PR

P -
e B B ® B8
ci B B OB oDog

kB REBEEB G

TEH®
rag g
¥

VirtualLogic 3.5
User Guide

IKOS Technical Publications
Part Number 6000290-0001

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 1 of 394

Important Notice

This document 1s for informational and instructional purpescs. IKOS Systems, Inc. rescrves the right to
make changes in the specifications and other information contained in this publication without prior noticc,
and the reader should, in all cases, consult IKOS Svstems, Inc. to determing whether any changes have
been made.

The terms and conditions governing the sale and licensing of IKOS Systems. Inc. products are sct forth 1n
the written contracts between IKOS Systems, Inc. and its customers, No representation or other affirmation
of fact contained in this publication shall be deemed to be a warrant or give risc to any liability to IKOS
Svstems, Ine. whatsocver.

[KOS Systems. Inc. MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL.
INCLUDING, BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

IKOS Systems, Inc. SHALL NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FROM
[INCIDENTAL. INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF [KOS Systems, Inc. HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document contains proprictary inforrmation. In addition. the software programs and hardwarc
deseribed in this document are confidential and proprictary products of IKOS Systems, Tnc. and its
licensors. NO PART OF THIS DOCUMENT MAY BE REPRODUCED. STORED IN A RETRIEVAL
SYSTEM OR TRANSMITTED [N ANY FORM OR BY ANY MEANS, ELECTRONIC,
MECHANICAL, PHOTGCOPY. RECORDING OR OTHERWISE WITHOUT THE PRIOR WRITTEN
CONSENT OF IKOS Syvstems. Inc. Each licensed user is allowed to print up to 10 copies of this material
for intracompany usc only without infringing this copyright, Please contact IKOS Svstems, Inc., for
penmission to print additional copics.

IKOS" is a registered trademark of IKOS Svstems, Inc.

VHDL Accelerator™ is a registered trademark of IKOS Systems, Inc.
Virsim™ is a registercd trademark of Summit Systems. Inc.
\/irtuaLog,\i;::TM is a trademark of IKOS Svstems, [ne.

VLE-3M " is a trademark of IKOS Svstems, Inc.

VStation-3 Mrf'_ 15 a trademark of [KOS Svstems, Ine.
VStation-12M"" is a trademark of IKOS Systems, Inc

SimMatrixliis a registered trademark of Precedence, Ine.
Verillog-XL ™ is a registered trademark of Cadence Design Systems. Inc,
Sun® is a registered trademark of Sun Microsyvstcms,

All other brands or products arc trademarks of their respective companics and shounld be treated as such.

Copvright ©* 2001 by IKOS Systems, Ine.
All rights resorved.

Written inthec U. 8. A

ATI Ex. 2075
IPR2023-00922
Page 2 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Table of Contents

Tableof Contents v i i i i i e s e e et et et e e e 3

Listof Figures o i i i it s it it e s e 23

Listof Tables. it et it et eann 25
Introduction e e e e e 27
Overview2
VirtuaLogic’s technology advantages27

RTL for VStation. 28

Transaction Interface Portal2
VStation Components. 31
Hardware3
IDS and HP Logic Analvzor. 3
Target mterfaces33
Targctsvstem733
Softwareo 83
RTL Compiler3
VirtuaLogic Compiler oo 0034
Timing resynthesis 0.4
Intcrconnect resynthesis L L L. PR |

Backend Place and Route manager 35
Virtual probe analvsis tools . 33
Diagnoestics 35
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 3

ATI Ex. 2075
IPR2023-00922
Page 3 of 394

Table of Contents

Using the Graphical User Interface(GUI}., 37

Querview s 3T

Environment setup37
VLEsctup. Lo B
RTLC sctup 38

Inveking the Virtualegic software 38

Configurations L ... 3s
Config_mameo3y

Starting gvl on a pre-casting configoration 0 . . 0 0 38
Building a single-ASIC configuration . . S S T [

Seftwarc exeeutables. .~ L oL A0

Starting the graphical compiler interface. 4l
Problems A2

Disk space requirements. 42
CPUrequirements, 43

Navigating the GVL interface43
GVLwindow lasout. 45
Screen clements. . . 0 0 0 S S .
Dragand Drop 4
Multiple scleetion o 0 L0 L L4
Serolling textwindows 45
Dircctory and file browsers .~ 0 0 . L0 o L0 L db
“Phbuttons. .. . 0 L L L L L L L 4
Optional text fields~ 48

Common parts of the interface 46
Buttonbar 0L 4
Tabbar 0 0 0T
Dropdownmenue0 L LA
VirwalBrowser © .. L L LA

Path . . . LA

Modules
Nets .

L Lh
o e

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 4

ATI Ex. 2075
IPR2023-00922
Page 4 of 394

Table of Contents

Terminals |
Find .
Scarch
Show path
Additional lcaturcs
Regular expression syntax .
Ambiguty PN
Reguiar expression example
Clipboard .
Clear
Insert file .
Write file .
Append file
Disniiss
Reload
Undo .
Quit

Errors window .
OK
Visit(next)
Help .
Show Log .
Save Errors

File Browscr .
Path .
Dirceterics
Filcs .

OK

Filter

Cancel .

Optional text liclds

DesignImport o i i e e e e e e e

Overview
RTL Verilog flow

Verilog RTL user fow .
RTL VHDL flow

LA Ll M la T b La L L n A L
MDD S0 08 30 S0 20 w2 LA D b e e

62
62
62
62

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

ATI Ex. 2075
IPR2023-00922
Page 5 of 394

Table of Contents

VHDL RTL user flow
Design import .
Netlist import
Netlists .

Entering pathnanics
Netlists requirements |

Netlist defines
Input nethst type

Root module .

Technology mapping
Technology
Bondced out cores .
Instance removal cxample .

Technology files

Memory specification .

Memory parameters |
Memory name
Contents file . .
Instance-Specilic contents file
Writc cnable sense
Memorics .
Show memorics A
Dcfining memorics wilh nctlist prototypes .
Dcfining memerics without netlist proiotypes .

Memony [FO terminals

Ports .
Vectlors .
Scalar .
Output cnable scnsc
Add memory .

Delete memory .

Import memon file .
Memory files

Check memory .

Memery example .
Adding the memory

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

ATI Ex. 2075
IPR2023-00922
Page 6 of 394

Table of Contents

Adding the porl infermation
Adding the memorsy paramelers information

Timing specification

Clock domain

Building the wavelorms |
Multiple domains .

Data signals .

Rising .

Rising edge svnchronous inputs .
Falling cdge sy nchronous inpuls .
Both cdge svnchronous inpuls
Rising edge synchronous outputs
Falling edge synchronous outputs
Both cdge svachronous outpuls

Asvnchronous inputs.

Asvnchronous presct and resct signals
Asynchronous dala signals .

Unconnceted mputs and cutputs

Output clocks on the targel svsiem |
Inputs derived from outputs
Feedthrongh signals oo
Feedthroughs and verfs simulation
Bidircclional signals .

Design [/0 terminals .

Instructions

Add domam .
Add clock .
Add clocked data signal

Add asvnchronous data signal .

Import timing

Clock files

Gatc counting

86
87

88
8¢9
90
9l

92
93
94
95
a6
97
98
9%

. 1oo
S log
. Lol
. 101
. 102
. 102
. 103
. 103
. 106
106
. 1oa
o7
iy
107
iy
. 107
108
. 108

Signals L e e e e e e e e e e e e W 109

Overview .

Signal windows pane |

Auto-compiled/not compiled .

109
LT
112

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

ATI Ex. 2075
IPR2023-00922
Page 7 of 394

Table of Contents

Dclete . . . 0 0 L L2
Add . . L Lz

Write vitsim configuration o .. o1z

Signal groups pane o013
Grouptvpes - 4
Add . . 0 Lo T
Delete L L4
Cheek . . 0 o 0 . oo

Importprobes o . o . 0 . o L LIS

Signalspane
Compiler i e e e e .. 1T

Qverview T

RTL Compilel
RTL Compilerflow 1%
Input s
Output L2

Log 28
Messages - L L L S B o .
Incomplete sensitivity lisls L .. 27
Undefined function/task outputs .l2¢9
Muliiple drivers A R 114
Four-state reads =~~~ S S O |

Gate strengths and delavs 0 . . . 0 0 00000000132
Clock vaniabledata O133
Functiontctwmnull 0 0 0 0 o0 0000000 133
Repert Files .~ 134
Pramarvoptions. Lo
Optimization level L a2

RTL sourccdcbug L .42
Simulation crrors (Aflow). o .. 143
Module specificoptions L. 0 L oL L Lo 143
RTLC additional optionsl44
RTLC troubleshooting14
RTL messageso s

VLE/VSYNCompile 14e

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 3

ATI Ex. 2075
IPR2023-00922
Page 8 of 394

Table of Contents

Target hardwarc pane = 0 . L L 0 L 0oL 46
Emulation platferm oL L1448
Emulaterboards o .. . l46
Slorge L 4e

Compiler configuration panco 147
0% Visibilits 0 0 0 0 0 0T
100% Visibilitv cable 0 . . o 0000 00 oo 48
100% Visibibty benefits 0oL 48
0% Visibilitv costs .~ 0 . o4
100% Visibility restrictions =~ . . S S T

Conditional capturcG
Partition filcpanco .o . oo o180

Placement filepanc L. 0oL oL 180

Terminal constraint filepanc 151
Compileroptions panc
Improved cmulation performance. o . 0oL 132

No-Flows formedeling. I3

No-Flowsto compile adestgn = .~ 132
No-flows to improve cmulation speed S : 153
Special no-flow semantics for bidirectional top-level ¥0s 153
Visibility for bidircctional [/0s with no-flows . 154

Using No-Flows13
No-FiowsonBuses13
No-Flows in Combinational Loops .13
No-Flew at owtput of latches .l

Nettic-offs, 15
Designs with multiple asynchronous clocks . . S e
Senpt driven activities L L L L o L oL oo L1587

Seript dnven generation of virlualized mode! 0 137
Seript driven design compilation 138
ScriptdrivenPlaccandRoute L L Lo 0. L5

vlecommands 0 0 00 0 138

VRC S S S ss

vle . browsc constants L . oo 1se

Incorrect net value in the circuit .~ 0 . 000158

Design removal during second dead logic elimination 139

Running repeat configurations led

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 9

ATI Ex. 2075
IPR2023-00922
Page 9 of 394

Table of Contents

Vprobe balch-mode
VRUN batch-mode
Creating a new configuration database
Sugpestions for repeat conligurations |
Conliguzation ivpul files

Runtime state read/init/force .

Way's to improve compile time .
Front End Compilefvic .compile)
Place and Route (vic viask)
VLE messages .

FPGA Compile.

Machincs .
Remote machine resources .

All known hosts
Niceness o
FPGA compilc tasks .
Resct host list o
Stopping FPGA compile during compilation
Run FPGA compilation from the command ling |
Task managcment .
vtask commands
Hung jobs .
vtask command .
FPGA messages
Control .
Reports .
Generate VSM .

Virtualized Simulation Model

VSM limitations

Preserving design hicrarchy .

Generating a VSM

Simulating a VSM. .
Step L: Sinmilate the input netlist
Step 2: Prepare (he esibench . .
Step 3: Resimulale the modificd Testbench .
Step +: Simulate the VSM

.60
L6l
. 162
163
163

. led
vt
. 166
. 166
167
. 167

. 168
C 68

170
L7
171

172
172

173
173
175
173
174
174
175
177
177

177
178
178
178

178
178
179
. 180
. 180

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

10

ATI Ex. 2075
IPR2023-00922
Page 10 of 394

Table of Contents

Resolving simulation scenaries.18

Initializing thedesign 180
Timescaleissues L L Lo 18
Input timing issucs18l

Clock ordering and period 1ssucs L 182
Veclor Capiilte we
Example 83

VS8Msummany 0 L L 18
Incremental probe compile .~ 0 0. 0 0oL |84
FPGA compile =~ = S S O

Startcompile. L oL 0 0L 18s
Interrupt. . . . 0 . 0 L oL oL oL 18S
LOGopanc18

Multi Module Compile (MMC1)187

Overview ey
Userinput.lss
File structure. L. L8y

Overview of MMC phasesand flows 1%
Manuval box partiioning L0 o8
MMCphases. e

Toplevelanalyvsis 190
Localavalvsis
Global resource allecationo oo L0, 19l
Localcompilel
MMC flows = S S T 4

How to invoke the MMC compiler 193

MMC target commands L0 W
Iniiai compile L L L e
Incremental compile L. A A £

Procedure for compiling mixed architecture multi-box configuration. 196

New vsyn parameters used by the mmc driver
(for the advanced user)l

Required vsyn arguments (for the advancedusery 197

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 1

ATI Ex. 2075
IPR2023-00922
Page 11 of 394

Table of Contents

File formats .
vimw.resources file
vimw . changes file .

Visibility

MMC restrictions.

MMC circut restrictions: |

MMC sub-niodule topology restrictions: .

198
. 198
. 200
. 200

. 201

. 201
. 201

I 7l .2 | X

Overview .
Compiled signal windows pane.
Compiled signal groups pane.

Trigger pane .
Open [ile.
Writc [ile..
Show crrors. .
Add state...
Add domain .
Add all domain. ..
Cowser.. .
Timers .
Location

Trigger diagram pane .
Triggering capabilities
Steps to assembling a uscful trigger .
Anatomy of the trigger system
“Triggerable Signals™
Logic reduction .
Programmable state maching
Counlers and timers
Trigger description .
Anatomy of a trigger description .

Timer declaraticns o
(General-purpese) Counter declarations

. 203
L 204
. 205

L2035
. 205
206
. 206
. 206
208
. 208
. 208
210
L2106

L2111

. 211
L212

S 212
. 212
. 212
- 213
. 214

C 215

. 215
L2015
. 216

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

12

ATI Ex. 2075
IPR2023-00922
Page 12 of 394

Table of Contents

Domain declarations |
State declarations
Location assignment .

Trgger compilation .

Term collapsing
Term sharing P
Trigger cxpressions linitations

Useful recommendations

Summary of tngger concepts and overall syntax

Undcrstanding expression evaluation with respect to domains and clock cdges .

Basics o
Default domains and clocks
Explicit domains

Explicit clock edges
Cross-domain cvaluation

Understanding overall syntax

Examples .

Example 1 - Matching a given value e
Example 2 - Matching a condition N times (Not necessarily N contiguous times)
Example 3 - Matching a condition N contiguous tines .

Example 4 - Waiting for N ¢clock ticks

Example 5 - Tnggering statement occurring normally .

Example 6 - Controlling storage 1n a trigger P
Example 7 - Controlling storage within a statc according to {he value of an cxpression
Example 8 - Repeating a paltern N times | S

Example 9 - Specilving an inilial staic other than the first slale .

Example 10 - Triggering aftcr a given period of no progress .

Example 11 - Matching an expression exactly N contiguous times

Example 12 (Advanced) - llustraling various triggering [catures

Examplc 13 (Advanced) - [llustraling usc of various counters

L 216
. 217
L 219

220
L 220
. 220
221

. 221

222

. 222
L 222
222
. 222
. 223
. 223

. 229

. 225
. 225
. 225
. 225
L 226
. 226
226
226
. 227
. 227
228
. 228
. 230

EmMulation, v vt i s e s i s e e e e e e e .. 233

Qverview .

Emulator control pane.

Setup .

Emulater .
Logic anmalyzer .

[SE]
a} LV
‘e

2
L
(93]

n

[SS A
et
L

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

13

ATI Ex. 2075
IPR2023-00922
Page 13 of 394

Table of Contents

Virsim/Vre 236
Conncet . . 236
Load design . . 237
Enable 1/0s 237
Emulation speed 238
Functional test . - 238
Functional test purpose . 23¢9
Veolors 239
Rcload memory . 240
Poke memon 240
Upload memory, 241
Interrupt. 241
Uscr bits S 241
Conncet analvzer . L 242
Window . 242
Load trigger . 242
Upload wavcform . 243
100% Visibility . . 243
Emulation status 244
Clock rclationships 245
Multiple domain designs as a single domain L 246
Design emulation speed cxample . 246
Resetting the emulator target system . 248
Trigger 248
Waveform traces . . 248
Emulator log. 244
Virsim control window | . 249
Virsim hicrarchy . 249
Virsim waveform | 249
Virsim register . 249
Virsim source L 250
Virsim logic . . 250
Compiler Options Reference Guide, 251
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 14
ATI Ex. 2075

IPR2023-00922
Page 14 of 394

Table of Contents

Overview .
RTLC Additional Options .

Design input switches .
Venlog .
VHDL
Language recognition switches .
Vernlog .
-syntl_prefix
-cnable_case_pragmas
-compile_celldefines .
VHDL
-max_recur_limit
-PIESCIVe_IRNG_CAse .
-compile-vhdl-inits

-gnd_hangig tcrminals

Quzput file switches.
-out_dir
-out_file
-log file
-repord_file
-arca_rep file . . . L
Dirgctorics NM/, NET/. INCR/.

Message control switches

Disable/linut messages .
-Suppress .
-MAN_GITor_count .
-max_loop_cnl .
-max_mesg_count .

Allow/Disallow SimErrors
-allow 48T
-allow_4ST_for_mod
-allow GSD .
-allow_GSD_for_mod
-allow_ISL
-allow_ISL_for_mod .
-allow MDR
-allow_MDR_for_mod .

L2359
259
L 239
260
. 260

260
. 260
261
261
. 261
L 261
- 262
262
. 262

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

15

ATI Ex. 2075
IPR2023-00922
Page 15 of 394

Table of Contents

-allow_UFQ | 262

-allow_UFO_for_mod . 263

-disallow_4ST _for_med . 263

~disallow GSD for mod L 263

~disallow _ISL_for mod . . 263

-disallew_MDR_for mod . . 264

-disallow_UFO for mod 264

-cnable_BHV_mgessages (RTL errors) | . 264

Selective compilation switches . . 264

-import . . 264

-noblack box . 265

-force_module . 263

-force_all . . 263

-ignore_non_rl_gen | . 266

Debug and preserve switches. . 266

-dcbug . 266

-debug_module . . 266

-dont_debug modulc . L 267

-PICSEIVG . . 267

-preserve_module . 267

-dont_preserve_modale . . 267

Optinization switches. . 268

-lut_map . 268

-opt_ievel . 264

-opt_timoout limit . 268

-res_share . . 265

Compiler Directives 270

Disablc comptlation of regions S 276

VHDL Butlt-in Pragmas L 270

VLE Compiler Options . 271

Capacity control arguments . . 276

-Mm . . 276

-Mmlanout L 276

Partition control parametcrs . .27

-CUc 277

-CUi . L 278

-Fpi . L2789

-PUI . . 280

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 16
ATI Ex. 2075

IPR2023-00922
Page 16 of 394

Table of Contents

BPatabasce file suppression switehes . . 0 . . 0 0 0 . 0 00 o0 o L 28]
writespd . . L L L L
B 1 .] |
snoxnl oL L L8
-nodb L 0 L L 28

Analvsis/Transformation control 282
1 T . .
L . T
NoSvueQs L A 28
-Nca oo S S £ |
SNFRC 288
7 . .)
SING o e
SS9
SSEL L s,
SNoSdi . . L L L 0293
-noXOT o 0 L L o s 29s
MoXCT . . s 29
woXFT . . s s
oXIAT © 0 o L s 298
-noXSAT o L L o L s 298
SmoXTAT . . L 298
SXTAT L L s e
SSDPN L Lo e e 2
-fife_refold port limit o .o 297
-noctkopt .. . o L L L L 298
sclkopt . . . 0 L 298
XCrossDomainlQ L. L 298
SXETL L0 o s e
-noclockblocks - S S . 1)4

Control of output simulationmodels30
SVhe . o o s
1 1] |
L2 . 101 |
G 1))4
SN0 L s B02
~hdleat 303

Miscellancous L 0 . L L0 L o303
TS O 1

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 17

ATI Ex. 2075
IPR2023-00922
Page 17 of 394

Table of Contents

P 11 1
e S S S 504
LG 1)]
STersclO0 . L L 54
STerseProbe L L0 0 . L300
1T T e 1

Argumentsnot setmanvalls 308
O 11
DB B0
G 1
SNPG L L e e B
-Root . . L B
L0 | 11
SMemo o 0 L L B0
Probeln L L e e e
-ProbeWindows 0 . L L o0 oL oo 30
-ProbeCard S S .) 14
-ProbeCore Lo R 14
ProbeMap L L L 0 L L L s 3
-ProbeDB L L 3
-IncProbe . . . o . . . o . .31
MultiAsic . . 0 0 0 0 0 L 0 s
B O |
SArgel ... L L L 312
“argetfile © 0 . 0 . 0 0 oo L o312
SSYSPArL . . . L L3112
SANPAT . . . L . e e e e 32
SMe oo L 312
SMEMIERo oo U313
Sdefine- . . . L L L L L L 313
sdefings file 0 L. ..o .33
sbond ... 0 oo U313
ST o o314
o . 3
X) B
Xo oo L s 314
hvpd L 0 0 o514
o . 3
S L . N
Pl L36
P 3 £

Compiler options listed by category317

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 18 of 394

Table of Contents

vle commands .
vic
.
rl_compile .
ril_compilc_viask
verify
compilc
all
ppreican
browse .
vprobe .
rvirsim

tar

vtask commands .
add

rCmove .
newlist .
nice
stalus
exit

quil .
help .

Syntax, Semantics, and Reference Library

Overview .

VirtuaLogic structural verilog subset
Verilog identifiers
Module definition svntax .
Parameters.
Example
Simple assignments
Compiler dircctives .
Unsupported verilog constructs
Memory specification .

Textual syntax .
Mcmoery attnbutes .
Terminal bindings .

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

19

ATI Ex. 2075
IPR2023-00922
Page 19 of 394

Table of Contents

Semantics L L s

Timing specification33
Swntax . . L L kB
Semantics 0 0L L L 332
Probc listformat33

Textual syntax L. O ..o 0. . .33

VirtuaLogic reference library33
RTL Debug usingthe GUL.o o ... 339

Overview 33

RTLC debug capabilities33

Source debug window L L L L L L34
Limitationso 342

Graphical pathbrowsing32
Pruning L o4
Wavelonmvicwsr L L L L BdAs
Logicwviewer35

Trouble-shooting Guide e unnn 351

Qverview B8

Softwarc stallation Lo U352

Design import and compilation.33

Additional import and compilation problems33

7
Timescalcissues L . L L . . Lo 38T
Input timing issves 8

8

35
Clock erdering 1ssues .35
Clock period issues 33

Design compilation35
Partitioning ke

Configuration download. 362
Emulation0 363
Solaris2.6.363

Debug activity 0 L0 L L 6

Virtual swapping L. ..o

20 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 20 of 394

Table of Contents

Biagnosing the probiem . 363

Command syntax 363

virtual-swap command . 365

Tyvpes of swap . . 366

Column ssvap . 366

Row swap . 366

Boatd swap . 366

Noncompiling FPGAs. 367

Correcting noncompiling FPGAs with -FPi swiich . . 367

Correcting fitting problems with -CUI switch | . 368

PCFarm i 0 i it ittt et m st et s ot et on e 369

Qverview | . 369

Hardware requirements 369

Software requirements 369

PC setup 370

Software installation 370

Obtaining a RSH dacmon . C370

RSH dacmon o - 5371

Test the RSH dacmon L5371

Obtaining a RSH dacmon 372

VMW/Xilinx software . L 372

VNC (optional) . . 373

Obtaining VNC softwarc 373

Farm usage 373

From the command line 373

From the GUI 374

Maintenance scripts. 374

Glossary. o i e e e e e e e e e e e e 375

Appendix A. . L L L e e e e e e e 1

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 21
ATI Ex. 2075

IPR2023-00922
Page 21 of 394

Table of Contents

Logic analyzer setup ~1

Sampling data L2

Store L2

Caplure data . . L2

Maxiimm sample depth . L2

Downioading and running the logic analyzer . .3

Conncet to logic analvzer . 3

Run the logic analyzer . . . 0 0 0 . . . o000 o4

Index e e e i

22 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001
ATI Ex. 2075

IPR2023-00922
Page 22 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

List of Figures

Figure 1 Transaction Interface Portal 30
Figure 2 In-circuit system components.32
Figure 3 Screen elements00 44
Figure 4 Buttonbars e 47
Figure 5 VirtualBrowser window =o 49
Figure 6 Findwindow5
Figure 7 Graphical path browser{Flattened designmode)3
Figure 8 Graphical path browser(Design hierarchy mode). = .~~~ . . 35
Figure 9 Clipboard window 58
Figure 10 Errorswindow 60
Figure 11 Filebrowser.6l
Figure 12 Design flow for RTL Verilog designs =~~~ . 66
Figure 13 Design flow for RTL VHDL designs. 68
Figure 14 Netlistimport 71
Figure 15 Technology mapping. |
Figure 16 Instanceremoval L 76
Figure 17 Memory specification =~ e 78
Figure 18 RegFile schematic 86
Figure 19 Timing specification. 38
Figure 20 Unsupported circuit when Clk1 and Clk2 are in different domains. 92
Figure 21 Rising edge synchronousinputs 0 L 99
Figure 22 Falling edge synchronous inputs 93
Figure 23 both edge synchronous inputs. 96
Figure 24 nising edge synchronous outputs 97
Figure 25 Falling edge synchronous outputs 08
Figure 26 Both edges synchronous outputs 9g
Figure 27 Outputclock 102
Figure 28 Feedthrough. 103
Figure 29 Signalspage. 116
Figure 30 Generate virsim configuration file window 113
Figure 31 RTLC-VLEflowfor ICE 11y
Figure 32 ASamplelogfile. 121
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 23

ATI Ex. 2075
IPR2023-00922
Page 23 of 394

List of Figures

Figure 33 Sample designreport. . .. Lo 136
Figure 34 Sample areareport Lo
Figure 35 RTL Compileform. 141
Figure 36 Edit module options window =~ e ~ 143
Figure 37 RTL Compilation messages. oL l4a
Figure 38 VLE Compileform. 147
Figure 39 No-tlows to break multicycle paths o153
Figure 40 No-flow bidirectional /'Qnet . =~ e N R E
Figure 41 VLE Compilation messages. 167
Figure 42 FPGA Compileform. 168
Figure 43 FPGA Compilation messages . =~ e B A
Figure 44 RTL & VLE & FPGA datadeletion 176
Figure 45 VLE & FPGA data deletion . . . 176
Figure 46 FPGA data deletion 177
Figure 47 VSM verification process steps. L L. 179
Figure 48 Triggersform 204
Figure 49 Add state window - attributes.o L 206
Figure 50 Next and Jump transition 207
Figure 51 Adddomain. 208
Figure 52 Add all domainwindow 208
Figure 53 Add counter dialogbox 0L 204
Figure 54 Add timerdialogbox 210
Figure 35 Set trigger location dialogbox o oL L 210
Figure 56 Emulationform. 234
Figure 37 Setup hardware dialog 233
Figure 58 One Clock with Even Duty Cycle 247
Figure 59 Two clocks witheven duty cycle. 0. ... 0000 L 247
Figure 60 RTL Emulaticn/Debugusemodel 344
Figure 61 Sourceleveldebug 342
Figure 62 Hierarchy browser o34
Figure 63 Showpath. 343
Figure 64 Graphical path browser(RTL Topology). 346
Figure 65 Graphical path browser{Gate Topology).37
Figure 66 Find Pathname Window 348
Figure 67 Pruning 349
Figure 68 Waveform viewer L0 ... 350
Figure 69 Logicviewer 330
24 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 24 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

List of Tables

Table 1 VirtuaLogiccommands. 40
Table 2 RTLC messages. 122
Table 3 Configuration input files 163
Table 4 New vrun Commands. 164
Table 5 Saving and restoration of memeries 165
Table & MMC target commands (initial compile). 194
Table 7 MMC target commands (incremental compile) 195
Table 8 RTLC additicnal options =~ 252
Table 9 VLE compileroptions 271
Table 10 Compiler options that can be used together 317
Table 11 Unsupported verilog construets. 328
Table 12 Compiler options for behavigral code =~~~ ... 328
Table 13 Timing specificationelements 332
Table 14 Virtual.ogic reference library 334
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 25
ATI Ex. 2075

IPR2023-00922
Page 25 of 394

List of Tables

26

VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 26 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Introduction

Overview

Emulation is a technology that creates a prototype of an Application Specific Integrated
Circuit (ASIC) design in hardware. The prototype is generally built through partitioning the
design into smaller pieces and then mapping or compiling the design onto a large array of
Field Programmabie Gate Arrays (FPGASs) or custom chips. The prototype is a complete
functional implementation of the design including all digital functions and memories.

The ASICs can be tested under real world operating conditions rather than using an
approximation of their operating environment. In-circuit emulators get their stimuli directly
from the target system, unlike simulations, which require test programs, testbenches, and
stimulus files. The advantages of emulation include full system integration and debugging
befere the ASIC design is finished and the device fabricated. This is especially true of low
level software, such as diagnostics and device drivers, which often require actual target
systems for complete testing. The user can design and verify the ASICs, system hardware,
and system software at the same time.

VirtuaLogic’s technology advantages

The VirtuaLogic Emulation System uses a unique patented technology called Virtual Wires.
Virtual Wires provides significant improvements over previous technologies because it
makes emulation less expensive and easier to use.

Virtual Wires does not just map a design to the hardware, it actually compiles it for the
specific hardware resources. ASIC designs do not map directly to FPGA and emulation
custom chip architectures. Traditional emulation products execute a trivial translation
process and map the design to the hardware, then attempt to tune the timing implementation

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 27

ATI Ex. 2075
IPR2023-00922
Page 27 of 394

Introduction Chapter 1

by nserting delays into the data path to compensate for hold time violations. Virtual Wires
uses advanced synthesis technology to create a functionally identical design that is targeted
for the specific hardware of the VirtuaLogic emulator.

With compilation of the design into a single high speed clock and pipelining signals through
the machine using this clock, there is only one important delay, which 1s the worst case path
through a Xilinx chip. If the VCLK period is longer than this path, then no setup and hold
issues occur. As a result, the operating frequency of the design is immediately known at the
completion of the configuration process.

The use of Virtual Wires provides time_domain_multiplexing of multiple signals onto a
single FPGA pin or backplane pin. This eliminates the constraint of interconnect, greatly
simplifying the hardware and software and decreasing the cost of the hardware.

Without the need for interconnect chips, the resulting hardware 1s more compact and fewer
1Cs translate to higher reliability. In addition to eliminating the interconnect chips, the time
domain multiplexing is used on the backplane which eliminates the costly connectors and
backplanes. The implementation does not have the added propagation delay of the
interconnect chip and board delays, therefore potentially resulting in faster emulation
speeds. By eliminating interconnect challenges, Virtual Wires provides increased visibility
for debugging.

RTL for VStation

The RTL compiler for VStation, hereafter referred as RTLC on VStation, is the primary
RTL front-end to the VirtuaLogic emulation system or the VStation. It synthesizes RTL
designs to VMW primitives to be used by VirtuaLogic’s care compilation system. During
this process of compilation, it also generates an RTL debug database to be used by
Virtual.ogic for creating an RTL-level interface.

As aresult, RTL-compiler is both a front-end to the emulator and a solution with an
integrated compile and debug environment; together with IKOS' new co-modeling
technology they provide unique verification capabilities for many applications and users.

RTL en VStation expands the VLE use model inte earlier in the design and verification
cycle. Together with the Transaction Interface Portal, it also allows partially complete
designs to be mapped onto the emulator, taking advantage of its superior performance.

Some of the benefits are to:
» directly compile RTL for VStation
+ preserve RTL names and debug within the RTL domain

23 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 28 of 394

Chapter 1 Introduction

» moedel memories in software through TIP early in the design cycle and model them
into the emulator later for performance

= speed up turn-around times through RTL-supported Multi Module Compile and
Incremental Compile

For RTLC-VLE flows (for both verilog and VHDL designs), refer to page 65.
For RTLC-VLE compilation, refer to page 118.

For RTL Compiler options, refer to page 251,

For RTLC Troubleshooting, refer to page 144,

For RTLC Debug Capabilities, refer to page 339.

Transaction Interface Portal

Transaction Level C Interface called Transaction Interface Portal (TIP) enables chip
verification with abstract system models by providing a high-speed interface between the
workstation running the software model and the design under test running on the VStation
hardware. With this advanced capability, designers can perform concurrent hardware and
software verification and ensure that the chip works in the system environment before
committing te silicon.

Co-medeling, a new verification method made possible by TIP, enables system-level testing
by providing high-speed communication between abstract system models and the device
under test. Co-modeling is based on Transaction Interfacing. Transaction Interfacing is a
technique that separates the communication functionality from timing details to create
system level interfaces. Maximum verification performance can be achieved when each
transaction executes multiple clock cycles in the design under test. TIP, allows users to
verify system functionality with system level stimulus.

A transaction interface is ideal for integration with design flows based on a higher level of
abstraction such as C. It easily integrates with abstract C_based design flows, such as
CoWare, System C, and Synapps; intelligent testbenches such as Vera and Telecom
Workbench from Synopsys; and software processor models such as instruction set simulator
maodels.

The key to co-modeling performance is the speed of the T1P Interface. Since transactions are
system level events such as network packets, each transaction contains numerous bits of
information. The TIP quickly transfers the entire transaction in a single eperation. On the

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 29

ATI Ex. 2075
IPR2023-00922
Page 29 of 394

Introduction Chapter 1

VStation, each transaction is then decomposed in the pin accurate interface of the device
under test. To simplify the handling of data interfacing on the VStation, TIP provides a set
of co-modeling macros which bridges the TIP Interface into the design. The co-modeling
macros correspond directly to software read and write functions on the workstation,
enabling easy integration of co-modeling solutions into the verification environment. /¥gure
I on page 30 gives the user view and the implementation of TIP. For further details on TIP
and Co-modeling, refer to TIP user’s guide

USER VIEW
Software RTL &
Models GATE
Models
WORKSTATION
VSTATION
7/
/
7 ~
, \
\
IMPLEMENTATION ’ ~
4 .
’ N
WORKSTATION » A, VSTATION
4
SOFTWARE L9 TIP AP1L TP RTL RTL &
MODELS {TAPI) Macros GATE
Adapter Transactor MODELS
Figure 1 Transaction Interface Portal
30 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 30 of 394

Chapter 1 Introduction

VStation Components

The VStation consists of a reconfigurable hardware system, debug hardware, and interfacing
hardware. The hardware is driven by software tools used te implement and debug the ASIC
design. The entire system is called the VStation or the ViriuaLogic Emulation System.

Hardware

The Virtual.ogic Emulator is the primary hardware component. [t is a configurable system
that censists of a System Board, up to six Array Boards, IDS(Internal Data Sampling)
capability and/or an interface to a HP logic analyzer, an interface for the target system.
When programmed with the user’s design, the VirtuaLogic Emulator becomes the chip
prototype. Please note that the HPLA can be used wherever IDS is used in the document,

Tigure 2 on page 32 shows the major system components and demonstrates the connections
between them.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 31

ATI Ex. 2075
IPR2023-00922
Page 31 of 394

Introduction Chapter 1

Lithernet

HP 16500A/B Logic Analyzer(Optional)

I LA cables

\

data and clock cables -

g

User’s target system

IKOS VSTATION

Figure 2 In-circuit system components

The emulator runs at a reduced speed relative to the final silicon due to the partitioning of
the design across many chips. The resulting emulation frequency generally ranges between
500 KHz and 2 MHz. The emulation frequency is dependent on the number of logic levels in
the design, the partitioning and implementation, and the size of the design. As a rule, most
emulated designs run about 50 times slower than the final silicon,

IDS and HP Logic Analyzer

In order to debug the design while it is running in-circuit, an IDS(Internal Data Sampling)
capability or a Hewlett Packard Logic Analyzer is used to trigger and capture data. The full
event and triggering capability of the HP logic analvzer is supported. If HPLA is used, it
must be connected on the Ethemet network with the Sparc'l'M workstation and be assigned a

unique TP address.

32

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 32 of 394

Chapter 1

Introduction

HPLA is opticnal and used if the user wants to store more events. Data on the 1DS ranges
from 4K to 1 M and for a HPLA, 1t is limited between 4K and 2M samples. User has to note
that the TDS uploads million samples in less than 5 minutes to a contrast of 1 hour by the

HPLA.

The HP logic analyzer is connected to each Array Board through the System Board. Each
Array Board has the capability to multiplex up to 5000 signals to the Systemn Board,
allowing a six Array Board configuration to have up to 30,000 signals available for

triggering. For more information on HP Logic Analyzer, refer to the appendix.

Target interfaces

The 512 /O from each Array Module are connected through data cables to the target. The
data cables are connected directly to the target system, or package specific target interface
adaptors are available for many common package tvpes. The interface used are TTL,
LVTTL or 3.3V CMOS, 5V CMOS. TTL and LVTTL is used to both drive and receive user
signals from the emulator. 3.3V or 5V CMOS logic cannot drive but can be used to receive.
For more information on target interfaces, refer to the VStation hardware reference manual,

Target system

The target system is a custom system designed and built specifically for the application that
is under emulation. An example is a standard Pentium PC which has been slowed down to
operate between 500 KHz and 10 MHz. The use of this PC as a part of a target system can
aid in the emulzation of PC graphics cards, networking cards, or other PC interfaces.
Additional components such as a video frame grabber may also be used as a component of
the target system to assist with system slowdown.

Software

The VirtuaLogic Software consists of the following primary components:

RTL Compiler

VirtuaLogic Compiler

Backend Place and Route Manager
Virtual Probe Analysis Tools

Diagnostics

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

33

ATI Ex. 2075
IPR2023-00922
Page 33 of 394

Introduction Chapter 1

RTL Compiler

The RTL Compilation reads in the RTL source, then generates the RTL compiled
description. This description is referenced to structural netlist that 1s taken by the
VirtuaLogic compiler as input. RTL Cempiler also creates a debug database and supports
enhanced debug features to allow the user to debug in RTL.

Virtual.ogic Compiler

The Virtual.ogic Compiler includes the graphical user interface, the design importer, and the
resynthesis tools. In order to implement the design using the proprietary Virtual Wires
technology, the design is resynthesized to an implementaticn that is better suited to the
reprogrammable hardware This resynthesis provides timing and interconnect resynthesis.

Timing resynthesis

Timing resynthesis is required to assure that the medel provides the functionality specified
in the design without creating any problems as a result of physical implementation. Since
the technology is being translated fiom an ASIC design to an FPGA design, timing related
factors like clock and data skew could introduce problems which would make the design
nonfunctional By resynthesizing, technology dependent timing issues can be avoided This
requires a transformation into a single clock design. As a result, the user does not face the
challenges of traditional emulators in resolving hold time problems, This is similarto a
cycle based simulator in that it creates a cycle accurate implementation of the design.

Intercennect resynihesis

When a design is partitioned into the smaller logic blocks for emulaticon, the partitioned
groups must not exceed the pin or gate limits of the FPGA that it is being targeted for. Some
blocks are limited by the number of gates available on a single FPGA, but most chips are
limited by the number of pins available on the FPGA. Interconnect resynthesis resolves this
1ssue through time domain multiplexing techniques. Time domain multiplexing effectively
increases the number of pins on the chips. The result 15 a pipelined and multiplexed
implementation of the inter-FPGA signal paths. The average usable gates on each FPGA
dramatically increases, reducing the hardware cost.

The Vsyn compiler provides a unique feature in allowing the user to generate a Verilog HDL
model of the implementation that is created in the emulator. This allows the designer to run
the standard simulation test bench on the design EXACTLY as it is implemented in the

34

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 34 of 394

Chapter 1 Introduction

emulator and isolate preblems that may have been introduced. This eliminates issues related
to memory modeling, library modeling, clock specification, lack of specification and
validate any assumptions that were made in the creation of the emulation model.

Backend Place and Route manager

VirtuaL.ogic Backend Place and Route Manager includes the tools needed to place and route
the FPGAs that are used to implement the prototype. Since there are 64 FPGAs on each
Array Board, or 384 FPGAs in a 6 array board VirtuaLogic emulation system, it is desirable
to place and route as many FPGAs in parallel as possible to reduce the compile time. The
Backend Place and Route Manager allows the usage of multiple workstations to
simultaneously place and route the FPGAs. This dramatically reduces the time required to
compile a design.

Virtual probe analvsis tools

Virtual Probe Analysis tools have an interface to IDS and HPLA, that allows internal nodes
i the chip to be analyzed. It also includes the Waveform Browser, Netlist, and Schematic
Browsers for use in debug. Tt provides an interactive debug environment which allows
tracing of the design, selection of Virtual Probes, creation of complex trigger environments,
and viewing of probe groups.

Diagnostics

The hardware includes JTAG boundary scan that allows the diagnostic software to provide
100% coverage of FPGAs, boards, and cables in the isolation of hardware problems
including shorts, opens, or failed drivers and receivers. Diagnostics provide full coverage
testing of the system while only requiring about one hour to run.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 35

ATI Ex. 2075
IPR2023-00922
Page 35 of 394

Introduction Chapter 1

36 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 36 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

2 Using the Graphical User
Interface (GUI)

Overview

Using the Graphical User Interface (GUI) chapter covers the following:
« Setting up the environment
+ Disk space and CPU requirements
» Invoking VirtuaLogic software
» Navigating the GVL interface

Environment setup

The environment must be setup before running VirtuaLogic.

VL0LE setup

Enter the following in C shell:

setenvy VMW _HODME <installution_dir>
set path = (SVMW_HOME/bin Spath)

The VirtuaLogic software is installed on the network in the <installation dir>. For example,

seteny VMW_HOME /hq/support/relcase/VirtuaLogic_vx.x
set path = (SYMW_HOME/bin Spath)

If the software is used regularly, the above two commands should be placed in the ~/eshre
file. The VLE setup takes care of setting up the RTLC environment automatically.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 37

ATI Ex. 2075

IPR2023-00922
Page 37 of 394

Using the Graphical User Interface (GUI) Chapter 2

If the software is run on a remote machine, the software must be told where to display the
graphical user interface (GUI) with an environment variable as follows:

seteny DISPLAY <hostnanie>;0,0

This command displays the user interface on the host - Aostrame - to which the user is
logged into and using the CPU of another machine. There must be permission on the host
where the GUI appears. In this case, while logged into hostrame | enter the tollowing
command:

xhost +

When logging in, the .cshre file sets the environment variables to the default values.

RTLC setap

Enter the following in C shell:
setenv RTLC_HOME <rtle-vle installation areas
scteny LM_LICENSE_FILE <rtle-vle license key file>
For example,
seteny RTLC_HOME SVMW_HOME/rtle
setenv LM_LICENSE_FILE SVMW_HOME/license
set path=(SRTLC_HOME/bin/solaris_sparc Spath)

The reic-vie installation area contains two main executables in $RTLC_HOME/bin/
solans_sparc. These executables are only for Solaris_Sparc(versions 2 5 x, 26, 2 7)

rtle-vie: Core RTL compiler for VLE

rtlc-driver: wrapper over the core rtle-vle compiler

Invoking the VirtnaLogic software

The Virtual ogic compiler maintains a directory called a configuration which contains all
information associated with compiling a design. The configuration directory is
<Config name> vimw .

38 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 38 of 394

Chapter 2 Using the Graphical User Interface (GUI}

A configuration can be anywhere you choose, and you can have several distinct
configurations for the same design.

Configurations

A configuration is a UNIX directory used for building an emulation model. A configuration
must have a v extension (for example, ikos top verw).

The configuration directory contains the following:

« Input files that tell the VirtuaLogic compiler where te find its inputs and how to
build the model

» OQutput files that store the compilation results

The VirtuaLogic Graphical Interface (gv/) works with one configuration at a time. To control
and manage the configuration you are working with, use the buttons on the butten bar.

Config name
To invoke the gv/, enter the gvi command followed by the name of a configuration. For
example,

gv]l <config_name> &

The gv/ will store all software-generated files relating to the configuration /op in the
directery called 7op. vimw. In this example, /op is the name of the top-level cell in the example
design.

This name is the name that the software uses to store all software-created files. The
<config_name=> should be in lower case characters. In this example, top is the name of the
top-level cell in the example design.

gvlitop &

Starting gvl on a pre-existing configuration

To start gvl on a pre-existing configuration, use one of the following procedures:

From the GUIL:
» Choose (Jpen

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 39

ATI Ex. 2075
IPR2023-00922
Page 39 of 394

Using the Graphical User Interface (GUI) Chapter 2

From the command line:
*+ ¢d to the parent directory of the configuration to be loaded
» Enter the command gv/ config mame &

or

ol absolute path of conf direcrory=

Building a single-ASIC configuration

To build a single-ASIC configuration, use one of the following procedures:

From the GUL:
+ Choose Fife - Save.ls
= Enter the pathname of the configuration to be built

From the command line:
» cd to the parent directory of the configuration to be built
+ Enter the command gv/ confiz name &
= Click Seve

gvf creates the directory config name .vmw and all the required files

Software executables

In addition to a GUI, all programs can be run in a batch mode which allows the model to
build and debug processes to be scripted and automated, fable ! on page 40 describes the
executables and the functions of each executable. As the GUI executes commands, 1t
generates the necessary user input files and creates a log of the commands executed.

Table 1 Virtual.ogic commands

Command Features/Use

ol Brings up a User Interface window to assist in the entry
of design data and preparation for emulation

vie Generates a virtualized model or compiles a design and
runs the place and route tools

browsc Invoke hierarchy browser on design

40 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 40 of 394

Chapter 2 Using the Graphical User Interface (GUI}

Table 1 Virtual.ogic commands

Command Features/Use

and miscellaneous files. Required option is
TAR_FILE=archivename.tar

tar Generate a compressed archive of configuration, netlists,

compile Perform VLE compile

compile_clean Clean both VLE & FPGA compile data

compile viask Perform VLE & FPGA compile

inc_probe Perform incremental probe VLE compile

inc_probe_viask Perform incremental probe VLE & FPGA compiles

nl Perform RTL compile

ntl_compile Perform RTL & VLE compiles.

1tl_compile_viask

Perform RTL, VLE & FPGA compiles

verify Generate netlist for simulation verification
vprobe Invoke the logic analyzer control program
viask FPGA place & route a compiled design
viask_clean Remove files created by vtask

mme_compile_all Compile all mmc modules

Starting the graphical compiler interface

To start the graphical compiler interface, type the following:
gvl &

Run the compiler graphical interface to do the following:
» Identify and produce inputs
» Invoke the compiler
* Produce a script for subsequent script-based compiler invecation

The graphical compiler driver performs the following;

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

41

ATI Ex. 2075

IPR2023-00922

Page 41 of 394

Using the Graphical User Interface (GUI) Chapter 2

» Assembles compiler inputs
» Invokes the compiler
= Verifies inputs

» Produces a script to repeat this process without using the graphical interface

Problems

To avoid problems, or if problems occur:

1. Make sure that the environment vanable FAIH HOMI 1s defined as the directory in
which the Virtual.ogic compiler is installed.

2. Make sure that SFA/W HOALL binris in the executable search path.

Disk space requirements

Disk space is a critical resource for emulation projects. As the design changes, it will be
necessary to have multiple builds of a design. A common approach is to maintain the last
build that was functional, to debug a current or latest build and simultaneously to be in the
process of building the next version of the netlist. This appreach requires sufficient disk
space for 3 entire builds of a design. However, if multiple chips are integrated or blocks are
independently changing, then it is necessary to have up to 3 databases for each of the chips
or blocks that independentlv changes. Normally, disk space for up to 6 simultaneous
databases provides some working margin that allows a continuous flow of removing
unusable databases prior to a recompile.

In addition to the database and files generated by the VirtuaLogic tools, a build might also
include the testbench used for verifying the design and Logic Analysis waveform data.
Generally, waveform and vector data is very disk intensive.

The disk space required for a build is linearly related to the design size. For a design of
100,000 gates, a single configured database will require 100 Mbytes of disk space.

42 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 42 of 394

Chapter 2 Using the Graphical User Interface (GUI}

CPU requirements

The emulation build requires some complex software algorithms, such as partitioning, that
are very CPU intensive. Tt also contains some tasks, the results of which are that can be
distributed and collected by network bandwidth. The creation of the database requires 1/0 or
disk bandwidth. As a result, the task times will be dependent on the CPU, I/0, and network
resources. Since the primary workstation should be used for partitioning, it needs to be as
powerful as possibie. Remote workstations can be used to assist with the FPGA Place and
Route tasks which are smaller individual jobs. The remote machines do not need to be as
powerful, but the task time will be directly proportional to their available resources.

The recommended primary workstation for a design of 1M gates or larger is an Ultra-Sparc
with at least 1-2 Gbytes of RAM and a large local disk for design builds. The remote
workstations used for PARs should be at least a Sparc10 or Sparc 5 class with at least 64M
of memory. PCs used for place and route should have a microprocessor of 300MHz or better
with 256MBytes of RAM for VLESM and 200MBytes of harddisk for software.

At the completion of a build for a specific design, the compile time and the components that
make up the compile time should be analyzed. This information provides guidelines for
times required for future compiles. It will also indicate the key areas that require the longest
time which provide the best opportunity for compile time improvements. The single largest
impact on compile time is normally found through adding additional workstations for the
FPGA Place and Route tasks.

Navigating the GV L interface

GVEL window layout

The tabs across the top of the gv/ window are attached to pages that control the primary
functions of the gv/ system. These pages contain the inputs and controls to run the needed
executables.

When running gv/, it records the information needed to build the chip model. Once these
specification files have been created, the user can edit and execute them in batch maode to
iteratively repeat the compile process without using the GUTL

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 43

ATI Ex. 2075
IPR2023-00922
Page 43 of 394

Using the Graphical User Interface (GUI) Chapter 2

Screen elements

Each screen in the g/ window comprises a combination of elements. Jigure 3 on page 44
illustrates the file card appearance of the interface with these common elements.

VIEW

FILE EDIT Butten Bar TOOLS

New_ Undo Tab Bar Clipbeard.

Open... Redo Design Import Browser.,

Save Reload Signals Virsimsvre

Save... Compile OPTIONS

Quit Triggers Mult-ASIC
Emulation

|:" Virtualogic, ! _:@Sleep_\jﬁ: /hotie/subbiah/Train_Labs/V352/V35 /colu_r;v’m'w

Drop Down| B]
Ee EditY vied™ Tools Options Hel
Menu == - =2¢ ==
Butten B Design Imporl Sgnals ~ Compile Triggers Emulation
Tab Bar Metlist Import Technology Mapping Memory Speeification | Timing Specification
erilog Netlists * Netlist File Selection H
Sub Tab)
fhomne fevbbiah /Train Labs/V352 netlist/rtl/color bar. v Path Filter
one Ssubbizh Train Labs/¥352/metlist/rtl /Heounker v ; ; ; P
shome fsubbish/Train_Laba/V35Z/netlist/rtl/Veounter v 2izh/Train_Labs V35E/V35 fcoler e/ ». @
/hone fsubbiah/Train_Labs/V352/netlist/rtl/imagel _gen. v Directorias: Filas:
shome fsubbiah/Train_Labs F352/netlist rtl/ inagel_gen. ¢ .)
fhone /subbiah,/Train Labs/¥352/nstlist rtl/inaged gen v Re—Read Divectory color_bar_iow
shoue fsubbiah /Train Lebs V352 metlist rtl/inaged gen. v Go Up (2 COIQr’,haL!O,DTObEd‘V
shome fsubbiah/Train_Labs/V3S2/netlist/rtl/pattern_gen. v hoarda color_bar_io_windows.y
Ahome fsubbiah/Train_Lahs/¥352 netlist/rtl pattecn_mzx. v rtlcout color_bar_vw _probed.v
Panels /hone fsubbiah/Train_Labs/¥352/metlist rtl/pclk_and_valid_c signal_window _0 phw olor_bar_vw_windows.v
shone fevbbiah /Train Labs /W3E2 netlist/rtlfrons. v
werilng optians S
Pane g
Herizontal
Scroll Bal g
Netlists Type 2 . Root Module Show Modul&s
Verilog RTL color_bar
Writing confrguratiof shomefsubbizh Train Labs AIS2Y 35 /color . wr . ., ! gC" Q.
lielp Vertical Seroll Bar Two-pane Unde Redo
Directery and
File Browser Save Browser
Figure 3 Screen elements
44 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001
ATI Ex. 2075

IPR2023-00922
Page 44 of 394

Chapter 2 Using the Graphical User Interface (GUI}

Drag and Drop

Following are the steps to copy or move text from one place to another using drag and drop:

« Position the cursor over the selected text
« Press the left mouse button, sweep over desired text, highlighting it
» Depress the middle mouse button and drag the text to the desired location

« Hold down - control - when pressing the middle mouse button if you want to copy
the data instead of moving it

» Check if the file names are brought to the new pane with the full derectory path

Multiple sclection

To select multiple items at one time, use one of the following methods:

Method 1:
+ Depress the left mouse button
+ Move the mouse across successive lines of text

» Drag multiple selections to desired location

Method 2-
» Press comrol
« Click the left mouse button on lines desired
» Drag the multiple selections to the desired location

scrolling text windows

If the text does not fit in a window, use the highlighted vertical and horizontal scroll bars to
position the text where it can be viewed.

To Do This
Move one line or character Click on the arrows
Scroll continuously Hold the cursor on the arrows
See particular text Drag the position icon to the text
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 45

ATI Ex. 2075

IPR2023-00922
Page 45 of 394

Using the Graphical User Interface (GUI) Chapter 2

Dircetory and file browsers

Selecting a file with a two-pane directory and a file browser under Netlist File Selection
(illustrated in Fignre 3 on page 44) results in the following:

» Directory text pane indicates the current directory

- Subdirectories are listed in the subdirectory browser pane; double-click to select
one as the current directory. To move to the parent directory, double-click the
text line (7o Lip ()

+ Files are listed in the file browser pane; to select one, drag to the file drop site

<2 huttons

Clicking a “?” button accesses help information specific to the component or cluster of
components

Optional text ficlds

Optional fields for the user to fill in appear grayed out. They have a small button next to their
name which the user can click to activate the field. After activating the field, tvpe or drag
text to fill it in,

Common parts of the interface

Common to all the screens are the button bar, the tab bar, the drop down menu.

Button bar

[dgure 4 on page 47 shows a set of buttons which are used to perform different functions
and to bring up new forms. By default, the button bar does not show up on the gvl. The user
has to click view button bar to bring it up,

45 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 46 of 394

Chapter 2 Using the Graphical User Interface (GUI}

CEER @ o o Xkwm 2

ISR

New Open Save Save as Undo Redo Design - Signals Compnle Iriggers Emulation Virsm/vre Help
mpnrl

Browser

Figure 4 Button bars

Tab bar

On the tab bar, the user can pick any file cards. Each tab brings up a different page with its
own tasks, The Desigsr Impori page has a sub tab bar with its own file card tabs,

Drop down menu

Near the bottom of every page are buttons for the key commands which represent the most
basic functions performed. These button bars give access at all times to commonly used
configuration management. Its options include the following:

Bution Function
FILE
Save Saves the current configuration to disk and lights up the Save Asbutton if a new
configuration name is needed,
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 47

ATI Ex. 2075
IPR2023-00922
Page 47 of 394

Using the Graphical User Interface (GUI)

Chapter 2

Button Function
Save As | Brings up a window to create a new configuration directory and saves the
current configuration there. A prompt asks for a configuration directory name.
Sapeh
ez Tnn b
1 Fpene DIET 2
Cnreel e
Copy Design Files: click on box to copy any partition, place, pod-constraint,and
trigger files into the new configuration.
Copy FPGA Bit Files: click on box to copy any emulation bits into the new
configuration

Open Brings up a directory and file browser window to open a new or existing
configuration. Specify a configuration directery name. If it exists, it will be read
in. If not, it will be created with the next save operation, If the users does not
specify a .vmw extensicon, one will be added automatically.

Quit Exits from gvl. If the current configuration has been modified, a prompt asks if
it should be saved.

EDIT

Reload | Discards the netlist in memory (usually needed only if the netlist changed on
the disk).

Undo LIndoes the last action.

Redo Redoes the last action.

VIEW

Button Brings up the button bars, which is discussed on page 40.

Bar

Tab Bar | Brings up the Tab bar, which is discussed on page 47.

TOOLS

Browse | Brings up the Virtual Browser window to browse the design hierarchy and
connectivity. Refer to VirtnalBrowser oi page 49 for details,

Clipboard | Creates a clipboard window to hold items selected or dragged. This is necessary
to move signals from one probe group to another. Refer to Clipboard on page
a8 for details.

VIRSIM/ | Brings up the virsim verification window.

vre

43

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 48 of 394

Chapter 2

Using the Graphical User Interface (GUI}

VirtunalBrowser

Clicking on the Browse button produces the FiriualBrowser window which lists all the
moedules at a design hierarchy level, the network, and the terminal connections,

Figure 5 on page 49 shows the FirtwalBrowser window.

[L NirtualBrowser .
Path - - B
coloc_bar
Modules Find.. Hide z Nets Finat Hide ? Terminals Find., Hide H
i—color_bar % In clk & Connections
7 color_rom1 color_bart, 7 Mets, 1 Sut 7 In reset_, § Connections
7 color_rom2 coler_bar2, ¥ Mets, 7 Suf - ¥ Out blue_datal70], 2 Conrections,
7 color_rom3 color_bar3, 3 Nets, 1 Sut ¥ Out green_datal7:0], 2 Connections
— Hoountev hsyne_count, §7 dets, 4 in v Out hsyno 3 Connections, State
— pattern_mux patt_rnuz, 20 Nets, 74 7 out pizel_clk 2 Conmections
7 size_romres_size_rom, I Nefs ¥ Sw v Out pisel_valid, 3 Connectivns, §ig
¥ pattern_gen rah, 37 Nets 4 SubMod ¢ Qutted_datalF0l 2 Conmections, !
7 shade_rom shade_rom_bar, 3 Nefs, - ¥ Outvsync § Connections, State
i— pclk_and_valid_gen timing_gen 2 ¥ Wire addr(2:0], § Connections, Stat
i— Veounter veyn<_count, 52 Meis. 4 P Wire blug1[7:0], 2 Connections, §to
: ¥ Wire bluez[7:0], 2 Connections, St
7 Wire blue3[7:0], 2 Connections, 5ta
v Wire blued(7:0), 2 Comnections, 5to
v Wire data_in[23:0] 4 Connections
v Wire green1[7:0], 2 Connectlons, 5t
 Wire green2(7:0], 2 Connections, 5t
v Wire green3[7:0], 2 Connections, §1
v Wire greend[7:0], 2 Connections, St
w Wire hoount{11:0), 2 Conaectlons, !
v Wive patt_sel[1:0], 3 Connections. |
Search.., Show Fath... Dis miss

Figure 5 VirtualBrowser window

Fellowing is a description of the FirfualBrowser window components.

Path

This text field displays the path currently selected in the browser. This path can be edited by
typing and pressing return or by drag and drop from any appropriate }irsim or gv/ window.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 49

ATI Ex. 2075
IPR2023-00922
Page 49 of 394

Using the Graphical User Interface (GUI) Chapter 2

Modules

The Modu/les list shows all the instances at a design hierarchy level with module names in
bold. Selecting an instance with the left-mouse button shows all the internal nets in the Nets
list and all the instance IO terminals and their externally connected nets in the Yerminals
list.

Double-clicking on an instance expands the instance to show the submodules underneath
which are indented to show hierarchy. The submodule instances can then be selected and
expanded as well.

In many designs, there may be so many modules that it becomes difficult to deal with the
whole hierarchy in one screll list. The Sef Seope button operates on the selected instance and
makes it the new root of the Modiles list,

The middle-mouse butten can be used te drag and drop a hierarchical instance name to the
VirtuaLogic windows, Firsim waveform display window, or any other Motif-compliant
application.

Nets

The Nets list shows all the nets inside the currently selected module.

Double-clicking on a scalar net displays the connected instance terminals indented below
the net. Selecting one of these instance terminals will show all of that instance’s terminals in
the Yerminals list. Selecting a terminal from the Terminals list will highlight the connected
net, if any, and expand its connections. This feature can be used to trace signal flow across
hierarchy and logic.

Double-clicking on a vector net (e g, a[15:0]) will expand the vector which allows the user
to follow individual connections as for scalar,

In order to present a manageable set of data to the user, the VirtuaLogic GUI always tries to
vectorize nets together using pattern matching even if the input netlist has only scalars, The
user can double-click on a vectorized net to work with the scalars.

Double-clicking on a net that is already expanded will collapse it again.
The middle-mouse button can be used to drag and drop hierarchical net names to other

VirtuaLogic windows, Simulation Technologies’” Virsim waveform display window, or any
other Motif-compliant application,

50 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 50 of 394

Chapter 2 Using the Graphical User Interface (GUI}

Select a group of nets by holding down the left-mouse button and drag the mouse over the
range of elements wanted. It can also be done by holding down the conirol button while
clicking on the left-mcuse button to add additional elements, The drag and drop operation
will include all the nets in the group.

Terminals

The ferminals list shows all the terminals and connected nets of the instance most recently
selected in the Afodnles and Ners lists.

Selecting a terminal will highlight the connected net if there is one.

Terminals are displayed in vector form just as nets are. Similarly, double-clicking a vector
terminal will display the scalars underneath.

In some cases, a vector terminal will be shown as connected to a vector net with the same
stgarture. In this case, the user can navigate vector connectiens without expanding them.

Double-clicking on an expanded vector will collapse 1t again.

Find

The findd is used to find a string in the list. Clicking on the Fisd button will produce the
window illustrated in Figure 6 on page 51

Type into the box the name of the string in the list to find.
« Case sensitivity, if selected, uses case sensitive string comparisons
» Wildcard match, if selected, allows wildcards

- * means match any number of characters (0 or more), place at the beginning and
end of the string to match an embedded string

- 7 means match exactly one character

Lk R WL

Figure 6 Find window

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 51

ATI Ex. 2075
IPR2023-00922
Page 51 of 394

Using the Graphical User Interface (GUI) Chapter 2

Searvch

The Search button searches hierarchically through a design for objects matching a given

pattern,

Show path

Crraphical Path Display command draws electrical connectivity graphs of subsets of the
design. It 15 used to trace cones of logic to some terminal point. A typical example would be
to trace a net’s fanout until it hits a state or memory element showing all the modules and
connections in between.

Minimally, the path display engine must be provided the following:

A starting point indicated by the nets selected in the }7rfua/Browser. These nets can
be selected while the path display invocation dialog box is still up

A direction: drivers{fanin} or receivers(fanout)

A set of termination conditions. Whenever the path tracer matches one of the
conditions, it will stop that branch of the design traversal and draw it; other
branches well continue to be traversed

The resulting graphical display has to have the following features:

Nets are drawn with red line segments and indicate the direction of the signal (i.e.,
fanin or fanout) with arrows and are labeled with the full path of the net

Primary 1/0s are drawn as green boxes and labeled with the /O name
Combinational primitives are drawn with graphics

Other modules are drawn as boxes with the module name and path displayed inside,
as well as terminal names

The resulting drawing will show the original selected nets at the top: the gate level

view shows all nets as scalars, the rtl-level view shows a vector view corresponding
ta the original RTL source

state elements are drawn in purple with triangle in the lower left corner.

52

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 52 of 394

Chapter 2 Using the Graphical User Interface (GUI}

sub.iny_out

AN

sub.inv_in

root.sub.inv_in

root.sub.alu.out[0]

my_alu

root.sub.alu.ocut{Q]

» Power is drawn in red. Ground is drawn in black. Combinational primitives are
drawn in green, Flop and latch primitives are drawn in purple with a triangle at the
lower left corner, Primary inputs are drawn in dark green,

» Feedback nets are drawn as brown arcs. These typically occur when drawing a path
that does not stop at state or memory elements. Typically the user will press the
Stop at Stare button to cut the feedback.

= All terminals and net path names displayved in the graphics can be selected and used
for drag and drop to the Cliphoard, VirtnalBrowser, or Firsim. When selected, the
path names are placed in the X cut buffer so they can be pasted to any standard X
window,

« Theuser can display as many graphical paths as needed, each in their own window.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 53

ATI Ex. 2075
IPR2023-00922
Page 53 of 394

Using the Graphical User Interface (GUI) Chapter 2

* There are seven zoom levels. The three highest zcom levels display text in three
different sized fonts. The four lowest zoom levels draw the lines and boxes only.
They are mainly useful for giving a context for scrolling around a large zoomed-in
display. By pressing the 4pp/y button in the dialog box twice, the user can see two
magnification levels side by side.

* As the mouse is moved over the graphics, the path of the object underneath the
mouse is displayed at the top of the window. This can help the user find a way
around at low zoom levels,

Figure 7 on page 54 shows the graphical path browser in flattened design mode.

G_raphic’él--Pat_h'Brc_wser — color_bar.biue * |||

File Misw Radix Zosem Bookmarks eler_bhar clk

Figure 7 Graphical path browser(Flattened design mode)

figre 8 on page 35 shows the graphical path browser in hierarchical design mode.

54 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 54 of 394

Chapter 2 Using the Graphical User Interface (GUI}

[Graphical Path Browser — color_bag.bit] +

File Yiew Radix Zoom Bookmarks] P03 blue3([7:0]
w;w, mu%:w cusdig
g;uuaqm, rob B e 71 b LiueA T
Rettan_gen Retm_gen Fraten_gan
g:uueqm, g BT g Bl TH
e L

@ Soatio e 10 gobex | [rarrgs boeg 1o
soneawd s imaa=? sen icnsges A

(A7) rgrgtabeX T g e 70
- Fy ~

3]
POSEGE FOSEDGE FOSEIGE
o - o o -
-] 7 X
rhaor | dsor [amidear

Figure 8 Graphical path browser{Design hierarchy mode)

Graphical path browser also has the capability of switching feature from RTL design to Gate
level netlist and vice versa.

Additional features

Double-clicking on a terminal or net causes the path below that element to be collapsed.
Collapsed terminals and nets are displayed with a button below them. Collapsed elements
can be expanded by clicking their button or by double-clicking. Moreover, elements that are
stopped by specification in the Show Fath dialogue window are displayed as collapsed.
Expanding these elements expands the path continuing from them until the next set of
stopped nodes.

Two simple examples to illustrate the function of the path display mechanism are as follows;

. Draw a schematic of a module
- Inthe FirtnalBrowser, select a medule and then select all its output nets
- Click on the Show Path button
- In the dialog box, select the following:
» fanin
« stop at /O
- Click on OK

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 55

ATI Ex. 2075
IPR2023-00922
Page 55 of 394

Using the Graphical User Interface (GUI) Chapter 2

This will trace the fanin of all the outputs all the way to that module’s inputs. Try this on a
simple module at first to see what it generates.

If you try this example on a complex module, the result will probably be an error message as
follows:

Maximum number of nedes (10003 exceeded -- increasc’?

At this point, the user can increase the AMaximum number of nodes field in the dialogue box.
Note that it a very complex module 1s selected, the graphical display will not be very
helpful; therefore, the default value 1s set fairly low. The node count limit is somewhat
arbitrary as it counts all the traversals done by the path display engine, including those that
do not lead in a successful termination. Tt also counts traversals into the library and primitive
moedules which are not displayed to the user.

2. Trace a clock tree

- Inthe FirtnalBrowser, select a module somewhere in the hierarchy and then
select a clock net

- Click on the Show Peath button

- In the dialogue box, select the following:
« Fanout
» Show Hierarchy
+ Stop at State

- Click on OK

This will show all fanout of the clock net that eventually winds up in state elements. Note
that if you have selected a starting point in the hierarchy that has a lot underneath it, the
result can be overflowing the default maximum node count. The user should increase it or
limit the scope by starting at a lower position in the hierarchy,

Regular expression syntax

A regular expression 1s zero or more brasiches, separated by *|'. It matches anything that
matches one of the branches.

A branch is zero or more pivees concatenated. It matches a match for the first, followed by a
match for the second, etc.

A piece 1s an aitonr possibly followed by **°, *+°, or *?". An atom followed by * matches a
sequence of zero or matches of the atom. An alom followed by “+” matches a sequence of
one or more matches of the atonr. An aton followed by *?” matches a match of the aion or
null string.

56

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 56 of 394

Chapter 2 Using the Graphical User Interface (GUI}

An atomr is a regular expression in parenthesis (matching a match for the regular
expression), a raxge '’ (matching any single character, see below), *~ (matching the null
string at the beginning of the input string), *$’ (matching the null string at the end of the
mput string), a "\’ followed by a single character (matching that character), or a single
character with no other significance (matching that character).

A range 15 a sequence of characters enclosed in *[]” It normally matches any single
character from the sequence. If the sequence begins with **’, it matches any single character
not from the rest of the sequence. If two characters in the sequence are separated by °-’, this
1s shorthand for the full list of ASCII characters between them (e.¢., [0-9] matches any
decimal digit) Toinclude aliteral]’ in the sequence, make it the first character (following a
possible “**. To include a literal *-’, make it the first or last character.

Ambiguity

If a regular expression could match two different parts of the input string, it will match the
one which begins earliest. If both begin in the same place but match different lengths, or
match the same length in different ways, the following applies;

In general, the possibilities in a list of branches are considered in the left-to-right order, the
possibilities for **’, *+’_ and *?” are considered longest-first, nested constructs are
considered from the outermost in, and concatenated constructs are considered left most-first.
The match that will be chosen is the one that uses the earliest possibility in the first choice
that has to be made. If there is more than one choice, the next will be made in the same
manner {earliest possibility) subject to the decision on the first choice, and so forth.

For example, “{abla)b*c*’could match “abc’ in one of two ways. The first choice is between
‘ab’ and ‘a’; since ‘ab’ is earlier and does not lead to a successful overall match, it is chosen.
Since the ‘b’ is already spoken for, the "b*’ must match its last possibility (the empty string)
since it must respect the earlier choice.

In the particular case where no *|” are present and there is only one *¥’, *+’_ or *?’, the net
effect is that the longest possible match will be chosen. Therefore, ‘ab*™ presented with
‘xabbbby’ will match “abbbb’, Note that if *ab®’ is tried against ‘xabyabbbz’, it will match
“ab’ just after *x” due to the begins-earliest rule. (In effect, the decision on where to start the
match is the first choice to be made, hence subsequent choices must respect it even if this
leads them to less preferred alternatives).

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 57

ATI Ex. 2075
IPR2023-00922
Page 57 of 394

Using the Graphical User Interface (GUI) Chapter 2

Reguiar expression example

The regular expression “a[0-9]*(b)|(c)’ matches any string beginning with “a’, followed by
any number of digits, followed by “b” or “¢’, including “ab’, *a08398b’, *a08398d’

Clipboard

Clicking on Clipboard creates a Clipboard window to hold items selected or dragged. This
is necessary to move signals from one probe group to another

Figure 8 on page 38 shows the Cliphoard window.

< oudipbowd]

ke IuEtFiz o writetle Adpzrdfile Dsmiss

Figure 9 Clipboard window

Cilear

Deletes all the text in the clipboard.

Insert file

Inserts the contents of a file into the clipboard.

Write file

Writes the contents of the clipboard into a file, overwriting what was there before.

53 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 58 of 394

Chapter 2 Using the Graphical User Interface (GUI}

Append file

Appends the contents of the clipboard onto an exiting file, or creates it if it does not vet
exist.

Dismiss

Closes the window

Reload

Selecting the Refoce button discards the netlist in memory. This is usually needed only if the
netlist changed on the disk.

I'ndo

Selecting the {/neglo button undoes the last action.

Quit

Selecting the (it button exits the gv/. If the current configuration has been modified, a
prompt asks if it should be saved.

Errors window

The forrory list is used for display, navigation, and cut and paste of error information.
Most errors displayed here can be navigated by clicking on the Fivii(rexi) button.
Depending on the nature of the error, a user interface component may be highlighted or a
text editor may be brought up, pointing to the specified line in a file.

Some errors are net navigable. In this case, the Misitfrexs) buiton is grayed out.

The text editor used depends on the environment variable EDITOR, as per UNIX
convention. This can be overridden using the environment variable VMW _EDITOR.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 59

ATI Ex. 2075
IPR2023-00922
Page 59 of 394

Using the Graphical User Interface (GUI) Chapter 2

Due to the way gv/ uses $EDITOR to show lines in text files, IKOS recommends using
emacsclient for an SEDITOR. Typically, several errors will be tracked consecutively in the
same file. Fmacsefien: will read in the file only the first time. Move the cursor to the
appropriate line number each time you double-click. The emeacs and vf editors will read in
the file from scratch each time in a new window.

For this reason, gv/ will ignore SEDITOR values other than emacsclicni. If the user wants
another editor, specify it as SVMW _EDITOR, ¢v! will use it; however, the way 1t deals with
multiple errors in the same file is not ideal.

If SEDITOR and VMW _EDITOR are not set, or SEDITOR is sef to something other than
emacsclient, then gvf Clipboard is used to display errars, This editor is suitable for viewing
errors, making small corrections, and saving them; however, i1t 1s not a full-featured text
editor.

Figure 10 on page 60 shows an rrors window.

L L T M8 Chreraiadhs
L2 LT TR 1T Y T SRt T
Bowkitrg - Tide) bieiarg

Eepim [] FRPTUNEIN | PR AR

Figure 10 Errors window

Ok

Click to dismiss this error dialogue.

Visit{next)

Click to list the source of the next error.

Help

Brings up error specific help when available.

60 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 60 of 394

Chapter 2

Using the Graphical User Interface (GUI}

Show Log

Click to activate.

Save Errors

Clicking on Serve Iarrors produces the Fife Browser window as shown in Figure 11 on page

6l

File Browser

The Save frrors button on the GV forrors window invokes the Fife Browser window as

illustrated in Figure 11 on page 61

Path

[REREE P Sk
Bur- fwad S 2ury
(R]
e 4
borem i - (LN L L "
t ¥ +

Figure 11 File browser

The Parh field indicates the current directory.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

B1

ATI Ex. 2075
IPR2023-00922
Page 61 of 394

Using the Graphical User Interface (GUI) Chapter 2

Directories

Subdirectories are listed in the [ireciories pane. Double-click to select one as the current
directory, To move to the parent directory, double-click the subdirectory indicated by (7o {p

().

Iiles

Files are listed in the Fife pane. To select one, drag to the file drop site.

Ok

Click to accept the selected pathname and proceed.

Filter

Click to apply the wildcard filter to the set of files.

Cancel

Click to dismiss the dialogue box without proceeding.

Optional text fields

Optional fields for the user tofill in appear grayed out. They have a small button next to their
name which is clicked to activate the field. After activating the field, type or drag the text to
fill it in.

62 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 62 of 394

Using the Graphical User Interface (GUI)

Chapter 2

63 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 63 of 394

Using the Graphical User Interface (GUI)

Chapter 2

64 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 64 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
Design Import

Overview

Design Import creates the configuration files needed by the compiler to create an emulation
model for the design. The four functions of Desigir Import are as follows:

o Netlist import o page 70

» dechnology mapping on page 74
» Memory specification on page 77

« Timing specification on page 88

Together these pieces describe how the emulation system behaves Compiling produces a
design model which is simulated to verify the input specification.

For both VHDL and Verilog RTL designs, the environment variable VMW _HOME should
point to the installation area.

RTL Verilog flow

VLE GUI is completely supported for Verilog flow. The user takes the Ferilog 71, design
and imports the netlists using the design import form. The netlist type is mentioned as
Verilog RTL in the design import form. This RTL Verilog design has to be compiled by rtfe
first and then taken to vsyr compile.

Ligure 12 on page 66 shows the design flow for Verilog RTL designs.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 65

ATI Ex. 2075
IPR2023-00922
Page 65 of 394

Design Import Chapter 3

] D
Netlist Import E
]
! G
Technology N
Mapping

\ 1

Memory M
Specification P
O

R

! T

Timing
Specification

Signals

W

Generate VSM

VLE Compile

mE—9Z00

Figure 12 Design flow for RTL Verilog designs

66 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 66 of 394

Chapter 3

Design Import

Verilog RTL user flow

Steps Using GUI:

Import Verilog RTL files through the GUI

Specification of the netlist type through the GUT
Specification of the Root(top-level} Module

Specification of memory information

Specification of timing information

Specification of the RTLC compiler options

Specification of the VSYN compiler options

Specification of machines available for XILINX compilation

Start Compilation{single button compilation)

RTL VHDL flow

VLE GUI is not supported for the VHDL flow, VHDL flow is used as a stand alone tool. The
user takes the FH/). RTI design and compiles the design through »#/e-vie on the command
line prompt. For VHDL, the RTLC_HOME environment variable must be set in order to use

rtlc-vle.

The cutput netlist file is generated in terms of vimw primitive gates and stored in <out_dir>/
out.synth.v file {by default rifc.ont out.synth.v - The generated netlist file is imported using
the design import form. In the design import form, the netlist type is mentioned as Verilog
Gates. This design is taken directly to the vspa compile as the rtl compile stage is already
completed. For RTL compiler process, refer to RYV. Compile on page 118

Figure 13 on page 68 shows the design flow for RTL designs using VHDL,

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 67

ATI Ex. 2075
IPR2023-00922
Page 67 of 394

Design [mport

Chapter 3

RTL
Compiler Gate-level . , o
RTLCP-VLE Netlists Netlist Type: Verilog Gates

Generate VSM

Mo —TZ 00

] D
Netlist Import E
)
I
Technology g
Mapping
1
Memory M
Specificafion P
O
R
T

Timing
Specification

(Signals)

VLE Compile

FPGA P&R

8]

Figure 13 Design flow for RTL VHDL designs

68

VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 68 of 394

Chapter 3 Design Import

VHDEL RTL user flow

For designs with multiple logical libraries, a ,jaguarc file is created in the current working
directory or user’s home directory specifying all the logical libraries.

Consider a design which consists of the libraries chiplib, chipmem and work, and the files
are chiptop.vhd, chipcore.v, chipmem.v and chiplib.v which are analyzed into the logical

libraries work, work, chipmem, chiplib respectively. A jaguarce file is created by user for

this case, which looks like

MY_WORK == /path/to/lib/work
CHIPMEM == /path/to/lib/chipmem
CHIPLIB => /path/to/lib/chiplib

If the files chiptop vhd and chipeore vhd depend on chipmem and chiplib, rtlc-vle is called
in the following order for analysis:

% rile-v1¢ -analy=¢ ~hd] vhdl -w chiplib ¢hiplib,vhd

% fle-vle -analy ze -hdl vhdl -w chipmem chipmem vhd

% rlc-vle -analyze -hd] vhdl -w chipeore.vhd chiptop.vhd # default lib = work
If the top level entity is chiptop, compilation is invoked by:

% rlle-vle -ent chiptop -impott chipmem

The netlist is generated in verilog and is found in rtlc.out/out. synth v,

NOTE

VSYN compiler supports only verilog netlist as input. VHDL RTL
designs are passed through rife-vfe to get the verilog gate level netlist,

Design tmport

The Design Import reads in the RTL-level netlist for the verilog designs. It checks the
design for syntax errors and unacceptable Verilog constructs.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 69

ATI Ex. 2075
IPR2023-00922
Page 69 of 394

Design Import Chapter 3

To verify the emulation inputs and to establish a benchmark functionality for the design, it is
required to have a simulatable design model and testbench (i.e., design netlist, technology
library, memory models, and test fixture models), each of which is a distinet Verilog model
or library as follows:

* Design netlist 15 a Venlog RTL design or structural representation of the design,
using primitive cells from the Application Specific Integrated Circuit (ASIC)
vendor’s library

» Technology library is technology mapping for primitives in the ASIC vendor’s
library into IKOS primitives
» Memory models are behavioral models for all memory elements in the design

« Design testbench (test fixture) is a simulation mode] that provides stimulus and
measures responses of the ASIC design to test if'it is functioning correctly; the user
must be familiar encugh with the testbench to recognize when it indicates success
or failure

To use these pieces most efficiently, structure each piece as one or more separate files

Netlist import

The netlist is defined in terms of library primitives and it must be in Verilog RTL/structural
format. The library primitives can be an ASIC vendor library or the TKOS library. In
addition, the user must identify the top madule in the hierarchy of the design to the software.
The top medule in the hierarchy is also called the design name.

Figure 14 on page 71 shows the Netlist imporf window.

70

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 70 of 394

Chapter 3 Design Import

[|[Virtualogic3 . s@sleepy: /hofme, subbiah/Train_tabs/v352/V35 /colorvmw] - [||
File Edit View Taols Options Help
Design Import Signals Compile | Triggers Emulation

MNethst Import Technology Mapping Memory Spedfication - Timing Specification

verilog Netlists * Netlist File Selection ?
/hone /subbish Train Labhs V352 nerlisc/rtl/colac_har. v Path Filter

shome fsubbish Mrain_ Labs VISEmetlist/rtl/Meounter. v : .

Phome /subbiah Train_Labs /V352/netlist /1 £l Acounter. sish/Train Labs V35235 feolor wmard «. v

Shone fsubbizb/Train Labs /¥352/netlist/rel/inagel_gen v Directories: Files:

/home feubbiah Train_Labs/V3i52/netlist/rt]/Anage?_gen v i)

Jhone fsubbiab Train_Labs V352 /metlist/rel/inagel_gen. v Re—Read Directory color_bar_iow

/home /subbiah/Train Laebs/V3S2rnetlizt/rtl/inaged_gen. v Go Up () color_bar_ic_probedv
/home fsubbish/Train_Labs /V352/netlist/rtl/pattern_gen. v bioardo color_bar_io_windows.y
/hone fsubbish/Train_Labs /V352/netlist/rtl/patbern_mu:c v T ortlcout color_bar_vw_probed.y
Jhone fsubbish/Train Labs/V352 netlistrrclspelk and walid ¢ . signal_window _Oupbwe color_bar_ww _windows.w

fhome /subbiah/Train_Labs V352 /netlist /rtl /roms v

verilog Options #
Netlists Type 2 Root Module Show Madules. 2
werilog RTL coloe_bar
FRead configuration /home/subbiah/Toaan Labs WIS2V35/colon, viy Q

Figure 14 Netlist import

Netlists

The Neilisis frame is used to list the Verilog source files for emulation,

Entering pathiames

Use one of the following precedure to select files which contain Verilog code for the design:
+ Click the left mouse button in the frame and type the desired files.

+ Select the directories and files wanted from the Netlist File Selection with the left
mouse button and drag and drop them with the middle mouse button,

- Path contains the current directory

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 71

ATI Ex. 2075
IPR2023-00922
Page 71 of 394

Design Import Chapter 3

- Choose all file by typing * in the [/ilier field

- A binin the Paih field and *.vin the I'ilier field brings up all subdirectories of
hin in the Directories pane and all files matching din *.v in the Idley pane

= Use *“X windows” to copy, cut and paste from another “X window™ (e.g., xterm or
text editor).

Select files for just the netlist and memories. If there are prototypes or behavioral
descriptions in the memories, import these files also. This makes producing a memory
specification much easier.

Do not include primitive libraries or testbench files.

Netlists requirements

= Verilog netlists must be entirely structural
» Primitive components must be in a library supported by Virtualogic (refer to
Technology mapping on page 7+ for information)
« A netlist can be divided inte multiple files, each on its ewn line
« Module definitions for memories may be as follows:
- Omitted from the netlist
- Included as interface prototypes

- Included as a behavioral specification

In all cases, memories must be specified using the AMemrary Specification window. Refer to
Memoiy specification on page 77 for details.

Neelist defines

The Nedlist Defines frame provides a means to set Verilog preprocessing variables for use
when reading in the netlist. This corresponds to the Verilog simulation command line
options as follows:

+define+VARIABLE
and
+dehine+VARTABLE=VALUE
For each variable to be defined, type the following:

VARIABLE

72 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 72 of 394

Chapter 3 Design Import

To set it to a value, type the foliowing:

VARIABLE=VALUE

Each Verilog preprocessor variable in the Nedfist Defines frame should appear on its own
line. The user can cut and paste the preprocessor Netlist Defines information from the
simulation Makefiles.

The syntax to undefine a variable is as follows:
-VARIABLE

This is equivalent to the Verilog simulation command line syntax:

-define-VARIABLE

Input netlist type

All input netlists must be of the same type: Verilog Gates or Verilog RTL. Select the desired
netlist language.

Koot module

The Root Module frame specifies the name of the top-level module in the user’s design.
Type the name of the root module directly or select the module from a list of the candidates
by pressing the List Modules button. The netlist will then be loaded into memory and
scanned for candidate memory modules. Select the top-level module by clicking the left
mouse button.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 73

ATI Ex. 2075
IPR2023-00922
Page 73 of 394

Design Import Chapter 3

Technology mapping

The Yecimology Mapping frame allows the user to specify the library or libraries to use for
the design and export any modules in the netlist that will be implemented outside of the
emulator.

The fechnology Mapping window is shown in Figure 15 on page 74.

—Virtualogic3.5@sleepy: /home/subbiah,/Train_Labs/V352/V35 /colorymw] - || |
File Edit Vview Tools Options Help
Design Import Signals Compile Triggers Emulation

Matlist Import Technology Mapping Memory Specification 'Tim\ng Specification
Technology 7 - Bonded Out Cores 7. User Design Medules Shave Modules Find..: ?

VMW Reference
ISI LCA 100K
LS| LCA 300K
LS| LCA Q00K
LS| LCA 405K
LS| LCE 300K
LSI LCE 300KHD
TI TCCZ2000

TI TCC3000
VLISIWCT3S0
VISIVCT450
Other

Read configueation /home/subbiah Train_Labs /AU352,/935 /coloc vmw O_\J

Figure 13 Technology mapping

Technology

The Tecimology frame lists the technologies directly supported by VirtuaL.ogic. The
technology mapping library, commonly referred to as the library, is a structural Verilog
netlist that maps vendor or customer primitive cells to VirtuaLlogic primitives, letting the

74 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 74 of 394

Chapter 3 Design Import

VirtuaLogic Compiler understand the functionality of the design. The library is the lowest
level of hierarchy that can be observed in the Firtwal ogic Browser or probes. The contents
of library cells are not visible to the user.

Select the library technology of the input netlist. The technologies directly supported are
listed in the pane. Other technologies can be used by selecting (Qther and then supplying
additional Verilog files that map the primitives used by the netlist into the VirtualLogic
reference library.

When the user clicks Other, the Jechology Iiles frame is turned on; therefore, the files can
be listed by typing their pathnames, double-clicking in the file browser, etc.

If VirtuaLogic does not support a desired technology (not on the menu), create a Verilog
technology mapping model file If help is required, contact an IKOS support person.

The library can contain any syntactically legitimate construct in the VirtuaL ogic struciural

Verilog subset. [t can also contain any valid Verilog behavioral code as leng as the code is

used exclusively for verification purposes and it does not contain semantic content. Refer to
page 325 for details.

Bonded out cores

The list of Bonded Ot Cores identifies module names that are implemented outside the
emulator. Their [/0s are routed to the emulator I/ terminals. If there are structural contents
for the Bonded Out Core in the Verilog netlist, they are ignored.

Select the set of Bonded (i Cores by pressing the button labelled Show Module (for Drag
and Prop o Bonded Out Cores). This will scan the design and put all the module names in
the list below the button. Select the names with the middle mouse button and drag and drop
them to the Boidfed Out Core pane. Also, the names can be typed directly by clicking the
mause in the pane.

Module exporting allows the user to specify hierarchical blocks that are inside the design,
but will be implemented outside the emulator,

Use this functionality for any of the following reasons:

» Toidentify a bonded core for some internal element. For example, an ARM
processor implemented on the target system instead of inside the emulated design

+ Toremove some nonemulatable element from the design, such as a DAC from a
video chip
« To facilitate splitting a design across more than one emulator

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 75

ATI Ex. 2075

IPR2023-00922
Page 75 of 394

Design Import Chapter 3

Module exporting has the following results:
* Removes the instance of a module and all its contents from the emulator.

= Adds top-level I/0s to the emulation model which correspends to the ports of the
exported module.

Instance removal example

Figure 16 on page 76 shows the removal of an instance of a module trom the emulator and
the addition of top-level design terminals to connect the interface to the emulator. Inputs of
the exported instance become top-level outputs of the emulator, and outputs of the exported
instance become inputs to the emulator,

Before Export After Expart

-

I . =
L

e

bond_me
fop top
l bend_me

Figure 16 Instance removal

Technology files

The Yechnology Fifes pane is used to explicitly list library files when the desired
implementation library is not yet directly supported by Virtual.ogic.

Type the full pathname of the Verilog library filename here, use the file browser beneath to
double-click on the desired filename, or drag and drop with the middle mouse button.

76 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 76 of 394

Chapter 3 Design Import

Memory specification

The Memory Specification window is used to specify the behavior of RAMs and ROMs in
the design. Memories that can be described using this window have the following
charactenistics:

« Fully encoded addresses
« Unidirectional data ports (read or write, not read/write)
« Single bit, full word write enables

» Optional single bit, full word read enable

Memories that do not have these characteristics require the creation of a wrapper or shell
netlist which adds gate-level constructs to map a memory cell into the emulator Some
examples of memories that would require a shell netlist are as follow:

« A memory with a single address that goes to a read and write port
* A memory with a write enable and a clock
« A memory with separate byte enables for each byte of the memeory

Figure 17 on page 78 shows the Memory Specification window.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 77

ATI Ex. 2075
IPR2023-00922
Page 77 of 394

Design Import Chapter 3

-Virtuachlcs_'.fS @sleepy: /home/subblah/T rath_Labs/Y352/V35 /color.vmwt

File Edit View Tools Options

Design Import Signals Ccm;:ﬁ'le Triggers - Emuiation

Metlist Imporl Techriotogy Mapping Memory Spechcation Timing Spedification
Memaory Parameters ? Memories Find.. 7 Memory IO Terminals rnd. 7

Memory Name: o0 con Show Memories Show 1/Os (for Drag & Dropl

/home seubbiah Train_Lake Show Files Vmw_size_rom (Ex2d, 7 -
Contents File: wmw_coler_rom1 fgxzq !
Hex (Jreadnent) Contents File WmMw_coler_rom2 (dx249
wimw_coler_rom3 (gx29
Instance-Specific i
Cantents Files:

Write Enable Sense:

Ports ?
Direction Enable Addr Terminals[2:0] Data Terminals[23:01 add Port
Read addr[2:0] data_out[23:0] Delete Port

Add Memory: Delate Memory Impaort Memary File... Check Memeories...

Read configuratian home/subbaab/Train_Labs /Y352 W35 /color v

Figure 17 Memory specification

Memory parameters

The Memory Parameters pane includes the following: Memory Name, Conrents File,
Instence-Specific Contents Files, and Write fonable Sense.

The most common mistake in defining the memories is to define the write or read enable
sense incorrectly.

Memory name

The Aemory Name frame is a text field. Simply type in the memory name or click on the
memory name appearing in the Show Memories box

78 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 78 of 394

Chapter 3 Design Import

Contents file

The Costenis Fife is used to preload memory with data before emulation begins. It is
required for ROMs (memories without write ports) and is optional for RAMs. The file name
specified here is the default for all instances of the memory.

To specify imtial contents for a memory, enable the Contents File text field by typing the
path or using the Skhow Files button to the right of the text field.

The memory contents are formatted in hex or binary and support the same file formats as the
Verilog-XL commands. For example,

$rcadmemh
and

$rcadmemb

[nstance-Specific contents file
The tustance-Specific Conients Fifes frame is used to override the Contents Joile for a
specific memory instance. The syntax to use is as follows:

<format> contents_{file_pathname <instance_path=
where formar s hex or binary

For example,

bin data/pO O.dat box(rJ 111 slice (. rom
bin ./data/p0_1.dat box0.J111 slicc l.rom

If a memory is instantiated more than once in a design, and each instance of that memory
has unique contents, the fnsfance-Specific Contenis Iiles field is used to specify the data
format, instance name, and contents files for each instance of the memory.

The user can enter as many filename/instance pairs as needed, one pair per line. The file
names can be typed or dragged and dropped from the Show Files button. The instance
pathnames can be obtained from the Browse button.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 79

ATI Ex. 2075
IPR2023-00922
Page 79 of 394

Design Import Chapter 3

Write enable sense

The Write Fnable Sense specifies whether the write enable is edge sensitive, fevel sensitive,
or logic sensitive. The Write Finable Sense pull down selects one polarity for all read and
write enables of a memory. Memories with both high and low enables must be specially
modeled. The available choices and their behaviors are as follow:

Rising Edge

+ write port: The memory will write the data on the write port data terminals into the
address on the write port address terminals at the rising edge of the write enable

= read port with cutput enable: The read data will be driven while the output enable is
high and tristated when the output is low

Falling Edge

» write port: The memory will write on the falling edge of the write enable signal

« read port with output enable: The read data will be driven when the output enable is
low and tristated when the output enable is high

Active High
» write port: The memory will write the data on the write port data terminals, into the
address on the write port address terminals, while the write enable 1s high
« read port with output enable: The read data will be driven while the output enable is

high and tristated when the output is low

Writes occur before reads; therefore, if an address is written and read at the same
time, the data being written will also be read

Active Low

» write port: The memory will write while the write enable is low
+ read port with output enable; The read data will be driven when the output enable is
low and tristated when the output enable is high

Writes occur before reads; therefore, if an address is written and read at the same
time, the data being written will also be read

80 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 80 of 394

Chapter 3 Design Import

Active High Unordered and Active Low Unordered

The unordered enables behave the same as the Active High and Active Low
selections, with the exception of the guaranteed write before read behavior.
Unordered enables should not be used unless recommended by a member of the
IKOS technical staff’

Note that races between the write enable, the write address and data are not
physically possible in the VirtuaLogic emulator. If data and address change on the
clock edge at the same moment when a level sensitive write enable becomes active,
the new values of data and address wiil be used in the write transaction.

Memories

The AMemories list shows the module names of each type of memory, address and data
widths, and the number of read and write ports. Initially, the Memories pane lists only
**Unnamed Memory™* Fimpiy.

Show memorics

The Show Memories lists the current valid choices of memories and also the bonded out
cores and empty modules. Click the button to display the list of current memories. Select
one by one of the non memories and delete it before proceeding to the timing specification.

Defining memories with netlist prototy pes

Initially, this list will be empty. The easiest way to define the memory types is to include
Verilog module definitions (prototypes) for them in the netlists. Selecting the Show
Memories button brings 1n all the user netlist modules that have na structural contents (nets
or submodules) defined. These are considered memory candidates (Verilog design modules
with no structural contents not already defined as memories). If any of the modules listed are
not memeories, select them with the left mouse button, one at a time, and delete them with
the Delete AMemeory button,

For each memory module, the user must fill it out with the following procedure:
1. Select it with the left mouse button.

2. Select the Aded Port button enough times to have the desired number of ports.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 81

ATI Ex. 2075
IPR2023-00922
Page 81 of 394

Design Import Chapter 3

3 Change the directicn of the wnite ports by clicking the port’s Direction menu and
selecting Write.

4 If any of the read ports have an output enable, click the small box next to the enable
field of that port.

5. Follow the directions in the section, AMemory I () terminals on page 82.

Defining memories without netlist prototypes

Do the following for each memory:
1. Click in the Memory Name field and type in the name of the memory module.
2. Select the Add Port button enough time to have the desired number of ports.

3. Change the directicn of the write ports by clicking that port’s Direction menu and
selecting Wrife,

4. If any of the read ports have an cutput enable, click the smafl hox next to the enable
field for that port.

5 Click in the port field and type in the names of the appropriate terminals. Verilog
vector syntax can be used and multiple scalars can be placed on this line, separated
by spaces. In many cases, sets of scalars can be easily entered using a synthetic
vector. For example,

ad a3 a2 al al can be represented as a<d:0>
Yald]l val3] walz2]l valll hvalfl can be represented as hal[<d:0z]

a4 a3 a2 al a0 can be represented as a_ <4:0>_

This can greatly reduce the amount of typing required to enter in memory specifications.
This syntax can also be used in the timing specification and is used in the Firtuc! Browser.

Memory YO terminals

The AMemory [O Terminals frame is used as a source for dragging and dropping terminal
names into the Data ferminals{?:0], Addr Terminals{?:0], and Fnable fields.

Following are the instructions;

1. Make sure the Nedlists, Netlist Defines, and Root Modnle have been filled out in the
Netlist Tmport window.

82 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 82 of 394

Chapter 3 Design Import

2. Select the Show [Os (for drag and Drop) butten. If the graphical interface has not
read in the netlist yet, it will read it now. If the netlist 1s very large, this may take
some time, If you prefer not to wait and know the memaory’s 1/Q terminals, you can
type them by clicking the left mouse button in the appropnate field.

[¥5]

Select the address terminals by pressing the left mouse button and dragging the
mouse over that data terminals, and then release the button. If the address terminals
are not adjacent to each other in the list, then repeat the process to pick-up the ones
migsed the first time or hold down the - control key while clicking the mouse to
add new entries to the selected set. Normally this will not be necessary as the
related terminals will usually be adjacent in the list, in fact they will often be
represented as a vector or a synthetic vector,

4. Press the middle mouse button over the selected terminals and while the middle
mouse button is depressed, move the mouse to the address field. Then release the
mouse button

5. The terminal names dragged will be removed from the Meamtary I O Termineds list.

6. Repeat the process for the data terminals and enable terminals.

Ports

Virtual.ogic supports memories with an arbitrary number of ports. When describing a
memory, specify the Direction (read or write), fonable, Address, and Data terminals,

The user interface comes up with one blank port. For each additional port in the memory (a
RAM will have at least two), select the Add Fort butten.

Do the following for each port:

1. Choose whether it is a read or a write port by clicking on the option menu in the
Direction column. Read 1s the default.

2. Read ports have an optional Juable signal. For a read port, ungray the field by
clicking in the small dox to the left of it On a color system, this will turn the box
from gray to pink. For write ports, the enable signal is required.

3. Fill in the name or the frable, Address, and Data terminals. If vou have already
specified the memory name and there is a Verilog prototype file for it among the
design files, then use the Memory [(O Terminals list to drag and drop the terminal
names. Otherwise, type the names

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 83

ATI Ex. 2075
IPR2023-00922
Page 83 of 394

Design Import Chapter 3

Vectors

The fastest way to enter in the address and terminal names is with vector syntax. Obviously,
this is easy to do if the netlist uses vectors. For example, an 8-bit address might have a
terminal name of addr[7:0]. This can be typed directly intc the Addr ferminadsf?:0] field for
a port or drag and drop them from the Memory [O Terminals frame.

However, the user interface tries to let the user do this even if the Verilog netlist has had its
vectors flattened with a synthesis tool, and in some cases, if' it was hand written using scalar,
say, to conform to a memory element in an ASIC library.

For example, the user interface uses textual pattern matching to group together terminals
that look like they ought to be part of the same vector because they are escaped vector slices
(e.g., \addr[<n;0>]), or if there are several terminal names with a common prefix followed
by a number (e g, addr0, addrl ...). The escaped vector slices will be collapsed into standard
vector notation (e.g., Yaddr[<n:0=]), while the similar looking scalar names will get a new
notation, using angle brackets, called synthetic veciors (e.g., addr<7:0>),

The Memory | () Terminals will vectorize as much as possible To deal with scalars
individually, double click on a vector name in the list.

The vector notation can be typed directly into the terminal field or directly into the memory
file (SCONJIG vanwment) using a text editor.

Sealar

If for some reason using vectors does not work, the user must fill out the Adldress field and
Date field by entering each scalar, separated by spaces (e.g., a7 a6 a5 a4 a3 a2 al z0).

Outpat enable sense

The Curput Fnable Sense is used for read ports that are given an enable terminal. It specifies
active low or active high. Qutput enables are always level sensitive.

Add memory

The Ackd AMemory button is used to add a new memory to the configuration.

84 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 84 of 394

Chapter 3 Design Import

Delete memory

The Defete Memory button deletes a highlighted memory from the Show Memories frame.

Import memory file

The Import Memory [ile button is used to specify a new memory file.

Typically, this will be found as vmw.mem in another configuration directory
(extrension. vimw). Note that this will add to the existing memories.

The contents of this file will be read into the memory editor and will be written to venw.inem
i the current configuration the next time it 15 saved.

Note that the semantics of the file management differs between clock file, memory files,
trigger files, and probe files. Refer to the sections below for details.

Memeory files
In memory files | two memory files can be sensibly combined into a larger one. It is usually
not recommended to swap between multiple memory files and gv/ always uses vanvmen as

the name of the active memory file. The only file management the user is expected to do is to
merge in a memory file from ancther configuration.

Check memory
The Check Memory button 15 used to check that the memories are consistently specified
(e.g.. port widths match)

Memory example
The following example illustrates the production of a memory specification for a three-port

memoery named Keglife which has two read ports, one write port, and 256 32-bit-wide
memory words,

Figure 18 on page 86 shows a schematic of the module.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 85

ATI Ex. 2075
IPR2023-00922
Page 85 of 394

Design Import Chapter 3

Register File
BADR([7:0]) ADGO[31:0]
BADR[7:0] BDO[31:0]
CADR(7:0)

CDIN([31:0]

WEN

Figure 18 RegFile schematic

The schematic representation uses the following:
* AADR and ADO are the address and data terminals for the first read port
» BADR and BDO are the address and data terminals for the second read port

» CADR, CDIN and WEN are the address, data, and write enable terminals for the
write port

+» WEN 15 level-sensitive, active low

Adding the memory

To add memory, click in the Ademory Name text field, and type in Regliile (memoery name).
Each time the Add Memaory is selected, a blank port form appears.

Adding the port information

To add the port information:

Step Action Notes
o Under Direction, select Read First port is a read port

2 ‘ Click in the Addr Terminals text box, and " The address terminals for this
type AADR[7:0] port are named ADDR[7:0]

3 Click in the Data Terminals text box, and The data terminals for this port
type ADO[31:0] into the data name field are named ADO[31.0]

4 Click on Add Port Add a port

86 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 86 of 394

Chapter 3

Design Import

5 Repeat steps 2-4 for the second read port
6 Repeat steps 2-4 but click Write
7 Click in the Enable box and type WEN

Adding the memory parameters information

To add memory parameter information:

This port is a write port
The write enable is named WEN

Step Action Notes
l | Ignore the Contents File field RegFile is a memory with no
required initial contents
2 | Select Active Low from the Write Enable | RegFile is write enable which
Sense menu is active low
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 87
ATI Ex. 2075

IPR2023-00922
Page 87 of 394

Design Import Chapter 3

Timing specification

The Yiming Specificatios frame enables the user to produce a file with information about the
timing behavior of ¢clack signals and data signals frem which the compiler can determine the
timing behavior internal to the ASIC. When creating a timing specification, the user must
classify each primary input to the chip as a clock signal or data signal and define its
behavior.

Figure 19 on page 88 shows the Timing specification window.,

Vi'r't"uaLo'gi_c3'-."'5'@5!Ee-py': shome/subblah/Traln_Labs/V352/V35/colorvinwi.
File Edit ¥Yiew Tools Options Help
Design Import Signals Compile Triggers Emulation

Metlist Import . Technology Mapging Memory Specification Timing Spedfication

G e e s

5 " harae Deman Hame

- bata Sighals Find... ? Design 10 Termiinals Find.. 2

Rising 1 clk (domalna Delote NG Sort Show 1/OS tfar Brag & Grog to Signals ans clocks)
Rising veset_ 1. clk (domaind}
Rising blue_datal7:0] 1. clk {domaing}
Rizing green_data[7:0] 1. clk {domaind)
Rising heync 1. efic {domainn)
ovtput Clock pinel_clk (domaing)
Rising pixel_valid 1. efk (domaind)
Rising ved_data[7:0] 1. clk {domaing)
Rising vsync 1. cfk rdomaing)

add Domain? Add Clock.... Add Clacked Data Signal..: add Asynchroneus Dats Signal...! Import Timing...

Read configuration /homessubbiah/Train LabsV3LEVI5/fcolor. wmw ‘@

Figure 19 Timing specification

83 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 88 of 394

Chapter 3 Design Import

Clock domain

The Clock Domcin frame is used 1o specify the design clock waveforms. In particular, the
VirtuaLogic compiler needs to understand the relative order of transitions between all the
design clocks. In creating a timing specification, the user must classify each primary input to
the IC as a clock signal or data signal and define its behavior.

A clock is an input signal whose transitions cause state elements to change state. Clock
signals include the following:

« Signals driving flip-flop clock pins, latch enable pins, or memory write enable pins
= Asynchronous set or reset 10 a clocked element (latch or flip-flop)

« Combines with other signals to become a clock

Clock signals are grouped into clock domains when the signals have integrally related
frequencies and fixed, specified phase-relationships (i.e, these frequencies must be integral
multiples of some commaon base frequency, and the frequency of one of the clocks must be
the base frequency).

A clock domain is a collection of the following:
» Phase-locked clock signals with a known phase-relationship

» The logic and state elements in the design which are synchronous to any of these
clock signals

Individual clocks can be added to the clock list in the following two ways:

1. Drag and drop clock terminal names from the Design T O ferminals frame by
clicking on the Show { () button, If the user has entered the netlists and root medule
name, the tool will read in the netlist and display the top-level design I/0s. Drag and
drop the clocks from the terminals list by using the middle mouse button,

2. Select the A/ Clock button. A window will pop-up for entering the clock name. If
itis an internally generated clock, for example from a phase lock loop, then the user
can specity a hierarchical name. The ViriuaLogic circuitry will automatically
generate the clock waveform specified, relative to the external ¢locks. The Add
(fock button can be used if reading the netlist would take too long or if you want to
specify the clocks before the netlist is completed.

Note that it is easier to add all the clocks at once and then specity the behavior of each, than
to complete each clock in succession.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 89

ATI Ex. 2075
IPR2023-00922
Page 89 of 394

Design Import Chapter 3

Once the clocks are added, the waveform can be edited by direct manipulation (horizontal
and vertical dragging) with the left mouse button or using the buttons on the right to add or
remove periods and invert the whole waveform.

The important factor is the relative order of transitions of the clock, not the number of time
units (vertical gray lines) consumed by a clock waveform

It is easier to understand compiler messages if the clock domains have meaningful names.
To name a clock domain, click the Change Domain Name button in that domain. Then enter
the desired name in the dialog box.

There is no limit on the number of clocks within a domain and a domain can include
external clock signals and internal clock signals, as long as all the signals have a fixed
phase-relationship.

External clocks include all design inputs which carry signals that trigger state changes
within the state elements of the design which include the following:

+ Pericdic signals used for flip-flop clocks or latch gates

» Apericdic signals, such as system resets, that are applied to asynchronous preset or
clear terminals of state elements

The Virtual ogic compiler can derive the timing of internal clock signals produced from
external clock signals with acyclic combinatorial circuits without user input. The compiler
cannot derive the timing of some internal clock signals, such as those produced by an
internal phased-lock loop or other cyclic or analog clock generation circuits. Periodic clock
outputs from such circuits require description in the timing specification just as external
periodic clock signals.

All clocks must have an integral frequency relationship to some base clock. The Virtualogic
compiler synthesizes logic which uses the base clock; therefore, the target system must
supply it to the emulator, even if the design does not use it. For example, if the design has
clock inputs with a 3:2 ratio, such as 75 MHz and 50 MHz, it is necessary to supply the
emulator with the base clock which is the lowest common integral factor of all clocks ina
clock domain. In this example, the base clock frequency would be 25 MHz.

Building the waveforms

As each clock is added, a waveform appears on the screen next to each clock name,
Waveforms reflect the behavior of the clocks and must show the order of the edges.

20 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 90 of 394

Chapter 3 Design Import

The clock waveforms show the number of edges in each clock and the edge ordering
between clocks. A pair of edges can have one of three orderings: Before, Same Time, and
After. If the edges line up, they happen at the same time otherwise they happen in the
mdicated order The important factor is the ordering or coineidence of edges relative to each
other, not the actual spacing between the edges

Create up and down segments to represent a clock edge Again, use one of two methods:
» Click on the boxes at the end of each line

- Y(inverts all pulses, reversing rises and falls).
-+ {adds a pulse)

- - (deletes the last pulse)

» Position the cursor on a line until the cursor turns into an arrow. Depress the left
mouse button, and while holding it down, move the mouse up. A pulse, the width of
one segment, appears on the screen. To make a double length pulse, push up the
next segment or pull on the vertical edge of the pulse. Move vertical segments (rise
and fall) left or right in the same fashion.

NOTE

only draw enough edges to represent one complete cycle of the
slowest cloek in the domain.

Multiple domains

The VirtuaLogic system supports multiple clock domains within designs, While clocks
within the same domain must have a known frequency and phase relationship, clocks within
different domains are assumed to be completely asynchronous; that is, have no known
frequency or phase relationship.

Some circuit forms that are supported within a single domain are not supported across
multiple domains. Each state element in the design can make transitions in only one domain,
You cannot clock & state element with a combination of signals trom different domains,

Tdgure 20 on page 92 shows a circuit form, supported when all signals are in the same
domain, but unsupported when signals are from different domain.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 91

ATI Ex. 2075
IPR2023-00922
Page 91 of 394

Design Import Chapter 3

Clkl

Clk2——— >

Figure 20 Unsupported circuit when Clk1 and Clk2 are in different domains

Beyond the restriction on creating clock signals by gating together signals from different
domains, there 15 no further restriction on the circuit forms supported for multiple domains.

Data signals

The Data Signais frame is used to specify the relative timing of data signals to design clock
edges. VirtuaLogic requires this information to analyze the timing of each signal in the
design, and perform timing resynthesis to achieve robust emulation results and efficient
resource utilization via time multiplexing.

Data signals are defined in terms of what causes them to change on the target system.
Typically this is a clock, but it could also be another data signal. Each data signal can have a
relationship with only one clock in one domain. All data signals are assigned to a domain
because each data signal has a fixed relationship to a clock (or multiple clocks} in the same
domain.

Data signals are signals which are not clocks or asynchronous reset signals. They include
the following:

= The collection of signals connected to D and Q terminals of flip-flops and latches
+ The address and data terminals of memories
+ Any signals from which other data signals, in combination, are derived

Each synchronous signal transitions (for design inputs}) or is sampled (for design outputs) on
the rising or falling edge of one or mare design clocks. Once a data signal is added (by
dragging and dropping from the Desigrn I O Terminals or by selecting the Add Clocked Data
Sigarads button), the user can select the clock and edge on which its timing is based.

Signals that can be transitioned or sampled on more than one clock or on both edges of a
clock are handled by adding the signals to the list multiple times,

92 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 92 of 394

Chapter 3 Design Import

Asynchrenous signals are entered by selecting the edue Asynehrosnious as opposed to Rising
or lalling.

Signals are not allowed to transition on clocks of more than one domain.

Rising

The Rising button is used to indicate the direction of the transition to which the data signal is
externally timed. The default is /¢ising. Click on this button for the fellowing selection:

+ Rising (selects rising edge timing for inputs, output, and bidirects)

» Falling (selects falling edge timing for inputs, cutputs, and bidirects)
» Both (selects both edge timing for inputs, outputs, and bidirects)

» Asynchronous (selects asynchronous timing for inputs cnly)

» NoConnect (ties inputs to ground and disconnects outputs)

» One (Tie-High) (ties inputs high)

= Zero (Tie-Low) (ties inputs low)

» Feedthrough (defines feedthrough pair)

» Feedthrough* (defines many feedthrough groups)

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 83

ATI Ex. 2075
IPR2023-00922
Page 93 of 394

Design Import Chapter 3

Rising edge synchronous inpats

Describing an input as rising edge synchrenous indicates that the input will only change
value as a result of the rising edge of the clock on the target system. The specification of an
input as rising edge synchronous describes the target system timing, not the timing of the
emulated design as shown in Idgnre 21 on page 94.

The emulator samples each synchronous signal input some time after each edge specified in
the signal’s timing specification. This sample occurs at least 100 ns after the edge and 30 ns
before the next edge in the signal’s timing specification as shown in figwre 2/ oi page 94,

Target System Emulator

Dala_signal >
VR
o
(Clock {>

Input to emulator changes on rising edge of clock

Edge 1 Edge 2
100 ns 50 ns
B —

XXXX XXX

Region in which synchronous input sampling occurs

Figure 21 Rising edge synchronous inputs

94 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 94 of 394

Chapter 3 Design Import

IFalling edge synchronous inputs

Describing an input as falling edge synchronous indicates that the input will only change
value as a result of the falling edge of the clock on the target system. The specification of an
input as falling edge synchronous describes the target system timing, not the timing of the
emulated design as shown in [igire 22 on page 95,

The emulator samples each synchronous signal input some time after the falling edge ot the
specified clock. This sample occurs at least 100 ns after the edge and 50 ns before the next
edge in the signal’s timing specification as shown in Figure 22 on page 93,

Target System Emulator
3ala_signal

I3 Q D

cr

(@
’7 Clock
>

Input to emulator changes on falling edge of clock

Edge 1 Edge 2

100 ns 50 ns

XXXX XXX

Region in which synchronous input sampling occurs

Figure 22 Falling edge synchronous inputs

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 85

ATI Ex. 2075
IPR2023-00922
Page 95 of 394

Design Import Chapter 3

Both edge synchronous inputs

Describing an input as both edge synchronous indicates that the input will only change value
as a result of an edge of the clock on the target system. The specification of an input as both
edge synchronous describes the target system timing, not the timing of the emulated design
as shown in figure 23 on page 96,

The emulator samples each synchrenous signal input some time after an edge of the
specified clock. This sample occurs at least 100 ns after the edge and 50 ns before the next
edge in the signal’s timing specification as shown in Figire 23 on page 96.

Target System Emulator

D Q
—o| P :lj:} Data_signal D
.'D Q

CP
) Clock >

Input to emulator on both edges of the clock

Edge 1 Edge 2 Edge 3
100 ns 50 ns| 100 ns 50 ns
- e o
XXXX XXXXX XX
Falling edge Rising edge
data data
sampled sampled

Figure 23 both edge synchronous inputs

96 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 96 of 394

Chapter 3 Design Import

Rising edge synchronous outputs

Describing an output as rising edge synchronous indicates that the target system will sample
the data on the rising edge of the specified clock. The specification of an output as rising
edge synchronous describes the target system timing, not the timing of the emulated design
as shown in figure 24 on page 97.

The emulator produces a correct output value on each synchronous ouiput signal so each
edge in the signal’s timing specification can sample the signal. The system produces correct
output values with at least 100 ns setup and 50 ns hold time to all clock edges listed in the
timing specification and shown in Figure 24 on page 97.

Emulator Target System

Data_signal . .
7w

Clock

>

Target systern captures data on rising edge of clock

Edge 1 Edge 2

50 s 100 ns | 50 ns

- -
XXXXXXKXKXKXAXXXX X

>
Region of guaranteed
output validity

Figure 24 rising edge synchronous outputs

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 97

ATI Ex. 2075
IPR2023-00922
Page 97 of 394

Design Import Chapter 3

Falling edge synchronous cutputs

Describing an output as falling edge synchronous indicates that the target system will
sample the data on the falling edge of the specified clock. The specification of an output as
falling edge synchronous describes the target system timing, not the timing of the emulated
design as shown in Fignre 25 on page 98,

The emulator produces a correct output value on each synchronous output signal so each
edge in the signal’s timing specification can sample the signal. The system produces correct
output values with at least 100 ns setup and 50 ns hold time to all cleck edges listed in the
timing specification and shown in Fignre 23 on page 98,

Emulator Target System

Data_signal
nQ

Clock

>

Target svstem captures data on falling edge of clock

Edge 1 Edge 2

50ns 100 ns ; 50ns

- <—>H
XHXXXXXXXAXXKXXX X

Region of guaranieed
output validity

Figure 25 Falling edge synchronous autputs

93 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 98 of 394

Chapter 3 Design Import

Both edge synchronous sufputs

Describing an output as both edges synchronous indicates that the target system will sample
the data on the both edges of the specified clock. The specification of an output as both
edges synchroneus describes the target system timing, not the timing of the emulated design
as shown in Figure 26 on page 99.

The emulator produces a correct output value on each synchronous ouiput signal so each
edge of the specified clock can sample the signal. The system produces carrect cutput values
with at least 100 ns setup and 50 ns hold time to each clock edges and shown in Fignre 26 on
page 99.

Emulator Target System

Data_signal . .
7w

Clock ‘
- b 4
> L@

Target system captures data on both edges of clock

Edge 1 Edge 2 Edge 3
T00NS 100ns !
50 ns | 50ns
-~ PESS . :<+<—>-
XXXXXXX XAXAXXXX X
— > D ———
Region of guaranteed Region of guaranteed
cutput validity output validity

Figure 26 Both edges synchronous outputs

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 89

ATI Ex. 2075
IPR2023-00922
Page 99 of 394

Design Import Chapter 3

Asynchronous inputs

Asynchronous inputs from the target system into the emulated design fall into two
categories: inputs driving preset and clear terminals of state elements, and pure data inputs.
These categeries are handled differently and are described below.

Asynchronous preset and reset signals

Like clocks, asynchronous inputs that go to the preset and clear terminals of state elements
cause the storage element to change state. Like clocks, these asynchranous resets must be
driven on the clock cable of the emulater. Unlike clocks, the user does not have to specify
edge behavior.

All state elements reset by an asynchronous input will be reset at the same time, no races are
possible.

For asynchronous reset signals there is an exception to the rule that state elements make
transitions only as a result of signals from a single domain. Asynchronous external signals
or signals from a domain other than that of the clock or gate of the state element can drive
asynchronous reset signals which are connected to asynchrenous clear or set terminals of
state elements. The Virtualogic compiler supports these signals,

Exercise care when using external asynchronous reset signals which are not driven from the
same clock domain as a clock signal. This creates a potential race condition. The
VirtuaLogic emulator whenever a clock and asynchronous reset signal change within one
velock period of ene anacther. Internal synchronizers within the emulator resolve the race
and all state elements see the same ordering of the edges.

In your design, the time window within which edges on a clock and asynchronous reset
signals constitute a race condition is much smaller, and state elements do not necessarily
resolve the race consistently.

Unlike the physical implementation of your design, if multiple state elements in the
emulator are simultaneously exposed to clock and reset, all see the same ordering of these
edges. In your design, when clock and reset edges are nearly coincidental, some state
elements might determine that the clock edge preceded the reset edge while others might
determine the opposite.

100 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 100 of 394

Chapter 3 Design Import

Asynchronous data signals

Signals from the target that do not change as a result of a clock edge can be defined as
asynchronous data signals. There is no guarantee that all fanouts of an asynchronous data
input will receive the data at the same time, or in the same user clock cycle. The amount of
time it takes the asynchronous signal to propagate to different fanouts is based on the length
of the path. Path length can change each time the design is compiled,

Uinconnected inputs and outputs

In many cases, signals that exist on the emulated design will not be connected to the target
system because that functionality will not be emulated. Test and analog [/O are examples of
signals that will not be connected between the emulator and the target. These signals can be
specified as NoConnect.

Outputs that are specified as NoConnect will not be implemented in the emulation model,
and the logic driving these outputs will be deleted.

Inputs that are specified as NoConnect will be tied to ground. It is recommended that you
explicitly tie off unused inputs. Inputs that should be tied to ground should be specified as
zero and inputs that should be tied to VCC should be specified as one. This way the timing
specification will be correct and self-documenting.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 101

ATI Ex. 2075
IPR2023-00922
Page 101 of 394

Design Import Chapter 3

Output clocks on the target system

Outputs that trigger state changes on the target system have two special considerations.
First, these signals must not have unexpected transitions which will cause false clocking,
Second, these signals must be generated to provide proper setup and hold time relationships
with data latched by these clocks. This type of signal must be specified as an output clock.

A signal specified as an output clock is generated at 100 ns before any cther output in that
clock domain. This guarantees that setup and hold requirements will be met at the target
system which is shown in Jigwre 27 oi page 102,

Emulator Target System

Data_signal
. 1wy

Clock

Emulator generates clock for target system

Cutput
Clock

50ns 100 ns 50ns |
100 ns | 100 ns
—pc—>
—Fe—>
I
Quiput XXXXXXXX XXXXXXXX XXXX
—> >
Region of guaranteed Region of guaranteed
output validity output validity

Figure 27 Qutput clock

Inputs derived from outputs

Some inputs te the emulator change as a result of an output of the emulator changing, rather
than due to a clock edge. A memory output enable is the most commeoen example, Outputs
and inputs connected via a communications path through the target system must be specified
as a feedthrough pair.

102 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 102 of 394

Chapter 3 Design Import

When an input signal and an cutput signal are specified as feedthrough, the input signal will
not be sampled until at least 50 ns after the output signal has changed as shown in Figwe 28
ot page 103,

Emulator Target System
; I
>

Emulator input derived from emulator output

Errohrouah . XXX XX XXX XXXX XXXX
50 ns
R —
Feedthrough X0 XRXX
B

Input Data sampling

Figure 28 Feedthrough

Feedthrough signals

A feedthrough is a pair of pins, a signal from the emulater that passes through combinatorial
logic on the target system and then passes back into the emulator. One pin relationship to
another will be defined as a feedthiongh and if husses or multiple signals have a feedthrough
relationship, they will be specified as a feedthrough*. The feedthrough or feedthrough*
specification tells the emulator to sample the input based on changes in the output, rather
than the clock. If the signal gets registered by a clock on the target system, then 1t must also
be described as one of the other types. A signal can normally only have one specification,
unless it is a feedthrough. In that case, a net can be both a feedthrough and a synchronous
data signal.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 103

ATI Ex. 2075
IPR2023-00922
Page 103 of 394

Design Import Chapter 3

A typical example of feedthroughs i1s a memory on the target system, where changes in the
address of the memory cause changes in the data without the occurrence of a clock edge.
Another example would be tri-state drivers implemented on the target system where an
output from the emulator controls the OE pin of the tri- state and the output of the tri-state
drives inputs to the emulator. The user can specify vectors for the source (emulator output)
and destination (emulator input).

A feedthrough tells the compiler that an output signal leaves the emulated design and
combinationally causes an input to the emulated design to change. A classic caseisa
memory output enable. If the emulated chip drives out an output enable that causes a RAM
to start driving data to the chip, this is a feedthrough. If a feedthrough is not used here, the
user will not get a correct circuit behavior.

To use a feedthrough in a cleck file, the syntax is as follows:

Feedthrough <terminal> <igrmanal>

The order of the terminals is not important. Note that either or both of the terminals may be
defined elsewhere in the clock file as rising, falling, etc.

Specifying the following:
Fecdthrough outsig|[2.0] insig|2:0]
is equivalent to specifying:

Feedthrough outsig|2| insig|2|
Feedthrough oulsig| 1] insig| 1]
Feedthrough outsig|0] insig|0|

Feedthrough* signals are feedthroughs where every source signal s assumed to drive every
destination signal. In this case, the vectors do not need to be the same length. Specifying the
following:

Feedthrough* outsig[2] insig[2]
1s equivalent to specifying:

Feedthrough oulsig[2| insig[2]
Feedthrough oulsig[2| insig[1]
Feedthrough outsig| 2| insig|0]
Feedihrough oulsig| 1] insig[2]
Feedthrough oulsig| 1] insig[1]
Feedthrough outsig| 1] insig|0]
Feedthrough oulsig|0] insig|2|
Feedthrough oulsig|0] insig| 1]
Feedthrough outsig|0| insig|0|

104 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 104 of 394

Chapter 3 Design Import

For scalar signals, Feedthrough® is identical to Feedthrough.

For GUT use, select the Desigr lmport tabeard, then select the Jiming Specification tabeard.
Below the Derter Signals is a a button with Rising as the default. Click on Rising to invoke the
selections and choose eedthrough.

Fecedthroughs and verify simulation

The way to determine a potential feedthrough in a verify simulation is with a setup time
warning that tracks FAMW INPUT SETUP.

For example, FAJW INPUT SETUP 18 by default 100 time units. Running verify simulation
results in a VSM warning as follows:

VirtuaLogic-Venfy Waming: Design /o “pad_TXFULL_": uncxpected transition scen at
fime 3392008

By viewing the clock time, the user can determine that the pad TXFULL _ has changed after
the FA/W INPUT SETUP time has elapsed and the user increases it to 200 time units. After
running the simulation again, the following warning message is displayed:

VirtuaLogic-Verify Warning: Desien /0 “pad TXFULL ™ unexpected transition scen at
time 3392008

This repeated warning indicates that it might be a feedthrough case.

The user must determine what output caused the feedthrough input to change by using a
testbench debug, help from another designer, ete.

If after a few of these are tracked down, you decide that all of these are related only to the
testbench and do not have anything to do with the target, then the best thing to do is to
switch to the vector based verify model to debug,

This happens most often if you are emulating submodules of a chip and have had to define
all of the /O as rising, falling, etc. It is very common for the RTL that models the rest of the
chip to respond in a combinatorial manner to outputs from the emulated block.

This means there are cases when the verify simulation might not work. There are cases
when the users will have the following:

» Declare nets as feedthroughs that are not in the target to get the testbench verify
simulation to work

+ Usethe vector shell read and give up on the testbench which will probably make the
verify simulation harder to debug if there is a mismatch

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 105

ATI Ex. 2075
IPR2023-00922
Page 105 of 394

Design Import Chapter 3

Bidivectional sienals

Bidirectional signals generally are specified as synchronous rising, falling, or both edges.
The input and output of the bidirectional signals will be timed to the same edge. If the target
system requires that the input and output of a bidirectional signal be timed to different edges
of the clock, they can be specified to do so by editing the file vamv.cfk. The format for this file
is documented in {iming specification vn page 332,

Bidirectional cutput clocks are supported. 1f the signal feeds back into the emulation model
as a clock, include the signal in an X777 file.

Design YO terminals

The Design I O {ernrinals frame is used as a source for dragging and dropping terminal
names into the A Clock and Add Clocked Daia Sigrals pop-up frame. These frames
expect terminals on the top-level module and they are a way to accomplish this,

Instructions

1. The Netlisis, Netlist Defines, and Root Modules must be filled out in the Netfis
Import window.

2. Select the Show [() button. If the graphical interface has not read in the netlist yet,
it will read 1t now. If the netlist is very large, this may take some time. If you prefer
not to wait and know the names of the top-level terminals, you can use the Add
Clock and Add Clocked Dater Signals buttons which will prompt the user for the
names.

3. Select the clock terminals by pressing the left mouse button, dragging the mouse
over the clock terminals, and then releasing the button. If the clock terminals are not
adjacent tc each other in the list, then repeat the process to pickup the ones missed
the first time or hold down the - cosrfrof - key while clicking the mouse to add new
entries to the selected set.

4. Press the middle mouse button over the selected set and while the middle mouse
button is depressed, move the mouse to the clock frame. Blank clock waveforms
will be added to that frame for the user to edit.

5. The terminal names dragged will be removed from the I/O terminals list.

6. Repeat this process for the [/O signals.

106 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 106 of 394

Chapter 3 Design Import

Add domain

The Add Doniain button adds a new blank domain pane when clicked.

Add clock

The Add (fock button is used to specify the clock name. If it is an internally generated clock
(e.g., from a phase lock loop), then the user can specify a hierarchical name. The
Virtual.ogic circuitry will automatically generate the clock waveform specified, relative to
the external clocks.

Add clocked data signal
The Addd Clocked Data Signal button is used to add clock signals.

By default, the signal will transition on the rising edge of the first clock in the selected
domain,

A clock must be added before adding a signal, and the timing of each I/0 signal must be
specified relative to an edge of a clock. When a new signal is added to the list, it is given a
default clock which may be changed; however, there must be a clock to begin with to add
the signal,

Add asynchronous data signal

The Add Asynchronons Data Signal button invokes & window for the user to type an
asynchronous signal name. After confirming the dialogue box, it will be added to the signals
window. The user must do this for all the asynchronous primary I/Os of the circuit under
emulation.

Import timing

The Import Timing button is used to specify an existing clock timing file. Typically, this will
be found as vanw.e/k in another configuration directory (extension. e,

Note that this will replace the existing timing information, it will not be combined.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 107

ATI Ex. 2075
IPR2023-00922
Page 107 of 394

Design Import Chapter 3

The contents of this file will be read into the timing editor and will be written te vmnw.cfk in
the current configuration the next time it is saved.

Note that the semantics of the file management differs between clock file, memory files,
trigger files, and probe files. Refer to the sections below for details.

Clock files

Clock files are self-consistent and cannot be combined. It is not recommended to swap
between multiple clock files and gv/ always uses v ¢fk as the name of the active clock file.
The only file management the user is expected to do is to copy the clock file from another
configuration.

Gate counting

Gates used for memories have to be considered. There are 2 parts of memory interface gates.
First, is the logic that converts our internal SRAM into whatever memory the gates need.
Since different types of memories require different amount of gates as wrappers, there is no
formula to calculate this. For instance, a simple register file or SRAM may have little
overhead, but a DDR memory may have more overhead. However, this wrapper is not very
significant to the overall gate-count. We can simply synthesize the wrapper to find the gate
count.

Second, is the logic that interfaces with the internal SRAMs. As a rule of thumb, we can
start with 250 gates for every port (read or write) per 8bit of data This formula suggest that
depth is not a factor. Therefore, for memories that are wide but shallow, it may be worth-
while to synthesize them. To synthesize the memory, we can estimate the gate-count as 10
gates per bit. Level verse edge sensitive memories internally have essentially the same gate
counts. We only have uni-directional ports, not bi-directional, in our internal memory
interfacing.

We can use -Dump g in the compile option to obtain a histogram of all the VMW-primitives
being used. This will give a good estimate for the gate-count. For more details on -Dump g
switch, refer to Compiler options pane .

RTLC creates a hierarchical area report. This report has all the information on gates for each
module. Refer to page 140 for a sample area report.

108 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 108 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
Signals

Overview

There are twa main categories of inputs that must be specified prior to compilation. The
first category is the overall design specification, i.e., the netlists, the memeory details, and the
clock domains. The second category of compiler inputs is the signal probing information.
The signal probing information specifies the visibility of emulated design nets, both for the
purposes of viewing emulated waveforms and for use as inputs te triggering specifications.

The VirtuaLogic compiler supports two approaches to specifying signal visibility: "explicit
probing" and "100% Visibility”. In the explicit approach, the desired set of visible nets is
explicitly specified by the user. In the 100% Visibility approach, which is a compiler option,
the compiler automatically adds extra monitoring logic to the design and also determines a
set of nets to monitor With this automatically generated infrastructure, any signal in the
emulated design can be reconstructed. The explicit prebing approach can be used in
conjunction with 100% Visibility. This allows for partial visibility of some signals prior to
the recenstruction process. In particular, signals for use in trigger descriptions must always
be explicitly probed.

To help manage the complexity of explicit signal probing, sets of signals are organized
hierarchically. At the bottom of this hierarchy are Signals, which are individual net names or
wildcard expressions that expand into individual net names. Signa/s are collected into sets
called Sigrrad Gronps. Signal Groups in turn are collected into larger sets called Signal
Windows with window meaning "a window into the design".

A user may create as many signal windows as desired, and multiple signal windows may be
compiled simultaneously into a design. Only ong compiled signal window at a time,
however, can be selected for emulation.

A signal window can contain approximately 8250 individual scalar nets. These individual
scalar net that is captured from the array board and sent to the system board is called as
“core prabe”. Maximum number of core probes that an array board can capture and sent to a

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 109

ATI Ex. 2075
IPR2023-00922
Page 109 of 394

Signals Chapter 4

system board 1s 5000 The number of core probes for a 6 array board virtualogic emulation
system cannot exceed 30000. The system board will ignore all the signals except 8250 of
them at a time. 8250 signals can be chosen by the user by specifying the desired signal
window for emulation. Provided the overall 30000 limit is not exceeded, there is no
particular limit on the number of signal groups in a window, nor on the number of signals in
a group. Note that if the 100% Visibility compiler option is enabled, the automatically
generated probing will count against the Signa! Window and core probe limits.

The type and content of Signa! Windlows and their groups are specified using the Signals
page in GVL. This page is shown in Migure 29 o page 110, The remainder of this chapter
details the use of the Signeais page.

Figure 29 on page 110 displays the Signals Page.

\;f.l riuaLogicd: 5 @sleepy: Zhome/subbiali/ T rain Labs/V352,¥3 5 fcolorvmw] « | |

File Edit View Tools Options Help

Design Impaort Signals " Compile Triggers Emulation
Signal windows H Signals: Group 80 i
siemal_window_0 color_bar clk

coloc_bar.ceset
color_bar blue_dara[7.0]

coloc_bar green_data[7:0]
color_bar hsyno

vuelur bas . pizel clk

color har. pixel valid
anlnr_har ced_daral7 0]
color_bar. viyne

Auto—Campiled Add Lelete wirite Virsirm Cfg ..
slgnal Groups: slgral_window_0 Fitidw ?
Group #0

T Croup BO {

Probed & Triagerakle i add Celete Check Import ...
Read configuration shome/subbiah/Trsin_Labz V3IS2/V3I5 /color wmw B‘
Figure 29 Signals page
110 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001
ATI Ex. 2075

IPR2023-00922
Page 110 of 394

Chapter 4 Signals

Signal windows pane

The Signal Windows Pane is used primarily to select a particular signal window for
subsequent viewing or editing with the Signal Groups and Signals panes. Tt is also used to
create or delete Signal Windows.

The list within the pane shows the Sigrncd Window defined for the current configuration. To
select a particular signal window, simply use the mouse to click the list. The Signal Gromups
pane and the Signals pane will update accordingly.

To change the name of a signal window, first select it in the list, ensure that the name field
has the keyboard focus (click with the mouse), and then use the keyboard.

When the 100% Visibility is turned on, the user only needs te specify probes for the purpose
of triggering. The 100% Visibility system will automatically probe all primary inputs,
clocks, and memory outputs. This automatic probing will count against the Compiled Signal
Windows and core probe limitations.

100% Visibility is the ability to provide access to values of all design nodes during a display
time window, The duration of this display window is based on the storage depth of the IDS
and corresponds roughly to the duration achievable via probe-based visibility. The position
of this window is selected via triggering, as occurs for current probe-based visibility.

In addition to enabling 100%% Visibility, it 1s also necessary to manually select probes and
probe windows for any signals that are to be used in triggers. All inputs to build triggers
should be manually selected in order to ensure that they are available.

100% Visibility imposes some hardware overhead cost when compiled into models. The
total cost is design dependent, typically averaging between 10% and 15% size increase.
Certain structures can be particularly expensive and may lead to more excessive costs. These
include large storage macros implemented as gates, heavily latch-based design styles, large
numbers and/or very high fanout cross domain or asynchroncus nets, particularly if the nets
g0 to asynchronous preset or clear terminals,

Space improvements can be obtained by the following:
+ Modeling storage macros as memories
= Treating high-fanout asynchronous inputs as synchronous

+ Using Compile aption-5r to convert asynchronous preset/clear modeling to
synchronous preset/clear modeling

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 111

ATI Ex. 2075
IPR2023-00922
Page 111 of 394

Signals Chapter 4

+ Using quasi-static annotations on the highest fanout cross domain nets if they are
not already set as a quasi-static net

Auto-compiled/not compiled

As mentioned in the Overview, multiple Signal/ Windows can be simultaneously compiled
into a design. The Awto-Compiled Not Compifed drop-down list allows the user to select
which signal windows are to be compiled into the design. The current compilation choice
for each signal window is displayed in the window list.

Delete

The Defete button is used to delete the selected signal window.

Add

The Aded button is used to create a new empty signal window. The name of the new window
will be automatically generated. This name can then be changed as described earlier.

Write virsim configuration

The Write Firsim Configaration button invokes a dialog, shown in Figure 30 on page 113 to
generate a Firsim configuration file for the currently selected signal window.

112 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 112 of 394

Chapter 4 Signals

— " "Generate virsim, Configuration Fiie™ ..
Path Filter

]
nefsubbiahTraine_Lahs A252,%35 /color vmw/‘ * ofg
Dirgctories: Files:

Re—Read Directory
Go Up ()

boardd

rtlz.out
signal_window _o.phw

Wirsim Configuration File:

shiah/Train Labs W352/¥35/color. viwscolor_har_wirsim. cfq

oK Cancel Filter Help ..

Figure 30 Generate virsim configuration file window

The generated configuration file has waveform groups matching the signal groups, and has
Virsim expressions for each Firtnal.ogic synthetic vector in the signals list. Synthetic vectors
are vectors that Syaopsys has flattened into"a 0 ,a 1 ,a 2, .." and which"gvl"
recombines using the syntax "a_<31:0>"

The user will see their groups in }irsiar organized in the same way as the groups appear in
the Signal Window. Therefore, signal groups should be arranged before compiling, so that
they appear in the desired order for Firsim.

A configuration file that has been explicitly updated using the Firsism menu will be
overwritten it the (2K button is used.

Signal groups pane

The Signal (roups Pane is used primarily to select a particular signal group for subsequent
viewing or editing with the Signals pane. It is also used to create or delete Signal Groups,
and as a convenient drag and drop scurce or target for manipulating group contents.

The tree list within the pane shows the signal groups defined for the currently selected signal
window. To select a particular group, simply use the mouse to click the list. The Signafy
pane will update accordingly to show the signals within the selected group.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 113

ATI Ex. 2075
IPR2023-00922
Page 113 of 394

Signals Chapter 4

To change the name of a Signa? Group, first select it in the list, ensure that the group name
field has the keybeard focus (click with the mouse), and then use the keyboard.

Double clicking a Sigref Group, or single clicking the expansion arrow for a Signal Group
will show the full set of nets for that group. This includes the effect of any wildcard

expansions contained in the Signalfs for the group. Depending on the complexity, wildcard
expansions can be time consuming since the design netlists must be precessed.

Group types
Stgied Gronps can be one of three types: probed, triggerable, or probed & triggerable.

- Signals that are within probed groups are cnly visible; they cannot be used as inputs to
trigger descriptions.

- Signals within pure friggerable groups can only serve asinputs to trigger descriptions,
they are otherwise not visible,

- Signals within probed & friggerable groups are both visible and usable as inputs to
trigger descriptions.

In general, groups types should be chosen 1o be both probed & triggerable. The more
restrictive group types are available for fine tuning compiler resource usage.

Add

The Adef button is used to create a new empty signal group. The name of the new group will
be automatically generated. This name can then be changed as described earlier,

Delete

The Delete button 1s used to delete the selected signal group.

Check

The Check button is used to verify that the probes are legal, existent nets and will fit in the
probe hardware.

114 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 114 of 394

Chapter 4 Signals

Import probes

The import Prabes button invokes a dialog to read in a set of probes from another
configuration, augmenting existing probes,

Typically, the imported probes will come from the vanw pré file in another configuration
directory (extension .vmw) ar in one of the Signal Windows subdirectories (extension . pbw)
of the configuration.

The imported signals will be merged with the existing signals respective of group names,

The contents of this file will be read into the probe editor and written to vaneprb in the
current configuration or Signa! Window the next time 1t is saved.

Signals pane

The Signals pane 1s where the user can explicitly enter the nets for the current signal group.
There can be an arbitrary number of signal groups. Selecting a signal group will show that
group’s signals in the list.

The signals entered into the Signals pane should each be placed on cne line in the form of
Verilog paths. They can be typed in directly by clicking in the Signals pane or they can be
drageed and dropped from the FirfualBrowser or from Firsine s hierarchy window.

Wildcards (* and 7) are accepted in the Sigrals list. For example, a.b.* means every net
inside module a.b. A module path (not ending in a net) such as a.b can be specified. This
causes all the interface nets on that module to be probed, leaving out the internal nets that
would be included by specifying a.b.®.

There are three special wildcard syntax forms which can be used to help probe classes of
nets as follows:

« <path>{all

This is a special construct that is used to provide 100% Visibility into a moderately sized
subsystem. Tt automaticaily probes all the primary inputs into the subsystem, plus all the
state element outputs within the subsystem. This is sufficient to show all design nodes
within the subsystem because the waveform viewer, Firsim, can reconstruct combinational
output given the inputs.

For example, the probe specification:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 115

ATI Ex. 2075
IPR2023-00922
Page 115 of 394

Signals Chapter 4

a.b.c(all

will provide 100% Visibility inte the Verilog scope a. b.c, including everything
hierarchically beneath «.A.c, down to the primitive level

<path>{@state

This probes all state elements in the path. It is essentially obsoleted by ‘@afl.
<path>@memory

This probes all memory elements in the path. It is essentially obsoleted by wall.

For subsystems not conveniently isclated to a single hierarchical scope, a series of selections
can be combined to capture the desired signals, such as the following:

Net a.b.ciall
Within Firtwalogic, @all is somewhat limited in its application because of the size

restrictions of the probe hardware. @all can provide subsystem level full visibility for
subsystems up to between 8K and 15K gates, depending on design style.

NOTE

Note that all three of these special syntaxes are disabled when
100% Visibility 13 turned on.

116

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 116 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Compiler

Overview

Design compilation takes the design database produced by the Netlist Import and
Verification phase and processes it into a downloadable emulator image for the emulation
platform. To achieve this, it combines the previously entered logical information with new
information relevant to the physical compilation process. Complete GUI support is provided
for RTL Verilog flow but for VHDL RTL flow, VHDL to verilog netlist compilation is done
by running r/c stand-alone, after which full GUI support is provided for compiling the
generated verilog netlist,

The features of the Compile form are as follows:

s RIL Compile on page T8
- RILC-VLE flow for ICE on page 119
- R Compile form on page 141
- Primary options on page 141
- Simdation ervors (Allow) on page 143
- Module specific options on page 143

o FLEESYN Compile on page 146
- Compiler configuration pane on page 147
- Partition file pane on page 150
- Placement file pane on page 150

- terminal constraint file pane on page 151

Additional major topics discussed in this section are as follows:

- Improved emulation performance on peage 132

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 117

ATI Ex. 2075
IPR2023-00922
Page 117 of 394

Compiler Chapter &

- No-Flows for modeling on page 132

- Net fie-offs on page 136

- Designs with nndiple asynchronous clocks on page 137
- Script driven activities on page 137

- FRC on page 139

o [PGA Compile on page 167
- IPOGA Compile form on page 168
- Machines on page 168
- Al known hosty on page 170
- MNiceness on page 171
- IPUA compile tasks on page 171
- Reset host list on poge 172

» Conirol on page 175

v Reports on page 177

» Crenerate VSM on page 177
- Generate VSM on page 177
- Incremental probe compile on page 184
- Start compite on page 185

- Imterrupt on page 183

RTL Compile

RILC-FLE flow for ICE on page 19 explains the RTLC-VLE flow.

118 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 118 of 394

Chapter 5

Compiler

II=

Ir T‘tlZT’(lb_ -: Other files generated
I RTL COMPILER { ~>L T by RTL Compiler:
1. Log files
2. Report Files
e i - Design Report
Verilog Netlist RTL Debue Connectivity - Arc:;Report
Database Database .

Compiler nvironment data ° -
Probing
LE Maodel

und

Triggering

Figure 31 RTLC-VLE flow for ICE

RTL Compiler flow

lnput

RTLC-VLE supports the Synopsys DC synthesizable subset of

* Verilog
+ VHDL
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 119
ATI Ex. 2075

IPR2023-00922
Page 119 of 394

Compiler Chapter &

Output

During the process of compilation of the RTL design, the RTL compiler, together with its
driver, writes out the following infermation as a set of files which will be used by
VirtuaLogic. RTLC generates

« verilog netlists optimized for VLE architecture

» empty module descriptions for behavioral blocks

» RTL debug database for RTL level debugging by the user

« log files and report files for providing information to the user about the design.

Log

During the course of compilation {including analysis), rtlc-vle creates a log file(rt/c. fog)
under config namevany rilc.ont. Description of the log file is given below.

= All message go to the log file

« Each design unit has its own section

+ Messages are arranged according to the design-unit in which they occur
« It has the summary of number of errors for each design unit

+ Incremental runs update and format the log.

120 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 120 of 394

Chapter 5

Compiler

The Figure 32 shows a sample Log file.

Report:

Status
Status

Simfarning 5784:

Hcounter

4506: Module Hcounter:

4508: Mcdule Hcounter: Compil

/rtl/Hcounter v, Lin

Module Hcounter, Net data: Althou%l
o)

art of the sensitivity list of this
%%ad to simulaticon mismatch

his ma
Notice

Notice
Notice
Notice
Notice
Notice
Notice
Notice
Notice
Notice
Notice
Notice
Errors:

Report:

Status

Status
Errors:

Report:
Status
Errors:

Report:
Status
Status
Warning
Warning
Errors:

Report:
Status
Status
Warning
Warning
Errors

Module
5205 Module
5205%: Module
5205; Module
5205: Module
5205: Module
5205 Module
5205: Module
5205 Module
5205: Module
5205: Module
5205 Module
0 Warnings:

Vcounter

4506: Module Vcoounter:
4508: Module Vcounter:

0 Warnings:

color bar
4508; Module
0 Warnings:

imagel gen
4506: Module
4508: Module

5437: Module imagel gen,
5437: Module imagel gen,

Heocounter, Net tdata[ll]
Heoounter, Net tdata

Pre- proceSSLng

Hcounter, Net tdata(2): Latch

[
[
Heounter, Net tdatal
Hoounter, Net tdatal
Hcounter, Net tdatal
Hoounter, Net tdatal
Hcounter, Net tdatal
Hoounter, Net tdatal
Hcocounter, Net tdatal
Hcounter, NWet tdatal
Hoounter, Net tdatal

8]: Latch
7] Latch
&) : Latch
2]: Latch
4]: Latch
3]: Latch
2] Latch
1]: Latch
0]: Latch

0 RTLErreors:0 RTLWarnings:C

Pre-processing.
Compllln

0 RTLErrors:0 RTLﬁgrnlngs:O

celor bar: Compiling...
0 RTLErrors:0 ERTLWarnings:0

imagel gen: Pre-processing...
imagel gen: Compiling...

Net datav(0]:

0 Warnings:2 RTLErrors:0 RTLWarnings:O

imageZ gen
4506: Module
4508: Module

5437: Module imageZ gen,
5437: Module image? gen,
10 Warnings:2 RTILErrors:0 RTLWarnings:0

imageZ_gen: Pre-processing...
image? gen: Compiling...

Net datav[0]:
Net datav([0]:

Figure 32 A Sample log file

Flle /home/subblah/Tr;an Tabs/V352/netlist

this signal is not
ck, it 1s being read.

Latch inferred.
10]: Latch inferred.
inferred.
inferread.
inferred.
inferred.
inferred.
inferred.
inferred.
inferred.
inferred.
inferred.

SimErrors: 0

SimErrors: 0

SimErrors: 0

Net datav[0]: This net is hane
This net is hanc

SimErrors: 0

This net 1is hanc
This net is hang

SimErrors: 0

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

121

ATI Ex. 2075
IPR2023-00922
Page 121 of 394

Compiler

Chapter &

Messages

The messages can be classified into:

Table 2 RTLC messages

Messages Description
Status denotes the progress of compilation
Info useful information
Notice important information which must be noted
Warning normal warnings
RtlWarning warnings related to synthesizability problems
SimWarning warnings related to potential simulation
mismatches
Error normal errors
RtlErrors errors related to synthesizability problems

Fatal Errors

SimErrors

errors related to potential simulation
mismatches

errors related to potential simulation

mismatches

Status messages

Status messages are useful for dencting the progress of compilation, In general, they can be

ignored.

Examples:

Status 4508: Module imageZ gen: Compiling...
Status 4518: Reading target library...

Info messages

Info messages pravide some useful information or statistics about the compilation, but they
do not depict any kind of problems with the design.

Examples:

Info 4842: Compilation successfully completed.

Info 4873: Module vmw raml6xl7: This module has been specified
as an ‘import’ module. It won't be compiled.

Info 4861: Maximum count for message 5205 reached. This
message will not be displaved for this module.

Info 4835: Total CPU time taken for compilation: 37 secs..

Info 4856: Total lines of RTL compiled: 10193

122

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 122 of 394

Chapter 5 Compiler

Notice messages

Notice messages are messages that tell the user how a particular construct is being handled.
For example, Notice messages will tell what latches are inferred in the design.

Examples:
Notice 5205: Module Hcounter, Net tdata[3]: Latch inferred.
Notice 5208: ===encountered. Treating as ==
Warnings

Warnings denote non-fatal problems with the design, and also alert the user to how RTLC
handles certain kinds of constructs.

Verilog Examples

* Assumptions taken
alwayvs ‘@ {aor b orc)

if (c ===1"b0}
z= |"bx:

clse
z=b7a:-a

Warning 5404: Module m: Reading ‘X' wvalue either for
assignment c¢r for comparison. ‘X’ wvalue will be ignored
and treated as zero.

+ Potential Design [ssue
always % (aorb)

z=a’b: I'bz:
alwans o, (c or d)
z=¢c?d: 1'b0:

Warning 5411: Module m, Net z: This tri-state net has non
tri-state drivers.

+ Recommendations
reg |32:0] mem_core [32:0];

Warning 5516: Module m: Net c¢: The signal/variable is a
potential memory of size 1024 bits. It is advisable to use
IKOS memory models in this case. To use IKOS memories,
black-box this module using switch “-import m” during
compilation

VHDL Examples

* Assumptions taken

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 123

ATI Ex. 2075
IPR2023-00922
Page 123 of 394

Compiler Chapter &

process (a . b, ¢} begin
if (¢ == "X then
z <=0
clse
z<=avorbxore:
end if
cnd process:

Warning 5431: File x.vhd, Line 12: All equality
comparisons with ‘X', ‘W, ‘U, or ‘Zf are treated as
FALSE. This can potentially lead to simulation mismatch.

* Potential Design Issue
function invert (a: std_logic)
return std logic is

--ikos translatc_off
if (a ="x") then return “17:
clse return not a:
end if:
~-kos translatc_on
cnd function:

Warning 5520: File f.vhdl, Line 28: Whole function/
procedure body is inside synthesis _off/translate off
directive. Please check that this 1s what 1s intended.

* Recommendations
signal q: std_logic :=“1’;

Warning 5501: File i.vhdl, Line 2, Module

MY WORK.TOP(RTL): Default initial wvalues for signals/
variables 1s ignored. This may cause pctential simulation
mismatch., If vou want to compile initial values for state
points then please recompile using option “-
complle vhdl inits”

RtlWarnings and RtlErrors
RtlWarnings and RtlErrors denote synthesizability problems with the design:

-enable BHY messages switch can be used to see exactly what is causing the
synthesizability problem. Assert/report in VHDL and $display{) etc. in Verlog are ignored

Assertions example
proccss (clk, en. d))
begin
if (clk event and clk = ~17) then
assert not {(en = *0") report “disabled”;
q==d:

124 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 124 of 394

Chapter 5 Compiler

end if:
cnd process:

RtlWarning 3502: File assert vhd, Line 12: Assertion statement will be ignored.

Bad clocking style verilog example:
always «. (posedge clk or tesct) // should be posedge reset
if (resct)
q==0
clse
q=d:

RtlError 1155: File clk.v, Line 5: Beth edge control and
non-edge control expressions cannot be specified in the
sensitivity list.

Bad clocking style VHDL example:
proccss (clk, rcset, d) begin
if {clk’cvent and clk = "17) then
q<=d:
¢lsif (reset ="17) then
q=="07
cnd if
end process:

RtlError 3524: File clk.vhd, LIne 14: The IF-statement
does not confirm with any description style that can be
compiled,

/f the above code should be

if (rcset = "17) then

q<="0"

claif (clk cvent and clk = "17) then

q<=d:

end if:

Initial Blocks example:

wnitial g = 0:
always 4, (poscdge clk)
g=d:

EtlError 1102: File init.wv, Line 4: INITIAL statements are
not supported.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 125

ATI Ex. 2075
IPR2023-00922
Page 125 of 394

Compiler Chapter &

Errors and Fatals

Errors and Fatals are usually conditions where RTLC cannot proceed without a fix from the
designer. Depending on their severity, they may be either fatal to a module causing RTLC to
proceed to the next module or they may be fatal to the entire design causing the compilation
to abort.

General error example;
z<=a+b: //a,b arebit_vectors

Errcr 25%492: File nr.vhd, Line 23: Either type mismatch or
no visible function for this case.

The above example is an unsupported/illogical constructs. This leads to disabling
compilation of the particular module.

Fatal Error example:
always ‘@ (a or b) begin
t=0:

zl = a/t: /f Fatal 7186: Division by zero. Exiting...
t=b:
z2 =aft

end

Fatal 7025: Diwvision operator in a non-static expressicn
where both the operands are non-static, or right operand
is static but not a power of two 1s currently not
supported. Exiting...

Inconsistencies across hierarchy:

When imported/non-RTL modules have different prototypes due to instantiation with
different generics, the user gets the following error.

Fatal 7064: File topl.vhd, Line 22, Module gate: Ports of
non-RTL/imported modules are dependent on generics.
Exiting...

When black boxes are instantiated by positional association, the user gets the
following error.

Fatal 70532: Instance of black-box module mem core has
implicit port connections. Only explicit/named port
connections can be supported. Exiting...

126 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 126 of 394

Chapter 5 Compiler

Systemic Errors:
Fatal 6803: Environment wvariable RTLC HOME nct set.

Fatal 7133: Cout of memory. Memory allocation failed. Try
to run the design on a workstation with more swap area.

Fatal 6811: Segmentation viclation.

SimErrors

SimErrors are more severe than normal errors but less severe than Fatal errors. This means
that compilation will proceed normally in case of SimErrors but a non-zero exit status will
be returned.

The RTL compiler errors out on design structures which are syntactically correct and
synthesizable, but which will lead to mismatches between software simulated and emulated
behavior. Such structures are called Simulation Errors. Nevertheless, there may be situations
where such structures cannot be avoided. Simulation Errors are the result of some basic
semantic differences between software simulation and emulation.

SimErrors generated by rtlc are warning to user indicating that these errors may be one of
the reasons for simulation mismatch. These warnings are emitted by rtfe for X's in the
design, signal initialization, race conditions, undefined outputs for functions, So these are
the indications to the user to change the design.

These situations are listed and illustrated below:
+ Incomplete Sensitivity Lists(Verilog)
» Undefined Function/Task Qutputs(Venlog)
» Multiple Drivers(Verilog)
« Four-state Reads(Verilog)
= Gate Strengths and Delays(Verilog)
« Clock variable data{ VHDL)
= Function return null(VHDL)

Incomplete sensitivity lises

Reading a signal inside an always block which is not part of its sensitivity list will lead to a
simulation mismatch. For instance, consider the following Verilog RTL code:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 127

ATI Ex. 2075
IPR2023-00922
Page 127 of 394

Compiler Chapter &

input a. b. ¢

outpul 2

reg z:

always @(aorb)
z<=at+tb+c

In this case, software simulation results in the value of z being updated only if either ar or b
or both change, but not ¢. However, in the hardware implementation (of a full adder), z is
sensitive to ¢. This will result in a simulation mismatch.

The compiler errors out whenever such a condition is detected.

Allowing incomplete sensitivity lists prevents the compiler from erroring out. However,
there is still a potential for simulation mismatch as the sensitivity list is assumed to be
complete in the hardware implementation.

Consider the following always block:

always ‘@ (sclect) // line 5 of file accum.v

begin
if (sclect)
accum = data;
clsc
accum = ~data.
end

In this case, the net accum is being read, but it is not present in the sensitivity list of the
black. In software simulation, the block will not be entered and accum will not be re-evalu-
ated if data changes. However, in the concurrent hardware implementation, accum will
always get re-evaluated whenever data changes. For illustration, consider the following
value changes:

Input stimuli Sw sim results Hw results

select <=0; data <= 0 accum = | accum = 1
select <= 0; data <=1 accum = | accum = 0 (Mismatch!)

The compiler will issue the following error for this:

SimError 5784:

File accum.v, Line 5, Module accumulator, Net data:
Although this signal is not part of the sensitivity list of
this block, it is being read. This may lead to simulaticn
mismatch,

Issues with non-blocking assignments:

On similar lines, consider the following block:

always % (accum or data) // line 23 of file accum v

128 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 128 of 394

Chapter 5 Compiler

begin
temp <= accum " data:
if (tcmp == 0)
zcro= 1.
clse
zero =0
end

In this case, the net zero will be evaluated using the old value of temp in software simula-

tion. However, it will be evaluated using the new value in the hardware implementation,
which can lead to a simulation mismatch. Consider the following value changes:

Input stimuli Sw sim results Hw results

accum <= 0; data <=0 temp =0; zero = | temp = 0; zero = |
accum <= 0; data <= 1 temp =0, zero = 1 temp = 1, zero = 0 {Mismatch!)

The compiler will issue the fellowing error in this case:

SimError 5784;

File accum.v, Line 25, Module accumulator, Net temp:
Although this signal is not part of the sensitivity list of
this block, it is being read. This may lead to simulaticn
mismatch,

The solution here will be to either change the assignment to temp to a blocking assign or to
put temp in the sensitivity list of the block.

Similar example on ISL:

always (@ (inl or in2} begin
tmp <=inl & in2;
out=tmp?0: 1

end

SimError 5784: File isl.v, Line 7, Module isl, Net tmp:
Although this signal 1s not part of the sensitivity list of
this klock, it is being read. This may lead to simulaticn
mismatch.

Undefined function/task outputs

Functions or tasks which have undefined outputs or return values in one or more paths will
result in simulation mismatches. Consider the following Verilog RTL code:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 129

ATI Ex. 2075
IPR2023-00922
Page 129 of 394

Compiler Chapter &

function sumifl (cnd. a. b):
input cnd. a. b:
if (end)
sumill =a+b:
endiunction

In this case, the return value of simif1 is undefined if ¢adf is zero. This may lead to a
simulation mismatch.

Allowing undefined function or task outputs prevents the compiler from erroring out. All
undefined outputs are assigned to zero. Thus, in the above case, allowing undefined function
outputs results in surrifl getting assigned to zero if ¢ixd is zero.

Consider the following function definition-

function resct_data;
input resct:
if (resct)
reset_data <=1
cndfunction

The return value of this function is not defined when reset is inactive. This may lead to a
simulation mismatch with RTL. Note that the hardware implementation will assign all
undriven outputs of the function to zero.

The compiler will issue the following error for this:

SimError 5785:

Module reseter, Function reset data: Return value is
undefined in one or more paths in this function. This
may lead To simulation mismatch.

Multiple drivers

In case of multiple drivers in the design, there is a possibility of simulation mismatch if all
the drivers are active at the same time.

Multiple combinatorial drivers or multiple sequential drivers on the same clock are error
conditions. Multiple sequential drivers on different clocks (or different edges of the same
clock) are handled automatically.

Allowing multiple drivers prevents the compiler from erroring out. Multiple combinatorial
drivers are always treated as wired or ¢ircuits.

Consider the following example where there are multiple combinatorial non-tristated drivers
for the net current_state:

always ¢ (poscdge clock)

130 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 130 of 394

Chapter 5 Compiler

current_state <= next_statc:

always i(resot)
curtent_statc <= initial_statc:

In this case, current_state is being driven both by next_state (through a flip-flop) and also by
initial _state. This may cause next_state to go to X in a software simulation and may cause a
simulation mismatch.

The compiler will issue the following errer for this:

SimError 5783;
Module state gen, Net current state: This signal has
multiple drivers. This will lead to simulation mismatch.

Four-state reads

Reading four-state values such as X and Z make no sense in real hardware and emulation,
and so compared to the result of software simulation that may produce unexpected
mismatches. In general, four-state reads tend to occur in comparisons and assignments.

For example, consider the following Verilog RTL structures:

if {current_state == 27bx)
next_staic = (0

clse
next_statc = currcnt_statc:

and
if{go 1dle==1)
next_statc = 27bx:

Allowing four state reads prevents the compiler from erroring out under these conditions.
Instead all assignments to X are taken as an assignment to zero, and all comparisons with X
or Z are treated as FALSE. Thus in the first example given above, the if branch is never
taken, and in the second example, the assignment to next_state is taken as an assignment to
ZEro.

Note that assignments to Z which are valid tri-state assignments are handled by inferring
appropriate tri-state devices.
Consider the following example which has an explicit X assignment:

mput | 1:0] operator:
mput |7:0] operand.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 131

ATI Ex. 2075
IPR2023-00922
Page 131 of 394

Compiler Chapter &

rcg | 7:0] accumulator:

always ¢ (poscdge clock)

bcgin
casc (opcrator)
2°b00¢: accumulator = accumulator + eperand:
2°b 11 accumulator = accumulator - operand:
default: accumulator = 8'bx: // ling 15 of file alu v
cndeasc

cend

In this case, the default case assigns Xs to accumulator. This is a commeon situation where
the default statement is not intended to be reached.
The compiler will issue the following error:

SimError 57BZ2:

File alu.v, Line 15, Module alu: Reading 4-state value
(*%X* or 'U' or 'W' or *Z’) for assignment or comparison.
This may lead to simulation mismatch.

Gate strengths and delays

Specifications of strengths and delays in gate instantiations are ignored by the RTL
compiler. This leads o a simulation mismatch,

bufif] #1(YA.A.EN): // tristate, line 5 of gsd.v

SimError 5786

File gsd.v, Line 5, Module gsd: Delays and Strengths
associatedwithgate instancesareignored.

This may lead to simulation mismatch.

module busHolder (io):

nout 1o:

wire intcrnal:

not (pulll, pulllnot_i(io. intemal). not_o(intemal.io):
endmodule

SimError 5786

File busHolder.w, Line 5, Mcdule busHolder: Delays an
Strengths associated with gate instances are ignored. This may
lead to simulation mismatch.

132 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 132 of 394

Chapter 5 Compiler

The following two simerrors are applicable only for VHDL source codes. Previous versions
of software used to error out for clock variable data and function return null, now these are
categorized under simerrors,

Clack variable data

This simerror is generated when a clock variable is used as data{either read or write). Here is
a testcase which clearly explains the clock variable data simerror

entity cloekl is
port{inl.in2: bit:
clk : bt
output | out bit):

end:
architccture arch of clock | is
begin
process(elk.inl.in2)
begin
if (clk cvent and clk = "17) then
output <= clk:
cnd if:
cnd process:
end:

SimError Message

File clockl.vhdl, Line 13: Clock variable is being used as
data.

In this case, output gets clk as data when there is a positive edge of clk. This causes a
simerror and needs necessary corrections from the designer in order to proceed further with
the compiling.

Funciion return null

This error is generated when the function body has no return staiement. Here is a testcase
which clearly explains the function return null simerror:

architecture if_in_func2 of if_in_func2 is
function find max(inl,in2.in3,in4 : integer)
return intcger 1s
begin
--Synopsys svnthesis_off
if(in 1> in2) then

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 133

ATI Ex. 2075
IPR2023-00922
Page 133 of 394

Compiler Chapter &

ifiin1=in3) then
if{inl > mn4) then
retumn inl;
clsc
return <
end 1f:
clse
if(in3 > m4) then
retum in3:
clse
roturm ind:
cnd if:
end if:
clsc
if { m2 > in3) then
if{in2 > m4) then
rgturn in2:
clse
retumn ind:
end if:
clsc
if (in3 > 4} then
retum in3;
clse
return ind;
end if.
end if:
cnd if:
--Svnopsys synthesis_on
end:
begin
max <= find max(inl,in2,in3.in4}:
cnd:

The “Function return null” simerror is generated for the above testcase, since the user has
set the SYNTHESIS OFF for the function body including the return statement.
SimError Message
Preoccessing function rtlcF IF IN FUNC2 IF IN FUNCZ FIND MAX.
Probably the functicon canncoct be compiled.

Report Files
Apart from the log file, RTLC also generates a design report file and an area report file. The

design report file contains useful information about the design (& potential issues in the
design):

134 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 134 of 394

Chapter 5 Compiler

1. potential design issues like combinational loops, clecks driving combinational logic,
gated clocks, ete.

2. latches in the design.

3. Flipflops with any set/reset.

4. Incomplete case statements (only in verilog).
5. multiple driver nets.

6. Tristate buffers inferred in the design.

7. All the primary and secondary clocks.

8 Full case/parallel case inference.

9. Details of inferred tri-states.

10. Combinational loops.

11. Details of resources shared, if any.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 135

ATI Ex. 2075
IPR2023-00922
Page 135 of 394

Compiler

A sample design report file is shown in Figure 33 on page 136.

Chapter &

Report: Vcounter
clock-—name| Type | Drives cmb logic| Drives I/p to F/F
clk | Primary | N \ N
hsvync | Primary | N \ N
Name | BUS SLICE |Type | BR | &S |Clock/Enable
[vaync | -—= | FF N N | clk
count_out | [11:0] | FF M N | clk
carry | === | FF N Y | hsync
count | [11:0] | FF N k4 | hsyne
pcount | [11:0] | FF I Y | hsync
foount | [(11:0] | FF I N | clk
vsync_del | -—-— | FF Y N | hsync
Figure 33 Sample design report
DRC-- Flip Flops:
+ Net name, Part select, Clock name
« if the flipflop has asynchronous set/reset
» Checks imtializations for F/Fs without AR/AS
Example:
always %, (poscdge clk or negedge set)
if (!sct) data_out=4"bl. /asynchronous active low set.
clsc data_out =data_in|7:4|. //synchronous data transfer
Clock/
Name Name Type AS AR Enable
data_out [3:0] FF Y N clk
136 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 136 of 394

Chapter 5 Compiler
Clock/
Name Name Type AS AR Enable
q - FF N N clk
DRC-- Latches:
» Net name, Part select and enable
+ Always check latches with internal enables
Example:
always 4. (scl orinl orin2)
casex (sel)
2°b0x: cut=10:
271l data=ml +mm2: //mussed cutsel ==27b 10
endeasc
Clock/
Name Name Type AS AR Enable
data [31:0] Latch - - internal
DRC-- Tri-states
» Net name, Part select
Example:
inout [31:0] data:
always ‘@, (addr or data)
if (wren)
corg|addr| = data:
clse
temp = core|addr|:
assign data = (wren) 7 bz temp:
Clock/
Name Name Type AS AR Enable
data [31:0] TRIBUF - -- --
DRC -- Clocks
» Primary, derived, gated
= Can show potential race conditions
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 137
ATI Ex. 2075

IPR2023-00922
Page 137 of 394

Compiler Chapter &

Example:
always ‘. (poscdge clk)clk2 = ~clk2:
alwavs @, (poscedge clk)clkd = ~clkd & cnable:
always @ (clk2 or elk4ywelk = clk2 & clk4:

Clock-name Type Drives combinatorial logic Drives input to FF
clk Primary N N

clk2 Derived YES YES

clkd Derived YES N

welk Gated N N

DRC -- Combinatoerial Loops

* Reports all combinatorial feedback paths
* pay attention to large loops

* run with -preserve to see actual names

Combinatorial Loop Warnings:
1)z p(i2) > q =
2) rtlenl --> rtlen2 -->rtlen3
/* Loop consists of internal nets only. To determine the user nets leading to the loop, please
Tun with -preserve or -defug option. */
DRC -- CASE Inference

« Casetype, whether full or parallel
» User-defined full/parallel case pragmas supported

+ Use -enable case_pragmas

138 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 138 of 394

Chapter 5 Compiler

Example:
always ‘w. (aorb)
cascx (a) // ikos full_case
2°b0x: zI <= [a]0].b[0]}:
2blx 22 <= {a| | .b[1]}:
cnclease
alwavs ‘@ {aor b)
case (b)
2°000: 22 <=bh:
2’bl1: 2zl <=a;
cndeasc

Case Type Line No Full
CASEX 4 User No
CASE 9 No

Parallel
Auto

DRC -- Multiple Drivers
+ Multiple drivers always have to be resolved
+ Multiple combinational drivers
+ Combinational and sequential drivers
= Sequential drivers on the same clock edge
Example:
alwavs ‘@ {cndl)
if (end 1} out =inl:

assign out = (cnd2) * in2 : 1'b0: // Signals with multiple drivers: Name(out) Bus{--)
= Sequential drivers on different clocks/edges are supported,

DRC Summary;

» Records RTLC interpretation of design constructs
= Can directly point to design issues

Can find and solve design problems much faster at compile time instead of having
trouble debugging in the run time.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 139

ATI Ex. 2075
IPR2023-00922
Page 139 of 394

Compiler

Chapter &

A sample area report file is shown in figine 34 on page 1410,

ReBort : Vcounter
MO

[R av]
2 D

m M M M m mowm o om omom omom

UJLE: Vcounter (type: USER/RTL)
Instance Count
VMW_BUF 9 9p 0
M RTLSIM MUXN 2 1 27 27p 81
M RTLSIM INCR 12 3 36p 138
M RTLSIM DECR_ 13 1 26p 50
M RTLSIM EQ 12 1 16p 42
VMW ANDZ 8 8p 16
VMW FD 25 25p 0 2
VMW FDC 25 25p 0 2
VMW _EFDP 1 1p 0
VMW INV 65 65p 0
VMW LUT?2 41 41p 82
VMW LUT3 5 Sp 15
VMW_LUT4 5 5p 20
TOTALS: 216

Total combinational area:
Total sequential area:
Total [(combk + sedqn) area:

fmacro: 311,
{(flip-fleops:

Figure 34 Sample area report

Figmre 33 on page 141 shows the RTL Compile Form.

non-macro: 133}
51, latches: 0}

140 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 140 of 394

Chapter 5 Compiler

= NVirtuaLogic3 5@sleepy:/home/subbiah/Train Labs/V352/V35/colorvmw|

File Edit ¥Yiew Tools Options Help
Design Import - Sigrais Compile Triggers . Emulation
Contral > Reports - Refresh 2
RTL VLE . FPGA
‘Rtl: besign Analysis
Primary Options 7 Allow T ‘ Rt1: Area Anzlysis
Compiile RTL Lag: Tatal
Optirmize: High Incem plete Sencitivity Lists Start .Log: Compile RTL
: . ‘Log: Compile RTL & VLE &
Debug: on Undefined Functien Qutputs -
Multiple Drivers : Lag RTL Messages .. WLE Messages . FPGA Messages . -2
W andfor ‘Z° Comparisions
Gate Strenath/Delay Specs
Module Options Edit .. SHOwrw Filide b
Hodule Hame T D T UMCG
“Heounter yy Yhann
Additional Options E
Rezd <configuration /hens/eubbiah/Train Labs /VIEZ VI color. vmw |ﬂ

Figure 35 RTL Compile form

Note: For single button compile, The user must enter the required information on all the

three (RTL, VLE, FPGA)orms and change the option in the Control pane to (ompile RTL
& VILE & IF'PGA and then click Srarr.

Primary options

The Primary Options pane specifies the optimization level and RTL source visibility of the
RTL compilation process.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 141

ATI Ex. 2075
IPR2023-00922
Page 141 of 394

Compiler Chapter &

Optimization level

The optimization level determines how aggressively combinatorial logic is optimized. The
primary geal of this optimization process is to minimize the gate area cost of the compiled
netlist.

+ Off: The Off optimization level switches the optimizer oft altogether. The result is
very fast compile times, but un-optimized netlists,

* Low: The Low optimization level performs very basic optimization. It results in
reascnably fast compile time, but the compiled netlist is not optimal in terms of
area

» Medium: The Medium optimization level is a good trade-off between compile time
and optimization. It invokes the logic optimizer in a semi-aggressive mode where a
select set of optimization steps are performed, but time-consuming optimizations
are sacrificed for speed This is the default.

» High: The High optimization level invokes the logic optimizer in an aggressive
mede where a full set of optimization steps are performed, resulting in a highly
optimized netlist. Note that invoking the compiler with a high optimization level
may result in large compile time. However, the additional RTL options switch -
opt_timeout_limit is provided to prevent unreasonably large compilation time,

In general, the medium optimization level does a good job of optimization in a reasonable
amount of time. Low optimization level is used for faster compiles when area cost of the
netlist is not a constraint. High optimization level is used, when compile time is not a
constraint{compiler run in batch mode) or if there is trouble partitioning or placing the
netlist into the emulator.

RTL source debug

The debug option allows visibility into RTL-level signals and also allows RTL source level
debugging, where breakpoints can be set in the RTL source code.

Note that it is possible to include or exclude certain modules from debugging mode. See
Module specific options on page 143

Note that the debug option can be specified simultanecusly with the high optimization level
Debug moede typically results in about a 5% increase in gate count.

142 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 142 of 394

Chapter 5 Compiler

Simulation errors {Allow)

This section describes the areas where the netlist generated by RTLC-VLE may not confirm
to exact RTL simulation behavior, It also describes the actions that RTLC-VLE takes on
encountering such areas in the user’s RTL code. For information on Sim errors, refer to
Simbrrors on page 127,

Module specific oplions

In addition to the Primary Options and Simulation Errors {Allow) options which apply to the
whole design "globally”, some RTL options can be set on a medule specific level. The
module-specific options are:

- Debug/Don't debug

. Allow/Disallow 4-state rcads

. Allow/Disallow multiple drivers

. Allow/Disallow incomplete sensitiviey lists

. Allow/Disallow undefined function/task outputs
6. Allow/Disallow gatc strength/delay spees

U o b —

For example, if the entire design has to be compiled with debug information except for a few
memories or [P cores, then you can turn debugging off for those modules using this pane
and tum on global debug in the Primary Options pane. Figure 36 on page 143 shows the
Fidit Module Opticits window.

~Edit Module Optiors |

Primary

Touch: Yes Debuz, Default

Allow

Incomplete Sensitivity Lists: Allow i
Urdefined Function Outputs: Default
Multiple Drivers: Default
‘whandfor 27 Comparisions: Default

Cate Strength/Delay Specs: Default

QK Apply Dismiss Help ..

Figure 36 Edit module options window

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 143

ATI Ex. 2075
IPR2023-00922
Page 143 of 394

Compiler Chapter &

RTE.C additional options

RTLC compiler switches can be classified into following categories:
= Design input switches
+ Language recognition switches
« Output file switches
* Messaging control switches
» Selective compilation switches
» Debug and preservation switches

» Optimization switches

For syntax, usage notes and examples on RTLC options, refer to K7L Addditional Optiois
o page 251 in Compiler options reference guide chapter.

RTLC troubleshooting

|. Compilation time

If rilc-vie is seen teking an abnormally large time to compile a single module, use the -
opt_timeout_limit <seconds> option. The default value for this options is 10 minutes.

2. Area cost

If a single module is seen taking an abnormally large area, consider using the -opt_level 4, -
res_share and -lut_map options. Also check if the -debug/-preserve options have been
specified. Please report this problem to the RTLC team.

3. In¢cremental problems

If for any reason, +if¢-vie does not recompile a modified module, use the -force_module
option and file a bug report with the RTLC team.

4. Incorrect compilation/internal errors

If there are some internal errors during compilation or if logic generation is incorrect,
consider using the following options:

Option Description

-import <module name=> Disables compilation of the specified module

144 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 144 of 394

Chapter 5 Compiler

Option Description

main <module name> Treats the specified module as a top-level
module enabling compilation of a smaller
hierarchical partition

Besides this, there are some internal options that are useful only to the RTLC team for
debugging purposes. These are given here only for completeness.

Option Description
-opt_level O Turns off combinaterial logic optimization
-no_sweep Turns off a generic netlist optimization step
-no_dre Turns off design rule checking
-dont_flatten Turns off flattening of internally generated
modules

RTL messages

A new window comes up with all RTL compilation wamning and error messages as shown in
the figure 37 on page 143

Messages: (ronel H

Sork By 2. Show H Filter 2
T e Emitted . Type ‘Cede File | Line . Path; +
Suppressiong B

!LDigwﬂiss Clear Help ..

Figure 37 RTL Compilation messages

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 145

ATI Ex. 2075
IPR2023-00922
Page 145 of 394

Compiler Chapter &

VLE/VSYN Compile

Target hardware pane

FEmulation platform

The fmmilation Platform options are FLE-2A-1D§ and FLE-3M. VLE-2M-1DS stands for
VLE-2Ms with internal data sampling.

Emulator boards

The Fimulator Boards option allows the user to select from one to six boards. This number is
indicating the number of Array Boards in the system.

Normally, the users should indicate the number of Array Boards in the emulator regardless
of the number needed for the particular design, except when compiling the design for use in
a Multi-ASIC configuration. In this case, specify the number of boards required for the
design only. If this is not followed. the drawback is that the place and route is done for
unnecessary FPGAs also.

Storage

The Storage option allows the user to specify the configuration for IDS. Select Storage to be
IDS, or + card HPI.A makes the event transfer occur faster.

146 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 146 of 394

Chapter 5 Compiler

VILE Compile form on page 147 shows the VLE compile form.

File Edit View Tools oOptions Help

Design Import | Signale Compile - Triggers Emulation

Control * Reports Fefreshl 2

ATL VLE - FPGA REY: Design analysis

Target System B - . ¢ REl: Area Analysis
. Comnlle_:{LE 7777777 i Log: Tota)
Flatform: WLIE-2M—IDS 1 beard Start Log: Compile RTL

Log: Compile RTL & WLE &
Srorage DS, or 4 card HPLA

wisibility: 100% Wisibiliry Disabled Log RTLMessages . YLE Mesages oo FPCA Messages . E

Partition File Shows Files ..
VI paL L
= Save to
Read from
Placement File Shaw Files .. z

e, place
2 Save to
Read from
Terminal Constraint File show Files .. z
¥ Ihome/subbizh/Train_Labs U352 /netlist pod/oo

Additional Options B3

Figure 38 VLE Compile form

Compiler configuration pane

100% Visibility

The 100% Visibility button is a toggle switch used to turn the feature on or off. The default
behavior upon starting up a new configuration in gv/ is to enable 100% Visibility. The 100%
Visibility system automatically probes all primary inputs, clocks, and memory outputs, This
automatic probing counts against the Sigials Window and Core Probe limitations.

The 100% Visibility is a feature that allows any design signal to be viewed in the waveform
trace. When 100% Visibility is enabled, the only signals that need to be explicitly probed are
those needed for IDS trigger expressions, A subset of the signals are automatically probed
by the compiler, and the remainder of the signals are reconstructed on demand.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 147

ATI Ex. 2075
IPR2023-00922
Page 147 of 394

Compiler Chapter &

The 100% Visibility provides access to values of all design nodes during a display time
window. The duration of this display window is based on the capture depth of IDS and
corresponds roughly to the duration achievable via current probe-based visibility. The

position of this window is selected via triggering as it occurs for probe-based visibility.

In addition to enabling 100% Visibility, it is also necessary to manually select probes and
signals windows for any signals which are to be used in triggers. All trigger candidates
should be manually selected in order to ensure that they are available.

The 100% Visibility feature requires the use of the emulator out-of-circuis for the post-
processing step. Refer to the page 233 for details.

The @all, {@state, and @memory probes are ignored when 100% Visibility is on. However,
itis up to the user to remove any probes that are not needed for triggering. It is
recommended to minimize the number of explicit probe requests when 100% Visibility is on
because significant IDS resources are required to make 100% Visibility work.

For information on @@all, (@state, and @memory, refer to page 115,

100% Visibility cable

To perform 100% Visibility extraction based on HP probing, an additional cable connection
is required. A cable is supplied with a 26-pin male connector on one side and four BNC
connectors (red, blue, green, and either white or black}) on the other side. The blue BNC
connects to the HP logic analyzer trigger-out port. The black or white is connected to the HP
logic analyzer trigger-in port. The 26-pin connector connects to the bottom center of the
emulator system beard (bottom-most board). The additional cable is not needed when using
IDS.

Refer to the VLE-5M Hardware Reference Manual for complete details on this cable.

100% Visibility benefits

When 100% Visibility is enabled, the user can see the value of any node in the design using
Virsim. This is essentially equivalent to using Verilog-XL with Firsim, tracing all the logic
values,

There is still a limitation that the user can only see the time window recorded by the IDS.
Only specify the probe points that you wish to use in triggering, beyond the primary design
inputs, which will be automatically be recorded by the [DS in support of 100% Visibility,

148 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 148 of 394

Chapter 5 Compiler

1060% Visibility costs

Some of the capacity of the emulation hardware will be consumed by extra logic relative to
running with 100% Visibility turned off. The exact overhead percentage should be small;
however, with a given hardware configuration, there will be some designs that will not fit
unless 100% Visibility is turned off.

The total cost is design dependent, typically averaging between a 10% and 15% size
increase. Certain structures can be particularly expensive and may lead to more excessive
costs. These include large storage macros implemented as gates, heavily latch-based design
styles, large numbers and/or very high fanout cross-domain or asynchronous nets,
particularly if the nets go to asynchronous preset or clear terminals.

Capacity utilization can be improved by the following:
+ Modeling storage macros as memories
» Treating high fanout asynchronous inputs as synchronous

» Using the -5 compiler option to convert asynchronous preset/clear modeling to
synchronous preset/clear modeling

« Using quasi-static annotations on the highest fanout cross-domain nets if they are
not already quasi-static

A runtime performance penalty beyond that otherwise incurred for any heavily probed
design is not expected. There is an extra delay when uploading from the IDS following a
trigger, beyond that incurred with 100% Visibility turned off. The estimated additional delay
is up to five minutes depending on the number of samples recorded by the IDS. To reduce
this time, user might want to use a faster host for the VIRSIM. During this time, the
emulator must be taken out of circuit to assist with the analysis of the IDS data.

There will be an extra delay when starting Iirsim, approximately one to two minutes,
depending on design size. The user can “pipeline” this by invoking Firsim before triggering
oceurs or during upload.

100% Visibility restrictions

Following are the situations when 100% Visibility may need to be deactivated:
* When the capacity costs are too high

« When the user cannot accept the use requirements of an emulator out-of-circuit for
processing of the IDS data

* When some constructs in the design prevent 100% Visibility from working properly

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 149

ATI Ex. 2075
IPR2023-00922
Page 149 of 394

Compiler Chapter &

* When using conditional capture on the IDS (refer to the section below for details

* When the available FPGA capacity is reached

Conditional capture

100% Visibility feature does not support conditional capture. Use of conditional capture,
(Store Nostore), in triggers 15 not supported. The 100% Visibility only operates on a
contiguous time window and this window needs to include a small amount of time prior to
the trigger in trigger at window beginning mode or a large amount of time prior to the
trigger in trigger at window end mode. Do not use Store/Nostore in triggers for 100%
Visibility mode display.

Data from a 100% Visibility compiled signals window can be used in non-100% Visibility
mode, and under these circumstances the user can use conditional capture in the trigger.

Partition file pance

To save or read a partition file type in a filename or click on the Show Files button and select
a file from the list to overwrite an existing file.

Partitioning results can be saved and used in a later run as long as the set of design modules,
top-level I/O, and libraries do not change. To read in a previously written partition file, use
Read from button.

On subsequent runs, select the Read from button with the exasting filename. The Partition
File information is saved from run to run, along with the rest of the configuration.

Placement file pane

To save or read a placement file, type in the filename or click on the Show' Fifes button and
select a file from the list.

The Save fo button is used to save placement results to a file, specified in the field,
Placement is a somewhat time consuming part of compilations Placement results of
previous runs can be saved and used in later runs as long as the set of design modules and
libraries do not change.

On subsequent runs, select the Read from button with an existing filename. The Placement
File information is saved from run to run, along with the rest of the configuration.

150 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 150 of 394

Chapter 5 Compiler

Terminal constraint file pane

The ferminal Constraiid IFile pane is used to indicate which design 1/0 signals are mapped
to which physical emulator pod-pins so that a hardware testbench can be wired to the
emulator to maintain consistency across design changes.

This file is created with & text editor. Each line in the file has the design 1/0 name and the
emulator terminal name in the form Jmrnin, where #1s a digit.

Create a file, viw, podd, that specifies the emulator terminals to which te connect the design 1/
Os. The Yerminal Constraint File lets the user control the binding of design 1/0s to emulator
terminals so the design I/0 pinout can be matched on the emulator to the pinout of the target
system.

Following 1s a fragment from a poed constraint file (# is a comment character).

design terminal name
#emulator terminal name
clk WJ100.41

a[6] J111.63
a[s] JIIL13
a[4] J111.62

a[3] WJ111.12

If you do not specify a pod constraint file, one will be generated during compile, called
winr.pod using arbitrary 1/O to pin assignments. The file can be edited to setup the desired
pin constraints and used in & subsequent compilation by specifying the filename in this field.

Compiler options pane

The Compiler Options pane allows the user to specify options to the compiler. For compiler
options, refer to FLE Compiler Optiois on page 271 in Compiler options reference guide
chapter.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 151

ATI Ex. 2075
IPR2023-00922
Page 151 of 394

Compiler Chapter &

Improved emulation performance

Lazy reset is a modeling style for asynchronous preset/clear behavior of state elements that
trades off precise timing behavior for improved emulation performance. When enabled, lazy
reset defers asynchronous preset/clear induced output changes on state elements until the
next active clock edge.

The user can selectively exempt state elements from lazy reset which allows imprecise
modeling for most state elements while retaining the more precise modeling for the selected

set.

Save the name(s) of the maodule(s) to a file and invoke the -Vosr/i switch with this file's
hierarchical prompt on the command line.

Refer to -NoSrfi onr page 293 for additional information.

No-Flows for modcling

No-flow annotation is a command-driven mechanism for indicating to the VirtuaLogic
compiler that some apparent combinational path within a design is really a false path. To
make this indication, the user must identify a net or nets within the design that split a false
path into one or more disjointed real paths. Accomplishing this split enables compilability
or improves performance.

No-Flows to compile a design

Large combinational cycles or combinational cycles with multiple top-level [/Os make it
impossible to compile. The VirtuaL.ogic compiler automatically handles most combinational
cycles with few exceptions. When an unhandled cyele exists in the design and the cycle is
due to a false path, the user can break into the cycle using a no-flow.

Unsupported cyeles include the following:
» Cycles whose output reaches state clocks or gates
= Cycles involving top-level bidirectional 1/0
» Cycles involving memory elements
= Very large cycles (in excess of 100 elements)

False paths almost always result from overly conservative treatment of flow through
latches. To remove false combinational cycles, add no-flows on the output of key latches
or add no-flows on top-level /Os. Use no-flows after the compile process has indicated
something wrong (but has not identified the source).

152

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 152 of 394

Chapter 5 Compiler

No-flows to improve emulation speed

The user can break multicycle paths with no-flows to give the compiler multiple cycles in
which to evaluate multicycle logic.

Acyelic paths in the design that receive multiple cycles to propagate may limit performance
in the VirtuaL.ogic, since by default, the emulator propagaties data along the entire path in a
single clock cycle. In such cases, the user can annotate an arbitrary net along the path
(ideally the midpoint), using the no-flow mechanism. This lets the VirtuaLogic compiler use
two cycles for dataflow on the path. (Annotation of two nets provides for three cycles of
propagation time, ¢tc.)

This technique is very similar to the introduction of an explicit pipelining register; however,
it occurs without netlist modifications.

fdgure 39 on page 133 illustrates using no-flow to break multicycle paths.

Assume the adder has two clock cycles to compute outputs 532-564. Marking Co31 as a no-
flow conveys this information to the Virtual.ogic compiler. The effect is similar to what
would occur if the design contained an explicit pipeline register on net Co31. (However, this
implicit registering is not guaranteed to oceur. [t occurs opticnally if it improves
performance.)

A0 |BO A3 A32 |B32 A63 | B3
: il Hﬁ
[
A . B A L B A . B A . B
5 * voo—ci T o i *cor— see—ci T co

N EL e T

Figure 39 Ne-flows to break multicycle paths

special no-flow semantics for bidirectional fop-tevel Os

If a top-level bidirectional I/0 net is marked no-flow, the no-flow nature only applies to
internal flow paths.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 153

ATI Ex. 2075
IPR2023-00922
Page 153 of 394

Compiler Chapter &

No-flow annotations on top-level bidirecticnal IO nets break the flow path from outwardly
directed data to inwardly directed data, but maintain paths between the output driver and I/O
as well as I/0 to inward data. Figrre 10 on page 154 illustrates this.

top
Eout
Dout \} 101
Din ‘

Figure 40 No-flow bidirectional I/O net

Only paths from Dout to Din and Eout to Din are considered false paths. Dout and Eout to
101 out and TO1 in to Din are considered real paths. Enter the following:

Nel top.101

Visibility for bidirectional YOs with no-flows

By default, the IKOS emulation compiler models paths which go out primary bidirectional
10s and then come back into the circuit. In some cases, these are false paths. These paths
can be annotated as being false paths by using a no-flow on the bidirectional 1O which has
special no-flow semantics.

The result of using bidirectional 10s is that the single 10 wire really has two potentially
distinet values on each cycle, an outbound value and an inbound value. The outbound value
is the final value that the external wire will take on at the end of a clock cycle. The inbound
value is the pin value used for internal computation. The inbound value has a delay of one
cycle before reflecting any change due to a contribution from the design internals as a result
of the no-flow. Contributions from outside the device show up with no delay, as do model
internal values as viewed from outside the emulation model.

Historically, the value displayed when viewing a bidirectional 10 with a no-flow was the
outbound value, which reflects the final resolved value for the wire, accounting for current
internal and external contributions.

154 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 154 of 394

Chapter 5 Compiler

VirtuaLogic 2.1 has changed the display for this wire to correspond to the inbound value,
where again, the inbound value corresponds to the resolved value of any current external
stimulus with the internal driven value from the prior clock cycle.

Stated differently, when viewing or triggering on a bidirectional IO which has had a no-flow
annotation, the data will appear with a one cycle delay relative to the external value,
corresponding to the value which will be used for the cycle on feedback paths inside the
emulator. This is of particular note for triggers, which may need to be adjusted to reflect this
delay if they use expressions which combine bidirectional O values which have received
no-flows with other I0s which are not no-flowed.

Using No-Flows

To convey no-flow information, create a viw.nff file consisting of lines with the following
syntax:

nel <ngl_expressions
lerminal <terminal_cxpression™>
net-slate <net_cxpression=

In the above entries, - sef expression is a hierarchical netname or regular expression
matching a collection of nets using vector, synthetic vector, or wildcard notation. The
lermingl expression is a hierarchical terminal name or regular expression where:

* The first components(s) of the herarchical name match the name of one or more
instances

« The final component identifies a terminal name on the instance, for example:
ab.e<2:0=0QN

« Identifies the collection of nets connected to the QN terminal of instances a.b.¢O,
abcl, and ab.c2

The et keyword indicates that any path between the source(s) of the net and all its
destinations are false paths.

The termimal keyword, if applied to a terminal that drives a net, is equivalent to the net
keyword. If applied to a terminal that is a net receiver or fanout, rerminal indicates that paths
between the net’s driver and the specified fanout are false paths, but paths involving other
net fanouts are not affected. (Terminal expression must match a terminal on a user-primitive
instance only.)

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 155

ATI Ex. 2075
IPR2023-00922
Page 155 of 394

Compiler Chapter &

Almost all no-flow situations use swet; there is only one specific legal use for sef-stere. The
nef-state can be used to break flow paths between sets of latches whose gate active regions
are mutually exclusive.

No-flow nets may insert full design clock cycle delay. To eliminate these full clock cycle
delays, use the -P{// option. Refer to -P{/i on page 286 for information.

No-Flows on Buses

If you do not expect to transmit and receive in the same cycle, then no-flow should work
even if you get a cycle delay.

No-Flows in Combinational Loops

Placing no-flows in combinational logic loops does not guarantee whether there will be a
full cycle delay or not. 1t depends on how the partitioner partitions that part of the logic.
However, if you do not want a cycle delay in the combinational logic loop, use the -F1Ji
option and place the devices in the combinational logic loop in one partition. This will
guarantee ne cycle delay with the no-flows 1n that loop.

Refer 1o -0 on page 280 for additional information.

No-IFlow at output of fatches

Transparent latches make up combinational loops. The effect of placing a no-flow at the
output of the transparent latch is the latch is replaced by a flip-flop. Usually, it does not
matter; however, if it does, then use the process described in No-Ilows in Combinational
Loopys on page 136,

MNet tie-offs

Net tie-off's allows the user to fix the value of a particular net or terminal at a constant value
which overrides the natural value that the design produces. Overriding such a value can
often be useful for the following:

+ Work around a design problem
* Disable test modes or logic

With net tie-offs, the user can achieve these ends without editing the netlist source.

156 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 156 of 394

Chapter 5 Compiler

To use net tie-offs, create a file with the following syntax:
Net <net_expression> <value>
Termunal <terminal expression> <value>

The - valne - 13 a constant Boolean value, either 0 or 1. For the definition of nef expression
and ferminal expression | vefer to {sing No-Idows on page 133,

If a net or terminal expression yields multiple nets, they are all tied to the single specified
value. If a net is identified using the nef keyword, or the net-sourcing terminal is specified
with the feriminal keyword, all fanouts of the net receive the specified value.

If the rerminad keyword identifies a net destination or fanout, only the identified fanout
receives the specified value while all other fanouts receive the value that the design naturally
produces.

Designs with multiple asynchronous clocks

The Virtual.ogic system supports up to 14 asynchronous clocks. Designs with two or more
asynchronous clocks may require special care in compilation, depending on the interactions
between the clock domains in the design being compiled.

Sceript driven activities

This section describes the functionality of options for running the compiler with scripts.

Seript driven generation of virtualized model

A virtualized model can be generated without using the VirtuaLogic graphical interface
(aviy.

In addition to the graphical mechanism for invoking the Virtualogic compiler, there is a
script driven mechanism. The scripted mechanism uses a script that the gv/ automatically
creates. The user can repeat the process through the VirtuaLogic compiler without the need
for any user intervention.

To generate a virtualized model for your design, type the following command:
vle <config_name> verify

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 157

ATI Ex. 2075
IPR2023-00922
Page 157 of 394

Compiler Chapter &

In the command line, - cewifiz novmre 1s the name of your configuration:

If the directory wanted is the cne you are currently working in, enter the following:

vie - verily

Seript driven design compilation
A design can be compiled using the VirtuaLogic compiler (v/¢) script.

In addition to the g/, a script to invoke the v/ can be used. This mechanism uses a script
that the gv/ automatically creates. Follow these steps:

1. From the current directory, change to the working directory from which you
originally ran the g/

2. Type the following command to generate a configuration image for your design:
vle <config_name> compile

where <config name> 1s the name of the configuration to compile.

seript driven Place and Route
A downloadable emulation model can be produced using a script.

The textual interface is useful when a graphical terminal is not available; for example, over a
modem from home. Following are the steps to do this;

1. From your current directory, ¢d to the configuration directory.

2. Type this command to generate a configuration image for your design:

vle <config_name> vtask /Jirualogic 3.3/

where config pame is the name of the configuration to compile.

vie commands

The rtl, verify, compile, and vtask are the three basic steps to a configuration process. The
other functiens are provided for archiving a design database.

158 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 158 of 394

Chapter 5 Compiler

For syntax, usage notes and examples on vle commands, refer to vic comnands on page 318
in Compiler options reference guide chapter.

VRO

vie . browse constants
The command v/¢ . browse consfewts can be used to bring up vre in order to see the value of
netlist constants. This includes the values of any inherent netlist constant nets, any nets tied
to constants using the -7Nfi - file - tie-off capability, and the zero values applied by default
to undriven nets in the netlist. Refer to -7Nfi on page 290 for additional information.
incorrect net value in the circuif
SYMPTOM:

The net 15 always O when looked at and the user expects it to toggle or the net 15 stuck
at 1 when the user expectsa 0.

LIKELY REASONS:
- Incorrect tie-off in the tie file
= Floating net
DIAGNOSIS:
Use vic . browse consiats 1o determine if the net is actually determined tobe a
constant during compilation. If so, the user can trace back the source of this constant in
the value-annotated path display window to find why itis a constant,
Design removal during second dead togic elimination
SYMPTOM:
The design gets mostly removed during the second pass of dead logic elimination.

LIKELY REASONS:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 159

ATI Ex. 2075
IPR2023-00922
Page 159 of 394

Compiler Chapter &

* Floating or disconnected active low asynchronous preset or clear in library for
some state element model

* Floating or disconnected clock in the library for some state element model

» Mistake in the intemal clock specification leading to a dangling net at the root of
the clock tree

» Bad tie-ofT in the clock tree
DIAGNOSIS:

Select a flip-flop that you think should not go away. Observe its clock and
asynchronous preset/clear using vic . browse constanis,

If the first flip-flop selected is correct, it is probably deleted because it feeds into flip-
flops having one of the problems above. Select another flip-flop and repeat

Running repeat configurations

As a configuration of an entire design is completed using the GUI, all user inputs are saved
to files in text format. A configuration can be acted upon again using a batch program called
wle. If any user inputs need to be changed, the input files can be maodified to reflect the
changes and the entire configuration can be run through a batch file.

Vprobe batch-mode

Vprobe is a process to facilitate the probing process downloading the triggers, uploading the
data from the HP logic analyzer etc.. Basically anything that can be done using the GUT can
be done using batch mode. 100% visibility is not recommended using vprobe at this time.

To start the process, type vic . vprobe. This will start vprobe and mount the HP logic
analyzer(if applicable), there will be a list of commands as shown:

Starting vprobe
Commands: depth download cxit lock quit unleck xwinon

Those commands are rather self-explanatory. Depth is to set how much data to capture while
downloading the trigger. After downloading the trigger the command set becomes:

Commands: exit lock quit stop unleck

160 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 160 of 394

Chapter 5 Compiler

Typical command to be used here is stop (to stop the trigger), or simply wait for the trigger
condition to occur. After the trigger condition 15 done, the command set 1s:

Commands: depth download exit lock quit run unlock upload xwinon

Here the command upfoaed is used to upload the waveforms. To view the waveforms, itis
strongly recommended to use the (I because there is no goad reason to do that with batch
mode. In order to get the correct syntax in vprobe, one should run it once with the gui and
view the emulate log. Determine which line is the line for those commands stated above and
use that as an example for the correct syntax.

VRUN batch-mode

Vrun is a program to run the emulation process such as connecting to the emulator,
downloading the design etc. There is one serious draw-back in this mode in the sense that
there is no straight-forward way to provide feedback from the emulator. This way it is
difficult to determine when to load in a new sets of vectors. Twe possible work-arounds are
described later in this section. Here are the procedures for running scripts in vrun. Again, it
is recommended that one first performs vrun in gui and examine the emulate log for proper
syntax.

First, rsh to the host of the emulator. Then fype:
vrun -s script_file

to run vrun in batch mode. A sample script-file is as follow where comments are indicated

by i3:
conncet 1 {to conneet to cmulator, usually 1 unless there are more than 1 cmulator conncet
to the host}

configure top_mod {top-level medule} -probe probe window_ 0 pbw/systemO | probe-
window that you want to use, follow by /systemO}
enable {cnable the pods}

set_outputd {toggle the user-bit4, in most cases, user-bits are used as resets. Similarly, user-
bits 1, 2 and 3 can be set by set_output], set_output2 and set_output3. The first toggle
changes it from 1 to 0}

sct_outputd ftoggle again change it back to 1}

system /bin/sleep 60 {system command allows you to execute regular shell-script. However,
vou will need to specify the entire path such as /bin/command. This command is extremely
useful in reloading the memory. Since the memory-contend file is fixed, we will need to
change the file by either mv or ¢p. This can be dene by the system command. This is one of
the workaround for the memory loading problem described earlier. We can run the design
once to get an idea as of how long it will take to finish one set of vectors. Then we use the

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 161

ATI Ex. 2075
IPR2023-00922
Page 161 of 394

Compiler Chapter &

sleep command to wait for the vectors to finish before going to reload the new set of
vectors system /binfecho "1t is working" {more example about system command for
executing shell-script, you can use as many as desired}

system -timeout 60 /bin/csh filename { The first part is to time-out after 60 seconds. The
timeout command is purely optional, the second partis very useful. One can have a separate
shell-script file to specify different commands and run it within vrun}

disablc {disable the pods}

wait_for_file filename {wait for a file to be generated. One need to specify the full path of
the file. This is another useful way to work-around memory-loading problem. Vprobe can
set up trigger condition, and upon triggering, it generates a .vre file and a vdb file. If we set
the trigger condition to be at the end of the current vector set, we can use wait_for_file to
wait for the generation of those files as an indication of a new set of vectors is needed}

memory all {upload all memory, or specify explicit instance in tull hierarchical format] -file
test {filename where the memory content needs to go} -format X { X for hex, u for unsigned
decimal, d for signed decimal and b for binary }

reload {reload memery content}

quit {to quit out of vrun}
The vrun batch mode is also useful when a user needs to run emulator from a remote site

with telnet. However, always make sure that the environment is set-up properly, for one
mistake that hangs up the system will make resetting the system impossible.

Creating a new configuration database
If a design bug is discovered and a new netlist is generated, then a new configuration will be
required. The user will want to retain the current database until the new one can be tested
and verified. The user can copy the current database files that contain the setup information
by completing the following steps:
1. Open the old design with gv/.
2. Select Save as from the bottom panel of the GUL
In the dialog box, enter a new working-dir cosnfig-mame. vy
Do not copy emulation bits (Button in the "out" position)
Copy auxiliary files (Button in the "in" position)

3. ¢d to the new working directory.

162 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 162 of 394

Chapter 5 Compiler

4. Make the needed changes (copy new netlists, edit params.mak, or add new probes)

5. Compile the design using the vic command or GUL Do a touch vimv.depend 1o
activate the batch mode compile.

Suggestions for repeat configurations

» Keep all the netlists in a separate netlist directory aleng with memory files or other
data. This makes it easy to copy all the netlists between compiles.

* Always make the netlist names the same and keep track of them with date/time
stamps

+ Whenever a netlist is copied, use the -p option with the copy to retain the date/time
stamp

« Always use the same config-name. Make it the same as the TOP name in the design,
This makes it easier to write generic scripts.

» Keep alog in a global 7sA DML file of what changes with each configuration
= If possible, use a revision control system to control netlist versions

Configuration input files

The configuration input files are described in farble 3 on page 163

Table 3 Configuration input files

File Contents

params.mak | Design input data from all forms, including netlist file names,
compiler options, hardware resources and all settings

vmw.clk Timing specification data
VInw,men Memory mapping data from Memory Specification form

vmw.defines | Verilog macro define statements frem Netlist Import form

vmw.pod I/O pin out, also called terminal constraints
vmw.prb Probe Groups defined in the Probe form
vmw.pwl Probe windows defined in the Analysis form

Refer to wle commands ot page 3/8 in the Compiler Chapter for complete information on
the commands.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 163

ATI Ex. 2075
IPR2023-00922
Page 163 of 394

Compiler

Chapter &

Runtime state readdinit/torce

A user state element can be read/initialized and forced in VStation. It is currently only
available from vrun and is not yet available from TAPI. To use this feature with co-model
designs, the user need to bring up the design under TAPI_DEBUG mode and centrol vrun
explicitly from gv/.

Terminology

Read:

Set:

Force:

The vrun force capability requires a compile using the vsyn compilation option: -foree

Sample the state elements in the emulator and write them to a disk
file. This can be done in-circuit.

Force 1 or more state elements to specified values, run one complete
user clock cycle to propagate fanout through VirtualWires, and then
release the lock on the state elements.

Force one or more state elements to specified values and leave

them forced until explicitly released. (This is alse called stick in

some cireles).

filename -, where the filename looks like an xfi/ file, specifying either flop module paths or
g-net paths (wildcards are acceptable), If every design flop is made forcible (e.g, with
MODULE root) then an overhead for force around 10 to 20% can be anticipated beyond that

already incurred for 100% visibility. This has not been fully calibrated yet. Enabling of

forcing for flops in a subsystem will result in significantdy smaller overhead.

New vrun Commands

The following table gives the new vrun commands and descriptions,

Table 4 New vrun Commands

Command

Description

state ctrl -ones

Sets all state elements to 1

state ctrl -zeros

Sets all state elements to 0

state_ctrl -read_all filename [-format hdob] | Writes values of all states to file

state_ctrl -random seed

Sets state elements to randomized values;
where seed is an integer between ¢ and 31

164

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 164 of 394

Chapter 5 Compiler

Table 4 New vrun Commands

Command Description

state_ctrl -set_states filename Sets state values listed in the file, without
changing the values ofother states

state_ctrl -set_all filename Sets all state values,
Zeros: any state elements that are omitted
from the file, after warning the user

state_ctrl -force_states filename Forces state elements to retain the values
specified in the filename until explicitly
released

state_ctrl -force_off Release all forced state elements

+ All operations that set state require that the 1/Os are disabled first.

« All state input files use Verilog notation for vector values. (e.g. a[3:0] = 4"d7).

vrun has abilitiy to reconfigure memories with previous memory upload

vrun can save user memory contents and restore them to the previously saved user memory

contents.
Table 3 Saving and restoration of memories
Switch Description
memory all -file dir_name saves the user memories into
the dir name directory with
one file per user memory saved
in the dir_name directory
reconfigure -use_dir restores the user memory
dir_name contents from the dir naime

directory

The saving and restoration of memories work on all user memories when the emulator is cut
of circuit.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 165

ATI Ex. 2075
IPR2023-00922
Page 165 of 394

Compiler Chapter &

Ways to improve compile time
Froat End Compile(vic .compile)

Workstation

There are twa workstation upgrades that will significantly impact performance:

« Faster machine - faster compile with a near linear relationship between speed of
machine and compile time

« Increase memory to the point where swapping to disk is eliminated - can vield
orders of magnitude faster compile times

Software

There are two software options that can be exercised to expedite compile time:
« re-read partition and place files
= use multi ASIC compile

To re-read partition and place files, use -Pfi/-Pi compiler options only when minor design
changes have been made(i.e., a buffer changed to an inverter, or AND gate changed to OR
gate).

To use multi ASIC compile, compile blocks of your design in seperate vimw configuration
and bring in these blocks as ASICs in multi ASIC compile when your design can be
partitioned easily and the “blocks™ portions of your design are stable.

Place and Route (vle .viask)

Workstation or PCs

There are three ways to improve place and route times;
« use more, faster machines
« use PC farm

» increase memory on machines in #1, #2 such that swapping is eliminated or at least
significantly reduced

166 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 166 of 394

Chapter 5 Compiler

VEL messages

A new window comes up with all VLE compilation warning and error messages as shown in
the Figure 41 on page 167,

Messages: (nonel

_' .o - Vle Compilation:Messages ¢

Sort By * . Shaw T Filter ?
Time Emitted .Type Code “File .ELiIr.ﬁe Path *
Suppressiens ?

Dismiss Clear Help ..

Figure 41 VLE Compilation messages

FPGA Compile

The compile process generates netlists and timing constraints for all of the FPGAs in the
system, These FPGAs must be compiled into a downloadable bit stream before emulation
begins.

FPGA Compile completes the place and route of all the FPGAs on the Array boards and the
System board. FPGAs containing a lot of logic may be quite time consuming to complete
FPGA Compile. To reduce this task, the backend FPGA software distributes the FPGA
Compile jobs to machines on the network. The user can have as many machines as there are
chips. By placing the machines in order from most powerful to least powerful, the more
complex chips will be assigned to the more powerful machines, If a machine is known to be

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 167

ATI Ex. 2075
IPR2023-00922
Page 167 of 394

Compiler Chapter &

very busy, or has a high load, do not use it. The backend FPGA task will take the time of the
longest chip if there is one machine per device. If there is less than one machine per device,
then at the completion of a device, the machine will start another job.

Figure 42 on page 168 displays the I'PGA Compile Form.

Virtbalogic3. S@sleepy: fhome/subbifah/ Tra

File Edit view Tools Options Help

Design Impert Signals Compile Triggers ~ Emulation

. Cantral 2 Reports refresh 2
ATL WLE FPGA .) .
Rtl: Design Analysis

i > ; Rtl: Area Analysis
Tasks Find.. fort L Compile FRGA oot oty a1y

board0:c0 Complete . Log: Conpile RTL
boardo:cl Complets Start ‘Log: Conpile RTL & YLE £
boardD:c2 Complete

board0xc3 Complete

hoardi:cd Complete - Log £TL Messages
boardD:c5 Complete

boardo:cé Complete

board0:xc?7 Complete

board0:ul100 Complete

board0:u101 Complete

hoard0:u102 Complete

boardD:u103 Complete

hoard0:u104 Cormplete

boardo:u105 Complete

boardD:u106 Complete

boardD:u10?7 Complete

hoard0:u110 Cormplete

hoard0:u111 Complete

bpardo:u112 Complete

board0:u113 Cormplete

board0:ul14 Complete

. WLE Messages.. FRCA Messages . 3

Machines HOSTS . Imipore . Nice=19 ., . H

farnl0. 1kos. comspe
farmll. ikos comfpc
farml2. ikos. comspc
farnlld. 1kos. conipe
farnld. ikos. comfpe
farmls. ikos. comspc

Read configurstion /homeSsubbiah /Train_Labs F352/¥35 coler. v Qi

Figure 42 FPGA Compile form

Machines

The Machines pane is used to specify a list of Solaris workstations and PC hosts on which
FPGA Compile jobs can be queued.

A single Place and Route(PAR) job typically takes 20 minutes and one of these is required
for each FPGA. There are 64 FPGAs per VirtuaLogic emulation board, in addition to the
FPGAs dedicated to probe logic. This can result in about 400 PAR jobs in a full compilation
for a six board system.

168 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 168 of 394

Chapter 5 Compiler

It is advantageous to use as many machines as are available. The FPGA compilation
software distributes the FPGA Compile jobs to machines on the network. The machine
names are specified in the AMachine List pane, one maching name per line,

Refer to Al known hosis on page F70 for information on how to obtain a list of machine
names on the network. Note that routers, file servers, and non-Solaris hosts will all be listed.
It 15 the users responsibility to choose the correct machine names from the list.

The AMachines pane is read when a PAR run is started or reread with the -new/ist command.
The user can change this machine list while the PAR jobs are running. When the editing is
completed, select the Reses Host List button. The Solaris machines must be able to see the
SFMW HOMI. area where the VirtuaLogic software is installed, and it must support the r54
facility.

The PCs must be configured with the RSH daemon. After this has been completed, the
Xilinx and VirtuaLogic software can be downloaded from Solaris as follows:

$VMW_HOME/pc sctup.csh pchost] pehost2 pehostd ...
Refer to page 371 for information on how to obtain and install the RSH software.

The Iist of known hosts is updated every few minutes, aleng with the load averages for
UNIX machines, to help the user in selecting unloaded machines.

Remote machine resvurces

To determine the resources available on remote UNIX machines, rlogin into the machine
and check it for the following resources:

s memory

dmesg | grep mem
« CPU type/class

dmesg | grep cpu

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 169

ATI Ex. 2075
IPR2023-00922
Page 169 of 394

Compiler

Chapter &

» Each machine must have a minimum of 50 MB tmp space to be able to run an
FPGA job. To check the tmp space,

df Amp

Note that the Xilinx tools used for FPGA Cempile do not support SunOS. To successfully
complete an FPGA Compile, the remote machine must be able to ¢ to the software location
and the config-name. vimw location. Make sure these disks are mounted and accessible from
every remote machine.

Is -1 “which ppr*
ls -1 full-hicrarchical-path-namec/config-name vimw

When logging into a remote machine, if it asks for a password, then the FPGA Compile
software will not be able to run on this machine. To resolve this, a file can be added in the
users home directory called .rhosts. Place the machine host names that are going to be used
for the FPGA Compile in the .rhosis file. This will allow these machines to be logged into
without requesting the user’s password.

Al known hosts

The A/l Kienwert Hosty pane shows the available hosts on the network. It can be used to drag
and drop machine names inte the Adachine List which are the machines used to run PAR
Jobs.

gvl determines the available hosts through one of the following three methods:
rup

This method is preferred. It gives only the UNIX hosts that accept the rup protocol
and updates the host list and the load averages once every two and a half minutes.

It requires that the system administrator enables the rsfatf daemon which is very
common,

This method typically works; however, it is slow and 1t takes resources since it does
a network broadcast to get hosts to send their load average information.

ypcat hosts

This method works in the yellow pages environment. It offers no dynamic update
and nio load average information_ It does not distinguish between UNIX and non-
UNIX hosts,

170

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 170 of 394

Chapter 5 Compiler

cat fetc/hosts
This method is the last resort option if the yellow pages method does not work.

The PC hosts listed from SFAfW HOME e pe hosts.mach are included. This file is
updated when a new PC host is configured using the following script:

$VMW_ HOMEbin/pc_sctup.csh

Note that when dragged and dropped into the Aachine List, the PC machines will have the
pe appended.

MNiceness

The Niceness slider controls the priority of the parallel PAR jobs that are spawned on UNIX
machines across the network as specified in the Meachine List.

The default priority is 19 which is the lowest (nicest) priority. The slider adjusts the priority
of all new PAR tasks that are spawned from the configuration even if the FPGA Compile run
has already been started. It does not change the pricrity of individual PAR jobs that are
already in process.

The highest priority available is O which is what normal user jobs run at. If possible, do not
run jobs in this highest priority mode,

The user cannot set the priority higher than 0 without being a super-user.

A single PAR job run at 19 should not be noticeable to a workstation user unless the
physical memory on the workstation is very tight. The PAR jobs generally take less than 32
MB on a UNIX and 75 MB on a PC.

FPGA compile tasks

The 1°GA Compife Tasks pane lists all the Xilinx PAR tasks which must be completed
before emulation can begin, They correspond to the FPGAs in the emulator box,

Each task goes through the following four phases:
* Prepping
* Ready

* Running

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 171

ATI Ex. 2075
IPR2023-00922
Page 171 of 394

Compiler Chapter &

» Completed

The freppring occurs on the machine from which the user started the PAR run and is
typically an [/O intensive task. To avoid overly stressing the file server, only one Preppinsg is
run at a time.

The Runring occurs on the machines given in the Machine List. They are run in parallel.
gvi back-annotates onto the list a task’s phase and the machine it is running on.

More information can be obtained about a task by double-clicking it or selecting it and
pressing <refurn>, This will show a list of all the files related to the task and the file size in
kilebytes. Double-clicking on a file will bring it up in a text editor

The files are summarized as follows:

*.log log files for the Xilinx tools; lock at these if there are errors
* bit raw bits for the emulator downlead (binary)

*. map Xilinx data file (ascii)

= xff Xilinx data file (ascii)

=dld Compressed bit files for the emulator (binary)

Reset host list

Use this button after editing the Machine List pane. The Adachine List can be edited while a
PAR job is running. Press the Reser Host List button to reload the Aachine List after editing.

Stopping FPGA compile during compilation

Either of the following will stop FPGA Compile during a compilation:
» Select the /nferrips button
« Type <control-c> (or equivalent break) in the FPGA Compile log pane

Either of these methods will allow the FPGA Compile run to shutdown gracefully, including
the proper termination of any active processes on remote machines. In contrast, performing
a kill -9 targeting the viask process can leave remote processes running and therefore,
should be avoided.

172 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 172 of 394

Chapter 5 Compiler

Run PG A compilation from the command line

Do the following to run a FPGA compilation from the command line:
1. ¢d to the configuration (vanw) directory
2. Enter vlc . vtask

To run FPGA compilation from a script, you must redirect the input and output of the
program. The syntax is as follows:

vlc . viask = /dev/null >& pprs.log

Task management
The FPGA compile task manager, vicsk, is an interactive program and can be controlled

from the I"P(GA Compile Log pane or from the command line if you are running from a
UNIX shell.

viask commands

For syntax and usage notes on vtask commands, refer to viask commands on page 321 in
Compiler options reference guide chapter,

Hung jobs

The FPGA compile task manager, viask, is an interactive program. Entering the status
command on the command line will report what jobs are running on each machine. Do the
following to determine if jobs are hung;

I Use the starus command from viask to determine which machines are still running

2. Login to the machines still running. Use fop or ps to determine if the job is getting
CPU cycles. Following are reasons why a job is not getting CPU cycles:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 173

ATI Ex. 2075
IPR2023-00922
Page 173 of 394

Compiler Chapter &

- Other jobs on the machine have priority. By default, the jobs are run at sice £9 1f
the last job(s) are on the busiest machines in the company, interactively remove
the machines at the viask command line or kill viask (contrel-C, not kill -9).
Edit the mcchlist mach file to place the least loaded machines first on the list
and then restart PARs.

- A network or disk problem. The job may be slow because the network is slow.
The user should ¢ to the directory containing the FPGA data (e.g., board0)
and do a /s -/tr on the data for that FPGA_ If the log file has been written
recently, the best solution may be to just wait.

If the job is getting no cycles and the log file has not been written within the last hour, get
the offending machines out of the Meachine List and try to reboot the machines.

vitask command

SYNTAX:

viask.sh <number of Artay boards> |options)

OPTIONS:
-fC This continues compiling FPGAs even if there is an
error in one of them. The default is to abort.
-newlist <n>= This rereads the machine list every <n> seconds so that
a global resource manager (e.g., LSF) can control the
host resources used by viask.
USAGE NOTES:

The viask.sh command has many other options which are not listed because they are
set automatically from the v/e script. The above two options are the only options that
the user should change.

FPGA messages

A new window comes up with all RTL compilation warning and error messages as shown in
the Figre 43 on page 173

174 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 174 of 394

Chapter 5 Compiler

[=" " Fpga Compilation Messages .

Messages: (none) : . E

Sart By 2 Show ? Filter ?
Time Emitted CType Cede o+
Suppressicns E
Dismiss! Claar Help ..}

Figure 43 FPGA Compilation messages

Control

The Compile Control pane of the Compilation tabeard is used to start or interrupt a
compilation run.

There are three main stages of compilation: RTL, VLE, and FPGA In addition to the
compiler opticns two more optiona are there with the standard compile: Generate VSM, and
Incremental compilation. The first of these modes generates a *Virtual Simulation Medel’,
which can be used to verify the Virtual Wires emulated behavior against a simulation test
bench. The Incremental compile mode can be used ta quickly recompile a design if, and
only if, the only change to the inputs is to the list of Signals probed.

A number of the compile stages can be selected to run compilation automatically in
sequence. The supported sequences are:

. Compile RTL
. Compile RTL & Generate VSM
. Compile RTL & VLE
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 175

ATI Ex. 2075
IPR2023-00922
Page 175 of 394

Compiler Chapter &

. Compile RTL & VLE & FPGA
. Compile VLE

. Compile VLE & FPGA

. Compile FPGA

. Generate VSM

. Incremental VLE

. Incremental VLE & FPGA

Note that sequences that involve the FPGA stage are actually overlapped with the preceding
VLE stage; the FPGA stage is started as scon as the Virtual Wires model content for the first
FPGA is known.

The RTL compilation options do not show up in this list if the Netlist Type is not set to
‘Verilog RTL".

These compile options also include options for data deletion such as

. Clean RTL & VLE & FPGA
. Clean VLE & FPGA
. Clean FPGA

Clean
When selected, it pops up a new window asking for data to delete as shown in the /igwre 44

on page 176, Use this when a prior run terminated abnormally and you want to start a fresh
run.

! E Clean RTL & ULE & FPGA data?

I Confirm Cancel Help I

Figure 44 RTL & VLE & FPGA data deletion

[—] . "Question

| € Clean VLE & FPCA data?

Heln

I Confirm l Cancel

Figure 45 VLE & FPGA data deletion

176 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 176 of 394

Chapter 5 Compiler

Clean FPCA datar?

i Canfirm [Can<el w Help

Figure 46 FPGA data deletion

Reports

This pane has useful information that includes the names of report files and log files that
were creted during the compilation process. Report files such as design report file, area
report file and log files such as vmw.log, rtl log, compile.log and vtask.log are listed in this
pane.

Generate VSM

The CGenerare F'SM button 1s used to initiate model generation. It generates a Verilog netlist
of the retimed (virtualized) design to verify 1/0 timing, memory specification, and to
generate vectors for the hardware functional test.

Refer to Generating o VSM on page 178 for additional information.

Virtualized Simulation Model

The Virtualized Simulation Model (VSM) is a Verilog model of the design that incorporates
the results of the timing resynthesis process based on the netlist, memory specification, and
timing specification provided as inputs.

Using this model creates an easy to debug environment for quickly resolving any emulation
compilation preblems so that the user can focus on the debug of real problems in-circuit.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 177

ATI Ex. 2075
IPR2023-00922
Page 177 of 394

Compiler Chapter &

VSAH limitations

The VSM is not an exact representation of what is implemented in the emulator, but it
reflects the partial timing resynthesis process that oceurs with reduced velock. Because a
VSM is a cycle-based model, the testbench that goes with this model cannot be dependent
on any clock period delays or special timing,

As with any testbench, if the testbench does not exercise a particular function, it is not
verified. Use testbenches with the elements being tested. For example, use a testbench that
exercises all of the internal memory modules to verify designs with lots of internal
memories modeled for the emulator. If custom libraries have been created manually or
developed without the use of direct mapping tools, run a more extensive verification.

VSM can also be generated during compilation with the -vsir compile switch option.

Preserving design hicrarchy

The VSM has its own hierarchy, independent of the input design hierarchy. If the testbench
exercising the design contains out of scope references for stimulus or monitoring the design,

the user can choose to preserve the hierarchy of the original design. On the command line of

the Compiler form, insert the following command:

-hn

If this is done before generating the VSM, the resulting model retains user names and
hierarchy information helpful in debug. The resulting netlist is significantly larger and will
take longer to simulate, but may be easier to debug.

Generating a VSV

To generate a VSM, click Gen Virtualized Model on the Ferification form. This invokes the
VirtuaLogic compiler with the arguments necessary to generate the VSM. The compiler will
parse the design inputs, and generate two Verilog files in the configuration directory. These
are the VSMs named <design name> verifi.v and the vector shell, named vector sheily.

Simulating a VSM

Tdgure 47 on page 179 shows the process flow for verifying a VSM. Each testbench is
unique and can require different solutions, but the process flow provides a general guideline
for most environments.

178 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 178 of 394

Chapter 5 Compiler

Gate-level chip Run Chi
g p
neﬁlillgrté?? ea?snd ith Testbench -4—(Testbench

Modify Testbench

v

Run Chip
with Modified Testbench

Run VSM
with Modified Testbench | %\ Generate VSM

Figure 47 VSM verification process steps

Step b: Simulate the input netlist

Use any simulator that supports Verilog HDL to verify the VSM.

Before running the testbench on the VSM, run the testbench on the original netlist Make
sure that the design is the same version as that of the netlist synthesized for emulation.
Matching the versions does the following:

* Provides the baseline for verification
+ Eliminates tracing problems related to different sources

» Verifies that the simulation environment 1s setup properly

Step 2; Prepare the testbench

The VSM is designed to be simulated using your original testbench. There are two
categories of testbench behavior which may require testbench modification or abandoning
the testbench for a vector based methodology as follows:

» Timing Checks: The VSM is accurate only to user clock edges. If the testbench
checks for outputs, or generates inputs at specific times, instead of at clock edges,
these times will probably need to be medified.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 179

ATI Ex. 2075
IPR2023-00922
Page 179 of 394

Compiler Chapter &

» Cross Scope References: The VSM has a different hierarchy than the oniginal
design. While most of the hierarchy can be preserved, some cross scope references
such as those to memories will still fail. These references will need to be medified
or commented out.

Step 3: Resimulate the modified Testbench

If any changes are made to the testbench, rerun the original gate-level simulation to be
certain that the changes do not cause unexpected behavior.

Step 4: Simulate the VSM

To run the simulation with the VSM, make the following changes to the way you invoke
Verilog:

» Remove the original netlist and libraries from the list of input files

» Add the path to the VSM, design verify.v, and the technology mapping library,
if one is used

+ Add the following IKOS primitive libraries:
v $VMW_HOME/lib/Aymw_reference.v

-v $VMW _ HOME/lib/vmw_synthprim.v
= Add any IKOS specific definitions, if needed

Resolving simulation scenarios

Following are several common situations that might require diagnesis and resolution when a
VEM is simulated:

Initializing the design

If the memory contents are defined in the Ademory Specification form, the VSM contains
readment statements. The readmem statements load the memory with the contents of the file
defined in the Ademory Specification form. Hierarchical path names have changed and the
memories have been remodeled; therefore, any readimess statements in the testbench that
load memories in the design will fail. These should be commented out or disabled with an
ifulef statement.

180 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 180 of 394

Chapter 5 Compiler

The FAW INIE 51411 variable initializes the contents of the memory and flip-flops to
zero at the beginning of the testbench to prevent unknown output data if the memory read
oceurs before the memory write, This variable can resolve initialization problems; however,
do not use 1t unnecessarily. Using FA/W INIT STATE for the VSM creates a false
initialization implemented in the VSM that cannot be duplicated in the emulator. If you need
VAW INTT STATTE to make the testbench pass, the same testbench is not useful for
hardware functional testing which applies vectors to the emulator 1/O pins to verify that the
actual implementation in the emulator is functional.

Timescale issues

By default, the VSM does not specify a timescale. If the simulation iestbench uses timescale
directives, apply the same timescale to the VSM by doing the following;

» Place the timescale directive in a file named wvimw. firmesceale in the simulation
directory

» Define the Verilog vaniable FA/W [/SIER TIMESCALR which includes this file at
the start of the virtualized model definition

Input timing issues

The timing specificaticn defines when changes on emulator inputs can occur. The VSM
watches for inputs that change outside of this region and produces warning messages when
this oceurs. These warning messages take the following form:

Design 1/o <ioname>: uncxpected transition scen at time <time>

The duration of the window in which input changes can occur is dependent on your design
and the timescale setting specified in the testbench.

The window in which changes can occur on a particular signal starts whenever a clock edge
menticned for the signal in the timing specification occurs and ends after the expiration of a
period controlled by the Verilog variable AW INPUT SETUP whose default setting is
100 time units. Therefore, by default, input signals can change during a window that is 100
Verilog time units in length (that is, equivalent in length to #100) and starts at each clock
edge to which the input is timed.

If this default value is inconsistent with your testbench and timescale, you can override it.
Provide a new value to the variable AW INPU/T SETUP using the following command:

+definet VMW _INPUT_SETUP=<val>

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 181

ATI Ex. 2075
IPR2023-00922
Page 181 of 394

Compiler Chapter &

The <val> 1s a numeric value.

Otherwise, the edge that causes input changes from the timing specification can be omitted.
To fix this, modify the timing specification.

Clock ordering and period issues

The timing specification defines an ordering for all clock edges within a clock domain. The
VSM watches the order of clock edges in a domain and produces warning messages if this is
inconsistent with the timing specification.

The VSM also requires some amount of elapsed Verilog simulation time to process internal
changes that occur as a result of each clock edge. This time is equal to the value of
VAAW INPUT SETUP plus a small design-dependent component.

On the first occurrence of either condition, the VSM produces a warning as fellows:
Waming: Unexpeeted clock edge <clocknamel-dircetion 1> scen at time <timel>. The
VirtuaLogic Verification simulation model will not be svnchronized with vour simulation
covirpnment until the first clock edge <clockname> listed in the gvl timing specification
for this domain <domainnamc> has occurred. to maintain svnchronization, a minimum
separation between non-coincident clock edges is required. You may need to modify vour
simulation cnvironment's behavior to avoid simulation mismatches duc to delaved
svnchronization or elock overmun,

Additional cccurrences produce the following warnings:
Unexpected cloek cdge <clockname [-dircction | > scen at time <time 1=,

Preceding elock edge was <clockname2-dircetion2> at time <time2>.

Warnings due to clock ordering probably reflect an error in the timing specification. To fix
this type of problem, adjust the timing specification to reflect the actual clock edge ordering.

If clock edges are cceurring too rapidly in succession, change the testbench and/or timescale
granularity to provide more simulation time between consecutive clock edges.

Vector capture

In some cases, the testbench is too complicated to run or takes excessive simulation time to
use. In these cases, the user can capture the input and output vectors that the testbench
applies and evaluates from the design. The user can then apply these vectors to the VSM for
a simplified testbench environment.

182 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 182 of 394

Chapter 5 Compiler

The advantage of using vectors is that this technique eliminates the complexity of the
testhench. The technique is often used where the testbench is proprietary. The disadvantage
is that the testbench often provides useful debug information and automated verification of
the model that 15 no longer available.

Toimplement this option, add the <working dir=/<config name>vimwi<vector shell>.v file
to the list of files in the testbench. The vector sheli v file 1s instantiated between the chip in
the testbench and simply collects the 1/0 of the chip as it passes through this block.

The model in vecior shell v has the name - design-name -sample so the testbench must be
changed where it instantiates the design to instantiate desigsr-name ~sample instead.

This model, in turn, instantiates - desigr-nome -

The resulting vectors are in a file called <working dir>/<config nane>. v/
<Zdesign name>. sample.vec which becomes part of the new testbench.

Following are the steps to run them with the VSM:

. Run Verilog with the VSM files, <design name> verifiuv, and the libraries
mentioned in Siep £ Simulate the VSM on page 180.

2. Use define statements to put the testbench in vector read mode instead of vector
write mode:

+defing + VMW _READ_VECTORS
+define + VMW _VECTOR _LENGTH=<vector length>

This simply applies the vectors and collects the outputs.

Ixampie

In this example, first Verilog is run with the chip (comprising fop. v, chip.y, mem relv), the
testbench, and the <vecfor shell>v file. The testbench has been modified to call the
<wveeior shell> v instance. So the testbench now calls 7OF sampie instead of 700/

verilog -v /hg/support/reicase/VittuaLogic v2.0/0ib/Aymw_reference vy
-v /hgfsupport/release/VirwalLogic v2.0/libAmw_synthprimoy
testbenchoy trp /TOPAymwAector shelly topy chipy mem el

The result of this simulation run is a file called 7O sample.vec which has 141 lines. The
Verilog is run again, without the chip model, the <vecior shelf=vfile, or the testbench. The
PAMW READ VECTORS mode must be enabled, and the number of vectors to run must be

defined. These define statements apply the vectors to the VSM.
verilog -v /hg/support/release/VirtuaLogic_v2.0/libAmw_reference.y

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 183

ATI Ex. 2075
IPR2023-00922
Page 183 of 394

Compiler Chapter &

-v /heysupport/release/ VirtuaLogic_v2.0/ibAmw_synthprim.y b
+define+tVMW_READ VECTORS +define+VMW_VECTOR_LENGTH=141}
Lfsceamw/TOP_verify v

The vectors in 7O samyple.vee are cycle-by-cycle and contain the clocks. No timing
information is imbedded in the vectors. The expected output results are captured from
running the testbench on the chip medel, so even if the testbench fails, the vectors reflect
how the chip responded to the input stimulus. The emulation model built from the same
netlist should have the same response to the input stimulus.

VSA summary

To simulate the VSM, run a simulation in which you make the following changes to your
simulation arguments:

. Remove all Verilog source files defining the root module and its contents.
2. Add in the new Verilog source file <config dir=/<root> verify.v.
3. Add in the following arguments to search the required VMW libraries:

-v VMW _HOME/lib/Aimw _relerence.v

-v SVMW_HOME/lib/Avymw _synthprimy

4. After modifying your simulation arguments, perform a simulation.

Incremental probe compile

The Incrementad Probe Compile button is used to run the compiler using the existing
database with only the probes modified.

FPGA compile

The #P0rA Compile allows the user to instruct the compiler to start FPGA placement and
routing as soon as the data for a single FPGA 1s ready (Anfo-state Iiabled) or wait for the
manual input from the user (Auto-start disabled). As a result, the FPGA placement and
routing ean begin well before the compiler has completed which significantly reduces the
time required to cycle a design.

Note that the FPGA placement and routing requires that a machine list has been prepared. If
the compiler is run with the Awfo-start Fnabled feature, and the FPGA machine list is empty,
then the FPGA scheduling program (vresk) will wait indefinitely until the host list is reset.

184 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 184 of 394

Chapter 5 Compiler

When using the v/c script, specify the target compile viask. This will cause compilation and
FPGA compilation to occur in overlapped fashion. The compile and then wiask vie targets
have their former behavior, resulting in nonoverlapped compilation of front-end and FPGAs,
respectively.

Start compile

The Start Compile buiton is used for the design compilation process. While compiling, this
button becomes the Znterrupt button,

Interrupt

The Inferrupt button becomes activated when the Compile is running. Click on the button to
interrupt the running of the Compile,

LOG pang

The Log pane shows the log of the RTL, VLE and FPGA compiler run. It is intended for
informational purposes only. If desired, the user can cut and paste from it to other X
windows.

If the window is scrolling too fast to read, use the Pawse button. This does not stop
compilation; it buffers the compiler output until vou are ready to read it again. Use the
Reswme button to continue. The Pase button is relabeled Resumre when it is selected.

Alogfile is automatically updated. Selecting the Show Log button will invoke a text window
with a log of the last completed run, The run in progress is logged to a temporary file and
renamed when completed.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 185

ATI Ex. 2075
IPR2023-00922
Page 185 of 394

Compiler Chapter &

186 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 186 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Multi Module Compile
(MMC1)

Overview

This phase of Multi-Module Compile adds an automatic multiple box compilation
capability. This enables taking a single large maodule and allowing pre-specified sub-pieces
of the module to be separately and independently compiled and recompiled, onto two to four
VLE-5M or VLE-2M-IDS Emulators,

MMC1 release supports MMC across multiple boxes as follows:
= Supports multi-box
* Provides automatic compilation of designs requiring 2 to 4 emulators
» Allows you to determine the communication requirements
+ Requires users to manually partition the design into the emulators

» Allocates and coordinates the dataflow between boxes such that you can use cross-
wires more than once per cycle as needed

» Allocates, coordinates, and multiplexes the dataflow between boxes
» Allows compiling modules that should work but it does not debug

» Incremental compiling of individual emulator sub-modules

= Visibility is still available at the box level only

This chapter describes the high level concepts of MMCT and its specific uses. The
fundamental concept of MMC1 is to capture the conditions on the interface between sub-
modules. You must compile these conditions if they change for a sub-module and that
change propagates across the interface to other sub-modules. You can recompile a sub-
module without impacting other sub-modules it interface conditions are not changed. The
sub-module boundary conditions are saved in a sub-module without impacting other sub-
modules” databases, that are read and updated every time you compile a portion of the
design.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 187

ATI Ex. 2075
IPR2023-00922
Page 187 of 394

Multi Module Compile (MMC1) Chapter 6

IKOS’ Virtual Wires technelogy has been extended to work across cables between boxes to
accommodate all of the I/Os in the interfaces between sub-modules. IKOS” Virtual Wires
technology allows signal multiplexing onto physical wires with automatic scheduling and
routing of the wires This increases the signal connectivity capacity of a VLE box by a
factor of 50 and allows for simple file-driven compilation.

MMCI requires VirtuaLogic software version 3.3.5 or greater.

NOTE
MMC1 is not supported with TIP.

When MMC is used with the RTL compiler, an ASCII file is generated containing the list of
all the RTL modules that were successfully compiled by the RTLC-driver. This file is used
by the VSYN compiler for subsequent steps in the compilation. The mapping between the
RTL modules and the multi-module units used by VSYN is kept and updated by VSYN.

User input

MMC requires two major additional input files, vianw.resonrces and vamw.changes plus one
clock file modification, vanv.cfk.

The vonv. resonrces file allows the user to specify the multi-box hardware setup including the
cables that connect the boxes. It alsc allows the user to specify which sub-modules map to
which pieces of hardware. For details of this file, refer to the vims.resenrces fife on page 198,

You must specify the targeted modules in the vorv.changes file to drive the incremental
compile mode. Refer to the vanw.changes file en page 200 for details of this file.

You must expand the clock file, vw.cfk to include any clocks that exist at the sub-module
boundaries.

The clock boundaries need to be added as internal clecks. This can be done in the Timing
Specification tab in gv/. You must distribute all top-level external clocks to all sub-modules.
The root of the clock tree in each sub-module MUST be such an internal clock, except for
the top level sub-module which has a primary [/O source for its clock.

Example:

top.clock- top level primary /O clock signal

Lop.submeod.cleck- connected to top.clock

188 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 188 of 394

Chapter 6 Multi Module Compile (MMC1}

For two boxes, the clock file will look like the following:
Clock clock External ¢

Clock 1op.submed.clock Internal 1

Refer to Design Import chapter for more information on the clock file (vimw.clk).

File sfructare

Since MMC invalves multiple boxes, the compile process creates new configuration
subdirectories underneath the original design configuration. These configuration directories
are called mod0.vamw, mod . vrrv, etc. Each one corresponds to a box, where mraf0 1s the first
sub-module specified in the vimw.resonrces Tile, mod/ is the second, etc. This is where each
of the output files and output directories will be created during their respective single box
compiles.

Because the configuration directory is being duplicated for each sub-module, you must use
the following filenames: vimv.cfk, vanw fil, vanvamem, yov.pod, v pwd, vorw.gsf,
vamw.tie, ¥ pwh (all probe windows must end in phw), * pbw vorw prb.

CAUTION

Do not rename the * bedb files or the mod™ virw directories.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 189

ATI Ex. 2075
IPR2023-00922
Page 189 of 394

Multi Module Compile (MMC1) Chapter 6

Overview of MMC phases and flows

Manual box partitioning

Before using MMC for the first time, you must split the design up into 2 to 4 pieces that will
be in the diftferent emulators. Although, this partitioning is completely manual, it is
validated by the compiler. There are seme restrictions on the types of signals that can go
between boxes and also on how the design can be partitioned. Please refer to the ALK
restrictions on page 201 . After the design is partitioned, the vaneresourees file created to
match the partition, the vunw. ok file modified to include the sub-module interface clock
signals, the automated compile process can then be initiated.

MMC phases

There are four phases in the MMC process: Top Level Analysis (TLA), Local Analysis
(LA), Global Resource Allocation (GRA) and Local Compile (LC). These phases are
briefly described below to aid the user in understanding any messages, errors or warnings
that they might encounter.

Top level analysiy

TLA has the responsibility for discovering the connectivity between all of the specified sub-
modules. sub-modules are specified in an input file called the vaw.resources file. The top
level of the design is required to be a sub-module.

NOTE

Sub-modules can be any of the modules that exist in the design
hierarchy. sub-modules, in relation to each cther, currently can only
be in a one deep hierarchy with the top level sub-maodule.

TLA produces boundary condition database files (. bedh).

At the end of this phase, an interbox 1/0 report (vanw. fog) is produced.

190 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 190 of 394

Chapter 6 Multi Module Compile (MMC1}

Local analysis

LA analyzes an individual sub-module to determine the boundary I/O behavior. First it does
the topological transformation to isolate the specified sub-module from the rest of the
design. Then it does a clock domain analysis and a transition and sample analysis for the
whole sub-module. Finally the boundary condition database is updated with the I/O
behavior.

Glohal resource atlocation

GRA maps the design onte the hardware. The hardware description comes from the

v resources file, which includes a description of each of the emulator boxes and what
cables are attached to them, GRA allocates and schedules the design 1/0s across the cables,
and updates the boundary condition database.

Local compile

LC is a slightly modified version of the normal compiler. LC has been modified to support a
new type of primary I/Os that are specified by the boundary condition database and also
supports a new type of /O device that can communicate across a cable to another emulator.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 191

ATI Ex. 2075
IPR2023-00922
Page 191 of 394

Multi Module Compile (MMC1) Chapter 6

MM flows

There are two MMC flows: Initial Compile and Incremental Compile. The initial compile
flow 1s used when the design is first compiled, or when the whole design needs to be
recompiled. The incremental compile flow 15 used when only part of the design has been
changed and the design has already been compiled at least once.

Each of the flows controls the order of execution of the MMC phases. The initial compile
phase execution order is as follows:

. TLA

2. LA on all sub-modules

3. GRA

4. LC onall sub-maodules

5. Run Field-Programmable Gate Array (FPGA) compiles

The incremental compile phase execution order is as follows:

. TLA

2. LA on all sub-modules

3. GRA

4. Decision point:

- If manual mode, report a warning and exit if any other modules besides those
specified in the v cheanges file need recompiling

- If auto mode, or no changes have propagated, continue to LC

5. LC on all user-specified sub-modules and any unspecified sub-module onto which
changes are propagated

6. Run FPGA compiles as necessary

192 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 192 of 394

Chapter 6 Multi Module Compile (MMC1}

If FPGAs have not been compiled, the user must type the following command from each
sub-module’s directory (modx.vimy):

vle.vtask
This will compile all FPGAs in the sub-module configuration directories.

Refer to page 158 for Script Driven Place and Route and page 173 for viask Commandy for
the complete vtask command description.

How to invoke the MMC compiler

The MMC cempiler is currently not supported by the Graphical User Interface (GUI) and
therefore needs to be invoked directly from the command line. To invoke the compiler from
the configuration directory, execute the following:

$VMW_HOMEDinAlc . <mme target>

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 183

ATI Ex. 2075
IPR2023-00922
Page 193 of 394

Multi Module Compile (MMC1)

Chapter 6

MM target commands

[nitial compile

The following table lists the MMC Target commands used for the first compile:
Table 6 MMC target commands (initial compile)

command

mmc_clean_all

Description

This command deletes all generated files and
subdirectories.

mmc_clean

mme_subdirs

This command cleans all generated files while
preserving the configurations created by the
mme_subdirs target. This is very useful if you want
ta preserve sub-module specific compiler settings or
probe input files

This command causes the generation of the
configuration subdirectories.

mme_compilc_all

This command 1s used when compiling the design for
the first time or recompiling the full design. This does
not execute any of the FPGA compiles.

mmc_cv_all

This command deletes all generated files and
subdirectories. The FPGA compiles are executed after
the MMC VSYN compile is done.

194

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 194 of 394

Chapter 6

Multi Module Compile (MMC1}

Increntental compile

The user can run a manual or automatic mode of incremental compiling as listed in the

following table:

Table 7 MMC target commands (incremental compile)

Command

mne_compile_manual

Description

This command constrains or restricts the recompiling
to only the specified medules in the vianv.changes file.
If a change propagates, then the compile will exit.
This command does not execute any of the FPGA
compiles.

mme_compile_auto

[l'll’]lC_C'\'_ﬂlﬂl’]llal

This command just automatically recompiles
everything that is necessary. This command does not
execute any of the FPGA compiles.

This command constrains or restricts the recompiling
to only the specified modules in the vy changes file.
If a change propagates, then the compile will exit.
The FPGA compiles are executed after the MMC
VSYN compile is done.

mme_cv_auto

This command just automatically recompiles
everything that is necessary. The FPGA compiles are
executed after the MMC VSYN compile is done.

NOTE

The mme_compile_manual command should only be used when
trying to restrict what gets recompiled (i.e. to avoid the long Place

And Route (PAR) process).

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

185

ATI Ex. 2075
IPR2023-00922
Page 195 of 394

Multi Module Compile (MMC1) Chapter 6

Procedure for compiling mixed architecture multi-box
configuration

If VLE-3M and VLE-2ZM-1DS boxes are used together in an MMC configuration, you must
perform the following procedure:

1. Use mme_subdirs mmc target command to generate subdirectories

2. In each of the module subdirectories (mody. vany), modify the PLATFORM line of
the perems.mak file to reflect the mixed configuration

For VLE-5M, PLATFORM = PP and for VLE-2ZM-IDS, PLATFORM =PD

[¥5)

4 Usemmec_cv_all mmc target command to compile all the way to bits

CAUTION

Do Not Use GVL to compile VLE-2M-IDS configurations,

New vsyn parameters used by the mme driver
(for the advanced user)

The MMC target commands automatically generate these new parameters, therefore most
users will not need to perform them directly. They are documented here to facilitate using
any scripts or other advanced user applications.

The following arguments are required for all of the difterent MMC phases:
-MMCResources vmw, Iesources

specifies the MMC resource file. It is suggested to use vanv.resarrces for the default
resource filename.

-MMCBoundary <design namce>bedb

specifies the master/design level boundary condition database file. We suggest that you use
<design name>.bcdb filename,

196 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 196 of 394

Chapter 6 Multi Module Compile (MMC1}

Required vsyn arguments (for the advanced user)

For MMC top level analysis phase, execute the following:
tla

For MMC local analysis phase, execute the following:
la <sub-module name>

<sub-module name> specifies the name of the sub-maedule to be processed. For specifying
the module type of the sub-module being compiled, execute the following:

Root <sub-module type>

The root argument usually specifies the design module type, but in this case, it specifies the
module type of the sub-module being compiled.

For MMC global allocation phase, execute the following:
gra
For MMC local compile phase, execute the following:
le <sub-module name>
To specify an incremental compile (valid enly in TLA, LA, or GRA), execute the following:

MMCIncrFlow

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 187

ATI Ex. 2075
IPR2023-00922
Page 197 of 394

Multi Module Compile (MMC1) Chapter 6

File formats

vimw.resources file

The vmw.resowrces file format has three parts:
1. Emulator hardware configuration
2. Cable connections
3. Map of the design sub-modules
Comments can be used in this file by typing # followed by your comment.
The syntax for specifying the emulator hardware configuration is:
board box[1-N].board[1-6]

Valid boxes are box 1, box2, etc. Valid boards are board], board2, etc. and board is the
System Board.

Each line does the following two things:
1. It specifies that a box exists

2. It verifies that a board in that box exists

NOTE
Multiple lines are required to specify that one box has more than
one beard.
198 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 198 of 394

Chapter 6 Multi Module Compile (MMC1}

Example:

board box 1 board 1
board box2 . board]
board box3.board 1
board box3 board?2

The above example shows that boxes 1 and 2 are one Array Board systems and box 3isa
two board system.

The syntax for the cables going in between the emulators are:
cable <cable connector> <cable connector>
cable connectors are: J<box><board><port>
There are six ports (headers) on each Array Board (1-6).
Example:

cable J111J211 #box1 . beardl portl <-> box2. board 1. portl

cable J112 J312

cable J213 J313

The syntax for mapping the sub-moedules to the hardware specified is-

module <type> [full hierarchical name] on <resource>

where <type> specifies the type of verilog sub-module. (i.e. there exists a verilog statement:
module <type name> (1/Os..).} and [full hierarchical name| specifies the full hierarchical
name of the sub-module. This is optional for the top level sub-module since its type is the
same as the name. <resource> indicates one of the emulator boxes specified earlier in the

file.
NOTE
Currently V' characters are NOT allowed in the hierarchical name
even though it is valid verilog syntax.
Example:

module topon box1
module childO top.childOon box2
module child] top.childlon box3

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 189

ATI Ex. 2075
IPR2023-00922
Page 199 of 394

Multi Module Compile (MMC1) Chapter 6

vaw. clianges file

The vanw. changes file specifies the sub-modules that are to be recompiled in the incremental
flow. The syntax of each line 1s:

<hierarchical name of the module>

Ceomments can be used in this file by typing # before your comment, Type the name of the
module(s) as per vanioresources file entry.

Example:

top
top.child0

Visibility

Normal visibility will only be available at the box level granularity. This means that probe
results from different emulator boxes will not be combined. Otherwise, probe data and
trigger values will be handled like they are now, both from the user point of view and the
way the vsyr compiler deals with them.

NOTE

Internal Data Sampling (IDS) is supported. 100% visibility is NOT
supported as yet.

Since centralized triggering across the multiple boxes is not supported, it is sometimes
difficult to find triggers across boxes that will allow the trigger point to be synchronized near
the point of interest. One workaround is to embed a resetable internal counter with its
outputs going to each box that could be used in trigger expressions to help synchronization.
The cutputs of the counter need to be probed and the -SDPN flag needs to be used to avoid
having the counter be dead logic eliminated.

200 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 200 of 394

Chapter 6 Multi Module Compile (MMC1}

MMC restrictions

MAMC circuit restrictions:

« No asynchroncus cross module signals

* No cross demain cross module signals

» No sub-module wire throughs

» Only one clock domain can be shared between 2 modules

» No cross box tristate bus where both boxes have tristate drivers
= No cross scope references between boxes

MAMC sub-module topology restrictions:

« Top level must be a sub-module (i.e. the top level must go into one of the boxes)
+ Top level I/0 must be in root module
» Sub-maodules cannot overlap or contain each other {except top level)

» Sub-modules must be specified as only one point in the hierarchy,
1e. ABC not ABCand ABD

* No partial box sub-modules

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 201

ATI Ex. 2075
IPR2023-00922
Page 201 of 394

Multi Module Compile (MMC1) Chapter 6

202 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 202 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
Triggers

Overview

The Yiiggers tab allows the user to determine the criteria for iriggering. The 7riggers Form
is shown in Figure +8 on page 204, and it consists of four panes as titled below:

» Compiled stgral windows pane on page 204
o Compiled signal groups pane on page 203
» rigger pane on page 203

« rigger diagram pane on page 211

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 203

ATI Ex. 2075
IPR2023-00922
Page 203 of 394

Triggers Chapter 7

File Edit View Tools Options Help

Design Import - Signals - Compile Tiiggers - Emulation

Compiled Signal wWindows ? . Compiled Signal Groups: signal_window_0 Find.. >

v Croup #0 iPro & Triggerable) 30 probes

Trigger: vinw.trigger open File w Write File . fhou o

7 Trigger Diagram: Click to edit objects 2
Location w30s . ..

donain domaind @(pasedge clk);

stake start

began
next (color_bar reset_ ==).

end

state one - 1

hbeqgin : cslor_boir eset_ ==
next {coloc_bar. reset_ == 1), .

end

stace two
beqan
nesct (solor_bar piwel_valid == 0) 10000 times:

ey
i ;

l[oobr_bm.puel_vulu ==0) 10000

and
state three C (I""‘" Y
hegin o
[
Aadd dormain .. Add all demains ... Add stake .. Counters .. Tirmers .. Location ..
Read configuration Jhome/subbish/Train_Labe /WALRZ VIR /color. vymw : |O\,

Figure 48 Triggers form

Compiled signal windows pane

The Compiled Signal Windows pane lists the signal windows that were setup in the Signals
tab. The user can choose any one of the Compiled Signal Windows to be downloaded into
the VLE-5M along with the design.

The total set of nets for all Compiled Sigual Windows is called the core probes. The number
of core probes cannot exceed 30000 for the VLE-5M.

204 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 204 of 394

Chapter 7 Triggers

Compiled Signal Windows are limited to the number of signals that can be time domain
multiplexed between the Array Boards and the IDS (Internal Data Sample). Each Compiled
Signal Window typically contains multiple Compiled Signaf Crroups, but can have any
combination of signals from any groups and is not required to include all signals from
within one group.

All signals that will need to be analyzed simultaneously should be in the Compiled Signal
Window. It is normally recommended to put all top-level signals in every Compiled Signal
Window since trigger conditions frequently are built with the top-level signals. This allows
the same trigger file to be used with any Compifed Signal Window.

Compiled signal groups pane

The Compiled Signal Ciroups pane is used to define sets of signals that are multiplexed
together. Compiled Signal Groupy define the prebes that are physically routed to the FPGAs
on the array boards.

The Signad Groups are defined in the Sigrials tab and they can be dragged and dropped into
the Compiled Signal Groups pane,

Trigger pane

The Add domain.., Add all domains..., Add state..., Add counter... and Add timer... buttons
can be used to help construct the FSM, Each generates a dialog box that prompts for
mmformation about a piece of the FSM and then inserts the appropriate syntax into the text
editor.

Both the Trigger Diagram and the text can be edited on the GUL
Open fie...

If a * trigger file exists from another configuration directory, it can be read using the Open
File button.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 205

ATI Ex. 2075
IPR2023-00922
Page 205 of 394

Triggers

Chapter 7

Write file...

To save a triggering statement into a file, click on Wrire Fife button.

Shaw errors...

Add

The Show Errors button lists all the syntax errors in the *.irigger file showing on the GUI If
there are no errors this button will be grayed out. If there are any errors in the defined
triggers, this buttan will turn red. For warning, this button is available, and 1t is not red. The
user should review any errors or warning messages that the software lists,

state...

The Add State button adds a new state to the trigger at the current cursor position. Clicking
on the Adef Stare button invokes the window shown in [igure 49 on page 206. The Add State
window has three tabs namely Awtributes, Next Transition, and Jump Transition.

Attributes:
Figure 49 Add state window - attributes
State Name: Specify a name for the Stare. It must have no spaces,
only alphanumeric characters and © "
208 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001
ATI Ex. 2075

IPR2023-00922
Page 206 of 394

Chapter 7 Triggers

Control attributes: Use the radio buttons to specify the state mentioned
above as an 1nitial state or a trigger state.

Storage attributes store - Sample data while the State 15 active.
nostore - Do net sample data while Siate is active.

store it - Sample data when the specified condition is
true.

State domain (optional): Select the domain name for the specified Srave,

Clock edge (multi-select): Select the clock edge for the data 1o be sampled on.
Next and Jump Transition

Ligure 30 on page 207 shows the windows for setting up the Next Transition statements and
the Jumyp Transition statements in the trigger file.

T aed v e

T N STRIY (X

Figure 530 Next and Jump transition

For a simple state definition, the user needs to specify the state name in the Aeributes tab
and complete the expression pane in the Nexi Transition tab.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 207

ATI Ex. 2075
IPR2023-00922
Page 207 of 394

Chapter 7

Triggers

Add domain
This button is used to add a new domain to the trigger file, and when clicked, the window in

Figure 531 on page 208 pops up.

Figure 51 Add domain

In the above form the domain and the clock edge are selected and specified.

Add all domain...

The following window pops up when the Add ail domains button 1s clicked.

Add a domain statement for eve
statement containing all positive

- Question

Canfirm i Cancel Help]

Figure 52 Add all domain window
As indicated in the window, this will add all the clock domains with the clock edges to the

trigger file.
Counter...

The counter dialog facilitates the creation and editing of counters. lignre 33 on page 209

shows the dialog box.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

208
ATI Ex. 2075

IPR2023-00922
Page 208 of 394

Chapter 7 Triggers

T Set Counters

Countar O

Harme: |T |

Counter 1

Name:

oK Apply Dismiss Help . i

Figure 53 Add counter dialog box
There is not much to the counter dialeg since only the name is required.

The name of the counter is used when manipulating the counter with reset, increment, or
decrement verbs associated with transitions.

The name is also used in condition statements which test the counter value, and matches an
additional condition to the transition’s expression. This is specified in the state dialog’s Nexv
or Jump field named Counter conditien. The emitted code will look something like

counter Loopy:
H...
state foo
next (address[31:0] == 32 h0OOOFFFF)
condition (Loopy == 17):

This example would make taking the next transition of foo conditional on the AND of the
“address” and “Loopy” comparisons.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 209

ATI Ex. 2075
IPR2023-00922
Page 209 of 394

Triggers Chapter 7

Timers

The timer dialog facilitates the creation and editing of timers, figure 34 on page 210 shows
the pop up box.

=" SetTimers. . :

Tirmer O

Narme IT

Povalue
| Target: | v
Timer 1
L ELLZH
value:

Target: | A\

oK Apply Dismlss Help ..

Figure 54 Add timer dialog box
There can be at most two timers in a given trigger description.
Three fields in the dialog, all required, determine the timer’s identity-

Timer name -- the name of the timer, used when manipulating the timer with reset, enable,
and/or disable verbs associates with transitions.

Value -- the constant value to which the timer counts before it "fires".

Target state -- the name of the state to which to jump when the timer "fires".

L.ocation

Clicking on the Location button brings up the dialog box shown in Figure 35 on page 210,

1= 5et Ttgger Locatian. |

Figure 355 Set trigger location dialog box

210 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 210 of 394

Chapter 7 Triggers

The temporal location of the trigger with respect to the probe data window is specified via a
statement of the form

lgcation = <valuc> [immediate|:

The <value> represents a percentage and is specified as an integer between 0 and 100, in
steps of 10.

The optional [immediate] keyword can be used to alter trigger system behavior for
situations when a trigger occurs very early in an emulation run.

Without the immediate keyword, the triggering system treats the location specifier as an
adjustment to be made after a trigger has cccurred and the probe data ring buffer is full. In
other words, if the ring buffer is not vet full when the trigger occurs, the triggering svstem
will continue to emulate until the buffer is full. The immediate qualifier overrides the full
buffer condition.

Trigger diagram pane

Asthe FSM is entered, by typing directly into the text window or into the dialog boxes, a
graphical representation of the FSM is constructed in the /rigger Diagram pane. This pane
15 helpful for venifying that the state machine i1s what you expect. The user can edit the
states, transitions, counters, timers, and location by clicking on them in this pane. when
clicked, a text editor dialog pops up.

Triggering capabilities

The improved triggering capabilities described here promise to enable trouble-free, easy-to-
use triggering for all common trigger scenarios. This section describes how the features of
the trigger system are used.

The svstem described here has been designed to be easy-to-use. The system involves
compiling a text description of the trigger into the firmware which evaluates the trigger at
tun time. There is GUI support for easily, incrementally specifying triggers, as described in
the above sections; however, matters discussed in this section will be helpful even to those
using the GUI exclusively.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 21

ATI Ex. 2075
IPR2023-00922
Page 211 of 394

Triggers Chapter 7

Steps to assembling a usctul trigger

The steps given here are a suggestion to get started with a workable process:
« Tdentify and specify possible trigger inputs
» Tdentify and specify desired clock edges for evaluation in each domain
+ Identify and specify the patterns which describe the trigger
» Control storage as desired
+ Add timers if desired

+ Add counters if desired

Anatomy of the trigger system

Understanding some architectural features enables the user to more precisely and easily
control trigger behavior. The trigger system consists of several major compenents:

- “triggerable signals” trigger inputs
= logic reduction for expression evaluation
» programmable state machine

« counters and timers

“Triggerable Signaly”

A signal's being “triggerable” indicates that it might be the basis of a trigger expression, i.e.,
a potential input to the trigger evaluation process. At design compile time, the set of such
triggerable signals will have been indicated either via GUI or directly in an ASCII file.
These signals' names or aliases may then usefully appear in trigger expressions as described
below, as wsysr will have done the necessary routing for those signals to appear as trigger
mnputs,

For each probe window, 1512 bits of potential trigger input signals may be specified.

Logic reduction

Logic reduction is the machinery which accomplishes the evaluation of expressions
described by the user. While these could conceptually be any logic expression, there are
some limits imposed by the logic reduction hardware which realizes the evaluation of
expressions.

212 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 212 of 394

Chapter 7 Triggers

For the purposes of describing triggers, it is sufficient to understand that the logic reduction
15 capable of evaluating at least eight arbitrary-width comparisons of input values to
constants per state. These are the first level or stage of reduction. Under certain common
conditions, more than eight terms may be evaluated. Logical combinations of these first
level comparisons can be three levels deep. There is no support for arithmetic operations.

Programmable state machine

States

The state machine has thirty-two possible states. Any state may be a frigger state, meaning
that entering that state causes the emulation to begin the process of stopping emulation and
freezing probed data. Typically only one or very few states will be trigger states,

Storage or non-storage of data is specified per-state, or may be specified conditionally based
on an expression. If non-storage is indicated and the user has specified 100% visibility, a
warning will be issued and any related data captures will not be suitable for 100% visibility.

Transitions

Next fransitions between states form a linear sequence, while Jimp transitions proceed from
any state 1o any arbitrary state. It can be useful for the Jump Trarsition to proceed to seff due
to the side effects of doing this on cowintery.

The conditions for taking transitions may include expressions and counters matching given
values. The conditions for taking the sext transition are always evaluated first; only if the
next condition is not taken are the conditions for taking the jump transition evaluated.

Evaluation of expressions

All the expressions in a given state are evaluated with respect to one clock domain and one
set of clock edges. To facilitate this, the compiler determines a domain for each state and a
set of clock edges with which te evaluate expressions in that state. In other words, the
domain and edges control when evaluations occur. Users may explicitly control both domain
and clock edges for each state if required; however, normally this is not necessary.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 213

ATI Ex. 2075
IPR2023-00922
Page 213 of 394

Triggers Chapter 7

Counters and timers

Various counters and timers increase the flexibility of the trigger evaluation considerably
with only a modest increase in complexity of hardware and software.

Expression Repeat Counts

Expressions can be given repeat counts, which amounts to the user instructing the trigger to
match this expression N times before following the given transition. No repeat count is
equivalent to a repeat count of one {(match once).

These repeat counts are unique to each expression and are limited 32 bits in size, This is the
most common sort of counter, and 1t 1s the simplest to use.

Repeat counts are always reset upon entering a state, including while taking a jusp-to-self
fransition

General-Purpose Counters

There are two general -purpose, 32-bit counters, independent of the expression repeat counts.
These are typically used to form more complex repetitive structures. General purpose
counters are explicitly manipulated, 1f specified, upon taking any given transition. Either
counter's matching a constant can be made to be an additional condition for taking any
transition.

Timers

There are also two 40 bit timers, useful for careful monitoring purposes, such as ensuring
that expected progress toward triggering occurs within reasonable periods of time. Like the
general purpose counters, these can be manipulated upon taking any transition.

When a timer fires, its value matches its constant; as a result, the state machine immediately
and unconditionally changes to the target state associated with the given timer. Most often
the target of a timer will be a trigger state. Regardless, the trigger can continue to take
transitions if defined appropriately. In this context, it may be useful to note that the timer's
value is reset and the timer is disabled when it fires.

214 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 214 of 394

Chapter 7 Triggers

Trigeer description

Anatomy of 4 frigger description

The trigger description is a simple declarative syntax. Timers, counters, states, and domains
can be declared, as required, to specify the desired trigger behavior. In addition, a trigger
location assignment can be used to specify the temporal location of the trigger with respect
to the data probe window.

The lexicon of the trigger descriptions is virtually identical to Verilog, including allowing
comments anywhere, in the usual C or C++ form. This implies that the input is freely
formatted with respect to white space, and that elements such as signals and constants
appear exactly as in Verilog.

Trigger expressions are strictly Verilog expressions Although not all forms are supported by
the reduction hardware, the IKOS synthetic vector extension (angle brackets) is supported.
In other words, trigger expressions are generally a subset of Verilog expressions with the
synthetic vector extension for the user's convenience and consistency with other VirtuaLogic
applications,

The overall form of the trigger description is a series of declarations of timers, counters,
states, and domains. Detailed descriptions of the varicus declarations are in the following
sections.

Timer declarations

A timei declaration consists of the keyword timer followed by the name of the timer. The
declaration continues with a begin-end block which contains assignments of the value and
target of the timer,

There are only twe possible timers; declaring more is an error.

The general form of timer declarations is:
Limer <timer-name>
begin
value = <limer-constani™:

targel = <targel-stale-names:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 215

ATI Ex. 2075
IPR2023-00922
Page 215 of 394

Triggers Chapter 7

end

where items in angle brackets should be replaced as appropriate. Timer declarations
generally precede state declarations.

(Generat-purpose) Counter declarations

A counter declaration consists of the keyword counter followed by the name of the counter.
There are no other parameters to specify.

Since there are two general-purpose counters, declaring more than two is an error. Declaring
the counter indicates that it may be used in transitions by manipulating it using counter
verbs and testing against given values using condition statement. For details on counter
verbs and condition statements, refer to Stare declarations on page 217,

The general form of a counter declaration 1s

Counler <Counler-name=:

Domain declarations

The simplest way to define the times of expression evaluation is to specify the usual clock
edges for evaluation in a given domain only once at the top level of the trigger description.
This determines the default setting of clock edges for any state associated with this domain.
For more complex evaluation requirements, the domain of a state can be explicitly declared.
Refer to Stare Contents o page 218 for details on domain declaration within state.

The domain declaration specifies the details of when a trigger's inputs are evaluated in a
given domain in terms of the edges of clocks. The syntax and behavier is similar to Verilog's
always (@ construct, except that only edges of clocks in the given domain are acceptable
inputs in the edge expression.

The general form of the domain declaration is:
domain <domain-name> ¢ (<cdge-cxpression=):
Where < edge-expression > is:
<cdge> [or <edge=|*

ANIY <0 EDGE > 18 ONE OF TUHE FOLLOWING:

<clock-identilicr>

posedge <clock-identifier>

218

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 216 of 394

Chapter 7 Triggers

negedge <clock-identifier>

The first edge form indicates both rising and falling edges of the given clock, as in Verilog.

State declarations

State declarations form the primary part of any practical trigger description. A srafe
declaration consists of the keyword state followed by the name of the state, an optional state
attribute list, and a begin-end block which describes the contents of the state. In particular,
the contents of the stare declaration specify the transitions out of the state, if any.

The general form of a state declaration is:
slale <state-pame>
[=state-attribute-list=|
[<statc-contents>]

For explanations for < state-attribute-list > and < state-contents > refer to the following
sections.

State Attribute List

Any of the following state attributes may be indicated by inclusion in the opticnal state
attribute list, following the stafe name; iniiial, trigger; and one of store, nostore, or store if
expi. This list is preceded by a colon; entries are separated by commas.

Only one state can be initial, by default, the first state in the description 1s the initial state.
Any number of states can be trigger states, although usually there is only one trigger state
and some error siafes which are the targets of timers or exceptional jiunps. store turns
storage on, and #osiore turns 1t off, no storage indication retains current storage state. sfore
if expr enables storage based on the value of expr. When storage is disabled and 100%
visibility has been enabled, a warning will be issued, and storage and 100%; visibility will be
disabled on related probe windows.

The general form of a state attribute list is:

: <state-attribute™ |. <slatc-attribute> ... |

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 217

ATI Ex. 2075
IPR2023-00922
Page 217 of 394

Triggers Chapter 7

State Contents

The state's contents consist of zero or one of domain, #ext, and jump declarations. Tt is usual
but not required to follow this ordering. It is acceptable to declare only a domain; a warning
15 13sued in this case.

Domain declaration - Domains are by default determined implicitly based on the domair
of the first signal in that starfe, 1 e, the first signal in the sext expression, if any. Otherwise,
they are determined by the first signal in the jump expression. Usually this default behavior
will be just what is desired and offers the greatest ease of use and brevity.

For more complex evaluation requirements, the domain of a srare can be explicitly declared
using the domain declaration. Doing this is recommended whenever the domain of the stare
might not be obvious, such as when the expression involves signals from multiple clock
domains. Furthermore, if there is a need to evaluate a given state differently from the default
for its domarin, the clock edges for evaluation may be explicitly declared per state.

The simple form of a domain declaration is;

domain <domain-name> ;

For syntactic details of the full form including specific clock edges, refer to < section 3.3
(outer domain declaration)>.

Next declaration - The next declaration consists of the keyword next followed by the rext
expiessioi in parentheses, an optional repear count, and next statements, if any.

The general form of a next declaration is:
next { <next-expression> } | <repeat-count> |

[<nexi-statcments>|

<next-expression™ - The next expression is a Verilog expression which typically involves
logical combinzations of the results of comparisons between various trigger input signals
with constants of interest. The input form is a fully general Verilog expression but only
features useful if triggers are supported in the trigger machinery.

<repeat-count™> - Repeat counts immediately follow expressions, and are given by an integer
followed by the keyword times. This means, match the preceding expression N times rather
than repeat N times.

<next-statements> - Next statements consist of manipulations of coumfery and fimers using
verbs and indications of additional conditions to taking the transition. It is not necessary to
have any pext statements, or at the opposite extreme, all these statements may occur. Next
statements may be any of the following:

218 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 218 of 394

Chapter 7 Triggers

+ < counter-verb > counter < counter-name >
» < timer-verb > timer < timer-name > |

« condition < counter-name > == < constant = ;

where < counter-verb > is one of
¢ reset

* increment

and < timer-verh > is one of:

* reset
« disable
+ enable

The optional condition statement allows the user to specify that the given general purpose
counter must match the given constant in addition to the previous conditions for the
transition to be taken; i.e., the expression itsell is true, and the expression repeas counter
matches or is not enabled. In other words, for the transition to be taken, the AND of the
following must be true:

» the expression is true
» the expression's repeat counter matches or is not enabled
= the specified general-purpose counter matches or is not enabled

The most common cases are expected to be expression only, expression and repeat count,
and expression and general purpose cowirrer.

Jump Declaration - Jumyp declarations are virtually the same in form as sexr declarations,
including the syntax of expression, repeat-count, and allowing all of the same statements. In
addition, the junp transition's target state must be specified by including a target assighment
of the form:

largel = <targel-stalc-name=;

Location assignment

The temporal location of the trigger with respect to the signaf window 1s indicated at the top
level via a location assignment. The value is an integer in percent, the default value is fifty,
which corresponds to the trigger occurning midway 1n the sigra/ window (middle). Zero
would indicate that the trigger is to cccur at the start of the sigia! window (start), and one-

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 219

ATI Ex. 2075
IPR2023-00922
Page 219 of 394

Triggers Chapter 7

hundred would indicate that the trigger is to occur at the end (end). At these extreme
settings, the actual sigral window will include a few samples before or after the trigger
point.

The trigger position is internally rounded to multiples of ten; if rounding occurs, a warning
to that effect is issued.

An immediate qualifier indicates that if the probe data buffer 1s not full, the trigger is to stop
the run in strict adherence to the location assignment. Otherwise, the default behavior is that
the run will proceed until the probe data buffer is filled.

The general form of the trigger location assignment is

location = <location-percentage™ [immediatel|;

where < location-percentage > is an integer between 0 and 100, inclusive.

Trigger compilation

The following several high level features which can impact user behavior in extreme cases
may be useful.

Term coHapsing

Common expression forms are factored to facilitate much more eftective use of the first
stage of reduction hardware. These forms are:

» && of ==, e.g. {(addr[0:15] == 16'hFFFF && reset == 1'b0}
¢ || of 1=, e.g. {(data[0:7] '= 8'hal® || enable != 1'b0)

Arbitrary expression complexities following these forms will be reduced 1o a single term
internally. Other forms will consume multiple terms and use multiple reduction stages in a
straightforward manner,

Term sharing

The next, jump, and store if expr within a stafe will share terms if possible. An important
consequence is that the common idiom of having the jump expression be exactly the
negation of the next expression, and it is supported with zere additional term consumption in
the first stage. Other forms which share subexpressions will also benefit.

220 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 220 of 394

Chapter 7 Triggers

Trigger expressions imitations

Because the evaluation of trigger expressions occurs in a fixed size and architecture, there
are inevitably some limitations. One such limitation has already been mentioned: the
maximum number of distinct input terms per siarfe 1s eight. There is also a limit on the total
number of distinct terms across the entire sfare space, which 1s 32%4,

In a direct mapping, this would imply that each stare could only have 4 distinct input terms,
which would be unacceptable. Instead, the first stage of reductions are encoded so that only
16 sets of 8 terms are necessary, where each of these 16 combinations will be shared by two
states. Only the average usage across all 32 possible states must remain below 4. A trigger
would have to use almost every possible state and simultanecusly use very complex
expressions in almost all of these states to run into this limitation, a highly unlikely scenario.

Useftul recommendations

Identify trigger inputs in the Signals tab of gvl.

It is wise to add as many potential trigger inputs as possible to the trigger page in order to
facilitate varicus possible triggers without requiring incremental compiles for changed
signal windows, for these compiles are comparatively lengthy compared to the nearly-
Instantaneous trigger compiles. Do make sure the trigger inputs are identified before design
compiles. Tt is also often expedient to probe the trigger inputs while developing triggers
whether or not these signals are interesting as probed signals.

Describe default domain clock edges.
domain ADomain % (poscdge CLK):

domain Another @ (BUSCLK):

While it is possible to use the trigger system without default domain statements, it is
typically much more cumbersome to do so. Virtually always there are prevailing clock edges
for evaluation which make sense as the default for a given domain, so this information need
not be repeated and can easily be changed in a single location. Normally, the default domain
statements are the only mention made of domains and clocks in trigger descriptions. The
ability to describe domains and clock edges for a particular state is intended to be used
infrequently.

In multiple domain designs, always consider explicitly indicating the domain for evaluation
in each state.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 221

ATI Ex. 2075
IPR2023-00922
Page 221 of 394

Triggers Chapter 7

When signals from multiple domains are used in a given state, the default domain may or
may not be what is intended, or at the very least, it may not be clear what is happening.
Explicitly indicating the domain using the domain statement clears up the ambiguity. Itis
not necessary to describe the clock edges if the default edges for the indicated demain are
appropriate. Refer to Understanding expression evaluation with respect to domains and
clock edges on page 222 for better understanding,

Be very wary of cross-domain evaluations. In general, naive cross-domain expressions will
result in non-deterministic results,

Summary of trigger concepts and overall syntax

Understanding expression evaluation with respect to domains and
clock edges

Basics

Each state's expressions can be evaluated only with respect to one particular domain and set
of clock edges. On the other hand, there may be good reason to refer to signals from various
domains within a particular state, and so this is allowed.

Befaull domains and clocks

The trigger compiler determines the default domain for a given state by searching for the
first signal among the expressions, and it uses that signal’s domain as the default for the
state. This may not always be what is desired, but is correct for the great majority of
common cases, including all states with signals from only one domain. The default clock
edges for a domain are determined using the information from the top-level domain
statements, thus establishing the default edges for a given domain.

Explicit domains
Whenever the default domain behavior described above is not desired, an explicit domain
statement can be used within a state.
statc [oobar

begin

222 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 222 of 394

Chapter 7 Triggers

domain YourDesiredDomainHere:
next (whatever == 0.

jump (andsoon == 32'hABCD0O123)
largel = CneMoreTimeWithFeeling:

end

Explicit clock edges
If this is not sufficient and explicit, unique clock edges for evaluation in a given state are
required The edges may also be specified.
state [oobar2
begin
domain YourDesiredDomainHere %@ {posedge CLK or OTHERCLK).
next (whatever ==10)).
jump (andsoon == 32’hABCD0123)
larget = OneMorcTimeWithFeeling2:

cnd

Cross-domain evaluation

It is possible to evaluate signals from various domains in an expression; however, as
indicated previcusly, they will be evaluated with respect to just cne domain and set of clock
edges.

A signal's value, as evaluated with respect to another domain's clock edges, 1s not always
well defined. So, while defining such triggers, do make sure that you are exploiting some
known relationships between the domains, or describe your trigger in such a way that such a
relationship is established via some pattern,

Often crass-domain evaluation of slowly varying signals with respect to a faster domain will
work properly without special attention. On the other hand, usually cross-domain evaluation
where the domains in question are mutually asynchronous will not work well without
explicit qualification.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 223

ATI Ex. 2075
IPR2023-00922
Page 223 of 394

Triggers

Chapter 7

Understanding overall syntax

There are relatively few special cases in the trigger description syntax, and most of the form
follows from functional considerations. Here are some relationships which are useful to
remember when describing triggers:

The top level of the description consists of zero or more stafe, counter, timer, and
domain declarations and zero or one /ocarion declaration

states have any of domain, nexi, and jump

state atiributes - zero or more of intial, irigger, store, and nostore - follow the state
name in a comma separated list, preceded by a colon (2)

next transitions always have the condition expression in parentheses, optionally
followed by N times, and can have zero or more counter or timer verbs, and
possibly a condition pertaining to a general counfer

Jump transitions always have the condition expression in parentheses, opticnally
followed by N times, can have zero or more conntter or timer verbs, possibly a
condition pertaining to a general counter, but also should always have a target
assignment

counfers have nothing but a name

timerys should always have a value and a tarzet

When an item contains nothing, indicate that with an empty statement {a semicolon):

counter foobar:

When an item contains just one element, it may be simply indicated:

state yva next (somelhing == 0):

When an item contains multiple elements, a begin-end block must enclose the list of
elements:

statc chya
begin

next (semething == 0):

Jjump (another = 7'h3)

larget = Begin:

engd

224

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 224 of 394

Chapter 7 Triggers

Examples
Example # - Matching a given value

To match a given value, the user can use a state and a next transition, whose expressions
tests the desired matters.

state StateName

next (ScalarName == 1'00)
or

statc StatcName
next (BusName|153:0] == 16'hABCD) :

Eaample 2 - Matching a condition N times {(Not necessarily N configuous fimes)

To match a condition N times, simply use the “N times” syntax on the transition in question.

slate SomeSiate
next (foobar == () 37 times :

Example 3 - Matching a condition N contiguous times

To match a condition N contiguous times, user can use an N times nex? transition and a
Jump-fo-self expression which inverts the sexf expression. This behaves as desired because
whenever the expression is false before the count is reached, the repeat counter is reset.

slale ASlale
bzgin
next (one. two address| 31:0] == 327’h0A0A0ADA) 49 imes &
Jump (onc.two.address[31:0] [= 32MCACACANA)
target = AStale:
cnd

Example £ - Waiting for N cloek ticks
For simple domains, where user is evaluating on a single clock edge, the following will
work:

slate WaitAround
next (1) 100 times :

If the design has multiple clock domains or clock edges to be counted, the user mayv need to
use a slightly more verbose and specific form:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 225

ATI Ex. 2075
IPR2023-00922
Page 225 of 394

Triggers Chapter 7

statc WailAround

begin
domain Simple @(posedge CLK):
next (1) 100 tmes -

cnd

Faample 3 - Triggering statement occurring normaily

After specifying a few states with transitions describing the pattern to be matched, specify a
state with the trigger property. When the trigger machine enters that state, it will have
“triggered”.

stale Ong
next (foo == 1'b0} .
statc Two

state N
next (bar == 1'b1):
stale Donce : trigger &

Example ¢ - Controlling storage in a trigger

To control the storage in each state, use the store and nostore attributes to unconditionally
specity storage:
stale Ong ; stere

next (fop == 1'b0} .
state Two | nostere

Examiple 7 « Controlling storage within a state according to the value of an
expression

To conditionally control storage within a state, use the conditional storage expression:

statc SomeState : store if (a|3:0] == 4'hA)
next (ohny == 1b1j:

Lxample 8§ - Repeating a patfern N times

To repeat a pattern N times, a general purpose counter can be used to create a looping
structure around the pattern to be repeated:

countet Loopy:
slale Starl
begin

nexifl)

228 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 226 of 394

Chapter 7 Triggers

resel counter Loopy:
cnd

.-some patlern slales,

stale StartOfLoop
next{SomethingOrOther == 32'h1234}
merement coumnicr Loopy:

...80MC MOTrC pallcrn states...

state EndOfLoop
begin
next(l)
condition (Loopy == 17}
jump(1)
target = StartOfLoop:
end

Example ¥ - Specifving an initial state other than the first state

To specify an initial state, the initial property can be used. This is useful for triggers which
jump to the earlier states but don’t start there for some reason.

state One

next (WhatHaveYou == 03 ¢
state Two

next (SomethingElse == 1} ;

state Actually StartHere | inilial

Example #0 - Triggering after a given period of no progress

Use a fimer and a unique timer trigger state. While not strictly necessary, a unique timer
trigger state makes it quite clear that your normal trigger did not occur.

You can specify that a given timer is to be reset, enabled, or disabled upon taking any given
transition. Timers count at VCLK rate when enabled and “fire” when the timer’s counter
matches its specified value. When a timer “fires,” the trigger machine immediately enters the
fimer’s target state.

umer TooLong
begin

value = 10000;

target = TookTooLong:
cnd

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 227

ATI Ex. 2075
IPR2023-00922
Page 227 of 394

Triggers Chapter 7

state Begin
next (SemethingOrQther == 16’ WABCD)
cnable timer TeoLong:

state Normal Trigger : trigger ;.
stalc TookTooLong : trigger :

Example FE - Matching an expression exactly N contignous times

There are vanous ways to match an expression exactly N contigucus times. One way 135 to
use a general counter, taking two states, but the recommended way which dees not use a
general counter takes three states.

The following is an example with three-states. Consider expression £ to be matched exactly
n times, Of course £ and N will be replaced by an actual expression and integer respectively.

Proceed te next state iff N continuous times
slale BeginExacth
begin
next (N N times:
Jump (!}
target = BeginExactly:
cnd

Proceed 1o next slale if N matches again immedialely:
ctherwise, "exactly N" is satisfied so we jump
/# 1o continuc progress loward the normal trigger.
stale CheckNoMere
begin

next (I

Jump {!f}

{arget = ConlinucOnward:

cnd

f When [is [alse we jump back to Iy again.
state KeepLooking
Jump (!0
targel = BeginExactly:

state ContinucOnward

Example 12 (Advanced) - Hlustrating various triggering features

/ Annotated trigger example -~ tour of features.
location = 30 // trigger will be al 30%% poinl of probe (time) window

domain simgle ‘@ {posedge clk);

228 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 228 of 394

Chapter 7 Triggers

timer One
begin

value = 160:

target = TimerOneExpired: // note no forward declaration of state names
cod / are required (or allowed)

counter Meaningless: #/ no properties needed. just the name
state Start : initial /by defanlt the first state is "initial”
next {cf0:2] == 3)
reset timer One:,
state One /7 nete that namespaces of timers. counters

next (d[7:8] == 2) /f and states are distinct

state Two : nostore

begin
domain = vyo:
next (some == 8'b0) 3 times:
Jump (c[0:2] == 0) 2 times
begin

target = One:
increment counter Mcaningless:
end
cnd

state Three
s store if (enable == TbM
begin
next (d==4'h7 // C++ comments...
&& (e[l == 1'60) # _or C comments
* may eccur anywhere
*f
)
i
{
condition Meaningless == 23;
disablc timer One:

1
f

cnd
state Final : trigger;

state TimerOneExpired ! trigger:
#Hend of trigger

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 229

ATI Ex. 2075
IPR2023-00922
Page 229 of 394

Triggers Chapter 7

Diagram of the above text:

clDiz]==3 diT:8]==2 some==8" b0
dy -
,.———L 'g‘ T T 2
ima
smrt Two
domain =yo
initial inT. aoston
DCI.IMEF
nngcu
.:[u 2|==0

d==4"h7 &a c[1]==1"'50

(AUD Weaningless == 1)
|n-=
L'hree one= Final
store if
cnable=1"b0 tigger
e e
Timers Counters
Newn e i Canseint Name
Coc ! LoD Beamngless

Example 13 (Advanced) - Hlostrating use of various counters

/f Annotated trigger example -- repetitive structures.
Trigger temporal location WRT probe window in percent.
/ The default is 30.
location = 60:
domain one @ (posedge clk):
domain two ¢ (bclk or negedge celk):
// This state illustrates how to match a condition N contiguous times.
/i.e. il the condilion ever becomces [alse. starl ever.
Note the mechanisim: the jump expression is 1he inverse of the next
expression. withoul a repeat counl, This behaves as desired because
/7 whenever the next expression does not match, the jump transition will
/ be taken back into this siate. resetting the next counter.

stale Start : initial

begin

next (feteh(0:31] == 32'hBFFF) 8 times

jump (feteh|0:31] 1= 32'hBFFF)
targel = Start:
cnd

// this statc illustrales how to "match N times., not necessarily contiguous”
stalc Another
begin

230 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 230 of 394

Chapter 7 Triggers

next (feteh[(:31] == 32'hBFFF) 8 limcs
end

// Use of a gencral purpose counter facilitates triggering on more complex
Hrepetitive behavior. e.g. a generic ¢ycle repeating N times,
counter Round Trip:

/f Use ol a timer in a repetitive structure provides a "bailowt” il the
/ trigger doesn't occur within an expected period of time. This is not
// negessary, bul is a good idea in many cascs.
tumer Round TnpTimer
begin
value = "h100000000;
target = Round TripTimerTook TooLong:
cod

// This "uncondilional" stale. which merely resels the counter and timer.
/1 conld be included in the previous state if desired.
statc BeforcTheTrip
begin
next (1)
begin
reset counter RoundTrip:
reset limer Round TripTimer:
cnd
end

state BeginThe Trip

begin
next {something|0:3] == 8) 3 times
begin
increment countet RoundTrip:
cnd

jump (undesired[4:3] ==2"b11)
target = BeginTheTrip:
cod

state Way Point
begin
next (somethingElsc == 4'h7)

cod

stale LoopBack
begin
next (1)
begin
condition (RoundTrip == 317):
disable timer RoundTripTimer: // good ferm: required if there is more
/1o the trigger and timer should be

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 231

ATI Ex. 2075
IPR2023-00922
Page 231 of 394

Triggers

Chapter 7

// inactive after this piont
cnd
jump (something|0:3] == 0)
target = BepginThe Trip:
end

stale AflterTheTrip : trigger.

/1T we pel here the reason is clear.
statc RoundTripTimerTookToolong : trigger:

ff end of trigger

Diagram for the above example:

s
e

ferch[0:31] ==32' REFFT
B R Tip

fetch[0:31]==32"LEFF! &
Sx

<y

Ancther Before Thelripl """

S

Start

1mhial
.
—

fetch[0:31] ?=32" hEFFF
something [0: 3] ==8

somet hingElse==4'h7
e

v
Aaurd TigTime:

Back

\\ —
undesired|4:3] =251l . —tmething [0:3] ==0
RounaTeap==317T
S

After’ IThe'l'cip

i

l'ookLl'ooLong

und T'rip’li meJ

tigger

Timers Counters
Name i Cansemt MNeaame
| RoundTcipTimer | *Hl00_000 000 | | ReundTeip |

232 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 232 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Emulation

Overview

The Fpndation form contains the controls for many of the functions that are used while
debugging in-circuit.
The fpurlation form contains 5 panes;

= Fmmdator control pave on page 233

o Lmwldation stodes on page 244

« Lmnleior fog on page 249

» Trigger on page 248

v Waveform traces on page 248

Figire 56 on page 234 displays the lunulation form.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 233

ATI Ex. 2075
IPR2023-00922
Page 233 of 394

Emulation Chapter 8

—[virtuatogic. 5@sleepy’ /home/subbiah/Train_L'abs/v352/¥35/color.vmw] - |
File Edit View Tools oOptions Help

. Design Impart - Signals Corapile Triggers Emulation

Emulator: pazeidon:1, IDS ¢ Status: VIE-ZM, 100% visibility disabled z
Setup .. Uszer Bite: ceinulation speed:
34.00 MHz
Conrnect demainD:

1.03 MHz = 2 * 13vc (evan duty cycle
1.31 MHz ¢ (15w¢/ 490ns) B4%) + Csucz‘ 276ns/ 6%

34 MHz . 32K
Trigger: vrmw.trigger > Waveform Traces Display wavefarrn Refresh’ SN
Compiled window: signal_window 0

-
.1*\

color_bar el ==0

Emulator Log e
{
coker oo 1556l ==
' H i
i’
l(oolor bocpice_vald ==0) 10000 hmes

P

Read configuration shomessubbish/Train Labs VISZA35/color. v Ef;
Figure 56 Emulation form
234 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 234 of 394

Chapter 8 Emulation

Emulator control pane

Setup

The Sefup button will pop up the Serwp Hardware window. In this window the user specifies
the information for the emulator, the Logic Analyzer, and the Virsim/Vrc Host. figwre 37 on
page 233 shows the Sefup Hardware window.

Emulator

Host: tﬁ:oseidun
Box: 1 ¥
Legic Analvzer

Enzable HPLA storage
Host:
WirsimsJre
Host:

o/ suto—launch

oK Cancel Help ...

Figure 57 Setup hardware dialog

Emufator

Host

The Host field is where to enter the name of the UNTX host that is directly connected to the
VirtuaLogic emulator. The VirtuaLogic emulator is physically connected to a workstation
on the network, The emulator can be controlled from any workstation on the network, but
the user must specify the host to which it is attached.

Box

The Box button has a selection range from one to nine. This value represents the number of
the emulator in which the design has to be downloaded. The typical selection, however, is
one.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 235

ATI Ex. 2075
IPR2023-00922
Page 235 of 394

Emulation Chapter 8

Logic analyzer

Host

The Host field is used to enter the hostname of the logic analyzer. Unlike the emulator, the
HP logic analyzer is itself a network entity and can be controlled from any workstation.

The HP logic analyzer has a hostname on the network. VirtuaLogic uses the analyzer’s
network port to control it.

Virsim/Vie

The Host field is an optional field that can be used to have the waveform viewer nim on a
different host from the user interface with the X display set to the same one that is running
avl,

It may be desirable to run Virsim on a host with a larger amount of memory and a faster
CPU.

Host

The Host field 1s where to enter the name of the UNIX host that is directly connected to the
Virsim,

Connect

The Comnect button connects to the emulator host. If the host is remote,
usr wch rsh will be used to seamlessly operate the emulator from the local host. The user
can use the SFA/W RSH environment variable to override wsr wch rsh with an alternative.

This creates a remote shell on the emulator host and starts a process called vruiz, In order to
use the emulator, the user must be able to rsh to the emulator hast without providing a
password. Pressing the {"omirect button, while already connected, disconnects from the
emulator.

Connecting to the emulator hardware will lock the emulator for your exclusive use. This can
fail if the following conditions exist:

* Someone else is using the emulator

« The emulator is powered down

238 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 236 of 394

Chapter 8 Emulation

» The emulator host has not had the Virtualogic driver installed

L.oad design

The Load Desiga button finds the design name and memory files by using the design’s root
module name as entered on the Netlisi Import page in the Root Module pane,

This will take the results of I'P(;4 Compile and downlead them through the SCSI interface
onto the emulator, It will then compile any memory contents files specified on the Memaory
Specification page for the emulator’'s SRAMs and download them into the emulator.

It downloads the FPGA bit streams to the devices on the Array Boards. If any compiled
memories have contents files, then the contents of the memonies also get downloaded. It the
contents file does not specify all the addresses, the memories get filled with data that is all
zero. As a result of this step, the design is implemented in the VirtuaLogic emulator, but the
I/O of the chip is tri-stated so that it cannot interact with the system

At this point, the user can run a hardware functional test by pressing the functional fest
button. Refer to Functional fest on page 238 for additional information.

Enable 1/0s

The fnable I Os button is used to control the connections between the emulator and the
hardware testbench. When this button is off, the connections are left in the tri-state;
therefore, the emulator and testbench are isolated from each other. When this button is
selected, it takes the connection out of tri-state and enables the in-¢ircuit emulation,

If running in-circuit, before interacting with the design, the I/O Pods must be enabled. This
takes the T/0s cut of tri-state and allows it to connect with the target svstem. [t may be
desirable to boot the target system or at least power 1t up prior to enabling the 1/Q. The
ability to tri-state all the I/Q provides protection for the emulator and your system. If you
suspect drive conflict between the emulator and your system, you can cause damage to the
hardware by leaving the [/Os enabled.

Note if you select the Zonable 7 Os button and the TPOWER target is not asserted, it will not
work. Refer to TPOWER in the Virtual ogic Hardware Manual for information.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 237

ATI Ex. 2075
IPR2023-00922
Page 237 of 394

Emulation Chapter 8

Emulation speed

The selection ranges from 12.0 MHz to 40.0 MHz. This controls the internal clock rate of
the Virtual.ogic emulator. The range of speed depends on which emulator is connected to
your system.

The emulator design speed is obtained by dividing the emulator speed by the number of
virtual cycles (obtained from the compiler), This speed is displayed in the Desigir Fmulation
Stains pane. Refer to the famidation status on page 244 for additional information.

Functional test

The Fuwnctional Test button is invoked to run a hardware functional test. Before a functioned
Test can be run, the Gen Firtualized Model button on the Compiler page must be selected to
obtain a Verilog netlist of the virtualized form of the design.

Running this netlist with your simulation infrastructure produces a file called

ROOT sample.vec, where ROOT 1s the name you specified in the ROOT Moelule pane on the
Netlist Import page. This vector file contains the input stimulus and expected outputs from

your test infrastructure. They are saved by the behavioral Verilog included in the generated
model.

The iuactional Tést applies the input vectors, samples the outputs, compares the samples to
expected outputs, and generates a report based on the results. Fusctional Test uses a serial
port to apply the stimulus to the design and sample the cutputs. As a result, it generally runs
slowly relative to in-eircuit performance although it may be significantly faster than gate-
level stimulation. It generally runs at approximately 500 vectors per second, where each
vector is an epoch or clock transition. The speed is primarily dependent on I/O bandwidth.

As ['unctional Test runs, it reports how many vectors have been run, how many are in the
test suite, and if any mismatches have occurred. The number of mismatches that are reported
is the number of epochs in which one or more outputs did not match the expected output. It
generates a file called design-name sample.log which contains the results. The file shows
the results for each clock transition and determines if the expected outputs and actual
outputs match.

If Functional Test reports that there are no mismatches, then check the design-

name sample log which 1s generated from functional Tesr to verify that outputs were at
least toggling. Remember that the test is only as good as the set of vectors that have been
Tun.

238 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 238 of 394

Chapter 8 Emulation

If Fanctional Test has mismatches, then the IDS can be used to evaluate the probes that have
been added to the design. This will allow further debug of the problem. It is important tc
create probe groups and probe windows prior to the first compile of the design, so that many

mternal signals are available to assist in debugging the design, or to use 100% Visibility.

Normally during in-circuit, the TDS memory always fills up because the clock is free-
running. A special consideration exists when using the IDS with Fusetional Tesi. Since the
design clock only runs while there are vectors, the Funciional Test run may not fill up the
IDS memory. It is necessary to stop the [DS from recording in order to upload the memaory,

Functional test purpose

The functional Test is used as a means to verify that the design, as implemented in the
emulator, has correct functionality. If the design did not pass the Virtualized Simulation
Model (VSM), then the /-unctional Test step cannot be expected to pass either. The
Funcrional Test depends on a successful VSM verification and uses the vectors that are
captured as a part of that process. Refer to page 177 for more information.

Running Fusctional 1ést1s optional. The purpose of the VSM i1s to verify that all the user
inputs are correct and the transformations that occur do not change the functionality of the
design. However, the VSM model is only a partial model of the design, it does not have
complete interconnect resynthesis. The Funcfional fest verifies that the interconnect
resynthesis did not change the functionality and that the hardware is good. If the VSM has
not passed, the effort required to complete /"nnctional Test may be significant,

Vectors

In order to run funciional fest, a known good set of vectors is required. These are created
by running the Virtualized Simulation Model (VSM). Refer to page 177 for detailed
information. Once the VSM passes the complete vector set, then the same vector set can be
used for the emulator.

For Functional Test, it is necessary to provide a vector file that normally gets generated
when a simulation testbench is run on the verify model. The file that gets generated is called
desigi-name sample.vee and 1t contains ascii data for vectors, one line for each epoch
(clock edge). This is commonly referred to as a cycle by cycle vector; it containg no timing
data, only the inputs and expected outputs for each clock transition. The clock data is also
included in the vectors.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 239

ATI Ex. 2075

IPR2023-00922
Page 239 of 394

Emulation Chapter 8

The design-name sample.vee file should contain a column for each I/O pin in the design In
the file called config-name. vinw vector shelly, there will be a definition called

VMW WRITE VECTORS. The vimy sampled ios on this module indicates the order of
the signals in the design-name sample.vee file In the design-name semple.vec file, each
line of data should represent a clock transition and the inputs and cutputs associated with
that transition.

The Frnctional Test can only be run if the Faable T (s button is not selected (refer to Fnable
I Os on page 237 for information). This button connects the design to the target system. In
order to run Functional fest, the inputs to the design will be stimulated by vectors, and the
outputs should not drive the target system; therefore, the 1/0s must not be enabled to the
target system in order to run Funclional Test.

The Functional Test can be stopped with the Jarerrupt button. The speed of Functional Test
is much slower than the emulation frequency of the design due to the I/0O bandwidth of the
signals that need to be sent between the emulator and the workstation. [t is best to 1nitially
run a small vector set (about 1000 vectors) in Functional fest to verify that the design gets
reset and the clock relationships look correct. If the partial test passes, then run the larger
test. If it fails, it is much faster to debug while running the partial test.

During ['unctional 1est, the clocks and reset to the design are provided by the vector set. As
a result, the emulator has control over the clocks toggling. Due to the slow speed of the

serial interface for [unctional Test, the maximum clock speed of the design is not important.

Evaluate the design-name sample.vec file to verify that the clock 1s toggling and that reset
actually occurs. This should ensure some initial functionality of the design.

Reload memory

The Reloadd AMemory button recompiles the memory contents files and downloads them into
the emulator.

Poke memory

The Poke Memory button allows setting of the value of a particular memory lacation within
the emulator.

240 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 240 of 394

Chapter 8 Emulation

Upload memory

The Upload Memory button extracts the contents of the emulator memaries” single address
or whole memory into files,

Interrupt

The /nterrupt button terminates the current operation and allows the user to keep emulating.
Selecting this button will immediately terminate a functional test or memory download. It
terminates these operations cleanly. For example, memory download will be interrupted
between addresses.

Pressing fiferrupt during other operations will initially be ignored. Repeatedly pressing the
Iterrupt button will terminate the emulator control program (vriun). The user can then
reconnect to the emulator.

The user can type commands directly to vrmir by clicking in the fomndator Log pane, typing
the command, and pressing return.

User bits

The {/ser Bit n buttons allow the user to set the value of the four software-controlled
emulator outputs. When the button is depressed, the output has a value of 0. When the
button is not depressed, bits 1 and 2 are left in the Z-state ({Jser Bir /(i) button and Ulser Bit
2 (2) button). Moreover, when the button is not depressed, bits 3 and 4 are driven high {{/ser
Bir 3 (3) button and {/ser Bit #(4} button).

These four user-controlled outputs, TRST <1-4>, can be usetul for resetting the target
system during emulation.

TRST<1-2> are connected to pins 31 and 32 of the clock input connector. These are open-
collector signals. If these signals are used, pull them up to VCC with a 470 ohm, 1/8 watt
resistor on the target system.

TRST<3-4> are connected to pins 33 and 34 of the clock input connector. They are 5 V TTL
totem-pole signals,

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 241

ATI Ex. 2075
IPR2023-00922
Page 241 of 394

Emulation Chapter 8

Connect analyzer

The Connect Analyzer button locks the HP logic anaiyzer for use. It can fail if the following
conditions exist:

+ Thelogic analyzer is turned off
« The logic analyzer is being used by someone else

« Thelogic analyzer is hung

Window

The Window button activates a graphical logic analyzer control window.

The user can monitor the progress of the logic analyzer by selecting the Logic Analyzer
Window button. This shows the user, in an X window on the workstation, exactly what is
displayed on the logic analyzer console. The user can manipulate this display with the
mouse. To show the HP trigger display, select the following buttons:

* System

+ 1M Sample LAD

« Configuration

» Trigger 1

This will show the trigger display of the logic analyzer. Turnoff the display of the analyzer
by toggling the Window button again.

Load trigger

The foad frigger button sends a trigger to the IDS. the trigger must first be prepared on the
Trigeers form.

Once the trigger is accepted by the analyzer, it sits waiting to satisfy the trigger conditions in
the Kecord mode. The trigger diagram highlights the currently active trigger state, and is
updated periodically when in circuit. The diagram is not updated during functional test.

At this point, the user can stimulate the analyzer probes by running a functional test or
bringing the emulator in-circuit by enabling the I/O Pods. Refer to Funictional test on page
23& and fonable T (s on pesge 237 for information.

242 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 242 of 394

Chapter 8 Emulation

Upload waveform

The Upload Waveform button transfers the file (devtaeraw) from the 1DS and transforms it
into a Virsim waveform file, If the 100% visibility is disabled, the waveform information is
written in TRACE_NAME wave/waveform.vre file. If 100% visibility is enabled, the
waveform information is written to TRACE_NAME wave/waveform 100.vre file. This
transformation demultiplexes the Virtual Probe and associates the net name from the user’s
structure design with the data.

Once this is complete, select Display Weavefora to display the results using Virsim. This
causes Virsim to read in the original Verilog netlists to enable its logic browsing feature at a
cost of additional start-up time.

The user can loop through downloading triggers, recording, stopping, uploading data, and
running the waveform viewer in conjunction with operating the emulator through functional
test and in-circuit.

100% Visibility

Once a configuration has been compiled for 100% Visibility, the usage model is then similar
to the page 7-205 One difference is that when you press the Upload butten, you are given
the option to: (1) “complete later” (2) “complete now". This is because 100% Visibility
requires use of the emulator out-of-circuit for a post-processing step.

1. By “completing later,” you have the option to save the uploaded logic-analyzer data
and let the in-circuit emulation proceed. You can capture and store arbitrary
numbers of IDS traces while the emulator remains in-circuit, giving them each
unique waveform names.

When you want to view a particular trace, select the uploaded trace (labelled as
Uploaded in the Waveform Traces panel) and press Display Wevefornr. You are then
prompted to: (A) take the emulator out of circuit and extract 100% Visibility data or
(B) view explicitly probed data.

A The emulator is taken out of circuit and used for post processing, following
which all the data required for 100% Visibility of design nodes is saved in
the approprniate.weave subdirectery. This step takes from 5 seconds to 30
minutes, depending on the depth of data stored in the IDS, and the speed of
the Emulator Host workstation (the one that is SCSI-connected to the
emulator). When this is complete, Virsim will be invoked (if it is not
already up) and will read in the waveform file.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 243

ATI Ex. 2075
IPR2023-00922
Page 243 of 394

Emulation Chapter 8

B_ If you wish to view explicitly probed signals quickly, you do not have to
take the emulator out of circuit or wait for post processing. This may be
useful in some circumstances. You will have available all primary inputs to
the design, plus those signals that were explicitly probed for triggering
Selecting this option invokes Virsim immediately on the explicitly probed
data which is in trace /. wave probed.vre,

2. If when you upload from the IDS, you elect to take your emulator out of circuit,
then the post-processing will automatically occur following the IDS upload. Virsim
will be invoked (if needed) and will read in the 100% Visibility waveform file,
trace Lwave waveform.vre, when it is complete.

Emulation status

The fomilation Status pane helps monitor the target system clock quality. If the target
system cock is noisy or runs too fast, the title of the pane will show in red:

Target Clock Error Detected!!!!

When this message is displayed, a “Reset” button in the panel frame will become sensitive.
When the target system clock has been cleaned up, the user can press the “Reset” button to
clear the error display. If the clock is still too noisy or fast, the display will turn red again.
When this occurs, the emulator will still attempt 1o operate, but some failure condition is
likely.

The error display is always turned off when the I/Os are disabled. In addition, the emulator
monitors the presence of target system power. If the I/Os are enabled and the emulator
detects the absence of target-system power, the title of the pane will show in blue:

Target Power Missing!!!

The fipnddation Staius pane is also used to help set the clock speed for the design target
system for each independent clock in each clock domain. It also indicates the status of 100%
visibility functionality,

For each clock domain, the following two speeds are reported:

* A slower speed for when an even duty cycle is required. An even duty cycle ina
multiclock domain is where the period between every consecutive pair of edges in
the domain is equal.

« A potentially faster speed that is usable when the duty cycle can be adjusted so each
edge to edge period 1s as long as required by the emulator.

244 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 244 of 394

Chapter 8 Emulation

The speed reported is that of the fastest clock in the clock domain. For example, if a domain
has a 1x clock and a 2x clock, the displayed speed is that of the 2x clock. (Use of the -cfkopt
option changes this. The key concept is that the frequency reported is that of the overall
repetition of all the elocks in the domain.)

In addition to the clock speed which is given in kHz or MHz, a veyele-connt (ve) and a
minimum edge to edge periad in ns 1s given.

The phases reported represent a breakdown of the domain’s overall cycle which measures
the time required between the edges of every clock.

Clock relationships

It is necessary to generate clocks for the emulator and the target system that are at the
frequency required by the emulator. The simplest method is to scale all clocks by the same
ratio.

If a nonsquare clock can be provided, maximum emulation frequency can be achieved. The
Iimulation Statns will provide maximum frequency for a 50% duty cycle clock and another,
faster frequency if a specific clock pulse can be generated. The difference between these two
clocks will be greatest if the design anly uses one edge of the clock. In designs that use both
edges of the clock, this difference is not significant. In order to provide clocks with different
duty cycles, it is recommended that a pulse generator be used for all clocks that drive the
emulator.

It is not a requirement to maintain clock ratios between different domains in the system, but
when first emulating, it is best to maintain relationships by slowing all clocks down by the
same ratio. Once some functionality has been established, then test different clock ratios to
determine the system’s tolerance for different clocks. The emulator has no limits on the
frequency relationships, but only establishes a pulse width for each clock epoch. However,
the design might have limitations that require certain relaticnships, for instance, a graphics
design might require that the memory clock is at least twice the frequency of the PCT clock,
This might be a requirement because the synchronization circuit between the blocks expects
that two memory clocks happen within each PCT clock.

Once the maximum limits for frequency and frequency ratio are determined, then run the
design about 20% slower than the maximum frequency and slightly less than the frequency
ratio requirement. This conservative approach will prevent loss of time debugging clock
issues and simplify the setup. Always remember to check the reported frequency for each
compile while it is downloading to make sure the target is running within the range of the
compiled database.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 245

ATI Ex. 2075
IPR2023-00922
Page 245 of 394

Emulation Chapter 8

Multiple domain designs as a single domain

For designs that have multiple clock domains, emulation can initially be completed by
synchronizing all the clock domains to a single domain. By making a design function as a
single clock domain, many setup issues such as quasi-static nets are not an issues. This will
also eliminate synchronization problems. All synchronization design bugs will be masked,
but it will allow initial setup and debug to be completed faster by reducing the variables.
Once the synchronized environment has stable functionality, then the multiple clock
domains can be implemented and debugged. This strategy allows systematic debug and
elimination of factors.

To emulate a multiple clock demain design as a single domain, no netlist edits are required.
In the Ziming Specification form,

» select one clock as the master that will drive all domains

= define the top-level clock pins for all other domains as Peata Signals and specify
them as No Connect (with the button)

» create one clock domain and draw the waveform for the master clock
» select an internal net of each external clock in the other domains and
= draw its relative waveform to the single domain master clock

The emulator will then generate the second clock from the master clock.

Design emulation speed example

This example is a display of the design emulation speed for a four domain design with the
internal speed set at speed 7, 20 MHz. The numbers are all rescaled when the user changes
the internal emulator speeds.

domain®: 392kHz: 2 * 24ve

487kHz: 24ve / 1 28us + 14w / 769ns

domainl: 444kHz: 4 * 10vc
769kHz: 10ve / 572ns + Ive / 104ns + 3ve / 208ns + 7ve / 416ns

domain2: 215kHz: 2 * 45v¢
357kHz: 8vc / 459ns + 45ve / 2.34us

domain3: 259kHz: 4 ¥ 18v¢
350kHz: 16ve / 866ns + 3ve / 204ns + 13ve / 815ns + 18ve / 967ns

248 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 246 of 394

Chapter 8 Emulation

In domain0, there is one clock. With an even duty cycle, it can be set at 392 kHz. However,
if the duty cycle of the clock can be turned, the overall speed can usually be increased to 487
kHz, The first phase of the clock must be given 128 us and the second 769 ns as shown in
Figure 38 on page 247

Observe that if the target system can tolerate a nonuniform duty cycle, the emulation speed
can usually be increased significantly.

The relationship between clock signal values and the phases reported here is controlled by
the {iming Specification located under the Designr fmpori tabeard.

Clock J

Timing Requirement

128us ! 769ns

Figure 58 One Clock with Even Duty Cycle

In domainl, the maximum clock speed with an even duty cycle time is 444 kHz. A tuned
duty cycle using 572 ns, 104 ns, 208 ns, and 416 ns lets it run at 769 kHz as shown in /fgure
3% on page 247, The Timing Specificarion, located under the Design Import tabeard, is used
to determine how long each clock should be held high or low.

Note that the minimum edge to edge period requirements are scaled when the user changes
the emulator’s internal clock speed, They can also change dramatically when the design is
recompiled.

Clocklx J \
Clock2x m

Timing Requirement ' 572ns | 104ns 208ns | 4l6ns

Figure 59 Two clocks with even duty cycle

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 247

ATI Ex. 2075
IPR2023-00922
Page 247 of 394

Emulation Chapter 8

Resetting the emulator target system

Reset the emulator and target system and bring the emulator out of high-impedance.

Correct in-circuit operation requires the following:
« A valid sequence of resetiing the emulator and target systems

« Bringing the emulator out of its high-impedance /O state to get the emulator and
tarzet system correctly synchronized and working together

Before resetting the in-circuit emulation, download an emulator configuration image as
described previously. After configuration download, perform the following steps:

1. Apply and maintain a reset signal for the emulator and target system (emulator reset
1s only required when one of the design 1/0 terminals is a reset signal).

2. Using the VirtuaLogic interface and the Fomunlation window, click the Faable | Os
box to bring emulator terminals out of their high-impedance state.

Release the reset signal(s) for the emulator and target system in the order of release
in your nonemulated system; the combined system should then begin to function.

L

You can perform this process using a script if you connect your target system reset and/or
emulator reset signals to one of the high-current emulator outputs which are under direct
program control.

Trigger
Trigger pane has the trigger description given in the trigger form. It also has the signal
window that was used while compilation.

Wavetform traces

The Waveform fraces pane is used to create a new waveform trace. Click on Display
Waveform button to see the wavetorms on the GUL For information on the waveform
display tool, Virsim, refer to Firsim comtrol window on page 249

248 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 248 of 394

Chapter 8 Emulation

Emulator log

The fommitlation Log window shows the log of the emulating run. It i1s intended for
nformational purposes only; however the user may be prompted from this window for
information during the operation of the emulator.

Virsim contral window

Virsim hierarchy

Selecting the Hierarchy button will invoke VirtuaLogic’s Firtia/Browser. The user can drag
and drop from the FirfualBrowser to the Firsim waveform display window.

Refer to page 49 for detailed information.

Virsim waveform

Selecting the Werve fornt button will invoke the Baveforar Window. The Waveform Windeow
graphically displays signal waveforms over simulation time. Cursors and markers are
available for measuring edges and marking events that can be returned to later in the debug
session. The origin of an event may be selected in the Waveform Window for display in the
Logic Browser or the Sowrce Window. Expression based searching can be used to locate
specific events. A vector may be expanded (to show each element) or collapsed.

For help using the Firsint Woneeform Window, select the Help button and then Window.

Virsim register

Selecting the Register button will invoke the Register Window. The Register Window allows
the user to design views for displaying signal values and text using simple graphics tools.

Register Windows may be combined into time-synchronized link groups with other debug
windows. Time-linking allows the designer to choose among a variety of change search
mechanisms provided in the various debug windows; using a combination of such controls
can often be the most effective method of locating and analyzing design problems,
especially in mixed-level designs.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 249

ATI Ex. 2075
IPR2023-00922
Page 249 of 394

Emulation

Chapter 8

Register Windows may be used in a vanety of drag and drop operations, to and from the
Werveform Window, Source Window, Logic Browser, and other Register Windows.

For help using the Firsim Register Window, select the Help button and then Windfow.
Virsing source

The Firsim Sonree window is not supported in the VirtuaLogic 2.1 release.
Virsim logic

Selecting the Logic button will invoke the Logic Browser. The purpose of the Logic Bronvser
is to ease design debug through improved access to, and visualization of simulation results,
This is done by presenting a graphical interface specifically optimized for the tasks of design
navigation, signal tracing, and value viewing Multiple Logic Browser Windows may be
open concurrently to view different parts of a design,

For help using the Firsim Logic Browser, select the Help button and then Window.

250 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 250 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

Compiler Options
Reference Guide

Overview

This chapter covers

RILC Additional Options on page 231
VLE Compiler Options on page 271
vie conunands on page 318 and

viask commands on page 321

RTLC Additional Options

RTLC compiler switches can be classified into following categories:
« Design input switches
» Language recognition switches
» OQutput file switches
» Messaging control switches
» Selective compilation switches
« Debug and preservation switches
= Optimization switches

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 251

ATI Ex. 2075
IPR2023-00922
Page 251 of 394

Compiler Options Reference Guide

Chapter &

Table § RTLC additional options

Catagories Type Switch Page No
Design input switches Verilog/ page 253
VHDL
'Language recognition switches ' Verilog '-synth_preﬂx - page 254 '
-enable_case_pragmas page 254
-cempile_celldefines page 255
VHDL -max_recur_limit ‘ page 256 '
-preserve_name_case page 256
-compile-vhdl-inits page 250
'-gnd_hangi'ng_terminals ' page 257
Output file switches -out_dir page 258
-out_file page 258
-log_file ~ page 258
-report_file page 258
-area_rep_file page 259
Message control switches "Disable/ '-suppress ‘ page 259 '
limit -max_error_count page 259
messages
-max_loep_cnt page 260
"-max_mesg_count page 260
Allow! -allow_4ST page 260
Disallow 316 48T for_mod page 261
SimErrors - - :
-allow_GSD page 261
-allow_GSD_for_mod page 261
-allow_ISL page 2601
' -allow_ISL_for_mod ‘ page 262 '
-allow_MDCR page 262
-allow_MDR_for_mod page 262
'-allow_UFO ' page 262 '
-allow_UFO_for_mod page 263
-disallow_4ST_for_mod page 263
-disallow_GSD_for_mod page 263
-disallow_ISL_for_mod page 263
-disallow_MDR_for_mod page 264
"disallow_UFO_for_mod | page 264
-enable_BHV_messages page 264

252 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 252 of 394

Chapter @

Compiler Options Reference Guide

Table 8 RTLC additicnal options

Catagories Type Switch Page No
Selective compilation switches -import page 264
-noblack_box page 265
-force_module page 265
-force_all page 205
-ignore_non_rtl_gen page 266
Debug and preservation switches -debug page 266
-debug_module page 266
-dont_debug_module page 267
-preserve page 267
-preserve_module page 267
-dont_preserve_module page 267
Optimization switches -lut_map page 268
-opt_level page 269
-opt_timeout_limit page 269
-res_share page 269
Design input switches
Verilog
» Automatic top module compilation
* -main <top module name> -- optional
+ Srandard Verileg options
Examples:
rtle-vle aluv entrl v mem.v -v cells.v
rtle-vle -main topl -f tops.v -v sredir +libext+.v
VDL
» -main, -ent, -arch, -conf name <top_name>
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 253
ATI Ex. 2075

IPR2023-00922
Page 253 of 394

Compiler Options Reference Guide

Chapter &

+ -w <logical-library-name=
= -analyze, -87 (default 1993 mode)

Examples
rtle-vle -analvze -w memlib mem vhdl
rtle-vle -analvze -w padlib pads.vhd]
rtle-vle -analvze design vhdl
rtle-vle -main work top(rtl)
rtle-vlc -ent top

Language recognition switches

Verilog

-synth_prefix

SYNTAX:
-synth_prefix <prefix>

USAGE NOTES:

Enable recognition of the specified string as a synthesis pragma prefix; note that "ikos"
and "Synopsys" are recognized by default. Disables compilation of regions,

EXAMPLE:

module flop (k.d.q):
input k.d:
output q:
rcg q;

always 4 (poscdge k)
q<=d:
/1 §8 translatc_off
mitial q=0:
// $8 translate_on

cadmodule

-enable case pragmas

SYNTAX:

254 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 254 of 394

Chapter @

Compiler Options Reference Guide

-cnable_casc_pragmas

USAGE NOTES:

Enable recognition of the full_case/parallel_case pragmas in Verilog,

EXAMPLE:
case (scl)
200 out =1l
2°b01 : out = ~inl:
2’b 10 out = n2:
2°bll : out =~1n2:
cndeasc

case {(scl)
#Hikos full_casc parallel case
2°biX} : out=ml:

bl out=1mn2;
// no more items
cndease
Case Type Line NO ' Full Parallel
CASE 12 Auto Auto
CASE 24 USER User

~compile celldefines

SYNTAX:

-compile_celldefines

USAGE NOTES:

Enables compilation of modules under Verilog celldefine directives.(Default:off tor

library cells).

EXAMPLE:
*celldefing
module my_and_3(z.a.b.c):
output z: input a.b.c.
assighz=ad& b &c:
cndmodule:
‘endeelldefine

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

255

ATI Ex. 2075
IPR2023-00922
Page 255 of 394

Compiler Options Reference Guide Chapter &

VIIDL

-max_recur_limig

SYNTAX:

-max_recur_limit <nunt>
USAGE NOTES:
Specify the maximum recursion limit for recursive functions in VHDL.

EXAMPLE:
function_rccur_and(vector: std_logic_veetor) retum std_logic is
variable result: std_logic: variable length: integer:
begin
length = veetor’length:
if (length = 1) then
result = vector(0):
clsc
result := vector(Mand recur_and(veetor(length-2) downto 0):
endif’
cnd function:

Here, recursion limit = length of vector + 1, max_recur_limit 32 will fail for a 32 bit
vector. Default limit is 1024,
“preserve pame case

SYNTAX:

-presene_name_casc
USAGE NOTES:

Preserve the case of names in VHDL. The options preserves case of neirs and design
HHILS.

-compile-vhdl-inifs

SYNTAX:

-campilc-vhdl-inits

2586 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 256 of 394

Chapter @ Compiler Options Reference Guide

USAGE NOTES:

Enable compilation of VHDL signal (state-point) initialization into
FMW FDPC INIT primitives. [gnored for non-state-points.

EXAMPLE:
signal p: std_logic ;== // not a state-point, ignored
signal q: std_logic ;= "17. /f state-point
p<=aorb:
process (clk, a, b} begin
g<=aand b: {#{ VMW _FDPC _INIT1 inferred
end process:
<= pxorq:

-end_hanging_terminals

SYNTAX:
-gnd_hanging_terminals (like DC)

USAGE NOTES:

— = = —

+ Terminal / is hanging
= With this optien, it will be driven to zero

Warning 5438 Module top, Instance inst, Net b This input has no drivers, driving
ZRT0,

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 257

ATI Ex. 2075
IPR2023-00922
Page 257 of 394

Compiler Options Reference Guide

Chapter &

Output file switehes

-out_dir
SYNTAX:
-out_dir

USAGE NOTES:

Specify the output directory (default: rtlc.out). All outputs go in a single directory.

-out_file

SYNTAX:

-oul_lile

USAGE NOTES:

Specity the output netlist file {default: out.synth.v).

-tog_tile
SYNTAX:
-lag_file
USAGE NOTES:

Specify the log file (default: rtle. log)

-report_file

SYNTAX:
-report_file
USAGE NOTES:

Specify the design report file (default: rtlc.report).

258 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 258 of 394

Chapter @ Compiler Options Reference Guide

-srea_rep file

SYNTAX:

-arca_rep_file
USAGE NOTES:

Specify the area report file (default: area.report).

Directories NM/, NET/A INCR/

NM directory has the RTL debug database. NET directory has the gate level netlist database.
INCR directory has the incremental compile database.

CAUTION: The user should not de-
lete the files under these directories.

Message control switches

Disable/limit messages

~SUPPress

SYNTAX:

-SUPPress <message numbers>
USAGE NOTES:

Suppress the specified message; note that Fatals and SimErrors cannot be suppressed.

SMEEX_CPror_couni

SYNTAX:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 259

ATI Ex. 2075
IPR2023-00922
Page 259 of 394

Compiler Options Reference Guide

Chapter &

-Max_crror_ceunt <count>

USAGE NOTES:

Limit instances of all error messages to the specified number (default: 256).

-max_loop_cnt

SYNTAX;

-max_leop_cnt <count>

USAGE NOTES:

Limit reporting of combinatorial loops to the specified number (default: 256).

- mese count

SYNTAX:

~MAx_mesg_count <gounl=

USAGE NOTES:

Limit instances of each message to the specified number (default: 256).

AHow/Disallow SimErrors

-allow ST
SYNTAX:
-allow 48T
USAGE NOTES:

Allow 4-state reads.

260 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 260 of 394

Chapter @ Compiler Options Reference Guide

-tiow 4ST for mod

SYNTAX:

-allow_4ST_for_mod <module_name>
USAGE NOTES:

Allow 4-state reads for specified module.

-tlow_GSD
SYNTAX:
-allow GSD
USAGE NOTES:

Allow gate strengths and delays for all the modules.

-ailow _GSD for _mod
SYNTAX:
-allow_GSD_lor_mod
USAGE NOTES

Allow gate strengths and delays for the specified module.

-aifow ISL

SYNTAX:

-allow_1SL

USAGE NOTES:

Allow incomplete sensitivity lists.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 261

ATI Ex. 2075
IPR2023-00922
Page 261 of 394

Compiler Options Reference Guide

Chapter &

-tliow ISL. for mod

SYNTAX:

-allow_ISL_for_mod <medulc_name>

USAGE NOTES:

Allow incomplete sensitivity lists for specificd module.

-diow MDR

SYNTAX:
-allow MDR

USAGE NOTES:

Allow multiple drivers,

-wifow MDR_for_mod

SYNTAX:

-allow_MDR_for_mod <module_name>
USAGE NOTES:

Allow muitiple drivers for specified module.

-allow LIO

SYNTAX:
-allow_UFO

USAGE NOTES:

Allow undefined function/task outputs.

262 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 262 of 394

Chapter @ Compiler Options Reference Guide

-tiow LFQ for mod

SYNTAX:

-allow _UFO_for_mod <module_name=
USAGE NOTES:

Allow undefined function/task outputs for specified module.

-disatlow_4ST_for_maod

SYNTAX:
-disallow 45T for mod <module name>

USAGE NOTES:

Disallow 4-state reads for specified module.

-disatlow_GSD for_mad

SYNTAX:
~disallow_GSD_for_mod <module_name>
USAGE NOTES:

Disallow gate strengths and delays for the specified module.

~disallow 5L for mod

SYNTAX:

-disallew_ISL_for_med <module_name>
USAGE NOTES:

Disallow incomplete sensitivity lists for specified module.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

263

ATI Ex. 2075
IPR2023-00922
Page 263 of 394

Compiler Options Reference Guide Chapter &

~disatlow MDR for mod

SYNTAX:

disallow_MDR_for_mod <moedule_name>
USAGE NOTES:

Disallow multiple drivers for specified module.

-disallow VIO for _mod

SYNTAX;

-disallow UFQ for mod <module _pamc>
USAGE NOTES:

Disallow undefined function/task outputs for specified module.

-enable BHV_messages (RT1 errers)

SYNTAX:
-cnable BHV messages

USAGE NOTES:

This switch enables verbose reporting of RtlErrors. For example, refer to K/Warnings
and Rellwrrors on page 124,

Selective compilation switches

-import

SYNTAX:
-imporl <module_name=

USAGE NOTES:

264 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 264 of 394

Chapter @ Compiler Options Reference Guide

Specify the given module as imported; rtle-vle does not synthesize this module but it
writes out an empty module (prototype) for it. Typically used for memories and
bonded out cores.

-noblack _box
SYNTAX:-
noblack_box
USAGE NOTES:
Disable treatment of undefined modules as black hoxes
For Verilog, rtle assumes inout ports, so avoid using blackboxes for verilog. Only

named port connections can be supported for Verilog. For VHDL, rtlc takes prototype
from component declaration.

~force module

SYNTAX:

-fercc_module <medule_pame:>
USAGE NOTES:

Force the specified module to be compiled.

-force_all

SYNTAX:
-foree_all

USAGE NOTES:

Force the entire design to be compiled; this turns off all incremental checks.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 265

ATI Ex. 2075
IPR2023-00922
Page 265 of 394

Compiler Options Reference Guide Chapter &

-ignore_non_rtl gen
SYNTAX:
-ignore non_rtl gen
USAGE NOTES:

Non_integer generics are not supported and hence non rtl.

EXAMPLE:
catity mem is
generic (data_size: mtoger == 32: mt_file: string = “mem.dat™):
port (addr: in addr_t: data; inout data_t: wren: in bit):
end entity:

RilError 3506: File nrg.vhd, Line 6: Non-integer type STRING used in declaration of
generic INIT is not permitted

With this option, they are ignored.

Notice 5254 File nrg.vhd, Line 6: Non-integer type generic INIT is not supported.
Ignoring the generic declaration.

Debug and preserve switches

-tlebug

SYNTAX:

-debug
USAGE NOTES:

Enable source-level debugging for the entire design.

-debug_module

SYNTAX;

2686 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 266 of 394

Chapter @ Compiler Options Reference Guide

-debug_module

USAGE NOTES:

Enable scurce-level debugging for the specified medule,

-dont_debug_module

SYNTAX:

-dont_dcbug_meodule

USAGE NOTES:

Disable source-level debugging for the specified module.

=Preserve

SYNTAX:
presene
USAGE NQTES:

preserve all RTL nets in the design.

-preserve produle

SYNTAX:

-presenve_module
USAGE NOTES:

Preserve all nets in the specified module

-dont_preserve module

SYNTAX:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

267

ATI Ex. 2075
IPR2023-00922
Page 267 of 394

Compiler Options Reference Guide Chapter &

-dont_prescnve_maodule
USAGE NOTES:

Does not preserve nets in the specified module; instances to zero (ground).

Optimization switches

-fut_map

SYNTAX;

-lut_map

USAGE NOTES:

Enable LUT mapping; LUTs are written out in the file rtle.outfout.lut.v which needs to
be passed to vayn with the -Lutlib option. (5 - 10% improvement).

EXAMPLE:

Maps combinatinal logic into FPGA look up tables. It operates on a decomposed 2-
input netlist and is also more versatile than Xilinx mapper. Preserved nets are
decompiled as hierarchical refernces into LUTs.

AREA =12 AREA =6
.—b.
- 4
—
—-—
268 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 268 of 394

Chapter @ Compiler Options Reference Guide

-opt_level
SYNTAX:
-opl_lovel <0/1/2/3/4
USAGE NOTES:
Specify the optimization level (default: 3); 0 is the lowest and 4 the highest. Level 3 is

good trade-off between compile time and gate count.

~opt_timeout dimit
SYNTAX:
-opt_timcout_limit
USAGE NOTES:
Specify the timeout limit for optimization in seconds; use this if a single module is

taking an abnormally long time to compile

-res_share

SYNTAX:

-res_share
USAGE NOTES:
Shares resources in mutually exclusive paths{0-25% improvement).

EXAMPLE:
always ¢ (scl orinl or in2 or n3})
casex (sel)
2'b0x: out = inl +in2;
2’b10: out =in2 + on3:
2’bll: out =inl <<in2:;
cndeasc

This is converted to ; out = in2 + (¢nd) ? inl: in3; // cummulative

where ¢nd = func(sel)

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 269

ATI Ex. 2075
IPR2023-00922
Page 269 of 394

Compiler Options Reference Guide Chapter &

Compiler Directives

Disable compilation of regions

synthesis_off, synthesis_on
translate off, transiate_on
-synth_prefix synopsys, ikos

Example:
module alud...):
// ikos translatc_off
initial accumulator = 0
/ 1kos translate_on
alwavs ¢, (posedge clk)
accumulator = calculate(opeode. operands):

YHDL Built-in Pragmas

svn_feed through
svn_sign extend
svh_zcro_cxtend
svn_plus
svi_minus
svn_signed mult
svn_unsigned mult
svn_abs

EXAMPLE:

If there is a ripple carry adder in the design, the rtlc does not know if the code is for an
adder circuit, but syn_plus, a built-in pragma, tells the rtlc to substitute that piece of
code with an available adder circuit.

270 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 270 of 394

Chapter @

Compiler Options Reference Guide

VLE Compiler Options

Table 9 VLE compiler options

Capacity | Partition | Database| Analysis/ | Output Control Page
. Control | Control File |Transformat | Simulat Numb
Option - . led by
Argumen| Paramet | Suppress ion ion SW er
ts er ion Control | Models

"-Ag" <string> X page
34

“arrpart” <fpga_name> X page
312

"-bond" X page
313

"-Clk" <filename=> X page
300

"-clkopt” X page
<factor><domain_name> 298

"-CUe" <number> X page
277

“_CUi" <filename> X page
278

"-DB" <filename> X page
308

"-define-" X page
313

"-defines file" <filename> X page
313

"-Dump" <options> page
<filename> 305

"-fifo_refold port_limit" X page
<integer:> 297

"_FPi" <filename> X page
279

"-hvpd" <filename> X page
314

"-IncProbe" X page
3l

"-LBf" X page
282
Last Revision 25-Apr-2001 VirtualLogic 3.5 User Guide 271

ATI Ex. 2075

IPR2023-00922
Page 271 of 394

Compiler Options Reference Guide Chapter &

Table % VLE compiler options

Capacity | Partition| Database| Analysis/ | Output Control Page
. Control | Control File |Transformat | Simulat Numb
Option . . led by
Argumen| Paramet | Suppress ion ion SW er
s er ion Control | Models

“-Lib" <filename> X page
308

"M X page
312

*-Mem" <filename> X page
309

"-memmap" X page
313

"-Mm" <#= X page
276

"-Mmfanout"<#> X page
276

“-Mo" <filename> X page
314

"-Multi Asic" <filename:> X page
31

"-NAfi"<filename> X page
287

"-Nb" <#> X page
308

"Net" page
287

"-NCH" <filename> X page
284

“-NFfi" <filename> X page
286

"-noclkopt" <filename> X page
298

"-naclockblocks” page
300

"-nodb" X page
281

"-NoSrfi"<filename> X page
293

"-NoSyncQSs" page
284
272 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 272 of 394

Chapter @

Compiler Options Reference Guide

Table % VLE compiler options

Capacity | Partition | Database| Analysis/ | Qutput Control Page
. Control | Control File |Transformat|Simulat| o |Numb
Option X . led by
Argumen| Paramet | Suppress ion ion SW er
ts er ion Control | Models

"-novrc" X page
281

"-noXCT" X page
295

"-noXFT" X page
295

"-noXIAT" X page
296

“-nexnf™ X page
281

"-neXOT" X page
295

"-noXSAT" X page
296

"-noXTAT" X paue
296

"-NPh" <#> X page
309

"-Pii" <root_module> place X page
3jle

“-Pfo"<root_module> place X page
ile

"-Pi" <root_module>.part X page
315

"-Po" <root_module> part X page
315

"-Pod" <root_module> pod X page
3l

“-ProbeCard"” <#> X page
310

*-ProbeCore" <filename> X page
310

“-ProbeDB" <filename> X page
311
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 273

ATI Ex. 2075

IPR2023-00922
Page 273 of 394

Compiler Options Reference Guide Chapter &

Table % VLE compiler options

Capacity | Partition| Database| Analysis/ | Output Page
. . Control
. Control | Control File |Transformat | Simulat Numb
Option . . led by
Argumen| Paramet | Suppress ion ion SW er
s er ion Control | Models

“-Probeln" <filename> X page
309

"-ProbeMap" <filename> X page
310

"-ProbeWindows" X page
<filename> 310

*-PUI" <filename> X page
280

l|_qll page
303

"-QSh"<root_maodule>.qsf X page
283

"-Root" X page
309

"-SDPN" X page
297

"-Se" X page
292

-8t X page
292

"-syspart" <fpga name> X page
312

"-target" <filename> X page
312

“-targetfile" <filename> X page
312

"-Terse100" page
304

"-TerseProbe" page
305

"-Ti" <filename> X page
314

"-TNfi" <filename> X page
290

||_v" page
303
274 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 274 of 394

Chapter @

Compiler Options Reference Guide

Table % VLE compiler options

Capacity | Partition | Database| Analysis/ | Qutput Control Page
. Control | Control File |Transformat|Simulat| o |Numb
Option X . led by
Argumen| Paramet | Suppress ion ion SW er
ts er ion Control | Models

"-Vhe" <> X page
301

"y page
304

"-vhdlout" X page
303

"-vhn" X page
301

"-Vo" <filename> X page
302

"—\"S" page
304

"-ysn" X page
301

[page
304

“-writevpd" X page
281

"X CrossDomainlO" page
299

“-XFTL" page
299

"-xIn" X page
302

"-Xo" <filename> X page
3l4

"-XTAT" X paue
296
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 275

ATI Ex. 2075

IPR2023-00922

Page 275 of 394

Compiler Options Reference Guide Chapter &

Capacity control arguments

-Am
SYNTAX:
-Mm <#>
ARGUMENT:
<H#> This switch controls the amount of logic in each chip.
DEFALILT:
Default: 10
Range: 8- 12
Scale: 10 = 100%; 10,5 = 105%
USAGE NOTES:
FPGA size-modeling control for partitioning.
The default for this switch is 10 which targets 100% logic allowed on each chip (cost
of 5000/ 10,000). Changing = - to 9 reduces the amount of logic allowed to 90%.
This improves the FPGA Place and Route time by making each chip easier to place
and route. However, the design might run slightly slower because of fewer gates in
each chip and more chip hop required in a path. It also uses the hardware capacity less
efficiently and is not recommended if a design is a tight fit in the emulator.
Increasing this number provides more utilization but at the same time increases the
FPGA Place and Route time. For example,
-Mm 10.5 // expands modeled capacity by 5%
Refer to -C"U/f on page 278 tor information on a design that exhibits a structure leading
to systematic place and route failures that are insensitive to the -Mm cost adjustment
parameter.
-Mmfanout
SYNTAX:
-Mmfanout <#>
ARGUMENT:
278 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 276 of 394

Chapter @ Compiler Options Reference Guide

< Post-partition size moedeling control
DEFAULT:
Default: Current value of -Mur
Range: Same range as -Afn
Scale: Choose a value greater than -Mir
USAGE NOTES:
FPGA size modeling control: Setting this larger than -Afm will control congestion.
This is most appropriate when -Dwinp £ indicates average transition count well in

excess of one,

Refer to -Dump on page 365 for information.

Partition control parameters

-Cl¢
SYNTAX:
-CUc¢ <numbers
ARGUMENT:
<number> The <aumbei™ is an integer.
DEFAULT:
The default value of the parameter controlled is one.
USAGE NOTES:

The baseline adjustment value can be set to something other than one by using this
switch.

Refer to -C'1/i on page 278 for additional information about a variable cost adjustment
factor.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 277

ATI Ex. 2075
IPR2023-00922
Page 277 of 394

Compiler Options Reference Guide Chapter &

-CLi
SYNTAX:
-CUs <filename>
ARGUMENT:
<filename> User hierarchical cost centrol file
USAGE NOTES:
Solves the fitting problem in FPGA compilation.
On rare occasions, a design exhibits a structure leading to systematic place and route
failures that are insensitive to the -Afm cost adjustment parameter (refer to -Adw on
page 276 for details). If an FPGA fails to compile, and the components on the FPGA
are mostly from the same part of the design, the user can raise the weight of that part
using the compiler option -0 - filenante” as follows:
» Atthe command line, create a new file. The file contains one or more lines of the
following form:
Module <module_cxpression>
where <module expression> is a regular expression matching the hierarchical
name of one or more module instantiations within the design. Any module listed
in the file has its modeled cost increased.
The typical use of the file has the following form:
Module ab.c @ % ks ik
which matches all instantiations within the scope a.b.c. {The number of *s
should exceed the internal hierarchical depth of the scope a.f.c.}
All the modules under the hierarchy ¢ b.c. get a higher cost than they normally
would during design compilation,
» Return to the Compile form and in the Compiler Options window enter the
following:
-CUi <filename>
+ Recompile the design,
The -('Ji switch allows a variable cost adjustment factor. The syntax is as follows:
Module <module expression= <number>
278 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 278 of 394

Chapter @ Compiler Options Reference Guide

For this syntax, the cost adjustment value for all modules matched by the regular
expression madile expression s - mmber ndependent of the -('1/i baseline
established by -("{/c or its default,

Refer to -('{/c om page 277 for additional information.
Use of the -("T/i switch with a nondefault value 1s effective in situations where some

FPGAs compile excessively slow due to very slow Xilinx timing analysis in the
presence of highly divergent and reconvergent combinational structures.

-IPi
SYNTAX:
-FPi <filename> -Pi <partition_input_filename> -Pf <place_input_filename> [-Po
<partition_output_filename=)
[-Pfo <place_output filename>]
ARGUMENT:
<filename> Further partitions the contents of the designated file.
Lists on separate lines the names of all noncompiling
FPGAs.
-Pi <partition_input_filename>
Reads what is in the file as the partition result of the
previous run. Contains the partition result of the
previous run. This is required.
-Pfi <place_immput_filename>
Reads in the result of placement from the previous run
as output of the placer. Contains the placement from the
previous run. This is required.
-Po <partition_output_filename>
Outputs the result of the partition into the specified file.
Contains the result of the partition, This is opticnal.
-Pfo <place_output_filename>
Outpuis the result of placement to the designated file.
Contains the result of place. This is optional.
USAGE NOTES:
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 279

ATI Ex. 2075
IPR2023-00922
Page 279 of 394

Compiler Options Reference Guide Chapter &

Enables further partitioning.

1f one or more of the FPGAs does not compile, a message appears in the Place aind
Renite Log window listing the failures To correct the situation, take the following
steps:

* At the command line, create a new file comprising the name of each
noncompiled FPGA on a separate line

« Return to the Compiler form and in the Compiler Options window enter the
following:

-FPi <filename> -Pi <partition_input_flilename> -Pli
<place_input_filename> [-Po <partition_output_filenames>|

[-Pfo <place_output_filename>|

= Recompile

-PLi
SYNTAX:
-PUi <filename>
ARGUMENT:
<filename=> Allows the user to group logic to be on the same FPGA
USEAGE NOTES:
To use that option, in the Compiler Option pane, enter -PLi - filename .
The file is in the following form:
Group <group number>
M <imodulcname0=>
M <modulename[>
<modifenamen - 1s a hierarchical module reference or regular expression matching
one or more modules. There can be several groups in the file and each group can have
any number of primitive logic names. The compiler clusters all the modules in each
group together so they end up in the same FPGA.
230 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 280 of 394

Chapter @ Compiler Options Reference Guide

Refer to No-Iows in Combinational Loops on page 136 for additional information on

using -PI/4.

Database file suppression switches

-writevpd
SYNTAX:
-writevpd

USAGE NOTES:

Enables vpd file generation. It allows compatibility with FirSine.

-fovre

SYNTAX:

-SDOAVTC
USAGE NOTES:

Disables vr¢ file generation.

-noxnf

SYNTAX:

-noxnl
USAGE NOTES:

Disables x#f file generation.

-nodb

SYNTAX:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

281

ATI Ex. 2075
IPR2023-00922
Page 281 of 394

Compiler Options Reference Guide Chapter &

-nodb

USAGE NOTES:

Prevents writing the database on the disk. It does not generate the &4 file and it
disables the vdh file generation,

This file is used when doing an incremental compile to add or delete probes. This
switch saves some disk space and also speeds up the compile process.

Apalysis/Transformation control

-LBfi

SYNTAX:

-LBli <lilenames

ARGUMENT:

<filename> Reads in the file with the latch bias net(s)

USAGE NOTES:

This switch improves the model execution speed for some latch-based datapaths. It
is a means to control laich processing in order to insure that a particular stage of
logic in a latch-based datapath is allowed the maximum time for propagation,
generally a full clock cycle.

If Tatches clocked by opposite clock phases are used in a datapath, under some
circumstances the VirtuaLogic compiler will unnecessarily constrain the flow
between adjacent stages of latches to within a half clock cycle. A deep datapath
example might be a 64-bit full data adder in an ALU or multiplier/divider which will
be performance limiting in the emulation model.

The <filename> format is:

Nct <net-expression>

where <net-expression> is a hierarchical net name or wildcard expression matching
a collection of nets. Processing of any latch which either combinatorially reaches or
is combinatorially reached from a net identified in the -LBf file will be biased to

282

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 282 of 394

Chapter @

Compiler Options Reference Guide

allow maximum time in the direction of the latch bias, thus, latches whose outputs
reach a latch bias net will give more time to the output at the expense of the input,
while inputs will give more time to the input at the expense of the ocutput.

It is not necessary to specify directly the latch input or output nets in a -LBfi file.
Specifying a net for latch bias will affect all latches whose outputs combinatorially
reach the specified net or whose inputs are combinatorially reached from the
specified net. For example, in the 64-bit adder example cited above, using a wildeard
expression to identify all nets in the adder carry chain is sufficient to impact all
latches fanning into or receiving any output from the adder datapath.

If both the input and output of the same latch have a bias, controlled biasing of the
latch will not occur and the task objective may not be achieved

Also, use of -LBfi suppresses some forms of automatic dataflow path partitioning
and can result in identification of combinatorial cycles in a design which does not
exhibit them in the absence of -LBfi. If this occurs, and the cycles are too large for
the VLE system to model, restrict -LBf to areas of the design not exhibiting cycles.

-QSi
SYNTAX:
-QS1i <root_module> qsf
ARGUMENT:
<root_modules>.qsf Quasi-static net file
USAGE NOTES:
This switch works in conjunction with the -Dump ¢ option. It reads in a user-selected
set of quasi-static nets for resolving clock domain merging ambiguities.
Refer to -Dwuimp on page 303 for additional information.
Refer to -7Nfi on page 290 for information on hierarchical net references in annotation
files.
Refer to -NoSyne(S on page 28+ for information on quasi-static net processing.
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 283

ATI Ex. 2075
IPR2023-00922
Page 283 of 394

Compiler Options Reference Guide Chapter &

~NoSynceQs

SYNTAX:

-NoSyncQSs

USAGE NOTES:

NCi

Quasi-static net processing has changed such that all cross-domain fanouts of a given
net which has been declared quasi-static will always see the same value of the net,
This behavior only applies to quasi-static cross-domain nets.

Note that this behavior results in the potential masking of race conditions specifically
associated with multiply sampling any quasi-static marked net. It does not impact race
condition modeling between pairs of quasi-static nets, between quasi-static and
nonquasi-static nets, nor multisampling of nonquasi-static nets.

The change which leads to this behavior can be suppressed by adding the compile
switch -NoSyre(JS. However, this may result in excessively large models when 100%
visibility is enabled.

SYNTAX

-NCI <Filename>

The -NCiff switch cnables a feature which will be referred o as a NoClock annotation. -3 lakes a
<filenamec> argument which identifics a file containing nct or terminal NoClock specifications.

ARGUMENT:

A Net NoClock specification has the following syntax
Nei <netname>

where <netname> is a hierarchical net name or regular expression and indicates that
all nets matching nethame have a NoClock attribute.

A Terminal NoClock specification has the following syntax:

Termingd <terminal-name>

284

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 284 of 394

Chapter @

Compiler Options Reference Guide

where <terminal-name> is a hierarchical terminal name or regular expression and
indicates that all nets connected to matching terminals have a NoClock attribute. If
the terminal is an input terminal, the attribute only applies to the specific net fanout
connected to the terminal. If the terminal 15 an output terminal, then the attribute
applies to all net fanouts, as would be the case if a Net NoClock specification were to
be used.

Example:
-NCfi vmw.nclk, where the content of vimw.nelk is:
Net top.inst_foe core_nobuf top.corecomp.inst_foe core.inst_cu_shell.reset

Terminal top hvih_ int/grif/U157 A

USAGE NOTES:

Designs with complex clock trees intend to consume an abnormal high number of
gates and result in long PAR compile times. This is due to the pessimistic nature of the
compiler and the fact that ¢lock trees need to duplicate into each FPGA that contains a
sequential elements clocked by this particular clock. The NoClock annotation is a
feature that reduces clock tree complexity, then facilitate clock generation

Usage of -Dump m0 dump option will report the clock source cost of all clocks and
gated clocks. -N(f7 is to be used to annotate part of a clock gating circuitry, net or
terminal, that contributes to clock generation, whenever the compiler reports high
clock source costs above 1000.

EXAMPLE:

One common example of a circuit with nets which cannot be automatically determined
to be NoClock candidates are clock multiplexing circuits which select from one of
several clocks (between clocks of the same clock domain). The control signals which
choose between the clocks are often NoClock candidates and also often are produced
by substantial logic cones which one might wish to remove from the logic tree.
Multiplexor select signals are legitimate NoClock signals under a variety of
circumstances. If the select value changes occur when all clocks have the same value
then a delay on select doesn’t impact active clock edges.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 285

ATI Ex. 2075
IPR2023-00922
Page 285 of 394

Compiler Options Reference Guide Chapter &

clk_Ix
clk_out

clk 2x

sel

This would be the case when switching from a 1X ¢clock to a 2X clock if the switch
occurs at a point where both clocks are producing a rising edge for an instance.
Similarly, this would be the case if all clocks are gated to some constant value during
the select change.

Alternatively, clock switches may be very rare and glitches during the switching point
may be expected and tolerated by the design, by following the clock switch by some
form of reset activity. Here a NoClock may have a circuit semantic impact but no
impact on the higher level operation of the device.

In addition to selects on cleck switching circuits, other forms of clock gating may
cause the VStation compiler to incorrectly decide that some net and logic tree are
delivering active clock edges. If'this 1s determined to be causing either excessive logic
resource use or contributing to FPGA timing problems, then NoClock can be applied
as a way to eliminate the net and logie cone from the clock tree.

-NEh
SYNTAX:
-NFfi <filename>
ARGUMENT;
<filename> Reads in the no-flow nets from the no-flow file
USAGE NOTES:
This switch allows the information for the no-flow to be read in with each compile.
2886 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001
ATI Ex. 2075

IPR2023-00922
Page 286 of 394

Chapter @

Compiler Options Reference Guide

A user-inserted no-flow is precisely equivalent to the injection of a pipelining flip-flop
on the specified circuit net or terminal. The pipeline flip-flop 1s clocked by the first
edge in the clock pattern provided for the clock domain associated with the no-flow.
(For clock domains with higher frequency clocks, 1.e, 2X clocks, the first and
subsequent symmetrically placed edges are used.) For NET nodepends or TERMINAL
nodepends on primitive output terminal, the clock domain used will be the domain in
which the net’s source driver is located. For TERMINAL nodepends on primitive input
terminals, the relevant clock domain will be the clock domain of the associated
receiving primitive.

This ensures that no-flows have the equivalent behavior in Virtualized Models as they
do in-circuit under all conditions,

-NAK
SYNTAX:
-NAfi <filename>
ARGUMENT:
<filename= Reads in the net timing information from the net
annotation file
USAGE NOTES:
Net timing annotation allows the user describe timing characteristics of internal nets in
a design.
In some situations, the emulation compiler adopts an overly conservative model of the
behavior of a design net. If the net is a clock, particularly a clock with high fanout, this
modeling pessimism can lead to added capacity requirements and/or diminished
performance. Net timing annotation allows the user to specify a more accurate timing
behavior to improve capacity or performance issues.
Net timing annotations relate edge and/or value behavior of a net to some primary
clock signal. A net timing annotaticn takes the Aef form described below:
Net
SYNTAX:
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 287

ATI Ex. 2075

IPR2023-00922
Page 287 of 394

Compiler Options Reference Guide Chapter &

Net <petname> <clockname=>|iment| <keyword>

ARGUMENTS:

<netname> This is a name or regular expression matching the
hierarchical name of one or more design nets.

<clockname> [invert] This indicates that the timing behavior specified for the
signal <clockname= is the basis for identitying
behavior of <nefname=. The optional keyword inmverf
indicates that the behavioral basis for <nemaie> is the
inversion of the behavior of <clockaame>.

<keyword™> Takes the value zeros, ones, edges, rise, or fall.

Zeros/Ones This indicates that the signal <sefiigme™ is zero or one,
respectively, whenever the clock prototype behavior
exhibits this behavior

Edges This indicates that when <clockrame™ has a rising
edge, <nefname> has a rising edge or is stable, that is, it
does not have a falling edge Similarly, when

<¢lockname= falls, <wetname> falls or remains stable.

Rise/Fall This indicates that <mefname> only has value changes
when rising/falling edges occur on <clockiame™>.

The user can apply multiple net timing annotations to a net. Behavioral ¢haracteristics

associated with known values are the intersection of the behaviors of the annotations.

Behavioral characteristics associated with net changes are the union of the behaviors.
EXAMPLE:

A data-dependent edge detector circuits example follows,

Various forms of data-dependent edge detector circuits produce conditional pulses that
the user can describe using net timing annotations.

Assume in all cases that clk is a simple periodic clock.

. You can characterize this output xclock as

Net xclock clk reros

since the signal xclock can be 0 or 1 when clk is 1 but is always 0 when clk is 0.

238 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 288 of 394

Chapter @ Compiler Options Reference Guide

g ————

alk

Without this characterization, the emulation compiler models the signal as being
entirely unknown and potentially making either nising or falling transitions on both
edges of ¢clk. This action causes the state elements that are clocked by this signal to
be viewed as potentially changing on either edge of clk. With the timing annotation,
rising-edge state elements can be known to be active only on some rising edges of
clk and similarly for falling-edge state elements.

2. Inthis circuit,

h Y
l xelack
dug ——— () w
clk N q

you can characterize xclock as

Net xclock clk invert oncs

since the signal xclock (relative to the inversion of ¢lk) is 1 when inverted clk is |
and can be either 1 or 0 when inverted clk is 1.

L8]

A symmetrical divide-by-3 circuit is a good example of a circuit that you can
describe as edges.

Net d3 clk edges

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 289

ATI Ex. 2075
IPR2023-00922
Page 289 of 394

Compiler Options Reference Guide Chapter &

.]
D L =

clk

43

Only rising edges of d3 cccur when clk rises, and only falling edges of d3 occur
when clk falls.

-TNfi
SYNTAX:
-TNI <filename>
ARGUMENT:
<filename> This is the tie-off net filename.
USAGE NOTES:
It reads the tie-off net file. This turns on a feature that allows the user to use a file to
specify nets that are tied to a constant value {0 or 1) The file syntax 1s as follows:
Net <netname> <valuc>
Temninal <terminal-name> <value>
where the <vafre™> can be one, QNI zero, or ZIWRO, the <nemiame> 1s a net’s
hierarchical name, and Yerminal is a hierarchical name in the following form:
<modulename=.<lcrminal name>
290 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 290 of 394

Chapter @ Compiler Options Reference Guide

The specified net or the net connected to the specified terminal is tied to the constant
that <vafne> specifies.

Specifically, if there is a reference to a net in one of the following files:

Netabe

this reference will effect all nets which are aliases of the specified net. Aliases can
result from assign statements,

assignc = d:

¢ and o will be aliases and any references to either will impact both. Aliases can result
from hierarchical connections which are not at the user primitive level.

hicr hierl (LA(B). ..
B and hierl.4 will be aliases and any reference to either will impact both.

In other words, tying a net on either side of a hierarchical boundary results in all
fanouts of the nets on both sides of the boundary being tied.

The easiest way to understand the full implications of a tie or annotation on a net is to
view the annotation as always occurring at the output of whatever primitive actually
drives the net(s).

If there is a need to tie or apply annotations, like quasi-static or no-flow, to some
fanouts of a net and its aliases without applying it to all fanouts, the way to do this is
through feratinal annotations.

Terminal a.b.d.E
If ab.dis a user defined primitive and E is an input terminal, this annotation will just
impact the net fanout reaching the relevant terminal. (ferminal annotation on output
terminals are equivalent to Met annctations on the ocutput net or any of its aliases.)
Be careful when using Net based annotation; ferminal annotations are safer.

Refer to Net tie-offs on page 150 for additional information.

Refer to vlc . browse constants on page 1392 for information on bringing up the we in
order to see the value of netlist constants.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 281

ATI Ex. 2075
IPR2023-00922
Page 291 of 394

Compiler Options Reference Guide Chapter &

-5Ne

SYNTAX:
-Se

DEFAULT:

By default, enables are evaluated for primary 10 in order to turnoff the [0 as soon as
possible.

USAGE NOTES:

Allows lazy (late evaluation of) tri-state enables on primary 0. The -5¢ allows the
evaluation of 10s to be different until the next point at which the target system or the
emulator sample the 10 value.

-Sr

SYNTAX:
-Sr

USAGE NOTES:

Enables lazy reset. This switch allows a late evaluation of the asynchronous signals.
The nature of the asynchronous set and reset requires analysis of the output of the
register at all times. As a result, it increases the complexity of the design. If precise
timing of asynchronous set or reset is not required for functionality, this switch holds
the signal evaluation until the next clock edge.

Refer to -NoSefi on page 293 for additional information,

The modeling semantics of the -5r switch in the VirtuaLogic 3.5 release, corresponds
precisely to the conversion of affected state elements from using asynchronous preset
and clear to using synchronous preset and clear. Preset and clear are only evaluated at
active clock edges, (for flip-flops) or during open gate regions (for latches.)

Former semantics involved an immediate update of the state during any active preset
or clear but a deferred propagation of this change to other parts of the design at the
option of the emulation compiler. The behavior under this semantics could vary from
compile to compile whereas the VirtualLogic 3.5 behavior is precisely defined
independent of a particular compilation.

292 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 292 of 394

Chapter @ Compiler Options Reference Guide

One area of caution rezarding this semantics is asynchronous preset or clear signals
coming from primary asynchronous inputs or being generated in one clock domain
and consumed in ancther, Under the former semantics, state would always be updated
independent of the width of the active region of preset or clear Under this semantics,
the active region must include a clock edge of the relevant state element. Therefore,
preset or clear pulses narrower than the clock period of the receiving state elements
may be missed.

Synchronized preset or clear signal behavior takes precedence over clock enable
terminals, for state elements containing synchronous clock enables and synchronized
preset or clear in the reference library. Therefore, at clock edges, clear or preset takes
place independent of the value of the clock enable if clear or preset are asserted,

As with the asynchronous versions of these signals, clear takes precedence over preset
in all reference library primitives,

The 100% Visibility feature imposes some hardware overhead cost when compiled
into models. Certain structures can be particularly expensive and may lead to more
excessive costs. These include large storage macros implemented as gates, heavily
latch-based design styles, large numbers and/or very high fanout ¢ross-domain or
asynchronous nets, particularly if the nets go to asynchronous preset or clear
terminals.

Space improvement is possible by modeling storage macros as memories, treating
high fanout asynchronous inputs as synchronous, using -5 to convert asynchronous
preset/clear modeling to synchronous preset/clear modeling using quasi-static
annotations on the highest fanout cross-domain nets if they are not already quasi-

static.
-NoSrfi
SYNTAX:
-No$rfi <filename=>
ARGUMENT:
<filename> File for slow-reset instance overrides
USAGE NQTES:
Allows -5r to be used for most state-elements while maintaining more precise
modeling semantics for some set of user-specified state elements,
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 283

ATI Ex. 2075
IPR2023-00922
Page 293 of 394

Compiler Options Reference Guide Chapter &

EXAMPLE:

Lazy reset is a modeling style for asynchronous preset/clear behavior of state elements
that trades off precise iming behavior for improved emulation performance. When
enabled, lazy reset defers asynchronous preset/clear induced output changes on state
elements until the next active clock edge.

The user can selectively exempt state elements from lazy reset which aliows imprecise
modeling for most state elements while retaining the more precise modeling for the
selected set.

Save the name(s) of the module(s) to a file and invoke the -NoS#fi switch with this file's
hierarchical prompt on the command line.

To exempt certain modules from lazy resets, create a file with a series of lines having
the following form:

Module <module cxpr>

The <madule expr>is a regular expression that matches the hierarchical path name of
one or more modules in your design. For example,

Module A contains modules B and C, and module B contains modules D and E. To
turn off lazy reset for module A.B E, include this line in your file:

Module AB.E
To turn off lazy reset on modules D and E with a single line, include the following line
Module AB.*

The following conditions constitute default behavior:

+ If you do not choose the -Sr switch, lazy reset modeling doees not apply to any
modules

» If you choose the -S- switch, but not the -VoSefi fiferneime switch, lazy reset
modeling applies to all relevant modules

+ If vou do not choose the -5r switch, but choose the -Nosefi - filename switch, no
modules have lazy reset turned on

* If you choose the -S» switch and the -NoSrfi - fileriame switches, you enable lazy
reset modeling for all relevant modules except for those modules listed in the file
<filename>

294 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 294 of 394

Chapter @ Compiler Options Reference Guide

Under the following conditions, errors oceur:

= If the file specifies modules whose literal or wildcard-substituted names cannaot

be matched, the program prints out a warning message but does not exit

= If you choose the -voSkfi switch, but do not indicate a filename, the compiler

errors out and prints an error message

= If the word Aodnie does not precede each module name, the compiler errors out

and prints an error message

~noNOT
SYNTAX:
-noXOT
USAGE NOTE:

Prevents latch open transformations.

-noX{T

SYNTAX:
-noXCT

USAGE NOTES:

Prevents latch close transformations.

-noNEF

SYNTAX:

-noXFT

USAGE NOTES:

Prevents flip-flop identification,

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide

285

ATI Ex. 2075
IPR2023-00922
Page 295 of 394

Compiler Options Reference Guide Chapter &

-noNFAT

SYNTAX:
-noXIAT

USAGE NOTES:

Disables latch flow analysis/optimization. Refer to -#oXSAT on page 296 for
information on the complementary operation.

—-noXSAT

SYNTAX:
-noXSAT

USAGE NOTE;

Prevents latch flow analysis/optimization.

-noXTAT

SYNTAX:
-noXTAT

DEFAULT:
off
USAGE NOTES:

Disables latch tri-state flow analysis/foptimization Refer to -XTAT on page 296 for
information on the complementary operation.

-NTAT
SYNTAX:
-XTAT
DEFAULT:
off
298 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 296 of 394

Chapter @ Compiler Options Reference Guide

USAGE NOTES:

Enables/disables latch tri-state flow analysis/optimization. Refer to -noXTA7T on page
29¢ for information on the complementary operation.

-SDPN

SYNTAX:

-SDPN
USAGE NOTES:

Saves dropped probe nets and saves probed nets from optimizing out. Suppresses
elimination of dead logic on probed nets

When using this switch, the compiler does not optimize out dead logic if the logic has
heen probed.

-fifo_refold_port limit

SYNTAX:
-fifo_refold _port_limit <integer>

ARGUMENT:

<integer> Specifies maximum number of ports above which no
fifo refolding is done.

USAGE NOTES:

It arises as part of the memory resynthesis phase in VLE. Firstly, multi-domain
memories get split by their data-bits into multiple slices that are the same width as the
physical SRAMs in the emulator. The problem with this data slicing is that a large
number of effective FIFOs are obtained, which don’t share physical memories very
easily. So it is possible to run out of physical SRAMSs in the emulator memories on
which the FIFQs are put. FIFO refolding will take these sliced FIFOs and rejoin them,
This uses the physical SRAMs more frugally, but at a cost of performance because of
the increase in the vcycle count.

The fifo_refold port_limit allaws the user or AE to increase performance at the cast of
memory capacity, or vice versa.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 297

ATI Ex. 2075
IPR2023-00922
Page 297 of 394

Compiler Options Reference Guide Chapter &

If multiport FIFOs are determined to be the performance timing issue, choose a value
equal to the number of ports of the memory limiting performance.

-noctlopt

SYNTAX:
-noclkopt

USAGE NOTES:

Suppresses clock folding,

-clkopt
SYNTAX:
-clkopt <factor™> <domain_name>
ARGUMENTS:
<factor>
<domain_name=
DEFAULT:
The defauit folding factor is the ratio of the fastest clock in a domain to the slowest
clock in the domain,
USAGE NOTES:
Uses the nondefault folding factor for named domain.
This implements clock folding which can reduce the resources required at an expense
of emulation speed.
Use this only if the design has clocks that are exactly 1/# the frequency of the other
clocks in the domain.
EXAMPLE:
For example, this option is used when two clocks in the one domain exist and one is
twice the frequency of the other. Where » is the number of ways of folding, # is two.
298 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 298 of 394

Chapter @ Compiler Options Reference Guide

NCrossDomainl()

SYNTAX:
XCrossDomainlQ

DEFAULT:

By default, the emulation compiler treats primary 1O with mixed clock domains, an
internal clock domain which is different from the specified external clock domain as
an error.

USAGE NOTES:
Prior to the Virtualogic 2.1 release, this construct produced a warning message but
continued to compile. In most cases, 1t appeared that this behavior was a result of a

misspecification on the part of the user; therefore, it has been made into an error.

If this construct is really desired, add the compiler option XCrossDomainf(). This
option causes the canstruct to produce a warning instead of an error,

XIFTL
SYNTAX:
-XFTL <filename>
USAGE NOTES:
-X7T1 is used to enable the selective conversion of flip-flops into functionally
equivalent master-slave latch pair structures.
The option takes a filename argument which contains lines with the following syntax:
Module <module-expression™>
or
Net <net-expressicn™>
For the first syntax, <module-expression= is a regular expression matching the name of
one or more module instances within the design. Any instances identified which are
flip-flops are converted into functionally equivalent master-slave latch structures.
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 289

ATI Ex. 2075
IPR2023-00922
Page 299 of 394

Compiler Options Reference Guide Chapter &

The second syntax, <per-expression=> is a regular expression matching the name of one
or more nets within the design. For any such net, all flip-flop instances whose clock
terminal is combinatorially reachable either directly or indirectly fram the specified
net are converted into equivalent master-slave latch structures

There are two typical scenarios in which -XFTL is used.

A. Synchronous data-dependent clocks delivered on primary data inputs. VLE does not

properly model circuits in which a pnmary data input, (as opposed to a primary
clock input) delivers the edges that clock internal flip-flops, either directly or
indirectly. This constraint does not hold for latches, which can be gated by arbitrary
signals, data or otherwise. As a result, X/*'/]. can and must be used to convert flip-
flops to latches whenever a primary data input supplies the clock edges for any
design flip-flops.

One example of such a structure occurs in AGP interfaces, in which AGP strobes,
which are typically handled as data signals in VLE, deliver the clock by which the
AGP data bus is sampled within some AGP interface implementations.

In such a case, using a
Net <nct-cxpression=

XI-T1L directive which lists the internal AGP strobe nets serves to trigger the
transformation, needed for a correctly functioning emulation model.

. Reducing clock cost of high-cost clock structures

Clock lagic processing of flip-flaps and latches differs for VLE. As a result, it may
be advantageous from a resource usage standpoint to convert some set of flip-flops
into equivalent latch structures in order to use less clock logic space. This can be
conveniently achieved using X/-¥7. with a net argument which is a common
ancestor in the clock tree for the desired flip-flops.

-noclockblocks

-noclockblocks

Usage notes:
Use of the -naclockbiocks switch enables a new algorithm for handling user clock
logic. Prior to this new algorithm, in some cases, complex user clock logic could result

in either of two problems

1. Unexpectedly high FPGA counts due to excessive clock logic

300

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 300 of 394

Chapter @ Compiler Options Reference Guide

2. Unsatistactory FPGA timing constraints resulting in PAR failures or very long
FPGA compilation times.

These problems were typically avoided through the use of -XI777, and/or -NCfr
switches.

Use of the new clock handling algornithm enabled by -roclockblocks avoids the need
for using either -X/71, or -NCfi for the purpose of minimizing clock logic.

Control of cutput simulation models

-Vhe
SYNTAX:
Ve | <
ARGUMENT:
<H> Limits maximum size of scope in virtualized model
USAGE NOTES:

Use this option if the simulation model is too large.

~viin

SYNTAX:

-vhn
USAGE NOTES:

Writes hierarchical version of virtualized model.

~V¥5n

SYNTAX:

-Vil

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 301

ATI Ex. 2075
IPR2023-00922
Page 301 of 394

Compiler Options Reference Guide Chapter &

USAGE NOTES:

Uses short {nonuser) names in virtualized model.

-xin

SYNTAX:

-xIn
USAGE NOTES:
Uses long (user) names in FPGA netlists.
If there is a need to debug XFF files, use the -x/i switch.
This will print out long names into the XFF files. These names should have enough
information so that it can be determined where they originated from in the original

hierarchical design,

The -x/n option may have some naming bugs and should be used with caution because
it may cause FPGA compiles to fail.

If there is a case where there is a need to know what is in an FPGA, do the following:
s edit parcims.mak
» change -Fo to -Pi
+ change -Pfo to -Pfi
« add -x/ir to the Compifer Options pane
+ recompile and then debug the problem

¢ remove -x/i7 before the next “real” moedel build

-Vo

SYNTAX:

Vo <filename>

ARGUMENT:

302 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 302 of 394

Chapter @ Compiler Options Reference Guide

<filename> Filename for detailed virtual wires simulation model. It
1s recommended that - #rod vw.v1s used for the
<fifename>; however, it is not required to name the file
this.

~vhdiaut

SYNTAX:
-vhdlout

USAGE NOTES:

Produces cutput simulation models in VHDL.

Miscellancous

-y
SYNTAX:
-
USAGE NOTES:

Print version information and exit.

SYNTAX:
-

USAGE NOTES:

Quiet mode which suppress warning printouts

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 303

ATI Ex. 2075
IPR2023-00922
Page 303 of 394

Compiler Options Reference Guide Chapter &

-V
SYNTAX:
Vs
USAGE NOTES:
Verilog parser warning contral,
ve
SYNTAX;
e
USAGE NOTES:
Verilog parser warning control.
-VW
SYNTAX:
=V
USAGE NOTES:
Verilog parser waming control.
-Terse100
SYNTAX:
-Terse100
USAGE NOTES:
Designs that implement memories with bit-wide write enables by using an extra read
port suffer from excessive automatic probing for 100% visibility. The read port 1s
only used to feed back the "old" values tc be muxed with "new" values by the bit
write enables, driving a write port. This extra read-port does not need to be probed to
304 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 304 of 394

Chapter @ Compiler Options Reference Guide

get 100% visibility to work. So in cases where the extra probing is a constraint, a
new switch -Terse100 can be employed to avoid automatically probing such read
ports, This switch suppresses automatic probing of all memory read bits that fan out
only to other memornies.

~YersePProbe

SYNTAX:
-TerscProbe

USAGE NOTES:
Turnoff probing of distinct signal values that the netlist does not use.

Every multitransitional net that is probed uses probe channels. This switch prevents
the multitransitional nets from using extra channels if the design uses only one value
for the net.

-Dump

Most of the options used with this switch are helpful in the debugging stages.

SYNTAX:
-Dump |option|c|f|g|m0|ml|m2|p|q|t|!]|h]] <filename>

ARGUMENTS:

c Lists epoch-critical path limits for optimization
performance.

f Prints paths that combinatorially pass through the
emulator without being registered. It is used for
splitting a design across multiple emulators.

The information created by -Dwmp findicates the
computed internal timing behavior for all terminals, in
addition to listing feedthroughs. This additional
information can be used to validate the legitimacy of a
candidate multibox partitioning of a design and guide
the timing interface specification for this partitioning.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 305

ATI Ex. 2075
IPR2023-00922
Page 305 of 394

Compiler Options Reference Guide

Chapter &

mi

ml

m2

Generates a histogram of the primitive cells used in the
design of all the Virtual ogic primitives that the vendor
libraries are mapped to and the number of times they
are repeated throughout the design.

This switch dumps information about each clock
network net. 1t dumps the following information for a
clock network net: clock name, clock time signature,
clock source scalar and vector gate cost, and the
number of destinations for the clock net. Refer to the
EXAMPLE section below for an example of the dump
format.

Lists lalches that have been converied during the compile.

List the paths for combinatorial loops in the design. For
any combinational loop questions, adding -Dwmp m2

dumpfile to the options line of param.mak and
rerunning the compiler will display a list of the nets
involved in the loop.

Lists design elements removed by dead logic
elimination passes It adds the names of all dead logic
cells to the vany.dump output file,

Lists multitransition, multisample nets. For multifanout
nets, it specifically identifies individual fanout
terminals as the root of MTSD (multitransition/sample
domain) regions, easing the creation of terminal
specific annotations in the quasi-static file. The quasi-
static dump contains text which can be directly cut and
pasted to create suggested terminal quasi-statics.

Also, the cfump always references its information to
some specific, identifiable user design net or terminal.
Under some circumstances where MTSD
convergencies occurred inside of user primitives, the
ump file referenced nets which did not correspond
obviously to any net in the user design.

Compile will terminate prematurely and prints a
histogram of the number of distinct values associated
with nets in the design.

This is the default. It is very useful when debugging
because it retains the long original signal names where

306 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 306 of 394

Chapter @ Compiler Options Reference Guide

appropriate. Without the { option, the user signal names
are not retained and these compiler generated net
names are seen instead.

h This retains the Verilog hierarchy of the design and is
only required when the Verilog testbench is accessing
the “internal” of the gate-level portion via hierarchy
references. The /& option should not be used otherwise.

The reason not to use -Dump 4 is it leads to longer
verify compile times (more to write out), longer verify
simulation run times (more to process), and larger vpd
dumps (harder to deal with in FirSim) Refer to -vhu on
page 30/ for information on hierarchy preservation.

DEFAULT:
1

USAGE NOTES:

Long names are always added to the simulation models and the use of maintaining
hierarchy via the -Dump h, -Dump [, and -vhar switches are only beneficial for
simulations under certain conditions. The key word here is simulation as opposed to
emulaticn,

If there is a need to debug XFF files, use the -x/# switch. Refer to -x/ir on page 302 for
details.

The hierarchy referencing for probing and triggering is taken care of for the user
automatically behind the scenes with no switches required.

Refer to -vh on page 301 for information on hierarchy preservation.

EXAMPLE:

Following is an example of the dump format:
Clock-network net VMWnet137 VLA 68

TDomain domain{) SDomain domain0d Seurce Clock Sampled
Transitions: |.|.

Samples .

Known 1100

Up .

Down o

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 307

ATI Ex. 2075
IPR2023-00922
Page 307 of 394

Compiler Options Reference Guide Chapter &

State-altening transitions:

Clock source cost: 10_ veost: 4.6.0.0
Destination Count: 32
Clock-nctwork net VMWnet100_VLA_68

Arguments not set manually

The following arguments cannot be set manually because they are controlled by the
sCripling processes:

-Lib

SYNTAX:
-Lib <filcname=>

ARGUMENT:

<filename> Specifies the user library mapping file

-Di

SYNTAX:

-DB <filename>
ARGUMENT:

<filename> Identifies the name of the database file

-Nb

SYNTAX:
Nb [<#>|

ARGUMENT:

<H> Specifies the number of boards to target

308 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 308 of 394

Chapter @

Compiler Options Reference Guide

-NPb

SYNTAX:
-NPb [<#>|

ARGUMENT:

<{f

-Root

SYNTAX:
-Root

USAGE NOTE:

Root design name

-Clk

SYNTAX:
-Clk <filename>

ARGUMENT:

<filename>

-Mem

SYNTAX:
-Mem <filchame>

ARGUMENT:

<filename>

-Probeln

SYNTAX:

Specifies the number of FPGASs to use

Specifies the clock file name

Specifies the memory file name

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

309

ATI Ex. 2075
IPR2023-00922
Page 309 of 394

Compiler Options Reference Guide

Chapter &

-Probeln <filename=
ARGUMENT:

<filename>

-ProbeWmdows

SYNTAX:

-ProbeWindows <filcname=>

ARGUMENT:

<filename=

-ProbeCard

SYNTAX:
-ProbeCard [<#>|

ARGUMENT:

<H>

-ProbeCore

SYNTAX:
-ProbeCore <filename>

ARGUMENT:

<filename>

-ProbeMap

SYNTAX:
-ProbeMap <filename:=

ARGUMENT:

<filename>

Probe list file

Probe window list file

Output core probe list file

Probe map file

Specifies the number of HP logic analyzer cards

310

VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 310 of 394

Chapter @ Compiler Options Reference Guide

-ProbeDB

SYNTAX:
-ProbeDB <filename>

ARGUMENT:

<filename> Database file for incremental probe

-IncProbe

SYNTAX:
-IncProbe

USAGE NOTE:

Enables incremental probe

-MultiAsic

SYNTAX:
-MultiAsic <filcname>

ARGUMENT:

<filename> Multi-ASIC control file

-Pod

SYNTAX;
-Pod <root_module= pod

ARGUMENT:
<root_module>.pod Terminal constraint filename

USAGE NOTES:

This switch reads in the file with the I/O terminal specifications.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 31

ATI Ex. 2075
IPR2023-00922
Page 311 of 394

Compiler Options Reference Guide Chapter &

~taroet

SYNTAX:

-target <filename=>
ARGUMENT:

<filename> Target topology file

-targetfile

SYNTAX:
-targetfile <filename>

ARGUMENT:

<filename= Rerds target topology filename from the file

-syspart

SYNTAX:

-syspart <fpga_namc>
ARGUMENT:

<fpga_name> Specifies system board FPGA type

—arrpart

SYNTAX:
-arrpart <fpga_name>

ARGUMENT:

<fpga_name=> Specifies array board FPGA type

-Me

SYNTAX:
-Mc

312 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 312 of 394

Chapter @

Compiler Options Reference Guide

USAGE NOTE!

Enables the partitioner

=memman

SYNTAX:

-MCnmip
USAGE NOTE:

Memory map file name

~define-

SYNTAX:
~dcfinc-

USAGE NOTE;

Undefines symbol

-defines_file

SYNTAX:
-defines file <filenamc=

ARGUMENT:

<filename=

-hond

SYNTAX:
-bond

USAGE NOTE;

File containing the list of defines and undefines

Lists hierarchical modules for “bonding”™ out

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

313

ATI Ex. 2075
IPR2023-00922
Page 313 of 394

Compiler Options Reference Guide

Chapter &

-k

SYNTAX:

-T <filcname>
ARGUMENT:

<filename>

-Ma

SYNTAX:

Mo <filename>
ARGUMENT:

<filename>

-Ao

SYNTAX:

-Ae <string>
ARGUMENT:

<string=>

-No

SYNTAX:

-Xo <filename=
ARGUMENT:

<filename>

-hvpd

SYNTAX:

Topology input file

I/O map file name

Base name for auxiliary files

314 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 314 of 394

Chapter @ Compiler Options Reference Guide

-hvpd <filename:>
ARGUMENT:

<filename> Filename for hierarchy specifying vpd file

Po

SYNTAX:
-Po <root_module> part

ARGUMENT:

<root_module>. part Writes the <roof module> part file containing the
partition information

USAGE NOTES:

Always use this with the first compile. The <root madide> file provides information
regarding the logic partitioning.

Always write out the partition file -Po. design .pari. This is the only way to
reproduce partitioning problems.

SYNTAX:
-Pi <root_module> part
ARGUMENT:
<rgot_module> part This switch uses the previous partition. It reads
partiticn results to the filename,
USAGE NOTES:

Reads a previously generated partition file in a new compilation where the HP logic
analyzer or number of board has changed, but not the design. Using this switch
reduces the compile time significantly.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 315

ATI Ex. 2075
IPR2023-00922
Page 315 of 394

Compiler Options Reference Guide Chapter &

-Pfo
SYNTAX:
-Pfo <root_modulc> place
ARGUMENT:
<root_module> place Writes the <roof modite> place file containing the
placement information
USAGE NOTES:
This is similar to the partition file. It can be used in the future compilations of the same
design.
-
SYNTAX:
-Pfi <root_modulc= place
ARGUMENT:
<root_module> place Reads in a previously generated placement file
USAGE NOTE!
Use this with a new compile when you need to reproduce a problem.
316 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 316 of 394

Chapter @

Compiler Options Reference Guide

Compiler options listed by category

The compiler options listed below can be entered manually by the user in the Compiler

Options field. Most of these options should not be used without careful testing, especially if

used in combinations. Refer to fable 10 on page3!7 for a list of options that can be used in
combination.

Table 10 Compiler options that can be used together

Process

Setting

Explanation

Precluster

-Pdo 20

Increases the size of the precluster blocks to 200% of normal.
This reduces compile time by making fewer clusters for the
timing partitioner to handle.

Use this parameter for all designs to rednce partition times.

Timing

-Tlo 20

Increases the size of the timing partitioned blocks to 200% of
normal. This reduces compile time by making fewer blocks for
the mincut algerithm to handle,

Use this parameter for all designs to reduce partition times.

Mincut

-Mm 9

Decreases the amount of logic allowed in each chip to 90% of
narmal. This improves FPGA Place and Route time by making
each chip easier to place and route. However, it may make the
design run slightly slower due to fewer gates in each chip and
more potential chip hops required in a path. [t alse will less
efficiently use the hardware capacity and is not recommended if a
design 1s a tight fit in the emulator. If a design 1s quite small, a
setting of eight can be used.

Increasing this number can provide more utilization of each chip,
but will increase FPGA Place and Route time.

Use this if a design is small relative to the hardware resources
available or if a design is only slightly too large for the
hardware resources,

Partition

-Pi <file name>

Use this if the design has not changed, but HP logic analyzer
or number of boards has.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide 317

ATI Ex. 2075

IPR2023-00922
Page 317 of 394

Compiler Options Reference Guide Chapter &

Table 10 Compiler options that can be used together (Continued)

Process Setting Explanation

Clocks -clkopt Implements clock folding which can reduce the rescurces
domain_name # | required at the expense of emulation speed. For example, this
option 18 used when two clocks in the one domain exist, and cne
is twice the frequency of the other. Where 1 is the number of
ways of folding. In the example, # would be twe.

Use this only if the design has eloeks which are exactly 1/n the
frequency of other clocks in the domain,

Verilog -Vo <file name> | This generates a Verilog file which represents the final Virtual
Wires implementation. It is useful during the debug of the
design.

Always use this.

vie commands

vlce
SYNTAX:
vle <config_namec> <command>
USAGE NOTES:
When using v/e, all the arguments are filled in for the user based on the infermation
entered in gv/.
If the vfc command is run from within the config nrame.vimw directory, then it can be
referenced as the current directory. The command would look like this example, where
the *” references the current directory.
cd . vmw
vie . viask < /devinull &
The vie command reads the user input files that are listed in fable 3 on page {63 and
executes the needed tasks to prepare a design for in-circuit emulation.
318 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 318 of 394

Compiler Options Reference Guide Chapter &

ril

SYNTAX:

vie <config_name> l
USAGE NOTES:

Performs RTL compile,

ril_compile

SYNTAX:
vic <counfig_name> rtl_compile
USAGE NOTES:

Performs RTL & VLE compiles.

ril_compile_veask

SYNTAX:
vle <config name> il
USAGE NOTES:

Performs RTL, VLE & FPGA compiles.

verify
SYNTAX:
vie <config_name> verify
USAGE NOTES:
This generates the netlist for the simulation verification.
318 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 319 of 394

Compiler Options Reference Guide Chapter &

compile

SYNTAX:

vl <config_namec> compile
USAGE NOTES:

This runs the vyyr compile from the command line prompt.

all

SYNTAX:
vle <config_name> all

USAGE NOTES:
This runs the FPGA compile with one command.
The pprri and aff commands are interactive. In order to run them in the background,

it is recommended that you ignere inputs as shown in the following example.
vle <config_namc> all < devinull &

pprelean

SYNTAX:
vle <config namc> pprelean

USAGE NOTE;
This removes the Xilinx files..
Do not use pprefean if you want to emulate the database. The pprelear will remove all
the bit files for the Xilinx devices that are used for the download.
hrowse

SYNTAX:

vle <config_namc> browsc
USAGE NOTE:

This invokes the Motif hierarchy browser on the design.

320 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 320 of 394

Compiler Options Reference Guide

Chapter &

vprobe

SYNTAX:

vle <config_namc> vprobe

USAGE NOTE:

This invokes the HP logic analyzer control program.

Fyirsim

SYNTAX:
vle <config_namc> rvirsim

USAGE NOTE:

View waveforms.

ar

SYNTAX:
tat TAR_FILE=archivename tar

USAGE NOTE;

Generates a compressed archive of configuration, netlists, and miscellaneous files.

The far creates a file that can be sent to IKOS for debug if there is any problem with
the configuration. It saves the needed files to duplicate the configuration setup. This
command can also be used to archive a design without requiring storage space for the

large database.

vtask commands

add

SYNTAX:

add <machinc_name>

321 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 321 of 394

Compiler Options Reference Guide Chapter &

or

add <machine_name=>/pc
USAGE NOTES:

Adds a machine to the FPGA compile machine peol. This dees not change the
machlist.mach file,

reaove

SYNTAX:

remove <machine=
USAGE NOTES:

Remaoves a machine from the FPGA compile machine pool. This does not change the
machlist.mach file.

newlist
SYNTAX;
newlist [-1] [-I <newlist=]
ARGUMENTS:

<newlist> Replace virtual machine list with <sew/ist> file.
Defaults to machlisi.imach.

-l This allows processes on removed machines to live,
Otherwise, active processes on removed machines are
terminated.

nice
SYNTAX:

nice <niccness>
USAGE NOTES:

Uses <miceness> on subsequently spawned tasks.

322 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 322 of 394

Compiler Options Reference Guide

Chapter &

status

SYNTAX:

status
USAGE NOTES:

Shows the status of tasks and machines.

exit
SYNTAX:
exit
USAGE NOTES:

Stops all tasks and exit with nonzero status.

quit
SYNTAX:
quit
USAGE NOTES:

Stops all tasks and exit with nonzero status.

kelp

SYNTAX:

help
USAGE NOTES:

Help page for interactive mode.

323 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 323 of 394

Compiler Options Reference Guide Chapter &

324 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 324 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

“iKos

10 Syntax, Semantics, and
Reference Library

Overview

The following conventions apply 1o all non-Verilog files, including memary, timing, pin
constraints, probe, etc.

» Blank lines are allowed
» Apound sign (#) at the beginning of a line indicates a comment

Virtual.ogic structural verilog subset

The VirtuaLogic compiler accepts a structural subset of Verilog as the input format for
designs. This subset includes Verilog syntax used for structural module defirition and
instantiation. All Verilog code in the input netlist files that are a meaningful component of
the design must use this structural subset. The supported Verilog subset does not include
gates and devices (e g , and, or, bufif, pullup, nmos, and tran)

Design files can contain behavioral code that is not part of the design, but rather aids in
design verification. Behavioral code can occur in the following situations:

* Monitoring signals
» Checking for setup, hold time, or other timing viclations

* Providing stimulus

The user can direct the compiler to ignore silently, warn, or produce errors when it
encounters such constructs, but it can never recognize them as a meaningful part of the
design.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 325

ATI Ex. 2075
IPR2023-00922
Page 325 of 394

Syntax, Semantics, and Reference Library Chapter 1C

Verilog identificrs

Following are the Verilog identifiers:

« A sequence of letters, digits, underscore (), or dollar sign ($) that starts with a
letter or underscore

« Any sequence of printable ASCII characters starting with a backslash (\) and
terminated by a space

Module definition syntax

The structural Verilog subset recognized by the Verilog compiler includes the following
Verilog syntactic constructs:

module <module type name> (parameter list),
{inputfoutputfinout} <io_list>;

{wire|tr1} <wire name list>,

<module_type> [<module_name>] (parameter_bindings);

endmodule;

Parameters

<module_tyvpe_name>= <verilog_identificr>
<parameler_list>= <parameter=>....

<parameler== <paramciername=
OR

<parameler_name> (parametcr_rename)
<io_list>:= <parameter_name>. ..
<parameler namec>:= <verilog identifice>
<wire_name_lisl>= <wirc_namg>._.
<wirc_namc>:= <verilog_identifier=

<module_type>:= <user defined er library_module 1ype name=

326 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 326 of 394

Chapter 10 Syntax, Semantics, and Reference Library

<module_name>= <verilog_identificr>

<parameier bindings>:= <signal pamc>.<signal namgc>....
OR

<parameler_name> (signal_name)....
<signal_name>=<yerilog_identificr>

All lepal scalar and vector signal name sy ntax is supporied. including scalar references. vector
references. vector bit and range selects. concatenations. and multiple CONCATENATIONS .

Example

medule full-adder (a, b, <in, sum, coukt);

input a, b, cin;

cutput sum, cocut;

2or3 sumxor (.A{al, .B(bk), .Clcin), .Z(sum)):;

ALZZ22 carry (.Ala), .B{(b), .Cial), .D{cin), .E(b), .Fi{cin;, .Elcout)):
endmodule;

Simple assignments

Assignments can be used for any direct assignment from a signal or collection of signals to a
signal or collection of signals.

Example

assign = = y:
{a, b, cl= vecl[2:0];

Compiler directives

The following Verilog compiler directives are supported:

‘include ‘define ‘undef

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 327

ATI Ex. 2075
IPR2023-00922
Page 327 of 394

Syntax, Semantics, and Reference Library Chapter 1C

‘ifdef ‘else ‘endif

YImacro name>

Unsupported verilog constructs
The Virtual ogic compiler does not recognize behavioral Verilog constructs. Unsupported
constructs are listed in fable {71 o page328.

Table 11 Unsupperted verilog constructs
Execution Control always

initial

avent
@

#
task

functicon
fork

Conditionals if then else

?

case

Arithmetic +, - %,/ ete.

Logic |, & 7, etc.

Other specify

Since a netlist can have nonsemantic behavioral consistency checking code built in, the
VirtuaLogic compiler provides three user options for dealing with behavioral code. From the
Compifer form, in the Compiler Options pane, enter the appropriate option for how the
behavioral code is to be treated and then ¢hick on Jewir Compiler: The options are described
in fable 12 on page328.

Table 12 Compiler options for behavioral code

C il C d . .
omprer omman Way To Deal With Behavioral Code
Onption Syntax
lgnore -v§ The VirtuaLogic compiler skips over any unsupported
silently behavioral code without a warning.
Ignore but -vw The Virtualogic compiler skips over any unsupported
warn behavioral code which produces a warning message
identifying the file and line number of the oceurrence of the
unrecognized construct. This is the default.
328 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 328 of 394

Chapter 10 Syntax, Semantics, and Reference Library

Table 12 Compiler options for behavioral code

Compiler | Command

Option Syntax Way To Deal With Behavioral Code

Error -ve The VirtuaLogic compiler produces error messages as above
and terminates after input parsing if any unsupported code
has been encountered.

Memory specification

Textual syntax

The syntax consists of keywords and variables for specifying memory attributes and
terminal binding information.

AMemayy attributes

The following list comprises keywords and variables the user enters to describe various
attributes of the memory.

memory <memory name=

sensitivity {{edge[level|level-unordered}
ports {read|write}*

address-size <number>

data-size <number>

contents-file <filename>

{0[13}

Terminal hindings

The following list comprises syntax for specifying terminal binding information:

terminal <terminal_name> <functionality _spec>[<terminal_index>]
OR
terminal <vector_terminal_name> <functionality_spec>
OR
terminal <vector terminal name>[<left index>:<nght index>]
<functionality spec>[<left_index>:<right_index>]

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 329

ATI Ex. 2075
IPR2023-00922
Page 329 of 394

Syntax, Semantics, and Reference Library Chapter 1C

<functionality spec> = terminal type:port number
<terminal_index> := number

<terminal type> = address|datalwe|oe
<port_number> ‘= number

<left_index> = number

<right_index> := number

A <functionadity spec> consists of a <terminal (ype>, indicating the following:
+ The nature of the terminal is address versus data enable

» A port number indicating the port to which the terminals belong. Ports receive
numbers, starting at O, and correspond to the ports specified using the ports
keyword

When terminal names for address or data ports use a vector syntax, you can use this within
the memory specification to describe the functionality of the entire vector terminal with a
single line.

When terminal names are scalars, you must desecribe each terminal within the address and
data buses of every port with a separate line.

For example,

terminal AADR[7:0] address0[7:0]
terminal BADR[7:0] address1[7:0]
terminal ADO[7:0] data0[7:0]
terminal BDO[7:0] datal[7:0]
terminal CDIN[7:0] data2[7.0]
terminal CADR[7:0] address2[7:0]

Note that the write enable and output enable names can be abbreviated to we and e,
respectively.

terminal WEN write-enable2

330 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 330 of 394

Chapter 10

Syntax, Semantics, and Reference Library

Semantics

The semantics of keywords and terminal binding formats are summarized in 7able 13 on

page332.
Memory
User Input . Description
P Attribute P
memery <Memory name:> Memory Name of a module to model
Module
Name
sensitivity Sensitivity | Indicates if memory is modeling
{{edge |level |level uncrdered} | {0[1}) edge- or level-sensitive storage or
the polarity of write enable
signals
perts {read|write}* Port Direction (read or write) of each
Directions | port of the memory
address-size <number> Address Number of address terminals of
Width each memory port
data-size <number> Data Width | Number of data terminals of each
memory port
contents-file <filename> Initial Name of a Verilog file in the
Content format used by the Verilog
function Sreadmemb() which
specifies theinitial contents of the
memory; this is optional
<terminal> <terminal_name> Terminal Description of the semantics of
<functionality specr[terminal index] Name each terminal on the memory
O Mapping | module

<terminal> <vector_terminal_name>
<functionality spec>

OR
<terminal>» <vectoer terminal name>
[left index:right index]
<functionality_spec>
[left index:right index)

<terminal index>:=<number>
<functionality spec>:=

<terminal type>:<port number>

<terminal_type>:={address|datal|we|oe]

<port number>:=<number>

The semantics include:

» The index of the pin within
terminals of the same type; that
is, you can describe the second
address pin of the first memory
port

s+ The type of the terminal
(address, data, write enable,
output enable)

s+ The port of which the terminal
is a member

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

331

ATI Ex. 2075

IPR2023-00922
Page 331 of 394

Syntax, Semantics, and Reference Library Chapter 1C

Timing specification

Syntax

Following is the timing specification syntax. The syntax comprises keywords and vanables
for specifying the timing characteristics of clock and data signals of the design:

domain <domain_name>
clock §<terminal name> |exicrnal [<clockname>T] |
<netname> internal [<clockname>]};

edpes <clockname> <direction> *
<dircction> = { {risc|r|l } | [all|{]0} }

data <terminal_name> {Input/Output} <clockname> <direction>
<dircetions = { {risc|t]1}|{ [all| (0} }

No-connect <terminal name>

Zero <terminal _name>

One <terminal_name>

Cuiclock <terminal_name>

Feedthrough <terminal _name> <terminal name>

Semantics

This specification contains several pieces of information for each timing type as cutlined in
Tahle 13 on page332.

Table 13 Timing specification elements

User Input Description

domain <domain_name> A new clock domain with name for
identification in the file

332 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 332 of 394

Chapter 10

Syntax, Semantics, and Reference Library

Table 13 Timing specification elements (Continued)

User Input

Description

clock <terminal name> [external [<clockname=]]

OR
clock <netname> internal [<clockname™]

Restriction: If <clockname> is omitted, it defaults

to the name of the terminal or net

If the keyword is omitted, it defaults te exicrnal

A new clock within a domain can be:
* External — requires:
— Name of a top-level design 1/O
corresponding to the clock
— Keyword external
— A name for subsequent reference to the
signal later in the timing specification
{optional)
+ Internal — requires:
— The hierarchical name of the net whose
behavior you are describing
— The keyword internal
— A name for subsequent reference
within the file

edges {<clockname™> <direction>}*

Specifies the periedic sequence of clock
edges within the domain

<direction> := [{ rise|r| 13| {fall|f]0|

Rise and 1 indicate a rising clock edge
Fall and ¢ indicate a falling clock edge

data <terminal name> {Input|Qutput}
<clockname> <direction>

Specifies I/O timing for a terminal:

= Input|Qutput specifies one direction of
a bidirectional signal

+ <clockname> and <direction™> identify a
clock edge

No-connect <terminal name>

Identifies an 1/0O that is unused in emulation

Zero <terminal_name>

Indicates an input that should be internally
tied to zero

One <terminal name>

Indicates an output that is used as a check
by the target system

Outelock <terminal name™ <terminal name>

Indicates an output that is used as a clock
by the target system

Feedthrongh

Indicates combinatorial feedthrough
between the two terminals of the target
system

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

333

ATI Ex. 2075

IPR2023-00922
Page 333 of 394

Syntax, Semantics, and Reference Library Chapter 1C

Probe list format

The probe list is a collection of one or more files that specify the set of signals within the
design netlist that are to be probed using FirfualProbe.

Textual syatax

The probe list is simply a list of signal names, one per line.

<8Signal Namc>= <Scalar Signal Namc>
= <Vector_Signal_Name>

<Veetor_Signal_Name>|<left_index><right_index>|

Signal Name - 1s the complete hierarchical name of a wire or module terminal within the
design. You can omit the scope portion of a name which corresponds to the top-level module
in the design. The name can refer to the following:

* Scalar wire or terminal
= Bit-select from a vector wire or terminal

» Range select of a vector wire or terminal
Scalar or bit-select names cause the probing of a single bit.
Range selects cause multiple bits, either the entire range or the entire vector, to be probed.

For example,

Dl
Addr [31:0]
Sparcle.Regfile.Muxl_Sel

Virtuabogic reference library

tabie 14 on page334 describes the functionality of all the reference cells in the KOS
Reference Library.

Table 14 Virtual.ogic reference library

Types Cell Name Inputs Output Functional Description
Buffer YMW_BUF A Z =A
334 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 334 of 394

Chapter 10

Syntax, Semantics, and Reference Library

Table 14 VirtuaLogic reference library (Continued)

Types Cell Name Inputs Output Functional Description
nverter VMW_INV A 'z Z=A
AND VMW_AND2 AB z Z=AB
VMW AND3 ABC 'z Z=ABC
VMW _AND4 ABCD z Z=ABCD
VMW_AND5S ABCDE z Z=ABCDE
NAND VMW _NAND2 AB z Z=(AB)
VMW_NAND3 ARG z Z=(ABC)
VMW _NAND4 AB.CD z Z=(ABCD)
VMW _NAND5 AB.CDE z Z=(ABCDE)
OR VMW_OR2 ‘AB 'z Z=A+B
VMW_OR3 ABC z Z=A+B+C
VMW_OR4 AB.CD z Z=A+B+C+D
VMW_ORS5 ABCDE z Z=A+B+C+D+E

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

335

ATI Ex. 2075

IPR2023-00922
Page 335 of 394

Syntax, Semantics, and Reference Library Chapter 1C

Table 14 Virtual.ogic reference library {Continued)

Types Cell Name Inputs Qutput Functional Description
NOR VMW_NOR2 AB z Z=(A+B)
' VMW _NOR3 ABC z ' Z=[A+B+C)
VMW _NOR4 ABCD z Z=(A+B+C+D}
VMW _NOR5 AB,CDE z Z=(A+B+C+D+E)
XOR VMW_XORZ AB 2 Z=AB+AB
VMW _XOR3 AB,C z Z=ABC+ABC+ABC+ABC
XNOR VMW_XNOR2 AB z Z=(AB+AB)
VMW_XNOR3 AB,C z Z=(ABC+ABC+ABC+ABC)
AND-OR VMW_AG21 AB.C z Z=((AB)+C)
VMW _AO211 ABCD z Z=((AB)+C+D)
VMW_AD22 ABCD 'z ' Z=(AB+CD)
VMW_AD222 ABCDEF z Z=(AB+CD+EF)
AND-OR
Invert ymw_AOI21 ABC z Z=[(AB)*C)
VMW_AQI211 ABCD z Z={(AB)*C+D)
VMW _AOI2Z ABCD z Z=[AB+CD)
TVMW_AOI222 AB,C,DEF z ' Z=[AB+CD+ER
OR-AND
Invert VMW _OQAI21 AB.C z Z=((A*B)Cy
VMW _OAI211 ABCD 'z Z=((A+B)CD)
VMW_OAI2Z2 ABGD 2 Z={(A+B)CDY
VMW _OAI222 AB,C.DEF z Z={(A+B)(C+D)(E+F)
VMW _OAI2222 ABCDEFGH Z Z=((A*B)([C+D)(E+F)(G+H))
Mux VMW_MUX2 ABS z Z=(SA+SB)
' VMW _MUX2I AB,S z ' 2=(SA+SE)
VMW _MUX21L A,B,S.SN z Z=((AS SN)+(BS SN))
VMW _MUX4 ABD0D1.D2D3 Z Z=((DOA B)+(D1AB)+(D2A B)+(D3AB))
Decoder VMW DEC24L AB 20,71,22,.23 ZO=AB+AB+AB
Z1=AB+AB+AB
Z2=AB+AB+AB
Z3=AB+AB+AB
336 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 336 of 394

Syntax, Semantics, and Reference Library

Chapter 1C

Table 14 Virtual.ogic reference library {Continued)

Types Cell Name Inputs Qutput Functional Description
Adder VYMW_HADD AB coSs CO=AB
' ' ' $=AB+AB
VMW_FADD ABCI cos CO=CIAB+CIAB+CIAB+CIAB
S=CIAB+CIAB+CIAB+CIAB
IO-Buffer VMW_IBUF A z Z=A
VMW_OBUF A Z Z=A
VMW_OBUFZ AE Z Z=E7A:1bz;
VMW _BUFIZ AE 2 Z=E?A:1bz;
Flip-flop VMW_FD D,CP Q D-flop: Positive-edge clock
VMW_FD2 DCP Q.QN 'D-flop: Pasitive-edge clock with @ cutput
VMW_FDE D,CFPCE Q D-flop: Pasitive-edge clock with enable
VMW_FDN D,.CPN Q D-flop: Negative-edge clock
VMW _FOP D,CPPRE Q " D-flop: Positive-edge clock with async
preset
VMW _FDP2 D,CFS Q,GN D-flop: Positive-edge clock with async
preset wiQ
VMW_FDPE D.CRCE,FRE Q D-flop: Positive-edge clock with async
preset & enable
"VMW_FDC D,CRCLR Q 'D-flop: Positive-edge clock with asyn
clear
VMW _FDCE D,CPRCE,CLR Q D-flop: Positive-edge clock with enable

and async clear

NOTE: Preset, Clear and Enable for the Fliop Flops are active high signals

Latch VMW_LD DG Q Latch: Pasitive gate
VMW_LD2 D.G Q,QN Latch: Positive gate with Q
'VMW_LDP D,G.PRE Q "Latch: Pasitive gate & async preset
VYMW_LDC D.G, CLRI Q Latch: Positive gate & async clear
VYMW_LDN D.GN Q Latch: Negative gate
VMW_LDNZ D,GN ‘Q,aN Latch: Negative gate with Q

NOTE: Preset, Clear for the Latches are active high signals

337 VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 337 of 394

Syntax, Semantics, and Reference Library Chapter 1C

338 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 338 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
RTL Debug using the

11 GUI

Overview

This chapter covers the RTLC debug capabilities for the user te debug their designs in an
efficient way. The following important features of RTLC debug features are also covered.

» Interactive state control
» Source level debug
* Pruning

RTLC debug capabilities

RTLC-VLE supports enhanced debug features to allow the user to debug in RTL. During the
process of compilation, an RTL debug database is written. The RTL debug database that
RTLC-VLE generates, enables full RTL visibility into the user’s design. This is used by
various components of the VirtuaLogic system to present an RTL interface,

This database is also used to extract debug information for RTL-to-netlist and netlist-to-RTL
name transformaticn and RTL source level debug. Figure 60 on page 340 shows the RTL
Emulation/Debug use model.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 339

ATI Ex. 2075
IPR2023-00922
Page 339 of 394

RTL Debug using the GUI Chapter 11

Gale-ch c] FPGA Ta'rge_t
Ve nlog, \\Veniog L Bits Inieraction \
[\ / / Tape Out

Emulation) -
Setup S Compilc - In-Cirenil

N

"M Sel Trigger

Modify aveform
Design (Wave)
- Database

Figure 60 RTL Emulation/Debug use model

Interactive state control

In order to work on interactive state control, 100% visibility must be active for compilation.
= In-circuit visibility to flop outputs

-vrun: state_ctrl -read_all statefile.txt -format h
A -verilog switch 15 added to the viun “stafe ctrf -read-afl” command in order to read the

resulting state dump into verilog XL via an ‘include statement in the module that instantiates
the root model. Here the root module instance has to match with the reot module name.

= State Setting (aka “Init”) when out of circuit

-vrun: state_ctrl -set statefile.txt -format h
» State Forcing (aka “Stick™) with compile option

—-vsyn option: -force force_file
-vrun: state_ctrl -force statefile.txt -format h

- If all state are made forcible, 20% capacity overhead beyond 100% visibility

340 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 340 of 394

Chapter 11 RTL Debug using the GUI

Waveform file management

Filename Purpose
rtlsre.zip RTL source archive for debugger display
recon vdb Gate Level Database
rtl vdb RTL connectivity Database
rtlc.out Breakpoint Database
waveform 100 vre 100°%% visibility signal data
waveform 100 map 100% visibility signal names

A waveform can be copied using tar and gzip of a .wave directory. recon.vedb, ril.vdb and
rtle.ont are shared via hardlinks. To view a wave file outside of gv/, type

SVMW_HOME/bin/vre foo.wave/waveform.vre
Other files in .wave directory can be extracted for 100% visibilty using these commands
fifo_contents.vrcd& .map

probed.vre& .map

Source debug window

The source debug window displays the RTL source code. Fignre 61 on page 342 shows the
source debug window. The arrows on the top move the user down the source code. The
double arrows move the user down the break points or back to the previous breakpoint. The
source debug window is time-linked with the waveform window The times are correlated
between the tools. Firsim tool has multiple time-linked windows, labelled A, B, etc. To link
two windows together, give them the same letter by clicking on the little "chain" icon in the
upper right.

In the source debug window, breakpaints can be set on lines of RTL code and search
forward and backward through time for when those lines were hit. While the green dots are
lines were breakpoints can be set, the red dots are current breakpoints. The break points are
toggled on and off by clicking on the dots. The vellow arrows, on the other hand, are the
breakpoints that were just hit and the blue arrows are the lines that are currently active.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 341

ATI Ex. 2075
IPR2023-00922
Page 341 of 394

RTL Debug using the GUI Chapter 11

Fia Edt Display Windaw Heip |

Hne was executed

Sel Line Breakpoints

Seicet ime in waveform
See active lines in
source

]

Breakable lincs
have green dots

Fle R1 _1 | Scope [color_bar.rgb.rghd _ OK | cancel|

Time {1 us) 127,160

Figure 61 Source level debug

Linttations

» The user cannot set breakpoints between two sequential hardware implementation
of RTL statements. This is a natural consequence of a hardware implementation of
RTL logic. It carresponds to the chip behavior, rather than sequential simulation
model.

» The useris not able to set breakpoints in sub-programs (sequential procedures and
functions)

Graphical path browsing

The graphical path browsing displays logic cones, showing the user the design in RTL. It
also helps the user understand the design vividly, by seeing the design in schematic view,
Any signal can be dragged and dropped from the source debug window to the path browser
or vice versa All these tools are time-linked and can be used efhciently to traverse to
various signals in different modules of the design.

342 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 342 of 394

Chapter 11 RTL Debug using the GUI

Advantages of Path Browsing

« Draws partial RTL schematic of fan-in cone
- Flattens hierarchy. or not
- Stop at state elements, or any primitive

- Backannotate signal values for current time
+ Linked with source display and waveforms

- Change time in wavetform -> update signal annotation
- Drag and Drop signals into waveform

- Drag and Drop modules or signals into source display
- Select module menu

- Highlight source code associated with a schematic object
» Switch between gate-level and RTL views

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 343

ATI Ex. 2075
IPR2023-00922
Page 343 of 394

RTL Debug using the GUI

Chapter 11

ligure 62 on page 344 shows the Hierarchy Browser

Pathe

! caler_bar. blues[7:0]

— Woounter, 52 Nels, ! lnstance 4 iipe
— itmagel _gen, 138 Nats, | instance 1
— image2_sgen, 138 Nets, 1 instonce, i
— image3_gen, 137 Nets, 1 instance, 1
— imaged_gen, 133 Neds, 1 instance
7 pattern_gen, 37 Nels, 4 SubModules,
— pattern_mux, 2§ Nets. 1 instance,
— pelk_and_valid_gen, 35 ets, 1 ins
7 color_ronnl, 3 Nets, T SubiModule, 11
7 color_ram2, 3 Mets, 1 SubModule, 114
v color_rom3d, 3 Nels, 1 SubModuie, 11
v shade_rom, 3 fets, 1 SudModule, 11
v slze_rom, 3 Nets, 1 SubModule 1 Ins
— vmw_color_raml, 2 Neis, 1 instonc
- ymw_color_romz, 2 Meis, 1 Instanc
— vmw_color_rom3, 2 Neis, T Instonc
— vmw_shade_rom, 2 Neis, T instanc
— vmw_size_rom, 2 Mefs, 1 instance,

Modules rnd.| wise] [Nets Find., sl [y Terminals et W] [¥
7 color_har, £2 Nets, 10 SubMedrles, 3 7 In clk & Connections = — In ¢lk
— Hcounter, 57 Wets, | instance. & Inpe 7 In reset_, § Connections — |n reset_

v Dut blue_datal7:01, 2 Connections,
7 Out green_data[7:0}, 2 Connections.
¥V Out hsync. 2 Conrections, State

v Out pixel_<lk 2 Connections

v Out pisel_valid, 3 Connections. Sta
T Outred_data[?:0]. 2 Connections, §
7 Outvsyng 5 Connections, Stade

¥ Wire addr(Z:0, 6 Connectlons, State
v Wire bluet{7:.0), 2 Connections, Sta
v Were [y 120 3

v Wire hlued{7:0}, 2 Connertions, 5to
v Wire blued{7:0], 2 Connections, Stai

v Wire data.In[23:0) 4 connections

¥ Wire green!{ni0], 2 Connections, St
v Wiva green2{7:0, 2 Connections, Sh
7 Wire greend(7:G], 2 Connettions, 5ir
v Wire greend[7i0L 2 Connections, St
¥ Wire heount[11:0], 2 Conmections, S
v wirve patt_sel(1:0], 3 Connections, 5|

Visit] SetScopel Search.

Show Fath...

— Out blue_datal7:01
— Out graan_datal7:0]
— Qut hsyng

— Oat pixel_valid

— Out red_data[7:0]
— Oyt veync

Dismiss,

Figure 62 Hierarchy browser

344

VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 344 of 394

Chapter 11

RTL Debug using the GUI

After selecting the desired net and clicking the show path, the show path window pops up.
The user now has the choice to select the fan-in or fan-out to view the driver or receiver
information correspondingly, Fignre 63 on page 343 shows the Show Path dialog,

Direction

Shaw Hierarchy

Stop at State

Stop at Primitive

Stop at Memory

Stop at RAM

Stop at /0

Decampese library primitives
Maximum numter of nodes

Mets
Modules
Instances

Terminals

!io Fan in {show net dr

ivars) l

_Fan Out {show net raceivars)

u
o
:

3

-

3

|

. 1060c

; Match wildcards (Pand® o E ~lignere Case
Match wildcards (7 and % ., | -'lgnore Case
Match wildcards (7 and % _ | -Jianore Case
Match wildcards (Pand % _ | -ignore Case

oK Cangel

Figure 63 Show path

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

345

ATI Ex. 2075
IPR2023-00922
Page 345 of 394

RTL Debug using the GUI Chapter 11

ligure 64 on page 346 shows the graphical path browser{RTL Topology).

b1

m

Fo

Figure 64 Graphical path browser{RTL Topology)

These are a few important graphical path browser tools under the VIEW menu

VIEW VIEW
Find Pathname
Gate Topology —g——| RTL Topology
Prunc--¢ Unprunc
Flattened Design--s———r Design Hicrarchy
Graph /

- lEpresents togele type
346 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 346 of 394

Chapter 11 RTL Debug using the GUI

Figure 63 on page 347 shows the graphical path browser(Gate topology).

i)

hsync_Cout:

datainfd] datafin{1} Gataén[a
igjK E ;

Figure 65 Graphical path browser(Gate Topology)

Find Pathname

The user enters a signal name and clicks OK to get the RTL or Gate topology of that signal.
This helps the user to debug any desired signal without the use of going through the entire
design. [igure 66 on page 348 shows the Find Pathname window.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 347

ATI Ex. 2075
IPR2023-00922
Page 347 of 394

RTL Debug using the GUI Chapter 11

pathname |

in Display Only)

ok| Apely| cancel| Help]

Pruning

Figure 66 Find Pathname Window

When the signal flow is driven by large CASE statements, the fan-in cone gets complex.
This is because, all the circuitry that affects the signal are visible to the user. Only a small
subset of the circuit affects the signal at a particular instant of time. Pruning makes the
circuit a lot easier for the user to read and helps the user to focus on a single path.

Advantages of pruning

+ Simplifies Diagram

» Makes the diagram more linear

« Narrows in on the cause

+ Temporal Pruning focuses on subset of logic cone based on current conditions{at
current time})

* What do we prune?

Case Statements including casex, casez
if/then/else

conditional expressions(?:)

Muxes

{N)AND, (N)OR

Tri-States

Figure 67 on page 349 shows the same net used in Figure 64 on page 346 after pruning,

348

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 348 of 394

Chapter 11 RTL Debug using the GUI

File ¥iew ERadix Zeom Brohmarks |E

Figure 67 Pruning

Wavelorm viewer

The waveform window gives the change in the signals with respect to time. If the user wants
to view the waveforms for more signals, the desired signals are to be dragged from the
browser and dropped into the waveform viewer. The signals can be dragged from the
waveform window to the source debug window to get the source code for that signal

Figire 68 on pege 330 shows the waveform viewer.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 349

ATI Ex. 2075
IPR2023-00922
Page 349 of 394

RTL Debug using the GUI Chapter 11

] .~ VRC - Waveform — A - AUOGFOUPO

File Edit Zoom Display Window

| #2{EGroupo}

Z.139, 808 (T us)
6,156 (1 us)

ilcik b1
ireset_ b1
| 1 blue daza{7m] ehon
i | areen_aaral7: whon

Figure 68 Waveform viewer
Logic viewer

Logic viewer is another tool for debugging. This tool helps the user to get a logic
implementation of the signal. A signal can be dragged from the waveform window or from
the source debug window to the logic viewer to debug the design using logic
implementation of the design. Figure 69 on page 350 shows the Logic Viewer.

[y]

= i Frogy a0 _bin hopn ThoLCaral

T) ake R sl

Figure 69 Logic viewer

350 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 350 of 394

R

N
o2 @ & o,
a0 R B ORa.

e HPO O

KOS
12 Trouble-shooting Guide

Overview

When things go wrong, quite often the situation is a standard one with standard solutions to
the problem. This section presents a number of such commeoen questions with answers to
enable you to correct the situation.

The questicns and answers are arranged in tables that contain the following segments:
» Statement of the problem
= Diagnosis of the problem
» Suggested solutions to the problem

The questions are associated together according to the operation during which they are
likely 10 occur.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 351

ATI Ex. 2075
IPR2023-00922
Page 351 of 394

Trouble-shooting Guide Chapter 12
Software installation
These questions might arise during software installation:
Solution
Problem Diagnosis
If... Then...
The The VirtuaLogic Place and | Your site does not Install it. Itis included in the
installation | Route Manager uses rsh to | have rsh.. Berkeley utilities package
process start and manage tasks on that should come with the
cannot find | multiple hosts. operating system software.
rsh.

Design import and compilation

These situations can arise when you are in the logical design compilation stage:

Solution
Problem Diagnosis
If... Then...

My design The VirtuaLogic compiler = Using the qualification
has undriven requires all nets in a design error window in the GUI,
nets. driven to some value. select a value for undriven

nets singly or as a whole.

OR
+ Use a tie-off file to give

undriven nets values.

352 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 352 of 394

Chapter 12

Trouble-shooting Guide

My design The VirtuaLogic compiler Identical modules The compiler detects the sit-
has multiply- cannot process a design have identical inputs uation and removes the
driven nets. which has nets with multiple for greater drive redundant module(s).
drivers. capability,
The modules or « Using the qualification
inputs are not identi- error window in the GUI,
cal... select one of the modules
to drive the net.
OR
+ Use a tie-off file to
specify the single non-tri-
state driver of each net.
My design The Virtual.ogic compiler
has combina- processes most combinato-
torial cycles. rial cycles, This warning
only alerts you that combi-
natorial cycles are present.
My design The Virtual.ogic compiler Yourdesign contains Remodel the relevant mem-
has combina- cannot process combinato- combinatorial cycles ories, using an edge-sensi-
torial eyeles rial evcles through level- with level-sensitive tive model
through sensitive multiported mem- mermories...
metnories. ory elements.

The VirtuaLogic compiler
cannot process combinato-
rial cycles through level-
sensitive multiported mem-
ory elements.

You know read ports
and write ports of
the memory never
use the same
address. ..

The write-enable
signal uses clock
gating so it is always
disabled awhile in
emulation cycles...
The write-enable

signal does not use
clack gating...

You can convert a level-sen-
sitive memory into an edge-
sensitive memory sensitive
to either edge directicn.

Convert the memory into an
edge-sensitive memaory.

Introduce clock gating to
create edges in write-enable
in every cycle on which it is
active.

Convert the memory into an
edge-sensitive memaory.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

353

ATI Ex. 2075

IPR2023-00922
Page 353 of 394

Trouble-shooting Guide Chapter 12

» The same address Model the memory as an
might appear, the edge-sensitive memory sen-
memory shows sitive to falling edges for a
read-through memory with active-low
behavior on the write enable or rising edges
read port. for active high.
+ Write data is
stable at the
beginning of the
write.
My design All libraries IKOS supplies You have built your Maodify the library to elimi-
has paramet- are free of parametric struc- own library nate the parametric struc-
ric test strue- tures, tures.
tures I do not
want to emu-
late.
Parametric or other Mark any outputs to which
unwanted logic isin these structures are con-
your design and uses nected as unsampled in the
standard library ele- timing specification during
ments gvl, and the VirtuaLogic
compiler deletes the relevant
lagic.
My design The VirtuaLogic system Use the timing specification
contains a cannot directly emulate interface for phase-locked
phase-locked phase-locked loops. loop modeling:
loop. | Identify the hierarchical
name of the output net(s),
from your phase-locked
loop, which are the
resulting clock(s).

2 For each clock net above,
click the ADD Clock
button to add an internal
net clock specification.

3 Type the net name
identified previously.

4 Use the clock waveform
editing features to indicate
the desired clock
waveform.

354 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 354 of 394

Chapter 12

Trouble-shooting Guide

The VirtuaLogic system
cannot directly emulate
phase-locked loops.

This process assumes your
PLL or timing generator
produces a periodic wave-
form.

Your waveform is
not periedic butis a
logical function of a
periodic waveform
and some data val-
ues derived from

your circuitry,

You can model the behavior
as follows:

1 Include the logic needed
to compute the logical
function in your PLL
netlist.

2 Connect data value inputs
as needed.

3.Connect a net to the logic
for the periodic
component.

4 To make this net an
internal clock source,
perform steps 1-4 to
describe and create the
needed periodic
waveform.

5.Use the technique
described previously to
produce the periodic input
component.

My memo- The compiler did not iden- You have memories Write empty Verilog module
ries donot tify any of the design Ver- in the design that definitions for the memo-
appear when 1log modules as potential Show Memories but- ries that specify the port
[browse on memories. The compiler ton does not list... names and directions. The
the memory looks for Verilog modules Ul needs this to assist you in
form. that have no structural con- preparing a memory specifi-
tent to identify memory can- cation.
didates.
My netlist The VirtuaLogic compiler Specify needed definitions
requires Ver- fully supports Verilog com- on the Netfist Import form in
ilog com- piler directive macro defini- the box,
piler tion.
directive
macrao defini-
tions.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

355

ATI Ex. 2075

IPR2023-00922
Page 355 of 394

Trouble-shooting Guide Chapter 12

My technol- The VirtuaLogic » Resynthesize your design
ogy library is system does not sup- directly to VirtuaLogic
not men- part your technology primitives. Virtualogic
tioned on the library directly. provides a

fechnology Synopsys'l'M.db library
Mapping for that purpose.
notecard in OR

gvl .

Produce a custom library
for your technology. A
custom library is a set of
Verilog module
definitions for your
technology primitives,
implementing them as
VirtuaLogic primitives.
VirtuaLogic provides
Synopsys libraries and
scripts to make it easier

for vou.
There are The VirtuaLogic Verilog Your input file does “ifdef out the behavioral
warnings reader understands only not parse into Virtu- code with the following:
about unrec- Structural Verilog, You can aLogic correctly... ‘ifdef VIRTUALOGIC
ognized Ver- safely ignore some behav- ‘else
ilog ioral constructs, but others .
. behavioral code
constructs confuse the compiler. i
when I com- “endif
pile my
design.
There are There are several potential Your testbench makes refer-
Verilog sources of Verilog compile ence to internal nodes in
errors whenI errors which might arise your design in display or
try to simu- while you are simulating the dump statements. Because
late the VSM. the internal hierarchy of the
VSM. VSM differs from your orig-
inal hierarchy, you must
climinate these references or
conditionalize with *ifdef.
356 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 356 of 394

Chapter 12

Trouble-shooting Guide

The VSM « Input Setup Problems You have accepted This has chosen a default
doesn’t sim- default input maxi- simulation input sampling
ulate cor- mum prop delay time, which might be inap-
rectly in my times in timing spec- propriate. Use the Verilog
testbench. ification .. macro variable VMN-
INPUT SETUP to adjust
the sampling delay to a
value large enough to stabi-
lize all inputs to the VSM.
Unexpected This may occur if the test- Modify the testbench clock
Xs appear in bench has clocks which generation code to produce
verify model have X value for more than clocks which are initialized
simu- #1 after the start of the sim- to nen-X within #1 of start
lations. ulation, of simulaticn,

Look at outputs from the
module with CtIFSM as its
name, looking for Xs.

Additional import and compilation problems

There are several common problems which might require diagnosis and resclution when
you simulate a Virtualized Simulation Model (VSM).

Timescale issues

By default, the VSM specifies a timescale directive within the model:

‘imescale 1ns/lns

If this is incompatible with other timescale directives within your testbench, comment this
timescale directive out of the model. It is the second line in the model.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

357

ATI Ex. 2075

IPR2023-00922
Page 357 of 394

Trouble-shooting Guide Chapter 12

Input timing issnes

The timing specification defines when changes on emulator inputs can occur, The VSM
watches for inputs which change outside of this region and produces warning messages
when this cceurs. These warning messages take the following form.

Design i/o <ioname™>: unexpected transition seen at time <time>

The duration of the window in which input changes can occur is dependent on your design
as well as the timescale setting you have chosen within your testbench,

The window in which changes can occur on a particular signal starts whenever a clock edge
mentioned for the signal in the timing specification occurs and ends after the expiration of a
periad controlled by the Verilog symbol VMW _INPUT SETUP whose default setting is
100. Thus, by default, input signals can change during a window which is 100 Verilog time
units in length (that is, equivalent in length to #100) and starts at each clock edge to which
the input is timed.

If this default value is inconsistent with your testbench and timescale, you can override it.
Provide a new value to the symbol VMW _INPUT_SETUP using the command line:

+define+VMW_INPUT_SETUP=<val>
In the aboeve line, <val> 1s a numenc value.

Otherwise, you might have omitted from the timing specification an edge which causes
input changes. To fix this, modify the timing specification.

Clock ordering issues

The timing specification defines an ordering for all clock edges within a clock domain. The
VSM watches the order of clock edges in a domain and produces warning messages if this is
inconsistent with the timing specification. These messages take the following form:;

Cut of order clock edge <elocknamel -dircetion 1> seen at time <time 1>

Preceding edge was <clockname2-direction2> at timg <time2>,

This probably reflects an error in the timing specification To fix 1t, adjust the timing
specification to reflect the actual clock edge ordering.

358 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 358 of 394

Chapter 12

Trouble-shooting Guide

Clock period issues

The VSM requires some amount of elapsed Verilog simulation time to process internal
changes which occur as a result of each clock edge. This time is equal to the value of
VMW _INPUT_SETUP plus a small design dependent component.

If clock edges oceur too rapidly in succession, the VSM produces a warning of the following

form:

Change the testbench and/or timescale granulanty to provide more simulation time
granularity between consecutive clock edges.

Wamning: design clock cdges eccurring too rapidly - extend.

Design compilation

You could face these situations when you are compiling the physical design:

Problem Diagnosis
I have more | The VirtuaLogic
clocks than | emulation supports a
fit on the maximum of 14 clock
clock cable. |signals. This includes

« All periodic clocks
« Any asynchronous
system inputs which
trigger state
changes:
— Asynchronous
preset or
— Clear signals
driving terminals
but excluding
asynchronous
inputs which the
data inputs of state
elements sample

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

359

ATI Ex. 2075
IPR2023-00922
Page 359 of 394

Trouble-shooting Guide

Chapter 12

I want to let
the emulator
decide the
target
system
pincut.

Do not specify a terminal-constraint file (disable it.)

One or more
FPGAs do
not compile

1. At the command line, create a new file comprising the
name of each non-compiled FPGA on a separate line.
2 Return to the Compile form, and in the Options
window enter the following:
-FPi filename -Pi <parition input filename -Phi <place
input lilcname> [-Po <partition output filename>] [-Pfo
<place output filename™> where
-FPi further partitions the contents of the designated
file.
<filename> lists on separate lines the names of all the
noncompiling FPGAs
-Pi reads what is in the file as the partition result of the
previous run. <partition input> contains the partition
result of the previous run filename
-Pfi reads in the result of placement from the previous
run as output of the placer. place input contains the
placement from the previous run filename
-Po cutputs the result of partition into the specified

file.

partition contains the result of partition output
filename
-Pfo outputs the result of placement to the designated
file.

place output contains the result of place filename
3. Recompile.

Partitioning

You could face these issues when partitioning:

Problem

Diagnosis

Solution

If... Then...

360

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 360 of 394

Chapter 12

Trouble-shooting Guide

My FPGA | -Mm 9 targets 90% of | A design has FPGA 1 Send the problem to
costs are too | normal, or a cost of compile problems, thisis | [KOS.
high or my | 4500 per FPGA. a bug.
FPGA
cqmplles 1 Reduce -Mm by 1 and
fall because recomp”e
the FPGAs 2 Reduce again to -8 or 7if
are too full
necessary.
My design | If you are trying to put | | Check the reported gate count from the computer. It
does not fit | more than 170K /340K looks like
into N gates per board into the Number of VMW primitive modules: 236723
boards. system, it may not work. | Number of VMW primitive gateS: 408213
Number of memary Interface gates: 105000
The correct number of boards is (Number of VMW
primitive gates + Number of Memory Interface
wates)/1 70000 or 340000
2.If you are in the 170K / 340K gate range and the
design does not partition inte the right number of
FPGAs, call IKOS.
My design Use -dump e to see if critical path includes false paths.
is too slow.

Design that
fails with a
“subprocess
11" at
customer
site but
completes
compilation
in the
corporate

The problem is that the
dynamic loader puts the
libraries at
approximately
0xf000000 -

stacksize limit. This
stacksize limit is found
out by typing limit in the
unix prompt. If the
stacksize limitis
>768MB, this will bring
the libraries down into
an unexpected address
range

To fix this, set the stacksize limit to a reasonable value.

example 8192KB.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide

361

ATI Ex. 2075

IPR2023-00922
Page 361 of 394

Trouble-shooting Guide Chapter 12

Configuration download

You could encounter these problems while downloading the configuration:

Solution
Problem Diagnosis
If... Then...
Cannaot » Only one process can You fail to connect The system reports the
connect to connect to the emulator at | due to another failure.

the emulator. | atime, connected process...
The emulator is connected | — You are running
as a SCSI deviceto a vren (the textual
particular workstation. runtime monitor)...
Processes communicating
with the emulator must — You are mnning
run on this workstation. ovi...

Therefore, establish that
you are using the
emulator workstation.

This must run directly on
the emulator workstation.

This can run anywhere, but
you must provide the
hostnatme of the emulator
workstation. Verify that you
have specified this hostname
correctly.

Call Tech Support,

Configuratio

n download

reports a

failure

Diagnostics Call Tech Support,

fail,

Cannot See “FIne Tuning the

connect to Ethernet” in the lnstallation

the logic Critiele.

analyzer,

The NF$ Use the FTP mode.

mounting for I.Modify params.mak. Add

the logic the following line:

analyzer FPROBE QPTIONS -fip.

partitions i3

! . 2.vprobe uses fip to access

impossible. . .
the control partition. This
method is much slower
than the NFS path.

362 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 362 of 394

Chapter 12 Trouble-shooting Guide

Emulation

You could encounter this situation while emulating:

Problem Diagnosis Solution
The error There is an out-of-sync user | Adjust the user clock signal.
light on the |clock signal. Click the Emulator 1/0 PODS Enabled button to
emulator clear the light and reset the emulator.
£oes on.
Solaris 2.6

The user must be aware that Solaris 2.6 1s not a supported operating sysiem for VLE. Solaris 2.5.1 and 2.7 are
supporied for VLE. I one is specilic aboul using Selaris 2.6, onc has 1o give imporiance to this seetion.

Most of the software docsn’t get profoundly affected by the OS revision., except for Viun., Viun is very OS-
sensitive for bwo reasons;

+ Itrequires a revision-specific OS driver to talk to the emulator box
» It uses multi-threading to accelerate state replay

Vrun alse runs on the machine physically connected to the emulator.

If an user suffers from Vrun going into an infinite loop while doing state-replay for 100%
visibility, this problem can be solved by setting a special environment variable to turn off the
usage of multi-threading using the tollowing command.

selome VMW _NO_THREADS 1

This command is placed inside the user™s .cshre file and sourced even before (he gyl is imoked. This covers Lthe
case where gvl and vnin arc minning on the same machine or not.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 363

ATI Ex. 2075
IPR2023-00922
Page 363 of 394

Trouble-shooting Guide

Chapter 12

Debug activity

You might encounter these difficulties while debugging:

Problem

Diagnosis

Solution

The trigger
interface
says my
trigger
cannot be
created.

Because of the multiplexed
nature of theVirtuaL.ogic
probe mechanism, certain
probe groupings might have
some trigger cenditions that
cannot be implemented.

Consider whether a clock qualification can be
added to the term.
From the UI, have the VirtuaLogic compiler create
a probe file with a grouping for which the trigger
can be implemented.

OR
Try an alternative trigger, using the current probe
grouping.

I need to add
more prabes.

The Virtual.ogic compiler
system supports incremental
probe additions.

Open gvl.

Add new probes.
On the Compiler page click Tncremenial Probe
Compile,

The
incremental
probe
compile
reports that a
probed
FPGA has
became too
large.

Call IKOS customer support.

Virtual swapping

This feature in wrs (the program manager, embedded in gv/, running the emulator)
relocates (virtually swaps) downloaded bits to determine if a problem 1s design related or
hardware related. It is not designed to locate a bad board.

364

VirtuaLogic 3.5 User Guide

Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 364 of 394

Chapter 12 Trouble-shooting Guide

Diagnosing the problem

If you relocate bits, vet problem symptoms are completely unchanged, it is likely a design-
related problem. Any test behavior change after swapping indicates bad hardware, unless the
velock speed is marginal, something you should rule out in advance. If virtual swapping
leads you to believe you have bad hardware, you should walk a good board through every
slot to isolate the bad board, unless diagnostics catch the problem.

Command syntax

virtual-swap command

After you connect the hardware (using the connect command) and configure it, the
command virtual-swep 1s available from the vruir prompt and remains valid until exit.

To execute:

1. Atthe UNIX prompt type:

configure <design_name> -probe <probe_window>/system()

In the above line, <design name - is the root module, and - probe window s the
directory with the desired probe window. For example:

probe_window (.pbu/system0
2. Then type:

virtnal_swap |<arguments>|

This command dces not validate or invalidate any other command even though
under certain swapping configurations it would be impossible to do in-circuit
testing Make sure you de a virtual swap to place the hardware in a valid state
before running in-circuit,

Arguments for the virtual/ swap command are:

[B <n>) rotates the boards through [n mod m] slots where [m] is
the number of boards in the system. Positive [n] rotates
up; negative [n] rotates down. Not available on
Virtualogic 2.1.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 365

ATI Ex. 2075
IPR2023-00922
Page 365 of 394

Trouble-shooting Guide Chapter 12

[R] swaps the FPGA rows on all boards so that FPGA
[BRC]is swapped with B<{R+4)%8>C. A row swap
exchanges q0{quadrant 0) and g1 with g2 and ¢3,
respectively.

[C] swaps the FPGA columns on all boards so that FPGA
[BRC] is swapped with BR<{C+4)%%8>. A column
swap exchanges 0 and q2 with q1 and q3, respectively.

[N] means no swap. This brings the system back te its
original configuration, that is, pre-swap configuration.

You cannet combine row, column, and board swapping. Each new swapping clears
the previous swapping.

Types of swap
Column swap

You can always swap columns. If you use this test while running in-circuit, you must move
the target data cables from Jn to J(n+3)%46 on a board.

Example

You must move a cable attached to J1 on board 3 to J4 on board 3 and a cable attached to I35
on beard 2 to J2 on board 2.

Row swap

You can always swap rows. It 1s, however, impossible to run in-circuit with the rows
swapped, and you are restricted to hardware functional testing only.

Board swap

Board swap only works on VirtuaLogic 2.0, not on VirtuLogic 2.1.

366 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 366 of 394

Chapter 12 Trouble-shooting Guide

Noncompiling FPGAs
Correeting noncompiling FPGAs with -FPi switeh

If one or more of the FPGAs does not compile because of an oversize FPGA (i.e., total cost
greater than 13500), a message appears in the Place and Romnie .og pane which lists the
failures. To correct the situation, take the following steps:

1. Atthe command line, create a new file comprising the name of each noncompiled
FPGA on a separate line.

2. Return to the Compile form and in the Options window enter the following:
-FPi <filenamc> -Pi <partition_inpul_[ilename> -Pfi <placc_input_filcname> |-Po

<parlition_outpui_filename:>|
[-Pfo <place_output_filename=]

ARGUMENTS:

-FPi <filename> This further partitions the contents of the designated
file. Tt lists on separate lines the names of all the
noncompiling FPGAs,

-Pi <partition_input_filename> This reads what is in the file as the partition results
of the previous run. It contains the partition results of

the previous run,

-Pfi <place_input_filename™> This reads in the result of placement from the previous
run as output of the placer. It contains the placement
from the previous run,

-Po <partition_output_filename> This outputs the results of the partition into the
specified file. It contains the result of partition.

-Pfo <place output filename> This outputs the results of the placement to the
designated file. It contains the results of place

3. Recompile.

Refer to page 271 for additional information.

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 367

ATI Ex. 2075
IPR2023-00922
Page 367 of 394

Trouble-shooting Guide Chapter 12

Correcting fitting problems with -CUi switch

On rare occasions, a design exhibits a structure leading to systematic place and route
failures that are insensitive to the -AMar cost adjustment parameter (refer to page 276
for details). If an FPGA fails to compile and the compenents on the FPGA are mostly
from the same part of the design, the user can raise the weight of that part using the
compiler option -CUi filename as follows:

« Atthe command line, create a new file. The file centains one or more lines of the
following form:

Module <modulc_cxpression> |weight]

where <moadule expression>is a regular expression matching the hierarchical
name of one or more module instantiations within the design. Any module listed
in the file has its modeled cost increased. The defauli increase amount is cne,
The opticnal [weight] field specifies the increase amount for all of the modules
that match the maednle expression.

The typical use of the file has the following form-

Module a g ## %%k

which matches all instantiations within the scope «.b.¢. {The number of *s
should exceed the internal hierarchical depth of the scope a.b.c.)

All the modules under the hierarchy a.b.c. get a higher cost than they normally
would during design compilation.

+ Return to the Caompife form and in the Compiler Options window enter the
following:

-CUi <filename>

+ If the default increase amount needs to be changed, the -('{/¢ option provides
this feature. Optionally enter the following;

-CUc <weight>
where <weighr> is the new default increase amount for the -C*{Ji file,

+ Recompile the design.

Refer to -C'/i on page 278 for additional information.

368 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 368 of 394

P

B oo,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
PC Farm

Overview

The second stage of compile is FPGA place and route. With VirtuaLogic 2.1 or greater, the
user can farm out FPGA compilation to PCs, UNIX workstations, or a combination of
multiple platforms. By adding more systems to the solution, the user can dramatically
speed-up design turnaround times which can significantly improve verification productivity.
Utilizing 60 platforms allows the user to do the complete compile and FPGA place and route
of a million gates in less than two hours.

Hardware requirementis

PC:

» Intel 815 MB w/integrated e-net and video

» Intel PIII 850MHz CPU

« 512MB PC133 SDRAM

+ IBM 5GB hard disk drive

Workstation:

* 4.0 with service pack 5

» Denicome Software version RSHD/NT 2.18.03 WITH PATCH installed

Software requirements

« Windows 95 or NT 4.0

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 369

ATI Ex. 2075
IPR2023-00922
Page 369 of 394

PC Farm Chapter 13

* Virtualogic 3 3 or greater
» RSH daemon {refer to Obtaining a RSH daemon on page 372 for details)
= Optional remote control software, for example:

- PC-Anywhere (commercial program)

- VNC from AT & T Laboratories Cambridge (refer to Obtaiiting VNC software
o page 373 for details)

PC setup

The user must setup TCP/IP networking on the PCs. The Xilinx licensing is time-bound and
requires the correct date, time, and time zone. Ensure the date, time, and TCP/IP
connectivity of each PC is correct before moving forward with each PC. Verify the PCs can
be pinged from the UNIX workstation. IKOS recommends going through the whole process
on one PC, including running a PAR job, before configuring the other PCs,

Software instaliation

Obtaining a RSH daemon

The user must purchase a RSH daemon from Denicomp Systems. The RSH daemon
communicates with a Remaote Shell Daemon (rshd). The user can download a time-bombed
evaluation copy but it requires a reinstall of the registered version once it is received. Be sure
to order the daemon service, not the RSH client.

The web site to order is as follows:

www.denicomp.com

The RSH daemon can alsa be ordered from the Public Software Library at 1-800-2424-PSL.
Order RSHD/95 with product #14496 or RSHD/NT with product #14075.

A single copy, bulk discounts, or a site license is available.

370 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 370 of 394

Chapter 13 PC Farm

RSIH daemon

« Download the RSH software (refer to Obwining a RSH daemon oit page 372 for
ordering information)

« Unzip the software into an empty directory (for example, ¢tinstall)
- When installing the RSH daemon, accept all the installation defaults
* run the following:

chinstall\setup
» Ensure that “Windows Service” is checked in the dialog box

= Remove the installation directory (i.e., c:tinstall)

Test the RSIL daemon
Test the PC RSH daemen from the UNIX workstation as follows:
rsh PCHOSTNAME “<[CON]>" dir
The output display should appear similar to what follows:
Volume in drive C has no label.
Volume Serial Number is 34EF-1473
Directory of C \WRSHDNT

02/26/98 06:07p <DIR>
02/26/98 06:07p <DIR>

02/25/98 10:06p 188,416 WRSHDNT. EXE
02/25/98 10:20p 52,224 WRSHDRUN.EXE
08/27/96 09:37p 34,816 WRSHDRDR EXE
06/02/96 08:3%9p 141,824 WRSHDCTL.EXE
08/05/96 07:3%9p 48,128 CTRLRSHD EXE
03/08/96 11:24p 3,423 LICENSE. TXT
01/26/97 01:09p 80,218 WRSHDNT. TXT
08/05/96 09:25p 9,517 ORDER. TXT
02/25/98 10:18p 894 PACKING LST
03/21/97 11:44p 4 457 README 18T

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 371

ATI Ex. 2075
IPR2023-00922
Page 371 of 394

PC Farm Chapter 13

01/26/97 12:41p 834 SUPPORTTXT
08/26/97 08:05p 23,552 WHOAMIEXE
14 File(s) 588,303 bytes

1,246,101,504 bytes free

Obtaining a RSH daemon

The user must purchase a RSH daemon from Denicomp Systems. The RSH daemon
communicates with a Remote Shell Daemon (rshd). The user can download a time-bombed
evaluation copy but it requires a reinstall of the registered version once it is received. Be sure
to order the daemon service, not the RSH client.

The web site to order is:
WWW . DENICOMP . COM

The RSH daemon can also be ordered trom the Public Sottware Library at 1-800-2424-PSL.
Order RSHD/95 with product #14496 or RSHD/NT with product #14075.

A single copy, bulk discounts, or a site license is available.

VAW AGlinx software

Obtain write permission to the FAZW HOM! directory and do the following:
seteny VMW_HOME <appropriate_path_here>
¢d VMW HOME/bin

Jpc_setup.csh <space_separated_pc_hostnames=>

All the PC hostnames can be given on the command line. This will download the Xilinix
software to each PC and also some [KOS software that runs on the PCs tc control the
compiles. This download takes a few minutes for each PC, depending on the machines and
network. Following is an example:

$VMW_HOME/bin/pc_setup.csh pel pe2 ped ...
This also prepares the following file:

SVMW_ HOME/env/pc hosts.mach

372 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 372 of 394

Chapter 13 PC Farm

This file is used by gv/ to enumerate the PCs setup on the network. Therefore, when running
SFMW HOMI bin po sefup.csh, do it from an account that has wnte access to

SEMW HOMIC eiv, Otherwise, it will setup that file in zmyp and it will have to be copied to
SFMW HOMIE e after securing write access.

IKOS recommends doing just one PC first and trying a simple PAR job using vtask before
ivesting the time to do all the PCs.

VNC (optional)

Obtain VINC software from AT & T Laboratories Cambridge, as detailed below.
* Unzip the software into an empty directory (for example, c'\install)

» Run and follow the screen instructions:

cinstallisetup
* Remove the following;

¢:Ainstall

Obtaining VNC software
The Virtual Network Computing (VNC) is a remote display system which allows the user to
view a computing desktop environment not only on the machine it is running on, but from
anywhere on the Internet.

VNC is free from AT & T Laboratories Cambridge web site as follows:

http://www.uk research.att.com/vnc

Farm usage

From the command line

« Change to the appropriate .vimw directory

« Create a machfist.mach file which includes the names of the PC Farm machines
followed by pe extension and UNIX workstations without the /pe extension.
Following are examples:

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 373

ATI Ex. 2075
IPR2023-00922
Page 373 of 394

PC Farm Chapter 13

pefarm1/pe
pefarm2/pe
unixfarml
unixfarm2

* Run the following:

vlc . vtask

From the G

SVMW_HOME/bin/gv]

Note that on the FPGA compile page, the host-list pane will include the PCs in the
SEMW HOMI eirv pe hosts.mach file. When the user drags and drops them into the
machine list, they will already have the pc appended.

From this point on, FPGA compile software is operated the same as in prior releases.

Maintenance scripts

Centact TKOS Field Engineeting for additional maintenance scripts for remote cleaning,
rebooting, and status checking,

374 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 374 of 394

LeB 6o,
Lo R G @ B
af 0 @ 0Ra.

AmR@IFOCae

“IKOS

Glossary

ASIC

Acronym for Application Specific Integrated Circuit.

asynchronous signals

clock domain

Signals whose transitions have no known frequency or phase
relationship to one another.

A collection of phase-locked clock signals and logic whose state
and signal transitions are phase-locked to the clock signals.

clock signal

A signal that triggers a state transition on a circuit state element.

configuration directory

The directory in which you keep the files which the Virtual.ogic
compiler requires and produces for compilation.

data signal

design 1/0s

A signal that does not trigger a state transition for any circuit state
element.

Top-level 1/0s of your design. Design 1/Os are signals that
conngct your design to the target system.,

edge-sensitive

Describes a state element that changes state only when a
transition occurs on a state-controlling clock signal.

emulator terminal

A cabling point on the emulator for connecting your design to the
target system. Each design IO must be internally connected to an
emulator terminal by way of the pin constraint file and then
externally cabled to the appropriate place on the target system.

level-sensitive

false path A combinational path in the user’s design that never propagates
information or has multiple clock cycles in which to propagate
itself

feedthrough Tells the compiler that an output signal leaves the emulated design

and combinatorially causes an input to the emulated design to
change.

Describes a state element which can change state whenever a state
controlling clock signal has a particular value.

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide 375

ATI Ex. 2075

IPR2023-00922
Page 375 of 394

Glossary

Chapter 14

netlist defines

The set of Verilog preprocessor macro definitions required for
your design.

phase-locked signals

Signais whose transitions have a fixed, known frequency and
phase relationship to one another.

probe

race condition

A signal within a design which is made visible through the
Virtual Probe facility.

A pair of simultaneous signal transitions whose precise ordering
affects system results,

regular expression

A character string that contains wild card characters, allowing the
string to match many different strings. Several places in the
VirtuaLogic GUl recognize regular expressions involving * and ?
characters. The * character matches O or more characters and the
? matches exactly one character.

root module

The top-level module in your design.

scalar net

A net consisting of a single bit wire.

synthetic vector

A collection of related scalar net names bundled together for
convenient handling as a group. The VirtuaLogic graphical user
interface automatically produces synthetic vectors from
appropriately named scalars. This occurs when a collection of
nets exists with names whose only difference is some embedded
numeric value.

Non-numeric characters can precede the numeric characters
which index the synthetic vector.
Example:

Synthetic Vector Syntax

Net Names

Represented as.

namel, name2, ... name8 name<1:8>

name_1 ,name 2 name 3 . |name <1:8>

The left and right brackets denote a scalar vector, and the indices
indicate the range of numbers present in the scalar signals.
Manipulation of a synthetic vector — for example, dropping it into
a selection window — has the same effect as individually
manipulating each scalar component.

To expand synthetic vectors into the collection of sealars from
which they criginated, double click on the synthetic vector,

target system

The hardware fixture into which you plug the emulator to provide
stimulus. The target system is typically a medified version of the
printed circuit board (PCB) which will house your finished ASIC.

376

VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075

IPR2023-00922
Page 376 of 394

Chapter 14

Glossary

terminal constraint file

A file that specifies the emulator terminal to which to connect
your design [/Os. It lets you control the binding of design I/0s to
emulator terminals so you can match design I/O pin out on the
emulator to the pin out of your target system. Creating a tferminal
constraint file cceurs in the emulation process between specifying
the emulator configuration and creating core probes,

tie-off A signal within a design which is forced to a constant value of 0
or 1 through the signal tie-off facility.

trigger An expression or sequence of expressions used by a DS to
control the capture of analytic data.

vector net A net consisting of multiple wires with a single name which can
be indexed te give names for individual wires or ranges of wires
from the net.

ICE In-Circuit Emulation

DUT Design Under Test

VLE VirtuaLogic Emulator, the emulation hardware

VirtuaLogic The VLE software, including the VSYN compiler, the GVL user
interface, the probing and tnggering subsystern VPROBE, etc.

TIP Transition Interface Portal, a hardware and software interface to

allow co-modeling on all VLE platforms

RTLC, RTLC-VLE

The RTL compiler targeted for the VLE platform

rtlc-accel The RTL compiler targeted for the NSIM platform
GVL VirtuaLogic GUT

VSYN VirtuaLogic’s emulation compiler

rtle-vle core compiler for VLE

rtlc-driver wrapper over the core compiler for VLE

API Application programming Interface

TAPI TIP APL

Co-Modeling

System level testing possible by providing high-speed
communication between abstract system models and the DUT

Last Revision 25-Apr-2001

VirtuaLogic 3.5 User Guide 377

ATI Ex. 2075

IPR2023-00922
Page 377 of 394

Glossary Chapter 14

378 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 378 of 394

R

B B4,
o8 @ & Bo
a0 R B ORa.

AeRFP ST

KOS
Appendix A

Logic analyzer setup

The Logic Analyzer is an Hewlett Packard model 16500 B or C, using cards 16556 models
A or D. The Logic Analyzer can have between one and four 16556 cards. With any number
of cards, the Logic Analyzer can support a full signal window multiplexed from the System
Beard.

The Logic Analyzer must be cabled 1o the System Board. The following table is the view
from the back of the HP Logic Analyzer. The I numbers reference the cable connection to
the system board of the emulator. The cables are the time domain multiplexed internal nets
from the emulator that will be monitored by the Logic Analvzer.

Card C is the master card in the Logic Analyzer Note that the Logic Analyzer cards are not
in order. The Logic Analyzer cards order is C,.B.D,A. If the Logic Analyzer is not fully
populated with sampling cards, then should be installed in this order. If the Logic Analyzer
1s not populated with all 4 cards, connect only the cables for the cards that are installed. The
Hardware Installation guide provides directions for running Logic Analyzer diagnostics.

Logic Analyzer cables

Card Slot Pod 172 Pod 3/4
A 7 I8
B J3 J4
C I 2
D 15 J6
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 1

ATI Ex. 2075
IPR2023-00922
Page 379 of 394

Appendix A Chapter

Sampling data
o]

Each probed signal will be sampled when necessary. After the clock toggles, the logic is
time domain multiplexed and after the time slice occurs for the signal, then it will be
sampled. The resulting waveforms will display the clocks in the design and all the probes for
the design will be sampled within one of the time slices in the domain. If the internal node
can change based on either edge of the design, then the compiler will actually probe the
specific internal node twice so that it is sampled in gach epoch,

The display will appear as if all the signals change with the clock. The actual timing
implementation of the design is not indicated in the Logic Analyzer display. This is often
referred to as state mode for the Logic Analyzer. If timing based data is important for signals
in the design, then the Probe Group needs to be specified as un-multiplexed in the Triggers
Tab.

Store

The store function can be assigned to each state of the trigger state machine. If store is
selected, whenever the Logic Analyzer is in the given state, it will sample and display data
based on the time domain multiplexing, When using nostore and store in a Logic Analyzer
trigger, sometimes the results appear confusing because the data appears continuous in time
in the waveform, but is actually sampled from only the states which store.

If the store function is not used in every state, it 1s possible that once the trigger has
occurred, the Logic Analyzer Maximum Sample Depth will never fill up completely. If this
is the case, then using the Record/Stop button on the Emulation Tab will cause the Logic
Analyzer to stop sampling data.

Captare data

The user defines how data is captured relative to the trigger. Data can be captured before the
trigger, after the trigger, or centered around the trigger. If data 1s captured after the trigger, a
small percentage of cycles are captured before the trigger se the actual trigger condition can
be viewed.

Maximum sample depth

The Logic Analyzer sample depth is selected by the user on the Emulatien Tab. It can be set
to any power of two between 4K and 2M samples. The maximum sample size 1s dependent
on the number of Logic Analyzer capture cards. The sample size set in the GUI is the

2 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 380 of 394

Chapter Appendix A

number of samples that the HP Logic Analyzer collects using the time domain multiplexing.
When the vectors are updated, fewer vectors will be viewed due to the time domain
multiplexing. The actual number of vectors is less than the maximum Sample Depth.

To determine the ratio of user clocks to Logic Analyzer clocks, set the Logic Analyzer to 4K
samples and create a basic trigger which will oceur. Let the Logic Analyzer memory fill up
and upload the vectors. Determine the quantity of samples that were collected. The number
of samples can change with each compile of the design, based on the time-domain
multiplexing. With an understanding of the number of user clocks captured in a 4K sample,
the correct Sample Depth can be estimated for future captures.

The time required tc process the waveform and upload it to the screen is linearly related to
the amount of data collected. In order to expedite the uploading, use smaller sample depths.
If debugging a complex problem, larger sample depths can be used to capture a longer
period of time. After the Sample Depth has been selected, the HP Logic Analyzer can be
connected. Changing the Sample Depth after connecting to the Logic Analyzer will not take
effect until the Logic Analyzer has been disconnected and reconnected.

Downloading and running the togic analyzer

Connect to logic analyzer

Information in the Logic Analyzer Setup pane on the Emulation Tab cannot be changed
when the Logic Analyzer is connected. Prior to connecting to the Logic Analyzer, check that
the settings are correct for the Logic Analyzer. Verify the following parameters.

+ LA Probe Cards
» Sample Depth
» Signal Window

» Logic Analyzer host

The number of Logic Analyzer cards is determined before compiling. After the compile is
completed, it cannot be changed. The Sample Depth, signal window and Logic Analyzer
host can be changed, but only before connecting to the Logic Analyzer

Before connecting to the Logic Analyzer, the envirenment must be set up properly. The
Logic Analyzer is an Ethernet agent. In order to use the Logic Analyzer, it must mount the
disk on the HP Logic Analyzer onto the local workstation. The mountla executable that is
run must be owned by root in order to complete the mount. The mount point is config-
name.vmw/hpla/control and config-name.vmw/hpla/data. If someone else has the Logic

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 3

ATI Ex. 2075
IPR2023-00922
Page 381 of 394

Appendix A Chapter

Analyzer mounted, then it will not allow another user to mount it. If the Virtual.ogic GUIL 1s
exited without disconnecting from the Logic Analyzer manually, then the mount point
remains. However, using “ftp” to connect to the logic analyzer is suggested to ensure that
the systern files on the logic analyzer are not deleted by mistake. The potential of this
happening is high when the user does not exit from logic analyzer properly.

To use ftp option, please make sure that the following command is in params.mak file

VPROBE_OPTIONS = -fip

In order to connect to the Logic Analyzer, the following conditions must be met:

» The Logic Analyzer must respond to the UNIX ping command. If not, check setup,
hostid, and reboot the Logic Analyzer

» The user must be able to ftp to the Logic Analyzer. If not, try ping and reboot the
Logic Analyzer

Using fip mode
/hq/support/release/VirtnaLogic_v3.0.9/bin/vprobe -GUI Y
-tul vimw.trigger \

~vredump -hicrout recon_data map ~dataout reeon_data vre
-probe probe_window _0.pbw/SEE_probe_iomap \

-ne 14

-depth 04

-host trainla

-fip -

Checking cut license.. done

Connceting to logic analvzer. .

FTP: Connccted to trainla.

FTP: 220 HP16500C V01.00 FUSION FTP scrver (Version 3.3) reads.
Starting vprobe

(vprobe)

Run the logic analyzer

To run the Logic Analyzer and trigger, click on the buttons
+ Download Trigger

The trigger that s defined in the Triggers Tab will be converted to HP Logic
Analyzer Format and downloaded to the Logic Analyzer. Although the information
is not meaningful to the user, it is a confirmation that the Logic Analvzer was
programmed.

4 VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 382 of 394

Chapter Appendix A

When the trigger is received by the HP Logic Analyzer, it indicates that it is waiting
for a trigger with a green bar on the screen. In the gvl GUI, a message will also
indicate that the Logic Analyzer is waiting on a trigger.

Processing trigger file: reset.trigger

Begin generating Logic Analyzer expressicn tree...

End generating Logic Analyzer expression tree: 100% complete
Downloading Logic Analyzer trigger file: hptrigger.txzt

Logic Analyzer download successful.

Ceommands: exit lock guit step unlock

Initiating Logic Analyzer status poll...

* Record/Stop

This is a toggle button. Recerd polls for the trigger and captures data based on the
trigger state machine definition. Stop causes the Logic Analyzer to stop polling or
ta stop waiting for more data ta fill up the memory. If the trigger did net occur and

the user wants to see what 1s occurring at the time the stop button is pressed, then
the waveforms can be uploaded.

After a trigger is downloaded, the Logic Analyzer automatically goes inte Record
mode The Logic Analyzer screen will indicate this by converting the Run button to

a Stop button. Once the Logic Analyzer has triggered or been stopped, it will collect
the data and generate a message to the user;

The Logic Analyzer has stopped gathering data
Logice Analyzer status poll ended.
LA status received.

Commands: downlcoad exit lock guit run unlock upload

+ Upload Waveform Data

This takes the Logic Analyzer sample data and transfers it to the workstation. On
the warkstation, the data is reformatted for the time domain multiplexing and a file
is created containing the display data in vrc format. The waveform is created with a
unique name which the GUI will request from the user. When the file has been
transferred from the Logic Analyzer to the workstation and reformatted, the user
will see a message:

Upleading data.raw file from Logic Analyezer

FTE: 150 Opening data connection for data.raw
(149.172.201.173,39169) (100352 bytes).

FTP: 226 Transfer complete.

The data file from the analyzer, trainla, was successfully
transferred.

Leoading VRC hierarchy

Processing the data file...

HP Logic Analyzer recorded 8192 samples cof data

Waveform Processing complete

Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide 5

ATI Ex. 2075
IPR2023-00922
Page 383 of 394

Appendix A Chapter

Logic Analyzer upload successful.

« Logic Analyzer Window

The Logic Analyzer Window button brings up and XWindow display on the
workstation which shows the actual HP Logic Analyzer screen. Since the Logic
Analyzer has time domain multiplexed information, it is not useful to the user, other
than messages that are displayed that indicate when it is waiting on a trigger.

¢ VirtuaLogic 3.5 User Guide Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 384 of 394

e m el
EERR N--3 X

wa

KOS

Index

ABCDEFGHI JKLMNOPQRSTUVWXYZ

100% Visibility 111
100%, viSibility 200.213

A

active high unordered 81
active low unordered 81
Add 208

Add all domains 208

Add button 112

allow 4ST 260
allow 45T for mod 261
allow GSD 261
allow GSD for mod 261
allow ISL 281

allow ISL for mod 262
allow MDR 262

allow MDR_for mod 262
allow UFO 282
allow UFO for mod 253
Analysis form 163

-Ao 314

area_rep file 259

Array Board 31.167
-arrpart 312

Last Revision 25-Apr-2001

ASIC 70

design 70
Assembling a Useful Trigger 212
asynchronous inputs 100
Attributes 206
Auto-Compiled/Not Compiled 112
Auxiliary files 162

B

Backend Place and Route 33
batch mode

FPGA compile 173
bedb 196
behavioral code 325
bidirectional signals 106
-bond 313
Browser 35
buttons 39

Browse 48

Clipboard 48

Open 48

Redo 48

Reload 48

Save As 48

VirtuaLogic 3.5 User Guide i

ATI Ex. 2075
IPR2023-00922
Page 385 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Undo 48
VIRSIM/vre 48
Byte enable 77

C

Capture Data 2
Check button 114
Clipboard 58
-Clk 152
-clkopt 298
clkopt 318
clock 188
asynchronous 91
domains 89-100.375
multiple domains 91
signals 375
external 100
internal 90
Clock folding 318
clock ordering and period 182
Clock ratios 245
CMOS 33
compile celldefines 255
Compiled Signal Groups 205
Compiled Signal Windows 111,204
Compiler 33
Compiler form 178
Compiler, VirtuaLogic 38
compile-vhdl-inits 256
compiling design
running the compiler with
scripts 157
script-driven design 158
compiling the design
stopping Place and Route 172
Conditional Capture 150

Last Revision 25-Apr-2001

configurations

directory 375
Control attributes 207
core probes 204
counter declaration 216
counters 208.213.215.218
CPU 162

D

data.raw 5
-DB 308
debug 266
debug_module 266
-define- 313
-defines file 313
Delete button 114
design 334
Design Emulation Speed 245
Design name 70
Design Netlist
Importing Netlist 71-74
design netlist
using probe list to designate
signals to probe 334
Diagnostics 33
disallow 4ST for mod 263
disallow GSD for mod 263
disallow ISL for mod 263
disallow MDR for mod 264
disallow UFO for mod 264
Disk space 42
DISPLAY 38
Domain 318
domain declaration 216,218
domains 215
domains. See clock domains

VirtuaLogic 3.5 User Guide ii

ATI Ex. 2075
IPR2023-00922
Page 386 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

dont_debug_module 267
dont_preserve_module 267
Download Trigger 4
-Dump 305

E

edge-sensitive (state element) 375
Emulation bits 162
emulator
plugging into the target hardware
system 378
resetting the emulator and target
system 248
terminal 375
Emulator Boards 145
enable BHV messages 264
enable case pragmas 254
Errors Window 58
Evaluation of expressions 213
executable search path 42
explicit probing 109
Expression Repeat Counts 214
extension. pbw 115
extension.vinw 115

F

-fifo_refold port limit 297
File Browser 61
files, design

behavioral code in 325
force_all 265
force_module 265
FPGA 192
FPGA batch mode 173
FPGA compile

batch mode 173

iii VirtuaLogic 3.5 User Guide

task manager 173
FPGA Place and Route 167
FPGA place and route 369
-FP1 switch 367
Frequency 245
Frequency ratio 245

G

General-Purpose Counters 214
Global Resource Allocation 130,191
gnd_hanging terminals 257

GRA 190 192

-gra 197

Graphical Compiler Interface 41
Graphics 33

GUI 160,182

gvl 40,162

H

high-impedance state 248
hpla 3
-hvpd 315

IDS 200
ignore_non_rtl_gen 266
import 264

-IncProbe 311

Incremental Compile 192
Initial Compile 192
Initialization 181

Input timing 181

instance removal 76
Interconnect resynthesis 34
Internal Data Sampling 200

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 387 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

[0s, design 375

J

Jump declaration 212
Jump transition 213
jump-to-self transition 225
jump-to-self transition. 214

L

LA 190192
-la 1897
LC 190.192
-lg 197
level-sensitive (state element) 375
-Lib 308
Library 70.74
Local Analysis 190 191
Local Compile 190 191
log_file 258
Logic Analyzer 31.32.1.4
Logic Analvzer (LA)

trigger 377
Logic Analvzer Cable 1
Logic Analyzer diagnostics 1
Logic Analyzer host 3
Logic Analyzer Setup 1
Logic Analyzer Window 6
logic reduction 212
lut map 268

Manual Box Partitioning 190
max_error_count 259

max_recur_limit 256
-Mc 312
-Mem 309
-imemmap 313
memoroy speciication, producing
adding ports 86
Memory 77
Specification 183.180
memory details 108
memory specification
memory attributes 329
syntax 329
terminal bindings 329
terininal names

scalar 330
vector 330
memory specification, producing 85-
88
adding memory parameters
information 87
adding the memory 86
Mincut 317
MMC 18722190

MMC Compiler 193
MMC Driver 196
MMC Flows 192

MMC Phases 190
mmg¢_clean all 194
mme¢_compile all 194
mme¢_compile_auto 195
mme_compile manual 195
mmc cv_all 196
mme_subdirs 194 196
-MMCBoundary 195
-MMClInerFlow 197
-MMCResources 195

max_loop cnt 260 -Mo 214
max mesg count 260 model
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guide i

ATI Ex. 2075
IPR2023-00922
Page 388 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

memory 70
simulation 70
module 199
Modules 50
mountla 3
Multi Module Compile 187
-MultiAsic 311
Multi-domain 82
Multiplexed probes 2
multiplexing 188

N

-Nb 309
Netlist 163
netlist 48
netlist defines 376
Nets 50
nets
scalar 378
synthetic vector 376
vector 377
Networking 33
next declaration 218
Next Transition 207.213
noblack box 285
noclockblocks 300
-NoSrfi 293
-novre 281
-noXCT 295
-noXFT 295
-noxnf 281
-noXOT 285
-noXSAT 296
-NPb 309

VirtuaLogic 3.5 User Guide

O

Open File 205
opt_level 269
opt_timeout_limit 269
Optimization Level 142
out dir 258

out file 258

output clocks 102

P

params.mak 163

Partition 317

PC 33

PC Farm
/pc extension 373,374
hostnames on command line 372
obtaining a RSH daemon 370,372
obtaining VNC software 373
PC setup 370
RSH daemon 371
TCP/IP networking 370
testing the RSH daemon 371
usage 373
usage from the command
line 373
usage from the GUI 374
VMW/Xilinix software 372
VNC 373
Xilinx licensing 370

PC setup
for PC Farm 370

-Pfi 316

-Pfo 316

Physical Mapping 163

-Pi 315

-Po 315

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 389 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

-Pod 311
ports

read 85

write 85
Pre-cluster 317
preserve 267
preserve_module 267
preserve name case 256
primitives 70
Probe Card 3
Probe Group 2
probe list

syntax 334
Probe windows 163
-ProbeCard 310
-ProbeCore 310
probed & triggerable Signals 114
probed Signals 114
-ProbeDB 311
-Probeln 310
-ProbeMap 310
probes 376
-ProbeWindows 310
Programmable State Machine 213

Q

- 303
-Qsfi 283

R

race condition 376
readmem 180
Record/Stop 2.5
regular expression 376
repeat counter 219
report_file 258

Last Revision 25-Apr-2001

res_share 269
Restrictions 201
Revision control system 163
-Root 197,309
root module 73,376
RSH
daemon 371
Denicomp Systems 370, 372
obtaining a RSH daemon 370.372
test the daemon 371
RTL Compile 118
RTL for VLE 28
RTL Source Debug 142
RTL flow 119
Input 119
Messages 120
Output 120
Report Files 134
Area report 140
Design report 138
RTLC Additional Options 140-»
RTLC Troubleshooting 270

S

Sample Depth 2.3
scripts 157-158

Place and Route 158
-SDPN 200
Show Errors 206
Show Path 52
Signal Groups 205
Signal Groups pane 111
signal window 219
Signal Windows Pane 111
signals

asynchronous 375

VirtuaLogic 3.5 User Guide vi

ATI Ex. 2075
IPR2023-00922
Page 390 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

asynchronous reset 100
data 375
phase-locked 376
tie-off 377
Signals pane 111
Simulation Errors {Allow) 143
Four-state Reads 131
Gate Strengths and Delays 132
Incomplete Sensitivity Lists 127
Multiple Drivers 130
Undefined Function/task
Outputs 129
simulation model 70
single-ASIC configuration 40
State Attribute List 217
state declaration 217
state element 375
State Name 206
states 215
Store 2
suppress 259
Syatem components 33
synchronous [nputs
falling edge 94
rising edge 94
synchronous inputs
both edge 96
synchronous outputs
both edge 99
falling edge ©8
rising edge 97
Synopsys 113
synth_prefix 254
synthetic vector 113
-syspart 312
System Board 31,167
System components 31.34

vii VirtuaLogic 3.5 User Guide

System slowdown 33

T

Tab Bar 47
-target 312
target system 376
-targetfile 312
TCP/1P networking 370
terminal
module 334
wire 334
termmnal constraint file 377
terminal constraints 163
terminal nameg
scalars 330
vector 330
Terminals 51
Tersel00 304
-TerseProbe 305
Test bench 179.183
test fixture. See testbench. 70
-Ti 314
Time-domain multiplex 28 34
timer declaration 215
tuners 212.214.215.218
tunescale [ssues 181
Timing 317
Timing Specification 163
timing specification 88
syntax 332
TLA 4180.192
-tla 197
Top Level Analysis 180
Top module 70
Transaction [nterface Portal 29
trigger 375

Last Revision 25-Apr-2001

ATI Ex. 2075
IPR2023-00922
Page 391 of 394

ABCDEFGHI JKLMNOPQRSTUVWXYZ

trigger description 215

Trigger Diagram pane 211
Trigger pane 205

trigger. See Logic Analyzer (LA)
Triggerable Signals 114
triggerable signals 212
triggering capabilities 211
Tri-state 74.104

U
Upload Waveform Data 5

\

-v 303

variables
environment 42

-ve 304

vector capture 182

vector_shell v 183

verify.v netlist 178

Verilog 215.218.318.325
behavioral code 75,328
compiler 326
compiler directives 327
identifier 326
structural subset as design input
format 325

assignments 327

VirtualBrowser 48, 49.115
Virtualized Model

simulating 178
VirtuaLogic 215
VirtuaLogic compiler 103
VirtualLogic Reference Library 334
Virtualogic Structural Verilog
Subset 325
VirtualProbes 376
virtual-swap command 365
vle 40.160.163.193
VLE-5M 204
vmw.changes 188 192.200
vmw.clk 163,188 189.190
vmw, ftl 189
vmw.mem 163.189
vmw.pod 189
vmw prb 189
vw prb file 115
viw.pwl 189
vmw.qst 189
vinw.resources 190,191, 196.198
vinw.tie 189
VMW/Xilinx software 372
VMW _INIT STATE 181
VMW _READ_VECTORS 184
VMW _ VECTOR LENGTH 184
VNC

installing 373

obtaining software 373

parameters 326 -vs 304

syntactic constructs 326 VSM Verification 179

unsupported constructs 328 -vsn 301
'\/hdlout 303 Vsyn 200
-vhn 301 vtask 193
Virtual Probe 33 vw 304
Virtual Wires 27 34
Virtual Wires technology 188
Last Revision 25-Apr-2001 VirtuaLogic 3.5 User Guid