

QOPO Q1P0 G2P0 O3P0 QOP1 GIP1 G2P1 Q3P1 GOP2 O1P2 ..

3. Instruction Store

each,

atted: Bullets and Numberin

4 Formatted: Bullets and Numbering Beo Serer en

There is going fo be only one instruction stere for the whole chip, It may contain up to 2000 instructions of 96 bits

ISSUE : The instruction store is loaded by the sequencer using the memory hub 7.

 into 4 blocks, An ALU instruction section CIR/1WW)split in two and a texture section CIR/IW) also s
bandwith out of those memories is 96 bits/clock,

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256720

ATI Ex. 2105

IPR2023-00922

Page 48 of 239

ATI Ex. 2105
IPR2023-00922
Page 49 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE ae

4 Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constanis are using a remapin
table also managed by the CP. A likely size Jor the constant siore ie 512x128 bits. The constant siore is also planned
to be shared. The read BWfrom the constant store is 512/4 bits/clock/pipe and the write bandwith is 32/4 bits/clock,

5. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. However, itis
still unclear if we plan on supparting data dependent branches ornot,

6. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic, In both cases, the register file in
managed using two round rebins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static caseit is fixed to VERTEXREGSIZEfor vertices and 256-
VERTEXREGSIZEforpixels.

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

14 August, 200144 4 September, 20157 GEN-CXXXXX-REVA | 130f26|oo oe

2] Formatted: Bullets and Numberinga4 oS - ~ - - - <

AMD1044_0256721

ATI Ex. 2105

IPR2023-00922

Page 49 of 239

ATI Ex. 2105
IPR2023-00922
Page 50 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

{A August, 200714 4 September, 20187 14 of 26A £$ Ay A ces k boven TS

Above is an example of how the algorithm works. Vertices come in from top te bottom: pixels come in from bottom to
top, Verlicesarein orange andpixels in green. Thebiue lineis the tall of the vertices andthe greenlineisthetallof
the pixels, Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share fhe same “unallocated bubble”. Then the boundary as allowed
moving again.

2-7. Texture Arbitration

The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one reacy to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to 400X(’?) in flight texture fetches and thus there can be a fair numberof active clauses
waiting for their texture return data.

3-8 ALU Arbitration “
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of

the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to o and
picking the first onere ready to execute

state machine-4jesues-the- first inctruction. fot the first “eub-vector and then, 4 plocks. later, the. first. instruction. of. the
secend-eub-yector-and-eo-er-untl-the-ciause-ie-finished., There are two ALU arbitrers, one for the even clocks and

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

 4 Formatted: Bullets and Numbering

-| Formatted: Bullets and Numbering

AMD1044_0256722

ATI Ex. 2105

IPR2023-00922

Page 50 of 239

ATI Ex. 2105
IPR2023-00922
Page 51 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 14 August, 200114 4 September, 20152 GEN-CXXXKX-REVA 45 of 26“SPAY Rha Se

onefor the add clocks. For exemple, here is the seg uencin of two interleaved ALUclauses (E and © stands for Even
and Odd):

Elnst0 OinstO Einett Oinsti Einst2Oinsi2Einst0 OinstS Einst) Oinst4 Elnsit2 Oinetd..
Proceeding this way hides the latency of 8 clocks of the ALUs.

4.9. Handling Stalls
When the outputfile is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If we-rave-the-abiilyto-export-at-anyclausethe packet is
a vertex packet and the position buffer is full (POS FULL) then the sequencer also prevents a thread to enter the

exporting clause (47). The sequencerwill set the OUT_FILE_FULL signal n clocks before the outputfile is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5-10. Content of the reservation station FIFOs

3 bits of Render State-and. 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put ina FIFO and is retrieved when the
quad exits the shader pipe to enter in the outputfile buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This
size will be determined later when we will Know the size of the small fifos between the reservation stations.

6-11. The Output File (RB FIFO and Parameter Cache) “1
The output file is where program results are exported when the pixel/vertex shaderfinishes.It constists of a 512x128

memory cell that is statically divided between pixels and vertices. Each-section-is-areguwar-FlF@.The outoutfile has
1 write port and 1 read port. The sequencer is responsible for managing the addresses of this output file and for
stalling the shader pipe should this outputfile fill up. The managementis done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the biocks).

7-12, Interfaces

7-+12.1 External Interfaces

71112.1.1 Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a newinstruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
these 4 clocks.

Name Direction Bits | Description

Instruction Start | SEQ-> SP ic High on first cycle of transfer
Constant 0 SEQ-> SP 32 | 128bits transferred over 4 cycles, alphafirst... blue last
|Constant1_SEQSP[32 | 128bits transferred over 4 cycles, alpha first. bluelast

Instruction [SEQ->SP_> SP .30 || 120 bits transferred over 4 cycles (order TBD) 7

F+212.1.2Shader Engine to OutputFile 4
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (7). This
data will be compressed into 128 bits total prior to storage in output file.

Name | Direction_ Bits Description eee
“UL.VectorOut | SP-> OF | 128 | Vector Data out

. “| Formatted: Bullets and Numbering

=a] Fermatted: Bullets and Numbering

S 4 Formatted: Bullets and Numbering

a4 Formatted: Bullets and Numbering

=| Formatted: Bullets and Numbering

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256723

ATI Ex. 2105

IPR2023-00922

Page 51 of 239

ATI Ex. 2105
IPR2023-00922
Page 52 of 239

ORIGINATE DATE EDIT DATE

4 September, 20157

R400 SequencerSpecification PAGE
16 of 26

UL_Scalar_Out

14 August, 200744
ee

APO

URVectorOut
UR_Scalar_Out

Name | Direction [Bits | Description
LLVecter_Out | SP-> OF [128 | Vector Data out
LL Scalar Out SP-> OF | 32__| Vector Data out
LR_Vector_Out [Ssp>OF[128| VectorDataout
LR_Scalar_Out | SP-> OF |32 | Vector Data out

7+312.1.3 Shader Engine to Texture Unit Bus (Fast Bus)
One quad's worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register-fieregister file index to read must precede the
data by 2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocks after the Instruction Start.

One Quad's worth of Texture Data may be written to the Register-FileReqish file every clock. These are directed toa
different pixel of the sub-engines repeating every 4 clocks. The registerfleregister file index to write must accompany
the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name | Direction | Bits | Description _
Tex_Read_Register_Index SEQ-2SP |8 Index into Register-FieRegister files for reading Texture

I _Address
Tex_RegFile_Read_Data SP->TEX 5i2 | 4 Texture Addresses read from the Register-FileRegister

fe

Tex_Write_Register_Index|SEQ->TEX |8 Index into RegistertileRegister file for write of returned
I | Texture Data

7-+412.1.4 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequenceralso provides the intruction and constants for the texture fetch to execute and the address in the register
fleregister file where to write the texture return data.

Name _| Direction BitsDescription ee
Tex_Ready _TEX— SEQ 4 | Data ready
Tex Clause Num TEX— SEQ 3 | Clause number

[Texcst 7 SEQ--TEX| Po_Texture constants Xbitssentover4clocks
Tex_inst | SEQ-»TEX L? | Texture fetch instruction X bits sent over 4 clocks

liets andNum

 Name Direction Bits | Description

Interpolator_Register_Index [SEQ->SP | 8 /Index into Register--FileRegister files for write of
_ | Interpolator/index Data _

Interpolator_Write_Mask SEQ->SP 1 _ Write Mask. The same write maskis usedfor all 4 pixels
Interpolator_Write_Data RE/PA->SP | 512 | 4interpolated vectors or vectors of indices

12.1.6 PA? to sequencer .
Name | Direction | Bits Description
Adress, PA»SE 7,_| Dealocation adresssent by the PAtelling the Sequencer

| that itis now possible to free this space in the parameter
| buffer, This token is a pointer in the parameter cache and
_4 bits to tell the size wich isto be freed up,

PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

a7, Formatted: Bullets and Numbering

an Le =| Formatted: Bullets and Numbering

bering

=| Formatted: Bullets and Numbering

“ccl Formatted

SS = Formatted :
2 : {Formatted
fo + Formatted

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaa

_

AMD1044_0256724

ATI Ex. 2105

IPR2023-00922

Page 52 of 239

ATI Ex. 2105
IPR2023-00922
Page 53 of 239

 | 14 August, 200144 4 September, 20157 GEN-CXXXXX-REVA | 17 of 261 & tOF Aa
| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
 ae

13. Examples of program executions

13.1.1 Sequencer Centro! of a Vector of Vertices

‘L__PAsendsa vector of16vertices (actually vertexindices -32 bite/indexfor 512bittotal)totheRE'sVertexFIFO
o Stale pointer ae well as tag inte position cache is sent along with vertices
® Space was allocated in the position cache for transformed position before the vector was sent
® _also before the vector is sent to the RE, the CP has loaded the giobal instruction store with the vertex

shader program (using the MH?)
« The vertex program is assumed to be loaded when we receive the vertex vector,

e _the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBIV when the CP is done loadingthe program)

SEO arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has
* at thispoint thevectoris removed fromtheVertex FIFO
e he arbiuer is not going to select a vector io be wansformed if ine parameter cache is full unless ihe pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP registerfile for index data plus GPRs used by the program
« the number of GPRs required by the program Is stored ina local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

4, SEQ sends the vector te the SP register file over the RE SP interface (which has a bandwidth of 512 bils/cycle)
e _the 16 vertex indices are sent to the 16 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SUS is written the first cycle
«RFI of SU0, SUT, SU2, and SUG is wiillen ihe second cycle
e RF2 of SU0,SU1, SU2. and SUS is written the third evcle
« RFS of SUO SUT SU2 and SUS ja written ine fourth cycle
the index is written to the least significant 32 bits (floating point format?) (what about compound indices
of the 128-bit location within theregister file (Ww). the remaining data bits are set to zero 0cy, 2)

2: dori

SEQ constructs a control packet for the vector and sendsit to the first reservation station (ihe FIFO in front of
texture state machine 0, or TSMO FIFO)

the control packet contains the state pointer, the tag to the position cache anc a register file base pointer.

6. TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction
storgSMO was first selected by the TSM arbiter before it could start

7,allinstructions oftextureclause 0 areissuedbyTSMQ
&,

5.

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)

» _TSMO does not wait for requests made to the Texture Unit to complete: it passes the reaister file write index
for ihe texture date to ihe TU which will write the date to the RF as itis received
once the TU has writlen all the data to the registerfiles, it Increments a counter that Js associated with ASMO
FIFO: a count greater than zero indicates that the ALU state machine can go ahead start to execule the ALU
clause

S. ASMO accepts the control packet (after being selected by ihe ASM arbiter and gets the Instructions for ALU
clause 0 from the global instruction store

10, al rstructions of ALU clause 0 are Issued by ASMG, then the control packel is passed to the nex! reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11, the control packet continues to travel down the path of reservation stations until all clauses have been executed
ogition can be exporied in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA’s position cache
o A parameter cache pointer is also sent along with the position data. This tells te the PA where the data is

going to be in the parameter cache,
«__lhere is a posilion exporl FIFO in ine SP that buffers position dela belore it gels sent back lo Ihe PA

Exhibit 2011 doch400_Sequencondec 31302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jomsue soqdPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

coo] Formatted: Bullets and Numbering

AMD1044_0256725

ATI Ex. 2105

IPR2023-00922

Page 53 of 239

ATI Ex. 2105
IPR2023-00922
Page 54 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 14 Auguel, 2007 14 4 September, 20157 18 of 26L A 3 ae a knen Pe

e the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
arameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocaies that space when there is

e _ihe ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position
buffer if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.2 Sequencer Control! of a Vector of Pixels

1. AS with veriex shader programs, pixel shaders are loaded into the global instruction store by the oP

» At this point it is assumed that the pixel program is loaced inte the instruction store and thus ready to be

2. theR@@parameterButter is loaded from the Parameter Cache before ihe SEQ takes control of the vector
e __after the HZ culling stage a request is made by the RE to send parameter data to the Parameter buffer
» the Parameter buffer is wide enough to source 3 vertices worth of a particular parameterin one cycle

» _at this moment the right sequencer will free up the parameter store locations not used anymore
using the token provided by the PA,

3. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
» _the state pointer and the LOD correction bits are also placed in the Pixel FIFO
s__the Pixel FIFO is wide enough to source one quad’sa warlh of barycentrics per cycle

4, SEQ arbitrates between Pixel FIFO and Veriex FIFO — when there are no vertices pending OR there is no space
lefi inthe register fles for vertices, Ine Pixel FIFO is selected

5. SEQ allocates space in the SP registerfile for all the GPRs used by the program
«__Ihe number of GPRs required by the program is stored in a locel state revisier, which is accessed using Ihe

state pointer
a» SEQ will not allow interpolated data to be sent to the shader until soace in the register file has been allocated

OGL | and k are loaded into the interpolator from the Pixel FIFO

e The interpolator then generates the parameter value for each pixel in QO (Q0P0)
a POL, POL and POk are sent io the interpolator for O71 only if O71 is from a different primitive, if 7 is

from the same primitive as 0. then the POi, PO), and POk values loaded for Q0 are held by the
interpolator and reused for @
« adifferent_ prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO

that indicates whether new parameter data needs to be loaded into the interpolator
O11 land k are then loaded inte the interpolator from the Pixel FIFO

»_The interpolator then generates the parameter value for each pixel in O1 (Q1P0)
*O2P0 andQ3P0 are generatedin a similar manner
» The next set of parameter data - Pil Pij and Pik - is then loaded into the interpolator
® O01, j and k now must be re-read from the Pixel FIFO — this means thal the ouiput of the Pixel FIFO loops

through the top four entries on each read command until at the end a final “block pop’ signal is asserted
causingthe top four sete of baryeentric coordinates to finally be removed

» 80 the order of parameter info generated is QOPO, Q1P0,. O2P0, GSP0, QOP1, GIP. etc.

7. SEQ controls thetransfer of interpolated data to the SP register file overlhe RESP interface (which has a
bandwidth of 512 bite/eyscie)
* 16 pixels worth of interpolated parameter data_is sent to the 16 register files over 4 cycles

a REO of SUG, SUT SU2 and SUS is written with QOP9 the firsi cycle
e RFI of SU0_ SUT, SU2, and SUS is written with @1P0 second cycle
«__RFe of SU0, SU1, SU2, and SUS is written with Q2P9 thirc cycle
e RFS of SU0,SU1, SU2, and SUS Is written with O3P0 fourth cycle

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256726

ATI Ex. 2105

IPR2023-00922

Page 54 of 239

ATI Ex. 2105
IPR2023-00922
Page 55 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | 144 August, 200114 4 Seplember, 20137 GEN-CoOOOO-REVA | 19 0f 26AA i - L As Rain i iad i
8. SEQ constructs a control packet for the vector and sendsit to the first reservation station (he FIFO in front_of

texture state machine 0, or TSMO FIFO)
® note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
o the control packel contains the state pointer, the reqisler file base pointer, and the LOD correction bits
e _all other informations (such as quad address for example) travels in a separate FIFO

3. TSMO accepts the contrel packet and fetches the instructions for texture clause 0 from the global instruction
slorg’SMO was first selected by the TSM arbiter before it could start

10. all instructions of texture clause 0 are issued by TSMO
11. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
«® TSMdoes not wait for texture requesis made to the Texture Unit to complete: it passes the register file write

index for the texture data te the TU, which will write the data to the RF as it is received

® _once the TU has written all the data for a particular clause to the reugister files, it increments a counter that is
associated with Ine ASMO FIFO: a count greater than zero indicates thal the ALU stale machine can go
ahead and pop the FIFO and start to execute the ALU clause

12. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

13,_all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (ihe FIFO in front of texture state machine 1, or TSM1 FIFO)

14,the controlpacketcontinuesto traveldownthe path of reservationstationsuntilallclauseshavebeenexecuted
° _bixel data is exported in the last ALU clause (clause 7)

e_itis sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent_a packet from starting on ASM7 if the output FIFO Is full

15, after the shader
shader program

rogram has completed, the SEQ will free up the GPRs so that they can be used by another

13.13 Notes “.

16, the state machines and arbitrers will operate ahead of time so that they will be able fo immediately start the real
threaceorstall.

17, the register file base pointer for a vector needs to travel with the vector throughthe reservation stations, bul the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointer isonly different for each state andthus can be acceesed via the state pointer

18. Waterfallin arameter buffer allocation, loops and branches and parameter cache de-allocation still needs to

be specked out,

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

>| Formatted: Bullets and Numbering

AMD1044_0256727

ATI Ex. 2105

IPR2023-00922

Page 55 of 239

ATI Ex. 2105
IPR2023-00922
Page 56 of 239

NeOReOtreHLONeLESOTHOBioSHPO.©a6eq19A04UOSOON1YHUAdODsOUDIOJOY‘JENUIPIUOD[Ly@eeeZocic

sopussuabes—HaeyoePTagTNR|OVATPSUWIBIDBIGOUILUL]OPI

eenSOASFeSpeergreSyLPSFIcummed971007PolGelequisidesypFELOGETSNBAYFT39vduoHEowloadssouenbesCOPY3LvdLidsSLYSLVNISIO TVIELVNdadoAALLOdLOUdd

AMD1044_0256728

ATI Ex. 2105

IPR2023-00922

Page 56 of 239

ATI Ex. 2105
IPR2023-00922
Page 57 of 239

oN©oA8
—2NOKHrsxPOWoMSqa-9"Ooo1tNGDySs

ReoWeHeONEZESeORBONEBCTSPOR@36d190074UOSOON1UBUAdO4soussaJoy"JENUSPILUOD[Ly@vrxSMazocie—sepyesuenbeg“psrxoortinguseoOoo
=Q=a1

oeadieJepeOlJsousnbsescfBupequingypuesjoyng:peyeuue,eyIdpUS}S¢riOOVIN‘OoHUTJepeys‘9adigJapeygOo]s2uanbag2)welfeigqGungSdAdaidiSdAdGLaSdAdGLaiSdAdaLalBjoA0SqO04SdAd-aiSdAd-aiSdAd-aiSdAd-a!ippeTeuandSaSq6dBynsaloyeAGoeloL|ous|gus|youseyeppea04y£z10£zcb0£ra\0£z‘0junco™ejoAo”Qoeu!|yONTNNaseydgoew———[|wypersHsu“usOaS¢or|zori4or|ooruojonysuldSOSdididialIpge:bisleepdsayLn|~‘seVL/]Ne|eseydysDasyas|OL|ools|gos|yos|OL|ous|gas|yoIs|O1|Dus|gus|yols|OL|Dos|gas|yosippepealdgDas€ro|¢to|t1|oto\juejsu0odSOSS€09|¢09|T00|000QlueysuodYsOaSabSLGLvyebchWbOL68ZgSv€cL0-aOSFeaPTSEYLPOPEST9E10LSWABYXXXXXO-NSDZGLO?JequaldsspPELOOEISNONYPLdoVvdWON(ASe-LNSINDOddLivdLidaaLVd3LyNISINO

 TVIELVNdadoAALLOdLOUdd

ATI Ex. 2105
IPR2023-00922
Page 58 of 239

NebOrcoiehLoteTheeHeBCTSPOOL®36ed19A04UOSOON3u61AdonBOUDIZIOY“JENUSPYUOT[LW@vx8MaZoric—sepueouandeg“garuspTog

AMD1044_0256730

ATI Ex. 2105

IPR2023-00922

Page 58 of 239

J3jSULILBEdsdigsepeysOo}JOjWjodisjU]JyczwebeigBun

aseydcoe

_/|Toeseydzoew

aseydjoew

eeeL__/]rN

aseydgoew
SdAdaidiaLaiBJOADOJUMOp odd|cdzd|odtB|oada Ta0dejepdSay

peadSayippeaimdSOS

1043|10470

|eseydgSD4STS18oSxx|BarpenbLNi
peo[xdLNI03S

taTaododoaodxxBarweied{N|.Vppeo[udINTOFS10d104tdtatataododjeepNISId

dod“109804XOSS

iWAXd03S
261S05B261S96oo|ewepNf4X%dNowudmeuO4S4%———pentsuOasAXdZ3$v€cL0

9E407Sdvd

APRILOPFETSZSL0EJequiejaeasisdivdLids

—FAYLPOGFerryPELOC?ISNNYPLalVdSLVNISO

uoeoylosdsusousnbesoOry TVIELVNdadoAALLOdLOUdd

ATI Ex. 2105
IPR2023-00922
Page 59 of 239

Buequinnpuesjeyngspayeumo,b==|

Reror

COTEHONEEERETORTRONBFCTSPOR.@a6ed19004UOSOON1NBUAdO4soussaJoy“JEHUSPILUOD[Ly@vx5eM.azocic
SOPUEOUBHOSS“HPHOODLOUCIAS

Jaysuesye7egadidsapeys-HUNsiN}Xa1puesoe9IU]WUNsiNpe]-2UENbss:¢WeIHeIgBulwiL

9S10ESdoVd

WATEXXXXXD-NSOWANASa-LNSWNNOO”d

 ZGL0EWequieldespyalvdLida

PELOGEISNRNY7havdSLYNIOIdO
SdAdaai|SdAdaiaiSdAdaialSdAdaLqiSd9)9A9SIUMOeaiSdAd-|aSdAd-dlSdAd-alSdAd-aiSd|appendsOaSnealLS]VY[VYfoCrLS_eseuddsO4SrNauop"OASXL

esnepO3SXL

€Th)2th)Ttth|0Th€OL|Z0G|Tton|0OaeepdsXL||“\!|_/7pleadsXL4riIppeOWNdSXL——|——~NL]aseudx}PoNee|rTCTUTTSC~S«~SVL|aseydXLOAS|_|se"LOAsgivwIppeoIXLOAS00gsnepXLOASPetr;eur}trr|otr|eor|zor|tor)ooruononusulXLOaSNNweinsulXL03SfOL|VOL|OOL|COL|ZOL|LOL|OOL|COL|ZOL|LOL|OOL|EOL|ZOL|LOL|OOLKLdsgolsWasOLSusgusWsOLSsGusWoolsOLQosgusyousOLSasgaseyeppealgayOLOL|OLOLOL|tppepeasO3S|Ztar|ob|tt|€hZLLEol|687
 TVIELVNdadoAALLOdLOUdd

AMD1044_0256731

ATI Ex. 2105

IPR2023-00922

Page 59 of 239

ATI Ex. 2105
IPR2023-00922
Page 60 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 14 August, 200714 4 September, 20157 24 of 26

14.4 Timing diagrams explanations *

The numbering of the four shader pipes, the four shader units, and the four MACsis from left to riqht and from 0 to 3.
So for example the most significant 512 bits of a SP goes to SUD and the least significant 512 bits go to SUS: within
SUG, the most significant 128 bis go to MACO and the least significant 128 bits go to MACS.
The follawing assumptions are made:

2. for register file reads, the RF read data is available in the MAC one clock after a RF read address is

SSSI 4 Formatted: Bullets and Numbering 4]

i._all block to block signals are register to register ~~ =.=] Formatted: Bullets and Numbering
registered into the MAC (this is the same as saying the read data js valid out of the RF two clocks after the
addressisasseriedontheSEQtoSPinterface)

14.4.1 Timing Diagram 1: Sequencer to Shader Pipe 0. Shader Unit 0, MAC 0
This diagram shows the basics of the Sequencer to Shader Pipe interface, For simplicity only the timing relative to
MACOSis shown. The Uming for MAC? is one clock later than MACO, MAC? one clock later than MAC1, ele, Thies
means that most of the signals need to be delayed_in the SP by one cycle for MAC, two cycles for MAC2, and three
cycles for MACS.
SEQ SP _constant0: Constant 0 (128 bits over 4 cycles). Pipelined In SP for other MACs.
SEQSPconstant1: Constant|(128bits over 4 cycles). Pipelined inSP for otherMACs.
SEQ SP read addr: Register File Reag Address (8 bits). Pipelined In SP for other MACs.
SEG SP_phase: This signal syncs the cata transfer to the RF from ihe RE, as well as defining the order of all writes
into the RF. lt is asserted during the cycle that interpolated data (D) is valid on the RE SP_ID bus. Pipelined in SP
for other MACs.
RE_SP 1D(517:384). This is the most significant 128 bits of the RE SP data interface (meaning that this MACO is in
SUQ).
SEQ SP_instruction: 96 bits ofinstruction are sent over 4 cycles. Pipelined in SP for other MACs.
SEQ SP instr start: control bit that signals the first cvcle of the instruction transfer. Pipelined in SP for other MACs,
mac phase: regisiered version of SEQ SP phase usec in MACO (his may nol be he actual signal name).
mac0 cycle count a counter ingide the MAC that keeps track of the RF write cycles; 0 here corresponds to the
cycle RE interpolated data is written (this may not he he actual signal name).
RFOreadcata: datathat isread out of MACO’sregisterfile (this maynot be he actualsignal name).

mact vector result: the 32-bit output of the vector ALU (PV is built up over 4 evcles) (this may not be he actual

signal name).
SEQ SP write addr. Reqisier File Write Address (8 biis), Note thal ine SEQ does nol send the Texiure Dale wrile
address over this bus. Pipelined in SP Jor other MACs.
RFO write cycle: the cycles allocated to the different write sources (1D = Interpolated Data, TD = Texture Data, PV =
Previous Vector, PS = Previous Scalar(nota signal~just a reference point on the diagram).

14.4.2 Timing Diagram 2: RE interpolator to Shader Pipe Data Transfer *
This diagram shows how pixel data (parycentric coordinates |, |, and k) is sent from the Pixel FIFO to the interpolator
unger SEQ contro, and how parameter date Gor each vertex) is also seni to the interpolator under SEQ contral, The
output of the interpolator is then shown being sent over the RE SP interface.

PXP_ SEQ rts: Indicates that the output of the pixel FIFO is valid.

the SEQ that new parameterinfo must be fetched (if itsnotfrom a newprim,thennewparameterdataj Netneeced).
PXF_ INT data: Data output of the Pixel FIFO — goes to the interpolator.
SEG PAF rir indicates that the current Pixel FIFO oulout wil be taken by the interpolator (driven by SEQ), Then
next quad of dala will be driven the next cycle.
SEQ PXP vector pop: SEO tells the Pixel FIFO to pop a vector of
cycled between the four quads).

ixels (otherwise RTRs cause the data to be

PMB_INT data: Data from the Pararneter Buffer to the Interpolator, (Note that the control of the parameter buffer is
Teo).

SEO INT pm load: controls the loading of parameter dala into ine interpolator,

p= =) Formatted: Bullets and Numbering

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256732

ATI Ex. 2105

IPR2023-00922

Page 60 of 239

ATI Ex. 2105
IPR2023-00922
Page 61 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 44 August 200114 &September, 20157 GEN-CXXXXX-REVA | 25 of 26Bfiow Pt

INT param reg: register|ih"the Inter glator that holds the ef:“vertex parameter data while the per-pixel parameters

SEQ SP phase: see above under TD1.
SEQ SP write addr see above under TD1,
RESPvalid:interpolator Data Valid— indicates that theSPshouldwritetheIDontheappropriatecycle.
RE_SP data: Data from the RE interpolator to the SP.
RFO write cycle see above under TD.
mac* phase: see above under TD1, These phase signals help te show the timing offset between the MACs. Note
also that each Shader Unit has a set of these signals (all with the same timine

14.4.3 Timing Diagram 3: Sequencer - Texture Unit Interface_and Texture Unit -*

shader Pipe Data Transfer
This diagram starts with the texture coordinate read from the register file and its transfer to the TX. The instruction
transfer is then shown, followed bythe texture data transfer to the shaderpipe,
SEQ SP read addr see above. Here shows the cycle that the texture coordinate read address is asserted.
RFO read addr: see above.
SPTXtc: Texture coordinate data sent fromthe shader pipe to the textureunit.
SEQ TX instr start: Asserted on the first cycle of a SEG to TX instruction transfer,
SE@ TA instruction: 96 bits of texture instruction transferred over 4 cycies.
SEQ_TX clause: the clause number associated with this Instruction.
SEQ TX write addr: RF write index used by TX for returned texture data,
SEQ TX last: indicates that this is the last texture instruction of a clause,
SEQ TX phase: syncs the texiure data write. Note that itis asserted early enough to be registered into TX and still
allow TX to source the texture data to ihe SP on the correct cycle,

tx_ phase: ihe phase signal after being registered into TX.

TX SP write addr: RE write index for texture Sata,
 TX_SP data:t e texturededata,
TX SEG clause: the clause number associated with the texture data.
TA SEQ done: indicales to ihe SEQ thal ine lexciure dala transfer is complete for the clause number that ia on the
TA SEQ clause bus,

SEQ SP write addr see above under TD1- shown here for reference,

RFO write cycle: see above under TD1- shown here for reference.

ee 4 Formatted: Bullets and Numbering

Exhibit 2011 dock40G_Sequoncondec 31302 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nous. i244 —PMQGH1 B01 OS: 17 PMONIS/O1 0210 PM

AMD1044_0256733

ATI Ex. 2105

IPR2023-00922

Page 61 of 239

ATI Ex. 2105
IPR2023-00922
Page 62 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 14 August, 200114 4 September, 20157 26 of 26L A £ ery Ra snes ee

8-15. Open issues ——
There is currently an issue with constants. If the constants are not the same for the whole vectorof vertices, we don't
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the ragister-fleregister file as well as on the register-Heregister file allocation
method (dynamic VS static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencerinstruction memory, and constant memory.

Arbitration policy for the outputfile.

Loops and branches,

The parameter cache may end up in the PA rather thanin the RS. Parameter cache management thus may change.

Exhibit 2011 docR400.Sequersendec 31902 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jocansioaaPMQGH1 B01 OS: 17 PMONIS/O1 0210 PM ns

AMD1044_0256734

ATI Ex. 2105

IPR2023-00922

Page 62 of 239

ATI Ex. 2105
IPR2023-00922
Page 63 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 200124 4 September, 20153 GEN-CXXXXX-REVA 4 of 34— - AAS A pee
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.68

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforcer400\archidocigh\RE\R400Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

: — oe OE “ARPROVALS. a oS
jee Name/Dept | “0 Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2012.docR400.Sequencersdoch400_Sequencerdes 92100 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © et : =

00/04/16 12:40 PRMOSMSIO1 03:17 PM

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |. <
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this | -
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |.-:

ATI 2012

LGv. ATI

IPR2015-00325

AMD1044_0256735

ATI Ex. 2105

IPR2023-00922

Page 63 of 239

ATI Ex. 2105
IPR2023-00922
Page 64 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
24September,200124|4September,20153| 20f 31

Table Of Contents

1. OVERVIEW oc ccccccccccceeeesetcerereenerseees 4 16. OPEN ISSUESoocceeeeee 3149
Ll Top Level Block Diagram... a 65
L2 Data Flowgraph. OF
13. Control Graph118
2. INTERPOLATED DATA BUS......... 4118
3. INSTRUCTION STORE................ 1444
4 SEQUENCER INSTRUCTIONS... 1444
5. CONSTANT STORE00.00.... 1444
6. LOOPING AND BRANCHES........ 1444 :

6,1 Data dependant predicate instructions 6-----REGISTER-FILE ALLOCATION
1e44 7,--TEXTURE-ARBITRATION...

62 Register file indexing... 1742
7. REGISTER FILE ALLOCATION... 1742
8. TEXTURE ARBITRATION............ 1843
9. ALU ARBITRATION |.cece: 1843
10. HANDLING STALLS oo...eee 4944
ll. CONTENT OF THE RESERVATION
STATION FIFOS o.oo. eecencenecceceeneeees 1944

12. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE)... sesscsssseceeeeeees 1944
13. REGISTERS ooo cccccceseeeecetseeeeeenees 1944

i4. INTERFACES.|........................ 2044

i4.i External Interfaces............. 2044

14.1.1 Sequencer to Shader
ENginé BUS.eeeee: 2044

14.1.2 Shader Engine to Output
File 2048

14.1.4 SequencertoTextureUnitbus
(Slow Bus) 2245

14.1.5 Shader Engine to RE/PA Bus
2246

14.1.6 PA? to sequencer...
18. EXAMPLES OF PROGRAM
EXECUTIONS ooo cccccceccsescresecssssnsssssnenessans 2246

15.1.1 Sequencer Control of a Vector
of Vertices 22416

18.1.2 Sequencer Control of a Vector
ofPixels 2344

15.13 Notes. 2548

2246

+3-12.--Sequencer-Control-ofa-Vector
ofPixels —18

hibit 2012 docR400_SequencandosR400.Gecuencsrdes 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «>08/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256736

ATI Ex. 2105

IPR2023-00922

Page 64 of 239

ATI Ex. 2105
IPR2023-00922
Page 65 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEa- @ 24 September, 200124|4 September, 20153 GEN-CXXXXX-REVA 3 of 31

File____13

42.1-3-—ShaderEngineto-Texture
LintBus(PastBus)es

2,INTERPOLATEDDATABUS.
3. INSTRUCTION STORE vecccnen
4.—-CON

Revision Changes:

Rev 0.1 (Laurent Lefebvre} First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre) Changed the interfaces to reflect the changesin the
Date : July 9, 2001 SP. Added somedetails in the arbitration section.
Rev 0.3 (Laurent Lefebvre) Reviewed the Sequencer spec after the meeting on
Date : August 6, 2001 August 3, 2001.
Rev 0.4 (Laurent Lefebvre) Added the dynamic allocation method for register
Date : August 24, 2001 file and an example (written in part by Vic) of the

flow of pixels/vertices in the sequencer. 2
Rev 0.4-5(Laurent Lefebvre) Added timing diagrams (Vic) i :
Date : September 7, 2001 :
Rev 0.6 (Laurent Lefebvre) Changed the spec to reflect, the new R400
Date . September 24, 2001 architecture.

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi os

AMD1044_0256737

ATI Ex. 2105

IPR2023-00922

Page 65of 239

ATI Ex. 2105
IPR2023-00922
Page 66 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 4 of 31& * A AOA A !
1. Overview

The sequencer first arbitrates between vectors of 46-64vertices that arrive directly from primitive assembly and
vectors of 4-16quads (46-64pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a texture clause to execute, and
executesall of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all cight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the bottom of the pipeline. It will not execute an alu clause until the texture fetchesinitiated by the
previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip anc one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute ihe same Instuction thus there is only one sequencer for the whole chip.

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi Sea

AMD1044_0256738

ATI Ex. 2105

IPR2023-00922

Page 66of 239

ATI Ex. 2105
IPR2023-00922
Page 67 of 239

WeeLHSOEETSCESTOOsoe@OBEJBAODUOSOONJYBUAdODsoUsIOION

&ay*gy.LoILdO/Od:-‘g/d-lea- Rk-
ror

wavs|dSdS-/dS|dS-jb—~—1lLiSs~")YSLLNI|SSLLNIMELLNI* uvassouoP

SP]SNDZ-
.WAREXXXXXI-NAOD

1)MOUSXSLBA

:
be10dvd

“LENTTYOMLNOOMtOMLNOD=TOMLNOOWAN‘AdaLNSNNOO"d
‘FENUSPYUOD[LY©worseo91z¢

SOPUSSUSNHSS—HayysePTSSISAESS-HARONFepooXL7ial|SNSLNIOdDed

||
eewomen|plLCLLINXL/

aqaOLSD

4
saa|SLvLSL |uocyLISNIAL

FOXINOSMaLESA

BLS!

EGlOdJequieices7divdLida

asvid+reSLVLSLadvLYM|a)LSNDXSL|
LSNIAL

 PELOOT“JeqQwaespeSLYSLVNIOIO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256739

ATI Ex. 2105

IPR2023-00922

Page 67 of 239

ATI Ex. 2105
IPR2023-00922
Page 68 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 6 of 31& * A AOA A !
1.1 Top Level Block Diagram

verlex/pixel vector arbitrator

Possible delay for available GPR’s

exture clause 0
‘eservation station

ALU clause 0
eservationstation

Texture clause 1

poet ‘eservation station
ALU clause 1 aud texture arbitrator
eservation station

Pexture clause 2
eservation station

exture arbitrator

jag—{SLU clause 2eservation station

Pexture clause 3
eservation station

; 3 +

Leg——iSLU clause 3
eservation station aE nm. Pexture clause 4reservation station

FIFO
ag ALU clause 4

eservation station 6) woi. exture clause 5eservation station

FIFO
begSLU clause 5

eservation station. a] —_,.Pexture clause 5

Tce FEO eservation station.
Meeccrvationation RS 1»] Pexture clause 7

Fro eservation station

I LU clause 7 a <

esorvation station

There are two sets of the above figure, one for vertices and onefor pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shacer. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 46-64pixels) and
sendsit to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3-20bits of state,
6-7 bits for the base address of the Shader pragram and some information on the coverage to determine texture
LOD. All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved

| when the packetfinishesits last clause.
ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi Sea

AMD1044_0256740

ATI Ex. 2105

IPR2023-00922

Page 68 of 239

ATI Ex. 2105
IPR2023-00922
Page 69 of 239

Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEsel i 24 September, 200124|4 September, 20153 GEN-CXXXXX-REVA 7 of 31coe24September,200124|4September,20158OANA A

. e ay
issue: How many bits of state exactly?

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (temd) is passed to the texture system identifying the current level number
(0) as well as the register write address for the texture return data. One texture request is sent every 4 clocks causing
the texturing of fourgixteen 2x2s worth of data (or 46-64vertices). Onceall the requests are sent the packetis put in
FIFO 1.

Upon recept of the return data, the texture unit writes the data to the register file using the write address that was
provided by the level 0 texture machine and sends the clause number (0) to the level 0 texture state machine to
signify that the write is done and thus the data is ready. Then, the level 0 texture machine increments the counter of
FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machinefirst decrements the input FIFO counter and then issues a
complete set of level O shaderinstructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packetis put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
ever the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they otherone is
currently working onif the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selectedif the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the sare way until the packetfinally reaches the last ALU machine (8). On completion ofthe
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
tirne. Similarly, only one texture state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (two for the ALU state machines and one for the texture state
machines). The arbitrers always favor the higher number state machines, preventing a bunch ofhalf finished jobs
from clogging up the registerfiles.

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi os

AMD1044_0256741

ATI Ex. 2105

IPR2023-00922

Page 69 of 239

ATI Ex. 2105
IPR2023-00922
Page 70 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 8 of 31
: ks A b AA !

interpolated data from RE

—
Register File control from RE

512x128 (built as 4 128x128 or 16 128x352

perurid TUX

Address to texure
or vertex parameter data tc RE through texture block
or pixel data to RB through texture block

constants from RE

 128 bit sealar/vector
ALU

control from RE

ef 2012 doct00 SequencandosR400Gecuencerdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *-08/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256742

ATI Ex. 2105

IPR2023-00922

Page 70 of 239

ATI Ex. 2105
IPR2023-00922
Page 71 of 239

oe ORIGINATE DATE

does]

1.2 Data Flow graph

 24 September, 200124=Seenusben A A

instruction

EDIT DATE

4 September, 20153

tA

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

RegisterFile

L scalar inputfoutout MAC
| pipeline stage |

| | !

|

oe x Register File A aa T~ I I ‘ | |
i I scalar Inputfautout py i

f 3 1 text requed
| pipeline stage | \ ~—

i <a)
i be
| & =i o
on)1 -
Po Register File é 3

3|i T =
i es S| 2/ — 4 B)
: j MAI texture Slquest_|2 ,
i i (sae inputfoutput ® S|Ne i> 1 E + 2 4 >

| pipeline stage | s 5
Le a| x

a
SR a aai

2
Se ! — — |

7 “Tears ESE

J la, |
“we(sealarinpavoutpat)|| |

| i| || 1 |i it
i lea
i

f o
ia}

| EI o
2

| 5

| it|

(to Primitive Assembly Unit or RenderBackend \, f

Exhibit 2012 docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *«O8S16 12:49 PMOBAS/G1 03:17 Phi

{

AMD1044_0256743

ATI Ex. 2105

IPR2023-00922

Page 71 of 239

ATI Ex. 2105
IPR2023-00922
Page 72 of 239

 24 September, 2001244, unt A

ORIGINATE DATE EDIT DATE

4 September, 20153fy A

R400 SequencerSpecification PAGE
10 of 3

Interpolateddata / Vertex indexes

 REGISTER FILE INSTRUCTION CONSTANT
STORE/CACHE STORE

ye

 OPERAND MUX

J ALU be
1a

(| ALU fe | ALU SCALAR
ALW

 TEXTURE

edAOL

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

ef 2012 docRi00. SequencerdesR4hSequenssrdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©08/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256744

ATI Ex. 2105

IPR2023-00922

Page 72 of 239

ATI Ex. 2105
IPR2023-00922
Page 73 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20153 GEN-CXXXXX-REVA 11 of 31. es er Y A POA A

1.3 Control Graph

Clause # + Rady

|
|
|
|

WrAddr |
|t

|

is SEQ CST | WrAddr

cue RdAddr
PA/RB

C&T

a

Phase / po pop
emp CSTcsticstinx 4 8 c Wivec

RdAddr Dt Scat radar

WrAddr |||I|

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolaiors contain an JJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2012. docR400_Sequencer.desR400_Sequencerdes 32106 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 508/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256745

ATI Ex. 2105

IPR2023-00922

Page 73 of 239

ATI Ex. 2105
IPR2023-00922
Page 74 of 239

 ORIGINATE DATE

24 September, 200124|

RE
TORB | |''

i

EDIT DATE R400 Sequencer Specification PAGE

4 September, 20153POA

lis CROSSBAR (4x64 bits} | 27*2+8"6+6"4 for Ns
64

| 12 of 31

NW CONTROL

4- write mask
2- RB ID(*4)

6- LOD correction (4)
2- Futx (provoking vertex)

7- PPro

1 AO At AZ BO @ PPtri 7 PPtr2
t Ns buffer (ping-pong buffer} 4- EOVect
i (27 bits ° 2 (1d) + & bits * 5 (delta Lis)+4 exp 1- Dealloc (peaches)

2 i oo bits*6)* 16 (quads) * 2 (double-buffered) 8- State piri “ 4082bits 4- Sprite
i 4- Valid ("4}
| 32x 126 + Null
| 4- EO prim

3 c3 c4 cs Do 1. FB face
! 4 - Stippled tine+

4 mo p2 EO ei 1

i \
INTERPOLATORS

| || || !
! iL i

i|||I\'
I

i 7 i -_ i 7

CE ye Pe EE
WUE |} 2UL 3UL 4UL iUR 2UR||3UR || 4UR } qe | 2kb BLL 4LL TLR ALR || SLR || 4LR x4| |

| | | | LJ | | | Ll |

ef 2012 doct00 SequencandosR400Gecuencerdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *-08/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256746

ATI Ex. 2105

IPR2023-00922

Page 74 of 239

ATI Ex. 2105
IPR2023-00922
Page 75 of 239

 WeLEEOHENNEFCSORCae@BHCBAO]UOSOHONWHUAdCDsoUsiajay‘JENUSPYUOD[LY@vaseooze

Sopueauanbag—ggPysepTaeUeTERSHEPaoOpC1OeWS

eG|Ly|Le|Gb

“09|“vp|“Be|“ZLba|OG]|€O|08ba|0G|ZO|Od€dS
Al|ATATA6G|ty|deLi-g

“OS|-OP|-Pe0sLOSOev|0SLO59ov28
A

A|ATLASG|6|tdI

“eS|“GE|“OeA03éq|roLY03eq=¥oLYLdS
A|ATLALG|Se|6Le-9

“Sh|-ce|“OL‘ALd|co|La|ovLdco|+a|OV0ds
ALATA

GIL|SbL|LPL|OELYSHLPIL|CbL|ZLLiL|OlL|GL|OL|ZL|OL|SL]pL|CLGL|bl|OL

besoeyWAREXXXXXI-NAODdvdWAN‘AdaLNSNNOO"d

 divdLida anieFFFeEGlOdJequieices7

 EERIEREEOycrimson
PELOOT“JeqQwaespeSLYSLVNIOIO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256747

ATI Ex. 2105

IPR2023-00922

Page 75 of 239

ATI Ex. 2105
IPR2023-00922
Page 76 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 Seplember, 200124|4 September, 20153 | 14 0f34bs A. fu A L

same primitive. Then the sequencer controls the write mask to the register to write the valid data in,Since-eachofihe

register filetis acteally physically divided. fene-128x128 per MAG) and-wedont have-the-place fo.held -asneximum

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It ma@ywill contain ue+e20040960instructions of 96

bits each. There is alse going to be a control instruction store of 256x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub 7}.

The read bandwith from this store is 24-06*2|bits/.44 clocks Loe bitsiclocipipe. te achieve thisthieinetuchen store ie aiso-splitjn-twoThe ‘sandwith out of those memories is 06-48|bits/clock, itis likely to be a TRAW oort memory: we
use 2 clocks to load the ALU Instruction and 2 clocks to load the Texture Instruction,

4. SequencerInstructions
All control flow instructions and move Instructions are handled by the sequencer only, The ALUs will perform NOPs
during tnis time (MOV PV_PV, PS PS)

4-5, Constant Store

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 1238542/4 bits/clock/pipe and the write bandwith is 32/4
bits/ciock.

coo Formatted: Bullets and Numberinga7 se * oo

coc Formatted: Bullets and Numbering

In order to do constant store indexing, the sequencer must be loaded first with the indexes (hat come from the
GPRs). There are 144 wires from the exit of the SP te the sequencer (9 bits pointers x 16 vertexes/clock), Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction
between the time the sequencer is loaced and ihe tne one can index into the constanl store, The assemblywill look
like this

MOVA Ri.X,R2%
 ADD R3.R4 COZ X L Uses the slate from ihe se uencerfo add R4 to COIR2 X] into R3

Note thal we don't really care aboul whal Js in the brackets because we use ihe slate from ine MOVA insiruction.,
Rz.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order fo support this feature is 2*64*9 bits = 1152 bits.

4.6, Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supportingconstantloopsandbranchesusingacontre!program.Thecontrolprogramhas4instructions:

- . Les 4 Formatted: Bullets and Numbering
6.1 The controlling state. . —= =
As per Dy9 the following state is available for control flow:

Boolean{[1$:0

hist 2012.dacR400 GequencerdosR400Gecusncerdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © #«:O8S16 12:49 PMOBAS/G1 03:17 Phi 2

AMD1044_0256748

ATI Ex. 2105

IPR2023-00922

Page 76 of 239

ATI Ex. 2105
IPR2023-00922
Page 77 of 239

 oti ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE8 24 September,2004 24 4 September, 20153 GEN-CXXXXX-REVA 15 of 31ben PAA A iad

loop count(7:OU7-0
In addition:

loop start [7:0] [7:0
loop__step [7:0] [7:0]

Exist to give more control to the controlling program.

We will exiend that in tne R400 to:
Boolean[3:0
Loop count(7:0718:0
Loop Start{7:01 [15:0
Loop End[7:0) [15:0

6.2 The Control Flow Program -
The R300 uses a match method for control flow: The shader is executed, and at eve

ee 4 Formatted: Bullets and Numbering

instruction its address is
 compared with addresses (or address?) in a control table. The “event” in ihe control lable can redirect operations in
the program. | believe that this method has increased area and complexity when the program sizeis increased.

The Method | prefer is a “control program”
The control program has four basic instructions:
Execute
Conditional execute
Loop start
Loop end

Execute, causes the specified numberof instructions In instruction store to be executed,
Conditional execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed,

end condition is not met.

if we try and fit the control flow instructions into S2 bit words, the following instructions are possible choices:

6| 15114113] 12] 11
| Reserved | “Addressress

Execute|

 instruction count

2a Execute

31 30) 2922 27 | 26 [25/24/23 22/21 [20119] 18/17/16] 15] 14/78
9 810 Boolean lo:|

18

1
|

[i2[tifioleis (7 s[Sl4/3l2 716)
| Instruction. count | Address |

|
|
|

Execute up to 4K instructions at the specified address in the instruction memory. |
|

 ow nN Ja |

 31 30/29/28|27/26/28 / 24/23 24 Solisberate!easgaliza heleslsl7isls |
o 11014 Reserved =0 | instruction. count | Address' I|

Loop Start
(22/21 120/19] 18/17/16 /15/ 14]13/ 12/11] 10[9 | 817]

31 30/29 [28 [27 [26 125 [24[= a [si4i3{2 4 OD had

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi S

AMD1044_0256749

ATI Ex. 2105

IPR2023-00922

Page 77 of 239

ATI Ex. 2105
IPR2023-00922
Page 78 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 16 of 31Lessa k AeBi EA hs Looks ene ~

a
Initialize the specified loos

 29|28)

o 014 [1 | Reserved (must = 0) Start Address red Loop IDLimust = 0

27 [36 | 25] 24] 23 22/21 [20] 19/18/17] 16 15) 1413) 12/11 108 187 els l4lal2 110

| Kel
if the Joon cengition of the current loop is net met, then branch back to the specified address in the control flow

rogram, Note that jumping back to the loop start results in an infinite loop, the jump should be to loop stari+1,

the waythis is described does not prevent nested loops, and the inclusion of the loop id make this easyto do.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex shader fetch/7:077:01 _// sight 8 bit pointers fo the location where each clauses control program is located
Vertex shader alu[7017:0 i sight 8 bit pointers to the location where each clauses control program is located
Pixel shader fetch[7:017:0 i/ eight 8 bit pointers to the location where each clauses contro! programis located
Pivel_ shader alul7: : // sight 8 bit pointers to the location where each clauses control programis located

The centrol program can be up to 256 instructions in size, (There is an offset added to the address from the render
state before accessing the control flow programmemory te allow for multiple programs residentat the sametime)

with theThe control program for a given clause is executed fo completion before moving to another clause
exception of the pick two nature of the alu execution)

The addresses from the control
same time,

ragram are added to another offset to allow for multiple rams resident at the

Under this model, all subroutine calls mustbe inlinedinto the control program.

6.3 Data dependant predicate instructions *
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

_ =| Formatted: Bullets and Numbering

PRED SETE - similar to SETE except that the result is ‘exported’ to the sequencer,
PRED SETGT - similar to SETGT exceptthal the resull is ‘exported’ to the sequencer
PREDSETGTE- similar to SETGTEexceptthat the resulf is ‘exported’to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED SETEO-SETEO
PRED SETE1-~SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction, The sequencerwill
maintain the 64 bit predicate vector and use it to contro! the write masking (twe sets for interleaved operation). This
predicate is not maintained across clause boundaries.

Then we have two conditional execute bits, Thefirst bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :

PO_ADD RO.RiR2

s only going to write the resull of the ADD inte those GPRs whose predicate bitis 0. Alternatively, P1_ADD would
only write the results to the GPRs whose predicate bit is set. The use of the PO or PL without prechargingthe
sequencerwithaPREDinstruction isundefined.

ussue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?

Ejbibt 2012. docRt30GequencerdocR400Sequencsrdoc 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++:O8S16 12:49 PMOBAS/G1 03:17 Phi Sea

AMD1044_0256750

ATI Ex. 2105

IPR2023-00922

Page 78 of 239

ATI Ex. 2105
IPR2023-00922
Page 79 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEel . ‘ t 24 September, 200124 4 Seplember, 20153 GEN-CXXXXX-REVA 17 of 31
fen ory A PF A : ° “ . Sees : : .

. 4 Formatted: Bullets and Numbering ~
6.4 Register file indexing 7 So
Because we canhaveloops in texture clause, weneed tobeable to index intethe registerfile in order to retrieve the
data created in e texture clause loop and use itinto an ALU clause. The instruction will incluge the base address for
register indexing and the instruction will contain these contrals:

Bit7 BIG
9 0 ‘absolute register
0 i ‘relative register’
4 0 ‘previous vector’
1previousscalar’

In the case of an absolute register we just fake the address as is. In the case of a relative register read we take the
base address and we add to It tne loop counler anc ihis becomes our new address thal we give jo ihe shader

cece) Formatted: Bullets and Numbering% * . .

De -

6-7. Registerfile allocation
The register file allacation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEfor pixels.

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi S

AMD1044_0256751

ATI Ex. 2105

IPR2023-00922

Page 79 of 239

ATI Ex. 2105
IPR2023-00922
Page 80 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

4 September, 20153 18 of 34bes A24 September, 200124PVP4AA

Above is an example of howthe algorithm works. Vertices comein from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green lineis the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as-is.
allowed tomovinge again.

7-8. Texture Arbitration

The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choiceis
made by looking at the fifos from 7 to QO and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the sameclause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to X(%)in flight texture fetches and thus there can be a fair numberof active clauses
waiting for their texture return data.

8-9. ALU Arbitration Se
ALU arbitration proceeds in almost the sarne way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbiirers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Odd):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi Q

AMD1044_0256752

ATI Ex. 2105

IPR2023-00922

Page 80 of 239

ATI Ex. 2105
IPR2023-00922
Page 81 of 239

Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE“ oe oe aa L 24 Seplember, 200124|4 September, 20153 GEN-CXXXXX-REVA 19 of 31 :
— saincabs A PEAT A iS | Formatted: Bullets and Numberinghe 2 7 rs z é

9.10. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (his way nothing
can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the cutputfile is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

 4 i: Bullets and Numbering—
40-11. Content of the reservation station FIFOs oe

3 bits of Render State 6-7 bits for the base address of the instruction siore,-and some bits for LOD correction_and

coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enterin
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shaderpipe latency. This size will be determined later when we
will know the size of the smail fifos between the reservation stations.

44.12. The Output File (RB FIFO and Parameter Cache)
The outputfile is where program results are exported when the pixel/vertex shader finishes. It constists of a 512x128
memory cell thatis statically divided between pixels and vertices. The output file has 1 write port and 1 read port. The
sequencer is responsible for managing the addresses of this output file and for stalling the shader pipe should this
output file fill up. The management is done by keeping the tail and head pointers of each sections (pixels and
vertices) and incrementing them using a simple RoundRobin allocation policy. The sequencer must aiso arbitrate
between the PA and the RB for the use of the read port. This arbitration will either be priority based orjust interleaved
evenly (1 read every 2 clocks for each of the blocks).

13. Registers

oe Formatted: Bullets and Numbering

S a Formatted: Bullets and Numbering% ee = ST :

DYNAMIC REG Dynamic allocation (pixel/vertex) of the register file on or off,
VERTEX REG SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL MIN SIZE Minimal size of the reg ster file's pixel portion (dynamic onl
VERTEX MIN SIZE
Vehader_fetch{7-0U7:0
Veshader alu[7:017:0

Minimal size of the register file's vertex portion (dynamic onl
ight 8 bit pointers to the location where each clauses control

eight & bit pointers to the location where each clauses control

rogram is located
rogram is located

Pshader_fetch[7:017:0 eight & bit pointers to the location where each clauses control program is located
Pshaderalu[70U7:0)eight 8bit pointers to the locationwhereeachclausescontrolprogramislocated
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
PONTLSHADER base pointer forthe olxal control program
VOCNTLSHADER base pointer for the vertex control program
VAWVIRAP wrap point for the vertex shaderinstruction store
PV/RAP wrap point for the pixel shader Instruction store
REG ALLOC PIX number of registers to allocate for pixel shader programs
REGALLOCVERTnumber ofregistersfoallocatefor vertex shaderprograms
PARAM MASKIO..16 parameter mask to specify wich parameters the pixel shader
FLAT GOURIO...16 wich parameters are to be gouraud shaded
GEN TEXO....16 fer wich parameters do we need lo generate tex coords.
CYL_WRAPIO...64 for wich vertices do we do the cyl wrapping.
P_EXPORT. number of exports for pixel shader
V_ EXPORT number of exports for vertex shader (also the number of interpolated parameters
V_EXPORT LOC Vertex shader exporting to RB or the PCACHE

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi S

AMD1044_0256753

ATI Ex. 2105

IPR2023-00922

Page 81 of 239

ATI Ex. 2105
IPR2023-00922
Page 82 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

ib

a

24 September, 200124|4 September, 20153 | 200881 fo a aoy A Mita i socio) Formatted: Bullets and Numbering4 4 ae : en Les s & 7
42.14, Interfaces Ce

412-114.1 Eocernal Interfaces

42t+-+l4. 11 Sequencerte-ShaderEngine-BusPA/SC to RE: lJ bus
Thisis-abus thet sends the instructionandconstant date to-all4Sub-Engines-oftheShader,Becauseanewinstruction
is-needed-only-every4clocks, the width-ofthe-busis-diided-by4 and-both-constants-andinstruction _are-sent-over
those-4-clocke.This is a bus that sends the |J information to the IJ fifos on the top of each shader pipe. At the same
time the control information goes to the sequencer

Name Direction | Bits | Description
instructlon-StartJs | SEQ->SEPARE | 464 | High-onfiret-cycle-of-transferd information sent over 2

| clocks
j “] 5 4+ <2] Formatted: Bullets and Numbering

Every clack each Sub-Engine can output 126 bits of ‘vector’ data and 32 bits of ‘scalar data to an output file (7). This

14.1.2PA/SCtoSEQ:IJControlbuses

This is the control Information seni to tne sequencer in order lo control the |) Mos and all other information needed to
execule a shader program on the sent pixels,

—

Name Direction | Bits | Description
Write Mask PA-SEQ(RE) 4 Quad Write mask left to right
RB ID | PA--SEQYRE) 18 | RB id for each quad sent 2 bis per quad
LOD CORRECT PA-SEG(RE) BA LOD correction per quad (6 bits per quad
EVTX | PA»SEQ(RE) 2 | Provcking vertex for flat shading
PPTRO PA-SEQ(RE) it|6StorepointerforvertexO
PPRTT | PA--~SEQ(URE) | 411 | P Store pointer for veriex 4
PRTRZ PA>SEQURE) ce PStorepointer for veriex 2
E OFF VECTOR PA>SEQ(RE) La | Engofthe vector
DEALLOC PA>SEQ(RE) 4 DeallocationtokenforthePStore
STATE PA-SEQ(RE) jai State/constant pointer (6°3+3)
SPRITE _PA-SEQ(RE) [1 Need to generatetex cords
VALID PA-SEQ(RE) 16 Valid bits for all pixeis
NULL | PA--SEQURRE) ca Null Primitive (or deallocationpurposes)
E OFF PRIM PA--SEQ(RE) i End Of the prirnitive
FBFACE (PASSEQ(RE) |1_|Frontface=7, backface=0
STIPPLE LINE PA-SEG(RE) 1 Stippled line need to load tex cords from alternate

buffer

RTRa SEQ—-PA 1| Stalisthe PAinn clocks
RTS _PA-»SEQ(RE) Li _PA ready to send data : co eS : :

. Uae -4 Formatted: Bullets and Numbering
14.1.3 PA/SC to RE : Vertex Bus “Ses =a

Name | Direction | Bits|Description :

hist 2012.dacR400 GequencerdosR400Gecusncerdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © #«:O8S16 12:49 PMOBAS/G1 03:17 Phi Sea

AMD1044_0256754

ATI Ex. 2105

IPR2023-00922

Page 82 of 239

ATI Ex. 2105
IPR2023-00922
Page 83 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 a SS Se SyFat 24 Seplember, 200124 4 September, 20153 GEN-CXXXXX-REVA 21 of 314 ns SONS : ss—— fen a AA “BP A S x,
. . aden 4 Formatted: Bullets and Numbering
l4.1.4 PASC to SEG : Vertex Contro! Bus ore : <e

[Bits[Bescription lL
| 2) | RenderState(6°3+3forconstants) lo

j=) Formatted: Bullets and Numbering

14.1.5 CP to SEQ : Constant siore load . es
Mame Direction Bits|Description | - : Soe SEES : Oe
Constant Address | CP-3SEQ 3 |Address of the block of 4 constants po a
ConstantData CPSEQ 512|Datasent over X clocks bo
Remap Address CPOSEQ 10 | Remaping addres bo
R pointer CP SEQ 8 [oo ——

14.1.6 CP to SEQ : Texture State store load * <— =
Name Oirection “Bits |Description

Constant Address SEQ é | Acldress of the block of 4 state constants
Constant Data SEQ

 “Remap Data pointer | CP.»SEQ

, , ade Formatted: Bullets and Numbering
14.1.7 CP to SEQ : Centro! State store load a SS =

Name | Birection | Bits|Description

_ Direction / | Description || ee = Reese - Be
instruction address | MH--SEQ [12 instruction address ee S : : oe
instruction | ME OSE (86 | instruction X Umes OSee a
Control instruction address | MH oSEG |§ Pointer to the instruction store ee oe : SESS
Control instruction | MH--SEQ ie | Control Instruction X times EER EPR SSS Ses ESS : - :

14.1.9 O8 te RB: Pixel read from RBs ces ce
Name | Direction | Bits |Description
PixelData OBRE [128 | 2pixels(or4quad)
Quad Address OB-2RB 120 | XY address 10 bits per

. . toe a a { Formatted: Bullets and Numbering
14.1. 10 SP to PA/SC ; Position return bus a =
Name | Description

Postion Buffer pointer 7? | Pointertothe positioncache
Parametercachepointer LSPoPA 10 | Pointer where the data will be in the parameter cache |

|
|

|

|

| | Formatted: Bullets and Numbering
|
|
|

|

|

|

|
|
|
|

«4 _- (Formatted: Bullets and NumberingL

42+314.1.1]1 Shader Engine to Texture Unit Bus (Fast Bus)
Qne-Four quad's worth of addressesis transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

QneFour Quad's worth of Texture Data may be written to the Register file every clock. These are directed to a different
pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and
Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi os

AMD1044_0256755

ATI Ex. 2105

IPR2023-00922

Page 83 of 239

ATI Ex. 2105
IPR2023-00922
Page 84 of 239

; ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

, 24 September, 200124|4 September, 20153 | 22 of 34bmmnks PA tA ABA A !

| | Name | Direction Description
_Index into Registerfilesfor reading Texture Address _
4-16Texture Addresses read from the Ragister file
Index into Register file for write of returned Texture
Data

_Tex_Reac_Register_index | SEQ->SP_
| | Tex_RegFile_Read_Data SP->TEX

| Tex_Write_Register_Index|SEQ->TEX

| +2-+-414.1.12 Sequencer to Texture Unit bus (Slow Bus)
Once every four clock, the texture unit sends to the sequencer on wich clauseit is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequenceralso provides the intruction and constants for the texture fetch to execute and the address in the register
file where to write the texture return data.

_ Name sdDirection[Bits [Description
| TexReady TEX— SEQ 1 Data ready
| Tex_Clause_Num |TEX-» SEQ 3 |Clause number

| | Tex_est SEQTEX 210|Texture censianis—Xstete address 710 bits sent over 4
| _ clocks

| | Tex_inst SEQ—TEX | 412 | Texture fetch instruction Xacdress 12 bits sent over 4| | clocks

Dis ary} REIDA Br

43-15. Examples of program executions

43-+4-115.1.1 Sequencer Control of a Vector of Vertices

1. PAsends a vector of 16-64vertices (actually vertex indices — 32 bits/index for 512-2048 bit total) to the RE’s
Vertex FIFO

e state pointer as well as tag into position cache is sent along with vertices
e space was allocated in the position cache for transformed position before the vector was sent
¢ also before the vector is sent ta the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

e the SEQ then accessesthe IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM when the CPis doneloading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO alwayshas priority
e at this point the vector is removed from the Vertex FIFO
« the arbitrer is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

| 4. SEQ sends the vectorto the SP register file over the RE_SP interface (which has a bandwidth of 42-2048
bits/cycle)

| e the 16-64vertex indices are sent to the 16-64.register files over 4 cycles
e RFQ of SU0, SU1, SU2, and SU3 is written thefirst cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, $U2, and SU3 is written the third cycle

ef 2012 doct00 SequencandosR400Gecuencerdes 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *-08/04/16 12:49 PMOBN GOT 03:17 PM

an _~(Formatted: Bullets and Numbering

qo 7| Formatted: Bullets and Numbering :

AMD1044_0256756

ATI Ex. 2105

IPR2023-00922

Page 84 of 239

ATI Ex. 2105
IPR2023-00922
Page 85 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September. 2001 24 4 September, 20158 GEN-CXXXXX-REVA 23 of 34
e RF3of SUO,SU1, SU2, and SU3 is written the fourth cycle

e the indexis written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packetfor the vector and sendsit to the first reservation station (the FIFO in front of
texture state machine 0, or TSMOQ FIFO)
e the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
e TSMOwasfirst selected by the TSM arbiter before it could start

7. allinstructions of texture clause O are issued by TSMO
@ the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
e SMO does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as il is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO: a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the contro! packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause O from the global instruction store

10. allinstructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM‘ FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA's position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASMarbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
® the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7if the parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

413-4-215.1.2Sequencer Control of a Vector of Pixels “

1. As with vertex shader programs, pixel shaders are loadedinto the global instruction store by the CP

e At this pointit is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

the token provided bythePA. :

3:2.the RE's Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source one four quad’s worth of barycentrics per cycle

4,3,SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

6.4,SEQ allocates space in the SP register file for ail the GPRs used by the program

Exhibit 2012 docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *«O8S16 12:49 PMOBAS/G1 03:17 Phi

se { Formatted: Bullets and Numbering

cont) Formatted: Bullets and Numbering

| =) Formatted: Bullets and Numbering

LS

t

AMD1044_0256757

ATI Ex. 2105

IPR2023-00922

Page 85 of 239

ATI Ex. 2105
IPR2023-00922
Page 86 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September 200124 4 September 20193 24 of 34 - uns

e the number of GPRs required by the program is stored |in a local state register, which is accessed using the
state pointer

« SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

6.8EG contrel starie:with-the-interpolation-ofFpatainelers (up:£o-46 ber-thread)-by-sending-the-barycentric-coordinates *" = ©==(Formatted:BulletsandNumbering
+POi,PO} and.POthevalue-ot PO a@t-each-+vertex)are-loaded nto. the.interpolator. from the-Parameterbuffer

otheitefpolatorthen generates the -parameter-value-for- each:pixel+P: ae{QOPC)

and-reused-for-Qt
ea“ditferent—orim"-centrolbit-is-passecivwith_the baryeentric-datefor-each-quadin-the PinelFIFG-ihat

indicateswhethernewparameter data needstobe loadedintethe interpolater
eG} -and--eare-thenleadedinio-the-interpolaler-fram-ihe-Pixel-EEO
«The-interpolatorihen-generates- ihe parameter value-joreach-pinel-in-Gei(G4PG}
2Q2P0-and-GSPG-are-generaiedin-a-similar manner

eQOi, |, and k now must be re-read from the Pixel FIFO — this means that the output of the Pixel FIFO loops
throughthetosfourentries-on-each-read-cemmand-unlitat the-end-ainal“bleck—_sop"-signalisasserted,

causing thetepfeurtSets.afParyeentrie coordinates 4o-finally-be-removed
4,9.SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a

bandwidth of Be2088oOeebiisloycle. See interpolated data bus fouseres.for details.
eRED.ofSUO, SU4, sua, -ang-BU34iewrittonwithQOD -the-ftoyele
ah E2 ofSUD, SUA,SU, and SUZ iswrillenwithO2POthird cycle

ORBOFBIOGLBe ae BS ieureaAMGUfeegure

2.6,SEQ constructs a control packet for the vector and sendsit to the first reservation station (ihe FIFO in front of
texture state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e jl other informations (such as quad address for example} travels in a separate FIFO

| &.7.TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store *~ ~- (Fommatted:BulletsandNumbering)
e TSMO wasfirst selected by the TSM arbiter before it could start ee es : e

49.8,_all instructions of texture clause O are issued by TSMO oe (Formatted: Bullets and Numbering ae }
44.9,the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or

ASMO0 FIFO)
e TSMO does not wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASMO FIFO: a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

| 42.40, ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU *” = > (_Fermatted: Bullets and Numbering
clause 0 from the global instruction store : SEES aS

| 43.11, _all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation

station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

| 44.12. the control packet continuesto travel down the path of reservation stations until all clauses have been
executed
e pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO where it will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi

AMD1044_0256758

ATI Ex. 2105

IPR2023-00922

Page 86 of 239

ATI Ex. 2105
IPR2023-00922
Page 87 of 239

 Vat) ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.c. 8 24 September, 200124|4 September, 20153 GEN-CXXXXX-REVA
PAGE

25 of 31

shader program

13.1315.1.3 Notes

46.13. _after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another *} > CEeeeis - -

ade a Formatted: Bullets and Numbering

46.14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the
real threads orstall.

47.15. the registerfile base pointer for a vector needsto travel with the vector through the reservation stations, but | .
the instruction store base pointer does not — this is because the RF pointeris different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to | Ssbe specked out.

Exhibit 2012. docR400_Sequencer.desR400_Sequencerdes 32106 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 508/04/16 12:49 PMOBN GOT 03:17 PM

AMD1044_0256759

ATI Ex. 2105

IPR2023-00922

Page 87 of 239

ATI Ex. 2105
IPR2023-00922
Page 88 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 | 260f 344, * A fy A I

O 1 2 31 4 5 6 7 8 9 10 "1 12 13 14 15 7) ar

SEQ_SP_constantO
SEQ_SP_constantt

co_0} co_1|co2] co3
clojectaica2}c13

SEQ_SP_read_addr arcA|srcB srcA|srcB|srcC TS srcA|srcB|sreC To srcA|stcB|sreC}TC. ef srcA

SEQ_SP_phase Laon, | oon i ioe :RE_SP_data[S11:384] ID 1D 3) ID s

SEQ_SP_instruction too} tot} 102} 103 oe oe a
SEQSP_instr_start i laro Te poePe

macd_phase Loo TN cmon] Ho= jenn ns

macO_cycle_count G 1 2 3 0 4 2 3 9 4 2 3 5 1 2 3

RFO_read_data stcA|srcB|sreC TC
macO_vector_result a r g b

SEQ_SP_wiite_addr iD - py PS 1D - PY PS ID - PY PS ID - PV RS

RFO write cycle IB To PV PS iD TD PV PS IB TD PY PS ID TO fopye | PS.

L

Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0

: S S} ' p * « SS 4 Formatted: Bullets and Numbering]

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi Q

AMD1044_0256760

ATI Ex. 2105

IPR2023-00922

Page 88of 239

ATI Ex. 2105
IPR2023-00922
Page 89 of 239

rat’ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEaiend ‘ 24 September, 200124 4 September, 20193 GEN-CXXXXX-REVA 27 of 31. é beens Atd Leahanba,4

PXF_SEQ_rts =p
PXF_SEQ_new_orim : ofeee

PXF_INT_data Jog

SEQ_PXF_rtr + — hy
SEQ_PXF_vector_pop sn oye ae :

PMB_INT_data| po PO Blo} Pl|pu Pl|po‘|]por|por|Bor por|pi|pir|par|l pir | ox fox |x

SEQ_INT_pm_load m ot oe :
INT_param_reg|ox x BO BO BO PO BL PL|PL Pl por|por|pov|pov|/pa:|pin fopin | par

SECUINTPeload poof po —— — a eeeae

INT_quad_reg x x oo QL Q2 Q3 90 Qt Q2 93 | Qo! gi" Qo" 93” 00: g1" | ‘gon 93"

SEG_SP_phase oN ry, ooo hy | lp
SEQ_SP_write_addr io in| iD | po ye apd

RE_SP_valici iz ‘ a tt - Lr]
RE_SP_data QOPO|Q1P0|O2P0|Q3P0|QOP1 | Q1P1|Q2P1|Q3P1|QOPO})/ Q1P0"|Q2P0")Q3P0"/ QOPI'|

RFO write cycle ID wp|Ps] wD|TD] pv|Ps | wD|to|PV|Pst iD} TD] ev PS
macO_phase i —h - ee :
maci_phase OR See TN es

mac2_phase :|Le :
mac3_phase n fe Le :— oo

Timing Diagram 2: RE interpolator to Shader Pipe Data Transfer

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi S

AMD1044_0256761

ATI Ex. 2105

IPR2023-00922

Page 89 of 239

ATI Ex. 2105
IPR2023-00922
Page 90 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
PAGE

24 September, 200124|4 September, 20153 28 of 34é A4A fe APPA y

: 3 S T Pp = en oq Formatted: Bullets and Numbering :

SEQ_SP_read_addr
RFO_read_data

TS

[sto] srcB
 srcB|sro

SP_TX_te TCO ca|TCO|TC?|TC2|TCR|TCO|]Tc1 | TC2|-TC3 TCO. “TE1|TE2

SEQ_TX_instr_start foo

SEQ_TX_instruction TO_0|161
SEQ_TX_clause 0

SEGQ_TX_write_addr r4
SEG_TX_last

SEQ_TX_phase Lo

tx_phase fon.
~~ TX_SP_write_addr |]

TX_SP_valid
TX_SP_data

TX_SEQ_clause
TX_SEQ_done

“Ta ~ i ies)

TOO|TO1|)T0_2 Te3|71-0} P11) Ti2) a23

SEG_SP_phase Lf,
SEQ_SP_write_addr| ps iD - PY

- py|ps|wp - py|ps | ion |fev|es Jp
REO write cycle ps|i|TD | Ps

L

Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit - Shader Pipe Data Transfer

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi Q

AMD1044_0256762

ATI Ex. 2105

IPR2023-00922

Page 90 of 239

ATI Ex. 2105
IPR2023-00922
Page 91 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 200124 4 Seplember, 20153 GEN-CXXXXX-REVA 29 of 34en Ae A RAO GA

= Formatted: Bullets and Numbering :

= -4 Formatted: Bullets and Numbering
assorted ontheSEQ 4@ ‘SP.interface)

Hee hning Diagren 4: Sequencer teto-Shader.“Pipe 0, Shader Unit 0VAC

SEGQ.SP—instruction:-6-bis-oFinsiruction-arc-sent-over-4-cycles.-Pipelinedin-SP-for-other-MAGs,

SEG.SP.=instrStart:contrat‘Htthat eignals the-first:syole.OFthe. instruction:ansfer.Pipelined tn SPfor-otherMACs.

RFO_read.data: data thal is read out ofMACO’8 register file (his may not be he actual signal name).
maclh_vector_result: the32-bitoutputofthe-vector ALU(PVisbullup-over4cycles}thismaynotbe-he- actual
signalname)

se Formatted: Bullets and Numbering
PXF.SEQ_new-prim “Fhe-current-outputotihe-Pivel-FLFO-is-from-a-different-orimitive that theprevious-oulpul.Tells
the SEQ that new parameterinfo must be fetched(if its not from a new prim, then new parameter data is not needed).

PREANT.data:Data- output ofthePheFIFO goes tothe» Inerpolator:

PMS_INT.dala:DatefromtheParameterBuffer totheinterpolator(Notethatthecontrolofthesarameterbulferis
TBD).

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi os

AMD1044_0256763

ATI Ex. 2105

IPR2023-00922

Page 91 of 239

ATI Ex. 2105
IPR2023-00922
Page 92 of 239

PAGE

30 of 34
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 Septemier,200124 4 September,29198
INTPatarn+eg: vegisler. in- the|Interpe lator. that holds the|perveriex- parameter-data-while-the-per-pixelparameters
are-generated-ferone-ormore quads-(may-net-be theactualsignalname).

SEQ INT_px_| load: controls the loading of pixel data into the interpolator.i

RESPvalid: interpolator Data Valid — indicates that the SP should write the 1D on the appropriate cycie.
RE$P_data:-Data fromineREinterpolaterto theSR.

 4 Lo Formatted: Bullets and Numbering

Hanerer

Thie-diagram-starts withthetexturecoordinateread fromtheregisterie anditetransfertotheTs,—The-instruction

Hanefert‘s thenShown, followed bytthe texture Gata transneferiotheshader.pipe:

$P_EXortextare-ccordinalte-date-sent fromtheshaderpine tothe texture unit,
SEQTKinetstart: Assorted.Oyathe fret cycle ofa.SEGto-TX instruction transfer,
 SEQ_Tscslausesihe -RE-wile-index-used-by Tx ferrelumewaders data.
SEGLTA_last:indicates thalthie isthe lasitextureinstructionofa clause.
SEQ_TX_phase-eynes the texturedata-write._Note-thatitis acsserted-earlyenoughto-beregisteredinteTx-andsll

ix-phase:the-phase-signal afierbeing registered-inte-Tx.
TXSPwerite—addr:-REswrite-index-fortexture-data.
TASPvalid: indicates thal valid texture data ie being drivente the SP.

TA-SEG—clause:ihe-clausenumberacceciaied-with- the texiure-data.
TKSEG.done:indicates totheSEGthal thetexturedata transferis-completefortheclausenumber thalis-onthe
TASEQclausebus.

SEQ.SP_phase:see-above under-T)1—shoewn-herefer-reference.

ef 2012.docR490 Gequencer.desR400Gecuencsrdec 32166 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.O8S16 12:49 PMOBAS/G1 03:17 Phi 2

AMD1044_0256764

ATI Ex. 2105

IPR2023-00922

Page 92 of 239

ATI Ex. 2105
IPR2023-00922
Page 93 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20153 GEN-CXXXXX-REVA 34 of 31. es er Y A POA A

/ A 4 Formatted: Bullets and Numbering
45-16. Open issues 3 = To
There is currently an issue with constants.If the constants are not the same for the whole vectorof vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the outputfile.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Exhibit 2012.docR400SequencerdosM400_Sequencerdec 32160 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : 5O8S16 12:49 PMOBAS/G1 03:17 Phi os

AMD1044_0256765

ATI Ex. 2105

IPR2023-00922

Page 93 of 239

ATI Ex. 2105
IPR2023-00922
Page 94 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 4 of 33— - AAS A pee
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.78

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforcer400\archidocigh\RE\R400Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

: — oe OE “ARPROVALS. a oS
jee Name/Dept | “0 Signature/Date

Remarks:

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

 “Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

Exhibit 2019 docR400Sequencersdoch400_Sequencerdes 96011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © wef

GG/04/15 12:80 PMIOME/O1 19:26 AMOS13/01 03:17 PA

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE -

work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyrightin this |

ATI 2013

LGv. ATI

IPR2015-00325

AMD1044_0256766

ATI Ex. 2105

IPR2023-00922

Page 94 of 239

ATI Ex. 2105
IPR2023-00922
Page 95 of 239

ORIGINATE DATE

 EDIT DATE R400 SequencerSpecification PAGE

24 September, 200124 4 September, 201535 2 of 33

i 16,1.10 SP to PA/SC: Position return
bus 2449

i 16... 11 Shader Engine to Texture
2. INTERPOLATED DATA BUS......... 129 UnitBus(FastBUS)ooocccsssseeseteesses2448
3 INSTRUCTION STORE................ 1542 161.12 Sequencer to Texture Unit bus
4. SEQUENCER INSTRUCTIONS..., 1542 Slow Bus) 2429
§, CONSTANT STORE...cece 1542 17. INTERNAL INTERFACES......... 2520
6. LOOPING AND BRANCHES........ 18. EXAMPLES OF PROGRAM

The cortrolling state... 1642 EXECUTIONS.22202:::cceccceeecseeeeeeeesseee 2520

i811 Sequen fector
of Vertices 2520

18.1.2 Sequencer Control of a Vector
of Pixels 2624

18.13 Notes.2722

8. TEXTURE ARBITRATION..

9. ALU ARBITRATION........... . 19. OPEN ISSUES 3323
10. HANDLING STALLS ooo.cecccsssccossss 2047
LL. CONTENT OF THE RESERVATION
STATION FIFOS ooo ccceccccssessosessssssssesess 2042
12. THE OUTPUTFILE............. 2047
13. THE PARAMETER CACHE.......... 2147
14. VERTEX POSITION EXPORTING 2117
U5. REGISTERS ooo sscceccssessussovesseesovseess 2147

i6. INTERFACES.. 2248

16.1 External Interfaces. 2248

16.1.1 PA/SC to RE: lJ bus.....2248

16.1.2 PA/SC to SEQ: lJ Control 6.2-—-Register-fileindexgecrrccerceerrerersees ~42
bus 2218 7——R

 PAISC to RE : Vertex Bus 2348

16.1.5 CP to SEG : Constant store
load 2348

16.1.6 CP to SEQ : Texture State store
load 23419

16.1.7 CP to SEG : Control State store
load 2349

16.1.8MHtoSEQ:Instructionstore
Load 2349.

16.1.9 SP to RB: Pixel read from RBs i4-1+2.Shader Engine te Output
2449. File———15

Ejbibt 2013.docRt30GequencerdocR400Sequencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +:8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR ae

AMD1044_0256767

ATI Ex. 2105

IPR2023-00922

Page 95 of 239

ATI Ex. 2105
IPR2023-00922
Page 96 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

‘ 24 Seplember,2004 28 4 September, 20155 GEN-CXXXXX-REVA 3 af 33PF A

Hi ShaderEnginetoTexture43-1-+ Sequencer Control of a Vector
of Vertices 16

ofPixels—1e

14-15. Shader Engine to RE/PA Bus-15 13-4+3.-Notes.-5 4B
14-4.6——PA?-1o-sequenc@hienrerne48 * §.-- EXAMPLES-OF-PROGRAM

Fjle—_45
12-13--ShaderEngineto-Texture 43-4-1—-Sequencer-Control-ofa-Vector

i ofVertices 14

Exhibit 2013.docR400SequencerdosM400_Sequencerdec 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : es8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256768

ATI Ex. 2105

IPR2023-00922

Page 96 of 239

ATI Ex. 2105
IPR2023-00922
Page 97 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 4 of 33i, * A fy A L

Revision Changes:

Rev 0.1 (Laurent Lefebvre} First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre) Changed the interfaces to reflect the changes in the
Date : July 9, 2001 SP. Added somedetails in the arbitration section.
Rev 0.3 (Laurent Lefebvre) Reviewed the Sequencer spec after the meeting on
Date : August 6, 2001 August 3, 2001.
Rev 0.4 (Laurent Lefebvre) Added the dynamic allocation method for register
Date : August 24, 2001 fle and an example (written in part by Vic) of the

flow of pixels/vertices in the sequencer.
| Rev 0.4-5(Laurent Lefebvre) Added timing diagrams (Vic)

Date : September 7, 200%
Rev 0.6 (Laurent Lefebvre Changed the spec to reflect. the new R400
Date : September 24, 2001 architecture, Added interfaces.
Rev 0.7 (Laurent Lefebvre) Added constant siere management, Instruction
Date :October 5, 2001 store management, control few management and

datadependantpredication.

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Sea

AMD1044_0256769

ATI Ex. 2105

IPR2023-00922

Page 97 of 239

ATI Ex. 2105
IPR2023-00922
Page 98 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20155 GEN-CXXXXX-REVA 5 of 33. een Or A PEA A

1. Overview

The sequencer first arbitrates between vectors of 46-64vertices that arrive directly from primitive assembly and
vectors of 4-16quads (46-64pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a texture clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all cight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the bottom of the pipeline. It will not execute an alu clause until the texture fetchesinitiated by the
previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip anc one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute ihe same Instuction thus there is only one sequencer for the whole chip. | :

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256770

ATI Ex. 2105

IPR2023-00922

Page 98 of 239

ATI Ex. 2105
IPR2023-00922
Page 99 of 239

WeEEOToeEONeeOFTOOTOFT

VESsee@BHCJBAODUOSOONWyGUAdCDsoUsISJOy‘PENUSPYUCDLLy

 "|YSLNI

;|

YaLNi

LENETY
a

TORINOS&

YVESSoUsPi

BEESOYNDZ

TULNOOMaLeESA

GGLOdJequeaes7aLvdLids
&wrS0a11050

 PonLENE

toN®PAR~NOwe=xoeoLo)Dqa-8°oOoO1£t£ND&DstYo
SopussuEnbas—qgpwIOsTeSUSAHSSAGPRIODELA,3oOoO-Q|=<

CVO"SLsk-AL

ALVLS ooweLSNIXSLpo,7

0907sh

woay

LSNILSNIVWMA
rr

Hl TOSANOSfi

 EEERIESITEATYenmyanimicnmmescdVELOOTJequialces7éavdSLVNIOIO

 TVIELVNdadoAALLOdLOUdd

ATI Ex. 2105
IPR2023-00922

Page 100 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20155 GEN-CXXXXX-REVA 7 of 33. een Or A PEA A

1.1 Top Level Block Diagram

verlex/pixel vector arbitrator

Possible delay for available GPR’s

extare clause 0
reservation station

ALU clause 0
eservationstation

Pexture clause 1
eservation station

ALU clause 1

servation station FESaPoeT Pexture clause 2—_+ teservation station

fexture arbitrator

exture arbitrator

 jag—{SLU clause 2eservation station ro
pe FIFO

a@——\LU clause 3eservation station

Pexture clause 3
eservation station

Pexture clause 4
eservation station

ag ALU clause 4eservation station

Pexture clause 5
eservation station

begSLU clause 5eservation station

eservation station begLU clause 6‘osorvation station

rexture clause 7
eservation station

esorvation station

<i FIFO Leg

< LU clause 7 .

There are two sets of the above figure, one for vertices and onefor pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shacer. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 46-64pixels) and
sendsit to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3-21bits of state,
6-7 bits for the base address of the Shader pragram and some information on the coverage to determine texture
LOD. All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved
when ihe packetfinishesits last clause. fos

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256772

ATI Ex. 2105

IPR2023-00922

Page 100 of 239

ATI Ex. 2105
IPR2023-00922

Page 101 of 239

 ; ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

, 24 September, 200124|4 September, 20155 | 8 of 33

| A Ara tOn receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (temd) is passed to the texture system identifying the current level number
(0) as well as the register write address for the texture return data. One texture request is sent every 4 clocks causing
the texturing of fourshteen 2x2s worth of data (or 46-64vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon recept of the return data, the texture unit writes the data to the register file using the write address that was
provided by the level 0 texture machine and sends the clause number (Q) to the level O texture state machine to
signify that the write is done and thus the data is ready. Then, the level 0 texture machine increments the counter of
FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machinefirst decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers}). One arbitrer will arbitrate
ever the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause numberas they other one is
currently working onif the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selectedif the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packetfinally reaches the last ALU machine (8). On completion ofthe
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is alrnost alwaystrue. If the packet was a veriex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the registerfile address bus or the instruction decode bus at one
time. Similarly, only one texture state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (two for the ALU state machines and one for the texture state
machines). The arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs
from clogging up the registerfiles.

Each stele machine meiniaine an-eddress pointer ececifying where the-16 entiesveciorislocated inthe register fle
dhe-teture-machine-hac-twe-peipiers-one-ter-ihe-read-addrese-ancd-ene

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Sea

AMD1044_0256773

ATI Ex. 2105

IPR2023-00922

Page 101 of 239

ATI Ex. 2105
IPR2023-00922

Page 102 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 9 of 33£. a4 A A A
interpolated data from RE

—
Register File control from RE

512x128 (built as 4 128x128 or 16 128x352

Address to texure
or vertex parameter data tc RE through texture block
or pixel data to RB through texture block

constants from RE

perurid TUX

128 bit sealar/vector
ALU

control from RE

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256774

ATI Ex. 2105

IPR2023-00922

Page 102 of 239

ATI Ex. 2105
IPR2023-00922

Page 103 of 239

 ORIGINATE DATE

24 September, 200124carats A

| 1.2 Data Flow graph

EDIT DATE R400 Sequencer Specification

4 September, 20155rim A

oan TTRegisterFile

L scalar inputfoutput MAC | -
—_ LN| fpstine stage I

| P : ‘s | ~~| | |

|

__ _ _ x Register File A aa r/ j | |
i I scalar Inputfautout py i

< { text requed
! pipeline stage \ ~\—

i <a)
i be
| & Leri o
ne)1 r
po Register File é o

3|
S| 2eo at oy}

i a MAI texture Slquest_|2 ,i i scaiar inpuVoutput ® |
Ne i> 1 E + 2 4 >

| pipeline stage | s 5
Le x| mn

a
Apres aai

2

! > ! ___texture te, est.

me
“we(sealarinpavoutpat)|| |

| J| |t 11 lot
i eum
i

f o
ia}
re1 oe
2
a

|

(to Primitive Assembly Unit or RenderBackend \f é

ef 2013 docRi00. SequencerdesR4hSequenserdes

 PAGE

10 of 33

36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©8/04/15 12:50 PMICME/O1 10:28 AMOB/13/01 03:17 PM

AMD1044_0256775

ATI Ex. 2105

IPR2023-00922

Page 103 of 239

ATI Ex. 2105
IPR2023-00922

Page 104 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 200124 4 Seplember, 20155 GEN-CXKKKX-REVA 11 of 33few SUA4A OA A

Interpolateddata / Vertex indexes

|
*

INSTRUCTION CONSTANT
REGISTER FILE STORE/CECHE STORE

gies ae ES ‘ MS
: | |

OPERAND MUX ke ‘ |: |

Jal ne Baw SCHAAR lonALU TEXTURE

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256776

ATI Ex. 2105

IPR2023-00922

Page 104 of 239

ATI Ex. 2105
IPR2023-00922

Page 105 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 | 12 of 33&, 2%: A fy A I
1.3 Control Graph

Clause # + Rady

|
|

is | SEQ CST | WrAddr
po |
| | |

WrAddr

CMD RdAdedr
PAYRB

C&T

A

ST TEX A 8 C Wivec |
WiSeal wraddr

wo ¥

WrAddr |||I|

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolaiors contain an JJ buffer to pack the information as much as possible before writing it to the register file.

ef 2013. docht00 SequencacndosR400_Gecuencerdes 38011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *-8/04/15 12:50 PMICME/O1 10:28 AMOB/13/01 03:17 PM

AMD1044_0256777

ATI Ex. 2105

IPR2023-00922

Page 105 of 239

ATI Ex. 2105
IPR2023-00922

Page 106 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 200124 4 Seplember, 20155 GEN-CXXXXX-REVA 13 of 33- tombe OIA A RA A

. _ |

To RB || AG Al

Ids CROSSBAR(4x64 bits} 2772+8"6+6"4 for Is Nv CONTROL

4- write mask
2- RB ID("4)

6- LOD correction (4)
2- Fvtx (provoking vertex}7- PPro

7- PPtrt
7- PPtrZ

ls buffer (ping-pong buffer} 4- EQVect
(27 bits *2 (1) + 8 bits * 5 (delta Us}+4 exp 1- Dealloc (peache)

bits*6)* 16 (quads) * 2 (double-buffered) 8- State ptr
4032 bits 4- Sprite

4- Valid (*4)
32 x 126 4- Null

4- EO prim
1- FYB face

1 - Stippled tine

re

—

-

x4

Exhibit 2013.docR400SequencerdosM400_Sequencerdec 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “|8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR

AMD1044_0256778

ATI Ex. 2105

IPR2023-00922

Page 106 of 239

ATI Ex. 2105
IPR2023-00922

Page 107 of 239

WeeTOERONTSEOTTOGOOFC)SIOEOay®abe.<]JBAO4UOODIION1461uAdoDIUDISION“PMUSPYUOD[LY@v.54iosesepracuandag—agryvO8SSUBABSSOFANCLETATA|oO

eg|2b|Le|SL

“09|-pr|-8Z|-Z-E|1a|04|ZO)Ong1a|0d|Zo|og€ds
AAAA6S|cr|ZeLL-g

“9S|-OV|“FZ0sLDGOév|03LDGOoyZdS
A

AAAGS|6|2ip

“ZG|-G€|02A0Dcq|¥OLY09cq|roLVLd$
AAALS|SE|6Le-0

“BP|“Ze|“OL1a|eo|ta|ov1d|eo)La|ovOdS
A

AAA

BLL)StL|ZbL|GILESIL|vhL)CllZbL|LiL|OlL|6L|@L|ZL|OL|SL|pL|€L|CL|LL|OL€€JovbSloeWquaydSspFz1002TGUSTSSFE4OVduoneoyioadgseousnbssCOPY3ivdLidsSVSLvNIgIdO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256779

ATI Ex. 2105

IPR2023-00922

Page 107 of 239

ATI Ex. 2105
IPR2023-00922

Page 108 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September 200124 4 September 20188 GEN-CXXXXX-REVA 15 of 33EaYaral

Above is an example of a tie we might receive, The fh information is packed in the lJ buffer 2 quads at a time, The
sequencer allows al any given time as many as four quads to interpolate a parameter, They all have te come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.Since-cach-ofihe

register filetis acteally physically divided. fene-128x128 per MAG) and-we-den't have-the place fo.hold-asneximum

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It raay-will contain up+e20040960instructions of 96

bits each. There is also going to be a control instruction store of size 256(5127)x32.

{ISSUE : The instruction store is loaded by the sequencerusing the memory hub 7}.

The read bandwith from this store is 24-06%2| bits44 clocks ae biis/clock)/pipe. Pe-achiove thie thietnetrucherstoreie
 ’ E Melt ie likel tobe a 1R/W ort memory. we “lee2 ee Bee ee :
clockstoload the ALU instructionand2clockstoload theTextureinstruction, ese ~ —

S 4 Formatted: Bullets and Numbering. * « camera . 3 : = site
4. Sequencer Instructions — ee .
All control flow instructions and move Instructions are handled by the sequencer only, The ALUs will perform NOPs ie SES ESS : oe
during tnis time (MOV PV_PV, PS PS) - eee ESS

: of Formatted: Bullets and Numberingco S - ve
45, Constant Store ee .

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128542/4 bits/clock/pipe and the write bandwith is 32/4
bits/ciock.

norder to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs), There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock), Since the
data must pass thru the Shader pipe for the floal to fixed convertion, there is a latency of 4 clocks (1 Instruction

between tne time the sequencer is loaded and the ime one can index into the constant slore, The assembly will look
like this

NOP. ii latency of the float to fixed conversion
ADD R3.R4.COIR2 X)// Uses the state from ihe scquencerio add R4 to COIRZ X] into R3

Note that we don't really care aboul whal is in the brackets because we use ihe slate from ihe MOVA insiruction.
Rejs just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64"9 bits = 1152 bits.

4.6, Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We clan on
supportingconstantloopsandbranchesusingacontro!program.Thecontrolprograrnhas4/5)instructions:

a of Formatted: Bullets and Numbering

. * As | Formatted: Bullets and Numbering
6.1 The controlling state. “| eS Toe
As per Dy9 the following state is available for control flow:

Boolean{[1$:0

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256780

ATI Ex. 2105

IPR2023-00922

Page 108 of 239

ATI Ex. 2105
IPR2023-00922

Page 109 of 239

 Oi ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
| a nd 24 September, 200124|4 September, 20153 | 16 of 33& 4, a? A fy A 1

loop count[7:07:0
in addition:

ef 2013 docRi00. SequencerdesR4hSequenserdes

loop start [7:0] [7:0
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

We will extend that in tne R400 to:
Boolean[31:0
Loop count{7:0715:0
Loop Start/7:01 (15:0
Loop End[7:0) [18:0

ISSUE: How Js the controlling state loaded and how many contexts do we have?

6.2 The Control Flow Program
The R300 uses a match method for control flow. The shader is executed, and at every instruction its address is
compared with addresses (or address?) ina control table, The “event” in the control table can redirect operations in
ihe program,

TheMethodchosenfortheR400isa“controlprogram”.Thecontrolprogramhasfourbasicinstructions:

Execute
Conditional execule (Conditional Execute Predicates)
Loop start
Loop end

Execute, causes the specified numberof instructions in Instruction store to be executed,
Conditionalexecute checks a condition firet, and if true, causes thespecified number of instructions in instruction
store to be executed,
Loop start resets the corresponding loop counter to the start value.
Loop eng increments (decrements?) tne loop counter and jumps back the specified numberof Instructions if the loop
end condition is not met,

instructions are possible choices:

Id
Address

 |

[a2 | til ie}e|si7/6)5/4]3 !
| Instruction count | Address |

|

has i js al

 31 30] 29/28 [27 | 26 | 25/24] 23 (22121 [20/19/18] 17/18/15] 74 [73
Olt Boolean =Q

Conditional Exesute Predicates

7 [26 | 25/24/23 22 21] 20 | 18/18) 417/161 15114|13 2 |
=O | Instruction court AddressI |

 ok ID = ls a hoa =| onl bel zl ad ERS fa
3

 Go & 3

ials m1
Check the OR ofall current predicate bits. |f OR matches the condition execute the specified numberofinstructions,

8/04/15 12:50 PMICME/O1 10:28 AMOB/13/01 03:17 PM36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page ©

« "2-1 Formatted: Bullets and Numbering

AMD1044_0256781

ATI Ex. 2105

IPR2023-00922

Page 109 of 239

ATI Ex. 2105
IPR2023-00922

Page 110 of 239

 Vat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE| ®| oe Ul 24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 7 of 33ren AACA 4 Chet ANIA

Loop Start |

[31 30] 28/28/27 | 26/25/24] 2322/21[20/19] 18) 17] 16/15]14[13/12[47i pop Pop

initialize the specified loop

rogram, Note that jumping back to the loop start results in an infinite loop, the jurnp should be to loop =stari+1,

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do,

The basic model is as follows:

The render state defined the clause boundaries:
Vertex shader fetch[7:077:0) // sight & bit pointers fo the location where each clauses control program is located
Vertex shader alu[7:OU7:0 // sight 8 bit pointers to the location where each clauses contro! program is located
Pixel shader fetch[7:077:0 // eight 8 bit pointers te the location where each clausescontrol program is located
Pixel shader alul7:O7:0 i sight 8 bit pointers to the location where each clauses control program is located

The control program can be up to 256 instructions in sige, (There is an offset added to the address from the render
state before accessing the control flow program memory to allow for multiple programs resident at the sare time

The control program for a given clause is executed to completion before moving fo another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries,

The addresses from the control program are added to another offset to allow for multiple programs resident at the
same time,

Under ihia model, all subroutine calla must be inlined into the control pragram.

6.3 Data dependant predicate instructions
Data dependant conditionals willbe supportedin the R400. The onlyway we planto support those js by supporting
three vector/scalar predicate operations of the form:

ators Formatted: Bullets and Numbering

PRED SETE - similar to SETE except that the result is ‘exported’ to the sequencer,
PRED SETGT- similar to SETGT exceptthal the result is ‘exported’ to the sequencer
PRED SETGTE - similar to SETGTE except that the result is ‘exported! to the sequencer

For the scalar operations only we will alse support the two following instructions:
PREOSETEO-SETEO
PRED SETE|-SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA Instruction, The sequencerwill
maintain the 64 bit predicate vector and use it to control the write masking (wo sets for interleaved operation). This

redicate is not maintained across clause boundaries.

Then we have two conditional execute bits, The first bit is a conditional execute “on” bit and the second bit tells us if
weexecute on 1 or0. For exemple, the instruction|

PO_ADD RO.R1R2

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256782

ATI Ex. 2105

IPR2023-00922

Page 110 of 239

ATI Ex. 2105
IPR2023-00922

Page 111 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 ; 180f33 k Yates A
is only going to write the result of the ADD inte those GPRs whose predicate bit is 0. Allematively, P1_ADD would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined,

lissue: do we have to have a NOP between PRED and thefirst instruction thal uses a predicate?

6.4 Register file indexing “Es ———
Because we can have loops in texture clause, we need to be able to index into the registerfile in order to retrieve the .
data created in a texture clause loop and use iLinto an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these contrals:

Bi BILGE
0 0 ‘absolute register’
0 i ‘relalive register’
4 0 ‘previous vector’
4 i ‘previous scalar’

in the case of an absolute register we just take the address as is. In the case of a relative register read_we take the
base addressand weaddto ifthe loopcounter ancthisbecomes our new addressthatwegivetotheshader

6-7, Registerfile allocation ar~—~———
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEfor pixels.

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Sea

AMD1044_0256783

ATI Ex. 2105

IPR2023-00922

Page 111 of 239

ATI Ex. 2105
IPR2023-00922

Page 112 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

 24 September, 200124 4 September, 20153 GEN-CXXXXX-REVA£. Ly}Fer tA ARAL

Above is an example of howthe algorithm works. Vertices comein from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green lineis the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as-is.
allowed tomovinge again.

Formatted: Bullets and Numberiwe PES coerce

7-8. Texture Arbitration

The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choiceis
made by looking at the fifos from 7 to O and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the sameclause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to X(%)in flight texture fetches and thus there can be a fair numberof active clauses
waiting for their texture return data.

8-9. ALU Arbitration *
ALU arbitration proceeds in almost the sarne way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbiirers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Odd):

rmatted: Bullets and Numbering ; |

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einsti Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

Exhibit 2013.docR400SequencerdosM400_Sequencerdec 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “|8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR

AMD1044_0256784

ATI Ex. 2105

IPR2023-00922

Page 112 of 239

ATI Ex. 2105
IPR2023-00922

Page 113 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification

s 24 Septernber, 200124|4 September, 20155 | 200 33 = iee : err ARI i cig) Formatted: Bullets and Numberinge - s ONS a * s a * .
9.10. Handling Stalls _ ee
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (his way nothing
can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the cutputfile is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

PAGE

 : bullets and Numberng =
40-11. Content of the reservation station FIFOs a.

3 bits of Render State 6-7 bits for the base address of the instruction siore,-and some bits for LOD correction_and

coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enterin
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shaderpipe latency. This size will be determined later when we
will know the size of the smail fifos between the reservation stations.

44.12. The Cutput File —rrrr—~—~—“
The oulout file ls where pixels are pul before they go to ihe RBs. The write BVV to this store is 256 bits/clock, Just
before this output file are staging registers with write BVV 512 bits/clack and read BV/ 256 bits/clock, For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The stagin
registers are 4x 128 (and there are 16 of those on the whole chip),

13. IJ Format

The lJ information sent by the PA is of this format_on a per quad basis:

oe 4 Formatted: Bullets and Numberingia =Tiennnn . one

We have a vector of lJ’s (one lJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mods bit). The interpolation is done al a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated al full 24.24 maniiesa precision, Then the result of the interpolation along with the difference in [J

in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having ihe barycentric coordinales 1(0), J(Q) and se on for Fi,P2
and P3, Also assuming that A is the parameter value al VO (interpolated with _}, B is the parameter value at V1
(interpolated with J) andCistheparametervalueatV2(interpolatedwith (1-/-J).

AOU = I(1)-1()

AOL) = J(1) - J(0)

AOW = F(2)- 10)

AOL = J(2)- FO)

AO3I = 13) —1(0)

A03 = J(3)—J(0)
P0=C +1(0)*(4A-C)+J(0)*(B-C)

Pl=PO+A01*(4-C)+ AOL *(B-C)

P2 = PO0+A02] *(4-C)+A02) *(B-C)

P3 = P0+A03I *(A-C)+.A03*(B-C)

PO is computed at full 24x24 mantissa precision and P1 to P3 are computed at 8x24 mantissa precision. So far no
visual degradation of the image was seen using this scheme.

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Q

AMD1044_0256785

ATI Ex. 2105

IPR2023-00922

Page 113 of 239

ATI Ex. 2105
IPR2023-00922

Page 114 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20155 GEN-CXXXXX-REVA 21 of 33. een Or A PEA A

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Sublracts 24x24 yielding 6 bis (Js): 6
Subtracts 24x24 (Parameters): 2
Adds: 8

FORMAT OF PO's lJ: Mantissa 23 Exp 4 for |
Mantissa 23 Exp 4 for J

FORMAT of Deltas (x3): Mantissa 3 Exp 4 for|
_Mantissa & Exp 4 forJ

Total numberof bits : 23°2 + 8G + 4°83 = 126 (rounded up on the bus to 125)

i4. The parameter cache a
The it consists of 16 128x128 memories CIR/IW). arameter cache is where the vertex shaders export their data,

“co Formatted: Bullets and Numbering

: Vertex osition ex onlin

the vertex shader can export to the PA both the veriex position and the point sprite. It can also do On clause 4 (ar 5

fifo drains 128 bits per clockto the PA and onee emptyis filed up again with Sprite sizes (if any). The processis
repeated 4 times. The sequencer must make sure that the program doesn’t enter ALU clause 5 (@t can enter texture
clause 5) because the registers can be reused at this point. The sequencer must alse make sure not to dealocate an
exporting program before it is done exporting data. Along with the position is exported @ pointer to the parameter
cache where the data will be once the vertex shader exports. Se Se -

os Formatted: Bullets and Numbering

lo. Registers ee ee — .
DYNAMIC REG Dynamic allocation (pixel/vertex) of the register file on or off,
VERTEX REG SIZE What corlion of the register file is reserved far verlices (stalic allocation only)
PIXEL MIN SIZE Minimal size of the registerfile's pixel

VERTEX_MIN Size Minimal size of the register file's vertex portion (dynamic only)

 Pshaderrauloi sight 8 bit sinters fo the location where each clauses control program is located

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256786

ATI Ex. 2105

IPR2023-00922

Page 114 of 239

ATI Ex. 2105
IPR2023-00922

Page 115 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

244September, 200124|4 September,20188 22 of 33
Pshader_alu 7OU79 ight 8 bit pointers to the location where each clauses contrel program is located

PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
PCNTLSHADER| __.. base pointer for the pixel control program
VONTLSHADER base pointer for the vertex control program
VVRAP wrap point for the vertex shader instruction store
PWRAP wrap point for ihe pixel shader instruction stare
REG ALLOC PIX number of registers to allocate for pixel shader programs
REG ALLOC VERT numberof registers to allocate for vertex shader programs
PARAM MASKIO... 16 arameter mask to specify wich parameters the pixel shader
FLAT GOURI[O...16 wich parameters are to be gouraud shaded
GENTEXIO...16) for wich parameters do we need to generate tex coords.
CYL WRAPIG.. .64 for wich vertices do we do the cvl wrapping.
P_EXPORT. number of exports for pixel shader
V_EXPORT number of exports for vertex shader (also the number of interpolated parameters for

pixel shaders)
V_EXPORT LOC Vertex shader exporting to RB or the PCACHE

i ced Formatted: Bullets and Numbering
42-17,_Interfaces o Tee

42-417.1External Interfaces

tee?)11.1.1 _SequoncorisShaderEngine BusPA/SC tofRE: iJ bus5th wotio cen neine e

those4clocks—This js a bus that sends, the i information to the iJ fifos aonn the ‘top of each shader pipe. At the same
iime the contral information goes to the sequencer

Name | Direction | Bits Beseriationlnstruction-StarlJs | SEQ-> SPPA-»RE | 464

oy Formatted:Bullets and Numbering

This is the control information sent to the sequencer in order to central the lJ fifos and all other information needed to
execute a shader program on the sent pixels.

4 4 US | Formatted: Bullets and Numbering
17.1.2 PA/SC to SEQ : lJ Control bus “SEs

|
|
|
|
|
|
|
|
|

Name Direction Bits |Description -
WriteMask_ | PA-SEQ(RE} [4 | Quad Write mask left to right
RBID PA--SEQ(RE) 8
LOD CORRECT | PA—SEQ(RE) 24
EVTX PA>SEQ(RE) 2
PPTRO |PA-SEQ(RE) [ii |B Siore ointer‘foree
PPRT1 PA-»SEQ(RE) ia P Store pointer for vertex 1
PFTR2 PA-SEGQ(RE) [ii | P Store pointer for vertex 2
EOFFVECTOR | PA--SEQ(RE) 4 End of the vector |

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR

AMD1044_0256787

ATI Ex. 2105

IPR2023-00922

Page 115 of 239

ATI Ex. 2105
IPR2023-00922

Page 116 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

Formatted: Bullets and Numbering

24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 23 of 33£ fess Sat S45
DEALLOC PA--SEQ(RE) 1 Deallocation token for the P Store
STATE PA—SEQ(RE) | 21 | State/constant pointer (6*3+3) :
SPRITE PApSEQIRE) i Needtogeneratetexcords [.
VALID | PA->SEQ(RE) 116 |Valic bits for all pixels foe
NUE PA>SEQ(RE) i NullPrimitive(forPOdeallocationpurposes)dt

PELOFFPRIM PA-SEG(RE) i 4 | End Of the primitive _ ipo
EBrACE | PA>SEQIRE) i | Frontface=1,backface=0 | -
STIPPLE UNE PA-SEQ(RE) ia Stippled line need to load tex cords from alternate :el 4 jue|
RTRp | SEQ—2PA im Stallsthe PAin n clocks [
ATS PA--SEQURE) iL PAready io send date

Quadx | PA-»SEQ(RE) 146 | Quad address 10 blis per quad :
Quad | PA--SEQ(RE) (40 | Quad Y address 719 bits per quad OR ee

re ee | Formatted: Bullets and Numbering
17.1.3 PASC to RE: Vertex Bus LS

Name _ | Direction | Bits | Descri ton ne
Vertex indexes | PARE [32 _| Pointers of indexes :

17.1.4 PA/SC fo SEQ : Vertex Contro/ Bus

 nd of the vector |

| Direction [Bits | Description
| PA.»SEQ | 21 Render State (6°3+3for constants)
| 17 | Pointertothe position cache

Which vertices are :

eo) Formatted: Bullets and Numbering
17.1.5 CP to SEQ: Constant store load “
 Name Direction Bits|Description

Constant Address 13 | Address of the block of 4 constants
512 Data sent over 4 clocks

a{10_|Remapingaddresswrite address
8 | Remaping pointer

 Remap Address

Remap Data pointer

17.1.6 CP to SEG ; Texture State store load ‘

|

Description

| Address ofthe block of 4 state constants

Name Direction
Constant Address

Remap Address

fo

|
| a
= s| Formatted: Bullets and Numbering

|
| S ,
[es
|
Lo

Remap Data pointer CP»SEQ

44 : “ cd Formatted: Bullets and Numbering
17.1.7 CP to SEQ : Contro/ State store load ee

Names | Birection ; (Bits [Description si(<C~;XTCPo or -
USSUE: HowWho and whal is the size of this bus?) : CS EER ee ;

17.1.8 MH to SEQ:Instruction store Load ee
Name[Direction |Bits[Description lo
instruction address _MB--SEQ (12 | instruction address \. 8
instruction | MH-»SEQ | 96 _| instruction X times foe
Control Instructionaddress | MH »SEQ 2 | Pointer to the control instructionstore bo
Control Instruction [MH >SEQ | 32 | Control Instruction % times ie

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256788

ATI Ex. 2105

IPR2023-00922

Page 116 of 239

ATI Ex. 2105
IPR2023-00922

Page 117 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124 4 Seplember, 20188 24 of 33
= qo7|Formatted: Bullets and Numbering :

| 17.9 SP to RB : Pixel read from RBs

Name T Cirection | Bits | Description
|| PixelData | SP-RB {256 [2pixels(or2quad)

Quad Address _$P--RB | 20 | XY address 10 bits per
Only one exporting clause (7) can be selected al any given time,

171.10 SP fo PA/SC : Position return bus
“a oe 4 Formatted: Bullets and Numbering

| | Description -
Position data or sprite size

| Pointer to the position gache

Name | Direction
Position return
Position Suffer pointer

then 16 point sprite sizes. The registers are taken until the next ALU clause where they are going to be available
again. Thus the sequencer has to make sure that we finished exporting data before allowing the program in the next
ALUclause.

1243171 a| Shader Engine to Texture Unit Bus (Fast Bus)
a || Formatted: Bullets and Numbering :

within each of the sub--engines repeating every 4 clocks. The register file index to read must precade the data by 2
clocks. The Read address associated with Quad OQ must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

| OneFour Quads worth of Texture Data may be written to the Register file every clock. These are directed to a different
pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and
Index associated with the Quad 0 must be sent 3 clocks after the Instructian Start signal is sent.

| Name Direction | Bits Description
| | Tex_Read_Register_Index|SEQ->SP | a7 Index into Register files for reading Texture Address
| | Tex_RegFileReadData SP->TEX |5422048|4-16 Texture Addresses read from the Register file
| Tex_Write_Register_Index|SEQ->TEX | 87 Index into Register file for write of returned Texture| | Data

aes Formatted: Bullets and Numbering *
424417,1.12 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clauseit is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
file where to write the texture return data.

[Name __ | Direction _ | Bits | Description
_Tex_Ready TEX >» SEQ 1 Data ready
| Tex_Clause_Num | TEX» SEQ L3 | Clause number

| | Tex_est SEQ—TEX | 210 | Texture constants—Xstate address 10 bits sent over 4_ clocks

| |j Pexinst | SEQ>TEX #12|Texture fetch instruction Xaddress 12 bits sent over 4clocks

| (EoCLAUS SEQ->TEX _| bast instructionoftheclause|
| LSE

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR ae

AMD1044_0256789

ATI Ex. 2105

IPR2023-00922

Page 117 of 239

ATI Ex. 2105
IPR2023-00922

Page 118 of 239

 Vat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEet U 24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 25 of 33 : Ys
= : tmenkne “P44 A AAAAGA S 4 Formatted: Bullets and Numbering

“| : 2. : ane ~ _ Yls8. Internal interfaces

JL

43-19. Examples of program executions

434-+19.1.1 Sequencer Control of a Vector of Vertices
1.

Exhibit 2013 docR400_SsquencerdocR400_Sequencerdec 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| oS

PA sends a vector of 16-64vertices (actually vertex indices — 32 bits/index for 84:2-2048 bit total) to the RE’s
Vertex FIFO

e state pointer as well as tag into position cache is sent along with vertices
e space was allocated in the position cache for transformed position before the vector was sent
e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumedto be loaded when we receive the vertex vector.

« the SEQ then accesses the IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM whenthe CP is done loading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always haspriority
e at this point the vector is removed from the Vertex FIFO
e the arbitrer is not going to select a vectorto be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
® SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vectorto the SP register file over the RE_SP interface (which has a bandwidth of 542-2048 | -
bits/cycie)
e the 46-64vertex indices are sent to the 16-64register files over 4 cycles | :

e RFO of SU0, SU1, SU2, and SU3 is written the first cycle
e RF1 of SU0,SU1, SU2, and SUS is written the second cycle
e RF2 of SU0, SU1, 8U2, and SU3 is written the third cycle
e RF3 of SU0, SU1, 5U2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compound indices}
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
texture state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of texture clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data to the register files, it Increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

8/04/15 12:50 PMICME/O1 10:28 AMOB/13/01 03:17 PM

AMD1044_0256790

ATI Ex. 2105

IPR2023-00922

Page 118 of 239

ATI Ex. 2105
IPR2023-00922

Page 119 of 239

PAGE

26 of 33
ORIGINATE DATE EDIT DATE R400 SequencerSpecification

24 September, 200124|4 Seplember, 20159

ae —— Ox Leak DADA L
9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU

clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA's position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

e parameter data is exported in clause 7 (as well as position dataif it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
« the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache(or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

43:4-:219.1.2Sequencer Control of a Vector of Pixels —— a
1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2.the-RE’s-Parameter-Bufferis-loaded-from-the-Parameter-Cache-betore-theSEGtakes-control-ofthe-vector +--= (Formatted: Bullets and Numbering : }
emftear- te HE= culling stage-<B-Fequest!4S made bythe RE to- send parameter-dsdata 46. theParameter -buffier ESSERE SUES Seen :
 eat this.moment the rightsequencerwill free-up. the parameter.storeiocationsnet used.anymoreusing

thetoken-provided-by-thePA.

3.2.the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source ens-four quad’s worth of barycentrics per cycle

4.3.SEQ arbitrates between Pixel FIFO and Vertex FIFO — whenthere are no vertices pending OR there is no space “> -[Formattea: Bullets and Numbering . J
left in the register files for vertices, the Pixel FIFO is selected

6-4,SEQ allocates space in the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
® SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

a= | Formatted: Bullets and Numbering

fram-thePixel FIFO.andtheparameters fromthe ParameterBufferto the interpolator
ofl} PO}: @and-Pok-tthe-ve.hae of.PO ateach-yerex)-ere-loaded: iiio-the-interpelater fromthe-Parameterburfer

otheinterpolatorthen gernerates:the parameter.value-foreach.pixel41-GHO. {QOP6)
 the.same2 primitive.AS Q0, then-the.Oi,PO).“and.POK.values. Joaded for.Gio-are held.bytttheinterpolator

andreusedfar-O4

a2caterer,en‘controlbitie passed with thebatyoentiicdatafor each quad’ inthe PixelFIFOthat

hist 2013.dacR400GequencerdocR400Gecsusncerdes 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +:8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR ae

AMD1044_0256791

ATI Ex. 2105

IPR2023-00922

Page 119 of 239

ATI Ex. 2105
IPR2023-00922

Page 120 of 239

 VAL ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEt 24 Seplember, 200124 4 September, 20158 GEN-CXXXXX-REVA 27 of 33
e014-andknowfaustbe.re-read Jrom-thePixelSIRO —thismeans-that-ibe-output-olthe-Pivel-FiFOloops

throughthe-top-tourenvvieson-each-read.command.unlllaliheend-afinal“block_pop’signalsasserted,

causing thetop fourselsofBaryeenttic-eoordinates te finaly be-rarmeved

#9.SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 642-2048 bits/cycle), See interpolated data bus diagrams for details.
»6-pheals-worth-ofinterpolated-pararneter-data—is-sentto-the-16register filesovercycles.

@RFO-of SU0,SU4,SU2,and-SU3 is.witen-with QOPG-the fireteyele
ehE4ofSUO-SU4 SUS andSUis.wwritenwihG46 sesendsyle

BEBofSU0,SU4,SU2,ane- SUS ie-wrtenwith- O3Po fourth oycie

2.6,SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
texture state machine 0, or TSMO FIFO}
e note that there is a separate set of reservation slations/arbiters/state machines for vertices and for pixels
e« the control packet contains the state pointer, the register file base pointer, and the LOD correctionbits
« all other informations (such as quad address for example) travels in a separate FIFO

 &.7.TSMO accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
« TSMO wasfirst selected by the TSM arbiter beforeit could start

40.8, __all instructions of texture clause 0 are issued by TSMO “To (Formatted: BulletsandNumbering
44.9,the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or

ASMO FIFO)
« TSMO doesnot wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASMO FIFO: a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

42-10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU +| e ~[Formatted:BuletsandNumbering
clause 0 from the global instruction store

-| = =e { Formatted: Bullets and Numbering ~

43.11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation | ae
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

44.12.the control packet continuesto travel down the path of reservation stations until all clauses have been | ae
executed

e pixel data is exported in the last ALU clause (clause 7)
e itis sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM/ if the output FIFO is full

15.13.after the shader program has completed, the SEC will free up the GPRs so that they can be used by another +|- &(Formatted:BuletsandNumbering .
shader program : eS ae

|- (emt: suetsandunberng

45-4+319.1.3Notes ‘|=e
46-14,the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the

real threads orstall.

47.13. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but | So
the instruction store base pointer does not — this is because the RF pointeris different for all threads, but the [S
pointer is only different for each state and thus can be accessed via the state pointer

be specked out.

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256792

ATI Ex. 2105

IPR2023-00922

Page 120 of 239

ATI Ex. 2105
IPR2023-00922

Page 121 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200124|4 September, 20153 | 28 of 33&, 2%: A fy A I

O 1 2 31 4 5 6 7 8 9 10 "1 12 13 14 15 7) ar

SEQ_SP_constantO
SEQ_SP_constantt

co_0} co_1|co2] co3
clojectaica2}c13

SEQ_SP_read_addr arcA|srcB srcA|srcB|srcC TS srcA|srcB|sreC To srcA|stcB|sreC}TC. ef srcA

SEQ_SP_phase Laon, | oon i ioe :RE_SP_data[S11:384] ID 1D 3) ID s

SEQ_SP_instruction too} tot} 102} 103 oe oe a
SEQSP_instr_start i laro Te poePe

macd_phase Loo TN cmon] Ho= jenn ns

macO_cycle_count G 1 2 3 0 4 2 3 9 4 2 3 5 1 2 3

RFO_read_data stcA|srcB|sreC TC
macO_vector_result a r g b

SEQ_SP_wiite_addr iD - py PS 1D - PY PS ID - PY PS ID - PV RS

RFO write cycle IB To PV PS iD TD PV PS IB TD PY PS ID TO fopye | PS.

L

Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0

: S S} ' p * « SS 4 Formatted: Bullets and Numbering]

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Q

AMD1044_0256793

ATI Ex. 2105

IPR2023-00922

Page 121 of 239

ATI Ex. 2105
IPR2023-00922

Page 122 of 239

rat’ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEaiend ‘ 24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 29 of 33. é beens Atd Leahanba,4

PXF_SEQ_rts =p
PXF_SEQ_new_orim : ofeee

PXF_INT_data Jog

SEQ_PXF_rtr + — hy
SEQ_PXF_vector_pop sn oye ae :

PMB_INT_data| po PO Blo} Pl|pu Pl|po‘|]por|por|Bor por|pi|pir|par|l pir | ox fox |x

SEQ_INT_pm_load m ot oe :
INT_param_reg|ox x BO BO BO PO BL PL|PL Pl por|por|pov|pov|/pa:|pin fopin | par

SECUINTPeload poof po —— — a eeeae

INT_quad_reg x x oo QL Q2 Q3 90 Qt Q2 93 | Qo! gi" Qo" 93” 00: g1" | ‘gon 93"

SEG_SP_phase oN ry, ooo hy | lp
SEQ_SP_write_addr io in| iD | po ye apd

RE_SP_valici iz ‘ a tt - Lr]
RE_SP_data QOPO|Q1P0|O2P0|Q3P0|QOP1 | Q1P1|Q2P1|Q3P1|QOPO})/ Q1P0"|Q2P0")Q3P0"/ QOPI'|

RFO write cycle ID wp|Ps] wD|TD] pv|Ps | wD|to|PV|Pst iD} TD] ev PS
macO_phase i —h - ee :
maci_phase OR See TN es

mac2_phase :|Le :
mac3_phase n fe Le :— oo

Timing Diagram 2: RE interpolator to Shader Pipe Data Transfer

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR S

AMD1044_0256794

ATI Ex. 2105

IPR2023-00922

Page 122 of 239

ATI Ex. 2105
IPR2023-00922

Page 123 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
PAGE

24 September, 200124|4 September, 20155 30 of 33é A4A fe APPA y

: 3 S T Pp = en oq Formatted: Bullets and Numbering :

SEQ_SP_read_addr
RFO_read_data

TS

[sto] srcB
 srcB|sro

SP_TX_te TCO ca|TCO|TC?|TC2|TCR|TCO|]Tc1 | TC2|-TC3 TCO. “TE1|TE2

SEQ_TX_instr_start foo

SEQ_TX_instruction TO_0|161
SEQ_TX_clause 0

SEGQ_TX_write_addr r4
SEG_TX_last

SEQ_TX_phase Lo

tx_phase fon.
~~ TX_SP_write_addr |]

TX_SP_valid
TX_SP_data

TX_SEQ_clause
TX_SEQ_done

“Ta ~ i ies)

TOO|TO1|)T0_2 Te3|71-0} P11) Ti2) a23

SEG_SP_phase Lf,
SEQ_SP_write_addr| ps iD - PY

- py|ps|wp - py|ps | ion |fev|es Jp
REO write cycle ps|i|TD | Ps

L

Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit - Shader Pipe Data Transfer

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR Q

AMD1044_0256795

ATI Ex. 2105

IPR2023-00922

Page 123 of 239

ATI Ex. 2105
IPR2023-00922

Page 124 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 24 September, 200124 4 September, 20155 GEN-CXXXXX-REVA 31 of 33ben aura! A PF A

= Formatted: Bullets and Numbering :

= -4 Formatted: Bullets and Numbering
assorted ontheSEQ 4@ ‘SP.interface)

Hee hning Diagren 4: Sequencer teto-Shader.“Pipe 0, Shader Unit 0VAC

SEGQ.SP—instruction:-6-bis-oFinsiruction-arc-sent-over-4-eycles.-Pipelined-in-SP-for-other-MAGs,

SEG.SP.=instrStart:contrat‘Htthat eignals the-first:syele oFthe. instruction:transfer.Pipelined tn SPfor-otherMACs.

RFO_read.data: data thal is read out ofMACO’8 register file (his may not be he actual signal name).
maclh_vector_result: the32-bitoutputofthevector ALUPVisbullup-over4cycles}thismaynotbe-he- actual
signalname)

se Formatted: Bullets and Numbering
PXF.SEQ_new-prim-The currentoutputof the-Pixel-FlFQ-is-trom-a-different-crimitive thatthe previous oulput—Teils
the SEQ that new parameterinfo must be fetched (if its not from a new prim, then new parameter data is not needed).

PREANT.data:Data- output ofthePheFIFO goes tothe» Inerpolator:

PMS_INT.dala:DatefromtheParameterBuffer totheinterpolator.Note thatthecontrolofthesarameterbufferis
TBD).

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256796

ATI Ex. 2105

IPR2023-00922

Page 124 of 239

ATI Ex. 2105
IPR2023-00922

Page 125 of 239

PAGE

32 of 33
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 Septemier,200124 4 September,20138
INTPatarn+eg: vegisler. in- the|Interpe lator. that holds the|perveriex- parameter-data-while-the-per-pixelparameters
are-generated-ferone-ormore quads-(may-net-be theactualsignalname).

SEQ INT_px_| load: controls the loading of pixel data into the interpolator.i

RESPvalid: interpolator Data Valid — indicates that the SP should write the 1D on the appropriate cycie.
RE&P_data: Data fromineREinterpolaterto theSR.

 _-(FomatiedBusdngShader.Pipe.Data-Transfer :
Thie-diagram-starts withthetexturecoordinateread fromtheregisterie anditetransfertotheTs,—The-instruction

Hanefert‘s thenShown, followed bytthe texture Gata transneferiotheshader.pipe:

$P_EXortextare-ccordinalte-date-sent fromtheshaderpine tothe texture unit,
SEQTKinetstart: Assorted.Oyathe fret cycle ofa.SEGto-TX instruction transfer,
 SEQ_Tscslausesihe -RE-wile-index-used-by Tx ferrelumewaders data.
SEGLTA_last:indicates thalthie isthe lasitextureinstructionofa clause.
SEQ_TX_phase-eynes the texturedata-write._Note-thatitis acsserted-earlyenoughto-beregisteredinteTx-andsll

ix-phase:the-phase-signal afierbeing registered-inte-Tx.
TXSPwerite—addr:-REswrite-index-fortexture-data.
TASPvalid: indicates thal valid texture data ie being drivente the SP.

TA-SEG—clause:ihe-clausenumberacceciaied-with- the texiure-data.
TKSEG.done:indicates totheSEGthal thetexturedata transferis-completefortheclausenumber thalis-onthe
TASEQclausebus.

SEQ.SP_phase:see-above under-T)1—shoewn-herefer-reference.

ef 2013.docR400GequencerdesR400Gecuencsrdoc 36011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++.8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR ae

AMD1044_0256797

ATI Ex. 2105

IPR2023-00922

Page 125 of 239

ATI Ex. 2105
IPR2023-00922

Page 126 of 239

 Var ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE.At. t 24 September, 200124|4 September, 20155 GEN-CXXXXX-REVA 33 of 33. een Or A PEA A

45-20. Open issues ee TT
There is currently an issue with constants. If the constants are not the same for the whole vectorof vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Loops and branches.

Exhibit 2013.docR400_Sequencer.desR400_Sequencerdes 35011 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © “| : S8/04/15 12:50 PMIOASAN 10:25 AMORI1S/01 03:17 PR os

AMD1044_0256798

ATI Ex. 2105

IPR2023-00922

Page 126 of 239

ATI Ex. 2105
IPR2023-00922

Page 127 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201817 GEN-CXXXXX-REVA 1 of 26PPS ER be
Author: Laurent Lefebvre

 Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.87

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcey400iarchidocigik\RE\R400Seauencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS.

Signature/Date Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT] Technologies Inc.”

Eehibit 2014 decR400_Sequencerdas 37948 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © ** ponasied

BR1O10607 10:28 AM

ATI 2014

LGv. ATI

IPR2015-00325

AMD1044_0256799

ATI Ex. 2105

IPR2023-00922

Page 127 of 239

ATI Ex. 2105
IPR2023-00922

Page 128 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201547 2 of 26A

Table Of Contents

: OVEREWa aecres cose cosseesee nes sss en sanssnasasnssasnsnaanss
Top Level Block Diagrarn..
Data Flow graph...

INTERPOLATED
INSTRUCTION STOREue
SEQUENCER INSTRUCTIONS...
CONSTANT STORE...

&. LOOPING AND BRANCHES
The controlling state...

Bt[[B8[BSeeemfempe

FETCH ARBITRATION
9. ALU ARBITRATION
10. HANDLING STALLS ..
il. CONTENT OF THE RESERVATION STATION
FIFOS 1842
12, THE OUTPUT FILE.
13. id FORMAT.
14, THE PARAMETER CACHE.
15, VERTEX FOSITION EXPORT
16. RES. TIME COMMANDS.
Ly. REGISTERS......

External Interfaces
PASC to R bu
PA/SC to SEQ: IJ Control bus
VGT to RE : Vertex Bus

CP to SEQ | Feich State store load
2220

18.1.7 CP to SEQ : Control State store load
2224

__MH to SEQ:InstructionstoreLoad
22gt

18.1.9 SP to RB: Pixel read from RBs... 2224
18.1.10 SEQ to RB: Control bus.. eee
181.4) RB to SEQ: Outout file contral,...2224
18,112 SP to RB: Position return bus...2324
18.113 Shader Engine to Fetch Unit Bus (Fast
Bus) gage
18.114 Sequencer to Fetch Unll bus (Siow
Bus) 2322

19, INTERNAL INTERFACESnoceee2sed
20, EXAMPLES OF PROGRAM EXECUTIONS

2oe2
20.1.1 Sequencer Control of a Vector of
Vertices 2322
20.1.2 Sequencer Control of a Vector of
Pixels 2023
20,13 NOLCGcece eee ere eree ree rps uee nee2524.

Exhibit 2014.docR400Sequenserdec 37949 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nopene vagy

21, OPEN ISSUES.

—-GentrelGraph.. os

INSTRUC TION-STORE cic
SEQUENGCERAINSTRUCTIONGS..

~~ {.OORING- AND BRANCHES...

TheControl Flow. Prog rene

 _-Register file-indexingesesscon-steve
--REGISTER-FILE ALLOCATION

jblARBITRATION:
10.-HANDLINGSTALLS. ws

iLCONTENTOFTHERESERVATIONSTATION
FIFOS46

~~THEOUTPUT FILE

VERTEX-POSITION-EXPORTING.
-REAL-TIME-COMMANDS. :

REGISTERS. TererennnTrTrT TT

18cho6 POSEQ:FetchState storeload..19
a eh}

184.3fdlh te-SEG:-Instruction-store-Load-.20

L319. ‘SP te RE. Pixel read-from-RBs. aors

144 4-- ~SP 40-PASC: -Position- Fetum-bus: a

-Sequencer-to-FeichUnit- bus(Slow
20

ssevevennnerscrsseemed)
EXAMPLES-OF-PROGRAM-EXECUTIONS«24

-Sequencer-ContrelofaVector-of

PAM10/06/01 10:28 AM

AMD1044_0256800

ATI Ex. 2105

IPR2023-00922

Page 128 of 239

ATI Ex. 2105
IPR2023-00922

Page 129 of 239

-LWOPING- AND-BRANGHES.
-The-contrelling state.

REGISTER-FILE-ALLOGATION.
TEXTURE- ARBITRATION.
Add) KRBITRATION,

THE PARAMETER-CAGHE
4VERTEXPOSMION-EXAPORTING.
15,.--REGISTERS...

..-PASCtoRELbus

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

Exhiblt 2014 docRd00_Sequencerdes 37948 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © © pons io51(PRM0/05/07 10:28 AM

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201547 |exe Pd

DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 3 of 26

RAIS1o-RE-+Vertex- Bus. 8
PA/SC to SEQ : Vertex Control Bus.1&

Mite SEG:-Instruction-store-Load..49
$Pto-RB-Pixelread fromRBs.. g

164ri aShaderEngine-to Texciure- UnitBus -
(Fast-Bush-—12~

1TERNAL INTBRPAGES cccscsresnsrenaessenccra

Veitioes 20
18.4.2Sequencer-Controlefa-Veclor-of

L8-L3 -- NOtes-.
19,----OPENISSUES.;

First draft.

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management anc
data dependant predication.
Changed the control flow method to be more
flexible, Also updated the external interfaces.

ws

AMD1044_0256801

ATI Ex. 2105

IPR2023-00922

Page 129 of 239

ATI Ex. 2105
IPR2023-00922

Page 130 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201547 4 of 26i OA

1. Overview

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequenceris based on the R300 design. It chooses two ALU clauses and a texturefetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texturefetch and eight ALU clauses, but
clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO,
bouncing from texturefetch reservation station to alu reservation station. A FIFO exists between each reservation
stage, holding up vectors until the vector currently occupying a reservation station has left. A vector ai a reservation
station can be chosen to execute. The sequencer looks at all cight alu reservation stations to choose an alu clause to
execute and all eight textursieich stations to choose a texdurefeich clause to execute. The arbitrator will give priority
to clauses/reservation stations closer to the bottom of the pipeline. It will not execute an alu clause until the
texturefetch fetches initiated by the previous texiurefeich clause have completed. There are two separate sets of
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the sameinstuction thus there is only one sequencerfor the whole chip.

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1Q/G5/01 10:28 AM

AMD1044_0256802

ATI Ex. 2105

IPR2023-00922

Page 130 of 239

ATI Ex. 2105
IPR2023-00922

Page 131 of 239

 Avericrrosororld1S)SVV050...@aBRdISAODUOBONHONWHUAdODsousIdjOY‘JENUSPYUOD[Ly@«0soreze

 cco

nenova

 oss

a__INVLSNODwavs|dSds|dsdsFYOLSOSSake"|YSLLNIMINIYvessouwsFl

SriSandZ-TOSLNOS

WAREXXXXXO-NAOWAN(AdaLNSINNOO"d
wis!

sopmsuBnbeg“ggeysoPPLOTVEINSCVOSLYVLs

ppy!

see||BNIONSHOLS

SHSINIOdOvaaDel

 VWRHLNOOXSLUSA

asieFOSSETTSPIFEETZbGLOdJequiesaesp3lVdLids

ALVLSHOLSSNaye}LSNIHOLAS&

—ayo}ASN

yoady

LSNEPyLSNIAT?we
vy

ayo}
|Ashi

LNT

HAL
 TVIELVNdadoAALLOdLOUdd

AMD1044_0256803

ATI Ex. 2105

IPR2023-00922

Page 131 of 239

ATI Ex. 2105
IPR2023-00922

Page 132 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| i | 24 September, 2001 4 September, 201547 6 of 26L AAR

|.1 Top Level Block Diagram

exture arbitrator

ALU clause C
}<-——feservation station

|
efLU clause treservationstation

ALU clause 2
reservation station

i FIFO
begALU clause 3

reservation station HRD| Pexture clause 4
ee egervation stationi FIFO

LeggA.LU clause 4 Mane!
reservationstation. aS: 3 _—Biened exture clause 5
nent 2 eservation station

La FIFOleg—LU clause 5
res ervation station

veriex/pixel vevtor arbitrator
Possible delayfor available GPR’s[yg

iPexture clause 0
reservation station

<i FIFO
FIFO ’jPexture clause 1

eservation station
Legg|FES

FIFO >[FES exture clause 2eservation station

exture arbitrator
Leg|FIFO

FIFO. >[FRO (Pexture clause 3eservation station

exture clause 6
eservation station

Legg—ALUclause6reservation station

exture clause 7
eservation station

i

Legg—ALU clause 7keservation station
<q—____[FIFO

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 54 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packet. The packet consists of 21 bits of state, 6-7 bits
for the base address of the Shader program and some information on the coverage to determine texkwefetch LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packetfinishesits last clause.

Exhibit 2014 docR400_Gequeaser.des

s7a4e Bytes** © AT! Confidential. Reference Copyright Notice on Cover Page © *** psosns 51°PM1Q/G5/01 10:28 AM

AMD1044_0256804

ATI Ex. 2105

IPR2023-00922

Page 132 of 239

ATI Ex. 2105
IPR2023-00922

Page 133 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201547 GEN-CXXXXX-REVA 7 of 26Loxton bs, 4 be
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 texturefeich machine issues a texure request and corresponding register
address for the texturefetch address (ta). A small command (tema) is passed to the texturefeich system identifying
the current level number (0) as well as the register write address for the texturefetch return data. One texturefetch
request is sent every 4 clocks causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the
requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the texturefetch unit writes the data to the register file using the write address that was
provided by the level 0 texturefetsh machine and sends the clause number (0) to the level 0 texturefeich state

machine to signify that the write is done and thus the data is ready. Then, the level 0 texturefeich machine increments
the counter of FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packetis put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the add clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working onif the packet os of the samme type.

if the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packetfinally reaches the last ALU machine (8). On completion of the
level 8 ALU clause,a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one texturefetch state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (wo for the ALU slate machines and one for the texiurefeich slate
machines). The arbitrers always favor the higher number state machines, preventing a bunch ofhalf finished jobs
from clogging up the registerfiles.

Exhibit 20'4 docR400_Sequencendec 37848 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonsis igBRTGAO5/01 10:22 AM

AMD1044_0256805

ATI Ex. 2105

IPR2023-00922

Page 133 of 239

ATI Ex. 2105
IPR2023-00922

Page 134 of 239

 | ORIGINATE DATE
24 September, 2001

EDIT DATE

4 Seplember, 201517fy Ee

| instruction

a ——ot A

L L(Scalar inputoutput1
i pipeline stage '

instruction
L | (Salar Tnputfoutput

| pipeline stage |

Register File

Register File

R400 Sequencer Specification

l
ad
c
2tee

< &S w
S| Qo= a” 2 °
By —tt Register File Fs |; | 3
a el(L 3

/ eeego~ jexturelS quest is
- o w

ab a scalar inputoutput o BI ‘; e g| pipeline stage | 3)Ll _ i al
fi

LEi

S| 15 ee|eeeeTTSG a Register File i=| ay L

a te Tj i—| YT bee

St texture rel | \\ || |
|

SP SP ||
L

Mux

: 8! &
i ss{ ioi os
| £i 5

Se2
nd

(: \
\ to Primitive Assembly Unit cr RenderBackend /

Exhibit 2014 tocR400Sequenserdes 37948 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jomsue 49.54PM1Q/G5/01 10:28 AM

PAGE

8 of 26

AMD1044_0256806

ATI Ex. 2105

IPR2023-00922

Page 134 of 239

ATI Ex. 2105
IPR2023-00922

Page 135 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201547 GEN-CXXXXX-REVA 9 of 26EA

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

.

Clause # + Rady

|||I

S EQ CST | WrAddrWrAddr

CMD RaAddr
PA/RB

 Phase C Wrvee

RdAddi | WrSeai WrAddr

Po

FETCH SP OF

WrAder
|

In green is represented the TextureFetch control interface, in red the ALU control interface, in blue the |.
Interpolated/Vector control interface and in purple is the output file control interface. 2

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256807

ATI Ex. 2105

IPR2023-00922

Page 135 of 239

ATI Ex. 2105
IPR2023-00922

Page 136 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201347 10 of 26= &

To RB

27°24+8°6+6"4 for Us

| | 4 6a
proertbeeenee

1 AO Al A2 BO
[Js buffer (ping-pong buffer)

(27 bits * 2 (1) + 8 bits * 6 (delta Ls)+4 exp
~ bits*6)* 16 (quads) * 2 (double-buffered}

2 Bt © a ce 4032 bits
a2 x 126

3 C3 c4 cs bo

4 bt D2 EO E

7
INTERPOLATORS

| l
! 1i
| |

||||I
|

To I -

ot PEE || Pde.
qUL j 2uL (SUL]} 4uL |“ | 2UR j SUR | 4UR | WE |} 2b Xa| | | | | | |

I I I I

Exhibit 2014 docR400Sequenserdes 37949 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jopsue aayBRTGAO5/01 10:22 AM

AMD1044_0256808

ATI Ex. 2105

IPR2023-00922

Page 136 of 239

ATI Ex. 2105
IPR2023-00922

Page 137 of 239

eg|le|te|Sb

-09|-pp|-@Z|ZL|ba|oa|zo|oaLa|oda|zo|oa€dS
A|ATALA6s|erlz1),

-9g|-Ov|-rz03LOgOzv|03LOTe)wv}gs
A

A|ALAgg|6€ey

es|98-02|09za|¥OLW09za+9lv|tds
A|ALAISse61|A,

“gr|-Ze|-9Lla|co|ta|ovla9/)ta}ov}ggg
A

A|ALA

BlL|SLLLPL/QELEGIL|PELLCLL)ZEL/FEL/OLL|6L|QL]ZL)9L|SL)pL|GLZL|bt|on9¢10LLWADEXXXXXO-NAOZUGLOgJequejaesoL00Z‘iequiaydespzdvd‘WAIN(AderLNSINDOds1VvdLidsgivdalLyNioMo Avericrrosororld1S)SVV050...@aBRdISAODUOBONHONWHUAdODsousIdjOY‘JENUSPYUOD[Ly@«0soreze

sopmsuBnbeg“ggeysoPPLOTVEINS

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256809

ATI Ex. 2105

IPR2023-00922

Page 137 of 239

ATI Ex. 2105
IPR2023-00922

Page 138 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seolember, 201317 12 of 26 a asks OL.
Above is an exampleofa tile we mighi receive. The |J information is packed in the IJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quadsto interpolate a parameter. They all have fo come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(5127)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub 7}.

The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 144 port memory; we use
2 1clocke to load the ALU instruction,~-asd-12 clocks to load the TextureFetch instruction, 1 clock to load 2 control
flow instructions and 1 clock to write instructions.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BWfrom the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RIXR2.X% #f Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP #/ latency of the float to fixed conversion
ADD R3,R4,CO/R2.X]// Uses the state from the sequencer to add R4 to CO[R2.] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a contro! program. The contro! program has 4(5) instructions:

6.1 The controlling state.
As per Dxthe following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

Wewill extend that in the R400 to:

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1Q/G5/01 10:28 AM

AMD1044_0256810

ATI Ex. 2105

IPR2023-00922

Page 138 of 239

ATI Ex. 2105
IPR2023-00922

Page 139 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 Seplember, 201517 GEN-CoO000¢-REVA, | 413 of 26L Se i

Boolean(25534:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0]
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the contro! table can redirect operations in
the program.

The Method chosen for the R400 is a “contro! prograrn”. The contro! program has fourienbasic instructions:

Execute
Conditional_execute
(Conditional_-Executee_-Predicates}
Conditional execute or Jump
Conditional jurnp
Call
Return
Loop_start
Loop_end
End_of clause

Execute, causes the specified numberofinstructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_siart resets the corresponding loop counter to the start value_on the first pass after it checks for the end
condition and if met jumps overto a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberof instructions,
Call jumps to an address and pushes the IP counter on the stack, On the return instruction, the IP is poped from the
stack,
Congitional execute or Jump executes a block of instructions or jumps to an address is the condition is not met,

End of clause marks the end ofa clause.
Conditional jumps jumps to an address ifthe condition is met_iHtheiecp-endconditionie-not-met.

Execute
47 [46.42 [| 41... 24 | 23.12 [48

Addressing | 00001 RESERVED instruction _count | Exec Address He

 a7 46...A2 | at34 | 32.21 20...12 [it... 6

Addressing G0010 | Booleans Consition [atump Ingtruction_count Exec AddressL_ address
lf the specified boolean (68 bits can address 64256 booleans) meets the specified condition then execute the
specified instructions (up to 64-512 instructions) or if the condition is nol mel jump to the jump address in the control
flow program, This MUST be a forward jump.

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256811

ATI Ex. 2105

IPR2023-00922

Page 139 of 239

ATI Ex. 2105
IPR2023-00922

Page 140 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201547 14 0f 26es EL

a7 46...42 | 44. 34A? 3 | 322.21 | 20... 12 11.0
Addressing

 | | !f f| | |

Hihe specified boolean (8 blis can address 256 booleans) meeis ths specified condition then execute the specified
instructions (up to 512 instructions)

47 | 46...42 | 41... 38 P37 | 86. 2h | 20eT8

| Exec Address

: - “Conditionnal Execute Predicates

‘Addressing 00100 | Predicatevector | Condition | RESERVED | Instructioncount

Check the OR ofall current predicate bits. If OR matches the condition execute the specified numberofinstructions.

Loop Start, Compares the loop count with the end value. lf loop condition nal mel jump jo the address. Forward jump
only, Also cormpules ihe index value,

 _ : __beopEnd _ i.

47 | 46 AP 416 iE 30 |
00111 RESERVED Start address: Loap ID |

Addressing |

Loop end, increments the counter by one and jumps BACKonly to the start of the loop,

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Jumps to the specified address and pushes the IP counter on the stack,

Return

Exhibit 2014 docR400Sequenserdes 37949 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jopsue aayBRTGAO5/01 10:22 AM

Conditionnal Execute - | :

47 | 46... 42 41... 16 15.4 3.0 i
00107 | RESERVED Jurmp address | Loop ID | :

| Addressing | \ hes

Cail rE

a 41...12 | 44... 0
| | jo1 J

o1oce | RESERVED | Address
Addressing | | | :I I I |

AMD1044_0256812

ATI Ex. 2105

IPR2023-00922

Page 140 of 239

ATI Ex. 2105
IPR2023-00922

Page 141 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015417 GEN-CXXXXX-REVA 15 of 26 | :

01004 RESERVED
Addressing

Pops the topmost address from the stack and jumps to that address.

Conditionnal Jum

47 [46..42 | 41... 34 | 33 32... 12 11... 0
o1070 Boolean address Condition | RESERVED Address

Addressing|

If condition met, jumps to the address. FORWARD jurnp only allowed.

_ _ End_ofClause ——CCST
4? 46. 42 4i 0

~ Q1011
Addressing

| RESERVED

Marks the end of a clause,

 Te prevent infinite loops, we will keep 9 bits loop counters instead of & (we are only able to loop 256 times
counter goes higher than 255 then the loop end or the loop start is going to break the loop. The sequencer will keep
@ loop index value of 17 bits. This will be updated everytime we joop and can only be used to index the constant store
and the register file. The way lo compute this value is:

index = Loop counter*Loop ierator + Loop Int

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_feich[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:O][7:0] 4 eight 8 bit pointers to the location where each clauses control programis located

The control program can be up to 286 instructions in seize. (There is an offeet added to the address from the render
state before accessing the-centre| flow program memonio allowfor mullipieprograme resident al the same time)

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

The-addresses-from-the-control_program-are-added-io-anotheroffset_io-allow-for_muliple-programs-resident-at-the
same time.

Underthis-modelall eubroutinecallsmust beinlined inte thecontrolprogran.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer. |

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256813

ATI Ex. 2105

IPR2023-00922

Page 141 of 239

ATI Ex. 2105
IPR2023-00922

Page 142 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201547 16 of 26

basesSon E

PRED_SETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#—SETEO
PRED_SETE1_#-SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain thed sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programs but only 4 will be
exposed) and useit to control the write masking-(svo-sele-foriniereayedcperatian). This predicate is not maintained
across clause boundaries. The # sign is used to specify wich predicate set you want to use O thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells us if
we execute on 1 or 0. For exemple, the instruction :

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, Pi_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.4 Registerfile indexing
Because we can have loops in texturefeich clause, we need to be able to index into the register file in order to
retrieve the data created in a texturefetch clause loop and use it into an ALU clause. The instruction will include the
base addressfor register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
0 41 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop—seunterloop index and this becomes our new address that we give to the
shaderpipe.

7. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZEfor vertices and 256-
VERTEX_REG_SIZEfor pixeis.

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1Q/G5/01 10:28 AM

AMD1044_0256814

ATI Ex. 2105

IPR2023-00922

Page 142 of 239

ATI Ex. 2105
IPR2023-00922

Page 143 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201547 GEN-CXXXXX-REVA 17 of 26eybckcy&

Exhibit 20'4.docR400_Sequencendec 37848 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** nonceBRTGAO5/01 10:22 AM

AMD1044_0256815

ATI Ex. 2105

IPR2023-00922

Page 143 of 239

ATI Ex. 2105
IPR2023-00922

Page 144 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201517 18 of 26
i

Leadon be AR

Aboveis an example of how the algorithm works. Vertices comein from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The biueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

8. FesdureFetch Arbitration

The textuvefeich arbitration logic chooses one of the 8 potentially pending texturefetch clauses to be executed. The
choice is made by looking at the fifos from 7 to 0 and picking thefirst one ready to execute. Once chosen, the clause
state machine will send one 2x2 texture-fetch per clock (or 4 fetches in one clock every 4 clocks) until all the-textuce
fetch instructions of the clause are sent. This means that there cannot be any dependencies between two taxiuce
fetches of the same clause.

The arbitrator will not wait for the texture-fetches to return prior to selecting another clause for execution. The
texturefetch pipe will be able to handle up to X(?) in flight t¢ure-fetches and thus there can be a fair number of
active clauses waiting for their texturefeich return data.

9. ALU Arbitration

ALU arbitration proceeds in almost the same way than texturefetch arbitration. The ALU arbitration logic chooses one
of the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and © stands for Even and Oddsels
of 4 clocks):

EinstO OinstO Einsti Oinsti Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinsto...
Proceeding this way hides the latency of 8 clocks of the ALUs.

10. Handling Stalls
When the outputfile is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packel and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the outputfile is actuaily full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

11. Content of the reservation station FIFOs

3 bits of Render State 6-7 bits for the base address of the instruction slore, some bits for LOD correction and
coverage mask information in order to fetch texiurefetch for only valid pixels. Every other information (such as the
coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enter in
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shaderpipe latency. This size will be cetermined later when we
will know the size of the small fifos between the reservation stations.

12. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1Q/G5/01 10:28 AM

AMD1044_0256816

ATI Ex. 2105

IPR2023-00922

Page 144 of 239

ATI Ex. 2105
IPR2023-00922

Page 145 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
A | 24 September, 2001 4 Seplember, 201517 GEN-CXXXXX-REVA | 19 of 26- i eu i

13. lJ Format

The IJ information sent by the PA is of this format on a per quad basis:

z

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 1924x24 mantissa precision. Then the result of the interpolation along with the difference in | :
IJ in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates [(0), J@) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with |), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (7-!-J).

AOU = Id)—1)

AOL] = JQ) - J(0)

AO2T = 1(2) - I(0) PO PA

AO2S = J(2) - F(0)

AOBL = 13) - 1(0)

A03BF = 1GB)-J(O) P2 P3
PO=C4+I(0)*(A-C) + JO) *(B-C)

Pl=PO+A0U *(4-C)+ A0l *(B-C)

P2 = PO+A021 *(4—C)+ AO2 *(B-C)

P3 = PO+A031 *(A—C)+A03J *(B-C)

PO is computed at ful-1924x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no |
visual degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracte-2424-yield ‘
Subtracts 24x24-19x24 (Parameters): 2
Adds: 8

FORMAT OF PO's IJ: Mantissa 2219 Exp 4 fori + Sian :
Mantissa 2319 Exp 4 for J+ Sian :

FORMATof Deltas (x3):Mantissa 8 Exp 4 for |_+ Sign
Mantissa 8 Exp 4 for J. + Sign

Total numberof bits | 1923*2 + 8*6 + 4*8 + 4°2 = 126-eunded-up-on-the-bus-lo-128) | :

i4. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will makeit so that all vertexes of a given primitive will hit different memories.

1S. Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. The expert is dene by putting the exported position back inte the GPRs. Then
using the textureporinanopportunistic manner,16pesitions areputinte a FIFO (16%128) inorderHlefitotighhThis
fo-drains t2¢-bite per-clock-te-the BAand-once empty ie Hled-up again withsorte sizesany.theprocessis

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256817

ATI Ex. 2105

IPR2023-00922

Page 145 of 239

ATI Ex. 2105
IPR2023-00922

Page 146 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE or

| 24 September, 2001 4 September, 201547 20 of 26

ortingdata._Along with theposition is exported a" pointer to the parameter

cache where the data will be once the vertex shader exports. The storage needed to perform thepositionexport is at
least 64x 128 memories for the position and 64x32 memories for the sprite size. {tis going to be taken in the pixel

output fifo. oe Sos
_-(Formateesadtimber). « a oe eee x =

l6. Real time commands Oo
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolanis). These will be mapped onie ihe
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the realime parameter memory as well as the reqular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the

other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the

view support for 16 vector.A interpolants important (true only ifwe map microsott’shigh. priority stream to the realtime
strearn), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16.

16-17, Registers
 4 Formatted: Bullets and Numbering

DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PLXEL_MIN_SIZE Minimal size of the registerfile's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynarnic only)
Vshader_fetch[411:0][7:0] sight 8-12bit pointers to the location where each clauses control program is located
Vshader_alu[#11:0][7:0] eight 3-12bit pointers to the location where each clauses control program is located
Pshader_fetch[411:0][7:0] sight 8-12bit pointers to the location where each clauses control program is located
Pshader_alu[417:0][7:0] eight 3-12bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointerfor the vertex shader

i omy ge. ry 5 a i e

VWRAP wrap point for the vertex shaderinstruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOCPIX number of registers to allocate for pixel shader programs
REG_ALLOCVERT numberof registers to allocate for vertex shader programs
PARAM_MASK[O...16] parameter mask to specify wick-howparameters maps in the pixel shader
FLAT_GOURJ[O...16] wich parameters are to be gouraud shaded
GEN_TEX(O....16] for wich parameters do we need to generate tex coords.
CYL_WRAP[O...64] for wich verices-parameters (and channels Ocyzw)) do we co the cyl wrapping.
P_EXPORT numberof exports for pixel shader
V_EXPORT number of exports for vertex shader (also the numberof interpolated parameters for

pixe! shaders)
V_EXPORT_LOC Vertex shader exporting to RB or the PCACHE
ARBITRATION policy policy of the arbitration between vetexes and pixels

 a Formatted: Bullets and vambarng
+418. Interfaces oe oe

+7-118.1 External Interfaces

AHH S.11PASC fo RE: i bus

This is a bus that sends the |! information to the [J fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer

i Direction Bits | Description
Name

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1O/O6/01 10:28 AM :

AMD1044_0256818

ATI Ex. 2105

IPR2023-00922

Page 146 of 239

ATI Ex. 2105
IPR2023-00922

Page 147 of 239

ORIGINATE DATE

24 September, 2001 es4 September, 201547

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVAAPAESeskenbs.
PAGE

21 of 26

PASRE 634 | WJ information sent over 2 clocks
iA

17-4-216.1.2 PA/SC to SEQ: lJ Control bus

cs
(Formatted:Bullets and Numbering

This is the control information sent to the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits | Description
Write Mask | PA-SEQ(RE) [4 | Quad Write mask left to right
RB_ID PA—SEQ(RE) 8 | RB id for each quad sent 2 bits per quad
LODCORRECT | PA-SEQ(RE) [24 | LOD correction per quad (6 bits per quad)
FVTX PA-SEQ(RE) 2 _ Provoking vertex for flat shading
PPTRO | PA>SEQ(RE) [41 | P Store pointer for vertex 0
PPRT1 PA—SEQ(RE) 11__| P Store pointer for vertex 1
PPTR2 PA-SEQ(RE) | 11 | P Store pointer for vertex 2
E_OFF_VECTOR PA—SEQ(RE) 1 | End of the vector

|DEALLOCsii PARSEQ(RE)Li | Deallocationtokenforthe PStore|
STATE _PA-SEQ(RE) | 21 _| State/constant pointer (6*3+3)
VALID PA—SEQ(RE) 16 __| Valid bits for all pixels
NULL ; | PA->SEQ(RE) 4 _Null Primitive (forPC deallocation purposes)

-ELOFF_PRIM PA>SEQ(RE) [1 End Ofthe primitive
FBFACE |PA-SEQ(RE) (4 Front face = 1, back face = 0 ;
STIPPLELINETYPE PA—SEQ(RE) 34 | Stippled line and Real time command need to load tex

| cords from alternate buffer
| 000: Normal

| 001.: Stippled line
| O11: Real Time
| 100: Line AA
| 101: Point AA

_ 110:Sprite
RTRn | SEQ-—-PA 1 | Stalls the PA in n clocks
RTS PA—SEQ(RE) 4 _PA ready to send data
(Quadx[PA-SEQ(RE)«| 408 Quad Xaddress 10-2bitsperquad|

QuadY | PASSEQ(RE) | 408 | Quad Y address 10 2 bits per quad

14-4318.1.3PASVGTE to RE: Vertex Bus
 Sec] Formatted: Bullets and Numbering

Name | Direction Bits | Description |
Vertexindexes | VGTPA GRE '

[EOFvector|VGTRE
inputs vert : : :' ee ee : cee

— ccs) Fermatted: Bullets and Numberin
47-+-418.1.4 VGTPASE to SEQ : Vertex Controf Bus “Te ————
Name Direction _ Bits | Description _ : : : =
STATE VGTPASEQ 21 | Render State (6*3+3for constants)
Witte-MeskVert counter VGTPA=>SEQ @426 | Which vertices are valid

Inputs vert VGToSEQ 1 | 0: Normal 128 bits per vert| Idouble 256 bits per vert

This information needs to be sent over 64 clocks,

CP to SEQ : Constant store load14+4516.1.5

[Name | DirectionConstant Address LCP -SEQ

Exhibit 2014 docR40G_Sequencer.dec

‘Bits | Description

| 8 L Address of the blockof 4 constantsa

37948 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** pon.oiPM1Q/G5/01 10:28 AM

* Soe Formatted: Bullets and Numbering

AMD1044_0256819

ATI Ex. 2105

IPR2023-00922

Page 147 of 239

ATI Ex. 2105
IPR2023-00922

Page 148 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 207517 22 of 26— | _ PS LNEN 5, enernenenenenneenrnnnne
| Constant Data _CP—>SEQ [512 | Data sent over 4 clocks

_RemapAddress _ CP>SEQ.10 |_Remaping:address wile adcress
Remap Data pointer | CP-SEQ [3 emaping pointer

| +4-4618.1.6 CP fo SEQ : TextureFetch State store load “
Name | Direction [Bits |Descriptiona|
Constant Address | CP—SEQ [8 _ Address of the block of 4 state constants
Constant Data | CP-»SEQ 1512 | Data sent over 4 clocks
Remap Address | CP—SEQ | 10 | Remaping addresswrite address
Remap Data pointer | CP>SEQ 18 | Remaping pointer

| +A1718. 1.7 CP to SEQ : Control State store load ~
Name [Direction | Bits | Description

{ISSUE: How,Who and whatis the size of this bus’?}

0-3 in the shader (qg= 0-3
isbokitag: Pixel data for buffer bo (0-3) from first or
second clause (0-1) killed or not (k=1 or 0) quad 0-3 in
the shader and data is RG (tO), BA (l=1)orZ(t2)

 ExportMask SP--RB 2 Specifies whether to write low, high or both 32 bit words.
ifexportmaskis00dataisinvalid

ExportLast SP-RB i | Last export instruction of the clause

SEQ to RB :

 Controlbbus

 ite Pixel
| 1: Vertex

id |: first interleaved clause

Export size

 Valid | SEQ--RB

Only one exporting clause (7) can be selected at any given time.

+7-4+-818.1.8 MH to SEQ: Instruction store Load -

Name | Direction | Bits | Description |eInstruction address MHSEQ 12 __ Instruction address
Instruction | MH-»SEQ | 96 Instruction X times
|ControlInstructionaddress _| MH-SEQ 9 || Pointer to the control instructionstore|

Control Instruction LMH-»SEQ | 32. | Control instruction X times

47-+-918.1.9SP to RB : Pixel read from RBs ~

Name | Direction| Bits [Description s—‘“—s~—s—s—‘;<CSCS*™;” it

Pixel DataExportdata SP--RB | 2664 | 2-olxels (or-l4-quaciapairof32bits anhExpartiD SP_RB 2 Sevwrwhgg. Vertex data vy O- or second
clause (c=Q or 1), XY or ZWicom onents heQ or 1), quad

one

2 | Formatted: Bullets and Numbering

a Aq Formatted: Bullets and Numbering

ae 4 Formatted: Bullets and Numbering

>| Formatted: Bullets and Numbering

ooo] Formatted: Bullets and Numbering

2c] Formatted: Bullets and Numbering :
18.1.1]RBtoSEQ:Outputfilecontrol ~

Burt Full | RB->SEQ [1 Setif ful

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1Q/G5/01 10:28 AM

AMD1044_0256820

ATI Ex. 2105

IPR2023-00922

Page 148 of 239

ATI Ex. 2105
IPR2023-00922

Page 149 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 ZA September, 201S1E GEN-CXXXKX-REVA 23 of 26perl eeneatenONS Ea a

16{Sizeavailableinoulputbuffers(inSobilsincrements) |

4444018112SP to PASCRB : Position return bus “ye

Name [oCDirection Bits|| Description
Pasition return | SP--PARB (128 | Position data or sprite size (per clock)
Parameter cache pointer | SP-PARB 11. | Pointer where the data will be in the parameter cachefor| | each vertex

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 4617
positions then 46-1point sprite sizes. The storage used is of 64x 123 bits for position and 64x32 bits for sprite size, if
is taken from the outout buffer, Additionnally if needed the edge flags are packed into the bits of the sprite sizes.The
regisiers-are taken-unlil thenextALUclausewheres theyaregoing to -beavailable again.Thusthesequencerhacto
make sure that we finished exporting data before allowing the program in the next ALU clause.

+444+4+18.1.13Shader Engine to TextureFetch Unit Bus (Fast Bus) “
Four quad’s worth of addressesis transferred to +-exiureF eich Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

2| Formatted: Bullets and Numbering

Four Quad’s worth of TextureFetch Data may be written to the Register file every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data.
Data and Index associated with the Quad 0 must be sent 3 clocksafter the Instruction Start signal is sent.

“Name _ ____[Direction ‘Bits [Description : :
Tex_Read_Register_Index |SEQ->SP 7 index into Register files for reading TewiureFetcn Address
Tex_RegFile ReadData SP->TEX 2048|16 TextureFetch Addresses read from the Register file :
Tex_Write_Register_Index SEQ->TEX 7 Index inte Register file for write of returned textureeich : Co Re oe! Data : Es

[Ss] Formatted: Bullets and Numbering
t4A-18.1.14Sequencer to TextureFetch Unit bus (Slow Bus) we a

Once every four clock, the texturefetch unit sends to the sequencer on wich clause it is now working andif the data in
the registers is ready or not. This way the sequencer can update the texturefeich counters for the reservation station
fifos. The sequenceralso provides the intruction and constants for the-texture fetch to execute and the addressin the
registerfile where to write the texturefeich return data.

Name | Direction | Bits _ Description
Tex_Ready | TEX SEQ 1 _ Data ready
Tex_ClauseNum _TEX—» SEQ 3 | Clause number ; _
Tex_cst L SEQ->TEX (10 | FextureFetch state address 10 bits sent over 4 clocks
Tex_Inst ‘SEQ—TEX 12 | TexturetEetch instruction address 12 bits sent over 4clocks

bFOCLAUSE SEQ--TEX i_Lastinstruction oftheclause
PHASE | SEQ.»TEX 4 | Write phase signal

 = _{Formatted: Bullets and Numbering
48-19. Internal interfaces rhUmU

19.20. Examples of program execulions

49.1420.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
e state pointer as well as tag into position cache is sent along with vertices
® space was allocated in the position cache for transformed position before the vector was sent

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256821

ATI Ex. 2105

IPR2023-00922

Page 149 of 239

ATI Ex. 2105
IPR2023-00922

Page 150 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201347 24 of 26oes tes, NE BS

| e also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertexshader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

e the SEQ then accesses the IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
« at this point the vector is removed from the Vertex FIFO
e the arbitrer is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRsrequired by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over ihe RE_SP interface @which has a bandwidth of 2046 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

e RFO of SU0, SU1, SUZ, and SU3 is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SU0,SU1, SU2, and SU3 Is written the third cycle
e RF3of SU0, SUT, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packet for the vector anc sendsit to the first reservation station (the FIFO in front of
| texturefetch state machine 0, or TSMO FIFO)

e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

| 6. TSMO accepts the control packet and fetches the instructions for texturefetch clause O from the global instruction
store
e TSMO0O wasfirst selected by the TSM arbiter before it could start

| 7. all instructions of texturefetch clause 0 are issued by TSMO
co the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
e TSMO does not wait for requests made to the TextureFeich Unit to complete; it passes the register file write

index for the texturefetch data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data to the registerfiles, it increments a counter that is associated with ASMO

FIFO: a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO,then the control packet is passed to the next reservation
station (the FIFO in front of texturefetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47), the data (and the tag) is sent over a position bus (whichis

shared with all four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This telis to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASMarbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
*° parameter daia is sent to the Parameter Cache over a dedicated bus
* the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters(it is told by the PA when using a token).
e the ASMarbiterwill prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported)is full

Exhibit 2014 docR400Sequenserdes 37949 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jopsue aay
PRAGfO5/01 10:26 AM ——_—_—_—_—LS

AMD1044_0256822

ATI Ex. 2105

IPR2023-00922

Page 150 of 239

ATI Ex. 2105
IPR2023-00922

Page 151 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201547 GEN-CXXXXX-REVA 25 of 26
49.4-220.1.2 Sequencer Controi of a Vector of Pixels *
4.

10.

11.

12.

13.

419.1-320.1.3 Notes “

14.

12. os. AESOPeuenbe

after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

: ‘Formatted: Bullets andNumbering

As with vertex shader programs,pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycenitrics per cycle

SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

SEQ allocates space in the SP register file for ail the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
« SEQ will not allow interpolated cata to be sent to the shaderuntil space in the register file has been allocated

SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 biis/cycle). See interpolated data bus diagramsfor details.

SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
texturefeich state machine 0, or TSMO FIFO) |
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels :
e the control packet contains the state pointer, the register file base pointer, and the LOD correctionbits
® ail other informations (such as quad address for example) travels in a separate FIFO

TSMO accepts the control packet and fetches the instructions for texturefeich clause O from the global instruction | a
store *

* TSMO wasfirst selected by the TSM arbiter beforeit could start

all instructions of texturefeich clause O are issued by TSMO | :
the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine ©, or ASMO
FIFO) :
e TSMO does not wail for texturefetch requests made to the TextureFeich Unit to complete; it passes the ee

register file write index for the texturefetch data to the TU, which will write the data to the RF asit is received :
e once the TU has written all the data for a particular clause to the register files, it increments a counterthat is

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

ASMO accepis the control packet (after being selected by the ASMarbiter) and gets the instructions for ALU
clause 0 from the giobal instruction store

all instructions of ALU clause 0 are issued by ASMO,then the control packet is passed to the next reservation
station (the FIFO in front of texturefeich state machine 1, or TSM1 FIFO) fe
the control packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO whereit will be picked up by the rencer backend
e the ASM arbiter will prevent a packet frorn starting on ASM7if the output FIFO is full

after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

the state machines and arbitrers will operate aheadof time so that they will be able to immediately start the real
threacis or stall.

Exhibl: 2014 dock40G_Sequoncondec 37840 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis psitPM1Q/G5/01 10:28 AM

AMD1044_0256823

ATI Ex. 2105

IPR2023-00922

Page 151 of 239

ATI Ex. 2105
IPR2023-00922

Page 152 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201517 26 of 26 0 --
15. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but the

instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

 4 Formatted:Bulletsand Numbering /
26-21, Open issues ae —_

There is currently an issue with constants. If the constants are not the same for the whole vectorof vertices, we don’t
have the bandwith from the texturefetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handie the case and put those instructions in a texturefetch clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down bya factor of 16.

Need to do sometesting on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Loops and branches.

Exhibit 2014 docR400Gequencerdes 37948 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis ing)PM1O/O6/01 10:28 AM :

AMD1044_0256824

ATI Ex. 2105

IPR2023-00922

Page 152 of 239

ATI Ex. 2105
IPR2023-00922

Page 153 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 4 of 27e © rid 4
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.96

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcey400iarchidocigik\RE\R400Seauencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS.

Signature/Date Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

 “Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains |.
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or|.
transmitted in any form or by any means without the prior written permission of AT] Technologies Inc.”

Behibit 2015. decR400_Sequencerdes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** poong wad

PRION 8/01 08-57 AM1ON05/01 10:22 AM

ATE 2015

LGvy. ATI

IPR2015-00325

AMD1044_0256825

ATI Ex. 2105

IPR2023-00922

Page 153 of 239

ATI Ex. 2105
IPR2023-00922

Page 154 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201519 2 of 27i 4, Yat “e

Table Of Contents

a OVERVIEW. ccsccssene 18.1.3 VGT to RE : Vertex Bus 0...fenGie
Li Top Level Block Diagrarn... 18.1.4 VGT to SEQ: Vertex Control Bus
12 Data Flowgraph..... 222019
La Control Graph... 18.1.5 CP to SEQ : Constant store load
z INTERPOLATED DATA BUS 222019
3 INSTRUCTION STOREuo. 18.1.6 CP to SEG: Fetch State store load
4. SEQUENCER INSTRUCTIONS... 222019
&. CONSTANT STORE... 1817 CP to SEQ : Control State store load

6. LOOPING AND BRANCHES 1244 232020
6.1 The controlling state........... 244 18.1.8 MH to SECh Instruction store Load
62 The Control Flow Program. 1342 232020
63 Data desendant predicate instructions1644 [B19 SP to RB: Pixel read from RBe232020
64 Register file indexing... 1744 18.116 SEQ to RB: Control bus...232029
7 REGISTER FILE ALLOCATION. _ATAS 18.1.1] RBio SEQ: Output fle control232420
8. FETCH ARBITRATION... 184646 18.1.12 SP to RB: Position return bus.232420
», ALU ARBITRATION... 481616 18.113 Shader Engine to Fetch Unit Bus (Fast
10. HANDLING STALLS... AS4ZAG Bus) 24etas
Wi. CONTENT OF THE RESERVATION STATION LB.bd4 Sequencer to Fetch Unit bus (Slow

FIFOS 194746 Bus) 2A2t24
12. THE OUTPUT FILE ooo ccceccececneees 494746 19. INTERNAL INTERFACESvoceZA2224
3. Ll FORMAT... 484716 20. EXAMPLES OF PROGRAM EXECUTIONS
14. THE PARAMETER CACHE. 204847 2dgeet
1S. VERTEX POSITION EXPORTING. OABIZ 20.1.1 Sequencer Control of a Vector of

i6. REAL TIME COMMANDS. 204847 Vertices=2422.2
17. REGISTERS. 44849 20.1.2 Sequencer Control of a Vector of
18. INTERFACES... 211918 Pixels 262322
18.1 External interfaces 14918 20.1.3 Notes 0.0... » 262423

18.14 PASC to RE: I bus... 214948 21. OPEN ISSUES........... BIRARS

18.1.2 PAISC to SEQ °: iJ Control bus 221918

Revision Changes:

Rey 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre) Added timing diagrams (Vic)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date: October 17, 2001

Exhibh 2015 docR400_Sequencendes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © © syns aoePRAIS/B/O1 08:57 AM G/05/07 10:28 AM

AMD1044_0256826

ATI Ex. 2105

IPR2023-00922

Page 154 of 239

ATI Ex. 2105
IPR2023-00922

Page 155 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 3 of 27yr

Exhibit 2016. docR400_Sequencendec

the congitional execute or jump. Added debug
registers,

39737 Byes*** © ATi Confidential. Reference Copyright Notice on Cover Page © ¥ ponsus co:

PM ION 8/01 08:57 AM 10/06/01 18:23 AM

AMD1044_0256827

ATI Ex. 2105

IPR2023-00922

Page 155 of 239

ATI Ex. 2105
IPR2023-00922

Page 156 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201548 4 of 27i PAL

1. Overview

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
net need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause unlil the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the sameinstuction thus there is only one sequencerfor the whole chip.

Exhibit 2015 docR400_Gequeacerdes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sensis igoPALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256828

ATI Ex. 2105

IPR2023-00922

Page 156 of 239

ATI Ex. 2105
IPR2023-00922

Page 157 of 239

 FeyBEHORSTESBoPRATNGCECSPOOL@abed19409U0SoHON1NHUAdO4soUdIRJeY"JENUSPYUOD[Ly@vx5°Mazez0e

vivaWyld

 LoiapomgenHCNmdood\go/od-aly
var

+. LL7: LNWLSNGOasas«|as4sFYOLSO
ask")MSLLNI")SSLLNI

 YVESSONDP| SPESCWASZ~

TONENOS ri| ||ni ..o3s
CVOSLYVLs

poySNIDNA
S50!

SWIMOd-pyRSHOLS

SUSINIGdaVaeOd

 VWRHLNOOXSLUSA

WAREXXXXXO-NAOWAN(AdaLNSINNOO"d3lVdLids
Sepasuansag“agpHoopE107WSsourSLWLSHolgaky

Aa!

—e-*}LSNIHOLSS&

agoish

yoady

isi)LSNEATMA
rly

avo

|ASN
LNT TVIELVNdadoAALLOdLOUdd

AMD1044_0256829

ATI Ex. 2105

IPR2023-00922

Page 157 of 239

ATI Ex. 2105
IPR2023-00922

Page 158 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201548 6 of 27| L As

Top Level Block Diagram

veriex/pixel vevtor arbitrator

Possible delay for available GPR’s
‘extute clause 0

reservation station

ALU clause C
}<-——feservation station

exture clause 1
eservation station

legI elause 1
reservationstation

exture arbitrator

exture arbitrator

ALU clause 2
reservation station

‘exture clause 3
eservation station

LgAL} clauge 3

res ervation station Tt Texture clause 4
ly eservation stationFIFO

LegALUU elause 4 Lerman
res ervationstation FRO meenaPPrextue clause 5eservation station

[fennel FEO|gndLU clause 5

reservation station
: Be FIFO.

le—ALU clause6
poservation station

exture clause 6
eservation station

exture clause 7
eservation station

LgALU clause 7feservation station

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 54 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packet. The packet consists of 21 bits of state, 6-7 bits

for the base address of the Shader program and some information on the coverage to determine fetch LODpius
other various small state bits.

 Exhibit 2015 docR400Gequeacerdes 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis yo.52):PMO S01 C8: 67 AM 10/06/01 10:26 AM

AMD1044_0256830

ATI Ex. 2105

IPR2023-00922

Page 158 of 239

ATI Ex. 2105
IPR2023-00922

Page 159 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015419 GEN-CXXKXX-REVA 7 of 27
ENAR

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (temd) is passed to the fetch system identifying the current level number (0)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s warth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles} and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbitrers is that they are not allowed to pick the same
clause numberas they other one is currently working on if the packet os of the sametype.

if the packet is a vertex packet, upon reaching ALU clause 34,it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 34 to be selected if the positional bufferis full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data poiniers).

A special case is for HDS surlaces wich can export 12 parameters per clause lo the outoul buffer, [tthe oulout buffer
is full or doesn't have enough space the sequencerwill prevent such a vertex group to enter an exporting clause.

All other level process in the same way until the packetfinally reaches the last ALU machine (8). On completion of the
level 8 ALU clause,a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have accessto the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU state machines and one for the fetch state machines). The
arbitrers always favor the higher numberstate machines, preventing a bunch of half finished jobs from clogging up
the register files.

Exhibit 2076. docR400_Sequencende 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.5:

PM ION 8/01 08:57 AM 10/06/01 18:23 AM

AMD1044_0256831

ATI Ex. 2105

IPR2023-00922

Page 159 of 239

ATI Ex. 2105
IPR2023-00922

Page 160 of 239

|

<> zs

L | (Salar Tnputfoutput

| ORIGINATE DATE EDIT DATE
| 24 September, 2001 4 September, 201519OOF

 instruction Register File

R400 Sequencer Specification

 _ yesf
calar inoutfoutput

pipeline stage |

instruction Register File

pipeline stage |

|ScalarUnit Register Fileinstruction

 ot

to Primitive Assembly Unit cr RenderBackend \ ao

Exhibit 2015 docR400_Gequenser.des

PALON 9/01 08:57 AM IO/0G/01 10:22 AM

A$ gs!

TT el(L 3_E Ty)ie
~ "4 fexturelS Quest ic7 o ee]

ab wb scalar inoutoutput a 3\ ; =

| pipeline stage a g '\ ~ : zi
in

i
Lud i
ac 1Do feb_—_ a

§| 16 oeSG a Register File i
=| zg i
Bligh —)- 4 fsSt texture Fe |i

|
Ss

 aa

gaoS&
@
25
ae

SUP

=|/j___---_--. c4

PAGE

8 of 27

39737 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © *** psosns 1952.

AMD1044_0256832

ATI Ex. 2105

IPR2023-00922

Page 160 of 239

ATI Ex. 2105
IPR2023-00922

Page 161 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 9 of 27Oi ay

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady is SEQ CST

| |

WrAddr | WrAddr|

CMD RdAddr
| PAIRBcsT

Phase P| i
~ cmp CST’CSTics7 C Wrvec |

RdAddr | _ | WrSeal Wwradar

FETCH SP OF

WraAder || |
| ||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file contro! interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2015.doch400_Sequeacordec 39727 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256833

ATI Ex. 2105

IPR2023-00922

Page 161 of 239

ATI Ex. 2105
IPR2023-00922

Page 162 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 2015/8 10 of 27~ i OE

To RB

27°24+8°6+6"4 for Us

| | 4 6a
proertbeeenee

1 AO Al A2 BO
[Js buffer (ping-pong buffer)

(27 bits * 2 (1) + 8 bits * 6 (delta Ls)+4 exp
~ bits*6)* 16 (quads) * 2 (double-buffered}

2 Bt © a ce 4032 bits
a2 x 126

3 C3 c4 cs bo

4 bt D2 EO E

1
INTERPOLATORS

| l
! 1i
| |

||||I
|

To I -

ot PEE || i fii
qUL 2UL f} Sub |) 4uL | {UR]| 2UR j SUR | 4UR | WE |} 2b | SLR j AER XaHLL || |

I I I I

Exhibit 20'S. decR40GGequencendes 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nonsis 19.59PMIGH S/O 08-67 AM 10/06/01 10:28 AM :

AMD1044_0256834

ATI Ex. 2105

IPR2023-00922

Page 162 of 239

ATI Ex. 2105
IPR2023-00922

Page 163 of 239

 FeyBEHORSTESBoPRATNGCECSPOOL@abed19409U0SoHON1NHUAdO4soUdIRJeY"JENUSPYUOD[Ly@vx5°Mazez0e
eg|le|te|Sb

-09|-pp|-@Z|ZL|ba|oa|zo|oaLa|oda|zo|oa€dS
A|ATALA6s|erlz1),

-9g|-Ov|-rz03LOgOzv|03LOTe)wv}gs
A

A|ALAgg|6€ey

es|98-02|09za|¥OLW09za+9lv|tds
A|ALAISse61|A,

“gr|-Ze|-9Lla|co|ta|ovla9/)ta}ov}ggg
A

A|ALA

BlL|SLLLPL/QELEGIL|PELLCLL)ZEL/FEL/OLL|6L|QL]ZL)9L|SL)pL|GLZL|bt|on£E30ULWADEXXXXXO-NAOBrGL0eTeguis]esvL00Z‘iequiaydespzdvd‘WAIN(AderLNSINDOds1VvdLidsgivdalLyNioMo

sopussuanbag“parysoySTGWaT

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256835

ATI Ex. 2105

IPR2023-00922

Page 163 of 239

ATI Ex. 2105
IPR2023-00922

Page 164 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201519 12 of 27 a 4 Talat
Above is an exampleofa tile we mighi receive. The [J information is packed in the IJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quadsto interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(5127)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub 7}.

The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BWfrom the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires fram the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.%,R2.% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO/R2.X]// Uses the state from the sequencer to add R4 to CO[R2.] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencerin orcer to support this feature is 2*64°9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a contro! program.-Fhe-senire!progran-has-4(6instructions:

6.1 The controlling state.
As per Dxthe following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

Wewill extend that in the R400 to:

Exhibit 2015 docR400_Gequeacerdes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sensis igoPALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256836

ATI Ex. 2105

IPR2023-00922

Page 164 of 239

ATI Ex. 2105
IPR2023-00922

Page 165 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

CeFt 24 Septernber, 2004 4 Sepiember, 201548 GEN-CoO000¢-REVA, | 13 0f 27Oe “e L

Boolean[{255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant.registert)
LoopStep[7:0j[15:0] times 2 (one for constant register)
Loop_Enad[?:0] [15:0]

{ISSUE: Howis the controlling state loaded and how many contexts do we have’?}

We have a stack of 4 elements for calling subroutines and 4 loop counters to allow for nested loops,

Wealso keep & predicate vectore and 8 AND/OR seisof3 bits. These bits can be 0: all Os, 1: all onesand 11: mixed.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the contro! table can redirect operations in
the program.

The Method chosen for the R400 is a “control prograrn”. The contro! program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause

Execute, causes the specified numberof instructions in instruction store fo be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
siore to be executed.
Loop_siart resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block ofinstructionsif all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an addressif the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CEP ADDRESSES Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Alse ifthe jump is logically bigger than 4096 we break the program and set the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store,

 Execute

47 | 46... 42 | 41... 24 23... 12 47...0
Addressing | 00001 I RESERVED | Instruction count | Exec Address

Exhibit 2015.doch400_Sequeacordec 39727 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256837

ATI Ex. 2105

IPR2023-00922

Page 165 of 239

ATI Ex. 2105
IPR2023-00922

Page 166 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 207 519 14 0f 27 _—— fed A?
Execute up to 4k instructions at the specified address in the instruction memory.

| ConditionnalExecuteorJumpNOP47 46... 42 WhereBA.
ao

| Shared
| 2D2
| 44-041... 0

Addressing | 00010 Booleans
|
II
L

durmip-addrese
lnstructon—court

Exvec-AddressRESERVED

 |

Condition

|

if the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.

Exhibit 20'S. decR40GGequencendes 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nonsis 19.59PMIGH S/O 08-67 AM 10/06/01 10:28 AM :

AMD1044_0256838

ATI Ex. 2105

IPR2023-00922

Page 166 of 239

ATI Ex. 2105
IPR2023-00922

Page 167 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXXK-REVA 15 of 272 AZ

47 | 46..42 | 3 2 3 -
Addressing | 00011 | Boolean address Condition | RESERVED | Instruction_count | Exec Address
lf the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k542 instructions)

47) 47. 38 [37 | 36. 24 OC
Cond itionnal_Execute.Pred icates

|Addressing | 00100 [Predicate vector Condition |RESERVED| Instruction_count | Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

47[46...42 | 41... 16 15... 4RESERVED Jump address

[3...0

Loop ID
Addressing

Loop Start. Comparesthe loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

; | ; Loop_End
47_| 46.42 | 41... 16 15.4 3.0

00141 | RESERVED Start address Loop ID
| |

Addressing

Loop end. Increments the counter by one and jumps BACKonily to the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Cail |

47 | 46. AD 41...12 11....0
| 01000 | RESERVED Address

Addressing | |

Jumpsto the specified address and pushesthe IP counter on the stack.

47 — 46...42 | 41.0
01001 RESERVED

 Addressing

Pops the topmost address from the stack and jumpste that address. if nothing is on the stack, the program will just
continue to the next instruction.

. pe ____ConditionnalJump cp
47 | 46... 42 L 41... 34 L_ 33 L 32... 12 | 14....0°01010 Boolean address Condition RESERVED Address

Addressing

if condition met, jumps to the address. FORWARD jumponly allowed.

End_of_Clause
47 | 46... 42 | _ 41... 0

| 01011 | RESERVED

Addressing |

Exhibit 2016.docR400_Sequencerdec 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © «= ,PMIGH S/O 08-67 AM 10/06/01 10:28 AM

Conditionnal_Execute ee
434 33. | 32.244) 203..12 | 11.0

Loop_Start bo

Return I

AMD1044_0256839

ATI Ex. 2105

IPR2023-00922

Page 167 of 239

ATI Ex. 2105
IPR2023-00922

Page 168 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 200% 4 September, 201519 16 of 27f * 4

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop_and set de debug
registers. The sequencerwill keep a-iwoloop indexes values-of-+7-bilte.

C index fer constant indexing (© bis)
IR index for registerfile Indexing (7 bits)

: This will be updated everytime we loop and can only be used to index the constant store and the register file. The
way to compute this valueis:

Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return O if it is out of the constant range. The IR index is going to break the crograrn if
the index exeeds the number of requested registers.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where cach clauses control program is located
Vertex_shader_alul7:O][7:0] # eight 8 bit pointers to the location where each clauses conirel program is located
Pixel_shader_fetch[7:0][7:0] 4 eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] 4 eight 8 bit pointers to the location where each clauses control program is located

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations ofthe forrn:

PRED_SETE_# - similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the resuit is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_#-SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programsbut only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify wich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells us if
we execute on 1 or 0. For exemple, the instruction :

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{lssue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

Exhibit 2015 docR400Gequeacerdes 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis yo.52):PMO S01 C8: 67 AM 10/06/01 10:26 AM

AMD1044_0256840

ATI Ex. 2105

IPR2023-00922

Page 168 of 239

ATI Ex. 2105
IPR2023-00922

Page 169 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 Sepiember, 201548 GEN-CoO000¢-REVA, | 417 of 27i POE. = i

6.4 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit? Bit 6
0 0 ‘absolute register
Q 1 ‘relative register’
4 0 ‘previous vector’
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our new address that we give to the shaderpipe.

oe {Formatted :Bullets and. Numbering
 *

7. HOS surfaces

HOS surfaces are able te export from any clause but to memory ONLY.If they want to export to the parameter cache
they have to do it in the last clause (7). They can alse export position in clause 3. The buffer they want te export into
mustbespecifiedinthe“exports” fieldof thestateregisters.

7-8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEforpixels.

 SS -| Formatted: Bullets and Numbering

Exhibit 2016. dock40G_Sequoncondec 30737 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256841

ATI Ex. 2105

IPR2023-00922

Page 169 of 239

ATI Ex. 2105
IPR2023-00922

Page 170 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

 24 September, 2001 4 Seplember, 201518 18 of 27Edcsaes.. os

Aboveis an example of how the algorithm works. Vertices comein from top to bottom: pixels comein from bottom to
top. Vertices are in orange and pixels in green. The biueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

8-9. Fetch Aroitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

teoS L 4 Formatted: Bullets and Numbering

 The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to (?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data. . oe ee

[Formateleatnenny
9-10. ALU Arbitration —

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
& potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinsti Einst2 Oinst2 Einst0 Oinst3 Einsti Oinsi4 Einst2 Oinsio...
Proceeding this way hides the latency of 8 clocks of the ALUs.

ibit 2015 docR4O0.Sequensertes 39737 Bytes*** © AT| Confidential. Reference Copyright Notice on Cover Page © *** sensus ing2PMO S01 C8:67AM 10/06/01 10:26 AM :

AMD1044_0256842

ATI Ex. 2105

IPR2023-00922

Page 170 of 239

ATI Ex. 2105
IPR2023-00922

Page 171 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 19 0f 27i Fu os i

40-11. Handling Stalls

When the outputfile is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequenceralso prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULLsignal n clocks before the outputfile is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

4-12, Content of the reservation station FIFOs

3-21bits of Render State 8-47 bits for the base address of the instruction-GPRsstere, somebits for LOD correction

and coverage mask information in orderfo fetch fetch for only valid pixels. uad BSCE. and 1 bit to SI ec if the
vector je of pixels or vertices. JPY }

 . Since pixels: and vertices
are kept iin orderiin the shaderpipe, we only need “two fifos (one for vertices and one for pixels) deep enough to cover
the shader pipe latency. This size will be determined later when wewill know the size of the small fifos between the
reservation stations.

For texture clauses, 3 bits * 4 are going to be kept. These are the AND/ORof the predicate vectors. 0 for all Os, 1 for
allones and MIXED.

42.13, The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this outputfile are staging registers with write BW 512 bits/clock and read BW) 256bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

13-14,|JFormat

The IJ information sent by the PAis ofthis format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 19x24 mantissa precision. Then the result of the interpolation along with the differencein IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how wedoit:

Assuming POis the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(O) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with I, B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

oS a Fermatted: Bullets and Numbering

Soa -| Formatted: Bullets and Numbering

=-oe| Formatted: Bullets and Numbering

_ (Formatted:Bullets and Numbering

Exhibit 2016. dock40G_Sequoncondec 30737 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256843

ATI Ex. 2105

IPR2023-00922

Page 171 of 239

ATI Ex. 2105
IPR2023-00922

Page 172 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 20 of 27
AOU = I()-I) ~~
AOL =JQ)~JO)

AO2I = 1(2) ~I(0) PO PA

A0BS = J(2)- JO)

AO3I = 103)~ 1(0)

AO3BT = 1(3)- J(0) P2 PS

PO=CHI(0)*(A~C) + JO) *(B-C)

Pl=PO+A01*(4-C)+A0L *(B-C)

P2 = PO+A021 *(A—C)+ AO2 *(B-C)

P3 = P0+ A031 *(A—C)+A03 *(B-C)

PO is computed at 19x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Muttiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF PO's lJ: Mantissa 19 Exp 4 for! + Sign
Mantissa 19 Exp 4 for J + Sign

FORMAT of Deltas (x3):Mantissa & Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 19*2 + 8°6 + 4*8 + 4*2 = 126

44-15. The parameter cache *
The pararneter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will makeit so that all vertexes of a given primitive will hit different memories.

spo] Formatted: Bullets and Numbering

{FormattedBulletsandNumbering)
15-16. Vertex position exportin . Oo
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache where the
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be takenin the pixel output fifo.

16-17, Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see withthis is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16.

Exhibit 2015 docR400_Gequeacerdes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sensis igo
PMO S01 C8: 67 AM 10/06/01 10:26 AM : ee:

2 =| Formatted: Bullets and Numberinga ES Se = : :

AMD1044_0256844

ATI Ex. 2105

IPR2023-00922

Page 172 of 239

ATI Ex. 2105
IPR2023-00922

Page 173 of 239

 | ORIGINATE DATE
| 24 September, 2001

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

EDIT DATE

4 Sepiember, 201548eu “F
| PAGE
| 21 of 27

+418, Registers
DYNAMIC_REG
VERTEX_REG_SIZE
PIXEL_MIN_SIZE
VERTEX_MIN_SIZE
Vshader_fetch[71:0][7:0]
Vshader_alu[11:0][7:0]
Pshader_fetch[71:0][7:0]
Pshader_alu[11:0][7:0]
PSHADER
VSHADER
VWRAP
PWRAP
REG_ALLOCPIX
REG_ALLOC_VERT
PARAM_MASKI[O...16]
FLAT_GOUR[C...16]
GEN_TEX[Q....16]
CYL_WRAPI(O...64]
P_EXPORT/6)-—
V_EXPORT[6)

V_EXPORT LOC
ARBITRATION_policy
Exports/Sié

000000 . Net exporting (or exporting only te the PC)
000001: Exporting position (1)
000010: Exporting position (2)

ae

Dynamic allocation (pixel/vertex) of the register file on or off.
What portion of the register file is reserved for vertices (static allocation only)
Minimal size of the registerfile's pixel portion (dynamic only)
Minimal size of the register file's veriex portion (dynamic only)
eight 12 bit pointers to the location where each clauses control program is located
eight 12 bit pointers to the location where each clauses control program is located
sight 12 bit pointers to the location where each clauses control program is located
eight 12 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader
basepointerfor the vertex shader
wrap point for the vertex shaderinstruction store
wrap point for the pixel shader instruction store
nurnber of registers to allocate for pixel shader programs
numberof registers to allocate for vertex shader programs
parameter mask to specify how parameters maps in the pixel shader
wich parameters are to be gouraud shaded
for wich parameters do we need to generate tex coords.
for wich parameters (and channels (xyzw)) do we do the cyl wrapping.

number of exports for pixel shacer
numberof exports for vertex shader for each clause. All numbers relate to the output
buffer exports but for V_ EXPORTI7] than can relate to the PC if Exports[7]is set to
00000. talse-the-nurmberof-interpolaied-parametersfor pixel shadere).
Vertex shader exporting to RB or the PCACHE
policy of the arbitration between vetexes and pixels
Wich clause is exporting to the output buffer and what is it exporting.

co2c| Fermatted: Bullets and Numbering

(14007100 : Exporting RG
(1401000 : Exporting BA

nent}10000 | Exporting Z
ns if MSB set pixel shader exporting linear to memory not to Frame Buffer.

CST SEE V Size of ine constant siore for vertexes

19. DEBUG registers
PROB ADDR instruction address where the first problem occurred
PROB COUNT number of problems encountered during the execution ofthe program

18-20. Interfaces

18.420.1 External Interfaces

18-1420.1.1 PASC to RE: / bus

This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer

 Name |Direction | Bits | Description 7
ls | PAORE | 63 _| WJ information sent over 2 clocks
Mask | PARE 4 _ Write Mask

a ==|Formatted: Bullets and Numbering

seq Fermatted: Bullets and Numbering

Exhibit 2016. dock40G_Sequoncondec 30737 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256845

ATI Ex. 2105

IPR2023-00922

Page 173 of 239

ATI Ex. 2105
IPR2023-00922

Page 174 of 239

| 18-42201.2 PA/SC to SEQ : J Control bus

| ORIGINATE DATE
| 24 September, 2001 4 September, 201518! +

EDIT DATE R400 Sequencer Specification

Yat

PAGE

22 of 27

qa 4 Formatted: Bullets and Numbering

This is the control information sent to the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sentpixels.

eee Formatted: Bullets and Numbering

Name | Direction | Bits | Description
WriteMask PA—SEQ(RE) 4 | Quad Write maskleft to right ;
RB ID ; | PA>SEQ(RE) 18 _RB id for each quad sent 2 bits per quad
LODCORRECT PA-SEQ(RE) 24 | LOD correction per quad (6 bits per quad)
FYTX |PA>SEQ(RE) 2 | Provoking vertex for flat shading
PPTRO PA—SEQ(RE) 11__| P Store pointer for vertex 0
PPRT1 PA-SEQ(RE) | 11 | P Storepointer for vertex 1
PPTR2 PA—SEQ(RE) 11__| F Store pointer for vertex 2
E_OFF_VECTOR PA--SEQ(RE) 11 _End of the vector
DEALLOC PA—SEQ(RE) 4 : Deallocation token for the P Store
STATEss(§—ss| PARSEQ(RE) 21___| State/constant pointer (6*3+3)
VALID _PA-SEQ(RE) 16 | Valid bits for all pixels
NULL PA-SEQ(RE) 1 | Null Primitive (for PC deallocation purposes)
E_OFF_PRIM | PA--SEQ(RE) 4 _ End Of the primitive
FBFACE | PA-SEQ(RE) 1 | Front face = 1, back face = 0
TYPE PA—SEQ(RE) 3 | Stippled line and Real time command need to load tex

| cords from alternate buffer
| 000 : Normal
| 001 : Stippled line
| 011: Real Time
| 100: Line AA
| 101: Point AA

| | | 110: Sprite ;RTRn SEQ-—-PA 4 _ Stalls the PA in n clocks

RTS | PA-~SEQ(RE) i | PA ready to send data
Quadx PA—SEQ(RE) 8 | Quad X address 2 bits per quad
QuadY PA-SEQ(RE) 8 _ Quad Y address 2 bits per quad

484320.1.3 VGT fo RE: Vertex Bus

Name | Direction [Bits | Description
Vertex indexes VGT=RE 128|Pointers of indexes orHOSsurface information
EOF vector | VGT--RE i | End of the vector
Inputs_vert VGT—RE 1 0: Normal 128 bits per vert

i 1: double 256 bits per vert
STATE [VGT-->SEQ [21 | Render State (6°3+3fer constants)

Thie ink . ‘ .

+8-+520.].4 CP to SEQ : Constant store load

mS
_ :

__.-=-+| Formatted: Bullets and Numbering

ee . 2 >| Formatted: Bullets and Numbering

Name Direction Bits | Description
Constant Address | CP--SEQ L | Address of the block of 4 constantsConstant Data CP—SEQ _ Data sent over 4 clocks

RemapAcdressa | CPSEQ _Remaping address write address
Remap Data pointer _CP.SEQ | Remaping pointer

Name

Direction
418-4+-620.1.5 CP fo SEQ : Fetch State store load

Bits | Description

-| Formatted: Bullets and Numbering

Constant Address | CPSEQ 18 | Address of the block of 4 state constants

Exhibit 2015 docR400_Gequenser.des 29727 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** gooc45 1959-0PMO S01 C8: 67 AM 10/06/01 10:26 AM :

AMD1044_0256846

ATI Ex. 2105

IPR2023-00922

Page 174 of 239

ATI Ex. 2105
IPR2023-00922

Page 175 of 239

3 oo Formatted: Bullets and Numbering :

“2 29) Formatted: Bullets and Numbering

jee 4 Formatted: Bullets and Numbering

 Formatted: Bullets and Numbering

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 201519 GEN-CXXKXX-REVA 23 of 27eee sn a Toma Ta! oe vo snenanneenserseremersersemnnsssataa|sntenensnmnannenennanannenensnneaneen

Constant Data [512 | Data sent over 4 clocks
|Remap Address [CP3SEQ[10|Remapingaddress write address

RemapData pointer | CP-SEQ [3 emaping pointer

+8-1720.1.6 CP to SEQ : Control State store load .

Name | Direction oo | Bits | Description | —
{ISSUE: How,Who and whatis the size of this bus?}

48-1-$20.1.7MH to SEQ: Instruction store Load *

Name [Direction| Bits | Description eeInstruction address MH-SEQ 12 _| Instruction address

Instruction MH--SEQ | 96 Instruction X timesControl Instruction address MH >SEQ 9 _ Pointer to the control instruction store
Control Instruction | MH->SEQ 32__| Control instruction X times

18-4920. 1.8 SP fo RB: Pixel read from RBs .

Name |Directionsi Bits| Description
|Export data | SP—>RB | 64|apairof32 bits channelvalues

ExportID SP—RB 9 vvwhaq: Vertex data vv 0-15 from first or second |:
| clause (c=0 or 1), XY or ZW components (h=0 or 1), quad
| 0-3 in the shader (qg= 0-3)
| Icbbkitqq: Pixel data for buffer bb (0-3) from first or
| second clause (0-1) killed or nat (k=1 or 0) quad 0-3 in the

| | | shader and data is RG @t=0), BA (it=1) or Z (tt=2)
ExportMask SP—RB 2 | Specifies whetherto write low, high or both 32 bit wards. If

export mask is 00 data is invalid
ExportLast [SP—RB [4 _ Last export instruction of the clause

18-+1020.1.9 SEQ to RB: Control bus “Tee

Name | Direction. Bits|Description :
Type | SEQ>RB 11 | 0: Pixel :

L | | 1: Vertex
interleaving SEQ—RB 1 | O: first interleaved clause_ 1: second interleaved clause

Export_size SEQ—RB 4 | Othru 16 parameters exported for vertexes (wwvv) OR
| (bbzs) 1-4 color buffers (bb), two component (s=0) or 4

[Valid | SEQ—>RB [1 Data valid

Only one exporting clause (7) can be selected at any given time.

48-+-H20.1.10 RB to SEQ : Output file contro! "|
Name [Direction ‘Bits | Description
BufFul| RB-SEQ 1| Set if full a:
Avail_size _RB--»SEQ Ls | Size available in output buffers (in S2bits increments) :

18-14220.1.1]1 SP te RB: Position return bus “ -
Name|Direction Description
Position return | SP->RB | Position data or sprite size (per clock)
Parameter cache pointer | SP—RB 11 | Pointer where the data will be in the parameter cache for| | | each vertex

withz@=1)orwithoutz(z=0)|:

2 a Formatted: Bullets and Numbering

oe 4 Formatted: Bullets and Numbering

Exhibit 2016. dock40G_Sequoncondec 30737 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256847

ATI Ex. 2105

IPR2023-00922

Page 175 of 239

ATI Ex. 2105
IPR2023-00922

Page 176 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 200% 4 Seplember, 201519 24 of 27

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 1 position
then 1 point sprite sizes. The storage used is of 64x 128 bits for position and 64x32 bits for sprite size, it is taken from
the output buffer. Additionnally,if needed the edge flags are packedinto the bits of the sprite sizes.

| orma i wll ond cmnbering —| 1$44320.1.12Shader Engine to Fetch Unit Bus (Fast Bus) . — “ - = : =———
Four quad’s worth of addressesis transferred to Fetch Unit every clock. These are sourced from a different pixel within
eachof the sub-engines repeating every 4 clocks. The registerfile index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The registerfile index to write must accompany the data. Data and Index

associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name | Direction Bits|Description
Tex_Read Register index | SEQ->SP 7 index into Register files for reading Fetch Address : : :
Tex_RegFile Read_Data | SP->TEX_ 2048|16 Fetch Addresses read from the Registerfile : = ee ee SS
Tex_Write_Register Index | SEQ->TEX 7 Index into Register file for write of returned Fetch Data See eee : : =

18-14420.1.13Sequencerto Fetch Unit bus (Slow Bus) “=e cL

Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working andif the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

| Direction _Bits | Description
Tex_FReady TEX— SEG 1 _ Data ready
Tex_Clause_Num | TEX-+ SEQ 13 | Clause number
Tex_est SEQ—TEX 10 _| Fetch state address 10 bits sent over 4 clocks
Tex_inst | SEQ—TEX (12 | Fetch instruction address 12 bits sent over 4 clocks
EQ CLAUSE SEQ—TEX 4 _ Last instruction of the clause
PHASE | SEQ—TEX 4 _ Write phase signal

2] Formatted: Bullets and Numbering :

419.21. Internal interfaces

21.1.1 RE to SEQ: Vertex Contro!BusBus

Name _ | Direction . (Bits Description
STATE [YOT--=SEQ 21 | RenderState (6°243 for constanis)
Vert counter T¥GT >SEO Ss | Whichvertices are valid
Inputs vert l VGT-SEQ 4 |G: Normal 128 bits per vert\ _ ii double 256 bits per vert

This information needs to be sent over &4 clocks,

20-22, Examples of program executions

20-1122.1.1Sequencer Control of a Vector of Vertices

25 _[Formatted: Bullets and Numbering
eee - ~ ~ <—T

1. PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
* state pointer as well as tag into position cache is sent along with vertices
6 space wasallocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
e The vertex program is assumed to be loaded when we receive the vertex vector.

Exhibit 2015 docR400Gequeacerdes 39737 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis yo.52):PMO S01 C8: 67 AM 10/06/01 10:26 AM

AMD1044_0256848

ATI Ex. 2105

IPR2023-00922

Page 176 of 239

ATI Ex. 2105
IPR2023-00922

Page 177 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015412 GEN-CXXXXX-REVA 25 of 27ds fs 2

e the SEQ then accesses the [S base for this shader using the local state pointer (provided toall
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
e atthis point the vector is removed from the Vertex FIFO
e the arbitrer is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in the SP register file for index data pilus GPRs used by the program
e the number of GPRsrequired by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
e SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vecior to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycie)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SU3is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
e RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, Z)

5. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
e TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO
aos the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO

FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO: a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
® position can be exported in ALU clause 3 (or 47), the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
e the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
e parameter data is sent to the Parameter Cache over a dedicated bus
« the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters (it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache(or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Exhibit 2076. docR400_Sequencende 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.5:PM ION 8/01 08:57 AM 10/06/01 18:23 AM

AMD1044_0256849

ATI Ex. 2105

IPR2023-00922

Page 177 of 239

ATI Ex. 2105
IPR2023-00922

Page 178 of 239

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
 | | 24 September, 2001 4 September, 201518 26 of 27 Ee a ae

: a 7 goes 4 Formatted: Bullets and Numbering
| 20-1222.1.2 Sequencer Control of a Vector of Pixels SS

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this pointit is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
e the state pointer and the LOD correction bits are also placed in the Pixel FIFO
® the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all ihe GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
e SEQ will not allow interpolated cata to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sendsit to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
e the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
® all other informations (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
* TSMO wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause O are issued by TSMO

the contro! packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
® TSMO doesnotwait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data for a particular clause to the register files, it increments a counterthat is

associated with the ASMO FIFO: a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the giobal instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO where it will be picked up by the render backend
® the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs sothat they can be used by another
shader program

, . S eo Formatted: Bullets and Numbering :
20-4-322.1.3 Notes ee

14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. the register file base pointer for a vector needsto travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the |S
pointeris only different for each state and thus can be accessed via the state pointer

Exhibit 2015 docR400_Gequeacerdes 39737 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** sensis igo
PMO S01 C8: 67 AM 10/06/01 10:26 AM : ee:

AMD1044_0256850

ATI Ex. 2105

IPR2023-00922

Page 178 of 239

ATI Ex. 2105
IPR2023-00922

Page 179 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Sepiember, 201518 GEN-CXXKXX-REVA 27 of 27A ns TS

16. Waterfalling, parameter buffer allocation, loops and branches and pararneter cache de-allocation still needs to
be specked out.

cl Formatted: Bullets and Numbering
24.23, Open issues a rr—~—~—— ss
There is currently an issue with constants. If the constants are not the same for the whole vectorof vertices, we don't
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problern:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storagein the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down bya factor of 16.

Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size ofthe fifos before the reservation
stations.

Loops and branches.

Exhibit 2016. dock40G_Sequoncondec 30737 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALON 9/01 08:57 AM IO/0G/01 10:22 AM

AMD1044_0256851

ATI Ex. 2105

IPR2023-00922

Page 179 of 239

ATI Ex. 2105
IPR2023-00922

Page 180 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA 4 of 28. - rd 4
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 0.97.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcey400iarchidocigik\RE\R400Seauencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS.

Signature/Date Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or |:
transmitted in any form or by any means without the prior written permission of AT] Technologies Inc.”

Behibit 2018. decR400_Sequencerdos 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** pong iad

PROM 2/01 0140 PION 8ICT 08:57 AM

ATI 2016

LGv. ATI

IPR2015-00325

AMD1044_0256852

ATI Ex. 2105

IPR2023-00922

Page 180 of 239

ATI Ex. 2105
IPR2023-00922

Page 181 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Sepiember, 201 526 2 of 28EY

Table Of Contents

: COVERVENa ecees cass ecscasssenses as sansssssosconspansnansnass 4
Top Level Block Diagrarn..
Data Flow graph...
Control Graph...
INTERPOLATED
INSTRUCTION STORE ues
SEQUENCER INSTRUCTIONS ..
CONSTANT STORE...

&. LOOPING AND BRANCHES
The controlling state...

tatho[heBt[[B8[BSeeemfempe

 Register file indexing...
7. HOS SURFACES....
g. REGISTER FILE ALLOCATION.
9 FETCH ARBITRATION
10. ALU ARBITRATION
tl. HANDLING STALLS... 18
12, GONTENT OF THE RESERVATION STATION
FIFOS19
13. THE QUTPUT FILE.

4. id FORMAT.
15. THE PARAM
16. VERTEX POSITION EXPORTIN

a7,REALTIMECOMMANDS.
REGISTERS

Control.

DEBUG REGISTERS
INTERFACESou:

External interfaces

PAISG to SEQ ¢ J) Control bus...
VGT to RE: Vertex Bus W2oee
CP te SEQ : Constant store load 2322

__&PtoSEQ : Fetch State store load
gage

20.1.6 CP to SEQ : Control State store load
2oe2

20.4.7 MH to SEQ: Instruction store Load
2322

20.1.8 SP to RB: Pixel read from RBs... 23
20,1,9 SEQ to RB: Control bus2423
20,110 RB to SEQ : Output file control... 2423
20.1.1) SP to RB. Position return bus... . 2523
20,112 Shader Engine to Fetch Unit Bus (Fast

Bus) 2524
20,113 Sequencerto Fetch Unit bus (Siow
Bus 2o24

21. INTERNAL INTERFACES oecscscess2524
2111 RE to SEQ : Vertex Control Bus...2524

22. EXAMPLES OF PROGRAM EXECUTIONS
2624.

Exhibit 201 @docR40GGequencerdos 42015 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © © nencis 19.59

221) Sequencer Control of a Vector of
Vertices 2624
22.1.2 Sequencer Control of a Vector of
Pixels 2725
22.13 Notes.

OPEN ISSUES.
OVERVIEW...
Top-Level Black-Diagram.

CentreGraph.

 ANSTRUCTON-STOREsicscevvecs
- SEQUENCER INSTRUCTIONS.

The controling slate.nas
he-Gonivel-Flaw-Pregranm.

plA ARBEERATION-
9,AlaARBITRATION.
10.-----HAN DLING-STALLS..

PLAGE?
12--—--THE-OUTPUT-FILE
13.-———1d- FORMATisvecceesevveeee

REAL.TIME- COMMANDS
REGISTERS..
INTERFACES

 .. PAISC-4o. SEQ.Controlbus

 18.1 AESTLQ- SEQ. Vertex ControlBus. srr 4
L3-L.5——---CP to SEQ: Constant store loadin
18-1.6-—-—---- GP-46- SEG)-Feich-State-ctore-load..20

18.4.9SP to.RB:Pivel readfromRB

18.440. SEGLMO-RBContel Bue.
Lbib-RBio SEGGuipulile-contre ah% oe ei ¢

18.413-——— Shader-Engine-to-Fetch-Unit-Bus-(Fast
Bus}—————24

Bus} 24
19;----INTERNALINTERPAGESwcrc
20. EXAMPLESOFPROGRAMEXECUTIONS..22

DWldJono HEQUENGEr-ContralolaVector-of
Verices—22

PM ICH OAM 0140 OM 10/18/07 08:57 AM

AMD1044_0256853

ATI Ex. 2105

IPR2023-00922

Page 181 of 239

ATI Ex. 2105
IPR2023-00922

Page 182 of 239

ORIGINATE DATE EDIT DATE | DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 3 of 28 MAO A

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rey0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev_ 1.0 (Laurent Lefebvre)
Date : October 19, 2001

24 September, 2001 4 September, 201526

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method fo be more
flexible. Also updated the external interfaces.
incorporated changes made in the 10/18/01 contro!
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB, Added slate registers.

Exhibit 2018.docR400_Sequencerdes 42015 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © ~~ casas 264PMIG/B/G1 01:40 OR 0/18/01 08:57 AM

AMD1044_0256854

ATI Ex. 2105

IPR2023-00922

Page 182 of 239

ATI Ex. 2105
IPR2023-00922

Page 183 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 201526 4 of 28! Yatatieie!

1. Overview

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
net need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause unlil the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the sameinstuction thus there is only one sequencerfor the whole chip.

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igoPALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256855

ATI Ex. 2105

IPR2023-00922

Page 183 of 239

ATI Ex. 2105
IPR2023-00922

Page 184 of 239

 WeyEEROOreHORNSOPEOTOOTC801SLO.®36ed19409UOSdTI0Nju6iuAdoyBOUDIOJIY[EWUSPUYUODLLY©189si0zy—owpssuenbag“egpytoergry

vivaWyld

gO/Od\gO/od«NS
ave

—aLNWLSNOOasds.kkdsdsaqdOLSD

 YVEsSsONdPr SPESCWASZ~

TONENOS

CVOSLYVLs

poySNIDNA
S50!

SIUMOdRUHOLSs

SUSLNIOdOWEHOe!

 TONILNOOXGLMSA

8ELOGWAREXXXXXO-NAOdvdWON(AdaLNSINNOOG3lVdLids

sourSLWLSHolgaky
Aa!

—e-*}LSNIHOLSS&

eeavo|ish

yoda?

iss>)LSNINTWRO
yyy

olLSHI

LNT

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256856

ATI Ex. 2105

IPR2023-00922

Page 184 of 239

ATI Ex. 2105
IPR2023-00922

Page 185 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201526 6 of 28OOF

|.1 Top Level Block Diagram

veriex/pixel vevtor arbitrator

Possible delay for available GPR’s
ALU clause C

}<-——feservation station FIFO ee Bexture clause 1
eservationstation1

JALU clause 1
reservationstation

exture arbitrator

exture arbitrator ALU clause 2

 teservation station RS eef € +}i ey PMrexture clause 3ey eservation station
FIFO lgJALU clause 3 Lene

reservation station RDimLFPS) Pexture clause 4
——————} eservationstation
i FIFO|aggALU clause 4
feservationstationi FIFO.i >

ALU clause 5reservation station

exture clause 5
eservation station

me Prextureclause 6

uae FIO eservation station
foservatonsation ARSi I Texture clause 7
ues FIRS reservation station

reservation station.

There are two sets of the above figure, one for vertices and one for pixels.

 pie Oiayector-ol64pixveis}-andsends

: Depending on the arbitration state, the sequencer
will either choose a vertex or a pixel packet. The control packet consists of 21 bits of state, 6-7 bits for the base
address of the Shader program and someinformation on the coverage to determine fetch LOD plus other various
smail state bits.

 Exhibit 3
PM1O/ 8/01 04:40 PMAO/18/01 08:57 AMidocRADOGequencerdes 42015 Bytes*** © AT| Confidential. Reference Copyright Notice on Cover Page © ** senaus ing2

AMD1044_0256857

ATI Ex. 2105

IPR2023-00922

Page 185 of 239

ATI Ex. 2105
IPR2023-00922

Page 186 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201528 GEN-CXXXXX-REVA 7 of 28fh: Las
ondSeatnenrbonam

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough spacein
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (temd) is passed to the fetch system identifying the current level number (QO)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s warth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machineto signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level O ALU machine first decrements the input FIFO counter and then issues a
complete set of level O shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the twoarbitrers is that they are not allowed to pick the same
clause number as they other one is currently working on if the packet os-js not of the same type_jrender
state).

if the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 3 to be selected if the positiona! buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?’

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. If the output
buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 parameters to memory from the last clause only (7).

All ather level process in the same way until the packet finally reaches the last ALU machine (87). On completion of
the level 8-7ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that
the last instruction writes to the output register — a condition that is almost always true. If the packet was a vertex
packet, instead of sending the valid bit to the RB, it is sent to the PA so it can knowthat the data present in the
parameterstore is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU state machines and one for the fetch state machines). The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the register files.

Exhibit 2072 docR40G_Sequencendec 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.5:

PATON 2/01 01:40 OM 10/18/01 08:57 AM

AMD1044_0256858

ATI Ex. 2105

IPR2023-00922

Page 186 of 239

ATI Ex. 2105
IPR2023-00922

Page 187 of 239

|

<> zs

L | (Salar Tnputfoutput

| ORIGINATE DATE EDIT DATE
| 24 September, 2001 4 September, 201526COA Ao

 instruction Register File

R400 Sequencer Specification

 _ yesf
calar inoutfoutput

pipeline stage |

instruction Register File

pipeline stage |

|ScalarUnit Register Fileinstruction

 ot

to Primitive Assembly Unit cr RenderBackend \ ao

Exhibit 201 6 docR400_Sequeaser.des

PALOB01 04:40 PM IO/18/01 O57 AM

A$ gs!

TT el(L 3_E Ty)ie
~ "4 fexturelS Quest ic7 o ee]

ab wb scalar inoutoutput a 3\ ; =

| pipeline stage a g '\ ~ : zi
in

i
Lud i
ac 1Do feb_—_ a

§| 16 oeSG a Register File i
=| zg i
Bligh —)- 4 fsSt texture Fe |i

|
Ss

 aa

gaoS&
@
25
ae

SUP

=|/j___---_--. c4

PAGE

8 of 28

42015 Bes*** © AT| Confidential. Reference Copyright Notice on Cover Page © ** ponsns i750

AMD1044_0256859

ATI Ex. 2105

IPR2023-00922

Page 187 of 239

ATI Ex. 2105
IPR2023-00922

Page 188 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA 9 of 28acy

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady is SEQ CST

| |

WrAddr | WrAddr|

CMD RdAddr
| PAIRBcsT

Phase P| i
~ cmp CST’CSTics7 C Wrvec |

RdAddr | _ | WrSeal Wwradar

FETCH SP OF

WraAdar

| || |

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file contro! interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2018.doch400_Sequeacerdec 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256860

ATI Ex. 2105

IPR2023-00922

Page 188 of 239

ATI Ex. 2105
IPR2023-00922

Page 189 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 Seplember, 201 526 10 of 28~ i OE o

To RB

27°24+8°6+6"4 for Us

| | 4 6a
proertbeeenee

1 AO Al A2 BO
[Js buffer (ping-pong buffer)

(27 bits * 2 (1) + 8 bits * 6 (delta Ls)+4 exp
~ bits*6)* 16 (quads) * 2 (double-buffered}

2 Bt © a ce 4032 bits
a2 x 126

3 C3 c4 cs bo

4 bt D2 EO E

1
INTERPOLATORS

| l
! 1i
| |

||||I
|

To I -

ot PEE || i fii
qUL 2UL f} Sub |) 4uL | {UR]| 2UR j SUR | 4UR | WE |} 2b | SLR j AER XaHLL || |

I I I I

Exhibit 20'6.decR40GGequencendes 42015 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.59PMICH OT OLA OM 10M G/01 O25? AM :

AMD1044_0256861

ATI Ex. 2105

IPR2023-00922

Page 189 of 239

ATI Ex. 2105
IPR2023-00922

Page 190 of 239

 REEOOLOEOTNOPHSOSHOTNECECTSUPOBO,@36eq1905UOSdHONJUBLAdODsoUaJEJay‘PEHUSPILUOD[Ly@5Gsi0ze
eg|le|te|Sb

-09|-pp|-@Z|ZL|ba|oa|zo|oaLa|oda|zo|oa€dS
A|ATALA6s|erlz1),

-9g|-Ov|-rz03LOgOzv|03LOTe)wv}gs
A

A|ALAgg|6€ey

es|98-02|09za|¥OLW09za+9lv|tds
A|ALAISse61|A,

“gr|-Ze|-9Lla|co|ta|ovla9/)ta}ov}ggg
A

A|ALA

BlL|SLLLPL/QELEGIL|PELLCLL)ZEL/FEL/OLL|6L|QL]ZL)9L|SL)pL|GLZL|bt|on8cFOLLWADEXXXXXO-NAOBGLOETeguis]esvL00Z‘iequiaydespzdvd‘WAIN(AderLNSINDOds1VvdLidsgivdalLyNioMo

sopussuenbas“eepyier102TIRE

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256862

ATI Ex. 2105

IPR2023-00922

Page 190 of 239

ATI Ex. 2105
IPR2023-00922

Page 191 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201528 12 of 28 a 4 ey
Above is an exampleofa tile we mighi receive. The |J information is packed in the IJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quadsto interpolate a parameter. They all have fo come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(5127)x22.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub 7}.

The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BWfrom the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA RIXR2.X% #f Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP #/ latency of the float to fixed conversion
ADD R3,R4,CO/R2.X]// Uses the state from the sequencer to add R4 to CO[R2.] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWWe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
As per Dxthe following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

Wewill extend that in the R400 to:

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igoPALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256863

ATI Ex. 2105

IPR2023-00922

Page 191 of 239

ATI Ex. 2105
IPR2023-00922

Page 192 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA | 13 of 28Oe ch
Boolean[255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant, registert)
Loop_Step[7:0] [15:0] times 2 (one for constant,register)
Loop_End[7:0] [15:0]

{ISSUE: Howis the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elementsfor calling subroutines and 4 loop counters to allow for nested loops.

Wealso keep 8 predicate vectors and 8 AND/ORsets of 3 bits. These bits can be 0: all Os, 1: all ones and 11: mixed.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the contro! table can redirect operations in
the program.

The Method chosenfor the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause

Execute, causes the specified numberof instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified numberof instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block ofinstructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Alsoif the jurnp is logically bigger than 4096-pshader_cntl_ size (or vshader_cnil_size) we break the program (clause)
and set the debug registers. [f an execute or conditional execute is lower than entl size or bigger than size we also
break ihe program (clause) and sel the debug registers.

We haveto fit instructions into 48 bits in order to be able to put two control flowinstruction per line in the instruction
store.

Execute

|AF 46... 42 [a 41... 24 [23.12 jf 11... 8 7
Addressing | 90001 i RESERVED | Instruction count | Exec Address

Exhibit 2018.doch400_Sequeacerdec 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256864

ATI Ex. 2105

IPR2023-00922

Page 192 of 239

ATI Ex. 2105
IPR2023-00922

Page 193 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201528 14 0f 28i A4o.

Execute up to 4k instructions at the specified address in the instruction memory.

NOP

| AT | 46.420 | .
Addressing | 00070 RSE

if the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.

Exhibit 20'6.decR40GGequencendes 42015 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.59PMICH OT OLA OM 10M G/01 O25? AM :

AMD1044_0256865

ATI Ex. 2105

IPR2023-00922

Page 193 of 239

ATI Ex. 2105
IPR2023-00922

Page 194 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201528 GEN-CXXXXKK-REVA 15 of 28ot

Conditionnal_Execute
41... 34 | 33 32...24 | 23... 12 i 11....0

Boolean address Condition RESERVED| Instruction_count | Exec Address

a 46 48

Addressing | 00011

lf the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Cond itionnal_Execute_Pred icates

Addressing | 00160 | Predicate vector Condition |RESERVED | Instruction_count | Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

Loop_Start [ae

47[46...42 | 41... 16 15... 4RESERVED Jump address

[3...0

Loop ID
Addressing
 Loop Start. Comparesthe loop count with the end value. If loop condition not met jump to the address. Forward jump

only. Also computes the index value.

; | ; Loop_End
47 [46...42 | 41... 16 15...4 3...0

00111 | RESERVED Start address Loop ID|

Addressing

Loop end. Increments the counter by one and jumps BACKonily to the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Cail poe

47 | 46. 42 41...12 | 11....0
| 01000 RESERVED Address

Addressing | '
 Jumpsto the specified address and pushes the IP counter on the stack.

Return

47
01001 RESERVED

Addressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47|46.42at 33 |32...13 “i200at8

01010 ~—'|_ Boolean address
Addressing | ! ~ Condition | RESERVE EWonly Address | if condition met, jumps to the address. FORWARD jumponly allowed if bit 12 set. Bit 12 is only an optimization for the
compiler and should NOT be exposed to the APL.

End_of_Clause |.

47 | 46a 416 |

Exhibit 2072 docR40G_Sequencendec 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nonce 19.5:

PATON 2/01 01:40 OM 10/18/01 08:57 AM

aei|
|i

re 47. 38 <n

1
ie

46.42 | 41.0 po
| |I

AMD1044_0256866

ATI Ex. 2105

IPR2023-00922

Page 194 of 239

ATI Ex. 2105
IPR2023-00922

Page 195 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201528 16 of 28

~ 01011 RESERVED
Addressing

Marks the end of a clause.

To preventinfinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop and set de debug
registers. The sequencerwill keep two loop indexes values:

IC index for constant indexing (@bits)
IR index for register file indexing (7 bits)

This will be updated everytime we loop and can only be used to index the constant store and the register file. The
way to compute this valueis:

Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return 0 if it is out of the constant range. The IR index is going to break the program if
the index exeeds the numberof requested registers.

The basic modelis as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:O][7:0] # eight 8 bit pointers to the location where each clauses control program is located

The control program for a given clause is executed to completion before moving fo another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicateinstructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PREDSETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only wewill also suppart the two following instructions:

PRED_SETE0O_#— SETEO
PRED_SETE1_#~ SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not mainiained across clause boundaries. The #
sign is used to specify wich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For exemple, the insiructioninstruction:

PO_ADD_# RO,R1,R2

Is only going to write the resull of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?}

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igoPALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256867

ATI Ex. 2105

IPR2023-00922

Page 195 of 239

ATI Ex. 2105
IPR2023-00922

Page 196 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA | 417 of 28 mA RRR 2 | en a

6.4 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit? Bit 6
0 0 ‘absolute register
Q 1 ‘relative register’
4 0 ‘previous vector’
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our new address that we give to the shaderpipe.

7. Pixel Kill Mask
A vector of 64 bite is kept per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allaw
the shader pipe to Kill pixels using the following instructions:

«| Formatted: Bullets and Numbering :

MASKSETE
MASK SETGT
MASK SETGTE

 redicate vector and is kept across clause boundaries (thus allowing predicated instructions to be used in texture

clauses). In this mode, the sequenceris going to send all 1s io the RBs for coverage mask information,

78. HOS surfaces

HOS surfaces are able to export from asy-the 6 last clauses but to memory ONLY.If they want to export to the
parameter cache they have to doit in the last clause (7). They can also export position in clause 3. The buffer they
wart to export into must be specified in the “exports” fleld of the state registers.

8-9, Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZEforpixels.

 However,if the driver sets the kill vector_on register to 0 (don't use) then the 64 bitkill mask becomes the S37 Jess{FomattedsSs—~—SY

‘Formatted: Bullets and Numbering

 =| Fermatted: Bullets and Numbering

Exhibi: 2018 dock40G_Sequoncondec 42015 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256868

ATI Ex. 2105

IPR2023-00922

Page 196 of 239

ATI Ex. 2105
IPR2023-00922

Page 197 of 239

ORIGINATE DATE EDIT DATE R400 SequencerSpecification

 24 September, 2001 4 Seplember, 201526a ob

Aboveis an example of how the algorithm works. Vertices comein from top to bottom: pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

9-10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 te 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

= Formatted: Bullets and Numbering

 The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

46-11. ALU Arbitration -
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
& potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

2 4 Formatted: Bullets and Numbering

EinstO OinstO Einst1 Oinsti Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

 ibt 201 GdocRA00Gequensedes 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © © sonsi. aPRION BOT O14 PM10/18/01 G25? AM :

AMD1044_0256869

ATI Ex. 2105

IPR2023-00922

Page 197 of 239

ATI Ex. 2105
IPR2023-00922

Page 198 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA | 19 of 28

iia ' | eG a i Ae a Formatted: Bullets and Numbering
+412. Handling Stalls rr
When the outputfile is full, lhe sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the outputfile. if the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the outputfile is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

 |. — (Formatted:BulletsandNumbering_

12.13. Content of the reservation station FIFOs —
21 bits of Render State 7 bits for the base address of the GPRs, somebits for LOD correction and coverage mask :
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when wewill know
the size of the small fifos between the reservation stations.

Fortexture-clausea,¢-bits=are-going-to-be-keptThese-are theAND/OR-ofthepredicate-vectors.0forall-Os,-1 for JO ES ee ee
al-enes-anc-VMDER. oe — EOE eS

7 : PS ot

43-14. The Output File CS TTT
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BWV 512 bits/clock and read BW) 256bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause} the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

44-15. |.J Format

The lJ information sent by the PAis of this format on a per quad basis:

| Formatted: Bullets and Numbering

Wehave a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
alwaysinterpolated at full 19x24 mantissa precision. Then the result of the interpolation along with the difference in [J
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how wedoit:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates (0), J(@) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
{interpolated with J} and C is the parameter value at V2 (interpolated with (1-I-J).

AOU = I0}-—IO)

AOL = JQ) -J(0)

AO2E = 1(2) -I(0) PO Pi

AO2QT = J(2)- J(0)

AOBL = £3) — 10)

AOBT =.FG)— S(O) P2 P3

P0=CHI(0)*(A~C) + JO) *(B~C)

Pl = P0+A0U *(4—C)+ AOL *(B-C)

P2 = PO+A022 *(A—C)+ AO2T *(B-C)

P3 = P0+A03I *(A—C)+A03J *(B-C)

Exhibit 2018.doch400_Sequeacerdec 42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256870

ATI Ex. 2105

IPR2023-00922

Page 198 of 239

ATI Ex. 2105
IPR2023-00922

Page 199 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 201526 20 of 28 CO =

| PO is computed at 19x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visualdegradation of the image was seen using this scheme.
Muttiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: &

FORMAT OF PO's [J : Mantissa 19 Exp 4 for | + Sign
Mantissa 19 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 19*2 + 8*6 + 4*8 + 4*2 = 126 eeOo

15-16, The parameter cache ee —
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W). 5 I cS
The reuse engine will makeit so that all vertexes of a given primitive will hit different memories. LS gs ee :

a wpe * + * = = = =

16-17, Vertex position exporting SS ,rr——“——C“C “Er
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache wherethe
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memoriesfor the sprite size. It is going to be taken in the pixel outputfifo.

 Formatted: Bullets and Numbering _
18. Exporting Arbitration .
Here are the rules for co-issuing exporting ALU clauses.

 =| Formatted: Bullets and Numberingrlexports and memory exports cannot be co-issued, (ee
3) Position exports and Z/Color exports cannot be co-issued,
4) _Mermory exports and Z/Color exports cannot be co-issued,
5) Memory exports and memory exparis cannot be co-issued,
6) Zicolor exports and Z/color exports cannel be co-iseued.
7) Parameter exports and Z/Color exports CAN be co-issued,
8) Parameter exports and parameter exports CAN be co-issued,
1)Y)ParameterexportsandmemoryexportsCANbeco-issued.

17-19, Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16.

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igo

PRION BOT O14 PM10/18/01 G25? AM : ee:

AMD1044_0256871

ATI Ex. 2105

IPR2023-00922

Page 199 of 239

ATI Ex. 2105
IPR2023-00922

Page 200 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

4 | 24 September, 2001 4 September, 201528 GEN-CXXXXX-REVA | 210f28 | - — ~~
i ! en a | woes + Formatted: Bullets and Numbering
48.20. Registers rts

20.1Control
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on oroff.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the registerfile's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minirnal size of the register file's vertex portion (dynamic only)

& SIZE P Sige of the constant store for pixels
CST SIZE Size of the constant store for vertexes
INST STOR ALLOC interlcaved, separate, interleaved+shared separateshared
VAVRAP wrap polnt forthe veriex shader instruction store
PWRAP ywrap point for the pixel shader instruction store
NO_INTERLEAVE debug state register, Only allows one program ala time inte the GPRs eeeee

WES |Formatted: Bullets and Numbering
4+8420.2 Context “Se

Vshader_fetch[447:0][7:0] sight 12-8bit pointers to the location where each clauses control program is located
Vshader_alu[44.7:0][7:0] eight 42-8bit pointers to the location where each clauses control program is located
Pshader_fetch[447:0][7:0] eight 12-2 bit pointers to the location where each clauses control program is located
Pshader_aluji47-0][7:0] eight 42-8bit pointers to the location where each clauses control program is located
PSHADER basepointerfor the pixel shader
VSHADER base pointer for the vertex shader
Vshader_cnitl size size of the vertex shader @# of instructions in control pregram/2
Pshaderenll size sizeofthepixelshader(#ofinstructionsincontrolprogram/2)
Pshader size sige of the pixel shader (cnil+instructions
Vehacer size size of the veriex shader (onti+instructions

 VVRAP wrap-point forthevertex shaderinstructionsiere
PYVVRAP wrap-point-forthe-pixel- shader instruction-store
REG_ALLOC_PIX numberof registers to allocate for pixel shader programs
REG_ALLOC_VERT numberof registers to allocate for vertex shader programs
PARAMMASKIO...16}——parameter-maskio-specify-how-parameters-maps-in-thepixel shader
FLAT_GOUR[O...165] wich parameters are to be gouraud shaded Se os
GEN_TEX[0...46)__ for-wich-pararmeters-do-we-needto-genorate-tex-coords.Do we generate ee eee ee
texture coordinates for i>parameterormot LS{FormattedCYL_WRAP[O...6463] for wich parameters (and channels (xyzw)) do we do the cyl wrapping. SoS cae ee
BP export mode Qoox : Normal rode : :

pooo, , Mulipass mode
lf nermal, bbbz where bbb is how many colors (0-4) and z is export 2 or not
lf multipass 1-12 exports for color,

vshaderexportmask ichofthelast6ALUclauses isexporting
yshader export mode

 0;position (1 vector), 1. position (2 vectors), 3: multipass

vshader exoon counts # of interpolated parameters exported in clause 7 OR
of exporied vectors to memory per clause in multipass mode (per clause)

use the mask kill vector to kill pixels and optimize texture pine fetches OR use it as
the fifth predicate vector wich |s the only predicate vector kept across clause

kill vector on

boundaries,
PEXPORTS) number of exports for pixel shader
V_EXPORTI8) _______—__numberofexports forvertexshaderfor each-clause. Allnumbers relate totheoutput

buffer experiebulforV_EMPORT/71 thancanrelate tothePC HfExporiel7seetio
90000.

ARBITRATION.policy_policy-of-the-arbitrationbetween-vetexes-and-pixels
Exporis[6Y6)—Wich-clause-is-exporting totheoutputbuffer and-whatis-it-exparting.

nnerOOOO:Not-exportingorexperting-only-to-the- PC)
nnnOOOO.Exportingposition (4)

Q00010 : Exporting position (2)
a000:Eporting RG

Exhibi: 2018 dock40G_Sequoncondec 42015 Byres** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jousis iosPRION BOT O14 PM10/18/01 G25? AM

AMD1044_0256872

ATI Ex. 2105

IPR2023-00922

Page 200 of 239

ATI Ex. 2105
IPR2023-00922

Page 201 of 239

 | ORIGINATE DATE
| 24 September, 2001

EDIT DATE

4 September, 201526bs a fo’

PAGE

22 of 28
R400 Sequencer Specification

CST-SiZE-pP 30ize-of the constant.store forpixels

19-21, DEBUG registers
PROB_ADDR
PROB_COUNT

20-22. Interfaces

20-122.1External Interfaces

20-442211.Jl PASC to RE-SPO: J bus

instruction address where thefirst problem occurred
number of problems encountered during the execution of the program

me LS 2-| Formatted: Bullets and Numbering

=<] Formatted: Bullets and Numbering
ane : : = : *

This iisa bus that sends the IJ information to the IJ fifos on the top of each shaderrpipe. At the same time the control

 Name |Direction |Bits | Description
Ws| PASRESPO[63| Winformationsentover2clocksMask | PA--RESPO i | Write Mask

20-+-222.1.2 PA/SC fo SEQ: LJ Control bus

e-

This is the control information sent to the sequencer in order to control the IJ fifos and ail other information needed to
execute a shader program on the sent pixels.

a . | Formatted: Bullets and Numbering

Name | Direction | Bits ii Description
Write Mask PA—~SEQCREISP) 4 Quad VWirite mask left to right

RB_ID | PASEQ(SPIPA-SEGKRE & RB id for each quad sent 2 bits per quad

LOD_CORRECT PR SEQSPIPAoSEQIRE|24 LOD correction per quad (6 bits per quad)
FVTX I PdGEQ(GPIPA-SEGIRE|2 | Provoking vertex for flat shading| |

PPTRO || DRSSEOSPRASSEGRE 11 | P Store pointer for vertex 0
PPRT1 :PA-BSEQ(SPIPA-SEGURE|11 | P Store pointer for vertex 1
PPTR2 | SACSEGIEBPANSEGRE 11 P Store pointer for vertex 2
E_OFF_VECTOR =~SEQ(SP)PA->SEC(RE|1 | End of the veator

DEALLOC | APSE 1 | Deallocation token for the P Store
STATE PA=SEOISPPA-SEORE 21 | State/constant pointer (6*3+3)
VALID)&AmSEGQSPIRPA-SEGQIRE|16 || Valid bits for all pixels

NULL |PASSEGISE)PA-SEQRE 1 | “Null Primitive (for PC deallacation purposes)
[/E_OFF_PRIM tts=Cd|[PASSEOSPIPAASEQRE [14i End Ofthe primitive - -
LFEFACE “|

1 “Front face = 1, back face = 0 -

Exhibit 201 6 docR400_Sequeaser.des
PALOB01 04:40 PM IO/18/01 O57 AM42015 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** jonsa5 1252."

AMD1044_0256873

ATI Ex. 2105

IPR2023-00922

Page 201 of 239

ATI Ex. 2105
IPR2023-00922

Page 202 of 239

EDIT DATE DOCUMENT-REV. NUM. PAGE

4September 201528 GEN-CXOOCOOCREVA 23 of 28Sees4 a

PASSEQISPIPASEGRE 3 Stippled line and Real time command need toload tex cords from alternate buffer
000 : Normal
001 : Stippled line
011: Real Time
100: Line AA

| 107 : Point AA
Po ; | 110 : Sprite

RTRn | SEQ->PA 1 | Stalls the PA in n clocks =
RTS | PA—SEQ(SPIPA-SEQRE [1 | PA ready to send data | :Lt |

:--[FeFormatted:.Bullets andambering

Siete 4 Formatted: Bullets and Numbering :

a4 Formatted: Bullets and Numbering

as 4 Formatted: Bullets and Numbering

co") Formatted: Bullets and Numbering :

20-+322.1.3 VGT to RE-SP: Vertex Bus *

Name | Direction | Bits | Description
| Vertex indexes VGTRE 128 | Pointers of indexes or HOSsurface information

EOF_vector | VGT->RE 1 _ End of the vector
Inputs_vert VGT-—RE 1 | O: Normal 128 bits per vert

__|1: double 256bits per vert
STATE _VGT-»SEQ [21 | Render State (6°3+3 for constants)

20-44221.4 CP fo SEQ : Constant store load “ToS

‘Name_ [Direction [Bits|Description :
Constant Address | CP-SEQ 18 _ Address of the block of 4 constantsConstant Data CP—SEQ 512 | Data sent over 4 clocks
RemapAddress _ | CP-SEQ 10 | Remapingaddresswriteaddress
Remap Data pointer _CP-»SEQ L8 | Remaping pointer

201522.1.5 CP to SEQ: Fetch State sfore load “ :
Name Direction Bits | Description :
Constant Address CP-»SEQ 138 _ Addressof the block of 4 state constants
ConstantData CP-SEQ © 512|Data sent over 4 clocks - :

“Remap Address | CP--SEQ 10 Remapingaddresswrite address” : : : .
Remap Data pointer | CPSEQ [3 _Remaping pointer oe os . a os :

29-1.622.1.6 CP to SEQ : Contro! State store load +eee
Name Direction [Bits [Description —“—SCSCS[oe a a :
{ISSUE: How,Who and whatis the size of this bus?}

201722.1.7 MH to SEQ: Instruction store Load ‘ -

Name Direction | Bits | Description
Instruction address ____| MH-»SEQ 142 | Instruction address
Instruction LMH >SEQ | 96 _|Instruction X times
Control Instruction address MH-SEQ [9 _Pointer to the control instruction store
Control Instruction | MH>SEQ | 32 | Control Instruction X times
USSUE. CP or MHP}

20-+-822.1.8|SP fo RB: Pixel read from RBs “
Name | Direction [Bits |Description=|

Export_data | SP>RB | 64°18|32a pairs of 32 bits channel aes |ExperibShader Dest SP—RB Ba Specifies one of the of te 12 expen
/ ' destinationsQewavaga:-Vertex- daariD-ASfrom-first|

| er-cecond-clause-(o-0-sr-1i ¥-or2-components-(h=o

Exhibit 2018 docR40G_Sequencer.dec 42015 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © =PRION BOT O14 PM10/18/01 G25? AM DOA 1234 :

AMD1044_0256874

ATI Ex. 2105

IPR2023-00922

Page 202 of 239

ATI Ex. 2105
IPR2023-00922

Page 203 of 239

ORIGINATE DATE

24 September, 2001
EDIT DATE

4 September, 204 228At

R400 SequencerSpecification PAGE
24 of 28

or-t),-cuad-0-3.inthe shadertqgq= 0.3)

theshaderanddateisRGHethBAebord He

Shader _CountExpotMask | SPGRB Each set_of four pixels or vectors is exported over
eight clocks. This fleld specifies where the SF is in that
sequence.Specifies whether-to.writelow,-high-or-bothdz
bit-words.lLexport-maskis 00-dataisinvalid

Shader Lastlxport.act | SP>RB

Shader _PixelValid | §P.aRB

—_ The current export clause is over (true for one clock)
The last export instruction creates *two* cycles to the
RB. This needs to be set on or affer the last RB cycle
that is produced by the last export instruction, but
before the first RB cycle of the first export instruction

of thenext clause Last expert!nistsuction-of the clause.
 oS

4x4 because 16 pixels are'e computed per clock Shader, WordValid ina

Specifies whether to write low and/or high 32-bit word
of the S4-bit export data fram each of the 16 pixels or
vectors

20-+-922.1.9 SEQ to RB: Contro/ bus “

Name _ Direction | Bits|Description
Export PixelType | SEQ—RB 1 18: Pixel| 49: Vertex
Export SENDinterleaving SEQ—RB 1 Raised to indicate that the SO js slarting an exporld:ficst-interleavedclause

1:-second interleaved-clause

Export ClauseExoor_size SEOORE 43 Clause number, which is needed for vertex clauses

Export, StateValid “| SEQ—>RB 121? | State ID. wh ichis neededfor vertex clausesLatavalid |SBEUe)erespeecegJotVeuexcauses

These fields are sent synchronously with SP export data, described in SP--RB interface

LSSUE: Where are the PC pointersOnly

204+1022.1.10RB ta SEQ: Outputfile contro! -
Name ‘Direction Bits
ExportRTS@uff_Ful | RB>SEQ 14 ‘hat the folowing

L _feflecttheresultof the most recent export
Export PositionAvail-size | RBSEQ | 16 | Specifies whether there is room fer another

| | position. Se—aveilable—inoutput—buffersin S2bits| _ increments)
Export Buffer RB-»SEQ Zz | Specifies the space availble in the output buffers. |QObuffers are full

 | pixels ina clause)

64: (28h-bils avaiable (16 126-bil entries for each of
| 64 pixels)
| 65-197. RESERVED

Exhibit 20'0tocR400Gequeacerdes 42015 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* nonce yo.52):PRION BOT O14 PM10/18/01 G25? AM

. | Formatted: Bullets and Nurnbering

co] Formatted: Bullets and Numbering

AMD1044_0256875

ATI Ex. 2105

IPR2023-00922

Page 203 of 239

ATI Ex. 2105
IPR2023-00922

Page 204 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

Abid, | 2A September, 2001|4 September, 201528 GEN-CXXXXX-REVA | 0f28 |
~ — ~ TARA Ao ~ a = 4 Formatted: Bullets and Numbering

20-++H122.1.1] SPF to RB: Position return bus SS = ae
Name [Direction I Bits | Description
Position return | SP—RB | 128 | Position data or sprite size (per clock)
Parameter cache pointer SP—RB 1141 | Pointer where the data will be in the parameter cache for| | Leach vertex
For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 1 position
then 1 point sprite sizes. The storage used is of 64x 128 bits for position and 64x32 bits for sprite size, it is taken from
the output buffer. Additionnally,if needed the edge flags are packed into the bits of the sprite sizes.

20-+4222.1.12 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad's worth of addressesis transferred to Fetch Unit every clock. These are sourced from a different pixel within
eachof the sub-engines repeating every 4 clocks. The registerfile index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

 «4 Le {Formatted: Bullets and ‘Numbering —

Four Quad's worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write rnust accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

 Name Direction Bits | Description

Tex_RegFile_Read_Data | SP->TEX 2048 | 16 Fetch Addresses read from the Registerfile : — = eewlexRegFileWriteData | TEX_»SP 2048|16textureresults ||. - {Formatted

 26-44322.1.13 Sequencer to Fetch Unit bus (Slow Bus) * (Formatted:BulletsandNumbering_—)
Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
whereto write the fetch return data.

Name Direction Bits | Description oS
iTexReady —s—sp._:| TEX > SEQ4 | Data ready . | RES

Tex_Clause_Num _TEX— SEQ L3 | Clause number : :
Tex_est SEQ—TEX 10 __| Fetch state address 10 bits sent over 4 clocks es
Tex_inst | SEQ->TEX | 12 Fetch instruction address 12 bits sent over 4 clocks oe
EOCLAUSE SEQ—TEX 4 | Last instruction of the clause :
PHASE | SEQ—-TEX 4 _ Write phase signal Bene os

LOD CORRECT | SEQ-—-TEX | 36 LOD correct 3 bits percomp 2 componenis per quad * 15 | es| | | ee
Mask 84 bo
TexClause Num | ae fone
TexWriteRegisterIndex [7 bo

Tex Read Register Index a | index into Register fles for reading Fetch Address |

(internal

 Formatted: Bullets andNumbering
24-23 Internal interfaces

2441123 1.1 RE fo SEQ: Vertex Control Bus

Name |Direction | Bits | Description .
STATE VGT >SEQ [21 _| Render State (6*3+3 for constants)
Vert counter | VGT--SEQ (6 | Which vertices are valid
Inputs_vert VGT—SEQ | 1 | 0: Normal 128 bits per vert

| | | 1: double 256bits per vert

This information is sent over 4 clocks. .6informationneedeio-be-cantover64-clecke. |

Exhibi: 2018 dock40G_Sequoncondec 42015 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256876

ATI Ex. 2105

IPR2023-00922

Page 204 of 239

ATI Ex. 2105
IPR2023-00922

Page 205 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 201526 26 of 28 - — :
AAA a poe 4 Formatted: Bullets and Numbering

22.24, Examples of program executions a -

22-+4+24.1.1 Sequencer Control of a Vector of Verlices
ss PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO

* state pointer as well as tag into position cache is sent along with vertices
® space wasallocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
* The vertex program is assumed to be loaded when wereceive the vertex vector.

e the SEQ then accessesthe IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbiirates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always has priority
e at this point the vector is removed from the Vertex FIFO
* the arbitrer is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came downwith the vertices
« SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycie)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SU3is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
« RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, 2)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (he FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

6. TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
® TSMO was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSMOQ

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF asit is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

§. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the contro! packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47): the data (and the tag) is sent over a position bus (whichis

shared with ail four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igo
PRION BOT O14 PM10/18/01 G25? AM : ee:

AMD1044_0256877

ATI Ex. 2105

IPR2023-00922

Page 205 of 239

ATI Ex. 2105
IPR2023-00922

Page 206 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201526 GEN-CXXXXX-REVA 27 of 28es, eu
e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
* parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters (it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 ifthe parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another a. . Ss es SSFOSS
shader program Sees Sas ae SOs

2+2241.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
® the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
« SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP registerfile over the RE_SP interface @vhich has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packei for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
* the control packet contains the state pointer, the register file base painter, and the LOD correction bits
e all other informations (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructians for fetch clause 0 from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMQ
FIFO)
e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF asit is received
® once the TU has written all the data for a particular clause to the register files, it increments a counter thatis

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro] packet continues to travel down the path of reservation stations until all clauses have been executed
*® pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

Exhibi: 2018 dock40G_Sequoncondec 42015 Byes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** nous. 1234 :PALOB01 04:40 PM IO/18/01 O57 AM

AMD1044_0256878

ATI Ex. 2105

IPR2023-00922

Page 206 of 239

ATI Ex. 2105
IPR2023-00922

Page 207 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201526 28 of 28

= > sana ae aoe | Formatted: Bullets and Numbering :

22-+324.1.3 Noles i

14. Tithe state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads orstall.

15. Tthe register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the iS
pointeris only different for each state and thus can be accessed via the state pointer

16. Waterfalling,parameter-bufferallocation,eops-and-branches-and-parametlercache-de-allocation-still needs to
be specked out.

Se 4 Formatted: Bullets and Numberingx ' wee Sens See *
23.25, Open issues ee
There is currently an issue with constants. If the constants are not the same for the whole vectorof vertices, we don't
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put these instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us downbya factor of 16.

Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 20'¢.tocR400Gequencerdes 42015 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis igo
PRION BOT O14 PM10/18/01 G25? AM : ee:

AMD1044_0256879

ATI Ex. 2105

IPR2023-00922

Page 207 of 239

ATI Ex. 2105
IPR2023-00922

Page 208 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 4 of 32. - benscesvoies. Ns *.
Author: Laurent Lefebvre

Issue To: | Copy No:

R400 Sequencer Specification

SEQ

Version 1.10

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). [it provides an overview of the
required capabilities and expected uses of the block. t also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Decument Location: Cwerforcey400iarchidocigik\RE\R400Seauencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS.

Signature/Date Name/Dept

Remarks:

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

 “Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |.
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT] Technologies Inc.”

Exhibit 2017. decR400_Sequencerdes 46689 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** ponng iad

BRON G07 01:40 PA

ATI 2017

LGv. ATI

IPR2015-00325

AMD1044_0256880

ATI Ex. 2105

IPR2023-00922

Page 208 of 239

ATI Ex. 2105
IPR2023-00922

Page 209 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September 20158 2 of 32GYatanne!

Table Of Contents

1. OVERVIEWcesses 22,18 CP to SEG : Conslant store load 2724
Ll Tep Level Block Diagram 22.1.9 CP to SEQ : Feich State store load
12 Data Flow graph... 2724
La ControlGraph 22.110 CP to SEQ : Control State stere load
2. INTERPOLATE ete 2824
3. INSTRUCTION STORE oe: 221.1) MM to SEQ: Instruction store Load
4, SEQUENCER INSTRUCTIONS 2525
a CONSTANT STORE... SPO to SXO: Pixel read from RBs2825
8. LOOPING AND BRANCHES SEQ to SXO: Control bus...2828

oxiThecontrolling state...
6.2 The Control Flow Frogram,

6.3 Data depsndant predicate instructions174564 HWDetection of PVPSou 1846

5.6 Predicated Instruction support for Texturevote 1846

1846
CLAUSOS oeane cee ceneeenecer teense

6.7 Debugaing the Peersa

GPRS (12) 1944
6.7.3 Method 3: Selective export of a 32 bit
Dword.194-4

7 PLIAEL KILL MASK ..
& HOS SURFACES.
9, REGISTER FILE ALLOCATION.
10. FETCH ARBITRATION

 HANDLING STALLS 320
13. GONTENT OF THE RESERVATION STATION
FIFOS 2320
14, THE OUTPUT FILE |.
18. FORMAT.
16. THE PARAMETER CACHE.
LT VERTEA POSITION EXPORT
18. EXPORTING ARBITRATION
19. REAL TIME COMMANDS.

REGISTERS
Control,

 DEBUG REGISTERS ..

Control,

INTERFACES
i External Interfaces

PA/SCto SE. iJ Control bus
SEQ to SPO: interpolator bus... 3623
SEQ to SFO: Parameter Cache ‘bus

2fa4
22.1.5 SEQ to SxXO: Parameter Cache Mux
control Bus 2724
22,16 5X0 to SPO : Parameter Cache Return
bus 22d
22.17 VGT to SPO/SEQ:Vertex Bus...2724

Exhibit 2017. docR400Gequerceraioc 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © © jopine ios

Ll 8X0 fo SEQ : Output file control,.2825
SPO te SXO: Position return bue..2926

2116 Shader Engine te Fetch Unit Bus (Fast
311SequencerControlofaVectorof

Vertices 3028
23,12 Sequencer Control of a Vector of
Pixels 3127
23.13 Notes.

a OPEN ISSUES.
OVERVIEWS:

 entre.Greph...
ATERPOLATED. DATA.BU

- INSTRUCTION STORE wives

LOOPINGAN DBRAACHES...
~The ControlFlow-Pragram...

6.3-__Data dependant predicate instruction
6-4--—-Register He indexing
7PIXELKILLMASI.
——HOS SUREAGESccccicererersersvecvere

FETCH ARBITRATION ws:

 RB HANDLINGSTALLS.. GONTENT-OF-THE.RESERVATION. STATION
risosi9

THE-OUTPUT-FILE
-d- FORMATvecsvessveese 49

-EAPORTING- ARBITRATION
-REAL-TIME-COMMARNDS.
REGISTERS...

BMG 8/01 0140 PM

AMD1044_0256881

ATI Ex. 2105

IPR2023-00922

Page 209 of 239

ATI Ex. 2105
IPR2023-00922

Page 210 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 44Seplember 20155 GEN-CXXXXX-REVA 3 of 32re !

11 PAIST to SPO 01S BUS Ooee24

SP to. RB--Pixel-read fromRB
SEO to-RBContral-bus--

 -SP-to- RB.Bosition. return-bus.
ShaderEngine toFetchUnitBus(Fast

22;1-43--------Bequeneer-to-Feteh-Unit-bus-(Slow

24 _EXAMPLES.AE PROGRAM EXECUTIONS... 25

24441- SequencerControlof aVector of
Vertices—og
Rivele———-26
DbABemNotes-..

2& OPEN ISSUES.
1. CGVERMEW+

t4-----Top-LevelBios é2

INSTRUGCTION- STOREvex
--EeQUENCERINGTRUCTON.oo

~The Control Flow Program.
—Batadependant predicateinstructions...

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

Exhibit 2017 docR400_Sequencerdec 46059 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © +
PMO 8/07 07:40 PM

AliddARBITRATION cscs
HANDLING-S-TALLS.

13.—--TFRE-OUTPUT-FILE
L441 FORMAT recevecenrvevereny
15. THE- PARAMETER, CACHE

i---REAL TIME COMMANDS.
8,REGISTERS...

ere

—~PAISC-to SEQ.4J-Contral-bu: =. 4

Ds sen _VGT to- RE-Vertex- Buss 2
20-1.4---—----GF-4o-SE.)--Gonstant-store-lo: vee

enn
201.7teSEG: Instructon-siere-Load..22
20:48 $FtoRB-Pixelread-fromRBs. ae

BO1BEGS-AB-COMGLBS.. : ,

22.- EXAMPLES AE.PROGRAM EXECUTIONS..24

SequencerControlefaVeclorof
24

a SequencerControlofa-Vectorof
Pixele-—----- 20

---Notes--

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

CONS 12 “|

AMD1044_0256882

ATI Ex. 2105

IPR2023-00922

Page 210 of 239

ATI Ex. 2105
IPR2023-00922

Page 211 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20155 4 of 32, AAA
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Exhibit 2017 docR400Gequercerdec 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonineyosg

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the contro! flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SPO interfaces. Changed delta
precision, Changed VGT-—-SPO interlace, Debug
Methods added.

BRMIGH @/O1 O1:40 PM

AMD1044_0256883

ATI Ex. 2105

IPR2023-00922

Page 211 of 239

ATI Ex. 2105
IPR2023-00922

Page 212 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA | Sof32! ey !

1. Overview

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executesall of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
net need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause unlil the fetch fetchesinitiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the sameinstuction thus there is only one sequencerfor the whole chip.

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256884

ATI Ex. 2105

IPR2023-00922

Page 212 of 239

ATI Ex. 2105
IPR2023-00922

Page 213 of 239

werorrotesioridESC)SiO@SHEIBACDUOSOONJYGUAdODJoUsIBJOY‘JEHUSPYUOD[LY@++"sco9r

Sopieauanbas“QaPHyoOn71OrTala|

 dovO)ALLS_——ee|moladdyx1,|——4~=WLVOSLRUAAXLpo— go/ad-gOIdd-|g0/odgO/Od~<Yeee|CeeESeeseeSeMONSpepen[rrr

LONIML

dS-dS-dS+sdsLg33. |ONEDt1ort_—_i4—BOeonaw:z")MBINI=|MSLNI"|SSUNI9901|*|TOMLNOOffinmfaLSNEMTY“|—ayolYVESSONDPi|LSNIa

5 SP}SQYNOZoFONLNOD35SDUEXBUGA__we °TOMINGO4-4,_4/ XMELESA .‘

IEBISORTCRGSL0dJequiejaesiLO0Z‘Jequiaydesyy.alvdLidsalVdSLVNISO TVIELVNdadoAALLOdLOUdd

AMD1044_0256885

ATI Ex. 2105

IPR2023-00922

Page 213 of 239

ATI Ex. 2105
IPR2023-00922

Page 214 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA | 7 of 32me
|.1 Top Level Block Diagram

veriex/pixel vevtur arbitrator

Possible delay for available GPR’s

exture clause 0
eservation station

ALU clause C
}<-——feservation station

| exture clause 1eservation station

|
ALU clause 1
reservationstation =
| a

exture arbitrator

exture clause 2
reservationstation

exture arbitrator
FIFO

FIFO >[PES exture clause 3—a eservation stationi FIFO
begALU clause 3reservation station ec

| FIFO. »exture clause 4

ALU clause 2
reservation station

egervation station

LeggLU clause 4 |
feservationstation ike): 3 Be —s| extnee clause 5
aeenaeeneeeesnmennnmnenanny eservation station
Jt[FFJog___beg——ALU clause5res ervation station.

Pexture clause 6
egervation station

/ <é FIFOjeLead—ALUclause 6reservation station
i Be FIFO. Be BejPexture clause 7

eservation station

i Leag———-——| FUEALU clause 7
fescrvation station

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 21 bits of state, 6-7 bits for the base address of the Shader program and some information on the
coverage to determine fetch LOD plus other various small state bits.

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256886

ATI Ex. 2105

IPR2023-00922

Page 214 of 239

ATI Ex. 2105
IPR2023-00922

Page 215 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 20155 8 of 32 — a ~ eA
On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packetin thefirst FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level number (Q)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s warth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level O fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbitrers is that they are not allowed to pick the same
clause numberas the other one is currently working on if the packet is not of the same type (render state).

\f the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 3 to be selected if the positiona! buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)7}

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. if the output
buffer is full or doesn't have enough space the sequencer will prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 pararneters to memory from the last clause only (7).

All other level process in the same way until the packetfinally reaches the last ALU machine (7). On completion of the
level 7 ALU clause,a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register — a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU stale machines and one for the fetch state machines}. The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the register files.

Exhibit 2017 docR400Gequercerdec 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonineyosgBRMIGH @/O1 O1:40 PM

AMD1044_0256887

ATI Ex. 2105

IPR2023-00922

Page 215 of 239

ATI Ex. 2105
IPR2023-00922

Page 216 of 239

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015538

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 32

|

instruction

| pipeline

instruction

<> zs

Register File

TEyesf

calar inoutfoutput1
stage '

Register File

| (Salar Tnputfoutput

| pipeline stage |l i" |

ad
c
2tee

< &S oO
cl 9= a” - °

ee Register File | Fo |; 3Ld Fe Se
\ _Fie~ "4 fexturelS Quest igscalar inoutoutput © 1

wb ob c a x
| pipeline stage ss g:L _ 4 zam

LEi

S| 15 oe EETTSG a Register File i2! lg /

B| © Lt
€);—181

— YT bec

SI texture rel | ~\
!

i Hl
| i

se te |i|
i J L

Mux 7
“a
2ialrowe
25
Sea

Ub

 ot

to Primitive Assembly Unit cr RenderBackend \ ao

Exhibit 2017 docR40G_Sequencer.dec
4cct9 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © *** ponsus yo.sd aPAMIG GOT 0140 PM

AMD1044_0256888

ATI Ex. 2105

IPR2023-00922

Page 216 of 239

ATI Ex. 2105
IPR2023-00922

Page 217 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 Seplember, 20755 10 of 32i News,is

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rady

IS SEQ|CST

WrAddr | | WrAddr| i

CMD | RdAddr' | PAIRBcst

Phase ho io
as CST’CSTiCST IDX A B c Wrvec |

RdAddr _ _ | WrSeal Wwradar

FETCH SP OF

WraAder || |
| ||

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file contro! interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830PAMIG GOT 0140 PM

AMD1044_0256889

ATI Ex. 2105

IPR2023-00922

Page 217 of 239

ATI Ex. 2105
IPR2023-00922

Page 218 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 11 of 32- ae UE

To RB

27°24+8°6+6"4 for Us

| | 4 6a
proertbeeenee

1 AO Al A2 BO
[Js buffer (ping-pong buffer)

(27 bits * 2 (1) + 8 bits * 6 (delta Ls)+4 exp
~ bits*6)* 16 (quads) * 2 (double-buffered}

2 Bt © a ce 4032 bits
a2 x 126

3 C3 c4 cs bo

4 bt D2 EO E

1
INTERPOLATORS

| l
! 1i
| |

||||I
|

To I -

ot PEE || i fii
qUL 2UL f} Sub |) 4uL | {UR]| 2UR j SUR | 4UR | WE |} 2b | SLR j AER XaHLL || |

I I I I

Exhibit 2077 docR40G_Sequencendec 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ** nonceBRMIGH @/O1 O1:40 PM

AMD1044_0256890

ATI Ex. 2105

IPR2023-00922

Page 218 of 239

ATI Ex. 2105
IPR2023-00922

Page 219 of 239

werorrotesioridESC)SiO@SHEIBACDUOSOONJYGUAdODJoUsIBJOY‘JEHUSPYUOD[LY@++"sco9r

Sopieauanbas“QaPHyoOn71OrTala

iii

dy|Le|Sb

“pr|-82|-Z-L7ta|04|2DOGla|0d|2)|04edS
AAAcr|le1-9

“OF|re0sLDGOcv|Oa50)GOcvZd$
A

AAee|e,

“Oe|-0¢A03cad|voLW09°cd|vOLVLds
AAsc|6L&-0

“éo|“OL1d|co|ba|ov1]|co|be|OWOd
A

AA

SLLZLL|/OLLYSIL)PIL|CLLCLL]LIL|OlL|GL|SL7Z1|O91)SL)bl|€L|CL)LL|OLZEJOTZLGoldeGUSIISSF|LooeVequeldespz3OWduoleoyloadgsouenbesOOFY3LvdLidaFLVSLYNICINO

 TVIELVNdadoAALLOdLOUdd

AMD1044_0256891

ATI Ex. 2105

IPR2023-00922

Page 219 of 239

ATI Ex. 2105
IPR2023-00922

Page 220 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20159 GEN-CXXKXX-REVA 13 of 32 Bu zoe SE 4S

Above is an exampleofa tile we mighi receive. The |J information is packed in the IJ buffer 2 quads at a time. The
sequencerallows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(5127)x22.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub 7}.

The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store

The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BWfrom the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires fram the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.%,R2.% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X% into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO/R2.X]// Uses the state from the sequencer to add R4 to CO[R2.] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencerin orcer to support this feature is 2*64°9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. VWWe plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
As per Dxthe following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]

Exist to give more control to the controlling program.

Wewill extend that in the R400 to:

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54PAMIG GOT 0140 PM

AMD1044_0256892

ATI Ex. 2105

IPR2023-00922

Page 220 of 239

ATI Ex. 2105
IPR2023-00922

Page 221 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20155 14 of 32Rican cen APA

Boolean{255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant,registert)
Loop_Step[7:0] [15:0] times 2 (one for constant,register
Loop_End[?:0] [15:0]

{ISSUE: Howis the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elementsfor calling subroutines and 4 loop counters to allow for nested loops.

Si o-Keen Gerad Mecho nea BAND

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the contro! table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates

Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
NOP

Execute, causes the specified numberof instructions in instruction store fo be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
siore to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified numberofinstructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block ofinstructionsif all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an addressif the condition is met.
NOPis a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Alsoif the jumpis logically bigger than pshader_cnil_size (or vshader_cnil_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debugregisters.

We haveto fil instructions inte 48 bits in order to be able to put two control flow instruction perline in the instruction
store.

Execute |
47 46... 42 | 41... 24 ! 23... 12 11...0

Exhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830PAMIG GOT 0140 PM

AMD1044_0256893

ATI Ex. 2105

IPR2023-00922

Page 221 of 239

ATI Ex. 2105
IPR2023-00922

Page 222 of 239

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
 ‘ ‘ 24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 15 of 32poses v= ~ - beensreneebereCENnen ~

Addressing | 00001 [RESERVED Instruction count [Exec Address
Execute up to 4k instructions at the specified address in the instruction memory.

 NOP
|Addressing | 00010 | RESERVED _

L

if the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump addressin the control flow program.
This MUST be a forward jump. oe

lL

Exhibit 2017 docR400_Sequencendec
BMICH 9/01 01:40 PM

a7 [46.42 | “a.o0 Le

40659 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © *** ponsus ay.a4

AMD1044_0256894

ATI Ex. 2105

IPR2023-00922

Page 222 of 239

ATI Ex. 2105
IPR2023-00922

Page 223 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20155 16 of 32Pe

Conditionnal_Execute

a 46 48

Addressing | 00011
41... 34 | 33 32...24 | 23... 12 | i1...0 Boolean address Condition RESERVED _Instruction_count | Exec Address

lf the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
| AF | 46... 42 | 41... 38 / 37 | 36...24 | 23... 12 L 41.0

Addressing | 00100 | Predicate vector | Condition | RESERVED | Instruction_count | Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

— LpStart - |
47 [46... 42 41... 16 15.4 [3...0

00101 \ RESERVED Jump address Loop ID
Addressing | | |

only. Also computes the index value.
Loop Start. Comparesthe loop count with the end value. If loop condition not met jump to the address. Forward jump

Loop End

47 [| 46..42 | 44.16 15.4 3..0
00111 | RESERVED Start address Loop ID|

Addressing

Loop end. Increments the counter by one and jumps BACKonily to the start of the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.
Cail

47 | 46. 42 41...12 | 11...0
| O7000 RESERVED | Address

Addressing | '

Jumpsto the specified address and pushes the IP counter on the stack.

Retum

47 46.42 | 410
01001 | RESERVED|

IAddressing

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the prograrn will just
continue to the next instruction.

Conditionnal_Jump
47 46...42 [41.3433 [32.1371211.0

01010 “Boolean address | Condition | RESERVED| FW only | AddressL Addressing

compiler and should NOT be exposed to the API.
if condition met, jumps to the address. FORWARD jumponly allowedif bit 12 set. Bit 12 is only an optimization for the

End_of_ Clause

47 46a 410

Exhibit 2017 docR400Gequercerdec 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonineyosgBRMIGH @/O1 O1:40 PM

i|1
|Je

AMD1044_0256895

ATI Ex. 2105

IPR2023-00922

Page 223 of 239

ATI Ex. 2105
IPR2023-00922

Page 224 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 20155 GEN-CXO0OX-REVA 17 of 32PUA — 4
01011 RESERVED

Addressing |
Marks the end of a clause.

To preventinfinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop and set de debug
registers. The sequencerwill keep two loop indexes values:

IC index for constant indexing (@bits)
IR index for register file indexing (7 bits) oe

This will be updated evardimeevery time we loop and can only be used to index the constant store and the register | :
file. The way to compute this value is: :

Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return0if it is out of the constant range. The IR index is going to break the program if
the index exeedsexceeds the numberof requested registers.

The basic modelis as follows:

The render state detined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] # eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] 4 eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:O][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FE means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The contro! program is the only program aware of the clause
boundaries.

6.3 Data dependant predicateinstructions
Data dependant conditionals will be supported in the R400. The only way we plan to support thoseis by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_#- similar to SETGTexcept that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_#~— SETEO
PRED_SETE1_#-SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because weinterleave two programsbut only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify wichwhich predicate set you want to use 0 thru 3. |

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For exempleexampile, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256896

ATI Ex. 2105

IPR2023-00922

Page 224 of 239

ATI Ex. 2105
IPR2023-00922

Page 225 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 2015S 18 of 32

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads ihe sequencer will insert uses of PVPS as needed. This wil be cone by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write,

The sequencer will alse have to inserl NOPs between PRED SET and MOVA instructions and their uses,

646.5Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these costrols—conirals:

Bit? Bit 6
0 0 ‘absolute register’
Q 1 ‘relative register’
i 0 ‘previous vector’
4 1 ‘previous scalar’

In the case of an absolute register we just take the address asis. In the case of a relative register read we take the
base address and we acd toit the loop_index and this becomes our new address that we give to the shaderpipe.

6.6 Predicated Instruction support for Texture clauses

per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector. A value of 0 means that no slements in the
vector have his predicate bit set and we can thus skip over the texture fetch,

6.7 Debugging the Shaders
In_order ta be able to debug the pixel/vertex shaders efficiently. we provide 3 methods,

6.7.1 Method 1: Debugging registers
Current plang are to expose 2 debuguing, or error notification, registers:
Lpadress register where the first error occurred
2, count of the numberof errors

The sequencer will detect ihe following groups of errors:
countoverflow

zie
relative jump address > size of the control flow program
relative jump address > length of the shader program

~ constant overflow

~ register overflow
~ call stack

call with stack full
return with stack empty

With two _of the errors. a jump srror or a register overflow will cause the program to break. In this case. a break
moans that a clause will halt execution, but allowing further clauses to be executed,

With Ine other errors, program can conlinue to run, polentially jo worst-case limlis.

Exhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830PAMIG GOT 0140 PM

ee = { Formatted: Bullets and Numbering oO

— : a to ‘ormatted: lle an om ong6.4 HW Detection of PVPS woe {foment aul ed naming

ales 4 Formatted: Bullets and Numbering

ees Formatted: Bullets and Numbering

«- 7)|Formatted: Bullets and Numbering

AMD1044_0256897

ATI Ex. 2105

IPR2023-00922

Page 225 of 239

ATI Ex. 2105
IPR2023-00922

Page 226 of 239

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA | 19 of 32| ; a |

If indexing outside of the constant range, causing an overflowerror, the hardware is specified to return the value with
and initializing the Oth regi

constant) for errors.

 6,7,2 Method 2: Exporting the values in the GPRs (12 “
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause, The moces can be :

1) Normal «
2) Debug Kill
3) Debug Addr
4) Debug Count

Under the normal mode execution follows the nermal course. Under the kill mode, all control flow instructions are

clause 7 will be executed under the debug kill setting. Under the two other modes, normal execution is done until we
reach an address specified by the address register or an ingtruction count (useful for loops) specified by the count
register, After we have hit the address or the count we changeto the kill mode for the rest of the clause.

6.7.3 Method 3: Selective export of a 32 bit Dword.
The third debug option will be mainly used for HWW debug. For this mode, the sequencer will keep the following contro]
debug registers: Shader pipe (6 bits), Mode(1 bit), Dword select (3 bits), clause +count (16 bits?) address (12 bits

count we export, the Render state specifies which render state is concerned, the Vector number specifies which
vector is concerned and the mode selects count export, or address export,

 Bs a Formatted: Bullets and Numbering :

4 Formatted: Bullets and Numbering

oes) Formatted: Bullets and Numbering

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256898

ATI Ex. 2105

IPR2023-00922

Page 226 of 239

ATI Ex. 2105
IPR2023-00922

Page 227 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

 —— DWordSelect ay

i

Lo
Flag Select=>
Lo
|

| h | 24 September, 2001 4 September, 20155 20 of 32
| CS

|. |
[A GPR |
| & !
| ee =< |

Lo |
[|
[_ |
| Vector Engines Scalar Engine |: | |
| |
| |
| |
| |
1 |

|
|

|
|
|

 ipke right SU—t

 Cob
Flag Select is @ combination of Shader pipe, clause +count. address, Vector number and render state. It is onh
active for_1 shader pipe at a time and for 1 vector of a given state. The driver_is responsible to reset the output
register to 0 before executing a given program.

7. Pixel Kill Mask

A vector of 64 bits is kept per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allow
the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETGT

| MASK_SETGTE

8. HOS surfaces

HOS surfaces are able to export from the 6 last clauses but to memory ONLY.If they want to export to the parameter
7). They ca

 | cache they have to do it in the last clause (n also export position in clause 3. The-buffer-they-wantto

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

 PAMIG GOT 0140 PMExhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830

AMD1044_0256899

ATI Ex. 2105

IPR2023-00922

Page 227 of 239

ATI Ex. 2105
IPR2023-00922

Page 228 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 21 of 32

—— mv es A
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REGSIZEfor pixels.

Exhibit 2077 docR400_Sequencendec 46089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** nousis igh
BRMIGH @/O1 O1:40 PM :

AMD1044_0256900

ATI Ex. 2105

IPR2023-00922

Page 228 of 239

ATI Ex. 2105
IPR2023-00922

Page 229 of 239

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification

24 September, 2001 4 September, 20155ff bemon U4

Aboveis an example of how the algorithm works. Vertices comein from top to bottom: pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 te 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

 The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
& potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to O and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinsti Einst2 Oinst2 EinstO Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs.

PAMIG GOT 0140 PMibit 2017 docRAO0.Sequenserdes 46680 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** sonans 53°

AMD1044_0256901

ATI Ex. 2105

IPR2023-00922

Page 229 of 239

ATI Ex. 2105
IPR2023-00922

Page 230 of 239

 Vat) | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEwey 6 | 24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA | 23 0f 32L ey

12. Handling Stalls
When the outputfile is full, lhe sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the outputfile. if the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (47). The sequencerwill set
the OUT_FILE_FULL signal n clocks before the outputfile is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

21 bits of Render State 7 bits for the base address of the GPRs, somebits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when wewill know
the size of the small fifos between the reservation stations.

14. The Output File
The output file is where pixels are pul before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this outputfile are staging registers with write BW 512 bits/clock and read BW) 256bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

1S. lJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full +6%24-20x24 mantissa precision. Then the result of the interpolation along with the
difference in lJ in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is
how we do it:

Assuming PO is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(O) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AOL = I(1)-I)

AOL = JQ)-J(0)

AOD = 1(2)- 10) Pt

AOW = J(2)- (0)

AO3I = 1(3)— 110)

AOU = J(3)— J(0) P2 P3

P0=C +1(0)*(A-C) + JO) *(B-C)

Pl=P0+A01*(A-C)+ AOL*(B-C)

P2= PO +A02I *(4—C) + A02 *(B-C)

P3 = PO+A03L *(A-C) + A038*(B-C)

PO is computed at 49x24-20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no | x
visual degradation of the image was seen using this scheme.

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256902

ATI Ex. 2105

IPR2023-00922

Page 230 of 239

ATI Ex. 2105
IPR2023-00922

Page 231 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 20155 24 of 32EsYatanis!
Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF PO's lJ: Mantissa 42-20 Exp 4 for | + Sign

Mantissa 48-20Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits | 19*2 + 8*6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision Js don’t. This means that in the case of the delias we MUST be able
to shift § right (exponent value of O means number = 0, exponent value of 1 means shifi right 3). This means that the
maximum range for the Js (Full precision) is +/- 64 and the range for the Deltas is +/- 126.6

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will makeit so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 4 (or 5) the vertex shader can export fo the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache wherethe
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be takenin the pixel output fifo.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position experts cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exporis CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19, Real ime commands

We are unable fo use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16.

Exhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830PM10/1 G/O1 O1:40 OM mes

AMD1044_0256903

ATI Ex. 2105

IPR2023-00922

Page 231 of 239

ATI Ex. 2105
IPR2023-00922

Page 232 of 239

ORIGINATE DATE EDIT DATE

24 September, 2001

DOCUMENT-REV. NUM. PAGE

4 September, 20155 GEN-CXXXXX-REVA | 25 0f 32mA L

Exhibit 2017 docR40G_Sequencer.dec

20. Registers

20.1 Control

DYNAMIC_REG
VERTEX_REG_SIZE
PIXEL_MIN_SIZE
VERTEX_MIN_SIZE
ARBITRATION.policy
CST_SIZE_P
CST_SIZE_V
INST_STOR_ALLOC
VAWRAPRPWRAP

always staris at 0)
PUJRAPS bh ARE DWRAP
RTWRAP
NO_INTERLEAVE

20.2 Context

Vshader_fetch[7:0][7:0]
Vshader_alu[7:0][7:0]
Pshader_fetch[7:0][7:0]
Pshader_alu[{7:0][7:0]
PSHADER
VSHADER
Vshader_cntlsize
Pshader_cntl_size
Pshader_size
Vshader_size
REG_ALLOC_PIX
REG_ALLOC_VERT
FLAT_GOUR[O...15]
GEN-TEX— no
CYL_WRAP(O...63]

P_export_mode

vshader_export_mask
vshader_export_mode

Dynamic allocation (pixel/vertex) of the register file on oroff.
What portion of the register file is reserved for vertices (static allocation only)
Minimal size of the registerfile's pixel portion (dynamic only)
Minimal size of the register file's vertex portion dynamic only)
policy of the arbitration between velexesvertexes and pixels
Size of the constant store for pixels
Size of the constant store for vertexes
interleaved, separate, inlerleaved+shared,separate+shared

wrapsiart point for the vertexpixel shader instruction store (vertex shader

wrapstart point for the pixel shadershared instruction store
start point for the RT instruction store (RT always ends al the end of the |M)
debug state register. Only allows one program at a time into the GPRs

eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
eight 8 bit pointers to the location where each clauses control program is located
base pointer for the pixel shader
base pointer for the veriex shader
size of the vertex shader @ of instructions in control program/2)
size of the pixel shader(# ofinstructions in control program/2)
size of the pixel shader (cnti+instructions)
size of the veriex shader (cntlt+instructions)
number of registers to allocate for pixel shader programs
numberof registers to allocate for vertex shader programs
wichwhich parameters are to be gouraud shaded

_____Bo-wegenerate texture coordinates for 4 pararneterornet
for wichwhich parameters (and channels (xyzw)) do we do the cy! wrapping.

Oxxxx : Normal mode
1xxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.
wichwhichof the last 6 ALU clauses is exporting
0: position (1 vector), 1: position (2 vectors), 3: multipass

vshader_export_count[6] # of interpolated parameters exported in clause 7 OR

kill_vector_on

21. DEBUGregisters

21.1 Control
Shader pipe
Count clause
Dword_ select

40000 Bes** © AT] Confidential. Reference Copyright Notice on Cover Page © ©* jonsis yo.59

of exported vectors to memory per clause in mullipass mode (per clause)
use the mask kill vector to kill pixels and optimize texture pipe fetches OR useit as
the fifth predicate vector wichwhich is the only predicate vector kept across clause
boundaries.

of the shader pipe for method 3 (0.64
instruction count and clause number for method 3
channel select for method 3

PAMIG GOT 0140 PM

Formatted: Bullets and Numbering

AMD1044_0256904

ATI Ex. 2105

IPR2023-00922

Page 232 of 239

ATI Ex. 2105
IPR2023-00922

Page 233 of 239

 ORIGINATE DATE

24 September, 2001

21.2 Context

EDIT DATE

4 September, 20155x

Mode. operating mode for method 3
Restate render state method 3 is operating on
Vector count vector number the methed 3 will export

PAGE

26 of 32
R400 Sequencer Specification

PROB_ADDR instruction address wherethefirst problem occurred
PROB_COUNT number of problems encountered during the execution of the program
Count instruction counter for debug method 2
Clause modef[S clause mode for debug method 2

22. Interfaces

22.1 External Interfaces

22.1.1 PA/SC to SPO: Lf bus

This is a bus that sends the [J inforrnation to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SPO thru 3)

 Name | Direction | Bits | Description
ls PA—>SPO | 643 _| LJ information sent over 2 clocks
Mask | PA+SPO [1 | Write Mask

22.1.2 PASC to SEQ : L/ Control bus

This is the control information sent to the sequencer in order to control the lJ fifos and all other information needed to
execute a shader program on the sentpixels.

Name Direction ‘Bits | Description
Write Mask | PA-SEQ(GP) ra | Quad Write mask left to right
LOD CORRECT PA—SEQ(SP) 24 | LOD correction per quad (6 bits per quad)
FVTX | PA>SEQ(SP) L2 _ Provoking vertex for flat shading
PPTRO | PA>SEQ(GP) i11__| P Store pointer for vertex 0
PPRT(1| PA-SEQGP) [11 | PStorepointerforvertex?

PPTR2 _PA—SEQGP) i411 | P Store pointer for vertex 2
E_OFF_VECTOR PA-SEQ(SP) 4 _ End of the vector
DEALLOC | PA>SEQ(SP) 14 _ Deallocation token for the P Store
STATE PA-SEQUSP) 21 _| State/constant pointer (6*3+3)
VALID | PA-SEQ(SP) 116 | Valid bits for all pixels 7
NULL PA-—SEQ(SP) 4 | Null Primitive (for PC deallocation purposes)
E_OFF_PRIM _PA-SEQ(SP) 4 _ End Of the primitive
FBFACE | PA>SEQ(SP) 1 | Front face = 1, back face = 0
TYPE PA-SEQ(SP) 3 | Stippled line and Real time command need to load tex

_ cords from alternate buffer
| 000 : Normal
| 001 : Stippled line
| O11: Real Time
| 100: Line AA

| | 101: Point AA
| | | 110 : Sprite

RTRn SEQ-—-PA 1 | Stalls the PA in n clocks

RTS | PA-SEQ(SP) 4 _PA ready to send data

22.1.3SEQto SPC:Interpolater bus *
Name Direction | Bits | Description

aLYPE | SEQ-—SPO 3 __| Type of the primitive

Exhibit 2017 docR400_Sequenser.des
PAMIG GOT 0140 PM

— e 4 Formatted: Bullets and Numbering

. LS + Formatted: Bullets and Numbering

4009 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jomsne 99.53 28

AMD1044_0256905

ATI Ex. 2105

IPR2023-00922

Page 233 of 239

ATI Ex. 2105
IPR2023-00922

Page 234 of 239

ORIGINATE DATE

24 September, 2001
EDIT DATE

4 September, 20155Sed

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 32
| 0005 Norval

| 001: Stippled line/Poly

P NY

<M] FormattedNNY
\2:) Formatted™

i Ott Time
| | 100: Line AA| 101. Point AA
/ | 419. Sorite

FVT. SEQ--SPQ > 2... Provoking vertex forflatshading, _ ae
FLAT GOURAUD 4 _ Flat or gouraud shading
CYL WRAP L 4 | Wich parameter needs to be cylindrical wrapped
iterWriteRegister index Z | IndexintoRegisterfileforwriteof Interpolated data
Write Mask 14 | Quad Write mask left to right

1 Le 2 _ Line inthe lJ buf i
Sy pt tt
Param0 Li

22.14 SEQ to SPO: Parameter Cache bus “

Name Direction Bits | Description
Pir | SEQ-»SPO 17 | PointerofPC (7 LSBs of Pointer
Pire SEQ--SPO |7 | PointerofPC(7LSBsofPointer)
PHS SEO SPO | 7 | Pointer of PC (7 LSBs of Pointer)

22.1.9 SEQ to SX0 : Parameter Cache Mux control Bus “

Name | Direction | Bits | Description
wx SEQ—-SKO | 4 i MuxcontrolforPC(4 MSbs of Painter),
Mug BEG 8x0 4 _, Mux corral for PC (4 MSbsof Pointer
Mux3 | SEG-»SXO 14 | MuxcontrolforPC (4 MSbs of Painter)

Return bus .
Bits | Description
128
128 0M is
128 | Vertexdatatointerpolate

22-4+322.1.7VGT to SPO/SEG : Vertex Bus “
Name Direction Bits | Description :
Vertex indexes | VGT--RESPO | 128 | Pointers of indexes or HOS surface information
EOF_vector VGT-RESPO/SEQ 11 | End of the vector
Inputs_vert VGT-RESPO/SEG|1 _ 0: Normal 128bits per vert
ee_ 1: double 256 bits per vert a

STATE LVGT-SEQ L21 | Render State (6°3+3 for constants) :

22-1.422,.8 CP to SEQ : Constant store load -

Name | Direction [Bits | Description
|Constant Address | CP-»SEQ 8 _ Address of the black of 4 constants _

Constant Data _CPSEQ _512 | Data sent over 4 clocks
Remap Address | CPSEQ [10) Remaping address write address
Remap Data pointer | CPSEQ 18 | Remaping pointer

22-+322.1.9 CP to SEQ: Fetch Slate slore load .

Name [Direction | Bits [Description _ ee
Constant Address | CPSEQ [8 _ Address of the block of 4 state constants
ConstantData CP-=5EQ©| 512 | Data sent over 4 clocks
Remap Address | CP-»SEQ 110 | Remaping address write address

Exhibit 2017 docR40G_Sequencer.dec 40059 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © =
PAMIG GOT 0140 PM

RAESAUS) Fe tted
‘<[Formatted __
<9) Formattedx

 | Formatted

Ss a4 Formatted: Bullets and Numbering

eo) Formatted: Bullets and Numbering

|GemanPESSES ttNes ' =
: FormattedRONSow

Formatted: Bullets and Numbering

-o7| Formatted: Bullets and Numbering

Formatted: Bullets and Numbering :

| oe 4 Formatted: Bullets and Numbering

BGOSF1E 4 2s

AMD1044_0256906

ATI Ex. 2105

IPR2023-00922

Page 234 of 239

ATI Ex. 2105
IPR2023-00922

Page 235 of 239

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

: 24 September, 2001 4 September, 20155 28 of 32 ‘, | Rleeceeabeee RNSet e
Remap Data pointer | CP.SEQ .8 | Remaping pointer | :

- , eee Formatt ering
22-+-622.1. 10 CP to SEQ - Control State store ioad oe
Name [Direction ‘Bits [Descriptionee ee eS

ieSUEHow Sse ! : ! 4 Formatted OO{ISSUE: How,Who and what is the size of this bus?} .

22-+-722.1.11MH to SEQ: Instruction store Load “""-[Formatted:BulletsandNumbering
[Name—~—CSdCéCDivection[Bits [Description : oe = oe aee a

Instruction address | MH->SEQ [12 Instruction address : —
Instruction | MH-»SEQ | 96 Instruction X times
Control Instruction address | MH >SEQ [9 _ Pointer to the control instruction store ae : :
Control instruction | MH->SEQ | 32__| Control Instruction X times os ee ee
{ISSUE: CP or MH?} os SEUSS es EOS

. . We a4 Formatted: Bullets and Numbering
22-+-822.1.12 SPO to RB-SXO_: Pixel read from RBs “3 Sees
Name | Direction : | Bits|Description |

Exportdata SPO--RBSXO G4°16 |32 pairsof32 bits channelvalues
Shader_Dest 14 Specifies one of the of up to 12 export destinations

Shader_Count SPO >SXOSP—-RB|3 Each set of four pixels or vectors is exported over
eight clocks. This field specifies where the SP is in that

! sequence.

Shader_Last SPO--SXO0SP—RE|1 The current export clause is over(true for one clock)
The last export instruction creates *two* cycles to the
RB. This needs to be set on or after the last RB cycle
that is produced by the last export instruction, but
before the first RB cycle of the first export instruction

| of the next clause.

Shader_PixelValid §P0-»8XOSP—RB|4x4|Result ofpixelkill in the shaderpipe, which must be
output for all pixel exports (depth and all color buffers).

| 4x4 because 16 pixels are computed per clock

Shader_VWordValid SPO-SKOSP-REB|2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

221-9221.13 SEQ to RB-SXO : Contro/ bus

Name | Direction Bits|Description
Export_Pixel 1 1: Pixel0: Vertex

Export_SEND 1 Raised to indicate that the SQ is starting an export
Export_Clause 3 Clause number, which is needed for vertex clauses
Export_State 21?|State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SPQ-—RE5%0interface
{ISSUE: Where are the PC pointers}

2244022114 RB-SX0 fo SE@ : Output file control
Name

“Direction Bits Description

Export_RTS RESXO—SEQ 4 Raised by RB-3X0to indicate that the following two
| fields reflect the resuit of the most recent export

Export_Position $XO--SEQRE-SEQ|1 Specifies whether there is room for anotherposition.

Export_Buffer $X0SEQRB—SEQ|7 Specifies the space availble in the output buffers.
\ 0: buffers are full

Exhibit 2017 docR400_Sequenser.des 4009 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jomsne 99.53PAMIG GOT 0140 PM

an| Formatted: Bullets and Numbering

en =>) Farmatted: Bullets and Numbering

AMD1044_0256907

ATI Ex. 2105

IPR2023-00922

Page 235 of 239

ATI Ex. 2105
IPR2023-00922

Page 236 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 29 of 32Bb fovea UUOS
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

22.44422.1.15 SPO to RB-SX0: Position return bus | S — — ———
| Name | Direction | Bits i Description

Position return | SPO >RBSXO | 128 | Position data or sprite size (per clock) |

For-point-eprites-and-position-exporsthe-size-and-position-are-interleaved-on-a-16 x -16-basis.\Wle-exser-1-pesition
then-1-point-sprite-sizes.-The-storage-used-is-of-64x%428-bite-for-position-and-64x32-bits-for-sonte-size,iLis-taken-from |. : oes SEES OS 28
the-oulput-buffer-Addiionnallyiineeded-theedgeflagsarepackes-_inte-thebie-ofthesprite sizes. Sees : OS :

ates Formatted: Bullets and Numbering

224+42272.1.16 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad's warth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The registerfile index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad's worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The registerfile index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

 Name “Direction Bits Description me
|TexRegFileReadData|SP--TEX 2048|16 FetchAddressesreadfromtheRegister file200

Tex_RegFileWrite Data | TEX-»SP 2048|16 texture results
ee{Formatted: Bullets and Numbering

22-4-4322.1.17 Sequencer to Fetch Unit bus (Slow Bus)

Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

\Name|Direction —s_so|Bits. Description,
Tex_Ready TEX— SEQ 1 | Data ready
Tex, Clause Num _TEX— SEQ 3 | Clause number
Tex_cst SEQ—-TEX 10__| Fetch state address 10 bits sent over 4 clocks

Tex_Inst | SEQ->TEX 12 | Fetch instruction address 12 bits sent over 4 clocks
EO_CLAUSE SEQ >TEX i _ Last instruction of the clause =
PHASE _ | SEQ--TEX 4 | Write phase signal
LOD CORRECT | SEQ—-TEX | 96 LOD correci 3 bits per comp 2 components per quad * 16

| | quads
Mask SEQ—TEX 64 _| Pixel mask 1 bit per pixel
Tex_Clause_Num_ | SEQ->TEX 3 _ Clause number : _
Tex_Write_RegisterIndex |SEQ->TEX 7 index into Register file for write of returned Fetch Data
Tex_Read_Register_index|SEQ->SP | 7 | Index into Register files for reading Fetch AddressI \ | (internal)

23.Internal-interfaces oe —

Thieink ee ve .

Exhibit 2017 doch400_Sequeacondec 40089 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jonsu. 1234 aePAMIG GOT 0140 PM

AMD1044_0256908

ATI Ex. 2105

IPR2023-00922

Page 236 of 239

ATI Ex. 2105
IPR2023-00922

Page 237 of 239

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2007 4 September, 20185 30 of 32i AAO

24.23. Examples of program executions

24-1423 1.1 Sequencer Control of a Vector of Verlices
4.

10.

11.

Exhibit 2017 docR400_Sequenser.des

PA sends a vector of 64 vertices (actually vertex indices — 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
* state pointer as well as tag into position cache is sent along with vertices
® space wasallocated in the position cache for transformed position before the vector was sent
e also before the vectoris sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
* The vertex program is assumed to be loaded when wereceive the vertex vector.

e the SEQ then accessesthe IS base for this shader using the local state pointer (provided toall
sequencers by the RBBM when the CP is done loading the program)

SEQ arbitrates between the Pixel FIFO and the Vertex FIFO — basically the Vertex FIFO always haspriority
e at this point the vector is removed from the Vertex FIFO
* the arbitrer is not going to select a vector to be transformed if the parameter cacheis full unless the pipe as

nothing else to do (ie no pixels are in the pixelfifo).

SEQ allocates spacein the SP register file for index data plus GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came downwith the vertices
« SEQ will not send vertex data until space in the register file has been allocated

SEQ sends the vector to the SP registerfile over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
e the 64 vertex indices are sent to the 64 register files over 4 cycles

« RFO of SU0, SU1, SU2, and SU3is written the first cycle
e RF1 of SU0, SU1, SU2, and SU3 is written the second cycie
e RF2 of SUO, SU1, SU2, and SU3 is written the third cycle
« RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

e the index is written to the least significant 32 bits (floating point format?) (what about compoundindices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, 2)

SEQ construcis a control packet for the vector and sendsit to the first reservation station (he FIFO in front of
fetch state machine 0, or TSMO FIFO)
e the control packet contains the state pointer, the tag to the position cache and a registerfile base pointer.

TSMO accepts the control packet and fetches the instructions for fetch clause O from the global instruction store
® TSMO was first selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSM0

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMO
FIFO)
e TSMO does not wait for requests made to the Fetch Unit toe complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
e once the TU has written all the data to the register files, it increments a counter that is associated with ASMO

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

ASMO accepts the conirol packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

all instructions of ALU clause 0 are issued by ASMO,then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

the control packet continues to travel down the path of reservation stations until all clauses have been executed
e position can be exported in ALU clause 3 (or 47); the data (and the tag) is sent over a position bus (which is

shared with ail four shader pipes) back to the PA’s position cache
e A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
e there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

PAMIG GOT 0140 PM

Fo 4 Fermatted: Bullets and Numbering

4009 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jomsne 99.53

AMD1044_0256909

ATI Ex. 2105

IPR2023-00922

Page 237 of 239

ATI Ex. 2105
IPR2023-00922

Page 238 of 239

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20155 GEN-CXXXXX-REVA 31 of 32hi AAAS A
e the ASM arbiter will prevent a packet from starting an exporting clauseif the position export FIFO is full

e parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
* parameter data is sent to the Parameter Cache over a dedicated bus
e the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space whenthere is no

longer a need for the parameters (it is told by the PA when using a token).
e the ASM arbiter will prevent a packet from starting on ASM7 ifthe parameter cache (or the position buffer

if position is being exported)is full

12. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

+223.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

e At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixe! quads by the detailed walker
® the state pointer and the LOD correction bits are also placed in the Pixel FIFO
e the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO — when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
e the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
« SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface @vhich has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagramsfor details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSMO FIFO)
e note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
* the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
e all other informations (such as quad address for example) travels in a separate FIFO

7. TSMO accepts the control packet and fetches the instructians for fetch clause 0 from the global instruction store
e TSMO0 wasfirst selected by the TSM arbiter before it could start

all instructions of fetch clause 0 are issued by TSMO

the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASMQ
FIFO)
e TSMO does not wait for fetch requests made to the Fetch Unit to complete; it passes the registerfile write

index for the fetch data to the TU, which will write the data to the RF asit is received
® once the TU has written all the data for a particular clause io the register files, it increments a counterthatis

associated with the ASMO FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASMO accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASMO, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the contro] packet continues to travel down the path of reservation stations until all clauses have been executed
*® pixel data is exported in the last ALU clause (clause 7)

e itis sent to an output FIFO whereit will be picked up by the render backend
e the ASM arbiter will prevent a packet from starting on ASM7if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRsso that they can be used by another
shader program

Exhibit 2017.docR400_Sequoncerde 46069 Bytes*** © AT] Confidential. Reference Copyright Notice on Cover Page © ** penans 19.54 aPAMIG GOT 0140 PM

AMD1044_0256910

ATI Ex. 2105

IPR2023-00922

Page 238 of 239

ATI Ex. 2105
IPR2023-00922

Page 239 of 239

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE CEES s ce oe
| 24 September, 2001 4 September, 20155 32 of 32 Srrr———UCC “$e E

; i a = Formatted: Bullets and Numbering| 244323.1.3 Notes <- (Formatted: bleandumbering_}
14. The state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real

threads orstall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not — this is because the RF pointer is different for all threads, but the IS
pointeris only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out.

Se ‘Formatted: Bullets and Numbering
25-24, Open issues a :
There is currently an issue with constants.If the constants are not the same for the whole vectorof vertices, we don't
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do sometesting on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2017docRA00Gequencerdes 46089 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** sensis i830PM10/1 G/O1 O1:40 OM mes

AMD1044_0256911

ATI Ex. 2105

IPR2023-00922

Page 239 of 239

