Texture Fetch	Instruction												
	Cycle 0					/cle	1		Cy	cle	2		Cycle 3
SQ_TP	FIELD	bit I	DWORD	bit	FIELD	bit	DWORD I	bit	FIELD	bit	DWORD	bit	FIELD bit DWORD bit 96 RD bit
0	OPCODE	0	0	0	DST_SEL_W	1	1 1	10	USE_COMP_LOD	0	1	28	unused 5 2 14 1 0 5
1	OPCODE	1	0	1	DST_SEL_W	1	1 1	11	USE_REG_LOD	0	1	29	unused 6 2 15 1 0 6
2	OPCODE	2	0	2	MAG_FILTER	0	1 1	12	USE_REG_LOD	1	1	30	OFFSET_X 0 2 16 1 0 7
3	OPCODE	3	0	3	MAG_FILTER	1	1 1	13	unused	-	1	31	OFFSET_X 1 2 17 1 0 8
4	OPCODE	4	0	4	MIN_FILTER	0	1 1	14	USE_REG_GRADIENTS	0	2	0	OFFSET_X 2 2 18 1 0 9
5	FETCH_VALID_ONLY	0	0	19	MIN_FILTER	1	1 1	15	SAMPLE_LOCATION	0	2	1	OFFSET_X 3 2 19 1 0 10
6	TX_COORD_DENORM	0	0	25	MIP_FILTER	0	1 1	16	LOD_BIAS	0	2	2	OFFSET_X 4 2 20 1 0 11
7	SAMPLE_LOCATION	0	0	26	MIP_FILTER	1	1 1	17	LOD_BIAS	1	2	3	OFFSET_Y 0 2 21 1 0 12
8	DST_SEL_X	0	1	0	ANISO_FILTER	0	1 1	18	LOD_BIAS	2	2	4	OFFSET_Y 1 2 22 1 0 13
9	DST_SEL_X	1	1	1	ANISO_FILTER	1	1 1	19	LOD_BIAS	3	2	5	OFFSET_Y 2 2 23 1 0 14
10	DST_SEL_X	2	1	2	ANISO_FILTER	2	1 2	20	LOD_BIAS	4	2	6	OFFSET_Y 3 2 24 1 0 15
11	DST_SEL_Y	0	1	3	ARBITRARY_FILTER	0	1 2	21	LOD_BIAS	5	2	7	OFFSET_Y 4 2 25 1 0 16
12	DST_SEL_Y	1	1	4	ARBITRARY_FILTER	1	1 2	22	LOD_BIAS	6	2	8	OFFSET_Z 0 2 26 1 0 17
13	DST_SEL_Y	2	1	5	ARBITRARY_FILTER	2	1 2	23	unused	0	2	9	OFFSET_Z 1 2 27 1 0 18
14	DST_SEL_Z	0	1	6	VOL_MAG_FILTER	0	1 2	24	unused	1	2	10	OFFSET_Z 2 2 28 1 0 20
15	DST_SEL_Z	1	1	7	VOL_MAG_FILTER	1	1 2	25	unused	2	2	11	OFFSET_Z 3 2 29 1 0 21
16	DST_SEL_Z	2	1	8	VOL_MIN_FILTER	0	1 2	26	unused	3	2	12	OFFSET_Z 4 2 30 1 0 22
17	DST_SEL_W	0	1	9	VOL_MIN_FILTER	1	1 2	27	unused	4	2	13	unused - unused - 1 0 23
													1 0 26
Vertex Fetch Ir	nstruction				0				0		~		1 0 27
00 TD	Cy	cle 0				/cle	1			/cle	2		
SQ_IP	FIELD	DIT	DWORD	DIT	FIELD	DIT	DWORD		FIELD	DIT	DWORD	DIT	FIELD DIT DWORD DIT 1 0 29
0	OPCODE	0	0	0	DST_SEL_W	1	1 1	10	EXP_ADJUST_ALL	4	1	28	OFFSEI_X 6 2 14 1 0 30
1	OPCODE	1	0	1	DSI_SEL_W	1	1 1	11	EXP_ADJUST_ALL	5	1	29	OFFSEI_X / 2 15 1 0 31
2	OPCODE	2	0	2	FORMAT_COMP_ALL	0	1	12	unused	-	1	30	OFFSEI_X 8 2 16 1 1 31
3	OPCODE	3	0	3	NUM_FORMAT_ALL	0	1	13	unused	-	1	31	OFFSEI_X 9 2 17 1 2 31
4	OPCODE	4	0	4	SIGNED_RF_MODE_ALL	0	1 1	14	STRIDE	0	2	0	OFFSEI_X 10 2 18 70
5	FETCH_VALID_ONLY	0	0	19	INDEX_ROUND	0	1 1	15	STRIDE	1	2	1	OFFSET_X 11 2 19
6	CONST_INDEX_SEL	0	0	25	DATA_FORMAT	0	1 1	16	STRIDE	2	2	2	OFFSET_X 12 2 20
7	CONST_INDEX_SEL	1	0	26	DATA_FORMAT	1	1 1	17	STRIDE	3	2	3	OFFSET_X 13 2 21
8	DST_SEL_X	0	1	0	DATA_FORMAT	2	1 1	18	STRIDE	4	2	4	OFFSET_X 14 2 22
9	DST_SEL_X	1	1	1	DATA_FORMAT	3	1 1	19	STRIDE	5	2	5	OFFSET_X 15 2 23
10	DST_SEL_X	2	1	2	DATA_FORMAT	4	1 2	20	STRIDE	6	2	6	OFFSET_X 16 2 24
11	DST_SEL_Y	0	1	3	DATA_FORMAT	5	1 2	21	STRIDE	7	2	7	OFFSET_X 17 2 25
12	DST_SEL_Y	1	1	4	unused	-	1 2	22	OFFSET_X	0	2	8	OFFSET_X 18 2 26
13	DST_SEL_Y	2	1	5	unused	-	1 2	23	OFFSET_X	1	2	9	OFFSET_X 19 2 27
14	DST_SEL_Z	0	1	6	EXP_ADJUST_ALL	0	1 2	24	OFFSET_X	2	2	10	OFFSET_X 20 2 28
15	DST_SEL_Z	1	1	7	EXP_ADJUST_ALL	1	1 2	25	OFFSET_X	3	2	11	OFFSET_X 21 2 29
16	DST_SEL_Z	2	1	8	EXP_ADJUST_ALL	2	1 2	26	OFFSET_X	4	2	12	OFFSET_X 22 2 30
17	DST SEL W	0	1	9	EXP_ADJUST_ALL	3	1 2	27	OFFSET_X	5	2	13	unused - unused -

ATI Ex. 2066 IPR2023-00922 Page 1 of 291

Texture F	etch Constant Fields														
	Cy	cle 0)		C	ycle 1		Cy	cle 2	2		C	/cle 3	3	
SQ_TP	FIELD	bit	DWORD bit		FIELD	bit D	WORD bit	FIELD	bit	DWORD	bit	FIELD	bit	DWORD	bit
0	unused	-	3 0		BASE_ADDRESS	4	4 16	NUM_FORMAT_ALL	0	6	0	LOD_BIAS	4	7	16
1	unused	-	3 1	I	BASE_ADDRESS	5	4 17	DST_SEL_X	0	6	1	LOD_BIAS	5	7	17
2	FORMAT_COMP_X	0	3 2	I	BASE_ADDRESS	6	4 18	DST_SEL_X	1	6	2	LOD_BIAS	6	7	18
3	FORMAT_COMP_X	1	3 3	I	BASE_ADDRESS	7	4 19	DST_SEL_X	2	6	3	LOD_BIAS	7	7	19
4	FORMAT_COMP_Y	0	34		BASE_ADDRESS	8	4 20	DST_SEL_Y	0	6	4	LOD_BIAS	8	7	20
5	FORMAT_COMP_Y	1	35	I	BASE_ADDRESS	9	4 21	DST_SEL_Y	1	6	5	LOD_BIAS	9	7	21
6	FORMAT_COMP_Z	0	36		BASE_ADDRESS	10	4 22	DST_SEL_Y	2	6	6	GRAD_EXP_ADJUST_H	0	7	22
7	FORMAT_COMP_Z	1	37		BASE_ADDRESS	11	4 23	DST_SEL_Z	0	6	7	GRAD_EXP_ADJUST_H	1	7	23
8	FORMAT_COMP_W	0	38	I	BASE_ADDRESS	12	4 24	DST_SEL_Z	1	6	8	GRAD_EXP_ADJUST_H	2	7	24
9	FORMAT_COMP_W	1	39		BASE_ADDRESS	13	4 25	DST_SEL_Z	2	6	9	GRAD_EXP_ADJUST_H	3	7	25
10	CLAMP_X	0	3 10		BASE_ADDRESS	14	4 26	DST_SEL_W	0	6	10	GRAD_EXP_ADJUST_H	4	7	26
11	CLAMP_X	1	3 11		BASE_ADDRESS	15	4 27	DST_SEL_W	1	6	11	GRAD_EXP_ADJUST_V	0	7	27
12	CLAMP_X	2	3 12		BASE_ADDRESS	16	4 28	DST_SEL_W	2	6	12	GRAD_EXP_ADJUST_V	1	7	28
13	CLAMP_Y	0	3 13	I	BASE_ADDRESS	17	4 29	EXP_ADJUST_ALL	0	6	13	GRAD_EXP_ADJUST_V	2	7	29
14	CLAMP_Y	1	3 14		BASE_ADDRESS	18	4 30	EXP_ADJUST_ALL	1	6	14	GRAD_EXP_ADJUST_V	3	7	30
15	CLAMP_Y	2	3 15	I	BASE_ADDRESS	19	4 31	EXP_ADJUST_ALL	2	6	15	GRAD_EXP_ADJUST_V	4	7	31
16	CLAMP_Z	0	3 16		SIZE	0	5 0	EXP_ADJUST_ALL	3	6	16	BORDER_COLOR	0	8	0
17	CLAMP_Z	1	3 17		SIZE	1	5 1	EXP_ADJUST_ALL	4	6	17	BORDER_COLOR	1	8	1
18	CLAMP_Z	2	3 18		SIZE	2	52	EXP_ADJUST_ALL	5	6	18	FORCE_BC_W_TO_MAX	0	8	2
19	SIGNED_RF_MODE_ALL	0	3 19		SIZE	3	53	MAG_FILTER	0	6	19	TRI_JUICE	0	8	3
20	DIM	0	3 20		SIZE	4	54	MAG_FILTER	1	6	20	TRI_JUICE	1	8	4
21	DIM	1	3 21		SIZE	5	55	MIN_FILTER	0	6	21	unused	-	8	5
22	PITCH	0	3 22		SIZE	6	56	MIN_FILTER	1	6	22	unused	-	8	6
23	PITCH	1	3 23		SIZE	7	57	MIP_FILTER	0	6	23	unused	-	8	7
24	PITCH	2	3 24		SIZE	8	58	MIP_FILTER	1	6	24	unused	-	8	8
25	PITCH	3	3 25		SIZE	9	59	ANISO_FILTER	0	6	25	unused	-	8	9
26	PITCH	4	3 26		SIZE	10	5 10	ANISO_FILTER	1	6	26	unused	-	8	10
27	PITCH	5	3 27		SIZE	11	5 11	ANISO_FILTER	2	6	27	MIP_PACKING	0	8	11
28	PITCH	6	3 28		SIZE	12	5 12	ARBITRARY_FILTER	0	6	28	MIP_ADDRESS	0	8	12
29	PITCH	7	3 29		SIZE	13	5 13	ARBITRARY_FILTER	1	6	29	MIP_ADDRESS	1	8	13
30	PITCH	8	3 30		SIZE	14	5 14	ARBITRARY_FILTER	2	6	30	MIP_ADDRESS	2	8	14
31	TILED	0	3 31		SIZE	15	5 15	BORDER_SIZE	0	6	31	MIP_ADDRESS	3	8	15
32	DATA_FORMAT	0	4 0		SIZE	16	5 16	VOL_MAG_FILTER	0	7	0	MIP_ADDRESS	4	8	16
33	DATA_FORMAT	1	4 1		SIZE	17	5 17	VOL_MIN_FILTER	0	7	1	MIP_ADDRESS	5	8	17
34	DATA_FORMAT	2	4 2		SIZE	18	5 18	MIN_MIP_LEVEL	0	7	2	MIP_ADDRESS	6	8	18
35	DATA_FORMAT	3	4 3		SIZE	19	5 19	MIN_MIP_LEVEL	1	7	3	MIP_ADDRESS	7	8	19
36	DATA_FORMAT	4	4 4		SIZE	20	5 20	MIN_MIP_LEVEL	2	7	4	MIP_ADDRESS	8	8	20
37	DATA_FORMAT	5	4 5		SIZE	21	5 21	MIN_MIP_LEVEL	3	7	5	MIP_ADDRESS	9	8	21
38	ENDIAN_SWAP	0	4 6		SIZE	22	5 22	MAX_MIP_LEVEL	0	7	6	MIP_ADDRESS	10	8	22
39	ENDIAN_SWAP	1	4 7		SIZE	23	5 23	MAX_MIP_LEVEL	1	7	7	MIP_ADDRESS	11	8	23
40	REQUEST_SIZE	0	4 8		SIZE	24	5 24	MAX_MIP_LEVEL	2	7	8	MIP_ADDRESS	12	8	24
41	REQUEST_LATENCY	0	4 9		SIZE	25	5 25	MAX_MIP_LEVEL	3	7	9	MIP_ADDRESS	13	8	25
42	unused	-	4 10		SIZE	26	5 26	MAG_ANISO_WALK	0	7	10	MIP_ADDRESS	14	8	26
43	NEAREST_CLAMP_POLICY	0	4 11		SIZE	27	5 27	MIN_ANISO_WALK	0	7	11	MIP_ADDRESS	15	8	27
44	BASE_ADDRESS	0	4 12		SIZE	28	5 28	LOD_BIAS	0	7	12	MIP_ADDRESS	16	8	28
45	BASE_ADDRESS	1	4 13		SIZE	29	5 29	LOD_BIAS	1	7	13	MIP_ADDRESS	17	8	29
46	BASE_ADDRESS	2	4 14		SIZE	30	5 30	LOD_BIAS	2	7	14	MIP_ADDRESS	18	8	30
47	BASE_ADDRESS	3	4 15		SIZE	31	5 31	LOD_BIAS	3	7	15	MIP_ADDRESS	19	8	31

ATI Ex. 2066 IPR2023-00922 Page 2 of 291

Vertex Fetch Constant Fields

	Cycle 0		C	/cle	1		Cy	/cle	2		Cycle 3	
SQ_TP	FIELD bit [DWORD bit	FIELD	bit	DWORD	bit	FIELD	bit	DWORD	bit	FIELD bit D	WORD bit
0	unused -	3 0	SIZE	14	4	16	ENDIAN_SWAP	0	6	0	BASE_ADDRESS 14	7 16
1	unused -	3 1	SIZE	15	4	17	ENDIAN_SWAP	1	6	1	BASE_ADDRESS 15	7 17
2	BASE_ADDRESS 0	3 2	SIZE	16	4	18	SIZE	0	6	2	BASE_ADDRESS 16	7 18
3	BASE_ADDRESS 1	3 3	SIZE	17	4	19	SIZE	1	6	3	BASE_ADDRESS 17	7 19
4	BASE_ADDRESS 2	3 4	SIZE	18	4	20	SIZE	2	6	4	BASE_ADDRESS 18	7 20
5	BASE_ADDRESS 3	3 5	SIZE	19	4	21	SIZE	3	6	5	BASE_ADDRESS 19	7 21
6	BASE_ADDRESS 4	36	SIZE	20	4	22	SIZE	4	6	6	BASE_ADDRESS 20	7 22
7	BASE ADDRESS 5	3 7	SIZE	21	4	23	SIZE	5	6	7	BASE ADDRESS 21	7 23
8	BASE ADDRESS 6	38	SIZE	22	4	24	SIZE	6	6	8	BASE ADDRESS 22	7 24
9	BASE ADDRESS 7	39	SIZE	23	4	25	SIZE	7	6	9	BASE ADDRESS 23	7 25
10	BASE ADDRESS 8	3 10	CLAMP X	0	4	26	SIZE	8	6	10	BASE ADDRESS 24	7 26
11	BASE ADDRESS 9	3 11	BORDER COLOR	Ó	4	27	SIZE	9	6	11	BASE ADDRESS 25	7 27
12	BASE ADDRESS 10	3 12	REQUEST SIZE	0	4	28	SIZE	10	6	12	BASE ADDRESS 26	7 28
13	BASE ADDRESS 11	3 13	REQUEST SIZE	1	4	29	SIZE	11	6	13	BASE ADDRESS 27	7 29
14	BASE ADDRESS 12	3 14	CLAMP DISABLE	Ó	4	30	SIZE	12	ĕ	14	BASE ADDRESS 28	7 30
15	BASE ADDRESS 13	3 15	unused	-	4	31	SIZE	13	6	15	BASE ADDRESS 29	7 31
16	BASE ADDRESS 14	3 16	unused		5	0	SIZE	14	ĕ	16	ENDIAN SWAP 0	8 0
17	BASE ADDRESS 15	3 17	unused		5	1	SIZE	15	ĕ	17	ENDIAN SWAP 1	8 1
18	BASE ADDRESS 16	3 18	BASE ADDRESS	0	5	2	SIZE	16	ĕ	18	SIZE 0	8 2
19	BASE ADDRESS 17	3 19	BASE ADDRESS	1	5	3	SIZE	17	ĕ	19	SIZE 1	8 3
20	BASE ADDRESS 18	3 20	BASE ADDRESS	2	5	4	SIZE	18	ĕ	20	SIZE 2	8 4
21	BASE ADDRESS 19	3 21	BASE ADDRESS	3	5	5	SIZE	19	ő	21	SIZE 3	8 5
22	BASE ADDRESS 20	3 22	BASE ADDRESS	4	5	ĕ	SIZE	20	ĕ	22	SIZE 4	8 6
23	BASE ADDRESS 21	3 23	BASE ADDRESS	5	5	7	SIZE	21	ő	23	SIZE 5	8 7
24	BASE ADDRESS 22	3 24	BASE ADDRESS	6	5	8	SIZE	22	6	24	SIZE 6	8 8
25	BASE ADDRESS 23	3 25	BASE ADDRESS	7	5	ğ	SIZE	23	6	25	SIZE 7	8 9
26	BASE ADDRESS 24	3 26	BASE ADDRESS	Ŕ	5	10		20	ő	26	SIZE 8	8 10
20	BASE ADDRESS 25	3 27	BASE ADDRESS	ă	5	11		ő	6	27	SIZE 0	8 11
28	BASE ADDRESS 26	3 28	BASE ADDRESS	10	5	12	REQUEST SIZE	ő	6	28	SIZE 10	8 12
20	BASE ADDRESS 27	3 29	BASE ADDRESS	11	5	13	REQUEST SIZE	1	ő	20	SIZE 10	8 13
30	BASE ADDRESS 28	3 30	BASE ADDRESS	12	5	14		0	6	30	SIZE 12	8 14
31	BASE ADDRESS 20	3 31	BASE ADDRESS	13	5	15			6	31	SIZE 12 SIZE 13	8 15
32		4 0	BASE ADDRESS	14	5	16	unused	_	7	0	SIZE 14	8 16
33	ENDIAN SWAP 1	4 0	BASE ADDRESS	15	5	17	unused	1	7	1	SIZE 14	8 17
34	SIZE 0	4 1	BASE ADDRESS	16	5	10		0	7	2	SIZE 15	8 18
25	SIZE 0	4 2		17	5	10		1	7	2	SIZE 10	0 10
30		4 3	DAGE ADDRESS	10	5	20		2	7	3	SIZE 17 SIZE 10	0 19
30	SIZE 2 SIZE 2	4 4	BASE_ADDRESS	10	5	20		2	7	5	SIZE 10	0 20
20		4 5	DAGE_ADDRESS	19	5	21	BASE ADDRESS	3	7	0	SIZE 19	0 21
30		4 0	DAGE_ADDREGG	20	5	22	BASE ADDRESS	4	7	0		0 22
39		4 /	DAGE_ADDREGG	21	5	23		5	7	6		0 23
40		4 0	DAGE_ADDREGG	22	5	24	BASE_ADDRESS	0	7	0	51ZE 22	0 24
41	SIZE /	4 9	BASE_ADDRESS	23	5	25	BASE_ADDRESS		1	40	SIZE 23	8 25
42	SIZE 8	4 10	BASE_ADDRESS	24	5	20	BASE_ADDRESS	8	4	10		8 26
43		4 11	BASE_ADDRESS	25	5	27	BASE ADDRESS	10	(11	BORDER_COLOR 0	8 27
44	SIZE 10	4 12	BASE_ADDRESS	26	5	28	BASE_ADDRESS	10	(12	REQUESI_SIZE 0	8 28
40		4 13	BASE_ADDRESS	27	5	29	BASE_ADDRESS	11	<u>_</u>	13	REQUESI_SIZE 1	8 29
46	SIZE 12	4 14	BASE_ADDRESS	28	5	30	BASE_ADDRESS	12	7	14	CLAMP_DISABLE 0	8 30
47	SIZE 13	4 15	BASE_ADDRESS	29	5	31	BASE_ADDRESS	13	7	15	unused -	8 31

AMD1044_0207649

ATI Ex. 2066 IPR2023-00922 Page 3 of 291

SQ_TP_thread_id				
	Cycle 0	Cycle 1	Cycle 2	Cycle 3
SQ_TP	FIELD bit DWORD bit			
0	SQ_TP_thread_id 0	SQ_TP_thread_id 2	SQ_TP_thread_id 4	SQ_TP_end_of_clause 0
1	SQ_TP_thread_id 1	SQ_TP_thread_id 3	SQ_TP_thread_id 5	unused
SQ_TP_gpr_wr_add	dr			
	Cycle 0	Cycle 1	Cycle 2	Cycle 3
SQ_TP	FIELD bit DWORD bit			
0	SQ_TP_type 0	SQ_TP_gpr_wr_addr 1	SQ_TP_gpr_wr_addr 3	SQ_TP_gpr_wr_addr 5
1 5	SQ_TP_gpr_wr_addr 0	SQ_TP_gpr_wr_addr 2	SQ_TP_gpr_wr_addr 4	SQ_TP_gpr_wr_addr 6

ATI Ex. 2066 IPR2023-00922 Page 4 of 291

Texture Fetch	n Instruction												
00 75	Cy	cle 0		C	ycle		Cy	cle 2	2	Cy	cle 3		
SQ_IP	FIELD	DIT DWORL		FIELD	DIT	DWORD DIT		DIC	DWORD bit		DIT DWORD		96 DWORD DI
1	OPCODE	0 (DSI_SEL_W	1	1 10		0	1 20		0 <u>2</u> 7 2	14	1 05
2	OPCODE	2 () 1) 2		0	1 12		1	1 29	SAMDIE SHIET Y	0 2	16	1 00
2	OPCODE	2 (2	MAG_FILTER	1	1 12			1 30	SAMPLE_SHIFT_X	1 2	17	1 07
4	OPCODE	4 () 4	MIN FILTER	Ó	1 14		0	2 0	SAMPLE SHIFT X	2 2	18	1 0.9
5	FETCH VALID ONLY	0 0) 19	MIN_FILTER	1	1 15	LOD BIAS H	1	2 1	SAMPLE_OHIT_X	3 2	19	1 0.1
6	TX COORD NUM	0 0) 25	MIP FILTER	0 0	1 16	LOD BIAS H	2	2 2	SAMPLE SHIFT X	4 2	20	1 01
7	unused	- (26	MIP FILTER	1	1 17	LOD BIAS H	3	2 3	SAMPLE SHIFT Y	0 2	21	1 0 12
8	DST_SEL_X	0 1	0	ANISO_FILTER	0	1 18	LOD_BIAS_H	4	2 4	SAMPLE_SHIFT_Y	1 2	22	1 0.13
9	DST_SEL_X	1 1	1	ANISO_FILTER	1	1 19	LOD_BIAS_H	5	2 5	SAMPLE_SHIFT_Y	2 2	23	1 014
10	DST_SEL_X	2 1	2	ANISO_FILTER	2	1 20	LOD_BIAS_H	6	2 6	SAMPLE_SHIFT_Y	3 2	24	1 0 15
11	DST_SEL_Y	0 1	3	ARBITRARY_FILTER	0	1 21	LOD_BIAS_H	7	2 7	SAMPLE_SHIFT_Y	4 2	25	1 016
12	DST_SEL_Y	1 1	4	ARBITRARY_FILTER	1	1 22	LOD_BIAS_V	0	28	SAMPLE_SHIFT_Z	0 2	26	1 017
13	DST_SEL_Y	2 1	5	ARBITRARY_FILTER	2	1 23	LOD_BIAS_V	1	2 9	SAMPLE_SHIFT_Z	1 2	27	1 0 18
14	DST_SEL_Z	0 1	6	VOL_MAG_FILTER	0	1 24	LOD_BIAS_V	2	2 10	SAMPLE_SHIFT_Z	2 2	28	1 0 20
15	DST_SEL_Z	1 1	1	VOL_MAG_FILTER	1	1 25	LOD_BIAS_V	3	2 11	SAMPLE_SHIFT_Z	3 2	29	1 0.2
16	DSI_SEL_Z	2 1	8		0	1 26	LOD_BIAS_V	4	2 12	SAMPLE_SHIFT_Z	4 2	30	1 0 22
17	DST_SEL_W	0 1	9	VOL_MIN_FILTER	1	1 27	LOD_BIAS_V	5	2 13	unused	- unused	-	1 02
Vortov Estab	Instruction												1 0 20
Vertex i etch	Cvi	cle 0		C	vcle	1	C	cle 2	2	Cv	cle 3		1 0.28
SQ TP	FIELD	bit DWORD) bit	FIELD	bit	DWORD bit	FIELD	bit	 DWORD bit	FIELD	bit DWORD	bit	1 0.29
0	OPCODE	0 0) ()	DST_SEL_W	1	1 10	EXP_ADJUST_ALL	4	1 28	unused	- 2	14	1 0 30
1	OPCODE	1 () 1	DST_SEL_W	1	1 11	EXP_ADJUST_ALL	5	1 29	unused	- 2	15	1 03 [.]
2	OPCODE	2 0) 2	FORMAT_COMP_ALL	0	1 12	unused	-	1 30	OFFSET	0 2	16	1 13 [.]
3	OPCODE	3 () 3	NUM_FORMAT_ALL	0	1 13	unused	-	1 31	OFFSET	1 2	17	1 23
4	OPCODE	4 () 4	SIGNED_RF_MODE_ALL	0	1 14	STRIDE	0	2 0	OFFSET	2 2	18	70
5	unused	- () 19	unused	-	1 15	STRIDE	1	2 1	OFFSET	3 2	19	
6	CONST_INDEX_SEL	0 () 25	DATA_FORMAT	0	1 16	STRIDE	2	2 2	OFFSEI	4 2	20	
/	CONST_INDEX_SEL	1 () 26	DATA_FORMAT	1	1 1/	STRIDE	3	2 3	OFFSET	5 2	21	
8	DSI_SEL_X	0			2	1 18	STRIDE	4	24	OFFSET	0 Z	22	
9		2 1	1 2			1 19	STRIDE	5	2 5	UFFSEI	1 2	23 24	
10	DST_SEL_X	0 1	2		5	1 20	STRIDE	7	2 0	unused	- 2	24	
12	DST_SEL Y	1 1	4	unused	-	1 22	unused	·.	2 8	unused	- 2	26	
13	DST_SEL Y	2 1	5	unused	-	1 23	unused	-	2 9	unused	- 2	27	
14	DST SEL Z	0 1	6	EXP ADJUST ALL	0	1 24	unused	-	2 10	unused	- 2	28	
15	DST_SEL_Z	1 1	7	EXP ADJUST ALL	1	1 25	unused	-	2 11	unused	- 2	29	
16	DST_SEL_Z	2 1	8	EXP_ADJUST_ALL	2	1 26	unused	-	2 12	unused	- 2	30	
17	DST_SEL_W	0 1	9	EXP_ADJUST_ALL	3	1 27	unused	-	2 13	unused	- unused	-	
l exture Fetch	n Constant Fields			0		1	0		n	Cur			
SO TP) hit		hit			hit	Z DWORD bit		hit DWORD	hit	
0	unused	- 3	3 0	BASE ADDRESS	4	4 16	NUM FORMAT ALL	0	6 0	LOD BIAS H	6 7	16	
1	unused	- 3	3 1	BASE ADDRESS	5	4 17	DST SEL X	Ō	6 1	LOD BIAS H	7 7	17	
2	FORMAT COMP X	0 3	3 2	BASE ADDRESS	6	4 18	DST SEL X	1	6 2	LOD BIAS H	8 7	18	
3	FORMAT_COMP_X	1 3	3 3	BASE_ADDRESS	7	4 19	DST_SEL_X	2	6 3	LOD_BIAS_H	9 7	19	
4	FORMAT_COMP_Y	0 3	3 4	BASE_ADDRESS	8	4 20	DST_SEL_Y	0	6 4	LOD_BIAS_V	0 7	20	
5	FORMAT_COMP_Y	1 3	35	BASE_ADDRESS	9	4 21	DST_SEL_Y	1	65	LOD_BIAS_V	1 7	21	
6	FORMAT_COMP_Z	0 3	36	BASE_ADDRESS	10	4 22	DST_SEL_Y	2	66	LOD_BIAS_V	2 7	22	
7	FORMAT_COMP_Z	1 3	37	BASE_ADDRESS	11	4 23	DST_SEL_Z	0	6 7	LOD_BIAS_V	3 7	23	
8	FORMAT_COMP_W	0 3	3 8	BASE_ADDRESS	12	4 24	DST_SEL_Z	1	68	LOD_BIAS_V	4 7	24	
9	FORMAT_COMP_W	1 3	3 9	BASE_ADDRESS	13	4 25	DST_SEL_Z	2	69	LOD_BIAS_V	5 7	25	
10	CLAMP_X	0 3	5 10	BASE_ADDRESS	14	4 26	DST_SEL_W	0	6 10	LOD_BIAS_V	b 7	26	

ATI Ex. 2066 IPR2023-00922 Page 5 of 291

11	CLAMP X	1	3 11	BASE ADDRESS	15	4 27	DST SEL W	1	6	11	LOD BIAS V	7	7 27
12		2	3 12	BASE ADDRESS	16	1 28	DST_GEL_W	2	6	12		ģ	7 28
12		2	2 12		17	4 20		2	0	12		0	7 20
13		0	3 13	DAGE_ADDRESS	17	4 29	EXP_ADJUST_ALL	0	0	13	LOD_BIAS_V	9	7 29
14	CLAMP_1	1	3 14	BASE_ADDRESS	10	4 30	EXP_ADJUST_ALL	1	0	14	DIVI_3D	U	7 30
15	CLAMP_Y	2	3 15	BASE_ADDRESS	19	4 31	EXP_ADJUST_ALL	2	6	15	Unused	-	7 31
16	CLAMP_Z	0	3 16	SIZE	0	5 0	EXP_ADJUST_ALL	3	6	16	BORDER_COLOR	0	8 0
17	CLAMP_Z	1	3 17	SIZE	1	5 1	EXP_ADJUST_ALL	4	6	17	BORDER_COLOR	1	8 1
18	CLAMP_Z	2	3 18	SIZE	2	52	EXP_ADJUST_ALL	5	6	18	FORCE_BC_W_TO_MAX	0	82
19	SIGNED_RF_MODE_ALL	0	3 19	SIZE	3	53	MAG_FILTER	0	6	19	unused	-	83
20	DIM	0	3 20	SIZE	4	54	MAG_FILTER	1	6	20	unused	-	8 4
21	DIM	1	3 21	SIZE	5	55	MIN_FILTER	0	6	21	unused	-	8 5
22	PITCH	0	3 22	SIZE	6	56	MIN FILTER	1	6	22	unused	-	86
23	PITCH	1	3 23	SIZE	7	57	MIP_FILTER	0	6	23	unused	-	87
24	PITCH	2	3 24	SIZE	8	5 8	MIP_FILTER	1	6	24	unused	-	8 8
25	PITCH	3	3 25	SIZE	9	5 9	ANISO FILTER	Ó	6	25	unused	-	8 9
26	PITCH	4	3 26	SIZE	10	5 10	ANISO FILTER	1	6	26	unused	-	8 10
27	PITCH	5	3 27	SIZE	11	5 11		2	6	27	unused	-	8 11
28	PITCH	6	3 28	SIZE	12	5 12		2	6	20		0	8 12
20		7	2 20	SIZE	12	5 12		1	0	20		1	0 12
29	PIICH	6	3 29	SIZE	13	5 13		1	6	29			0 13
30	PIICH	8	3 30	SIZE	14	5 14		2	6	30	MIP_ADDRESS	2	8 14
31	TILED	0	3 31	SIZE	15	5 15	BORDER_SIZE	0	6	31	MIP_ADDRESS	3	8 15
32	DATA_FORMAT	0	4 0	SIZE	16	5 16	VOL_MAG_FILTER	0	7	0	MIP_ADDRESS	4	8 16
33	DATA_FORMAT	1	4 1	SIZE	17	5 17	VOL_MIN_FILTER	0	7	1	MIP_ADDRESS	5	8 17
34	DATA_FORMAT	2	4 2	SIZE	18	5 18	MIN_MIP_LEVEL	0	7	2	MIP_ADDRESS	6	8 18
35	DATA_FORMAT	3	4 3	SIZE	19	5 19	MIN_MIP_LEVEL	1	7	3	MIP_ADDRESS	7	8 19
36	DATA_FORMAT	4	4 4	SIZE	20	5 20	MIN_MIP_LEVEL	2	7	4	MIP_ADDRESS	8	8 20
37	DATA_FORMAT	5	4 5	SIZE	21	5 21	MIN_MIP_LEVEL	3	7	5	MIP_ADDRESS	9	8 21
38	unused	-	4 6	SIZE	22	5 22	MAX MIP LEVEL	0	7	6	MIP ADDRESS	10	8 22
39	unused	-	4 7	SIZE	23	5 23	MAX_MIP_LEVEL	1	7	7	MIP ADDRESS	11	8 23
40	unused	-	4 8	SIZE	24	5 24	MAX_MIP_LEVEL	2	7	8	MIP_ADDRESS	12	8 24
41	unused	-	4 9	SIZE	25	5 25	MAX_MIP_LEVEL	3	7	9	MIP ADDRESS	13	8 25
42	unused	-	4 10	SIZE	26	5 26	LOD BIAS H	õ	. 7	10	MIP ADDRESS	14	8 26
43	unused		4 10	SIZE	27	5 27		1	7	11		15	8 27
40		0	4 12	012E	20	5 20		2	7	12		16	0 21
44	BASE ADDRESS	1	4 12	SIZE	20	5 20		2	7	12		17	0 20
45	BASE ADDRESS	2	4 13		29	5 29		3	7	13		10	0 29
40	DAGE_ADDREGG	2	4 14	ENDIAN_SWAP	0	5 30		4	1	14		10	0 30
47	BASE_ADDRESS	3	4 15	ENDIAN_SWAP	1	5 31	LOD_BIAS_H	э	/	15	MIP_ADDRESS	19	8 31
Vortey Fe	tab Constant Fields												
Vertex Fe		icla (n	C	(clo	1	0	clo	2		0		3
SO TP	EIELD	hit			hit			hit		hit		hit	
00211	LIELD	Dit			11	4 16			DWORD	DIL		14	7 16
1	unused	-	3 0		14	4 10		1	0	1	BASE ADDRESS	14	7 10
1		-	3 1		10	4 17			0		DAGE ADDRESS	15	7 17
2	BASE_ADDRESS	0	3 2	LIMIT_ADDRESS	10	4 18	LIMIT_ADDRESS	0	0	2	BASE_ADDRESS	10	7 18
3	BASE_ADDRESS	1	3 3	LIMIT_ADDRESS	17	4 19	LIMIT_ADDRESS	1	6	3	BASE_ADDRESS	17	7 19
4	BASE_ADDRESS	2	3 4	LIMIT_ADDRESS	18	4 20	LIMIT_ADDRESS	- 2	6	4	BASE_ADDRESS	18	7 20
5	BASE_ADDRESS	3	3 5	LIMIT_ADDRESS	19	4 21	LIMIT_ADDRESS	3	6	5	BASE_ADDRESS	19	7 21
6	BASE_ADDRESS	4	36	LIMIT_ADDRESS	20	4 22	LIMIT_ADDRESS	4	6	6	BASE_ADDRESS	20	7 22
7	BASE_ADDRESS	5	3 7	LIMIT_ADDRESS	21	4 23	LIMIT_ADDRESS	5	6	7	BASE_ADDRESS	21	7 23
8	BASE_ADDRESS	6	38	LIMIT_ADDRESS	22	4 24	LIMIT_ADDRESS	6	6	8	BASE_ADDRESS	22	7 24
9	BASE_ADDRESS	7	39	LIMIT_ADDRESS	23	4 25	LIMIT_ADDRESS	7	6	9	BASE_ADDRESS	23	7 25
10	BASE_ADDRESS	8	3 10	LIMIT_ADDRESS	24	4 26	LIMIT_ADDRESS	8	6	10	BASE_ADDRESS	24	7 26
11	BASE ADDRESS	9	3 11	LIMIT ADDRESS	25	4 27	LIMIT ADDRESS	9	6	11	BASE ADDRESS	25	7 27
12	BASE ADDRESS	10	3 12	LIMIT ADDRESS	26	4 28	LIMIT ADDRESS	10	6	12	BASE ADDRESS	26	7 28
13	BASE ADDRESS	11	3 13	LIMIT ADDRESS	27	4 29	LIMIT ADDRESS	11	6	13	BASE ADDRESS	27	7 29
14	BASE ADDRESS	12	3 14	LIMIT ADDRESS	28	4 30	LIMIT ADDRESS	12	e e	14	LIMIT ADDRESS	29	7 30
15	BASE ADDRESS	13	3 15	LIMIT ADDRESS	29	4 31	LIMIT ADDRESS	13	6	15	BASE ADDRESS	29	7 31
16	BASE ADDRESS	14	3 16		20	5 0		14	6	16		20	8 0
10	DROL_RDDRESS	14	0 10	unuseu		5 0		14	0	10	LINDIAN_OWAF	U	0 0

ATI Ex. 2066 IPR2023-00922 Page 6 of 291

17	BASE_ADDRESS	15 3	17	unused	-	5 1	LIMIT_ADDRESS	15	6 1	17	ENDIAN_SWAP	1	8	1
18	BASE_ADDRESS	16 3	18	BASE_ADDRESS	0	52	LIMIT_ADDRESS	16	6 1	8	LIMIT_ADDRESS	0	8	2
19	BASE_ADDRESS	17 3	19	BASE_ADDRESS	1	53	LIMIT_ADDRESS	17	6 1	9	LIMIT_ADDRESS	1	8	3
20	BASE_ADDRESS	18 3	20	BASE_ADDRESS	2	54	LIMIT_ADDRESS	18	6 2	20	LIMIT_ADDRESS	2	8	4
21	BASE_ADDRESS	19 3	21	BASE_ADDRESS	3	55	LIMIT_ADDRESS	19	6 2	21	LIMIT_ADDRESS	3	8	5
22	BASE_ADDRESS	20 3	22	BASE_ADDRESS	4	56	LIMIT_ADDRESS	20	6 2	22	LIMIT_ADDRESS	4	8	6
23	BASE_ADDRESS	21 3	23	BASE_ADDRESS	5	57	LIMIT_ADDRESS	21	6 2	23	LIMIT_ADDRESS	5	8	7
24	BASE_ADDRESS	22 3	24	BASE_ADDRESS	6	58	LIMIT_ADDRESS	22	6 2	24	LIMIT_ADDRESS	6	8	8
25	BASE_ADDRESS	23 3	25	BASE_ADDRESS	7	59	LIMIT_ADDRESS	23	6 2	25	LIMIT_ADDRESS	7	8	9
26	BASE_ADDRESS	24 3	26	BASE_ADDRESS	8	5 10	LIMIT_ADDRESS	24	6 2	26	LIMIT_ADDRESS	8	8 1	0
27	BASE_ADDRESS	25 3	27	BASE_ADDRESS	9	5 11	LIMIT_ADDRESS	25	6 2	27	LIMIT_ADDRESS	9	8 1	1
28	BASE_ADDRESS	26 3	28	BASE_ADDRESS	10	5 12	LIMIT_ADDRESS	26	6 2	28	LIMIT_ADDRESS	10	8 1	2
29	BASE_ADDRESS	27 3	29	BASE_ADDRESS	11	5 13	LIMIT_ADDRESS	27	6 2	29	LIMIT_ADDRESS	11	8 1	13
30	BASE_ADDRESS	28 3	30	BASE_ADDRESS	12	5 14	LIMIT_ADDRESS	28	6 3	30	LIMIT_ADDRESS	12	8 1	4
31	BASE_ADDRESS	29 3	31	BASE_ADDRESS	13	5 15	BASE_ADDRESS	28	6 3	31	LIMIT_ADDRESS	13	8 1	15
32	ENDIAN_SWAP	0 4	0	BASE_ADDRESS	14	5 16	unused	-	7	0	LIMIT_ADDRESS	14	8 1	6
33	ENDIAN_SWAP	1 4	1	BASE_ADDRESS	15	5 17	unused	-	7	1	LIMIT_ADDRESS	15	8 1	17
34	LIMIT_ADDRESS	0 4	2	BASE_ADDRESS	16	5 18	BASE_ADDRESS	0	7	2	LIMIT_ADDRESS	16	8 1	8
35	LIMIT_ADDRESS	1 4	3	BASE_ADDRESS	17	5 19	BASE_ADDRESS	1	7	3	LIMIT_ADDRESS	17	8 1	19
36	LIMIT_ADDRESS	2 4	4	BASE_ADDRESS	18	5 20	BASE_ADDRESS	2	7	4	LIMIT_ADDRESS	18	8 2	20
37	LIMIT_ADDRESS	3 4	5	BASE_ADDRESS	19	5 21	BASE_ADDRESS	3	7	5	LIMIT_ADDRESS	19	8 2	21
38	LIMIT_ADDRESS	4 4	6	BASE_ADDRESS	20	5 22	BASE_ADDRESS	4	7	6	LIMIT_ADDRESS	20	8 2	22
39	LIMIT_ADDRESS	5 4	7	BASE_ADDRESS	21	5 23	BASE_ADDRESS	5	7	7	LIMIT_ADDRESS	21	8 2	23
40	LIMIT_ADDRESS	6 4	8	BASE_ADDRESS	22	5 24	BASE_ADDRESS	6	7	8	LIMIT_ADDRESS	22	8 2	24
41	LIMIT_ADDRESS	7 4	9	BASE_ADDRESS	23	5 25	BASE_ADDRESS	7	7	9	LIMIT_ADDRESS	23	8 2	25
42	LIMIT_ADDRESS	8 4	10	BASE_ADDRESS	24	5 26	BASE_ADDRESS	8	7 1	10	LIMIT_ADDRESS	24	8 2	26
43	LIMIT_ADDRESS	9 4	11	BASE_ADDRESS	25	5 27	BASE_ADDRESS	9	7 1	11	LIMIT_ADDRESS	25	8 2	27
44	LIMIT_ADDRESS	10 4	12	BASE_ADDRESS	26	5 28	BASE_ADDRESS	10	7 1	12	LIMIT_ADDRESS	26	8 2	28
45	LIMIT_ADDRESS	11 4	13	BASE_ADDRESS	27	5 29	BASE_ADDRESS	11	7 1	13	LIMIT_ADDRESS	27	8 2	29
46	LIMIT_ADDRESS	12 4	14	BASE_ADDRESS	28	5 30	BASE_ADDRESS	12	7 1	14	LIMIT_ADDRESS	28	8 3	30
47	LIMIT_ADDRESS	13 4	15	BASE_ADDRESS	29	5 31	BASE_ADDRESS	13	7 1	15	LIMIT_ADDRESS	29	8 3	31
SQ_TP_clause)													
	Cy	cle 0		Cy	cle	1	C	ycle	2		Су	cle 3	j.	
SQ_TP	FIELD	bit DWORD	bit	FIELD	bit	DWORD bit	FIELD	bit	DWORD b	oit	FIELD	bit	DWORD b	oit
0	SQ_TP_clause_num	0 -	-	SQ_TP_clause_num	1		SQ_TP_clause_num	2	-	-	SQ_TP_end_of_clause	0	-	-
SQ_TP_gpr_w	r_addr													
	Cy	cle 0		Cy	cle	1	C	ycle	2		Су	cle 3	\$	
SQ_TP	FIELD	bit DWORD	bit	FIELD	bit	DWORD bit	FIELD	bit	DWORD b	oit	FIELD	bit	DWORD b	oit
0	SQ_TP_type	0 -	-	SQ_TP_gpr_wr_addr	1		SQ_TP_gpr_wr_addr	3	-	-	SQ_TP_gpr_wr_addr	5	-	-
1	SQ_TP_gpr_wr_addr	0 -	-	SQ_TP_gpr_wr_addr	2		SQ_TP_gpr_wr_addr	4	-	-	SQ_TP_gpr_wr_addr	6	-	-

ATI Ex. 2066 IPR2023-00922 Page 7 of 291

Vertex Fetch	tex Fetch Constant Fields Cycle 0 Cycle 1 Cycle 2 Cycle 3															
	C	ycle (0		C	ycle	1		C	ycle 2	2		C	ycle :	3	
SQ_TP	FIELD	bit	DWORD	bit	FIELD	bit	DWORD	bit	FIELD	bit	DWORD	bit	FIELD	bit	DWORD	bit
0	unused	-	2	30	unused	-	2	0	unused	-	5	6	ENDIAN_SWAP	0	1	0
1	unused	-	2	31	unused	-	2	1	unused	-	5	7	ENDIAN_SWAP	1	1	1
2	BASE_ADDRESS	0	0	2	unused	-	2	2	unused	-	5	8	LIMIT_ADDRESS	0	1	2
3	BASE_ADDRESS	1	0	3	unused	-	2	3	unused	-	5	9	LIMIT_ADDRESS	1	1	3
4	BASE_ADDRESS	2	0	4	unused	-	2	4	unused	-	5	10	LIMIT_ADDRESS	2	1	4
5	BASE_ADDRESS	3	0	5	unused	-	2	5	unused	-	5	11	LIMIT_ADDRESS	3	1	5
6	BASE_ADDRESS	4	0	6	unused	-	2	6	unused	-	5	12	LIMIT_ADDRESS	4	1	6
7	BASE ADDRESS	5	0	7	unused	-	2	7	unused	-	5	13	LIMIT ADDRESS	5	1	7
8	BASE ADDRESS	6	0	8	unused	-	2	8	unused	-	5	14	LIMIT ADDRESS	6	1	8
9	BASE ADDRESS	7	0	9	unused	-	2	9	unused	-	5	15	LIMIT ADDRESS	7	1	9
10	BASE ADDRESS	8	0	10	unused	-	2	10	unused	-	5	16	LIMIT ADDRESS	8	1	10
11	BASE ADDRESS	9	0	11	unused	-	2	11	unused	-	5	17	LIMIT ADDRESS	9	1	11
12	BASE ADDRESS	10	0	12	unused	-	2	12	unused	-	5	18	LIMIT ADDRESS	10	1	12
13	BASE ADDRESS	11	0	13	unused	-	2	13	unused	-	5	19	LIMIT ADDRESS	11	1	13
14	BASE ADDRESS	12	Õ	14	unused	-	2	14	unused	-	5	20	LIMIT ADDRESS	12	1	14
15	BASE ADDRESS	13	0	15	unused	-	2	15	unused	-	5	21	LIMIT ADDRESS	13	1	15
16	BASE ADDRESS	14	Ō	16	unused	-	2	16	unused	-	5	22	LIMIT ADDRESS	14	1	16
17	BASE ADDRESS	15	0	17	unused	-	2	17	unused	-	5	23	LIMIT ADDRESS	15	1	17
0	BASE ADDRESS	16	Ő	18	unused	-	2	18	unused	-	5	24	LIMIT ADDRESS	16	1	18
(Fetch Inst	BASE ADDRESS	17	0	19	unused	-	2	19	unused	-	4	2	LIMIT ADDRESS	17	1	19
0	BASE ADDRESS	18	0	20	unused	-	2	20	unused		4	3		18	1	20
SOTP	BASE ADDRESS	10	0	21	unused		2	21	unused		4	4		10	1	20
002_11	BASE ADDRESS	20	0	22	unused		2	22	unused		4	5		20	1	22
1	BASE ADDRESS	21	0	23	unused		2	23	unused		4	6		21	1	22
2	BASE ADDRESS	22	0	20	unused		2	20	unused	1	4	7		22	1	23
2	BASE ADDRESS	22	0	24	unused		2	24	unused		4	ģ		22	1	24
1	DAGE ADDRESS	23	0	20	unused	-	2	20	unused		4	8		23	1	20
4	DAGE ADDRESS	24	0	20	unused	-	2	20	unused		4	10		24	1	20
5	DAGE ADDRESS	20	0	21	unused	-	2	21	unused		4	10		20	1	21
0	BASE ADDRESS	20	0	20	unused	-	2	20	unused	-	4	10		20	1	20
1	DAGE_ADDREGG	27	0	29		-	2	29	unused		4	12	LIMIT ADDRESS	27	1	29
0	DAGE_ADDREGG	20	0	30	DASE_ADDRESS	10	0	20	unused		4	13		20	1	30
9	BASE_ADDRESS	29	0	31	BASE_ADDRESS	19	0	21	unused	-	4	14	LIMIT_ADDRESS	29	1	31
10	unused	-	5	0	unused	-	4	30	unused		4	15	unused	-	3	31
11	unused	-	5	1	unused	- 7	3	19	unused		4	10	unused	-	5	2
12	unused	-	3	0	unused		3	20	unused		4	17	unused	-	5	25
13	unused	1.1	3	1	unused	- 7	3	21	unused	-	4	18	unused	-	5	26
14	unused	1.1	3	2	unused	- 7	3	22	unused	-	4	19	unused	-	5	27
15	unused		3	3	unused		3	23	unused		4	20	unused	-	5	28
16	unused		3	4	unused	- 7	3	24	unused	-	4	21	unused	-	5	29
17	unused	- 7	3	5	unused	- 7	3	25	unused		4	22	unused	-	5	30
0	unused		3	6	unused		3	26	unused	-	4	23	unused	-	5	31
·etch Const	unused		3	7	unused	- 7	3	27	unused	-	4	24	unused	-	3	13
0	unused		3	8	unused	-	3	28	unused	-	4	25	unused	-	3	14
SQ_TP	unused	-	3	9	unused	-	3	29	unused	-	4	26	unused	-	3	15
0	unused	-	3	10	unused	-	3	30	unused	-	4	27	unused	-	3	16
1	unused	-	3	11	unused	-	4	0	unused	-	4	28	unused	-	3	17
2	unused	-	3	12	unused	-	4	1	unused	-	4	29	unused	-	3	18
Vertex Fetch	Constant Fields (St	raigh	tforward P	ackir	ng)											

	` ĭ:	2.65625	94	.15625	15	.65625	9 7	.15625
6	FORMAT_COMP_Z 0	2.6875 6	BASE_ADDRESS 10	4.1875 22	DST_SEL_Y 2	5.6875 6 AD_	EXP_ADJUST_H 0	7.1875 22
7	BASE_ADDRESS 0	0 2	LIMIT_ADDRESS 15	1 17	unused -	30	unused -	4 15
8	BASE_ADDRESS 1	03	LIMIT_ADDRESS 16	1 18	unused -	3 1	unused -	4 16
9	BASE_ADDRESS 2	04	LIMIT_ADDRESS 17	1 19	unused -	32	unused -	4 17
10	BASE_ADDRESS 3	05	LIMIT_ADDRESS 18	1 20	unused -	33	unused -	4 18

ATI Ex. 2066 IPR2023-00922 Page 8 of 291

11	BASE_ADDRESS 4	06	LIMIT_ADDRESS 19	1 21	unused -	34	unused -	4 19
12	BASE_ADDRESS 5	07	LIMIT_ADDRESS 20	1 22	unused -	35	unused -	4 20
13	BASE ADDRESS 6	08	LIMIT ADDRESS 21	1 23	unused -	36	unused -	4 21
14	BASE_ADDRESS 7	09	LIMIT_ADDRESS 22	1 24	unused -	37	unused -	4 22
15	BASE_ADDRESS 8	0 10	LIMIT_ADDRESS 23	1 25	unused -	38	unused -	4 23
16	BASE_ADDRESS 9	0 11	LIMIT_ADDRESS 24	1 26	unused -	39	unused -	4 24
17	BASE_ADDRESS 10	0 12	LIMIT_ADDRESS 25	1 27	unused -	3 10	unused -	4 25
18	BASE_ADDRESS 11	0 13	LIMIT_ADDRESS 26	1 28	unused -	3 11	unused -	4 26
19	BASE_ADDRESS 12	0 14	LIMIT_ADDRESS 27	1 29	unused -	3 12	unused -	4 27
20	BASE_ADDRESS 13	0 15	LIMIT_ADDRESS 28	1 30	unused -	3 13	unused -	4 28
21	BASE_ADDRESS 14	0 16	LIMIT_ADDRESS 29	1 31	unused -	3 14	unused -	4 29
22	BASE_ADDRESS 15	0 17	unused -	20	unused -	3 15	unused -	4 30
23	BASE_ADDRESS 16	0 18	unused -	2 1	unused -	3 16	unused -	50
24	BASE_ADDRESS 17	0 19	unused -	22	unused -	3 17	unused -	5 1
25	BASE_ADDRESS 18	0 20	unused -	23	unused -	3 18	unused -	5 2
26	BASE_ADDRESS 19	0 21	unused -	24	unused -	3 19	unused -	56
27	BASE_ADDRESS 20	0 22	unused -	25	unused -	3 20	unused -	57
28	BASE_ADDRESS 21	0 23	unused -	26	unused -	3 21	unused -	58
29	BASE_ADDRESS 22	0 24	unused -	27	unused -	3 22	unused -	59
30	BASE_ADDRESS 23	0 25	unused -	28	unused -	3 23	unused -	5 10
31	BASE_ADDRESS 24	0 26	unused -	29	unused -	3 24	unused -	5 11
32	BASE_ADDRESS 25	0 27	unused -	2 10	unused -	3 25	unused -	5 12
33	BASE_ADDRESS 26	0 28	unused -	2 11	unused -	3 26	unused -	5 13
34	BASE_ADDRESS 27	0 29	unused -	2 12	unused -	3 27	unused -	5 14
35	BASE_ADDRESS 28	0 30	unused -	2 13	unused -	3 28	unused -	5 15
36	BASE_ADDRESS 29	0 31	unused -	2 14	unused -	3 29	unused -	5 16
37	ENDIAN_SWAP 0	10	unused -	2 15	unused -	3 30	unused -	5 17
38	ENDIAN_SWAP 1	1 1	unused -	2 16	unused -	3 31	unused -	5 18
39	LIMIT_ADDRESS 0	12	unused -	2 17	unused -	4 0	unused -	5 19
40	LIMIT_ADDRESS 1	13	unused -	2 18	unused -	4 1	unused -	5 20
41	LIMIT_ADDRESS 2	14	unused -	2 19	unused -	4 2	unused -	5 21
42	LIMIT_ADDRESS 3	15	unused -	2 20	unused -	4 3	unused -	5 22
43	LIMIT_ADDRESS 4	16	unused -	2 21	unused -	4 4	unused -	5 23
44	LIMIT_ADDRESS 5	17	unused -	2 22	unused -	4 5	unused -	5 24
45	LIMIT_ADDRESS 6	18	unused -	2 23	unused -	46	unused -	5 25
46	LIMIT_ADDRESS 7	19	unused -	2 24	unused -	4 7	unused -	5 26
47	LIMIT_ADDRESS 8	1 10	unused -	2 25	unused -	48	unused -	5 27
0	LIMIT_ADDRESS 9	1 11	unused -	2 26	unused -	49	unused -	5 28
etch Consta	LIMIT_ADDRESS 10	1 12	unused -	2 27	unused -	4 10	unused -	5 29
0	LIMIT_ADDRESS 11	1 13	unused -	2 28	unused -	4 11	unused -	5 30
SQ_TP	LIMIT_ADDRESS 12	1 14	unused -	2 29	unused -	4 12	unused -	5 31
0	LIMIT_ADDRESS 13	1 15	unused -	2 30	unused -	4 13	unused -	unused -
1	LIMIT_ADDRESS 14	1 16	unused -	2 31	unused -	4 14	unused -	unused -

ATI Ex. 2066 IPR2023-00922 Page 9 of 291

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	4 June, 2002	[date \@ "d MMMM,	GEN-CXXXXX-REVA	1 of 32
Author:	Jay C. Wilkinson			
ssue To:		Copy No:		
		R400 RB Den	th	
		(PBD)		
		(INDD)		
		ver 0.1		
Overview: Th	e R400 RB Depth computes s	stencil and depth tests on qua	eds of pixels.	
WARNING: Fa	amiliarity with "R400 Memory 400 MemoryFormat.pdf) is re	Format Specification [*] (Perfor	ce //depot/r400/doc_lib/design/chip/n	nemory/-
AUTOMATIC	CALLY UPDATED FIELDS:			
Document L	Location: C:\r4 anet Search Title : R400	00\doc_lib\design\blocks\rb\F 0 RB Depth (RBD)	R400 RB Depth.doc	
		APPROVALS		
	Name/Dept		Signature/Date	
Remarks:				
THIS DO	CUMENT CONTAIN	S CONFIDENTIAL I	NFORMATION THAT COU	JLD BE
SUBSTA			REST OF ATT TECHNOL	JGIES
	INC. THROUGH (JNAUTHURIZED US	E OR DISCLOSURE.	
Convright 200	0 ATI Technologies Inc. Al	Lighte record. The mater	ial in this document constitutes an	uppublicho
vork created	in 2000. The use of this cop	byright notice is intended to	provide notice that ATI owns a cop	yright in thi
inpublished w proprietary info	ork. The copyright notice is n ormation and trade secrets of	ot an admission that publicati ATI. No part of this documen	on has occurred. This work contains it may be used, reproduced, or trans	confidentia mitted in an
orm or by any	means without the prior writh	en permission of ATI Techno	logies Inc."	
	DI DOPLOS DI			

R400 RB Depth doc CO 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** DB/OB/03 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208398

ATI Ex. 2066 IPR2023-00922 Page 10 of 291

Table Of Contents

12.

1.	ARCHITECTURAL REQUIREMENTS	6
2.	OVERVIEW	7
3.	STENCIL FORMATS	8
3.1	No Stencil Data (Frame Buffer only)	8
3.2	Uncompressed Stencil Data	8
3.3	Compressed Stencil Data (Frame Buffer only)	8
3.3	3.1 Compressed Stencil format	9
4.	DEPTH FORMATS	. 10
4.1	Depth 16-bit URF	.12
4.2	Depth, 24 bit URF	.13
4.3	Depth, 24 bit Floating Point	.13
4.4	Depth, 96 bit Zplane	.13
5.	DEPTH CACHE	.14
6.	DEPTH CACHE FORMATS	. 14
6.1	Stencil & Pmask Depth Cache Format	. 14
6.2	Single Sample Stencil & Pmask Frame Buffer Format.	. 15
6.3	16 bit Depth Cache Word Format	.21
6.4	24 bit (URF or FP) Depth Cache Word Format	.21
6.5	Pmasks & 96 bit Zplane Depth Cache Word Format	.23
6.6	CAM Tags	.24
6.7	Depth Surface Device Addresses	.26
6.7	7.1 Tile starting device address	.26
6.1	7.2 TileBase	.28
6.7	7.3 DataSize	.28
6.8	Non-CAM Tags	29
6.8	8.1 Inflight	29
6	2 Descriptor	20
- 0.0		29
7.	ZMACK Deplement (0)	. 30
7.1	ZMASK Background (U)	. 30
1.2		. 30
8.	ZMASK SEPARATE (6)	. 30
8.1	16 Bit Deptn	. 30
8.	I.I Data Cache Fills	.30
8.1	1.2 24 Bit Depth & Stencil	. 30
9.	ZMASK EXPANDED (7)	. 31
9.1	16 Bit Depth	.31
9.2	Packed 24 Bit Depth with Stencil	.31

R400 RB Depth doc S 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***OB/06/03 04:47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208399

EDIT DATE [date \@ "d MMMM, DOCUMENT-REV. NUM. GEN-CXXXXX-REVA PAGE 3 of 32

Registers

PA_SC_AA_CONFIG
MSAA_ENABLE
MSAA_NUM_SAMPLES7
RB_COLOR0_INFO
COLOR0_ARRAY
COLOR0_SLICE
COLOR0_TILING
RB_DEPTH_BASE
DEPTH_BASE
RB_DEPTH_INFO
DEPTH_ENDIAN14
DEPTH_FORMAT8

SMASK_ENABLE	8, 9
STENCIL_MIN	9
ZMASK_ENABLE	8
RB_DEPTHCONTROL	
STENCIL_ENABLE	
RB_STENCIL_CLEAR	
STENCIL_CLEAR	
STENCIL_COMPARE	
RB_SURFACE_EXTENT	
SURFACE_PITCH	
RB_TILECONTROL	
FAST_DEPTH_EXPAND	

R400 RB Depth doc CO 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** Obrobits 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208400

ATI Ex. 2066 IPR2023-00922 Page 12 of 291

Revision Changes:

Rev 0.0 Jay C. Wilkinson Date: June 4, 2002

Rev 0.1 Jay C. Wilkinson Date: July 17, 2002 Initial revision. TBD: Basic DC diagram and RBM interface.

Added start of depth tile calculation and detailed stencil frame buffer organization descriptions.

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208401

ATI Ex. 2066 IPR2023-00922 Page 13 of 291

10	0	
	1.0	

Introduction

The Crayola depth logic block is one of four major subblocks of the Render Backend (RB). The depth logic is responsible for performing Stencil, Depth and early alpha testing and updating the depth and stencil data in the frame buffer. Quads surviving these tests are are sent along to the Render Backend Color subblock (RBC).

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208402

ATI Ex. 2066 IPR2023-00922 Page 14 of 291

1. Architectural Requirements

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***0806803 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208403

ATI Ex. 2066 IPR2023-00922 Page 15 of 291

2. Overview

The R400 has two sets of data to maintain, stencil and depth (often confusingly called 'Z'). The storage and processing of these two pieces on information had been simple and straight forward in previous designs. The R300 brought about the advent of 'compressed' depth and the R400 uses a similar scheme. The R400 also provides 2X stencil compression, a much larger tile size and more depth precision.

Pane.

In the R400 frame buffer information is split between the pairs of RB&MC blocks. The R400 uses one, two or four RB&MC block pairs, dividing the frame buffer into a sophisticated (read that as complex) checkerboard pattern.

An additional dimension of complexity is that pixels/quads/tiles may be multi-sampled (PA_SC_AA_CONFIG.-MSAA_ENABLE{ XE "PA_SC_AA_CONFIG:MSAA_ENABLE" } and PA_SC_AA_CONFIG.MSAA_NUM_SAMPLES{ XE "PA_SC_AA_CONFIG:MSAA_NUM_SAMPLES" } > 0). The R400 supports 1, 2, 3, 4, 6 and 8X multi-sampling. The stencil and depth values are stored and processed on a per sample basis. This results in significant requirements in frame buffer size, memory bandwidth, internal storage and processing power.

'Compressed' depth introduces a third set of data, a companion to 'compressed' depth. This third data set is depth Pmask data. Each sample within a pixel may use a sharable 'compressed' depth with another sample within the same tile. The Pmask identifies for every sample the index of its shared depth plane (Zplane).

In order to optimize memory read and write bandwidth the arrangement of the stencil, Pmask and depth data have several variations to pack them as tightly as possible within 32 byte blocks (the size of all memory transfers). The packing format is stored and maintained on a tile by tile basis by the Tile Logic subblock of the RB as SMASK and ZMASK.

When one multiplies all the variations of sizes, compressions and memory packing the result is quite dizzying. The result should be a very significant decrease in required bandwidth by the depth logic as compared to any previous graphics designs. In the future, when even more gate and buffer space is available, much more effective compression techniques may be used which should dramatically improve on the R400's performance especially in multisample rendering with stencils.

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***0805803 04.47 FM

AMD1044_0208404

ATI Ex. 2066 IPR2023-00922 Page 16 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 June, 2002	[date \@ "d MMMM,	R400 RB Depth (RBD)	8 of 32

Stencil Formats

Stencil has a few variations in where and in what format it's stored in its part of the tile's depth surface. Below is an overview of the stencil and depth partitioning within a single tile's section of the depth surface. The case for a single sample tile's depth surface is shown below.

In the case of a multisampled tile each section's size is multiplied by the number of samples.

3.1 No Stencil Data (Frame Buffer only)

The R400 only supports stencil with 24 bit depth (RB_DEPTH_INFO.DEPTH_FORMAT{ XE "RB_DEPTH_INFO:DEPTH_FORMAT"} is DEPTH_24_8 or DEPTH_24_8_FLOAT); there is no stencil when the depth surface is 16 bit (RB_DEPTH_INFO.DEPTH_FORMAT{ XE "RB_DEPTH_INFO:DEPTH_FORMAT"} is DEPTH_10).

(RB DEPTHCONTROL.STENCIL ENABLE = R400 supports stencil being disabled The 30 XE "RB_DEPTHCONTROL:STENCIL_ENABLE" }) in a context. As may be expected no stencil reads or writes will occur and the memory bandwidth requirements are, usually, lessened correspondingly. The extremely rare exception is when ZMASK is "EXPANDED", i.e. the 24 bit depth is interleaved with the 8 bit stencil. ZMASK is "EXPANDED" when ZMASK is disabled (RB_DEPTH_INFO.ZMASK_ENABLE{ XE "RB_DEPTH_INFO:ZMASK_ENABLE" } = 0) or when the depth surface is (RB TILECONTROL.FAST DEPTH EXPAND) being converted for software compatibility XE "RB_TILECONTROL:FAST_DEPTH_EXPAND" } = 1).

3.2 Uncompressed Stencil Data

Uncompressed stencils are 8 bit unsigned integers, one per sample. Except for when ZMASK is "EXPANDED", all the stencil data for an 8 x 8 pixel tile is stored contiguously at the start of a tile's depth surface. Therefore the sixty-four pixels times eight bits per stencil-sample requires 512 bits or 64 bytes of stencil storage per tile per sample. The result is a stencil area from 64 bytes (one sample per pixel) up to 512 bytes (8X multisampling) per tile. Stencil data is stored uncompressed when SMASK is disabled (RB_DEPTH_INFO.SMASK_ENABLE{ XE "RB_DEPTH_INFO:SMASK_ENABLE" } = 0) or when the depth surface is being converted for software compatibility (RB_TILECONTROL_FAST_DEPTH_EXPAND{ XE "RB_TILECONTROL:FAST_DEPTH_EXPAND" } = 1).

Stencil data inside the R400's depth cache is always stored as uncompressed even when stored as compressed in the Frame Buffer. The determination of whether to store Stencil compressed is made at the tile's stencil flush time.

BOZO: Must store clear and compare with cache line to compress after the context is gone.

3.3 Compressed Stencil Data (Frame Buffer only)

Compressed stencils are zero or four bit unsigned integers per stencil-sample; typically a >50% savings over uncompressed stencils. A depth surface may have stencil compressed if enabled (RB_DEPTH_INFO.SMASK_ENABLE{ XE "RB_DEPTH_INFO:SMASK_ENABLE" } = 1). All of the stencil values within a tile are stored in the frame buffer with the same format; either 0-bit SMASK, compressed 4 bit or uncompressed 8 bit. Each eight by eight pixel tile is

R400 RB Depth doc S 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OB/05/03 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208405

ATI Ex. 2066 IPR2023-00922 Page 17 of 291

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	4 June, 2002	[date \@ "d MMMM,	GEN-CXXXXX-REVA	9 of 32

independently compressible, controlled by the tile's SMASK. The compressed stencil data is always stored contiguously on a per tile basis. Stencil compression is not supported when ZMASK is "EXPANDED".

Room for uncompressed eight bits per stencil-sample is always allocated in the frame buffer which becomes the fall back format when compression fails. When compression is enabled (RB_DEPTHCONTROL_STENCIL_ENABLE = 1{ XE "RB_DEPTHCONTROL:STENCIL_ENABLE" }) and (RB_DEPTH_INFO.SMASK_ENABLE XE "RB_DEPTH_INFO:SMASK_ENABLE" }) and ZMASK = "EXPANDED" and the compression for the whole tile is successful ($0010_2 \le SMASK \le 0111_2$), stencil data is stored as packed four bit stencil data in the frame buffer. When stencil compression is enabled but stencil compression has failed for any stencil-sample in the tile ($1001_2 \le SMASK \le 1111_2$), the result is identical to having stencil compression disabled.

The R400 also supports "compressed" zero bit stencil values. If all the stencil values within a tile are equal to the stencil clear value (RB_STENCIL_CLEAR.STENCIL_CLEAR{ XE "RB_STENCIL_CLEAR:STENCIL_CLEAR" }) then SMASK is set to 0000₂. If all the stencil values within a tile are equal to the stencil compare value (RB_STENCIL_CLEAR.STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR:STENCIL_CLEAR: }) then SMASK is set to 0001₂. For either of these two cases the stencil values from the frame buffer are not read. This, of course, requires that stencils be enabled (RB_DEPTHCONTROL.STENCIL_ENABLE = 1{ XE "RB_DEPTHCONTROL:STENCIL_ENABLE" }) and that SMASK be enabled (RB_DEPTH_INFO.SMASK_ENABLE{ XE "RB_DEPTH_INFO:SMASK_ENABLE" } = 1).

Bit 0 of SMASK is used to denote when any stencils are equal to RB_STENCIL_CLEAR.STENCIL_COMPAR{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }E. Bit 1 of SMASK is used to denote when any stencils are less than RB_STENCIL_CLEAR.STENCIL_COMPAR{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }E. Bit 2 is used to denote when any stencils are greater than RB_STENCIL_CLEAR.STENCIL_COMPAR{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }E.

SMASK	Bits	Description
0000 ₂	0	Every stencil value in the tile is = RB_STENCIL_CLEAR.STENCIL_CLEAR{ XE "RB_STENCIL_CLEAR:STENCIL_CLEAR" }{ XE "RB_STENCIL_CLEAR:STENCIL_CLEAR" }
00012	0	Every stencil value in the tile is = RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
0010 ₂	4	Every stencil value in the tile is < RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
00112	4	Every stencil value in the tile is ≤ RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
0100 ₂	4	Every stencil value in the tile is > RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
01012	4	Every stencil value in the tile is ≥ RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
01102	4	Every stencil value in the tile is # RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
01112	4	Some stencil values <, some >, some =.
10002	n/a	Reserved
10012	8	Every stencil value in the tile is = RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
10102	8	Every stencil value in the tile is < RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
10112	8	Every stencil value in the tile is ≤ RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
11002	8	Every stencil value in the tile is > RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
11012	8	Every stencil value in the tile is ≥ RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB_STENCIL_CLEAR:STENCIL_COMPARE" }.
1110 ₂	8	Every stencil value in the tile is # RB_STENCIL_CLEAR.STENCIL_COMPARE{ XE "RB STENCIL CLEAR:STENCIL COMPARE" }.
11112	8	Some stencil values <, some >, some =.

Table 1: SMASK codes

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208406

ATI Ex. 2066 IPR2023-00922 Page 18 of 291

Aï	0

3.3.1 Compressed Stencil format

Stencil values are compressed by taking advantage of value locality. All of the stencil values within a tile have a high likelihood of having a limited range. Compression is possible with the introduction of an SMASK (Stencil MASK) per tile managed and cached in the RB's subblock Tile Logic (RBT). The format of a compressed stencil-sample is a four bit unsigned integer offset ([0...15]). The value of compressed stencil is calculated by adding the four bit compressed stencil value to the per context stencil min value (RB_DEPTH_INFO.STENCIL_MIN{ XE "RB DEPTH INFO:STENCIL MIN" Therefore **RB DEPTH INFO.STENCIL MI{** the value of XE }). "RB_DEPTH_INFO:STENCIL_MIN" }N must not change after a surface has been initialized. NOTE: The value of RB_DEPTH_INFO.STENCIL_MI{ XE "RB_DEPTH_INFO:STENCIL_MIN" }N must not exceed 240 (255-15) as the stencil comparisons are all 8 bit unsigned.

12.00

All of the stencil data for the tile is allocated and read into the depth cache when any compressible stencil data is required by the depth cache for a tile. This simplifies the steps required when stencil compression fails for any stencil value within a tile, all stencil data in the frame buffer must be written with their full eight bit values upon a tile depth cache flush. Stencil compression failure is detected during the depth cache's flushing of stencil data and the SMASK is updated. Stencil data inside the R400's depth cache is always stored as uncompressed.

When stencil is compressed to 0 bits (0000₂ ≤ SMASK ≤ 0001₂) the stencil is not stored in the Frame Buffer but only in the tile's SMASK.

R400 RB Depth.doc S4402 Bytes*** CATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208407

ATI Ex. 2066 IPR2023-00922 Page 19 of 291

22

The Depth data for a tile has several variations in what Frame Buffer format it's stored in. Below in an overview of the stencil and depth partitioning within a single-sample tile's section of the depth surface.

a. 11

Note that the ZPLANE16 format does not fit within a single sample tile size, therefore the format ZPLANE16 is only used for multisample surfaces.

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** 08/08/03 04:47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208408

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
~	4 June, 2002	[date \@ "d MMMM,	R400 RB Depth (RBD)	12 of 32

Multisample depth is stored as 'S' contiguous single-sample tile depth data sections per tile; where 'S' is the number of samples of the surface.

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04 47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208409

ATI Ex. 2066 IPR2023-00922 Page 21 of 291

r	ORIGINATE DATE		EDIT DATE		DOCUMENT-F	EV. NUM.	PAGE
	4 June, 200	2 [date \@ "d MMM	IM,	GEN-CXXXX	X-REVA	13 of
ZMASK = ZPLANE2 3 Sample	ZMASK = ZPLANE4 3Sample	ZMASK = ZPLANE8 3 Sample	ZMASK = ZPLANE16 3 Sample	ZMASK = ZPLANE2 6 Sample	ZMASK = ZPLANE4 8Sample	ZMASK = ZPLANE8 8 Sample	ZMASK = ZPLANE16 8 Sample
Stencil	Stencil	Stencil	Stencil	Stencil	Stencil	Stencil	Stencil
(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)	(only if 24 bit depth)
Pmask ZP1ZP0	Pmask	Pmask	Pmask	Pmask	Pmask	2	17
2.1.19.1.0	ZP2ZP1ZP0 ZP4ZP3	ZP2ZP1ZP0	ZP3[ZP1]ZP0 [ZP4[ZP3]	ZPIZPO	ZP2ZP1ZP0	Pmask	Pmask
unused	united	Z.P7[Z.P6[2P5	ZP7[ZP6]2P ===[ZP9]ZP8 ZP13[2P13]	unused	umred	ZP2ZP1ZP0 ZP4ZP3 ZP7ZP6ZP3	ZPZZP1ZP JZP4ZP3
3*64*S- 32	3*64*S-	unused 3*64*S-	2P152P1400	3*64*S- 32	3*64*S-	unused	ZP7ZP6Z ZP9ZP
or 192*S-	or 192*8- 2	120 or 2	3*64*5-	192*S-	or 192*S- 2	3*64*S-	ZP15ZP14
bytes	64 bytes	192*S- 120	or 192*S-	bytes	64 bytes	or 192*S-	3*64*S-2. or
		bytes	224 bytes			120 bytes	192*S-22 bytes
7MASK =	7MASK =	7MASK =	7MASK =	ZMASK =	7MASK =	7MASK =	7MASK =
ZPLANE2 4 Sample	ZPLANE4 4Sample	ZPLANE8 4 Sample	ZPLANE16 4 Sample	ZPLANE2 8 Sample	ZPLANE4 8Sample	ZPLANE8 8 Sample	ZPLANE10 8 Sample
Stencil	Stencil	Stencil	Stencil	Stencil	Stencil	Stencil	Stencil
64"S bytes (only if 24 bit depth)	(only if 24 bit depth)	64*8 bytes (only if 24 bit depth)	64*S bytes (only if 24 bit depth)	64°S bytes (only if 24 bit depth)	64°S bytes (only if 24 bit depth)	64*S bytes (only if 24 bit depth)	64*S byte (only if 24 bit depth)
Pmask	Pmask	Pmack	Pmask	Pmask	13	2	171
	ZP3ZP1ZP0 ZP4ZP3	ZP2ZP1ZP0	22ZP1ZP0	ZP1ZP0	Pmask zrziZ P1/Z P0	Pmask	Pmask
unused	umurad	ZP7ZP6ZP3	ZP4ZP3 ZP7ZP6ZP3	unused	ZP4ZP3	2937.P17.P0	
3*64*5- 32	3*64*S- 64	unused 3*64*S-	ZP13ZP11 ZP13ZP14um	3*64*8- 32	3*64*S- 64	ZP7ZP62P3 umused	2P3ZP1ZP ZP4ZP3 ZP7ZP62
192*S-	or \$ 192*S- \$	120 or 2	3*64*S-	192*S-	or \$ 192*S- \$	3*64*S- 2 120 2	ZP12ZP11
bytes	64 bytes	192*S- 120	or 102*5-	bytes	64 bytes	or 192*S-	unused
		bytes	224			120 bytes	0r 102*5.22
	L	L	uyles ;	i	Li	1	bytes

4.1 Depth 16-bit URF

Sixteen bit unsigned repeating fraction depth is the most basic and standard depth format. The value of the depth is: Depth = ((Depth_{URF-10})/(2¹⁶-1)). The value range of 16 bit URF Depth is [0...1].

15 Depth, 16 bit URF

R400 RB Depth vad Depth 16 URF by jeyw 8/16/2003

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

0

AMD1044_0208410

ATI Ex. 2066 IPR2023-00922 Page 22 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 June, 2002	[date \@ *d MMMM,	R400 RB Depth (RBD)	14 of 32

4.2 Depth, 24 bit URF

Twenty four bit unsigned repeating fraction depth is the normal 'high' precision depth format. The value of the depth is: Depth = $((Depth_{URF-24})/(2^{24}-1))$. The value range of 24 bit URF Depth is [0...1].

23	0	
Depth, 24 bit URF	R400 RB Depth vad Depth; 2 hy jeyw 818200	MALURF

4.3 Depth, 24 bit Floating Point

The 24 bit floating point format is new and is designed to eliminate the need for a W buffer. (A W buffer stored the reciprocal of depth, giving it the characteristic of high precision for small depth values and low precision for high depth values. Switching to a floating point format meets the requirements of high precision for small depth values while sacrificing very little precision as compared with 24 bit URF.

The 24 bit floating point is based upon the IEEE 754-1985 32 bit floating point format. There is no sign and the range of valid depth values is [0...2). Values greater than 1.0 are invalid and neither generated nor supported, but the value of 1.0 is represented exactly; without resorting to repeating fraction 'trickery'. The mantissa is 20 bits with an implied leading integer one when the exponent is non-zero. The exponent is an unsigned integer with a bias of +15. If the exponent is zero then subnormalized numbers are encoded, just as in IEEE 754. The encodings for positive or negative infinities and NAN (Not A Number) are NOT supported.

Value	Value in Scientific Notation	24-bit Floating Point		Comment
		Exp	Mantissa	
1.00	+1.000000000000000000000000002 x 2*0	11112	000000000000000000000000000000000000000	Largest valid positive number
0.75	+1.1000000000000000000000002 x 21	11102	100000000000000000000000000000000000000	
2	+1.0000000000000000000000002 x 2 ⁻¹	11102	000000000000000000000000000000000000000	
2.13	+1.000000000000000000000000000000000000	00102	000000000000000000000000000000000000000	
2'14	+1.00000000000000000000000002 x 2 ⁻¹⁴	00012	000000000000000000000000000000000000000	Smallest normalized positive
2 -2 34	+1.11111111111111111111102 x 2 ⁻¹⁵	00002	111111111111111111111111111111111111111	Largest subnorm number
2.15	+1.000000000000000000000000002 x 2 ⁻¹⁵	00002	100000000000000000000000000000000000000	
2.10	+1.000000000000000000000000000000000000	00002	0100000000000000000000000002	
2.33	+1.00000000000000000000000002 x 2-33	00002	000000000000000000000000000000000000000	Sector sector and
2.34	+1.0000000000000000000000000002 x 2 ⁻³⁴	00002	000000000000000000000000000000000000000	Smallest positive subnorm
0	+0.0000000000000000000000002 x 2-15	00002	000000000000000000000000000000000000000	ZERO

Table 2: Depth, 24-bit FP Format Examples

4.4 Depth, 96 bit Zplane

The definitive definition and description of Zplanes is in the document "//depot/r400/doc_lib/design/chip/memory/-R400_MemoryFormat.pdf" section "Zplane Depth Representation".

59	30 29									0		
	SlopeY<29:0> (sbfixed<3,26>)						SlopeX<29:0> (sbfixed<3,26>					
95	94	93	92	91				64	63	62	61	60
ShiftZ<3:0>			• •		CenterZ<27:0)> (sbfb	ed<3,24>)		ShiftXY<3:0			>

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** 08/06/03 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208411

ATI Ex. 2066 IPR2023-00922 Page 23 of 291

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	4 June, 2002	[date \@ "d MMMM,	GEN-CXXXXX-REVA	15 of

5. Depth Cache

The depth cache is constructed from three 96 x 128 SRAMs. 384 bits is a universally useful size for a depth and stencil cache 'word'. Except for the LSB write and read address lines the write enable and the write and read address lines are common to all three SRAMs. The depth cache's read and write ports are the full 384 bits (48 Bytes) wide along with byte write enables.

The depth cache is logically divided into forty eight cache lines. The cache is fully associative using a 48 entry CAM. A cache line is 768 bits (96 Bytes). A single cache line may store a tile-sample's (1 Sample * 8x8 pixels) Pmask and stencil information, half a tile-sample's uncompressed depth or half a tile's compressed depth.

Data to the RBM and from the RBM is run through an endian swap block. The functionality is defined by the context register RB_DEPTH_INFO.DEPTH_ENDIAN{ XE "RB_DEPTH_INFO:DEPTH_ENDIAN" }. Note: It's not clear that endian needs to be applied for any format other than 32 bit packed, as that's the only software usable format. Even then it may not be needed. TBD.

DEPTH#_ENDIAN	Description
ENDIAN_NONE	0xAABBCCDD -> 0xAABBCCDD
ENDIAN_8IN16	0xAABBCCDD -> 0xBBAADDCC
ENDIAN_8IN32	0xAABBCCDD -> 0xDDCCBBAA
ENDIAN_16IN32	0xAABBCCDD -> 0xCCDDAABB

6. Depth Cache Formats

The data cache reads and writes four data cache words per cycle. The format of each data cache word in any cache line is identical.

6.1 Stencil & Pmask Depth Cache Format

Stencil and Pmask data are always stored together in the same cache line. A depth cache line stores sixtyfour samples worth of Pmask and stencil data. Since PMASK may be stored compressed along with Zplanes all of the PMASK data for single sample and the Zplanes are stored in a separate cache line, all the PMASK data for a single sample tile must be writable into the depth cache within a single write operation. A single write operation into the depth cache is ½ cache line. For this reason the following cache line arrangement for the stencil and PMASK data was created:

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208412

ATI Ex. 2066 IPR2023-00922 Page 24 of 291

Ű	ORIGIN 4 Ju	ATE DATE	EDI" [date \@	T DATE	DOCU R400	MENT-REV. NUI RB Depth (RBD	M. PAGE) 16 of 3
			l samp	le/pixel			
1	•		one half cache	line (384 bits)		•	
+ 1	one 8 bit ste	encil	•	128 bits	one 4 bit PMAS	K-	
one		44444444	seccessisters	risuperiodelerics	menneccentral	C	ache Line A (LO)
cache		NOT THE REAL PROPERTY AND AND ADDRESS					acha Lina A (HI)
line 1	-1010 4 M M - O	NBRANN-D	-BN4WH-D		DINTIPIN-OF	DINAWIN-O C	
line one	STENCL	STENCIL	PMASK PMASK	PMASK PMASK PM	MASK PMASK F	MASK PMASK	ache Line A (LO)
line one cache line	STENCIL *6 STENCIL *3	STENCIL *4 STENCIL *1	PMASK PMASK 17 5 STENCIL 1,2		AASK PMASK P .3 .1 STENCL .7	MASK PMASK '2'.0 STENCIL ',5 C	ache Line A (LO) ache Line A (HI)
ine one cache ine one cache cache	STENCIL *.6 STENCIL *.3 STENCIL *.3	STENCIL .4 STENCIL .1	PMASK PMASK 17 5 STENCIL 12 PMASK	PMASK PMASK PM *.6 *.4 STENCL *.0 (Y Odd	AASK PMASK P .3 .1 STENCE .7 PMASK	MASK PMASK 2 3 5 5 5 5 C C 5 C C C C C C C C C C C C C	ache Line A (LO) ache Line A (HI) ache Line A (HI)

6.2 Single Sample Stencil & Pmask Frame Buffer Format

The uncompressed 8 bit stencil is stored just as 8 bit pixels are stored:

127	96 95	64 63	32 31	0
47,2	Stencils (07,2)	0,2+7,0	Stencils (07,0)	0,0• microtile
•	Stencils (07,3)	*	Stencils (07,1)	microtile
٠	Stencils (07,6)	*	Stencils (07,4)	microtile 2
47,7	Stencils (07,7)	0,7+7,5	Stencils (07,5)	0,5 microtile

R400 RB Depth vsd 8 bit stencil FB format

by jayw 8182003

The compressed 4 bit stencil is stored with the same order as 8 bit stencil, just that each stencil value is half size, as such:

one micro-tile is 128 bits, as signified by the bold outline for each micro-tile

6	127	96 95	64 63	32	31 0	
	C Stencils (07,3)	Stencils	(07,1) S	tencils (07,2)	Stencils (07,0) 8	microtile 0
	C Stencils (07,7)	Stencils	(07,5) S	tencils (07,6)	Stencils (07,4) 5	microtile 1

R400 RB Depth vsd 4 bit microbile FB formet

by jay++ 8162003

The 4 bit and 3 bit PMASK data is stored with the same order and size as the compressed 4 bit stencil. The '3' bit PMASK values are always stored as 4 bit PMASK with a most significant 4th bit of zero.

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208413

ATI Ex. 2066 IPR2023-00922 Page 25 of 291

A ľ	ORIGINATE D 4 June, 200	ATE	EDIT D/ [date \@ "d	ATE MMMM,	DOC	UMENT-REV. NUM. N-CXXXXX-REVA	PAGE 17 of
(127	zro-tile is 128 bits, as signif 96	ed by the bold ou 95	tine for each micr 64	o-tile 63	32	31	0
2 PM	MASK (07,3)	PMASK	(07,1)	PMASK	(07,2)	PMASK (07,0)	8 microtile 0
P	MASK (07,7)	PMASK	(07,5)	PMASK	(07,6)	PMASK (07,4)	* microtile 1
19400 RB	Depth vad 4 bit microtile PMASA	FBFormat	by jays	8182003			

The 2 bit PMASK data is stored with the same order as the compressed 4 bit stencil, but with just 2 bits per sample.

127	96 95		64 63		32 31		0	
PMASK (07,7)	PMASK (07,5)	PMASK (07,6)	PMASK₀ (07,4)*	PMASK (07,3)	PMASK (07,1)	PMASK (07,2)	PMASK (07,0)°	microtile (

The 1 bit PMASK data is stored with the same order as the compressed 4 bit stencil, but with just 1 bit per sample.

On a multisample surface all samples for pixel are contiguous in the frame buffer. Multisample tiles consume 'S' cache lines of stencil and Pmask. Effectively the data element size becomes 'S' bytes per pixel. For multisample surfaces of 1, 2, 4 and 8 samples/pixel, the resulting mapping is fairly simple.

Here is a representation of how a single tile is split into stencil depth cache line halves (1 depth cache line half = 1 depth cache read = 384 bits). I have checker boarded the quads within each tile for illustrative purposes. Note that every quad in the tile is contained within a single depth cache line half no matter whether the number of samples is 1, 2, 4 or 8. This allows stencil testing of an entire quad per cycle.

1 Sample	2 Samples	<u>4 Sar</u>	nples	8 Sample			B			
cache line	cache line A lo	Alo	Ahi	A lo	A hi	B lo	B hi			
Alo	cache line A hi	Blo	Bhi	C lo	C hi	D lo	D hi			
cache line	cache line B lo	C lo	C hi	E lo	E hi	Flo	F hi			
Ahi	cache line B hi	Dlo	D hi	G lo	G hi	H lo	H hi			

R400 RB Depth vsd Depth Cache Line S&M as Tiles

by Jayw 8162003

Num Samples	Tile Offset [8:0]	Cache Line Offset [4:0]	Cache Line Lo/Hi [5]	Cache Line Number [8:6]
1	Y ₂ , Y ₀ , Y ₁ , X ₂ , X ₁ , X ₀	Y ₀ , Y ₁ , X ₂ , X ₁ , X ₀	Y ₂	0
2	Y ₂ , Y ₁ , Y ₀ , X ₂ , X ₁ , X ₀ , 0	Y ₀ , X ₂ , X ₁ , X ₀ , 0	Y ₁	Y ₂
3	$\{Y_2, Y_1, X_2, X_1, X_0\}^*3 >> 4, Y_0, \{Y_1, X_2, X_1, X_0\}^*3 \& 0xF$	Y ₀ , {Y ₁ , X ₂ , X ₁ , X ₀ }*3 & 0xF	({Y ₂ , Y ₁ , X ₂ , X ₁ , X ₀ }*3 >> 4) & 1	{Y ₂ , Y ₁ , X ₂ , X ₁ , X ₀ }*3 >> 5
4	Y ₂ , Y ₁ , X ₂ , Y ₀ , X ₁ , X ₀ , 0, 0	Y ₀ , X ₁ , X ₀ , 0, 0	X ₂	Y ₂ , Y ₁
6	{Y ₂ , Y ₁ , X ₂ , X ₁ , X ₀ }*3 >> 3,		({Y1, X2, X1, X0}*3>>	{Y2, Y1, X2, X1, X0}*3

R400 RB Depth doc 00 34402 Bytes**** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208414

ATI Ex. 2066 IPR2023-00922 Page 26 of 291

Æi	ORIGINATE DATE 4 June, 2002	EDIT DATE [date \@ "d MMMM,	DOCUMENT- R400 RB De	PAGE 18 of 32	
	Y ₀ , {X ₂ , X ₁ , X ₀ }*3 & 0x7, 0	Y ₀ , {X ₂ , X ₁ , X ₀ }*3 & 0x7, 0	3) & 1	>> 4	
8	Y2, Y1, X2, X1, Y0, X0, 0, 0, 0	Y ₀ , X ₀ , 0, 0, 0	X1	Y2, Y1, X	2

Here explicitly is the order of stencil information within a cache line. Please note that the stencil order is microtiled just as it is stored in memory. A 2 sample tile's stencil data takes 4 memory ops to read if uncompressed and 2 memory ops to read if compressed. Here is the case of 2 samples per pixel:

And 4 samples per pixel. Note: Two quads can be processed per cache read.

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***0805803 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208415

ATI Ex. 2066 IPR2023-00922 Page 27 of 291

41	(ORIGINATE 4 June, 2	El [date \	DIT DAT	TE MMM,	DO G	CUMENT-F	EV. NUM. X-REVA	PAGE 19 of	
And fin:	ally 8 sa	mples per p	ixel. Not	te: Only one 8 samp one half cache	8 samp les/pixel e line (38-	le quad can 4 bits)	processe	d per depth	cache read.	
one	1,1	1.1	0,1	0.1	1,0	1.0	0,0	0.0	Cache Line A (L	0)
line	3,1	3,1	2,1	2,1	3,0	3,0	2,0	2,0	Cache Line A (H	II)
one	5,1	5,1	4,1	4,1	5,0	5,0	4,0	4,0	Cache Line B (L	0)
line	7,1	7,1	6,1	6,1	7,0	7,0	6,0	6,0	Cache Line B (H	1)
one	1,3	1,3	0,3	0,3	1,2	1,2	0,2	0,2	Cache Line C (L	0)
line	3,3	3,3	2,3	2,3	3,2	22	2,2	2,2	Cache Line C (H	II)
¢ one	5,3	5.3	4,3	4.3	5	12	4.2	12	Cache Line D (L	0)
line	7,3	7,3	6,3	68	7,2	7,2	62	0,2	Cache Line D (H	I)
¢ one	1,5	1.5	0.5	05	1.4	11	104	0.4	Cache Line E (L	0)
cache line	3,5	3,5	2,5	2,5	3,4	DA	2,4	2,4	Cache Line E (H	1)
• one	5,5	5.5	4.5	AD	13	5.4	4.4	4.4	Cache Line F (L	0)
line	7,5	7,5	65	145	7,4	7,4	6,4	6,4	Cache Line F (H	1)
one	1,7	1.7	0	0.7	1.6	1.6	0,6	0.6	Cache Line G (L	0)
cache line	3,7	3,7	2,7	2,7	3,6	3,6	2,6	2,6	Cache Line G (H	II)
one	5.7	57	4.7	4.7	5.6	5.6	4.6	4.6	Cache Line H (L	0)
cache line	7,7	7,7	6,7	6,7	7,6	7,6	6,6	6,6	Cache Line H (H	1)
ty jag	R400 R6.D	epith vad Depith Cach	eLne56M866	samples/	SAMPLES SAMPLES SAMPLES SAMPLE2	SAMPLET	SAMPLE 7 SAMPLE 6	SAMPLE 5 SAMPLE 4 SAMPLE 3 SAMPLE 2	4 Stencil- 8 Stencil- pixel	samples/

For multisample surfaces of 3 or 6 samples/pixel the arrangement causes some individual quads to span cache lines. It is for this case that the depth cache supports a split read; i.e. not all four rams receive the same address.

<u>3 Sa</u>	mple	S	<u>6 S</u>	amp	bles
Alc	Ah	i	Alo	Ahi	Blo
Ahi	Blo	1	Bhi	C lo	C hi
Bh	Cl	0	Dlo	Dhi	Ehi
Clo	C hi	1	Elo	F hi	F hi
R400 RB.De	th visit Depth Ca	che Line S&M as 7	TAus2	by jays	8182003

R400 RB Depth vsd Depth Cache Line S&M as Tiles2

R400 RB Depth doc on 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** 08/08/03 04 47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208416

ATI Ex. 2066 IPR2023-00922 Page 28 of 291

Here's the depth cache layout for 3 samples per pixel.

Here's 6 samples/pixel.

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIOS 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208417

ATI Ex. 2066 IPR2023-00922 Page 29 of 291

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208418

ATI Ex. 2066 IPR2023-00922 Page 30 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.
4 June, 2002	[date \@ "d MMMM,	R400 RB Depth (RBD)

6.3 16 bit Depth Cache Word Format

The 16 bit depth format is a pleasure, so easy to use. This format is always aligned in the frame buffer but is only valid with ZMASK formats "SEPARATE" and "EXPANDED". Cache lines of this format are stored in the frame buffer with unused padding to expand them to 24 bits. This makes reading and writing of 16 bit depths within the depth cache the same as for 24 bit depth values. A single cache line stores 32 16 bit depth values. Two cache lines store a full single sample tile's depth values.

The 16 bit depth surface has no stencil data and has the smallest depth surface size. The depth data is stored in microtiled order. Each 256 bit depth cache fill read fills just one half of a depth cache line as a single depth cache write. Multisample 16 bit depth surfaces store the single sample's depth values contiguously, and then followed by the next sample's depth values.

Total size is 128 Bytes not comple. This is the smallest donth surface

27	96	95	64	63	32	31	
Pixel (7.0)	Pixel (6,0)	Pixel (5,0)	Pixel (4,0)	Pixel (3,0)	Pixel (2,0)	Pixel (1,0)	Pixel (0,0)
Pixel (7,1)	Pixel (6,1)	Pixel (5,1)	Pixel (4,1)	Pixel (3,1)	Pixel (2,1)	Pixel (1,1)	Pixel (0,1)
Pixel (7,2)	Pixel (6,2)	Pixel (5,2)	Pixel (4,2)	Pixel (3,2)	Pixel (2,2)	Pixel (1,2)	Pixel (0,2)
Pixel (7,3)	Pixel (6,3)	Pixel (5,3)	Pixel (4,3)	Pixel (3,3)	Pixel (2,3)	Pixel (1,3)	Pixel (0,3)
Pixel (7,4)	Pixel (6,4)	Pixel (5,4)	Pixel (4,4)	Pixel (3,4)	Pixel (2,4)	Pixel (1,4)	Pixel (0,4)
Pixel (7,5)	Pixel (6,5)	Pixel (5.5)	Pixel (4,5)	Pixel (3,5)	Pixel (2,5)	Pixel (1,5)	Pixel (0,5)
Pixel (7,6)	Pixel (6,6)	Pixel (5,6)	Pixel (4,6)	Pixel (3,6)	Pixel (2,6)	Pixel (1,6)	Pixel (0,6)
Pixel (7.7)	Pixel (6,7)	Pixel (5,7)	Pixel (4,7)	Pixel (3,7)	Pixel (2,7)	Pixel (1.7)	Pixel (0,7)

R400 R8 Depth ved 16 bit F8 format by jayw 8192003

6.4 24 bit (URF or FP) Depth Cache Word Format

The 24 bit depth format fits well, but the filling from the MC and flushing to the MC involve complex shifting and possible merging with Pmask data. Internally it's a fairly clean arrangement. A data cache word stores four 24 bit depth values. A cache line stores 32 24 bit depth values. Two cache lines store a full single sample-tile's depth values. The 24 bit URF and 24 bit FP depth formats are indistinguishable in the depth cache.

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** DB/CB/CB 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208419

ATI Ex. 2066 IPR2023-00922 Page 31 of 291

4 June, 2002

The arrangement in the Frame buffer is not so clean.

one micro-tile is 128 bits, as signified by the bold outline for each micro-tile

127		96	95	1	64 63		32 31		0
	Pix	el (4,0)	Pixel (3	3,0)	Pixel (2,0) F	Pixel (1,0)	P	vixel (0.0)
	Pixe	el (4,1)	Pixel (3	3,1)	Pixel (2,1) F	Pixel (1,1)	P	Pixel (0,1)
Pixel	(2,2)	Pixel (1,	2)	Pixel (0,2)	Pix	el (7,0)	Pixel ((6,0)	Pixel (5,0)
Pixel	(2,3)	Pixel (1,	3) 1	Pixel (0,3)	Pix	el (7,1)	Pixel ((6,1)	Pixel (5,1)
P	ixel (7,2)	P	ixel (6,2)	Pixel	(5,2)	Pixel (4	,2)	Pixel (3	2)
P	ixel (7,3)	P	xel (6,3)	Pixel	(5,3)	Pixel (4	,3)	Pixel (3	,3)
	Pix	el (4,4)	Pixel (3	3,4)	Pixel (2,4) F	Pixel (1,4)	P	Pixel (0,4)
eum	Pix	el (4,5)	Pixel (3	3,5)	Pixel (2,5) F	Pixel (1,5)	P	Pixel (0,5)
Pixel	(2,6)	Pixel (1,	6) I	Pixel (0,6)	Pix	el (7,4)	Pixel ((6,4)	Pixel (5,4)
Pixel	(2,7)	Pixel (1,	7)	Pixel (0,7)	Pix	el (7,5)	Pixel ((6,5)	Pixel (5,5)
P	ixel (7,6)	P	xel (6,6)	Pixel	(5,6)	Pixel (4	,6)	Pixel (3	6)
P	ixel (7,7)	P	xel (6,7)	Pixel	(5,7)	Pixel (4	,7)	Pixel (3	.7)

R400 R8 Depth vad 24 bit microble F8 format colo by banker from R400_Memory_Tikes vad F82d4tMicro

The 24 bit depth cache lines for a Tile are filled by sections. Each cache line requires three memory read operations. Memory reads return 5% depth values per (128 bit) microtile. The three (256 bit) memory reads each % of a cache line. The 24 bit depth values are aligned at (0,0) and at (0,4). As shown below the cache lines are shown divided by three.

The depth data is read by order of X, Y.

The first read the X,Y range [(0,0)...(4,0) + one byte of (5,0)] and range [(0,1)...(4,1) + one byte of (5,1)]. This first fill requires only one cache line write.

The second read [(5,0)@byte2...(7,0)] and [(0,2)...(1,2) + two bytes of (2,2)] and [(5,1)@byte2...(7,1)] and [(0,3)...(1,3) + two bytes of (2,3)]. The second fill uses both available depth cache write cycles.

The third and last read fills [(2,2)@byte3 ... (7,2)] and [(2,3)@byte3 ... (7,3)]. The last fill only requires one cache line write.

As the cache line is filled a per-cache-line fill count in the non-CAM tag is incremented. This fill count tells the data cache fill logic which third of the cache line to fill. The valid bit(s) (BOZO??) are turned upon completing the final fill of the cache line. The first cache line with the depths for pixels [(0,0)...(7,3)] is filled first.

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208420

10		ORI 4	GINA June	TE D	DATE		[dat	EDIT	DA "d N	TE IMMN	ı.	1	DOC R40	UMEI 10 RB	NT-R Dep	EV. N th (RE	IUM. 1 BD) 24	PAGE 4 of 3
	•						ne half	cache	e line	(384 b	ts) —		◄ _{de}	one pth ca	96 bit che w	ord		
one	7,1	6,1	5,1	4,1	3,1	2,1	1,1	0,1	7,0	6,0	5,0	4,0	3,0	2,0	1,0	0,0	Cache Line A (L	0)
line	7,3	6,3	5,3	4,3	3,3	2,3	1,3	0,3	7,2	2 6,2	5,2	4,2	3,2	2,2	1,2	0,2	Cache Line A (H	II)
\$																		
one	7,5	6,5	5,5	4,5	3,5	2,5	1,5	0,5	7,4	4 6,4	5,4	4,4	3,4	2,4	1,4	0,4	Cache Line B (L	0)
cache	7.7	6.7	5.7	4.7	3.7	2.7	1.7	0.7	7.6	6.6	5.6	4.6	3.6	2.6	1.6	0.6	Cache Line B (H	(II)

6.5 Pmasks & 96 bit Zplane Depth Cache Word Format

The definitive definition and description of Zplanes is in the document "//depot/r400/doc_lib/design/chip/memory/-R400_MemoryFormat.pdf' section "Zplane Depth Representation".

-	59		30 29		0
	SlopeY<29	:0> (sbfixed<3,26>)	1	SlopeX<29:0> (sbfi	xed<3,26>)
	95 94 93 92	91		64	63 62 61 60
	ShiftZ<3:0>	Center	Z<27:0> (sbfixed<	3,24>)	ShiftXY<3:0>
Two ca	che lines are used fo	or storing the sixteen	Zplanes:	20	5 S
	-	one half cache	e line (384 bits)	ene 96 bit depth cache word	4
one	Zplane 3	Zplane 2	Zplane 1	Zplane 0	Cache Line A (LO)
line	Zplane 7	Zplane 6	Zplane 5	Zplane 4	Cache Line A (HI)
+				a second second	
one	Zplane 11	Zplane 10	Zplane 9	Zplane 8	Cache Line B (LO)
line	Zplane 15	Zplane 14	Zplane 13	Zplane 12	Cache Line B (HI)
A 400 A	B Depth vad Depth Cache Line 96 b	tZplane byja	yw 8162003	one 96 bit Zplane	•

In the Frame Buffer Zplanes are painful to deal with. It's not just that Zplanes cross microtile and even the dual microtile read size. The Zplane format introduces the third data element of the depth cache, Zplane Pmasks (Plane-Masks). Each pixel sample's depth is represented by one of up to sixteen Zplanes. This requires that each pixel in the frame buffer have a four ([0...15]) bit Zplane Pmask for encoding it's representative depth. The Pmask is stored preceding the Zplane data and after the stencil data (if not 16 bit depth which has no stencil data). Since the Pmask is S*N*64 bits (where N is one, two or four bits per Pmask and S is one of {1,2,3,4,6,8}) there are combinations of N and S that will result in the Zplane depth data being not even microtile aligned. Note: Three bits per Pmask are actually stored and processed as four bits per Pmask.

The Pmask data is the first depth data read as the RBD uses this data early to determine the exact usage of the Zplanes by the tile. Along with the Pmask data some Zplane data is usually read, when (N*S)%4 != 0, i.e. when (N,S) is one of { (1,1), (2,1), (1,2), (1,3), (1,6) }.

NOTE: The (N,S) combination of (4,1) is not allowed in the frame buffer. The frame buffer size for Zplane depth data is constrained to be less than or equal to the size that required by the depth being its native URF (16 or 24) bit format. For single sample this constrains the number of Zplanes to be:

Samples*Size of Pmask/Tile + NZplane*(Size of Zplane) <= Samples*Size of 16 bit URF/Tile

R400 RB Depth doc CO 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OB/CB/CB 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208421

ATI Ex. 2066 IPR2023-00922 Page 33 of 291

	0	
	n	
	-	

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 June, 2002	[date \@ "d MMMM,	GEN-CXXXXX-REVA	25 of

 $\begin{array}{l} 1*64*(4bits/depth) + N_{Zplace}*(96bits/Zplane) <= 1*64*16bits/depth \\ N_{Zplace} <= (1*64*16bits/depth - 1*64*(4bits/depth))/(96bits/Zplane) \\ N_{Zplace} <= 64(16-4)/96 = 2*12/3 \\ N_{Zplace} <= 8 \end{array}$

Therefore while N_{Zplane} may be 8 for N=4, S=1, it can not be 16, in this case. The spec (Perforce: //depot/R400/doc_lib/design/chip/memory/R400_MemoryFormat.doc) section "Zplane Storage Formats", table "Depth Storage Sizes in Micro-Tiles" fully analyzes this issue. The (N,S) combination of (4,1), aka >8 Zplanes for one sample surfaces, is the only combination that restricts using the R400 RB's full 16 Zplane capability. Single sample tiles inside the RB may have [8...16] Zplanes, however as they are flushed from the depth cache they will be written as explicit depth values and the Zmask is changed to "Separate".

6.6 CAM Tags

Cache line tags in the depth cache are not a pure physical address since the depth cache does not maintain the exact same organization as the frame buffer's depth surface. The CAM portion of a depth cache line tag is a composite of five fields.

34 32	31 30	29 27	26 25	24	0
Valids	Dirties	Sample Num	Туре	Tile's starting device address [31:7]
				R400 R8 Depth vad Depth Cache CAM Entry	by Jayw 616200

The first field of the depth cache CAM tag is the top 25 bits of the physical address of the start of the 8x8 pixel tile's depth data. (Explanation: The smallest size of a data cache tile is 64 16 bit depth values or 128 bytes, therefore leaving out the bottom log2(128) bits of the 32 bit device address gives us bits 31:7, or 25 bits. All other sizes are multiples of 128 bytes.)

The second field is three bits and contains the data type:

Code	Туре	Description	
0	DEPTH_LO	Depth for pixels (0,0)(7,3)	
1	DEPTH_HI	Depth for pixels (0,4)(7,7)	
2	STENCIL_PMASK	Stencil & Pmask	
3	Reserved	reserved	

The third field is three bits for multisample surfaces and contains the sample number ([0...7]) of the depth information. Since the stencil and Pmask are stored as data elements of a size proportional to the number of samples for multisample surfaces, the 'sample number' is an offset into the surface's stencil data.

The fourth field is two dirty bits, one bit per cache line half. The dirty is one if any depth or stencil value (depending upon the 'Type' of the depth cache line) is required to be written to the frame buffer before the cache line contents are discarded. Note: The Pmask information is never 'dirty' and does not contribute to the status of this bit. The Pmask is written depending upon whether the depth data is dirty and whether it is of Zplane format. BOZO: a third dirty bit would be optimal for ZMASK = SEPARATE/EXPANDED.

The fifth field is the three valid bits. The meaning of the valid depends upon the data type of the cache line. (Explanation: Memory fills to the depth cache arrive as 256 bits; therefore 24 bit depth takes three reads to fill a cache line. Also Pmasks are read separately from the stencil data and only require only a single valid per cache line. Stencil data takes two 256 bit reads per cache line and therefore require two valids.)

Format	Valids[2] (MSB)	Valids[1]	Valids[0] (LSB)
DEPTH_LO	Valid Depth for pixels	Valid Depth for pixels	Valid Depth for pixels
	(5,2)(7,2) & (0,3)(7,3)	(2,1)(7,1) & (0,2)(4,2)	(0,0)(7,0) & (0,1)(1,1)
DEPTH_HI	Valid Depth for pixels	Valid Depth for pixels	Valid Depth for pixels
	(5,6)(7,6) & (0,7)(7,7)	(2,5)(7,5) & (0,6)(4,6)	(0,4)(7,4) & (0,5)(1,5)
STENCIL_PMASK	Valid Pmask for pixels	Valid Stencil for pixels	Valid Stencil for pixels
	(0,0)(7,7)	(0,4)(7,7)	(0,0)(7,3)
Reserved	reserved	reserved	reserved

R400 RB Depth.doc S4402 Bytes*** CATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208422

ATI Ex. 2066 IPR2023-00922 Page 34 of 291

ORIGINATE DATE EDIT DATE 4 June, 2002 [date \@ "d MMMM,

The state of a cache line:

Valid	Dirty	Inflight Count	Description
0	0	0	Empty, available for reuse. Occurs only after a hard/soft reset or flush & invalidate.
0	0	>0	Empty and in use, awaiting to be filled/marked-valid.
0	1	n/a	not a valid cache line state.
1	0	0	Valid, available for reallocation
1	0	>0	Valid and in use.
1	1	0	Valid and Dirty, must be flushed before reuse.
1	1	>0	Valid, Dirty and in use.

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page *** OB/OB/03 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208423

ATI Ex. 2066 IPR2023-00922 Page 35 of 291 **A**î

Change.

6.7 Depth Surface Device Addresses

The address calculations for the depth cache are quite complex. Starting from the general equations (Perforce //depot/r400/doc_lib/design/chip/memory/R400_MemoryFormat.pdf) we can simplify and reduce to the required forms. Depth surface dimensionality effects address generation. The depth surface dimensionality of a depth surface is the context register field RB_COLOR0_INFO.COLOR0_ARRA[XE "RB_COLOR0_INFO:COLOR0_ARRAY" }Y which may be either ARRAY_2D or ARRAY_3D_SLICE. If depth or stencil are enabled then the field RB_COLOR0_INFO.COLOR0_TILING{ XE "RB_COLOR0_INFO:COLOR0_TILING" } must be ARRAY_TILED. A depth surface may not be linear or 1D.

6.7.1 Tile starting device address

The complexity of calculating the start of a tile's depth data in its depth surface is greatly simplified by several facts.

- 1. The X and Y quad and pixel offset bits are zero, i.e. X[2:0] and Y[2:0] are zero.
- 2. 16 bit depth surfaces have no stencil and are fixed with a data element 'Size' of 2 bytes per pixel.
- 3. 24 bit depth surfaces have stencil and are fixed with a data element 'Size' of 4 bytes per pixel.
- 4. There is no offset within the tile since we're just calculating the starting address, i.e. 'TileBase' is 0.
- TileSize is (16 or 32 bits/pixel) * 64 pixels * 'S' samples = 128*S (16 bit depth) or 256*S bytes (24 bit depth) per tile.
- DataSize' is irrelevant for the tile starting address.
- 7. Depth surfaces are always tiled.
- Z is a three bit slice value, from RB_COLOR0_INFO.COLOR0_SLIC{ XE "RB_COLOR0_INFO:COLOR0_SLICE" }E. Note: "This value applies to all color buffers and the depth buffer."
- 9. 'SURFACE_PITCH' IS RB_SURFACE_EXTENT.SURFACE_PITCH{ XE "RB_SURFACE_EXTENT:SURFACE_PITCH" }.
- 10. 'SURFACEBASE' IS RB_DEPTH_BASE.DEPTH_BAS(XE "RB_DEPTH_BASE:DEPTH_BASE")E.

Starting from the general equations and reducing ...

The original equations for each field are shown in italics on the first equation line. The reduced results using the above follow the original equations and are expanded, if necessary, according to the number of pipes. The use of log2(Pipes) and log2(Size) are used often; the log2(16 bit depth) is 1 (Byte) and log2(32 bit depth) is 2 (Bytes). Curly braces '{' and '}' are used to denote bit concatenation into a resulting multibit value. The subscripts are used to denote the particular bit of the X, Y or Z tile coordinates.

-		Pip-	
Field Name	Bits	es	Equation
TileSize	6 + log2(Size)		64*Size
TileBase	6 + log2(Size)		0
BankSelect2D	1		(Y/16) mod 2
	1	-	Ya
BankSelect3D	1		(Y/8 + Z/4) mod 2
	1	-	Y ₁ *Z ₂
MemSelect2D	log2(Pipes)		(X/8 + (Y/8 mod 2)*(Pipes/2)) mod Pipes
	0	1	NULL-ZERO-BITS
	1	2	X ₃ ^Y ₃
	2	4	{X ₄ ^A Y ₃ , X ₃ }
MemSelect3D	log2(Pipes)		(X/8 + BankSelect*(Pipes/2)) mod Pipes
	0	1	NULL-ZERO-BITS
	1	2	X ₃ ^Y ₃ ^Z ₂
	2	4	{X ₄ ^A Y ₃ ^A Z ₂ , X ₃ }
Subset2D	1+log2(Pipes)		BankSelect2D + 2*MemSelect2D
	1	1	Y4
	2	2	{X ₃ ^Y ₃ ,Y ₄ }
	3	4	{X ₄ ^Y ₃ , X ₃ , Y ₄ }
Subset3D	1+log2(Pipes)		BankSelect2D + 2*MemSelect2D
	1	1	Y ₃ ^Z ₂
	2	2	{ X ₃ ^A Y ₃ ^A Z ₂ , Y ₃ ^A Z ₂ }
	3	4	{X ₄ ^A Y ₃ ^A Z ₂ , X ₃ , Y ₃ ^A Z ₂ }
TileNumber2D	3-log2(Pipes)		((X mod 32)/8/Pipes)*2 + (Y/8 mod 2)
	3	1	X4, X3, Y3
	2	2	X4, Y3
	1	4	Y ₃
TileNumber3D	4-log2(Pipes)		(Z mod 4) + ((X mod 32)/8/Pipes)*4

R400 RB Depth doc no 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** OBIOBIO3 04.47 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208424

	4 June, 2002		[date \@ *d MMMM,	R400 RB Depth (RBD)	28 of 3
	4	1	{X4, X3, Z1, Z0}		
	3	2	(X4, Z1, Z0)		
	2	4	(Z1, Z0)		
MicroByte2D&3D	5 + log2(Size)		(X mod 8 + ((Y mod 8)/2)*8)*Size		5
	5 + log2(Size)	-	0	b.	
TileOffset2D&3D	6 + log2(Size)		(MicroByte2D&3D mod 16) + (Y n	nod 2)*16 + (MicroByte2D&3D/16)*32	
	6 + log2(Size)	-	0		
TileAddr2D&3D	6 + log2(Size)		TileBase + TileOffset2D&3D		
	1		0		
MacroOffset2D	16		(X/32) + (Y/32) * (Pitch/32);		0
	16	+	X[12:5] + Y[12:5]*SURFACE_PIT	[CH[13:5]	
MacroOffset3D	16	-	(X/32) + (Pitch/32) * ((Y/16) + (He	ight/16)*(Z/4))	
	16	· +:	X[12:5] + (Y[12:4]+ SURFACE_H	EIGHT[13:4]*Z[2])*SURFACE_PITCH[13	:5]
SubsetOffset2D	[203]+ log2(TileSize) - log2(Pipes)		MacroOffset2D*TileSize*16/Subs	ets + TileNumber2D*TileSize + TileAddr2D	0
		-	TileSize*(MacroOffset2D* 16/Sub	sets + TileNumber2D)	
			TileSize*((Pipes ? 2,4,8)* MacroC	ffset2D + (Pipes ? Y ₃ , {X ₄ , Y ₃ }, {X ₄ , X ₃ , Y ₃	})
			TileSize*((Pipes ? {MacroOffset2) X ₃ , Y ₃ })	D,Y[3]], {MacroOffset2D, X ₄ ,Y ₃ }, {MacroO	ffset2D, X ₄ ,
	1 S	1	{{MacroOffset2D, X4, X3, Y3}} <<	log2(TileSize)	
		2	({MacroOffset2D, X ₄ , Y ₃ }) << log	2(TileSize)	}
		4	({MacroOffset2D, Y ₃) << log2(Ti	leSize)	
SubsetOffset3D	[203]+ log2(TileSize) -log2(Pipes)	×	MacroOffset3D*TileSize*32/Subs	ets + TileNumber3D*TileSize + TileAddr3D	0
		. ×	TileSize*(MacroOffset3D*32/Subr	sets + TileNumber3D)	
		*	TileSize*((Pipes ? 4,8,16)*Macro(Z ₀)))	Offset3D + (Pipes ? {Z ₁ , Z ₀ }, {X ₄ , Z ₁ , Z ₀ }, {	Ka, X3, Z1,
			TileSize*(Pipes ? {MacroOffset3D X ₄ , X ₃ , Z ₁ , Z ₀ })), Z ₁ , Z ₀ }, {MacroOffset3D, X ₄ , Z ₁ , Z ₀ }, {Ma	croOffset3D,
		1	{MacroOffset3D, X4, X3, Z1, Za}	< log2(TileSize)	
		2	{MacroOffset3D, X4, Z1, Z0} << 1	og2(TileSize)	
		4	{MacroOffset3D, Z1, Z0} << log2	(TileSize)	

Whew! Now we can calculate the 'LocalAddr' using a single MAC (Multiply and Accumulate) and some muxing.

		Pip-	
Field Name	Bits	es	Equation
LocalAddr2D	31		SurfaceBase/Subsets + SubsetOffset2D
			SURFACEBASE[31:12]<<(11 - log2(Pipes)) + ((Pipes ? {MacroOffset2D, Y ₃ }, {MacroOffset2D, X ₄ , Y ₃ }, {MacroOffset2D, X ₄ , X ₃ , Y ₃ }) << log2(TileSize)
			SURFACEBASE[31:12]<<(11 - log2(Pipes)) + MicroOffeet2D << (34/er2/TiteSize) log2(Pipes)) +
			((Pipes ? Y ₃ , (X ₄ , Y ₃), (X ₄ , X ₃ , Y ₃)) << log2(TileSize)
			(SURFACEBASE[31:12]<<(8 - log2(TileSize)) + MacroOffset2D) << (3+log2(TileSize)-log2(Pipes)) +
			((Pipes ? Y ₃ , {X ₄ , Y ₃ }, {X ₄ , X ₃ , Y ₃)) << log2(TileSize)
			(SURFACEBASE[31:12]<<(8 – log2(TileSize)) + MacroOffset2D) << (2 - log2(Pipes)) + (Pipes ? null-0, X ₄ , {X ₄ , X ₃ }) << (1+log2(TileSize)) +
s			Y ₃ << log2(TileSize) // Note the LSB is invariant
	-		{MAC2D, {Pipes ? Y ₃ , {X ₄ , Y ₃ }, {X ₄ , X ₃ , Y ₃ }} << log2(TileSize)
LocalAddr3D	31		SurfaceBase/Subsets + SubsetOffset3D
			SURFACEBASE[31:12]<<(11 - log2(Pipes)) + (Pipes ? {MacroOffset3D, Z ₁ , Z ₀ }, {MacroOffset3D, X ₄ , Z ₁ , Z ₀ }, {MacroOffset3D, X ₄ , X ₃ , Z ₁ , Z ₀ })<< log2(TileSize)
			SURFACEBASE[31:12]<<(11 - log2(Pipes)) +
		_	(Pipes ? {Z ₁ , Z ₀), {X ₄ , Z ₁ , Z ₀ }, {X ₄ , X ₃ , Z ₁ , Z ₀ })<< log2(TileSize)
			(SURFACEBASE[31:12]<<(7 - log2(TileSize)) +MacroOffset3D)
			<(4+log2(1)e3/2e)-log2(Pipes)) + (Pipes ? {Z ₁ , Z ₀ }, {X ₄ , Z ₅ , Z ₀ }, {X ₄ , X ₃ , Z ₁ , Z ₀ })<< log2(TileSize)
			(SURFACEBASE[31:12]<<(8 - log2(TileSize)) +(MacroOffset3D<<1) +
			(Pipes ? Z ₁ , X ₄ , X ₄)) << (3+log2(TileSize)-log2(Pipes)) +
	-		(Pipes ? Z ₀ , {Z ₁ , Z ₀ }, {X ₃ , Z ₁ , Z ₀ })<< log2(TileSize)
			((SURFACEBASE[31:12]<<(8 - log2(TileSize)) +(MacroOffset3D<<1)) << (2-log2(Pipes))
	1		+ (Pipes 7 Z1, {X4, Z1}, {X4, X3, Z1}))<< (1+log2(TileSize))
		-	Zo<< log2(TileSize) // Note the LSB is invariant
			{(MAC3D), (Pipes ? Z ₀ , {Z ₁ , Z ₀ }, {X ₃ , Z ₁ , Z ₀ })} << log2(TileSize)

R400 RB Depth doc on 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page *** OB/06/03 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208425

ATI Ex. 2066 IPR2023-00922 Page 37 of 291

A î	ORIGINATE DATE 4 June, 2002	EDIT DATE [date \@ "d MMMM,	DOCUMENT-REV. NUM. GEN-CXXXXX-REVA	PAGE 29 of
MAC2D	21	(SURFACEBASE[31:12]<<(8 - log2 X[12:5] + Y[12:5]*SURFACE_PITCH[13:5])	2(TileSize)) +	
MAC3D	21 (SURFACEBASE[31:12]<<(8 - log2(TileSize)) + ((X[12:5]<<1 (Pipes ? Z ₁ , X ₄ , X ₄)) + (Y[12:4]*SURFACE_PITCH[13:5])<<1 + (Z[2]*SURFACE_HEIGHT[13:4]*SURFACE_PITCH[13:5])<<1			

The MAC plus a small 3-to-1 mux (based on the dimension and depth size) gives LocalAddr. The final Device Address is just one more level of muxing (based on the number of pipes):

Field Name	Bits	Pipes	Equation	
DeviceAddress [5:0]	6		LocalAddr[5:0]	
	6		0	1
DeviceAddress [log2(Pipes) +5:6]	log2(Pipes)	(9)	MemSelect2D or MemSelect3D	
			2D: (Pipes ? {X ₄ ^Y ₃ , X ₃ }, X ₃ ^Y ₃ , NULL) 3D: (Pipes ? {X ₄ ^Y ₃ ^Z ₂ , X ₃), X ₃ ^Y ₃ ^Z ₂ , NULL}	21
DeviceAddress [6+log2(Pipes)]	1	35	LocalAddr[6]	
	1		0	
DeviceAddress [10:7+log2(Pipes)]	4-log2(Pipes)	•	LocalAddr[10-log2(Pipes):7]	
DeviceAddress [11]	1	•	BankSelect2D or BankSelect3D	
	1		2D: Y4; 3D: Y3*Z2	
DeviceAddress [31:12]	20	•	LocalAddr[30-log2(Pipes) : 11-log2(Pipes)]	
	9 D			8

6.7.2 TileBase

The 'TileBase' is used when accessing 24 bit depth surfaces to skip over the stencil data or to skip over the previous sample's depth data. or multisample 16 bit depth surfaces.

Depth Size	Depth Size Zmask TileBase		From Start of Tile to beginning of:
16		0	Tile
16	SEPARATE EXPANDED	128*(S-1)	The depth data for sample 'S'.
16	ZPLANE(N)	0	The depth data.
24	-	0	Tile and also start of Stencil
24	EXPANDED	256*(S-1)	The depth data for sample 'S'.
24	SEPARATE	320*S-256	The depth data for sample 'S'. (64*S+256*(S-1))
24	ZPLANE(N)	64*S	The Pmask data.
24	ZPLANE(M)	(64+8*log2(N))*S	The depth data. (64*S+8*log2(N)*S)

6.7.3 DataSize

The 'DataSize' along with 'TileBase' is used in the general addressing equations to access individual data elements within a depth tile.

R400 RB Depth doc no S4402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** DB/DB/D3 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208426

ATI Ex. 2066 IPR2023-00922 Page 38 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 June, 2002	[date \@ *d MMMM,	R400 RB Depth (RBD)	30 of 32

	10.00	1		_
Depth Size (bits)	Zmask	Depth 'DataSize' (bytes)	Stencil 'DataSize' (bytes)	
16	-	2	N/A	
24	EXPANDED	4	N/A	
24	SEPARATE	3	64*'S'	
24	ZPLANE(N)	12***bozo not really per pixel data	64*'S'	

6.8 Non-CAM Tags

6.8.1 Inflight

This is incremented once for every tile seen by the early depth cache probe logic, thereby reserving the cache line and preventing its accidental deallocation before use. The inflight count for a cache line is decremented when a tile has completed depth and stencil testing. The inflight count is an unsigned 6 bits per cache line.

6.8.2 Descriptor

Each cache line has a format assigned. This is used when the line is flushed to determine how to unpack, reformat and swizzle the data into the frame buffer.

For depth cache lines storing depth data the descriptor describes the frame buffer's current format. When flushing depth information this provides the information that is needed to generate a new Zmask, be 'smart' about how much to write back and what depth format.

Descriptor Bits[1:0]	Туре	Description		
0	DEPTH_LO or DEPTH_HI	16 bit Depth		
1	DEPTH_LO or DEPTH_HI	24 bit Depth (URF or FP)		
2	DEPTH_LO or DEPTH_HI	96 bit Depth (Zplane)		
3	DEPTH_LO or DEPTH_HI	Reserved		

Descriptor Bits[9:2]	Туре	Description	
-	DEPTH_LO	Tile cache index for Zmask and Smask	

The stencil is uncompressed/compressed in FB is used to optimize the flushing of stencil data. If the stencil has changed format then all of the tile's stencil data must be written. If the stencil has not changed its compression state then only the dirty stencils need be written.

Descriptor Bit	Туре	Description
0	STENCIL_PMASK	Stencil is uncompressed in FB.
1	STENCIL_PMASK	Compressed Pmask, unusable until uncompressed. BOZO how is the compression ration remembered?

R400 RB Depth doc 00 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***0805803 04.47 FM

AMD1044_0208427

Depth&Stencil Surface

7.1 ZMASK Background (0)

7.2 ZMASK ZplaneN

8. ZMASK Separate (6)

8.1 16 Bit Depth

This format is indentical to ZMASK Expanded (7) when the depth value is 16 bits. No stencil information exists in a depth surface with 16 bit depth values. This is the most trivial surface to load and flush, the data is aligned and a full 256 bit memory operation is a single depth cache in size. This is the smallest depth surface with just 256 bytes per sample.

	•			-128 bit i	microtile -			
1	(3,1)	(2,1)	(1,1)	(0,1)	(3,0)	(2,0)	(1,0)	(0,0)
	(7,1)	(6,1)	(5,1)	(4,1)	(7,0)	(6,0)	(5,0)	(4,0)
nicrotiles r sample	(3,3)	(2,3)	(1,3)	(0,3)	(3,2)	(2,2)	(1,2)	(0,2)
	(7.7)	(6,7)	(5,7)	(4,7)	(7.6)	(6.6)	(5.6)	(4.6)

8.1.1 Data Cache Fills

A single 256 bit read request generates a single aligned data cache write (384 bits). The first microtile is retained pending the arrival of the second microtile of the read. The 16 bit depth values are padded to 24 bits and written. The half cache line is marked valid.

Writes are just as obviously simple. There are no alignment concerns in either direction, the data in the frame buffer is always aligned in this format.

8.1.2 24 Bit Depth & Stencil

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page *** DB/CB/CB 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208428

ATI Ex. 2066 IPR2023-00922 Page 40 of 291

9. ZMASK Expanded (7)

9.1 16 Bit Depth

This format is indentical to ZMASK Separate (6) when the depth value is 16 bits. No stencil information exists in a depth surface with 16 bit depth values.

9.2 Packed 24 Bit Depth with Stencil

This format has low performance and is only intended as a software or texture unit readable and writable surface. It is unfortunately the first depth surface to get working. The depth surface is stored into three depth cache lines per sample; one for the stencil data and two for the depth values.

A whole tile is read whenever any depth or stencil information of the tile is needed. This is not optimim particularily for the multisample cases, but this restriction is expediant.

The stencil write assembles both read microtiles into a single 8 pixel stencil write (one cache word or 64 bits plus the 32 bits of Pmask data is zeroed to aid debug). The depth write assembles both read microtiles into an aligned single 8 pixel depth write (192 bits = two cache words).

Writing the tile from the depth cache will generate just 8°S 256 bit memory writes. Assembly of the write data with the stencil data is performed outside the cache with the aid of an L0 stencil cache line.

R400 RB Depth doc 10 34402 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C *** 08/08/03 04 47 FM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208429

ATI Ex. 2066 IPR2023-00922 Page 41 of 291

R400 RB Depth Drawings

R400 RB Depth.vsd:TITLE

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208430

ATI Ex. 2066 IPR2023-00922 Page 42 of 291 15 Depth, 16 bit URF

R400 RB Depth.vsd:Depth 16 URF by jayw 9/8/2003

0

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208431

ATI Ex. 2066 IPR2023-00922 Page 43 of 291 23

Depth, 24 bit URF

R400 RB Depth.vsd:Depth, 24 bit URF by jayw 9/8/2003

0

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208432

ATI Ex. 2066 IPR2023-00922 Page 44 of 291

31		7			
Dep	h, 24 bit URF or 24 bit floating point	8	8 bit Stencil)	R400 RB Depth.vsd:Depth, 32 bit with stenci. by jayw 9/8/2003

AMD1044_0208433

ATI Ex. 2066 IPR2023-00922 Page 45 of 291

23	19		
Exp	Mantissa	0	R400 RB Depth.vsd:Depth, 24 bit floating point by jayw 9/8/2003
	= Mantissa * 2^(Exp-34)		

AMD1044_0208434

ATI Ex. 2066 IPR2023-00922 Page 46 of 291

⊲96 bits►								
32 bits of Mask (8 pixels) 64 bits of Stencil (8 pixels)								
	one 96 bit Z-plane							
24 bit URF or FF	24 bit URF or FP depth 24 bit URF or FP depth			24 bit URF or FP	depth	24 bit	URF or FP depth	
16 bit URF depth								

R400 RB Depth.vsd:Cache Word

by jayw 9/8/2003

AMD1044_0208435

ATI Ex. 2066 IPR2023-00922 Page 47 of 291

AMD1044_0208436

ATI Ex. 2066 IPR2023-00922 Page 48 of 291

AMD1044_0208437

ATI Ex. 2066 IPR2023-00922 Page 49 of 291

,		one 96 bit cache word	-
	⁹⁵ PMASK (8 ₆₄ samples) ⁶³	STENCIL (8 samples)	0
1	32 bits	64 bits	4
	R400 RB Depth.vsd:Data Cac	he Word S&M by jayw 9/8/2003	

AMD1044_0208438

ATI Ex. 2066 IPR2023-00922 Page 50 of 291

		r sampie/pixer		
4		one half cache line (384 bits)	· · · · · · · · · · · · · · · · · · ·	
one 8 bit st	encil 📥 🗛	▲128 bits—	one bit	
0,000,000 0,000,000	24244444	t ининикиевала составата в составата составата со составата со составата со составата со составата со состават С ининики составата со составата с	442 00000000000000000000000000000000000	Cache Line A (LO
		- - - - - - - - - - - - - -	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Cache Line A (HI)
STENCIL	STENCIL	PMASK PMASK PMASK PMAS	KPMASK PMASK PMASK PMASK	Cache Line A (LO)
* 6	* /			
*,6 STENCIL	*,4 STENCIL	STENCIL STENCIL	STENCIL STENCIL	Cache Line A (HI)
*,6 STENCIL *,3	*,4 STENCIL *,1	*,7 -,5 -,6 -,4 STENCIL STENCIL *,2 *,0	*,3 *,1 *,2 *,0 STENCIL STENCIL \$TENCIL *,7 *,5	Cache Line A (HI)
*,6 STENCIL *,3	*,4 STENCIL *,1	*,7 *,5 *,6 *,4 STENCIL STENCIL \$TENCIL *,2 *,0	*,3 *,1 *,2 *,0 STENCIL STENCIL *,7 *,5	Cache Line A (HI)
*,6 STENCIL *,3 Stenci	*.4 STENCIL *,1	PMASK Y Odd	PMASK Y Even	Cache Line A (HI)

ATI Ex. 2066 IPR2023-00922 Page 51 of 291

AMD1044_0208440

ATI Ex. 2066 IPR2023-00922 Page 52 of 291

				128 micr	3 bit otile			
	(3,1)	(2,1)	(1,1)	(0,1)	(3,0)	(2,0)	(1,0)	(0,0)
	(7,1)	(6,1)	(5,1)	(4,1)	(7,0)	(6,0)	(5,0)	(4,0)
8 microtiles per sample	(3,3)	(2,3)	(1,3)	(0,3)	(3,2)	(2,2)	(1,2)	(0,2)
-	(7,7)	(6,7)	(5,7)	(4,7)	(7,6)	(6,6)	(5,6)	(4,6)
R400 RB Depth.vsd:ZMASK Separate 6				by jayw 9/8/2003				

AMD1044_0208441

ATI Ex. 2066 IPR2023-00922 Page 53 of 291

ATI Ex. 2066 IPR2023-00922 Page 54 of 291

ATI Ex. 2066 IPR2023-00922 Page 55 of 291

ATI Ex. 2066 IPR2023-00922 Page 56 of 291

ATI Ex. 2066 IPR2023-00922 Page 57 of 291

ATI Ex. 2066 IPR2023-00922 Page 58 of 291

ATI Ex. 2066 IPR2023-00922 Page 59 of 291

↓ ↓	4	one half cache	e line (384 bits)	depth cache word	
one	Zplane 3	Zplane 2	Zplane 1	Zplane 0	Cache Line A (LO)
line	Zplane 7	Zplane 6	Zplane 5	Zplane 4	Cache Line A (HI)
one	Zplane 11	Zplane 10	Zplane 9	Zplane 8	Cache Line B (LO)
line	Zplane 15	Zplane 14	Zplane 13	Zplane 12	Cache Line B (HI)
R400 R	B Depth.vsd:Depth Cache Line 96	bit Zplane by jaj	yw 9/8/2003	one 96 bit Zplane	

ATI Ex. 2066 IPR2023-00922 Page 60 of 291

		96	95			64	63			32	31			0	_
Pi	xel (4,	0)	P	ixel (3,	0)	Pi	xel (2,	0)	Р	ixel (1,	0)	P	ixel (0,	0)	mtC
Pi	xel (4,	1)	P	ixel (3,	1)	Pi	xel (2,	1)	Р	ixel (1,	1)	P	ixel (0,	1)	mt1
el (2,2)	Pi	ixel (1,:	2)	P	ixel (0,:	2)	Pi	xel (7,0	0)	P	ixel (6,	0)	Pixel	(5,0)	mt2
el (2,3)	Pi	ixel (1,	3)	P	ixel (0,:	3)	Pi	xel (7,	1)	P	ixel (6,	1)	Pixel	(5,1)	mt3
Pixel (7,	2)	Pi	xel (6,	2)	Pi	xel (5,2	2)	Pi	xel (4,	2)	P	ixel (3,	2)		mt4
Pixel (7,	3)	Pi	ixel (6,	3)	Pi	xel (5,	3)	Pi	xel (4,	3)	P	ixel (3,	3)		mt
Pi	xel (4,	4)	Ρ	ixel (3,	4)	Pi	xel (2,	4)	Ρ	ixel (1,	4)	P	ixel (0,	4)	mte
Pi	xel (4,	5)	P	ixel (3,	5)	Pi	xel (2,	5)	P	ixel (1,	5)	P	ixel (0,	5)	mt
el (2,6)	Pi	ixel (1,	6)	P	ixel (0,0	6)	Pi	xel (7,4	4)	P	ixel (6,	4)	Pixel	(5,4)	mt
el (2,7)	Pi	ixel (1,	7)	P	ixel (0,	7)	Pi	xel (7,	5)	P	ixel (6,	5)	Pixel	(5,5)	mt۹
Pixel (7,0	6)	Pi	xel (6,	6)	Pi	xel (5,0	6)	Pi	xel (4,	6)	P	ixel (3,	6)]
Pixel (7,	7)	Pi	xel (6,	7)	Pi	xel (5,	7)	Pi	xel (4,	7)	P	ixel (3,	7)		m10
	Pi (2,3) Pixel (7,) Pixel (7,) Pixel (7,) Pixel (7,) Pixel (7,) Pixel (7,) Pixel (7,)	Pixel (4, Pixel (4, I (2,2) Pixel (4, Pixel (7,2) Pixel (7,3) Pixel (7,3) Pixel (4, Pixel (2,7) Pixel (7,6) Pixel (7,7)	Pixel (4,0) Pixel (4,1) ! (2,2) Pixel (1, ! (2,3) Pixel (1, Pixel (7,2) Pixel (1, Pixel (7,3) Pixel (4,4) Pixel (4,5) Pixel (4,5) ! (2,6) Pixel (1, Pixel (2,7) Pixel (1, Pixel (7,7) Pixel (1,	Pixel (4,0) P Pixel (4,1) P ! (2,2) Pixel (1,2) ! (2,3) Pixel (1,3) Pixel (7,2) Pixel (6, Pixel (7,3) Pixel (6, Pixel (4,4) P Pixel (4,5) P ! (2,6) Pixel (1,6) ! (2,7) Pixel (1,7) Pixel (7,6) Pixel (6, Pixel (7,7) Pixel (6,	Pixel (4,0) Pixel (3, Pixel (4,1) Pixel (3, Pixel (4,1) Pixel (3, ! (2,2) Pixel (1,2) Pixel (3, ! (2,3) Pixel (1,3) Pixel (6,2) Pixel (7,2) Pixel (6,3) Pixel (7,3) Pixel (6,3) Pixel (4,4) Pixel (3, Pixel (4,5) Pixel (3, Pixel (4,5) Pixel (3, ! (2,6) Pixel (1,6) Pixel (2,7) Pixel (1,7) Pixel (7,6) Pixel (6,6) Pixel (7,7) Pixel (6,7)	Pixel (4,0) Pixel (3,0) Pixel (4,1) Pixel (3,1) I (2,2) Pixel (1,2) Pixel (0,3) I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,2) Pixel (6,2) Pi Pixel (7,3) Pixel (6,3) Pi Pixel (7,3) Pixel (6,3) Pi Pixel (4,4) Pixel (3,4) Pixel (3,5) Pixel (4,5) Pixel (3,5) Pixel (0,6) I (2,6) Pixel (1,6) Pixel (0,6) Pixel (7,7) Pixel (6,6) Pi Pixel (7,7) Pixel (6,7) Pi	Pixel (4,0) Pixel (3,0) Pi Pixel (4,1) Pixel (3,1) Pi 1 (2,2) Pixel (1,2) Pixel (0,2) 1 (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,2) Pixel (6,2) Pixel (5,7) Pixel (7,3) Pixel (6,3) Pixel (5,7) Pixel (4,4) Pixel (3,4) Pi Pixel (4,5) Pixel (3,5) Pi 1 (2,6) Pixel (1,6) Pixel (0,6) el (2,7) Pixel (1,7) Pixel (0,7) Pixel (7,6) Pixel (6,6) Pixel (5,7) Pixel (7,7) Pixel (6,7) Pixel (5,7)	Pixel (4,0) Pixel (3,0) Pixel (2,1) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (4,1) Pixel (3,1) Pixel (2,2) Pixel (1,2) Pixel (0,2) Pixel (2,2) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,4) Pixel (3,4) Pixel (2,3) Pixel (4,5) Pixel (3,5) Pixel (2,3) Pixel (4,5) Pixel (3,5) Pixel (2,3) Pixel (4,5) Pixel (3,5) Pixel (2,3) Pixel (4,5) Pixel (0,6) Pixel (2,3) Pixel (2,7) Pixel (1,6) Pixel (0,6) Pixel (2,3) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (5,7) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (5,7)	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,1) I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,2) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (7,2) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (2,4) Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (4,5) Pixel (3,5) Pixel (2,5) I (2,6) Pixel (1,6) Pixel (0,6) Pixel (7,6) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (7,7) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (5,7)	Pixel (4,0) Pixel (3,0) Pixel (2,0) P Pixel (4,1) Pixel (3,1) Pixel (2,1) P I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4, 1) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4, 2, 1) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4, 2, 1) Pixel (4,4) Pixel (3,4) Pixel (2,4) P Pixel (4,5) Pixel (3,5) Pixel (2,5) P I (2,6) Pixel (1,6) Pixel (0,6) Pixel (7,4) I (2,7) Pixel (1,7) Pixel (0,7) Pixel (7,5) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4, 2, 2, 3) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4, 2, 3, 3)	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1, Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1, 1 (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) P 1 (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) P 1 (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) P 1 (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) P 1 (2,3) Pixel (6,2) Pixel (5,2) Pixel (4,2) 1 (2,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (1, Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1, Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1, Pixel (4,5) Pixel (0,6) Pixel (7,4) P Pixel (7,7) Pixel (6,6) Pixel (5,6) Pixel (4,6) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7)	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) Pixel (6,0) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4,2) P Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) P Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1,4) Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) I (2,6) Pixel (1,6) Pixel (0,6) Pixel (7,4) Pixel (6,6) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,6) P Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7) P	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (1,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pi I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) Pixel (6,0) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,1) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,2) Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1,4) Pixel (3,2) Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,4) Pixel (3,2) Pixel (4,5) Pixel (0,6) Pixel (2,5) Pixel (1,5) Pixel (2,6) Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel (2,7) Pixel (0,6) Pixel (7,5) Pixel (6,5) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,6) Pixel (3,7) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7) Pixel (3,7) <td>Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (0, Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pixel (0, I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel I (2,3) Pixel (1,3) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) Pixel (6,1) Pixel I (2,3) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,2) Pixel (7,2) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,2) Pixel (7,3) Pixel (6,3) Pixel (2,4) Pixel (1,4) Pixel (0,- Pixel (4,4) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,- Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,- Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,6) Pixel (3,6) Pixel (7,7)<td>Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (0,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pixel (0,0) I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel (5,0) I (2,3) Pixel (1,3) Pixel (0,2) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,2) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,3) Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1,4) Pixel (0,4) Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,5) Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel (5,4) Pixel (1,6) Pixel (0,7) Pixel (7,5) Pixel (6,5) Pixel (5,5) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,7) Pixel (3,6) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7) Pixel (3,7) </td></td>	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (0, Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pixel (0, I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel I (2,3) Pixel (1,3) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel I (2,3) Pixel (1,3) Pixel (0,3) Pixel (7,1) Pixel (6,1) Pixel I (2,3) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,2) Pixel (7,2) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,2) Pixel (7,3) Pixel (6,3) Pixel (2,4) Pixel (1,4) Pixel (0,- Pixel (4,4) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,- Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,- Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,6) Pixel (3,6) Pixel (7,7) <td>Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (0,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pixel (0,0) I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel (5,0) I (2,3) Pixel (1,3) Pixel (0,2) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,2) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,3) Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1,4) Pixel (0,4) Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,5) Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel (5,4) Pixel (1,6) Pixel (0,7) Pixel (7,5) Pixel (6,5) Pixel (5,5) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,7) Pixel (3,6) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7) Pixel (3,7) </td>	Pixel (4,0) Pixel (3,0) Pixel (2,0) Pixel (1,0) Pixel (0,0) Pixel (4,1) Pixel (3,1) Pixel (2,1) Pixel (1,1) Pixel (0,0) I (2,2) Pixel (1,2) Pixel (0,2) Pixel (7,0) Pixel (6,0) Pixel (5,0) I (2,3) Pixel (1,3) Pixel (0,2) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (7,2) Pixel (6,2) Pixel (5,2) Pixel (4,2) Pixel (3,2) Pixel (7,3) Pixel (6,3) Pixel (5,3) Pixel (4,3) Pixel (3,3) Pixel (4,4) Pixel (3,4) Pixel (2,4) Pixel (1,4) Pixel (0,4) Pixel (4,5) Pixel (3,5) Pixel (2,5) Pixel (1,5) Pixel (0,5) Pixel (4,5) Pixel (0,6) Pixel (7,4) Pixel (6,4) Pixel (5,4) Pixel (1,6) Pixel (0,7) Pixel (7,5) Pixel (6,5) Pixel (5,5) Pixel (7,6) Pixel (6,6) Pixel (5,6) Pixel (4,7) Pixel (3,6) Pixel (7,7) Pixel (6,7) Pixel (5,7) Pixel (4,7) Pixel (3,7)

R400 RB Depth.vsd:24 bit microtile FB format

by Iseiler from R400_Memory_Tiles.vsd::FB2dAltMicro

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208449

ATI Ex. 2066 IPR2023-00922 Page 61 of 291

	127	96 95	64 63	31	0
7	[∞] _≻ Stencils (07,3) Stencils (07,1)) Stencils ((07,2) ³² Stencils	(07,0)응 microtile 0
	⊱ Stencils (07,7) Stencils (07,5) Stencils ((07,6) Stencils	(07,4) [★] microtile 1

R400 RB Depth.vsd:4 bit microtile FB format

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208450

ATI Ex. 2066 IPR2023-00922 Page 62 of 291

127	96 95	64 63	31	0
₹7,2	Stanaila (0, 7, 2)	0,2►<7,0	$\frac{32}{\text{Stanoils}(0, 7, 0)}$	0,0 ▶ microtile 0
	$\frac{\text{Stoncils}(07,2)}{\text{Stoncils}(0,7,2)}$	•	$\frac{\text{Stoncile}(07,0)}{\text{Stoncile}(07,1)}$	→ microtile 1
•	$\frac{1}{2} \frac{1}{2} \frac{1}$	•	$\frac{\text{Stonelle}(0.7,1)}{\text{Stonelle}(0.7,1)}$	→ microtile 2
⊲ 7,7	Stoneils (0, 7, 7)	0,7►<7,5	$\frac{1}{2} \frac{1}{2} \frac{1}$	0,5 ► microtile 3
R400 RB D	epth vsd:8 bit stencil EB format	by jayw 9/8/2003		

R400 RB Depth.vsd:8 bit stencil FB format

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208451

ATI Ex. 2066 IPR2023-00922 Page 63 of 291

127	96	95	64 63	32 31		0	
	Pixel (4,0)	Pixel (3,0)	Pixel (2,0)	Pixel (1,0)	Pixel (0,0)	mt0	
	Pixel (4,1)	Pixel (3,1)	Pixel (2,1)	Pixel (1,1)	Pixel (0,1)	mt1	
						/// mt2	
						/// mt3	
						mt4	
						mt5	
	Pixel (4,4)	Pixel (3,4)	Pixel (2,4)	Pixel (1,4)	Pixel (0,4)	mt6	
	Pixel (4,5)	Pixel (3,5)	Pixel (2,5)	Pixel (1,5)	Pixel (0,5)	mt7	
						/// mt8	
						/// mt9	
						m10	
						m11	

24-bit packed pixel data

R400 RB Depth.vsd:24 bit microtile FB format colo

by Iseiler from R400_Memory_Tiles.vsd::FB2dAltMicro

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208452

ATI Ex. 2066 IPR2023-00922 Page 64 of 291 Total size is 128 Bytes per sample. This is the smallest depth surface.

(one micro-tile is 12	8 bits, as signified b	y the bold outline for	or each micro-tile					
6	127		95		63		31		
7	Pixel (7,0)	Pixel (6,0)	Pixel (5,0)	Pixel (4,0) ⁴	Pixel (3,0)	Pixel (2,0)	Pixel (1,0)	Pixel (0,0) ⁰	mt0
ata	Pixel (7,1)	Pixel (6,1)	Pixel (5,1)	Pixel (4,1)	Pixel (3,1)	Pixel (2,1)	Pixel (1,1)	Pixel (0,1)	mt1
l dê									mt2
pth									mt3
t de									mt4
id-i									mt5
10	Pixel (7,6)	Pixel (6,6)	Pixel (5,6)	Pixel (4,6)	Pixel (3,6)	Pixel (2,6)	Pixel (1,6)	Pixel (0,6)	mt6
	Pixel (7,7)	Pixel (6,7)	Pixel (5,7)	Pixel (4,7)	Pixel (3,7)	Pixel (2,7)	Pixel (1,7)	Pixel (0,7)	mt7

R400 RB Depth.vsd:16 bit FB format by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208453

ATI Ex. 2066 IPR2023-00922 Page 65 of 291

(Z,S) = (2,4), (2,8), (4,2), (4,4), (4,6), (4,8), (8,*), (16,*)	Zmask=2, S=1	(Z,S) = (2,2), (2,6), (4,1), (4,3)	Zmask=2, S=3
👌 Pmask 👔			
1 ^{Zp} ₂ Zp1 Zp0	1 Zp1 Zp0 P m	1 1 Zp0 Pmask	1 ^{Zp} Pmask
2 5 Zp4 Zp3 2		2 Zp3 Zp2 1	2 XXX Zp1 0
3 Zp7 Zp6 5			
4 Zp9 Zp8			
5 ¹ / ₃ Zp12 Zp11 ¹ / ₀			
6 Zp15 Zp14 13	R400 RB Depth.vsd:Zplane	ə 256 bit alignments by jayw 9/8/2003	

ATI Ex. 2066 IPR2023-00922 Page 66 of 291

ATI Ex. 2066 IPR2023-00922 Page 67 of 291

ATI Ex. 2066 IPR2023-00922 Page 68 of 291

						4 samp	les/pixe	1					
	4				one h	alfcache	e line (38	4 bits)-				►	
J.							bits	•	•				
one	3,1	2,1	1,1	0,1	7,1 6,1	5,1 4,1	7,0 6,0	5,0 4,0	3,1 2,1	1,1 0,1	3,0 2,0	1,0 0,0	Cache Line A (LO)
	7,0	6,0	5,0	4,0	3,0	2,0	1,0	0,0	7,1	6,1	5,1	4,1	Cache Line A (HI)
one cache	3,3	2,3	1,3	0,3	7,3 6,3	5,3 4,3	7,2 6,2	5,2 4,2	3,3 2,3	1,3 0,3	3,2 2,2	1,2 0,2	Cache Line B (LO)
	7,2	6,2	5,2	4,2	3,2	2 <u>,</u> 2	1 V	0,2	7,3	6,3	5,3	4,3	Cache Line B (HI)
one cache	3,5	2,5	1,5	0,5	7,5 6,5	5,5 4,5	7,4 6,4	5,4 4,4	3,5 2,5	1,5 0,5	0,4 4,0 4,4	1,4 0,4	Cache Line C (LO)
line	7,4	6,4	5,4	4,4	3,4	2,4	1,4	0,4	7,5	6,5	5,5	4,5	Cache Line C (HI)
one	3,7	2,7	1,7	0,7	7,7 6,7	5,7 4,7	7,6 6,6	5,6 4,6	3,7 2,7	1,7 0,7	3,6 2,6	1,6 0,6	Cache Line D (LO)
line	7,6	6,6	5,6	4,6	3,6	2,6	4	0,6	7,7	6,7	5,7	4,7	Cache Line D (HI)
Ť	R400	RB Depth.	vsd:Depth	Cache Lin	e S&M 4 sar	npleB						\	
	by jay	w 9/8/2003			А	Pmas	SAMPLE 3	SAMPLE 0			SAMPLE 3	SAMPLE 2 SAMPLE 1	4 stencil- samples/pixel
					sample	es/pixe	k 21						
					sample	es/pixe	el						

ATI Ex. 2066 IPR2023-00922 Page 69 of 291

1	•			8 sampl —one half cache	es/pixel line (384	bits)			•
one	1,1	1,1	0,1	0,1	1,0	1,0	0,0	0,0	Cache Line A (LO)
cacne line ◀↓	3,1	3,1	2,1	2,1	3,0	3,0	2,0	2,0	Cache Line A (HI)
one	5,1	5.1	4,1	4.1	5,0	5.0	4,0	4.0	Cache Line B (LO)
cache line	7,1	7,1	6,1	6,1	7,0	7,0	6,0	6,0	Cache Line B (HI)
one	1,3	1.3	0,3	0.3	1,2	1.2	0,2	0.2	Cache Line C (LO)
cache line	3,3	3,3	2,3	2,3	3,2	3,2	2,2	2,2	Cache Line C (HI)
one	5.3	53	4.3	4.3	5.	172	4.2	2	Cache Line D (LO)
cache line	7,3	7,3	6,3	6,3	7,2	7.2.	62	8,2	Cache Line D (HI)
one	15	15	0.5	64	14		Lea I	04	Cache Line F (LO)
cache line	3,5	3.5	2,5	2.5	3,4	1,4	2,4	2.4	Cache Line E (HI)
	E E	5.5				<u>لك " الم الم الم الم الم الم الم الم الم الم</u>		,	
cache line	7.5	7.5	4,J	4,5	7.4	<u> </u>	6.4	<u>4,4</u> 64	Cache Line F (HI)
		47				1,1		0,1	
one cache line	1,7	<u> ,/</u> 37	27	0,7	1,6	1,0	0,6	0,6	Cache Line G (LO)
		5,7	2,1	2,1	0,0	5,0	2,0	2,0	
one cache	5,7	$\frac{5,1}{7,7}$	4,7	4,1	5,6	5,6	4,6	4,6	Cache Line H (LO)
	1,1	1,1	0,7	0,7	7,0	0,7	0,0	0,0	
bv ia	R400 RB De	oth.vsd:Depth Cac	he Line S&M	8 sample					
	,			SAMPLE 7 SAMPLE 6	SAMPLE 5 SAMPLE 4 SAMPLE 3 SAMPLE 2	SAMPLE1	AMPLE 7 AMPLE 6	AMPLE 3 AMPLE 4 AMPLE 3 AMPLE 2	8 stencil- samples/pixel
			:	8 Pmask-		Chen Barris	0 0 0	<i>1</i> 0 0 0 0	

samples/pixel

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208458

ATI Ex. 2066 IPR2023-00922 Page 70 of 291

<u>1 Sample</u>	2 Samples
cache line	cache line A lo
Alo	cache line A hi
cache line	cache line B lo
A hi	cache line B hi

4	S	а	m	٦ţ	bl	e	S
 Anno anno anno	0.077		- 200	-	Sec. 10		-

<u>4 Sar</u>	npies
A lo	A hi
Blo	B hi
Clo	C hi
D lo	D hi

<u>8 3</u>	Sar	npl	es
A	Α	B	В
lo	hi	lo	hi
С	C	D	D
lo	hi	lo	hi
E	E	F	F
lo	hi	lo	hi
G	G	Η	H
lo	hi	lo	hi

R400 RB Depth.vsd:Depth Cache Line S&M as Tiles

ι by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208459

ATI Ex. 2066 IPR2023-00922 Page 71 of 291

<u>3 Sam</u>	ples
A lo	A hi
A hi I	3 lo
B hi	C lo
C 10 0	C hi

6 SamplesA loA hiB hiC loC loC hiD loD hiE loF hi

R400 RB Depth.vsd:Depth Cache Line S&M as Tiles2

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208460

ATI Ex. 2066 IPR2023-00922 Page 72 of 291
34	31	29	26	24		
32 Valids	30 Dirties	Sampfe Num	25 Type		Tile's starting device address [31:7]	0
				R400	0 RB Depth.vsd:Depth Cache CAM Entry by jayw 9/8	/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208461

ATI Ex. 2066 IPR2023-00922 Page 73 of 291

ATI Ex. 2066 IPR2023-00922 Page 74 of 291

ATI Ex. 2066 IPR2023-00922 Page 75 of 291

T	•			6 samp —one half cache	les/pixel e line (384	l 4 bits)———			A
one		2,1 1,1	0.1	0,1	2,0	2,0 1,0	0'0	0,0	Cache Line A (LO)
line	4,1	4,1	3,1	3,1	4,0	4,0	3,0	3,0	Cache Line A (HI)
one	7,1	7,1	6,1 5,1	6,1 5,1	7,0	7,0	6,0 5,0	6,0 5,0	Cache Line B (LO)
cache line	2,3 1,3	2,3 1,3	0,3	0,3	2,2 1,2	2,2 1,2	0,2	0,2	Cache Line B (HI)
⊲ ¶ one	4,3	4,3	3,3	3,3	4,2	4,2	3,2	3,2	Cache Line C (LO)
cache line	7,3	7,3	6,3 5,3	6,3 5,3	7,2	7,2	6,2 5,2	6,2 5,2	Cache Line C (HI)
one	2,5	2,5 1,5	0,5	0,5	2,4	2,4 1,4	0,4	0,4	Cache Line D (LO)
cache line	4,5	4,5	3,5	3,5	4,4	4,4	3,4	3,4	Cache Line D (HI)
one	7,5	7,5	6,5 5,5	6,5 5,5	7,4	7,4	6,4 5,4	6,4 5,4	Cache Line E (LO)
cache line	2,7 1,7	2,7 1,7	0,7	0,7	2,6 1,6	2,6 1,6	0,6	0,6	Cache Line E (HI)
one	4.7	4,7	3,7	3,7	4,6	4,6	3,6	3,6	Cache Line F (LO)
cache line	7,7	7,7	6,7 5,7	6,7 5,7	7,6	7,6	6,6 5,6	6,6 5,6	Cache Line F (HI)
1							\		-
SAMPLES	SAMPLE 4 SAMPLE 3 SAMPLE 2 SAMPLE 2	6 Pmask- samples/pi	xel		SAMPLE 5	SAMPLE 3 SAMPLE 2 SAMPLE 1 SAMPLE 1	6 sto	encil- ples/pixel	
	R400 RB Dej	oth.vsd:Depth Cache L	ine S&M 6 :	sample	b	y jayw 9/8/2003			

ATI Ex. 2066 IPR2023-00922 Page 76 of 291

Ţ	•			6 sampl —one half cache	es/pixel line (384	4 bits)——					
one	2,1	2,1 1,1	0.1	0,1	2,0 1,0	2,0	1,0	0,0		0,0	Cache Line A (LO)
line	4,1	^{LO} 4,1 ^{HI}	3,1	¹⁰ 3,1	4,0	LO 4	,0 ^{—III}	3,0	103	6,0	Cache Line A (HI)
⊲ † one	7,1	7,1	6,1 5,1	6,1 5,1	0.	1.0		6,0 5,0	-6,0) 5,0	Cache Line B (LO)
cache line	2,3 1,3	2,3 1,3 ^{HI}	0,3	LO 0,3 HI		22	1,2 ^{HII}	10		^{LO} 0,2 ^{HI}	Cache Line B (HI)
⊲ † one	4,3	4,3	3.3		4,2	4	,2		3	,2	Cache Line C (LO)
cache line	7,3	^{LO} 7,3	6,3 5,3	3 5,3 ^{HI}	7,2	107,2	7	6,2 5,2	6,2	2 5,2 ^{HI}	Cache Line C (HI)
one	2,5	2,5 1,5	0,5		₹. 2	2,4	ні 1,4	0,4		<u>10 н</u> 0,4	Cache Line D (LO)
cache line	4,5	^{LO} 4,5 ^{HI}	3.5	3.5	4,4	LO 4	,4 ^{HI}	3,4	103	6,4	Cache Line D (HI)
one	7,5	7,5		6,5 5,5	7,4	7,4		6,4 5,4	6,4	l 5,4	Cache Line E (LO)
line	2,7 1,7	2,7 1,7 ^{HI}	×;0	LO 0,7 HI	2,6 1,6	2,6	1,6 ¹¹¹	0,6		^{LO} 0,6 ^{HI}	Cache Line E (HI)
⊲ ¶ one	4,7	4,7	3,7	3,7	4,6	4	,6	3,6	3	,6	Cache Line F (LO)
cache line	7,7	¹⁰ 7,7	6,7 5,7	6,7 5,7 ^{HI}	7,6	^{LO} 7,6		6,6 5,6	6,6	5,6 ¹¹	Cache Line F (HI)
1	$/ \setminus$	HI		LO HI				\ \		lo hi	
	SAMPLE 5 SAMPLE 4 SAMPLE 3 SAMPLE 2 SAMPLE 1	6 Pmask- samples/pi	xel		SAMPLE 5	SAMPLE 3 SAMPLE 2	SAMPLE 1 SAMPLE 0	6 sto sam	encil ples	- /pixel	
	R400 RB Dep	oth.vsd:Depth Cache L	ine S&M 6 S	ampleB	bj	y jayw 9/8/200	03				

ATI Ex. 2066 IPR2023-00922 Page 77 of 291

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208466

ATI Ex. 2066 IPR2023-00922 Page 78 of 291

ATI Ex. 2066 IPR2023-00922 Page 79 of 291

ZMASK = ZPLANE2 2 Sample	ZMASK = ZPLANE4 2 Sample	ZMASK = ZPLANE8 2 Sample	ZMASK = ZPLANE16 2 Sample
Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)
ZPO Pmask ZPI	Pmask ZP2 ZP1 ZP0 ZP4 ZP3	Pmask unused ZP2 ZP1 ZP0 ZP4 ZP3 ZP7 ZP6 ZP5	Pmask ZP2 ZP1 ZP0 ZP4 ZP3 ZP5 ZP0 ZP6 ZP5 ZP12 ZP12 ZP11
3*64*S- 32 or 192*S- 32 bytes	umused 3*64*S- 64 or 192*S- 64	unused 3*64*S- 120 or 192*S-	ZP15 ZP14 2713 unused 3*64*S- 224 or
6,00	bytes	120 bytes	192*S- 224 bytes

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208468

ATI Ex. 2066 IPR2023-00922 Page 80 of 291

ZMASK = ZPLANE2 4 Sample	ZMASK = ZPLANE4 4Sample	ZMASK = ZPLANE8 4 Sample	ZMASK = ZPLANE16 4 Sample	ZMASK = ZPLANE2 8 Sample	ZMASK = ZPLANE4 8Sample	ZMASK = ZPLANE8 8 Sample	ZMASK = ZPLANE16 8 Sample
Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)
Pmask ZP1 ZP0	Pmask ZP2[ZP1]ZP0 [ZP4]ZP3]	Pmask ZP2[ZP1] ZP0 [ZP4]ZP3] ZP7] ZP6] ZP5	Pmask ZP2 ZP1 ZP0 ZP4 ZP3 ZP7 ZP6 ZP5	Pmask ZP1 ZP0	Pmask ZP2 ZP1 ZP0 ZP4 ZP3	Pmask	Pmask
umused 3*64*S- 32 or 192*S- 32 bytes	unused 3*64*S- 64 or 2192*S- 64 bytes	umused 3*64*S- 120 or 192*S- 120 bytes	217[215] 2195[219] 2195[211] 2115[2114]	umused 3*64*S- 32 or 192*S- 32 bytes	umused 3*64*S- 64 or 192*S- 64 bytes	ZP4 ZP3 ZP7 ZP6 ZP5 unused 3*64*S- ≥ 120 or 192*S- 120 but a	ZP2 ZP1 ZP0 ZP4 ZP3 ZP7 ZP6 ZP8 ZP9 ZP8 ZP12 ZP11 * ZP12 ZP11 * ZP15 ZP14 ZP13 unused 3*64*S-224 or
			bytes			oyues	192*S-224 bytes

ATI Ex. 2066 IPR2023-00922 Page 81 of 291

ZMASK = ZPLANE2 3 Sample	ZMASK = ZPLANE4 3Sample	ZMASK = ZPLANE8 3 Sample	ZMASK = ZPLANE16 3 Sample	ZMASK = ZPLANE2 6 Sample	ZMASK = ZPLANE4 8Sample	ZMASK = ZPLANE8 8 Sample	ZMASK = ZPLANE16 8 Sample
0,9	e,e,	00	00	00	0'0	0 ^{'0}	6,9
Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)	Stencil 64*S bytes (only if 24 bit depth)
Pmask ZP1 ZP0	Pmask ZP2 ZP1 ZP0 ZP4 ZP3	Pmask ZP2 ZP1 ZP0 ZP4 ZP3	Pmask ZP2[ZP1]ZP0 [ZP4]ZP3]	Pmask ZP1 ZP0	Pmask ZP2[ZP1]ZP0 [ZP4[ZP3]	Pmask	Pmask
umused 3*64*S- 32 or 192*S- 32 bytes	unused 3*64*S- 64 or 192*S- 64 bytes	<u>ZP7</u> ZP6 <u>unused</u> <u>3*64*S-</u> <u>120</u> <u>07</u> <u>192*S-</u> <u>120</u> <u>bytes</u>	2P7 2P6 2P8 2P9 2P8 2P12P1 2P13 2P14 2P1 2P15 2P14 2P1 3*64*S- 224 or 192*S- 224 bytes	umused 3*64*S- 32 or 192*S- 32 bytes	unused 3*64*S- 64 or \$ 192*S- 64 bytes	222]ZP1 [ZP0 [ZP4 [ZP3] ZP7 [ZP6 [ZP5] unused 3*64*S- 2 120 or 192*S- 120 bytes	ZP2ZP1ZP0 ZP4ZP3 ZP7ZP6ZP5 zv0ZP9ZP8 ZP12ZP11 ZP15ZP14zv3 unused 3*64*S-224 or 192*S-224 bytes
			1			i	

ATI Ex. 2066 IPR2023-00922 Page 82 of 291 - one micro-tile is 128 bits, as signified by the bold outline for each micro-tile

	127	96 95	64 63	31 0	
7	[∾] PMASK (07,3) PMASK (07,1)) PMASK (07,2) ³²	PMASK (07,0)ଟ	microtile 0
	├ PMASK (07,7) PMASK (07,5)	PMASK (07,6)	PMASK (07,4) ₀	microtile 1

R400 RB Depth.vsd:4 bit microtile PMASK FB Format

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208471

ATI Ex. 2066 IPR2023-00922 Page 83 of 291 one micro-tile is 128 bits, as signified by the bold outline for each micro-tile

R400 RB Depth.vsd:2 bit microtile PMASK FB Format

by jayw 9/8/2003

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0208472

ATI Ex. 2066 IPR2023-00922 Page 84 of 291 one micro-tile is 128 bits, as signified by the bold outline for each micro-tile
 ↓

R400 RB Depth.vsd:1 bit microtile PMASK FB Format by jayw 9/8/2003

AMD1044_0208473

ATI Ex. 2066 IPR2023-00922 Page 85 of 291

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0210955

ATI Ex. 2066 IPR2023-00922 Page 86 of 291

Opcode Tasks	GetBorderColorFraction	GetCompTexLOD	GetGradients	GetWeights	SetTexLOD	SetGradients{H,V}	FetchVertex	FetchTextureMap	FetchMultiSample
tp_input	BORDER_COLOR = ARGB White BORDER_SIZE = 0 DATA_FORMAT = FMT_8 FORMAT_COMP_X = unsigned NUM_FORMAT_ALL = RF	DATA_FORMAT = FMT_16 FORMAT_COMP_X = signed NUM_FORMAT_ALL = INT	DATA_FORMAT = FMT_16_16_FLOAT	DATA_FORMAT = FMT_8_8 FORMAT_COMP_X = unsigned NUM_FORMAT_ALL = INT	Normal	Normal	DIM = 1D Different state mux'g	Normal	DIM = 2D
tp_lod_deriv	Normal	Normal (don't care)	Normal (don't care)	Normal	Convert to 16-bit float for tp_lod_getset	Use pix_mask to find 1st fetch_addr Convert to 16-bit float for tp_lod_getset	Normal	Normal	Normal
tp_lod_aniso	Normal	aniso dx = {1'b0, comp_lod} (output on aniso achieves broadcast)	lod p3p0 = dydv, dydh cycle 0: aniso dy,dx = dxdv, dxdh	Normal	Outputs zeroed to single cycle	Outputs zeroed to single cycle	Zero outputs to single cycle	Normal	Normal
tp_lod_fifo	Normal	Normal	cycle 1: aniso dy,dx = dydv, dydh cycle 0: aniso dy dx = dxdv, dxdh	Normal	Normal	Normal	Different state mux'g	Normal	Normal
tp_lod_getset	N/A	N/A	N/A	N/A	Separate storage for get/set, grad/lod	Separate storage for get/set, grad/lod	N/A	N/A	N/A
tp_addresser	Normal	Pass LOD thru TA_FA_vs[3:0] = adx[15:12] TA_FA_v[3:0] = adx[1:6] TA_FA_vt[5:0] = adx[3:0] (can make excly like CelfGradients) Remove logic to zero valids for this opcode	Pass LOD thru TA_FA_y_inc = ady[15] TA_FA_cono(1:0) = ady[1312] TA_FA_cono(1:0) = ady[1312] TA_FA_mip_id[30] = ady[138] TA_FA_v[150] = ady[1:0] TA_FA_v[150] = ady[1:0] TA_FA_v[150] = ady[1:0] Remove logic to zero valids for this opcode	Normal	Normal	Normal	Mux in vertex control Zero blend fractions	Normal	Normal
tp_fetch	Clear TC valids Mux 0 for texel, 1 for border data to tp_ch_blend	Clear TC valids Put LOD in tp_rr_fifo in 4 top-left texels as 16-bit fixed	Clear TC valids Put d*from tp_rr_fifo in 4 top-left texels as 16-bit floats	Clear TC valids wh->x,z, wv->y,w to tp_ch_blend	Clear TC valids	Clear TC valids	Normal	Normal	Normal
tp_pipe_valids	Normal	Normal	Normal	Normal	Normal (don't care)	Normal (don't care)	Normal	Normal	Normal
tp_ch_blend	Normal	Normal	Normal	Normal	Normal (don't care)	Normal (don't care)	Different state mux'g	Normal	Normal
tp_tt	Normal	Normal	Normal	Normal	Normal (don't care)	Normal (don't care)	Different state mux'g	Normal	Normal
tp_hicolor	Normal	Normal	Normal	Normal	Normal (don't care)	Normal (don't care)	Different state mux'g	Normal	Normal
sp_tp_formatter	Normal	Normal	Normal	Normal	Normal (don't care)	Normal (don't care)	Different state mux'g	Normal	Normal
tpc_fifos	DATA_FORMAT = FMT_16 FORMAT_COMP_X = signed NUM_FORMAT_ALL = RF EXP_ADJUST_ALL = 0	DATA_FORMAT_FMT_16 FORMAT_COMP_X = signed NUM_FORMAT_ALL = INT EXP_ADJUST_ALL = -7	DATA_FORMAT = FMT_16_16_FLOAT EXP_ADJUST_ALL = 0	DATA_FORMAT = FMT_8_8 FORMAT_COMP_X = unsigned NUM_FORMAT_ALL = INT EXP_ADJUST_ALL = -8	Normal (don'i care)	Normal (don't care)	DIM = 1D Different state mux'g	Normal	DIM = 2D Different state to TC
opcode_enc[2:0]	4 (tp_parameters.v)	5 (tp_parameters.v)	6 (tp_parameters.v)	7 (tp_parameters.v)	3 (tp_parameters.v)	3 (tp_parameters.v)	0	1	TBD

ATI Ex. 2066 IPR2023-00922 Page 87 of 291

BCP B RTL	Affected blocks	Owner	
shrink u*_FL_TA_lod_grad from 16 to 10 bits	tp.tree, tp_addresser	Manoo	
aniso walk optimizations/step size changes	tp_lod_aniso	Tien	RTL in, pending EMU/release
	tpc walker	Tien	RTL in pending FMU/release
	tp lod fifo	Tien	RTL in pending FMI /release
	ip_iddroccor	Tion	PTL in ponding EMU/closes
odd We hit	tp_auticssci	Manage Store	release in programs
add wys bit	ψ_	Wallou, Steve	release in progress
Past PCD/Ontigen/2			
Post BCP/Optional?			
Encoded DATA_FORMAT optimizations			
tp_pipe_valids - channel-encoded data formats for tp_hicolor			
tp_border			
sp_tp_formatter - anyhwere full texture data format is used			
remove of 3,6,8 multisample	tp_lod_deriv		Simple, rerun emu-generated .mc include, remove cases from testbench
LOD gradient precision issue			Artifacts with larg tex maps (2K and higher)
support denorms in LOD blocks	tp_lod*		
possible optimizations with explicit 1 logic	tp_lod*		
FMT_1_1_1_1	various		
stackable textures	many		
expand opcode enc	many		
implement NO_ZERO RF expand and verify	to hicolor, emu		2 wks design/verify, already supported for vFetch formats
	1=		3. 3. 11
EMU Tasks			
opcodes (FetchMultiSample only)		locelym	
border color verious formate		Store	nondina release
border color, various lormais		Jeester	penuing release
up_sqsp.ump		Juceryn	
shrink u _FL_IA_lod_grad from 16 to 10 bits			
aniso waik optimizations/step size changes			
add Ws bit		Joceyin	release in progress
LOD gradient precision issue		Jocelyn	Post BCP/Optional?
implement NO_ZERO RF expand and verify		Jocelyn	Post BCP/Optional?
face_id in top_left_coord MSBs instead		Jocelyn	Post BCP/Optional?
hardware accurate TPC_TC_state_rts		Jocelyn	Post BCP/Optional?
Verification Tasks			
Opcodes	See above		
DE 11 11 1 1	to feich to pre rf *		
pre-RF expand cleanup/signed support	42-mm 426-02-2		
pre-RF expand cleanup/signed support Expand simd to 2 bits	Various		
pre-RF expand cleanup/signed support Expand simd to 2 bits proper vtx rf expand enable to sp_tp_formatter	Various tpc_fifos?		
pre-kH-expand cleanup/signed support Expand simd to 2 bits proper vtx rf expand enable to sp_tp_formatter pipe thru pix_mask to formatter	Various tpc_fifos? sp_tp_formatter		
pre-KH expand cleanup/signed support Expand simd to 2 bits proper vtx rf expand enable to sp_tp_formatter pipe thru pix_mask to formatter verify 32bpp RF expansion	Various tpc_filos? sp_tp_formatter tp_hicolor, emu	Steve, Jocelyn	
pre-M-regand clearup/signed support Expand simit to 2 bits proper vkr /r expand enable to sp_tp_formatter pipe thrup k_mask to formatter verify 32bpp RF expansion tp_f_clcgic, tevel debug	tpc_fitos? sp_tp_ficolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us	
pre-N-f expand clearupsigned support Expand simd to 2 bits proper vix if expand enable to sp_tp_formatter pipe thru pix_mask to formatter vertiy 320pp RF expansion tp4_scige level debug Cubic vertification	tpc_filos? sp_lp_formatter tp_hicolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us	
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx rf expand enable to sp.jp.formatter pipe thrup ion_mask to formatter verify 32bp RF expansion tp4_ic/gc level debug Cubic verification Standalone tp_lod_deriv, tp_addresser	tp_ficolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal	
pre-N-f expand clearupsigned support Expand simit of 20 bits proper vix rf expand enable to sp_tp_formalter pipe thrup ix_mask to formalter verify 32bpp RF expansion tp_f_uf_core_level defug Cubic verification standatione tp_lod_deriv, tp_addresser lp4_tc	torius tpc_filos? sp.tp_formatter tp_hicolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George	
pre-N-f expand clearupsigned support Expand simit to 2 bits proper Vkr if expand enable to sp_tp_formatter pipe frug to the second second second second pipe frug to the second second second second pipe frug to the second second second second pipe frug to the second second second second to the second second second second second second standalone tp_lod_deriv, tp_addresser tp4_tc tp_addresser	Various tpc_fios2 sp_lp_formatter tp_hicolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George	
pre-NF expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp. tp. formatter pipe thrup ix_mask to formatter verify 32bp RF expansion tp4_Lc/gc level debug Cubic verification standalone tp_lod_dervi, tp_addresser tp4_Lc tp, addresser Texture Broder, 3D case	tp_ficolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn	
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formatter pipe thrup ix_mask to formatter verify 32bpp RF expansion tp_1_d/cgic level debug Cubic verification standatione tp_lod_deriv, tp_addresser tp_1_tc tp_addresser Texture Border, 3D case Interfaced Field Bit	tpc_fflos? sp_lp_formatter tp_hicolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo	
pre-N-f expand clearup/signed support Expand simit to 2 bits proper Vx.f expand enable to sp_tp_formatter pipe throup, mask to formatter verify 32bpp RF expansion tp_1_c/cjc_tevel dedug Cubic verification standatione tp_lod_deriv, tp_addresser tp4_tc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Felch channel add channel is non-zero.	Various tpc_filos? sp_tp_formatter tp_hicolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo	
pre-NF expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formatter pipe fitting intermeter verify 32bp RF expansion tp4_Lcige level debug Cubic verification Standalone tp_lod_deriv, tp_addresser tp4_Lc tp,addresser Texture Border, 30 case Interfaced Field Bit Vertex Forch channel add, channel is non-zero In addresser	tp_ficolor, emu	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo Manoo	
pre-NF expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formatter pipe thrup ix_mask to formatter verify 32bpp RF expansion tp_4_drgte; level debug Cubic verification standatione tp_lod_deriv, tp_addresser (p4_tc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Felch channel add, channel is non-zero (p,addresser bit mask	to addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo Manoo Manoo, George, Jocelyn	
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vkr of expand enable to sp_tp_formatter pipe throup is_mask to formatter verify 32bpp RF expansion tp_f_clcgic: evel debug Cubic verification standatione tp_lod_derlv, tp_addresser tp4_tc tp_addresser Texture Border, 3D case Interface Field Bit Vertex Felch channel add, channel is non-zero tp_addresser standatione pik_mask	tp_dddresser tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo Manoo Manoo, George, Jocelyn	
pre-NF expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formatter pipe firm tpi_mask to formatter verify 32bp RF expansion tp4_Lcige level debug Cubic verification standatione tp_lod_deriv, tp_addresser tp4_tc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero tp_addresser sers standatione tp_addresser standatione tp_mcmask	tp_itcolor, emu tp_hicolor, emu tp_addresser tp_addresser tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn	Constabilition ha iban faran angunan mari dar Manarafi
pre-NF expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formalter pipe thrup ix_mask to formalter verify 32bpp RF expansion tp_1_dr_tgre level debug Cubic verification standatione tp_lod_deriv, tp_addresser tp_1_tc tp_addresser Texture Border, 3D case Interfaced Field Bit Veriex Fetch channel add, channel is non-zero tp_addresser aniso Lest plan	to Join Start	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien	Complete item-by-item for us, summary regri for Microsoft
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx of expand enable to sp_tp_formatter pipe firm upi_mask to formatter verify 32bp RF expansion tp4_Lr/gr: level debug Cubic verification Standalone (p_i,od_deriv, lp_addresser [p4_Lr] Texture Border, 3D case Interfaced Field Bit Vertex Felch channel add, channel is non-zero (p_addresser pi_mask aniso Lets plan updated aniso mode control	tp_dddresser tp_addresser tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien	Complete item-by-item for us, summary reg'd for Microsoft Slupid constant changed a while back After RTL was in of course
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vix rf expand enable to sp_tp_formalter pipe firm upi_mask to formalter verify 32bp RF expansion [p4_Lcige level debug Cubic verification standalone tp_lod_deriv, tp_addresser tp4_Lc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero tp_addresser standalone pi_c_mask aniso test plan updated aniso mode control pre-RF expand assertions for some formats	tp_addresser tp_lod_aniso EMU	Steve, Jocelyn Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back After RTL was in of course
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx of expand enable to sp_tp_formalter pipe firm upi_mask to formalter verify 32bpp RF expansion tp_4_forg: level debug Cubic verification standatione tp_lod_deriv, tp_addresser tp4_tc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero tp_addresser pic_mask aniso lest plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation	tp_lfos2 sp_lp_fomatter tp_hicolor, emu tp_addresser tp_addresser tp_addresser tp_addresser tp_dd_aniso EMU EMU	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Tien Jocelyn Steve	Complete iten-by-item for us, summary req'd for Microsoft Stupid constant changed a while back After RTL was in of course
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp_tp_formatter pipe thrup is_mask to formatter verify 32bp RF expansion tp4_Lrige: level debug Cubic verification standalone (p_lod_deriv, lp_addresser lp4_Lr (p_addresser Texture Broder, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero (p_addresser standalone pic_mask aniso test plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border cubic generation (p_add_aniso mismatches	tp_ficor tp_ficor tp_ficor tp_hicolor, emu tp_addresser tp_addresser tp_odtesser tp_lod_aniso EMU EMU	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Garlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal	Complete item-by-item for us, summary req'd for Microsoft Slupid constant changed a while back . After RTL was in of course
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp_tp_formalter pipe firm upi_mask to formalter verify 32bp RF expansion [p4_Lcige level debug Cubic verification standalone tp_lod_deriv, tp_addresser tp4_Lc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero text pi_k_mask aniso lest plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border cong eneration tp_od_masks	tp_dddresser tp_lod_aniso EMU tp_addresser tp_lod_aniso EMU EMU tp_addresser	Steve, Jocelyn Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back. – After RTL was in of course
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp_tp_formalter pipe thrup k_mask to formalter verify 32bpp RF expansion [tp_4_drgic]evel debug Cubic verification standatione [p_1d_drefv, lp_addresser [tp_4_lc] lp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Felch channel add, channel is non-zero lp_admesser pix_mask aniso lest plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation [tp_l,diso mismatches	tp_lfos2 sp_lp_formatter tp_hicolor, emu tp_addresser tp_addresser tp_addresser tp_addresser tp_lot_aniso EMU EMU tp_addresser tp_inpultp_output	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back After RTL was in of course
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp. tp. formatter pipe thru pip_mask to formatter verify 32bp RF expansion Quick verification standalone tp_lod_derv, tp_addresser tp_d_tc tp_addresser Texture Broder, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero tp_addresser standalone pip_mask aniso test plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased horder color generation tp. Jod., aniso mismatches Vertex Fetch channel add, channel is non-zero xenos reduncancy connect proper sube map control	tp_licolor, emu tp_loclor, emu tp_addresser tp_lod_aniso EMU EMU tp_inpul/tp_output tp_inpul/tp_output tp_inpul/tp_output	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary reg'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp_tp_formalter pipe fitting increase to formalter verify 32bp RF expansion [p4_lc:[gc:level debug Cubic verification standatione tp_lod_deriv, tp_addresser [p4_lc: [tp_addresser Texture Border, 3D case interfaced Field Bit Verter, Felch channel add, channel is non-zero [tp_addresser standatione pk_tmask antso lest plan [updated aniso mode control pre-RF expand assertions for some formats unsigned biaset border color generation [tp_lod_aniso mismatches Vertex Felch channel add, channel is non-zero xenos reduncancy connect proper cube map control	tp_addresser tp_olod_aniso EMU tp_inpulp_couput tp_addresser tp_olod_aniso EMU EMU tp_addresser tp_olod_aniso EMU EMU	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete Item-by-Item for us, summary req'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move
pre-NF expand clearupsigned support Expand simil to 2 bits proper vitx of expand enable to sp. tp. formatter pipe thru pix_mask to formatter verify 32bp RF expansion tp4_Lr/gr: level debug Cubic verification standalone tp_Lod_deriv, tp_addresser tp5_Lf: tp, addresser Texture Border, 3D case Interfaced Field Bit Vertex Felch channel add, channel is non-zero tp, addresser pix_mask aniso test plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation tp_Lod_aniso mismatches Vertex Felch channel add, channel is non-zero xenos reduncano; connect proper cube map control texture border (BORDER_SIZE = 1)	tp_addresser tp_addresser tp_addresser tp_addresser tp_addresser tp_addresser tp_otp_transport tp_addresser tp_inputt tp_addresser tp_inputt tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete Item-by-Item for us, summary req'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move
pre-NF expand clearupsigned support Expand simil to 2 bits proper vitx if expand enable to sp. tp. formatter pipe thru pip_mask to formatter verify 32bp RF expansion Qubic verification standalone tp_lod_deriv, tp_addresser tp_d_lc tp_addresser Texture Border, 3D case Interfaced Field Bit Vertex Ficht channel add, channel is non-zero (p_addresser standalone pip_mask aniso text plan updated aniso mode control pre-RF expand assertions for some formats unsigned blaset border color generation (p_ad_aniso mismatches Vertex Ficht channel add, channel is non-zero xenos reduncancy connect proper cube map control texture border (BORDER_SIZE = 1)	tp_addresser tp_addresser tp_addresser tp_addresser tp_lod_aniso EMU EMU tp_inpultp_output tp_inpult tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary req'd for Microsoft Slupid constant changed a while back After RTL was in of course 50% there, need DIM field to move
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp. tp. formalter pipe thru pix_mask to formalter very! 320p RF expansion [p4_Lcige level debug Cubic verification standatione tp_lod_deriv, tp_addresser tp4_Lc tp_addresser Texture Border, 3D case initerlaced Field Bit Vertex Felch channel add, channel is non-zero tp, addresser standatione pix_cmask aniso lest plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation tp_od_arise mismatches Vertex Felch channel add, channel is non-zero xenos reduncancy connect proper cube map control texture border (BORDER_SIZE = 1) Misc Tasks	tp_addresser tp_addresser tp_bicolor, emu tp_bicolor, emu tp_bicolor, emu tp_old_aniso EMU EMU tp_addresser tp_input tp_input tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx of expand enable to sp. tp. formatter pipe thru pix_mask to formatter verify 32bp RF expansion tp4_L/cig: tevel debug Cubic verification standalone tp_Lod_deriv, tp_addresser tp f_L fc tp, addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero tp. dardresser standalone pix_mask aniso Vertex Fetch channel add, channel is non-zero tp. addresser pix_mask aniso Vertex Fetch channel add, channel is non-zero test pian updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation tp_Lod_aniso mismatches Vertex Fetch channel add, channel is non-zero xenos reduncancy connect proper cube map control texture border (BORDER_SIZE = 1) Misc Tasks debug regs review	tp_addresser tp_addresser tp_addresser tp_addresser tp_addresser tp_addresser tp_addresser tp_input tp_addresser tp_input tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary regid for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move RTL, .bk file, verification tasks
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp. tp. formatter pipe thru pip_mask to formatter verify 32bp RF expansion tp4_Lcigs: level debug Cubic verification standalone tp_lod_derv, tp_addresser tp4_Lc tp, addresser Texture Border, 3D case Interfaced Field Bit Vertex Fletch channel add, channel is non-zero tp_addresser standalone pip_mask, aniso text plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased horder color generation tp.jod_aniso mismatches Vertex Fletch channel add, channel is non-zero xenoner durunger dube map control texture border (BORDER_SIZE = 1) Misc Tasks debug regs review	tp_addresser tp_lod_aniso tp_indulteser tp_lod_aniso EMU EMU tp_indulte_output tp_input tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn Steve	Complete Item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back After RTL was in of course 50% there, need DIM field to move RTL, .bk file, verification tasks RTL, .bk file, verification tasks
pre-N-f expand clearupsigned support Expand simit to 2 bits proper vitx if expand enable to sp_tp_formalter pipe fitting in, mask to formalter verify 32bp RF expansion [p4_Leige level debug Cubic verification standalone tp_lod_deriv, tp_addresser tp4_Le tp_addresser Texture Border, 3D case initerlaced Field Bit Vertex Felch channel add, channel is non-zero tp_addresser standalone pk_mask aniso lest plan updated aniso mode control pre-RF expand assertions for some formats unsigned biased border our generation tp_od_mainso imistraches Vertex Felch channel add, channel is non-zero exeros reduncancy connect proper cube map control texture border (BORDER_SIZE = 1) Misc Tasks debug regs review perf regs review	tp_ddresser tp_addresser tp_addresser tp_addresser tp_addresser tp_od_aniso EMU EMU tp_addresser tp_inotion tp_inotion tp_inotion tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move RTL, .bit file, verification tasks RTL, .bit file, verification tasks
pre-NF expand clearupsigned support Expand simit to 2 bits proper vitx of expand enable to sp. tp. formatter pipe thru pic_mask to formatter verify 32bp RF expansion tp4_Lr/gr: tevel debug Cubic verification standalone tp_Lod_deriv, tp_addresser tp4_Lr tp, addresser Texture Border, 3D case Interfaced Field Bit Vertex Fetch channel add, channel is non-zero ty fig. addresser pic.mask aniso Vertex Fetch channel add, channel is non-zero tp_addresser standalone pic_mask aniso Vertex Fetch channel add, channel is non-zero test pian updated aniso mode control pre-RF expand assertions for some formats unsigned biased border color generation tp_lod_ariso mismatches Vertex Fetch channel add, channel is non-zero xenos reduncancy connect proper cube map control texture border (BORDER_SIZE = 1) Misc Tasks debug regs review perf regs review perf regs review Coverage	tp_licolor, emu tp_addresser tp_inpult tp_addresser tp_inpult tp_addresser tp_input tp_addresser	Steve, Jocelyn Chris, Ray, Kevin, and the rest of us Chris, Vishal George Manoo, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn Manoo, George, Jocelyn George, Carlos, Tien Tien Jocelyn Steve Jocelyn, Tien, Vishal Manoo	Complete item-by-item for us, summary req'd for Microsoft Stupid constant changed a while back . After RTL was in of course 50% there, need DIM field to move RTL, .bk file, verification tasks RTL, .bk file, verification tasks

ATI Ex. 2066 IPR2023-00922 Page 88 of 291

ň

AUTHOR: John Carey

ISSUE TO

COPY NO.

Specification of the Register Backbone Manager (RBBM) R400

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

APPRO	VALS
Name/Dept	Signature/Date
Remarks:	-
"Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this doc	cument constitutes an unpublished work created in 2001. The use of this copyright
notice is intended to provide notice that ATI owns a copyright in this unpublished w	vork. The copyright notice is not an admission that publication has occurred. This
means without the prior written permission of ATI Technologies Inc."	it of any document may be used, reproduced, or a distinued in any form of by any
'	
RBBM_Spec_R400.doc — 62024 Bytes *** O ATI Confidential. Reference Co	pyright Notice on Cover Page © *** 02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211900

ATI Ex. 2066 IPR2023-00922 Page 89 of 291

1. Table of Contents

1. TA	BLE OF CONTENTS	2
2. TA	BLE OF FIGURES	4
3. RE	VISION HISTORY	5
1. TABLE OF CONTENTS		
5. R4	00 OVERVIEW (UPDATED: 06-17-2002)	8
5.1	IMPLICIT SYNCHRONIZATION (UPDATED: 03-11-2002)	9
5.2	CLIENT CLOCK SYNCHRONIZATION (UPDATED: 06-17-2002)	9
5.3	INTERRUPT GENERATION (UPDATED: 04-26-2002)	9
5.4	HOST AND COMMAND DATA SWAPPING (UPDATED: 01-31-2002)	
5.5	WHAT HAPPENED TO UPPER ADDRESS BITS FROM BIF? (UPDATED: 02-25-2002)	
5.6	RESET BEHAVIOR (UPDATED: 04-06-2002)	
5.7	VGT DMA DRAW INITIATOR DEADLOCK (UPDATED: 06-05-2002)	
5.8	SUPPORT FOR EXPLICIT SYNCHRONIZATION (UPDATED: 04-02-2002)	
5.9	NQ WAIT UNTIL (UPDATED: 02-07-2003)	
5.10	FIELD AFFECTING OPERATION (UPDATED: 10-24-2002)	
6. RF	GISTER BACKBONE PROTOCOLS	
6.1	WRITE PROTOCOL (UPDATED: 06-17-2002)	
6.1	.1 Non-Real Time Write Transactions (HI, CF, CP, PFP Paths)	
6.1	.2 Real-Time Write Transactions (RT Path)	
6.2	READ PROTOCOL (UPDATED: 06-17-2002)	
6.3	NON-TARGETED TRANSACTIONS (UPDATED: 06-17-2002)	
6.4	NOTES ON BYTE ENABLES (UPDATED: 03-26-2002)	
7. EX	TERNAL INTERFACES	
7.1	SYSTEM INTERFACE CG-TO-RBBM (UPDATED: 04-02-2002)	
7.2	BUS INTERFACE (BIF) -TO- RBBM INTERFACE (UPDATED: 03-24-2003)	
7.3	CP-TO- RBBM INTERFACE (UPDATED: 03-19-2002)	
7.4	RBBM-TO- CP/BIF READ RETURN DATA (UPDATED: 12-21-2001)	
7.5	RBBM-TO-TARGET(S) INTERFACE (UPDATED: 04-24-2003)	
7.6	RBBM-TO-TARGET SOFT RESETS (UPDATED: 04-24-2003)	
7.7	STATUS/INTERRUPT INTERFACE (UPDATED: 04-24-2003)	
7.8	RBBM-to-Clock Generator (CG) Interface (Updated: 06-05-2002)	
7.9	DEBUG BUS INTERFACE (UPDATED: 02-13-2002)	
8. AF	CHITECTURAL OVERVIEW	
8.1	BACKBONE BUS TOPOLOGY	
8.2	ADDRESS RE-MAPPING, AUTO-REG USAGE, ADDRESS DECODING (UPDATED: 06-17-2002)	
9. RE	GISTER DESCRIPTIONS	
9.1	RBBM CONTROL REGISTER (03-07-2002)	
9.2	NON-REAL-TIME WAIT_UNTIL CONTROL REGISTER (UPDATED: 10-24-2002)	
9.3	REAL-TIME WAIT_UNTIL CONTROL REGISTER (UPDATED: 10-24-2002)	
9.4	NON-QUEUED WAIT REGISTER (UPDATED: 03-15-2002)	
9.5	PERFORMANCE MONITORING REGISTERS (UPDATED: 10-29-2002)	
9.6	DEBUG REGISTERS (UPDATED: 10-25-2002)	
9.7	SOFT RESET REGISTER (UPDATED: 08-01-2002)	
9.8	KBBM STATUS (UPDATED 10-24-2002) DDDN (Crumps //2 (Upp ump 05-22-2002)	
9.9	КВВМ \$1A1US #2 (UPDATED 05-22-2002)	
9.9 [_Spec_R400.	RBBM STATUS #2 (UPDATED 05-22-2002) doc - 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***	0

AMD1044_0211901

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	13 October, 2000	$[TIME \setminus @ "d MMMM,$	RBBM Spec: Version 0.14	3 of 42

9.10	IMPLICIT SYNC CONTROL (UPDATED 10-25-2002)	37
9.11	RBBM INTERRUPT REGISTERS (UPDATED: 04-26-2002)	38
9.12	EXTERNAL TRIGGER CONTROL REGISTER (UPDATED: 10-24-2002)	40
10.	PERFORMANCE COUNTERS (UPDATED: 11-07-2002)	41
11.	DESIGN FOR TEST (UPDATED: 10-29-2001)	42
12.	POWER MANAGEMENT (UPDATED: 04-02-2002)	42

RBBM_Spec_R400.doc -- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211902

ATI Ex. 2066 IPR2023-00922 Page 91 of 291

2. Table of Figures

FIGURE 6-1: SINGLE WRITE WAVEFORM	14
FIGURE 6-2: RTR-THROTTLED WRITE WAVEFORM	15
FIGURE 6-3: READ TRANSACTION	16
FIGURE 7-1: EXTERNAL INTERFACES OF REGISTER BACKBONE MANAGER	18
FIGURE 8-1: RBBM IN THE CHIP-LEVEL ENVIRONMENT	26
FIGURE 8-2: READ DATA CHAIN	27

RBBM_Spee_R400.doc — 62024 Bytes *** **O ATI Confidential. Reference Copyright Notice on Cover Page O** ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211903

ATI Ex. 2066 IPR2023-00922 Page 92 of 291

3. Revision History

05 July 01	Version 0.000	Baseline from R300 (Khan) Version 1.16 Specification. <i>Spec does not represent R400 Design Decisions</i> J. Carey
23 July 01	Version 0.001	Sweeping changes to bring spec closer to R400 desires. Old text not relevant has been either deleted or striked-out. – J. Carey
10 August 01	Version 0.01	Read Return Bus Diagram and Text, Register to Capture Read Error Addresses,
18 October 01	Version 0.02	Sweeping changes to establish a POR. – John Carey
16 Nov. 01	Version 0.04	Version 0.03 officially not released. Added Diagrams for Transactions, Removed CGM, HDP, Updated Interfaces for MC, SQ, SX, and RB. Added "Slow Client" transactions. Go Signals to CG are programmable.
23 January 02	Version 0.05	Add Implicit $2D \leftrightarrow$ Synchronization. Combined VGA, TVOUT, VIP, and Display RTR signals into DC_RBBM_RTR and DC_RBBM_nrtRTR. Clarified Interrupt Generation from the RBBM. Global Register Bus (GRB) Output is 16:2 {128 KBytes}. Added VGA Clock Go/Active to RBBM. Some Clarifications on Address Mapping.
12 Feb. 02	Version 0.06	Removed bits 19:17 from HI_RBBM_A. Clarified Host and Command Data Swapping. Renamed core clock input to SCLK_P_RBBM. Updated slow client protocol. Added DMA Init Skew Control. Added signals for 2*N determination.
13 Feb. 02	Version 0.07	Release for Review. No Changes from Version 0.06.
28 Feb. 02	Version 0.08	Debug Bus Connections, Command FIFO Size Adjustment, Skew Control Update. Combined all interrupts from DISP to DISP_RBBM_int and combined all interrupts from VIP to VIP_RBBM_int, and renamed IDCT interrupt. Renamed clock to SCLK_P (no unit designation). Added interrupts inputs for all clients. Unused interrupts will be tied low at the RBBM instance.
26 March 02	Version 0.09	Added ROM Go/Active Pair. Updated BIF-to-RBBM Interface for slip buffer. Clarification of stall for wait_until condition. Added four go/active pairs for the MC clock assertions per the Power Management Meeting on 03-06-2002. Removed weights for arbitration and clarified arbitration. Updates from review with Tushar Shah. Updates on wait_until signals from David Glen. Fix signal names and comments on CP-to-RBBM interface. Add note on transactions that do not decode to a block. Updates from BIF and VIP review: HI renamed to BIF, added soft reset for SC. Removed WAIT_IDCT_SEMAPHORE from RT stream per IDCT design review.
June 17 02	Version 0.10	Renamed signals from Display/Overlay engine. Added Idle signals to CP. Removed Stat_Gui_Idle signal. Updated wait_until per definitions of signals from the display/overlay engine. Added VGT's soft reset signal. RBBM asserts RBBM_regclk_active during reset. Added MASTER_INT_SIGNAL interrupt register and removed references to the GEN_INT_* registers. Fix typo in RBBM_PERF_CNTL register. Added CGM interface rtr's. Added RBBM_STATUS2 register. Removed Reference of "Go" signals from spec. Removed HIRQ_PENDING from GUI_ACTIVE equation. Add VGT_RBBM_no_dma_busy and remove slow client protocol. Added ROM soft Reset.
October 29, 2002	2 Version 0.11	Updates for Performance Counters.
Nov. 20 2002	Version 0.12	Rename Field in RBBM_Status Register.
Jan. 7 2003	Version 0.13	Add NQ Wait Equation to Spec.
March 24, 2003	Version 0.14	Fix Typo in Section 7.2.
April 24, 2003	Version 0.15	Add interface signals to DB block.
April 25, 2003	Version 0.16	Only adding RBBM_DB_soft_reset for DB block addition.

RBBM_Spec_R400.doc -- 62024 Bytes *** O ATI Confidential. Reference Copyright Notice on Cover Page O ***

02/07/03 03:46 PM

AMD1044_0211904

ATI Ex. 2066 IPR2023-00922 Page 93 of 291

4. Open Issues / Items to Do (Updated: 04-26-2002)

- 1) Possible removal of all shared registers. If so, the RBBM would implement the MASTER_INT_SIGNAL Read only register. Each bit is active (high) only if that block is currently asserting a interrupt signal to RBBM. <u>A : 04-26-2002</u>. This is plan of record per a meeting with Phil Rogers, Rodney A. and Jeffrey C. on 04-23-2002.
- 2) Need to resolve the performance counter connections. <u>A: 04-10-2002: All busy signals will be wired to the performance counters.</u>
- 3) Need review of the status signals that are listed in the RBBM_STATUS register. <u>A: Done with Mark Fowler and Steve Morein</u> on 04-10-02.
- 4) For "idleclean" (and idle), the RBBM either gets "idle" and "clean" signals from all the clients OR the "empty" status of the "drain-o" FIFO in the CP is wired to the RBBM. In the later case, the Driver would need to insert an "event drain-o" before the wait_until for idleclean. The RBBM would then wait until the "drain-o" FIFO is empty. <u>A: 04-09-2002: The RBBM will</u> <u>receive "busy" and "clean" signals from each of the clients and use these for the wait idle/clean function.</u>
- 5) Need to resolve the WAIT_UNTIL signals for Real-Time and Non-Real-Time transactions. <u>A: Done.</u>
- 6) Do we need strap bits to tell the RBBM the number of "repeater flops". <u>A: 04-01-2002: No, the strap signals would need</u> <u>connection to the top-level route. The RBBM will assume a fixed number of repeater flops maximum.</u>
- 7) Do we need a WAIT_IDCT_SEMAPHORE on the RT stream path? <u>A: No per IDCT design review on 03-26-2002. The</u> <u>WAIT_REG_MEM function will be used instead for RT streams.</u>
- 8) Need feedback on the list of Go/Active signal pairs output by the RBBM (S. Morein Action). It is expected that the list will get shorter. <u>A: RBBM outputs single "reg_active_sclk" signal to clients instead of go/active signals.</u>
- 9) Possible Go/Active pair addition for controlling the registers for the read bus and repeater flops. <u>A: RBBM outputs single</u> <u>"reg_active_sclk" signal to clients instead of go/active signals.</u>
- 10) Need address that RBBM should use for queued/non-queued determination for Host Transactions. <u>A: From the RBBM design</u> <u>review, it was determined to remove the Host's queued path through the RBBM.</u>
- 11) The SLICEDONE wait_until is replaced with some wait reg or waits on a frame buffer address equaling a certain value. The RTS rendering the overlay could write these values and the primary PM4 stream waiting on the real-time can poll on the address containing the expected value to proceed (D. Glen). <u>A: Removed the STAT_DISP_OV0_SLICEDONE and WAIT_OV0_SLICEDONE wait logic.</u>
- 12) Interrupts from Video Blocks. A: D. Glen: TV, HI and AIC do not need interrupt lines into RBBM. VGA, DISP and VIP do.
- 13) Possible Go/Active Additions: 4 for RB. <u>A: 03-06-2002 (Power Management Meeting) No. These may need 4 busy signals</u> back to the CG, but they only need one clock control per unit.
- Alternative for "Slow Client" mode documented by David Glen. <u>A: 02-11-2002: Slow Clients will send pulse train to the</u> <u>RBBM</u>.
- 15) Need to resolve how to decode the upper bits [19:17] of address from the Host? <u>A: 01-29-2002: Address bits 19:17 will not be wired to CP. VGA registers are memory-mapped registers, IO decode addresses are the same as memory-mapped registers, and the BIOS is written BIF →MH.</u>
- 16) Adding the ability of the Host "Queued" transactions to be send down the "Non-Queued" path via a debug bit may not be necessary if the register map is duplicated where each location has both a "Queued" and "Non-Queued" address. <u>A: The</u> <u>address map is not duplicated, so it is included in the RBBM design.</u>
- 17) Need to finalize address width after register specification is released. A: Global Register Bus addresses 128 KBytes.
- 18) Need to resolve the Interrupt signals into the RBBM. Perhaps these should just be input into the BIF? A: <u>No. The RBBM</u> generates a <u>GUI_IDLE</u> interrupt and an interrupt for read errors.
- 19) Perhaps the 2D ← → 3D synchronization function belongs in the CP? <u>A: Yes. But the RBBM still has the WAIT_IDLE and CPSCRATCH implicit synchronization.</u>
- 20) Should Host read transactions to "queued" registers be sent down the "queued" path so that their result reflects the affect of any initiators that proceeded? The read may stall however if a WAIT_UNTIL is in-progress which may hinder debug in a "hang" situation. <u>A. Debug bit allows all host read transactions to go through non-queued path.</u>
- 21) How does the RBBM handle the assembly of read data from shared registers (i.e. Registers with bits spread across multiple units). A: CP read logic accumulates the shared data until a "read latency timer" expires. There is a decoder in the RBBM to identify shared registers and the read latency for these registers is based on the "read latency timer".

RBBM_Spec_R400.doc -- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211905

ATI Ex. 2066 IPR2023-00922 Page 94 of 291

22) Where is the Host Blit Immediate Data Swapping Function? <u>A: Per conversation on 08-23-01 with S. Morein, the CP will skip</u> fetching of the Immediate Host data. The 3D engine will fetch the immediate data and do the data swapping. The CP will need some mechanism (Read Address Jump or Speculative Prefetching) to be able to skip over data in the command stream. 10-17-2001: The data swapping logic will be removed from the RBBM. The swapping logic will be either in the Legacy 2D logic or will be in the shader where the data will be fetched.

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211906

ATI Ex. 2066 IPR2023-00922 Page 95 of 291

5. R400 Overview (Updated: 06-17-2002)

The RBBM merges register writes and reads from the Bus Interface Unit (BIF a.k.a. Host) and the Command Processor (CP) then broadcasts them to the rest of the blocks in the chip. The RBBM can access up to 128K Bytes of register space (32K DWORDs).

Transactions from the CP can be sent down either a queued (CF) or non-queued (CP) path. The RBBM looks at the NQ flag from the CP. If the NQ flag is set, the transaction from the CP is sent down the non-queued path. See the CP unit specification for details on controlling the NQ flag.

In addition, there are two other paths for transactions from the CP - a Real-Time (RT) path and a path that the Command Processor uses to issue Index DMA requests from its Pre-Fetch Parser (PF Path). Separate SEND signals from the CP are used to distinguish these transactions.

In general, non-queued transactions can pass queued transactions. If it is important for non-queued register writes to be held off by a queued register write the CP must not send the non-queued register write until it has determined that the queued register write has completed. The CP can use chip status (i.e. reading chip status from registers) to perform this synchronization.

There is no ordering between the CP and Host transactions within the RBBM. Writes from both senders may become interleaved on the global register bus.

Real-Time transactions from the CP will pass both the non-queued and queued transactions. These have the highest priority in the arbitration for access to the global register bus.

The CP's Pre-Fetch Parser (PFP) issues initiators to the VGT's Index DMA engine via the PF path. These requests pass the CP's Micro Engine and other "queued" transactions in the RBBM. This is done so that the Index DMA requests will over-lap the writing of state data. This is a low bandwidth, high priority path. These transactions have the next highest priority after Real-Time transactions.

Arbitration Summary for the Global Register Bus:

Real-Time: Always Wins. Removed from Arbitration if RTRs are not asserted.

Index DMA (PF): Always Wins if No Real-Time. Removed from arbitration if skew count limit exceeded or if corresponding ready-to-receives are not asserted.

HI, CF, CP: Round-Robin Priority. Each removed from arbitration if corresponding ready-to-receives are not asserted.

Unlike prior implementations, the RBBM does <u>not</u> perform address re-mapping. All the clients to the RBBM "see" the entire flat address map.

In R400, clock gating is performed in the clients. Therefore there are no handshaking signals between the RBBM and CG for enabling clocks as in past chips. The RBBM simply asserts the RBBM_regclk_active signal to all clients whenever it has a transaction in any of its data paths.

Neither the BIF nor the CP will be allowed to issue more that one read request at any give time. This is enforced by logic in the RBBM. There will be only one outstanding read on the GRB at any one time. The RBBM will allow write requests to be processed if a read transaction is outstanding however.

RBBM_Spec_R400.doc --- 62024 Bytes *** ③ ATI Confidential. Reference Copyright Notice on Cover Page ③ ***

02/07/03 03:46 PM

AMD1044_0211907

ATI Ex. 2066 IPR2023-00922 Page 96 of 291

5.1 Implicit Synchronization (Updated: 03-11-2002)

In prior chips, the RBBM implemented 2D/3D synchronization. This involved stalling a 2D initiator/trigger register write if 3D was not idle and stalling a 3D initiator/trigger register write if 2D was not idle. In R400, there is no separate 2D engine. The RBBM therefore cannot distinguish between a 2D or 3D initiator. The CP therefore performs the 2D $\leftarrow \rightarrow$ 3D synchronization in R400. Note that if the Driver is not using the CP for 2D/3D, then it needs to do this synchronization itself.

The RBBM implements the following legacy implicit synchronization: ISYNC_WAIT_IDLEGUI and ISYNC_CPSCRATCH_IDLEGUI in the queued (CF) pipeline. See the RBBM_ISYNC_CNTL register for details.

5.2 Client Clock Synchronization (Updated: 06-17-2002)

At the overall chip level, the RBBM is responsible for making sure that a client of a transaction has its clock running. Whenever the RBBM receives a transaction from either the BIF or CP, it asserts the "Register Clock Active" signal. The latency of the RBBM will provide for several clocks of the "active" signal being asserted before the transaction is presented on to the Global Register Bus (GRB).

The RBBM will keep the "Register Clock Active" signal asserted as long as it has a transaction in any of its pipelines.

The RBBM will de-assert the "Register Clock Active" signal after a programmable number of clocks after the last transaction has been issued. The "issued" condition includes the return of any read data or the terminal count of the READ_INTERVAL counter (Multi-Target Registers and Read Error Condition).

The programmability of the de-assertion time for the "Register Clock Active" signal is provided as the REGCLK_DEASSERT_TIME in the RBBM_CNTL register.

5.3 Interrupt Generation (Updated: 04-26-2002)

The RBBM has interrupt control, status, and acknowledge registers, which are used to control the operation of the interrupts generated by the RBBM.

The RBBM generates the following interrupts:

- 1. Non-Real-Time GUI Idle
- 2. Read Error

The RBBM is also the collection point for the discrete interrupt signals in the chip. Interrupt signals from the clients are input into the RBBM, logically "OR'd" with each other -- and the RBBM's internal interrupt -- registered, and sent out as a single interrupt to the Bus Interface unit (BIF). All clients have an interrupt input. If a client does not implement an interrupt, then its corresponding input to the RBBM is tied low at the RBBM's instantiation.

The RBBM has a register that can be read by the Driver to determine which unit is interrupting: MASTER_INT_SIGNAL.

RBBM_Spec_R400.doc ---- 62024 Bytes *** **O** ATI Confidential. Reference Copyright Notice on Cover Page **O** ***

02/07/03 03:46 PM

AMD1044_0211908

ATI Ex. 2066 IPR2023-00922 Page 97 of 291

5.4 Host and Command Data Swapping (Updated: 01-31-2002)

The RBBM performs endian swapping on the data from the Bus Interface Unit (BIF). When the RBBM_BIF_swp signal from the BIF is set the RBBM will perform the following swap of on the data:

0xAABBCCDD becomes 0xDDCCBBAA

The RBBM_BIF_swp signal only applies to transactions from the BIF that are not Command Stream Push data. For Command Stream Push data (i.e. writes to the CP_PUSH_* registers), only the CPQ_DATA_SWAP control in the RBBM_CNTL register is used to determine if a swap should occur.

Note that the byte enables are not ordinarily swapped with the data. There is however a SWAP_BE control bit in the RBBM_DEBUG register. If this bit is set and RBBM_BIF_swp is set, then the byte enables are also swapped for both BIF and Command Stream Push data.

Note that byte enables are swapped for CP_PUSH_* write requests when RBBM_BIF_swp and SWAP_BE are set. Where as for data to be swapped, RBBM_BIF_swp may not be set but CPQ_DATA_SWAP should be set.

5.5 What Happened to Upper Address Bits from BIF? (Updated: 02-25-2002)

In prior chips, the RBBM decoded address bits [19:16] from the BIF to determine the following decode spaces – MMR, IO, VGA, and BIOS.

Bit 16 was used to determine BIOS0 or BIOS1.

Bit 17 was not used in prior RBBM designs.

Bits 19:18 were used to determine the decode spaces as follows:

 MMR_DEC
 = BIF_Address[19:18] = "00"

 IO_DEC
 = BIF_Address[19:18] = "01"

 VGADEC
 = BIF_Address[19:18] = "10"

 BIOSDEC
 = BIF_Address[19:18] = "11"

In R400, the memory-mapped address space is 128KBytes. Bit 16 is used as the most-significant bit of the address.

Bits 19:17 are not needed by the RBBM because:

- 1. The address re-mapping logic is not in the R400 RBBM, so the Memory Mapped Registers (MMR) and IO decode space must have the same address 16:2.
- 2. The VGADEC register space maps directly to the Memory-Mapped Registers, so detection of VGADEC is no longer needed.
- 3. The ROM is accessed via the register bus for configuration, writing, and indirect reading. These locations are within the 128KBytes of memory-mapped register space.

Therefore the address width from the BIF to the RBBM is only 16:2, which represents the 32K DWORDs that make-up the 128K Byte Memory-Mapped Register aperture.

Note: The BIOS (ROM) image is accessible via read requests to the Memory Hub.

5.6 Reset Behavior (Updated: 04-06-2002)

The RBBM will drive all '0's onto both Write Data buses during reset, and hold that value on the data bus after reset, until the first request comes in from one of the requesters.

 $The RBBM will also assert the RBBM_regclk_active signal during both hard reset and soft reset so that the zero value will propagate through any client's interface.$

RBBM_Spec_R400.doc — 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211909

ATI Ex. 2066 IPR2023-00922 Page 98 of 291

5.7 VGT DMA Draw Initiator Deadlock (Updated: 06-05-2002)

The CP's Pre-Fetch Parser (PFP) issues index DMA requests to the VGT by writing the VGT_DMA_BASE and VGT_DMA_SIZE registers for the DRAW_INDX packets. Because we desire to hide the fetch latencies of the index DMA operations, these DMA requests are issued long before the corresponding DRAW_INITIATOR is sent to the VGT. Both the DMA request and the DRAW_INITIATOR enter the VGT through the same interface. So, care must be taken so as not to write so many DMA requests that the interface into the VGT is backed-up. This would block the ability for the CP to write the DRAW_INITIATOR. If this happens then the chip is deadlocked.

To prevent this situation, the RBBM will increment a counter every time it writes the VGT_DMA_BASE or VGT_DMA_SIZE register through the PF path. The counter is decremented by 2 when the RBBM writes to the VGT_DRAW_INITIATOR register with the SOURCE_SELECT field set to "VGT DMA Data" is sent to the Global Register Bus.

The count is reset to zero on reset. The RBBM will stop issuing index DMA requests to the VGT (i.e. stall the PFP path) when the count value is greater than or equal to the SKEW_TOP_THRESHOLD. The SKEW_TOP_THRESHOLD value programmed in the RBBM_SKEW_CNTL register. The SKEW_TOP_THRESHOLD value must be a non-zero even number.

5.8 Support for Explicit Synchronization (Updated: 04-02-2002)

There are two WAIT_UNTIL event engines – one for Real-Time Streams and another one for non-Real-Time Streams. Each of these has its own independent "WAIT_UNTIL" control register. The operation of the WAIT_UNTIL event engines however is identical.

A write to the "WAIT_UNTIL" register is actually written into the Command FIFO. The value written is a command to the Event Engine, which resides at the output of the Command FIFO. The value specifies that a certain status condition should be met before allowing the next command to be read from the Command FIFO. Essentially, the value written into the "WAIT_UNTIL" register is a read mask for reading consecutive data from that FIFO. If multiple bits in the write value are ON, then ALL conditions must be met before the write can be unblocked.

Typically, the write to the wait_until register is preceded with a write to an initiator register. This initiator changes the status that the subsequent wait_until condition is programmed to wait for. When the RBBM sees a WAIT_UNTIL register write on the output of the Command FIFO, it will not evaluate the status signals until all prior write transactions have made it to the client. The RBBM ensures this by waiting for the following condition to be met:

Wait_For = "All CP Non-Queued and Prior Queued (CF) Transactions Out of RBBM" + 48 Clocks

The reason for making sure non-queued transactions are complete is because Initiators may also be sent through non-queued path.

The 48 extra clocks allow time for the client to process the initiator transaction and for the status signals to stabilize.

Reads from the WAIT_UNTIL registers return the value on the status signals that qualify the wait condition.

For example, if the value being written has the WAIT_CRTC_VLINE bit ON, then consecutive data from the FIFO will not be read until the CRTC_VLINE condition becomes true.

Another example is the WAIT_CMDFIFO bit. This allows the programmer to stall the command stream at the bottom of the Command FIFO until there are at least CMDFIFO_ENTRIES number of occupied entries in the Command FIFO behind it. This gives the programmer a mechanism to guarantee that a certain sequence of writes will occur in rapid succession once the stall condition has been met. The WAIT_CMDFIFO is only provided in the non-Real-Time queued path.

RBBM_Spec_R400.doc -- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211910

ATI Ex. 2066 IPR2023-00922 Page 99 of 291

5.9 NQ Wait Until (Updated: 02-07-2003)

The Non-Queued Wait Until function has the same operation as in prior chips. If either the BIF or the CP writes the NQWAIT_UNTIL register, subsequent transactions will not be processed until the GUI is idle. The BIF writes directly to this register and the CP uses the WAIT_FOR_IDLE packet. In either case, the wait operation is before the decision of "queued" versus "non-queued". Unlike the explicit sync, this wait function also affects the non-queued paths – thus its name.

If initiated directly from the Host, the RBBM waits for all prior transactions in the Host to be flushed, all transactions in the CF pipe to be flushed, and then it waits for 48 clocks before sampling the Non-RT GUI_ACTIVE to be idle.

If initiated directly from the CP, the RBBM waits for all prior transactions in the CF pipe to be flushed and all transactions in the CP paths' scheduler to be flushed, and then it waits 48 clocks before sampling the Non-RT GUI_ACTIVE to be idle.

The 48 clock wait is to make sure all the pending initiators have been received by the clients (i.e. Not stuck in the repeater flops).

Non-RT GUI_ACTIVE = (not CP_RBBM_rt_enable and (RC_RBBM_cntx0_busy or SQ_RBBM_cntx0_busy or SC_RBBM_cntx0_busy)) or (PA_RBBM_busy or VGT_RBBM_no_dma_busy or SQ_RBBM_cntx17_busy or RC_RBBM_cntx17_busy or SC_RBBM_cntx17_busy);

5.10 Field Affecting Operation (Updated: 10-24-2002)

Whenever BIF or CP requests for a write operation for either RBBM_CNTL or RBBM_SKEW_CNTL register, all the subsequent requests in any of the RBBM pipes are held off till the RBBM write operation is complete.

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD1044_0211911

ATI Ex. 2066 IPR2023-00922 Page 100 of 291

6. Register Backbone Protocols

This section is intended to summarize the constraints that the Register Backbone structure places on targets that reside on that backbone. It is a centralized place where designers of blocks that have target interfaces on the backbone can quickly see what is required of them.

6.1 Write Protocol (Updated: 06-17-2002)

The RBBM issues queued (CF), non-queued (HI and CP), real-time (RT), and pre-fetch parser (PFP) transactions that are broadcast on the same bus.

6.1.1 Non-Real Time Write Transactions (HI, CF, CP, PFP Paths)

All Non Real-Time (HI, CF, CP, PFP) write transactions follow the following rules:

- 1. The RBBM waits until <u>both</u> the RTR and nrtRTR signals have been asserted from <u>all</u> of the clients.
- 2. Only at this point does the transaction win access past the internal path arbiter. The RBBM then pulses the RBBM_WE and asserts the Address, Byte Enables, and Data onto the Global Register Bus.

Note that the register bus and all control signals into and out-of the RBBM and Clients are registered. All Global Register Bus (GRB) signals may be pipelined "N" times as determined by the chip layout. The minimum for N = 2 (Sender + Receiver). The clients therefore must be able to accept 2*N additional transactions after its de-assertion of their ready-to-receive signal. The ready-to-receive can be implemented as an "almost full" condition for a FIFO where the client is placing the transactions from the RBBM.

The only reason that a client should de-assert its ready-to-receive is if its input buffer (a.k.a. "Skid Buffer") becomes almost full as a result of a write operation.

Note that it is up to the client as to whether they implement either of the nrtRTR or RTR signals. For any client that does not implement these signals, the corresponding inputs to the RBBM will be tied high at the RBBM instance.

AMD1044_0211912

ATI Ex. 2066 IPR2023-00922 Page 101 of 291 R400 RBBM Single Write Transaction Updated: 11/10/2001 John A. Carey

Figure 6-1: Single Write Waveform

RBBM_Spec_R400.doc -- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211913

ATI Ex. 2066 IPR2023-00922 Page 102 of 291

Figure 6-2: RTR-Throttled Write Waveform

6.1.2 Real-Time Write Transactions (RT Path)

For Real-Time writes, the transaction rules are the same as the Non-Real Time transactions except that the RBBM looks at only the status of the RTR signals from the clients. The nrtRTR signals will be ignored.

RBBM_Spec_R400.doc --- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0211914

ATI Ex. 2066 IPR2023-00922 Page 103 of 291

Updated: 7/14/2003

John A. Carey

6.2 Read Protocol (Updated: 06-17-2002)

A read request is sent out when RBBM_RE is high and the address is valid. RBBM_RE and Address will only be valid for one clock cycle. Read requests are throttled by the targeted client's ready-to-receive signals the same as write transactions. It is assumed that the clients will process these transactions through the same slip FIFOs as write transactions in order for the read operation to reflect all prior write transactions.

Only one read is outstanding at any time. If the BIF and CP both make read requests they will be serialized by the RBBM.

There is only one path from the BIF to the register bus. This is used for both reads and writes.

CP read transactions will be routed to either the queued (CF) or non-queued (CP) path depending on the NQ flag from the CP. Reads from the Real-Time stream will pass through the RT path. The Pre-Fetch Parser in the CP will not issue read operations, so no reads will traverse the PF path.

Some number of clock cycles after RBBM_RE is asserted, the RBBM will receive the return data back. The delay will be a function of the layout of the chip, which dictates the wiring of the read chains.

The read return "bus" is the bitwise OR of all the clients that can respond to a read request. All clients that are not targeted for the read operation must drive a '0' on the bus. The wiring of the read return bus is a tree of point-to-point connections. At each connection, the inputs are registered, OR'd with the client's signals, registered again, and then driven to the next connection.

The RBBM also implements a read error function. If there is not a strobe detected by the time the timer expires, the RBBM completes the read transaction and asserts the read error interrupt. It is up to the interrupt service routine to determine what to do about the read error.

As stated earlier, that the RBBM will issue write transactions when a read operation is in-progress. The RBBM will however stall on the next read transaction.

R400 RBBM Shared Read Transaction

Figure 6-3: Read Transaction

RBBM_Spec_R400.doc — 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211915

ATI Ex. 2066 IPR2023-00922 Page 104 of 291

6.3 Non-Targeted Transactions (Updated: 06-17-2002)

It is legal for none of the clients to be a target of a transaction. The RBBM does not "know" this to be the case however, it just issues the transaction when all the clients have asserted their RTR and nrtRTR signals.

If no client claims a write transaction, it will just disappear on the Global Register Bus. If no client claims a read transaction, it will mostlikely end up as a "read error" as none of the clients will assert a read strobe.

6.4 Notes on Byte Enables (Updated: 03-26-2002)

Here are the Byte-Enable preservation rules:

- 1. BIF transactions preserve the byte enables.
- 2. CP "queued" transactions do not preserve the byte enables. They are hard-coded to "1111".
- 3. CP "non-queued" transactions preserve the byte enables from the CP. This is to allow the CP's DMA engine to perform byte writes (See below).
- 4. Real-Time Path Does not implement byte enables. They are hard-coded to "1111".
- 5. Pre-Fetch Parser Path does not implement byte enables. They are hard-coded to "1111".

Notes:

- a. The CP's Micro Engine (ME) does not support byte enables. It can only do 32-bit (DWORD) writes to registers and memory.
- b. The CP's DMA Engine has a control bit (NQ Flag) to indicate whether its transactions go through the CF or CP path. If the transactions go through the CP path, then the byte enables will be preserved.

AMD1044_0211916

ATI Ex. 2066 IPR2023-00922 Page 105 of 291

The Register Backbone Manager communicates with other modules of the Graphics Controller device, as summarized in Figure 7-1 below.

Figure 7-1: External Interfaces of Register Backbone Manager

7.1 System Interface CG-to-RBBM (Updated: 04-02-2002)

Pin Name	Vector	Туре	Description	Note
sclk		I	Permanent Core Clock.	
srst		Ι	Reset, synchronized to SCLK.	

RBBM_Spec_R400.doc — 62024 Bytes *** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211917

ATI Ex. 2066 IPR2023-00922 Page 106 of 291

7.2 Bus Interface (BIF) -to- RBBM Interface (Updated: 03-24-2003)

This interface is used when the BIF wishes to access registers that reside in target modules connected to the register backbone.

All the inputs are registered and a "slip FIFO" is implemented on the interface. The RBBM will de-assert the RBBM_BIF_rdy when it is "almost full" in order to be able to safely consume transactions already in-flight. The BIF will only send a transaction (Write/Read) to the RBBM if its registered version of the RBBM_BIF_RDY signal is asserted.

The "slip FIFO" and its "almost full" signal is set so that up to 2 repeater flops can be inserted between the BIF and the RBBM.

Pin Name	Vector	Туре	Description	Note
BIF_RBBM_a	16:2	Ι	Register Address for Read/Write transaction.	
BIF_RBBM_op		Ι	Opcode. Specifies a read or write transaction.	
			(0=Read, 1=Write).	
BIF_RBBM_wd	31:0	Ι	Write Data Bus.	
BIF_RBBM_be	3:0	Ι	Byte Enables.	
			One bit for each byte of the Wd bus.	
			Bit 0 corresponds to byte on Wd[7:0]	
			Bit 1 corresponds to byte on Wd[15:7]	
			Bit 2 corresponds to byte on Wd[23:16]	
			Bit 3 corresponds to byte on Wd[31:24]	
			(0=Disable Read/Write, 1=Enable Read/Write	
BIF_RBBM_swp		I	Indicates whether endian swap should be performed on HI reads/writes.	
			Excludes pushed command data to CP.	
BIF_RBBM_send		Ι	Send: Single Pulse for Either Write or Read Transactions.	
RBBM_BIF_rdy		0	RBBM Ready to Receive a Write or Read Transaction from BIF.	
RBBM_BIF_int		0	Interrupt to the BIF.	

RBBM_Spec_R400.doc — 62024 Bytes *** [©] ATI Confidential. Reference Copyright Notice on Cover Page [©] ***

AMD1044_0211918

ATI Ex. 2066 IPR2023-00922 Page 107 of 291

7.3 CP-to- RBBM Interface (Updated: 03-19-2002)

This interface is used when the CP wishes to access registers that reside in target modules connected to the register backbone. The CP writes state data, constant data, shader code DMA initiators, and other register writes through this interface.

The "slip FIFO" and its "almost full" signal on the CP input interface is set so that up to 2 repeater flops can be inserted between the CP and the RBBM.

Note 1: The RBBM does not do endian swapping on the data from the CP.

Pin Name	Vector	Туре	Description	Note
CP_RBBM_send		I	CP Send Transaction to RBBM.	
			1. Transaction from Micro Engine	
			2. Transaction from DMA Engine	
CP_RBBM_rt_send		Ι	CP Send for Real-Time Transaction	
CP_RBBM_pf_send		I	CP Send Pre-Parser Transaction	
CP_RBBM_a	16:2	I	Register Address for Read/Write transaction.	
CP_RBBM_op		Ι	Opcode. Specifies a read or write transaction.	
			(0=Read, 1=Write).	
CP_RBBM_nq		Ι	Use Non-Queued Path	
			0 = Transaction processed through "queued" path	
			1 = Transaction processed through "non-queued" path.	
CP_RBBM_wd	31:0	I	Write Data Bus.	
CP_RBBM_be	3:0	I	Byte Mask (For 32-bit Transfers)	
RBBM_CP_rdy		0	Non-Real Time Ready to Receive. The CP uses a delayed	
			version of this signal so the RBBM asserts this as an "almost	
			full" with respect to its receiving FIFO.	
RBBM_CP_rt_rdy		0	Real-Time Stream Ready to Receive. The CP uses a delayed	
			version of this signal so the RBBM asserts this as an "almost	
			full" with respect to its receiving FIFO.	
RBBM_CP_pf_rdy		0	Pre-Parser Transaction Ready to Receive. The CP uses a	
			delayed version of this signal so the RBBM asserts this as an	
			"almost full" with respect to its receiving FIFO.	

7.4 RBBM -to- CP/BIF Read Return Data (Updated: 12-21-2001)

This is the read return data that is wired from the RBBM to the CP and BIF. The read data is qualified by a pulse on the "valid" signal. The RBBM will assert an interrupt if a read error occurs. The "valid" signal will still be asserted to appropriate read-requester however for read errors.

Pin Name	Vector	Туре	Description	Note
RBBM_rd	31:0	0	Read Return Data to CP and HI. Note: Read return data for the	
			BIF can be swapped in the RBBM.	
RBBM_BIF_valid		0	Read Data Valid to the BIF.	
RBBM_CP_valid		0	Read Data Valid to the CP.	

RBBM_Spec_R400.doc — 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0211919

ATI Ex. 2066 IPR2023-00922 Page 108 of 291
7.5 RBBM-to-Target(s) Interface (Updated: 04-24-2003)

This interface is used to perform read and write transactions to targets containing registers that reside in the register address space of the Graphics Controller device. The RBBM can access up to 128K Bytes of register space.

The RBBM is itself a client on the register bus, but transactions to its registers are snooped internal to the RBBM. The interface signals for the RBBM client therefore do not appear in this list.

The ready-to-receive signals (*_RTR and *_nrtRTR) are registered before being used by the RBBM. The clients must either have storage to absorb extra transfers because of this delay or throttle the RTR signal accordingly.

Note 1: The DC_RBBM_RTR and DC_RBBM_nrtRTR signals are combined RTR signals for the VGA, TVOUT, VIP, and Display.

RBBM_we O Write Enable (Send) (Address and Data are Valid). RBBM_a 162 O Register Address for Read/Write Transaction. RBBM_wd 31.0 O Register Byte Mask Optional BBM_be 3.0 O Register Byte Mask Optional Bit 0 corresponds to byte on Wd[7:0] Bit 1 corresponds to byte on Wd[3:124] Cleints Bit 2 corresponds to byte on Wd[3:124] (0=Disable Read/Write, 1=Enable Read/Write). Cleints RBB_rs0 I Register BackBone Read Return Strobe 0 Register BackBone Read Return Data 0 RBB_rs1 Register BackBone Read Return Data 0 RBB_rd0 I Register BackBone Read Return Data 0 CP_RBBM_rtr I Register BackBone Read Return Data 1 Implement Implement CP_RBBM_rtr I Command Processor Real-Time Ready to Receive Not Implement AlC RBBM rtr I AlC Ready to Receive Not Implement AlC RBBM rtr I Primitive Assembly Real-Time Ready to Receive Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement	Pin Name	Vector	Туре	Description	Note
RBBM_a 16:2 O Register Address for Read/Write Transaction. RBBM_wd 31:0 O 32:6 thr Write Data Bus (To 32-bit Clients) Optional RBDM_be 3:0 O Register Byte Mask Optional Bit 0 corresponds to byte on Wd[7:0] Bit 1 corresponds to byte on Wd[23:16] Otional Bit 2 corresponds to byte on Wd[23:16] Bit 2 corresponds to byte on Wd[23:16] Otional RBB_re O Read Enable (Address is Valid, Data is "Don't Care") Read State TackNone Read Return Strobe 1 RBB_rs0 I Register BackNone Read Return Strobe 1 Response TackNone Read Return Strobe 1 RBB_rd1 31:0 I Register BackNone Read Return Data 0 Response Network (CP Does Network) RBB_rd1 31:0 I Register BackNone Read Vo Receive Not Implement BIF_RBBM_rtr I Command Processor Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I AIC Ready to Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I AIC Ready to Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement	RBBM_we		0	Write Enable (Send) (Address and Data are Valid).	
RBBM_be 31:0 O 32-bit Write Data Bus (To 32-bit Clients)	RBBM_a	16:2	0	Register Address for Read/Write Transaction.	
RBBM_be 3:0 O Register Byte Mask Optional Bit 0 corresponds to byte on Wd[7:0] Bit 1 corresponds to byte on Wd[23:16] Git Bit 2 corresponds to byte on Wd[23:16] Bit 2 corresponds to byte on Wd[23:16] Clients Bit 2 corresponds to byte on Wd[23:16] Bit 2 corresponds to byte on Wd[23:124] Clients RBB re O Read Enable (Address is Valid, Data is "Don't Care") Rest RBB rs0 I Register BackBone Read Retum Strobe 1 Rest RBB rs1 I Register BackBone Read Retum Data 0 Rest RBB rd0 31:0 I Register BackBone Read Retum Data 1 CP_Does CP_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement BIF RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement AIC RBBM_rtr I Primitive Assembly Real-Time Ready to Receive Not Implement MC0. RBBM_rtr I Memory Controller #0 Read, Time Ready to Receive Not Implement MC1. RBBM_rtr I Memory Controller #0 Read, Time Ready to Receive Not Implement MC2. RBBM_rtr I Memory Controller #0 Read, Time Ready to Receive Not Implement MC2. RBBM_rtr I Memory Controller #0 Read, Time Ready to Receive No	RBBM_wd	31:0	0	32-bit Write Data Bus (To 32-bit Clients)	
Bit 0 corresponds to byte on Wd[7:0] for Bit 1 corresponds to byte on Wd[7:1] Clients Bit 2 corresponds to byte on Wd[3:124] Clients (0-D)sable Read/Write, 1=Enable Read/Write).	RBBM_be	3:0	0	Register Byte Mask	Optional
Bit 1 corresponds to byte on Wd[15:7] Clients Bit 2 corresponds to byte on Wd[31:24] (0=Disable ReadWrite, 1=Enable ReadWrite). RBB re O Read Enable (Address is Valid, Data is "Don't Care") RBB rs0 I Register BackBone Read Return Strobe 0 RBB rs1 I Register BackBone Read Return Strobe 1 RBB ra1 Register BackBone Read Return Strobe 1 Response Read Return Strobe 1 RBB ra1 I Register BackBone Read Return Data 0 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive RDE RBBM_rtr I Command Processor Real-Time Ready to Receive Alt RBBM_rtr I Pregister BackBone Read Return Data 1 II Pregister BackBone Read Return Data 1 Implement BIF_RBBM_rtr I Command Processor Real-Time Ready to Receive Not MCC_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive Not MC1_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not				Bit 0 corresponds to byte on Wd[7:0]	for
Bit 2 corresponds to byte on Wd[3:16] Bit 3 corresponds to byte on Wd[3:24] (0=Disable Read/Write, 1=Enable Read/Write). RBB_rs0 RBB_rs0 RBB_rs1 1 Register BackBone Read Return Strobe 0 RBB_rd0 31:0 RBB_rd1 1 Register BackBone Read Return Strobe 1 RBB_rd1 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Start Ready to Receive CP Does Not Implement MIC RBBM_rtr I AIC RBBM_rtr I AIC RBBM_rtr I AIC RBBM_rtr I MC0 RBBM_rtr I MC0 RBBM_rtr I MC0 RBBM_rtr I MC1 RBBM_rtr I MC2 RBBM_rtr I MC3 RBBM_rtr I MC3 RBBM_rtr I MC4 RBBM_rtr I MC5 RBBM_rtr I MC6 RBBM_rtr I MC7 RBBM_rtr I				Bit 1 corresponds to byte on Wd[15:7]	Clients
Bit 3 corresponds to byte on Wd[31:24] (0=Disable ReadWrite, 1=Enable ReadWrite). RBBM_re O Read Enable (Address is Valid, Data is "Don't Care") RBB_rs0 I Register BackBone Read Retum Strobe 0 RBB_rs1 I Register BackBone Read Retum Strobe 1 RBB_rd0 31:0 Register BackBone Read Retum Data 1 CP_RBBM_rtr I CP_RBBM_rtr I CP_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive AIC RBBM rtr I PA_RBBM rtr I PA_RBBM_rtr I PA_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Not Real-Time Ready to Receive VGT_RBBM_rtr I MC0_RBBM_rtr I MC1_RBBM rtr I MC2_RBBM_rtr I MC3_RBBM_rtr I MC3_RBBM_rtr I MC3_RBBM_rtr I MC3_RBBM_rtr I MC4_RBBM_rtr I MC5_RBBM_rtr I MC6_RBBM_rtr I <td></td> <td></td> <td></td> <td>Bit 2 corresponds to byte on Wd[23:16]</td> <td></td>				Bit 2 corresponds to byte on Wd[23:16]	
Image: Control of the second secon				Bit 3 corresponds to byte on Wd[31:24]	
RBBM_re O Read Enable (Address is Valid, Data is "Don't Care") RBB_rs0 I Register BackBone Read Return Strobe 0 RBB_rs1 I Register BackBone Read Return Strobe 1 RBB_rd0 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I Command Processor Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I AIC Ready to Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive Not Implement MC0_RBBM_rtr I VGT Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Not Implement MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not Not Ready to Receive Not DC_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Not Not DC_RBBM_rtr I <t< td=""><td></td><td></td><td></td><td>(0=Disable Read/Write, 1=Enable Read/Write).</td><td></td></t<>				(0=Disable Read/Write, 1=Enable Read/Write).	
RBB re O Read Enable (Address is Valid, Data is "Volit Care") RBB rs0 I Register BackBone Read Return Strobe 0 RBB rs1 I Register BackBone Read Return Data 0 RBB rd0 31:0 I Register BackBone Read Return Data 0 RBB rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF RBBM rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement AIC RBBM_rtr I AIC Ready to Receive VGT Does Not Implement VGT_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement MC0 RBBM_rtr I VGT Real-Time Ready to Receive Not Implement MC1 RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC2 RBBM_rtr I Memory Controller #12 Real-Time Ready to Receive Not Implement MC3 RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not Implement MC2 RBBM_rtr I Memory Controller #12 Real-Time Ready to Receive Not Implement MC3 RBBM_rtr					
RBB_rs0 I Register BackBone Read Return Strobe 0 RBB_rd0 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 0 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT Does Not Implement VGT_RBBM_rtr I AIC Ready to Rel-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Read-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Read-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Read-Time Ready to Receive <td>RBBM_re</td> <td></td> <td>0</td> <td>Read Enable (Address is Valid, Data is "Don't Care")</td> <td></td>	RBBM_re		0	Read Enable (Address is Valid, Data is "Don't Care")	
RBB_rd1 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Not AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT Does Not YGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not MC0_RBBM_rtr I VGT Real-Time Ready to Receive Not MC1_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not MC3_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not MH_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not CG_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not CG_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not CG_RBBM_rtr I Memor	RBB_rs0		Ι	Register BackBone Read Return Strobe 0	
RBB_rd0 31:0 I Register BackBone Read Return Data 0 RBB_rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement BIF_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT Does Not Real-Time Ready to Receive VGT_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Implement MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Implement MC3_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive Implement CG_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive Implement DCT_RBBM	RBB_rs1		Ι	Register BackBone Read Return Strobe 1	
RBB_rd1 31:0 I Register BackBone Read Return Data 1 CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Implement PA_RBBM_rtr I AIC Ready to Real-Time Ready to Receive Implement VGT_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement WGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MG2 RBBM_rtr MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Edott Seceive DC_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Edott Seceive CG RBBM_rtr I I Memory Clock Generator Real-Time Ready to Receive Edott Seceive DC_RBBM_rtr I I DCT Engine Read-Time Ready to Receive Edott Seceive Edott Seceive S	RBB_rd0	31:0	Ι	Register BackBone Read Return Data 0	
CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive AIC RBBM_rtr AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive PA PA_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement WGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC0_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Receive MCA	RBB_rd1	31:0	Ι	Register BackBone Read Return Data 1	
CP_RBBM_rtr I Command Processor Real-Time Ready to Receive CP Does Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Not Implement AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT VGT_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement WC0_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement DC_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not Receive CG_RBBM_rtr I VGA_rV_VP_Dpipsly Real-Time Ready to Receive Not Receive CG_RBBM_rtr I DColck Generator Real-Time Ready to Receive Receive CG_RBBM_rtr I DColck Generator Real-Time Ready to Receive So RBBM_rtr I Sequencer Ceal-Time Ready t					
Not Implement BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive Implement AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT Does PA_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does VGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3 RBBM_rtr MC3_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3 RBBM_rtr ML_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC RBBM_rtr DC_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive MC CGM_RBBM_rtr IDCT_RBBM_rtr I Deck Generator Real-Time Ready to Receive SQ RBBM_rtr SQ_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SQ RBBM_rtr SQ_RBBM_rtr I Shader Export #0 Re	CP_RBBM_rtr		Ι	Command Processor Real-Time Ready to Receive	CP Does
BIF_RBBM_rtr I Bus Interface Unit (BIF) Real-Time Ready to Receive AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive PA_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC3 RBBM_rtr MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC3 RBBM_rtr DC_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive MC4 RBBM_rtr CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGA RBBM_rtr I I DDT Engine Real-Time Ready to Receive SQ RBBM_rtr I DDT Engine Real-Time Ready to Receive SQ RBBM_rtr SQ_RBBM_rtr I DDCT Engine Real-Time Ready to Receive SX RBBM_rtr I Shader Export #0 Real-Time Ready to Receive <					Not
BIF_REBM_rtr 1 Bus Interface Unit (BIF) Real-Time Ready to Receive AIC_RBBM_rtr I AIC Ready to Real-Time Ready to Receive VGT_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT_RBBM_rtr I VGT Real-Time Ready to Receive MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive DCT_RBBM_rtr I DCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Shader Export #1 Real Time Ready to Receive SX0_RBBM_rtr I Shader Export #1 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real-Time Ready to Receive RBBM_rtr I					Implement
AIC Ready to Real-Time Ready to Receive PA_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT_RBBM_rtr I VGT Real-Time Ready to Receive WGT_RBBM_rtr I WGT Real-Time Ready to Receive MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MG3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MG2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MG2_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive CG_RBBM_rtr I VGA, TV, VIP, Display Real-Time Ready to Receive CG_RBBM_rtr I DCreck Generator Real-Time Ready to Receive IDCT_RBBM_rtr I DCreck Generator Real-Time Ready to Receive SQ_RBBM_rtr I DCreck Generator Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #0 Real-Time Rea	BIF_RBBM_rtr		l	Bus Interface Unit (BIF) Real-Time Ready to Receive	
PA_RBBM_rtr I Primitive Assembly Real-Time Ready to Receive VGT Does Not Implement WGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive Not MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive Not CGR_RBBM_rtr I Clock Generator Real-Time Ready to Receive Not IDCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr Sq_RBBM_rtr I IDCT_RBBM_rtr I Shder Export #0 Real-Time Ready to Receive SXI_RBBM_rtr I Shder Export #0 Real-Time Ready to Receive SXI_RBBM_rtr I Shder Export #0 Real-Time Ready to Receive RC_RBBM_rtr I	AIC_RBBM_rtr		l	AIC Ready to Real-Time Ready to Receive	
VGT_RBBM_rtr I VGT Real-Time Ready to Receive VGT Does Not Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive Not Implement MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive Not Implement MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not State MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not State MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive Not State DC_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive Not State CGM_RBBM_rtr I IDCT Engine Real-Time Ready to Receive IDCT RBBM_rtr IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Shder Export #1 Real-Time Ready to Receive State State State SN_RBBM_rtr I Shder Export #1 Real-Time Ready to Receive State State <td>PA_RBBM_rtr</td> <td></td> <td>l</td> <td>Primitive Assembly Real-Time Ready to Receive</td> <td></td>	PA_RBBM_rtr		l	Primitive Assembly Real-Time Ready to Receive	
Mote Implement MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive ML_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive DC_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGM_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RC_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RC_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receiv	VGT_RBBM_rtr			VGT Real-Time Ready to Receive	VGTDoes
MC0_RBBM_rtr I Memory Controller #0 Real-Time Ready to Receive MC1_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MH_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive DC_RBBM_rtr I VGA, TV, VIP, Display Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGM_RBBM_rtr I Clock Generator Real-Time Ready to Receive DC_RBBM_rtr I DC Regime Real-Time Ready to Receive SQ_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I DC Regime Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive RB3_RBBM_rtr I					Implement
MC1 RBBM rtr I Memory Controller #1 Real-Time Ready to Receive MC2_RBBM_rtr I Memory Controller #1 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC4_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MC5_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive DC_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive CG_RBBM_rtr I VGA, TV, VIP, Display Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive IDCT_RBBM_rtr I DC Ck Generator Real-Time Ready to Receive SQ_RBBM_rtr I DCT Engine Real-Time Ready to Receive SX0_RBBM_rtr I Sequencer Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB_RBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RC_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB_RBBM_rtr I <td>MC0 RBBM rtr</td> <td></td> <td>T</td> <td>Memory Controller #0 Real-Time Ready to Receive</td> <td>implement</td>	MC0 RBBM rtr		T	Memory Controller #0 Real-Time Ready to Receive	implement
MC2_RBBM_rtr I Memory Controller #2 Real-Time Ready to Receive MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MH_RBBM_rtr I Memory Hub Real-Time Ready to Receive DC_RBBM_rtr I VGA, TV, VIP, Display Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGM_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive IDCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I DDC Tegine Real-Time Ready to Receive SX0_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB_RBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB_RBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB_RBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB_RBM_rtr I Renderer Backend #	MC1 RBBM rtr		I	Memory Controller #1 Real-Time Ready to Receive	
MC3_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive MH_RBBM_rtr I Memory Controller #3 Real-Time Ready to Receive DC_RBBM_rtr I VGA, TV, VIP, Display Real-Time Ready to Receive CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGM_RBBM_rtr I Clock Generator Real-Time Ready to Receive DCT_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive BCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I DCT Engine Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB RBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB1_RBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBM_rtr I Renderer Backend #2 Real-Time Ready to Receive RB3_RBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBB	MC2 RBBM rtr		I	Memory Controller #2 Real-Time Ready to Receive	
MH_RBBM_rtrIMemory Hub Real-Time Ready to ReceiveDC_RBBM_rtrIVGA, TV, VIP, Display Real-Time Ready to ReceiveCG_RBBM_rtrIClock Generator Real-Time Ready to ReceiveCGM_RBBM_rtrIMemory Clock Generator Real-Time Ready to ReceiveDCT_RBBM_rtrIIDCT Engine Real-Time Ready to ReceiveSQ_RBBM_rtrIIDCT Engine Real-Time Ready to ReceiveSX0_RBBM_rtrISequencer Real-Time Ready to ReceiveSX1_RBBM_rtrIShader Export #0 Real-Time Ready to ReceiveSX1_RBBM_rtrIShader Export #1 Real Time Ready to ReceiveRC_RBBM_rtrIRenderer Central Real-Time Ready to ReceiveRB0_RBBM_rtrIRenderer Backend #0 Real-Time Ready to ReceiveRB1_RBBM_rtrIRenderer Backend #1 Real-Time Ready to ReceiveRB2_RBBM_rtrIRenderer Backend #1 Real-Time Ready to ReceiveRB3_RBBM_rtrIRenderer Backend #3 Real-Time Ready to ReceiveROM_RBBM_rtrIRenderer Backend #3 Real-Time Ready to ReceiveROM_RBBM_rtrIROM Real-Time Ready to ReceiveDEBUG_RBBM_rtrIDebug Bus Controller Real-Time Ready to ReceiveDEBUG_RBBM_nrtrtrICommand Processor Ready to ReceiveBIF_RBBM_nrtrtrIAIC Ready to ReceiveAIC RBBM_nrtrtrIAIC Ready to Receive	MC3 RBBM rtr		I	Memory Controller #3 Real-Time Ready to Receive	
DC_RBBM_rtrIVGA, TV, VIP, Display Real-Time Ready to ReceiveCG_RBBM_rtrIClock Generator Real-Time Ready to ReceiveCGM_RBBM_rtrIMemory Clock Generator Real-Time Ready to ReceiveIDCT_RBBM_rtrIIDCT Engine Real-Time Ready to ReceiveSQ_RBBM_rtrIIDCT Engine Real-Time Ready to ReceiveSX0_RBBM_rtrISequencer Real-Time Ready to ReceiveSX0_RBBM_rtrIShader Export #0 Real-Time Ready to ReceiveSX1_RBBM_rtrIShader Export #1 Real Time Ready to ReceiveRC_RBBM_rtrIRenderer Central Real-Time Ready to ReceiveRD_RBBM_rtrIRenderer Backend #0 Real-Time Ready to ReceiveRB1_RBBM_rtrIRenderer Backend #1 Real-Time Ready to ReceiveRB2_RBBM_rtrIRenderer Backend #1 Real-Time Ready to ReceiveRB3_RBBM_rtrIRenderer Backend #3 Real-Time Ready to ReceiveROM_RBBM_rtrIRoM Real-Time Ready to ReceiveROM_RBBM_rtrIRoM Real-Time Ready to ReceiveROM_RBBM_rtrIRenderer Backend #3 Real-Time Ready to ReceiveROM_RBBM_rtrIRoM Real-Time Ready to ReceiveDEBUG_RBBM_rtrIDebug Bus Controller Real-Time Ready to ReceiveBIF_RBBM_nrtrtrICommand Processor Ready to ReceiveBIF_RBBM_nrtrtrIAIC Ready to ReceiveAIC RBBM_nrtrtrIAIC Ready to Receive	MH RBBM rtr		I	Memory Hub Real-Time Ready to Receive	
CG_RBBM_rtr I Clock Generator Real-Time Ready to Receive CGM_RBBM_rtr I IDCT_Engine Real-Time Ready to Receive IDCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RC_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RC_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Rom Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrtr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrtr I Bus Inte	DC RBBM rtr		I	VGA, TV, VIP, Display Real-Time Ready to Receive	
CGM_RBBM_rtr I Memory Clock Generator Real-Time Ready to Receive IDCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrtr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive BIF_RBBM_nrtrtr I <td< td=""><td>CG RBBM rtr</td><td></td><td>Ι</td><td>Clock Generator Real-Time Ready to Receive</td><td></td></td<>	CG RBBM rtr		Ι	Clock Generator Real-Time Ready to Receive	
IDCT_RBBM_rtr I IDCT Engine Real-Time Ready to Receive SQ_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Roderer Backend #3 Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrtr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive	CGM RBBM rtr		I	Memory Clock Generator Real-Time Ready to Receive	
SQ_RBBM_rtr I Sequencer Real-Time Ready to Receive SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Shader Export #1 Real-Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I RoM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrtr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrtr I AIC Ready to Receive	IDCT RBBM rtr		T	IDCT Engine Real-Time Ready to Receive	
SX0_RBBM_rtr I Shader Export #0 Real-Time Ready to Receive SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrtr I AIC Ready to Receive	SO RBBM rtr		I	Sequencer Real-Time Ready to Receive	
SX1_RBBM_rtr I Shader Export #1 Real Time Ready to Receive RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrr I AIC Receive	SX0 RBBM rtr		I	Shader Export #0 Real-Time Ready to Receive	
RC_RBBM_rtr I Renderer Central Real-Time Ready to Receive RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive DEBUG_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Command Processor Ready to Receive BIF_RBBM_nrtrr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrr I AIC Ready to Receive	SX1 RBBM rtr		T	Shader Export #1 Real Time Ready to Receive	
RB0_RBBM_rtr I Renderer Backend #0 Real-Time Ready to Receive RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive DEBUG_RBBM_rtr I ROM Real-Time Ready to Receive OF_RBBM_ntrtr I Debug Bus Controller Real-Time Ready to Receive OF_RBBM_ntrtr I Debug Bus Controller Real-Time Ready to Receive I Debug Bus Controller Real-Time Ready to Receive Image: Command Processor Ready to Receive I I Command Processor Ready to Receive Image: Command Processor Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive Image: Command Processor Ready to Receive AIC_RBBM_ntrtr I AIC Ready to Receive Image: Command Processor Ready to Receive	RC RBBM rtr		Ι	Renderer Central Real-Time Ready to Receive	
RB1_RBBM_rtr I Renderer Backend #1 Real-Time Ready to Receive RB2_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrr I AIC Receive	RB0 RBBM rtr		Ι	Renderer Backend #0 Real-Time Ready to Receive	
RB2_RBBM_rtr I Renderer Backend #2 Real-Time Ready to Receive RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_nrtrr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrr I AIC Receive	RB1 RBBM rtr		I	Renderer Backend #1 Real-Time Ready to Receive	
RB3_RBBM_rtr I Renderer Backend #3 Real-Time Ready to Receive ROM_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_ntrtr I Debug Bus Controller Real-Time Ready to Receive BIF_RBBM_ntrtr I Command Processor Ready to Receive BIF_RBBM_ntrtr I Bus Interface Unit Ready to Receive	RB2 RBBM rtr		I	Renderer Backend #2 Real-Time Ready to Receive	
ROM_RBBM_rtr I ROM Real-Time Ready to Receive DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrr I Command Processor Ready to Receive BIF_RBBM_nrtrr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrr I AIC Ready to Receive	RB3 RBBM rtr		Ι	Renderer Backend #3 Real-Time Ready to Receive	
DEBUG_RBBM_rtr I Debug Bus Controller Real-Time Ready to Receive CP_RBBM_nrtrtr I Command Processor Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrtr I AIC_Ready to Receive	ROM RBBM rtr		I	ROM Real-Time Ready to Receive	
CP_RBBM_nrtrtr I Command Processor Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrtr I AIC Ready to Receive	DEBUG RBBM rtr		I	Debug Bus Controller Real-Time Ready to Receive	
CP_RBBM_nrtrtr I Command Processor Ready to Receive BIF_RBBM_nrtrtr I Bus Interface Unit Ready to Receive AIC_RBBM_nrtrtr I AIC Ready to Receive					
BIF_RBBM_ntrttr I Bus Interface Unit Ready to Receive AIC_RBBM_ntrttr I AIC Ready to Receive	CP RBBM nrtrtr		I	Command Processor Ready to Receive	
AIC RBBM nttttr I AIC Ready to Receive	BIF RBBM nrtrtr		I	Bus Interface Unit Ready to Receive	
	AIC RBBM nrtrtr		I	AIC Ready to Receive	

RBBM_Spec_R400.doc — 62024 Bytes *** [©] ATI Confidential. Reference Copyright Notice on Cover Page [©] ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211920

Pin Name	Vector	Туре	Description	Note
PA_RBBM_nrtrtr		I	Primitive Assembly Ready to Receive	
VGT_RBBM_nrtrtr		Ι	VGT Ready to Receive	
MC0_RBBM_nrtrtr		Ι	Memory Controller #0 Ready to Receive	
MC1_RBBM_nrtrtr		Ι	Memory Controller #1 Ready to Receive	
MC2_RBBM_nrtrtr		Ι	Memory Controller #2 Ready to Receive	
MC3_RBBM_nrtrtr		Ι	Memory Controller #3 Ready to Receive	
MH_RBBM_nrtrtr		Ι	Memory Hub Ready to Receive	
DC_RBBM_nrtrtr		Ι	VGA, TVOUT, VIP, Display Ready to Receive	
CG_RBBM_nrtrtr		Ι	Clock Generator Ready to Receive	
CGM_RBBM_nrtrtr		Ι	Memory Clock Generator Ready to Receive	
IDCT_RBBM_nrtrtr		Ι	IDCT Engine Ready to Receive	
SQ_RBBM_nrtrtr		Ι	Sequencer Ready to Receive	
SX0_RBBM_nrtrtr		Ι	Shader Export #0 Ready to Receive	
SX1_RBBM_nrtrtr		Ι	Shader Export #1 Ready-to-Receive	
RC_RBBM_nrtrtr		Ι	Renderer Central Ready to Receive	
RB0_RBBM_nrtrtr		Ι	Renderer Backend #0 Ready to Receive	
RB1_RBBM_nrtrtr		Ι	Renderer Backend #1 Ready to Receive	
RB2_RBBM_nrtrtr		Ι	Renderer Backend #2 Ready to Receive	
RB3_RBBM_nrtrtr		Ι	Renderer Backend #3 Ready to Receive	
ROM_RBBM_nrtrtr		Ι	ROM Ready to Receive	
DEBUG_RBBM_nrtrtr		Ι	Debug Bus Controller Ready to Receive	

7.6 RBBM-to-Target Soft Resets (Updated: 04-24-2003)

The soft reset signals are from a register that in the RBBM that is written by a normal register write. The reset signals will remain set until the corresponding bit in the SOFT_RESET register is cleared.

Pin Name	Vector	Туре	Description	Note
RBBM_CP_soft_reset		0	Soft Reset to Command Processor (CP).	
RBBM_BIF_soft_reset		0	Soft Reset to Bus Interface Unit (BIF).	
RBBM_PA_soft_reset		0	Soft Reset to Primitive Assembly (PA, VGT, and SC)	
RBBM_MH_soft_reset		0	Soft Reset to Memory Hub (MH)	
RBBM_SQ_soft_reset		0	Soft Reset to Sequencer (SQ) (None for SP)	
RBBM_SX_soft_reset		0	Soft Reset to Shader Export (SX)	
RBBM_RB_soft_reset		0	Soft Reset to Render Back End (RB).	
RBBM_RC_soft_reset		0	Soft Reset to Render Central (RC)	
RBBM_MC_soft_reset		0	Soft Reset to Memory Controller (MC).	
RBBM_VIP_soft_reset		0	Soft Reset to Video Input Port (VIP).	
RBBM_DISP_soft_reset		0	Soft Reset to Display Engine (DISP).	
RBBM_CG_soft_reset		0	Soft Reset to Clock Generator (CG, CGM).	
RBBM_IDCT_soft_reset		0	Soft Reset to the IDCT (IDCT ^{(IDCT})	
RBBM_VGA_soft_reset		0	Soft Reset to the VGA	
RBBM_SC_soft_reset		0	Soft Reset to the Scan Converter (SC)	
RBBM_VGT_soft_reset		0	Soft Reset to the Vertex Grouper Tessellator (VGT)	
RBBM_ROM_soft_reset		0	Soft Reset to the ROM Controller	
RBBM_DB_soft_reset		0	Soft Reset to the DB Block	

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD1044_0211921

ATI Ex. 2066 IPR2023-00922 Page 110 of 291

7.7 Status/Interrupt Interface (Updated: 04-24-2003)

 $Status \ and \ Interrupt \ signals \ that \ are \ used \ to \ for \ wait_until, \ general \ status, \ and \ interrupt \ logic \ in \ the \ RBBM.$

Notes:

- 1. 04-09-02: No "busy" signals will be provided from MC for either debug or synchronization.
- 2. 04-09-02: No "busy" signal will be provided from the Clock Generator.
- 3. 04-10-02: The MH_Clean signal is not used for the "wait_idleclean" determination because the Renderer Backend writes directly to the Memory Controller.

Pin Name	Vector	Туре	Description	Note
IDCT_semaphore		I	Semaphore Status from IDCT.	Confirmed for R400
			Used for "wait IDCT semaphore"	by Daniel Wong.
RC_RBBM_cntx0_clean		I	Renderer Common is clean for context #0.	Updated 04-09-02
			Used for "wait idle/clean"	
RC_RBBM_cntx17_clean		I	Renderer Common is clean for contexts #1 to #7	Updated 04-09-02
			Used for "wait idle/clean"	TT 1 - 104 00 00
RC_RBBM_cntx0_busy			Renderer Common is busy for context #0.	Updated 04-09-02
DC DDDM antril7 hugy		T	Used for "wait idle and wait idle/clean"	Undeted 04 00 02
KC_KBBM_cntx17_busy			Used for "wait idle and wait idle/clean"	Opdated 04-09-02
MH clean		I	Memory Hub is Clean	Undated 04-09-02
will_clean			Excludes Display Processing	09000000-02
			Used for debug status.	
MH hdp clean		I	Status from the HDP indicating its write path is clean and	Renamed: 03-26-02
_ 1_			that the HI is clean.	The MH combines the
			Does not reflect the status of the read path of the HDP.	HI signal into this
			Used for "wait host idle/clean"	signal.
SQ_RBBM_cntx0_busy		I	Sequencer is busy for context #0.	Updated 04-09-02
			Used for "wait idle and wait idle/clean".	
SQ_RBBM_cntx17_busy		I	Sequencer is busy for context #1 to #7.	Updated 04-09-02
			Used for "wait idle and wait idle/clean".	
VGT_RBBM_busy			VGT is busy.	Non-Real-Time Only
VCT DDDM and the lower		т	Used for debug status.	
VG1_RBBM_no_dma_busy			Busy signal from the VG1 that does not contain the index	
			nawait until conditions	
PA PBBM buey		I	Primitive Assembly is busy	Non-Real-Time Only
		1	Used for "wait idle and wait idle/clean".	Tron-Real-Time Only
SC RBBM entx0 busy		I	Scan Converter is busy for context #0.	Updated 04-10-02
SC RBBM cntx17 busy		I	Scan Converter is busy for context #1 to #7.	Updated 04-10-02
TPC RBBM busy		I	Texture Pipeline Common is busy.	Updated 06-21-02
			Used for debug status.	
TC_RBBM_busy		Ι	Texture Cache is Busy	Updated: 06-21-02
			Used for debug status.	
u0_SX_RBBM_busy		I	Shader Export #0 busy.	Updated 04-10-02
		-	Used for debug status.	
u1_SX_RBBM_busy		I	Shader Export #1 busy.	Updated 04-10-02
		×	Used for debug status.	
MH_RBBM_coherency_busy			Surface Concrency Logic is busy.	Need Correct Name.
DAD artem signal		T	Used for debug status.	See Extern Trig Catl
PAD_extern_signal			Status Signal from Pads of Chip.	Register
VIP RBBM h0dma idle		I	VIP's Host DMA Channel () is Idle	Renamed: 03-26-2002
VIP_RBBM_hldma_idle		I	VIP's Host DMA Channel 1 is Idle	Renamed: 03-26-2002
VIP RBBM h2dma idle		I	VIP's Host DMA Channel 2 is Idle	Renamed: 03-26-2002
VIP RBBM h3dma idle		Î	VIP's Host DMA Channel 3 is Idle.	Renamed: 03-26-2002
CP RBBM nrt busy		I	Non-RT portion of CP is busy	
CP RBBM rt busy		I	Real-Time portion of CP is busy	
CP RBBM dma busy		I	Status of CP's DMA Engine.	
			Used for "wait CP_DMA_IDLE"	
CP_RBBM_rt_enable		I	Real-Time is Enabled.	
			RBBM uses to qualify the "context #0" busy/clean signals	
			for real-time.	
D1OVL_update_pending		I	Status from 1 st Overlay Controller (Flip Pending).	Used for wait_until.

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD1044_0211922

EDIT DATE

0.000

DOCUMENT-REV. NUM. RBBM Spec: Version 0.14

PAGE 24 of 42

Pin Name	Vector	Type	Description	Note
D2OVL update pending		I	Status from 2 nd Overlay Controller (Flip Pending).	Used for wait until.
D1MODE vline		I	Status from 1 st Display Controller.	Used for wait until.
D2MODE vline		I	Status from 2 nd Display Controller.	Used for wait until.
D1GRPH update pending		I	"Pending Flip" status from 1 st Display Controller.	Used for wait until.
D2GRPH update pending		I	"Pending Flip" status from 2 nd Display Controller.	Used for wait until.
BIF RBBM agp flush		I	AGP Flush Complete	Renamed: 03-26-02
Interrupts				
CP RBBM int		Ι	Interrupt from CP	New for R400
PA RBBM int		I	Interrupt from the PA	Not in R400
VGT RBBM int		I	Interrupt from the VGT	Not in R400
MH RBBM int		I	Interrupt from HDP (MH)	New for R400
MC0 RBBM int		I	Interrupt 0 from the MC	
MC1 RBBM int		I	Interrupt 1 from the MC	
DISP_RBBM_int		I	Combined Interrupt from Display	Display combines all its interrupts into one (CRTC & CRTC2) D. Glen Confirmed Need.
VIP_RBBM_int		I	Combined Interrupt from VIP	VIP combines all its interrupts into one (CAP0, HDMA, 12C, HOST, etc.). D. Glen Confirmed Need.
VGA RBBM int		I	Interrupt from the VGA	Needed per D. Glen
CG_RBBM_int		I	Interrupt from the CG	
IDCT_RBBM_int		Ι	Interrupt from IDCT	Renamed from INT_IDCT_TIMEST AMP
SQ RBBM int		Ι	Interrupt from the SQ	
SX_RBBM_int		I	Interrupt from the SX	
RC_RBBM_int		I	Interrupt from the Renderer Common	
RB_RBBM_int		I	Interrupt from the Renderer Backend	
DEBUG_RBBM_int		I	Interrupt from the Debug Unit	
Status Outputs				
RBBM_BIF_hi_busy		0	The RBBM is processing a transaction from the BIF. This signal will be de-asserted when all transactions from the BIF have been processed by the RBBM and the RBBM has received a new RTR from the clients. It will also be asserted for 32 additional clocks by the RBBM to account for the transaction to get through the client's slip buffers.	HDP uses this signal to stall writes to surfaces until prior surface parameters have been written by the RBBM.
RBBM_CP_nrt_idle		0	Non-Real-Time graphics pipe is idle.	Used by the CP to clear the context valid flags for surface coherency.
RBBM_CP_rt_idle		0	Real-Time graphics pipe is idle.	Used by the CP to clear the context #0 flag if real-time is enabled.
RBBM_extern_signal		0	Conditioned External Signal from the Pads.	Wired to CP for Initiating Real-Time

RBBM_Spec_R400.doc -- 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211923

ATI Ex. 2066 IPR2023-00922 Page 112 of 291

7.8 RBBM-to-Clock Generator (CG) Interface (Updated: 06-05-2002)

This interface is used to turn on clocks to clients that are being accessed. Whenever the RBBM has a transaction from either the BIF or CP, it asserts the register clock active signal until the end of the transaction (EOT). The clients do the clock gating to enable the clock to their register interface logic. The signal is also asserted during reset.

The end of transaction (EOT) is defined as follows:

Write Transaction – EOT is when the RBBM pulses the RBBM_WE write strobe.

Read Transaction - EOT is when the RBBM receives a read strobe and has sent the data to the BIF or CP.

After EOT or reset the RBBM keeps the signal asserted for the duration of REGCLK_DEASSERT_TIME, which is programmed in the RBBM_CNTL register. The REGCLK_DEASSERT_TIME has a hardware default value of 0xF.

Signal Table for Block RBBM:

Pin Name	Vector	Туре	Description	Note
RBBM_regclk_active		0	Turn on clock all client's register interface.	

7.9 Debug Bus Interface (Updated: 02-13-2002)

This following interface is to connect to the debug bus.

Signal Name	Vector	Туре	Description	Note
DEBUG_bus_in	11:0	Ι	Debug Bus Input	
DEBUG_bus_out	11:0	0	Debug Bus Output	
DEBUG_block_sel	5:0	Ι	Unit Select	RBBM = 0x02
DEBUG_group_sel	5:0	Ι	Selects Local RBBM Signals to Output	See RBBM' Test Bus
				Specification.

RBBM_Spec_R400.doc -- 62024 Bytes *** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

AMD1044_0211924

ATI Ex. 2066 IPR2023-00922 Page 113 of 291

8. Architectural Overview

8.1 Backbone Bus Topology

Figure 8-1 is a picture of how the RBBM fits into the top-level chip from a hardware-wiring point of view.

Figure 8-1: RBBM in the Chip-Level Environment

The backbone bus has a command that is broadcast to all targets. The command consists of an Address, Byte Enables (BE), and RBBM_WE or RBBM_RE. The RBBM can access up to 128K Bytes of register space.

On writes, when the command is presented on the backbone, so is the Write Data (Wd). The protocol on the backbone allows for single-cycle writes to any target.

Like writes, the read command is also sent in one clock, but the return data may take several clocks to return. Read data is returned from targets via 32-bit buses that are registered within the clients and finally wired to the RBBM. The RBBM does data swapping on the BIF data if needed, registers the data, and outputs the read data to the CP and BIF.

It is the target's responsibility to pass the daisy-chain data from its input to its output when it is not responding to a read transaction on the backbone. The read return path is shown in Figure 8-2.

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211925

ATI Ex. 2066 IPR2023-00922 Page 114 of 291 R400 Read Data Path

Updated: 4/26/2002 John Carey

Figure 8-2: Read Data Chain

8.2 Address Re-Mapping, Auto-Reg Usage, Address Decoding (Updated: 06-17-2002)

Unlike prior chips, the RBBM <u>does not</u> re-map addresses to a client's "local-linear" space. Because of this, if a register appears in both the IO and Memory-Mapped spaces, then its address in both of these spaces must be identical.

In past designs, multiple addresses could be re-mapped to the same register. For R400, the <u>clients</u> must take care of this by decoding multiple addresses for a particular register.

In past designs, multiple clients could have the same register and the RBBM would broadcast the transaction by asserting multiple unary ready-to-send signals to the clients. In R400, there is a common transaction and the clients themselves decide as to whether to accept the transaction (Read or Write).

RBBM_Spec_R400.doc — 62024 Bytes *** ③ ATI Confidential. Reference Copyright Notice on Cover Page ③ ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211926

ATI Ex. 2066 IPR2023-00922 Page 115 of 291

9. Register Descriptions

The Register Backbone Manager itself has a target interface from the Register Backbone of the chip. Through this interface, any master on the register backbone can program control registers inside the RBBM.

9.1 RBBM Control Register (03-07-2002)

The RBBM control register controls the read timeout, pushed command data swapping, and arbitration hysteresis.

The RBBM control register is mapped to the same address in the IO and MMR decode spaces..

RBBM_CNTL						
Miscellaneous RBBM Control Register						
Field Name	Bit(s)	Description				
Reserved	31:21	Reserved				
CPQ_DATA_SWAP	20	Endian Swap Control for writes to the Command Stream Queue. 0 = No swap. 1 = 32-bit swap: 0xAABBCCDD becomes 0xDDCCBBAA. Default = 0.				
Reserved	19:17	Reserved				
REGCLK_DEASSERT_TIME	16:8	Number of clocks the RBBM will wait before de-asserting the "Register Clock Active" signal. Default = 0x0F				
READ_TIMEOUT	7:0	Programmable delay after the start of a read operation that a timeout will occur. This is used for the detection of an error during a read operation. The timeout counter is set to this value when a read operation starts and counts down every 16 clocks. The maximum delay therefore is 4080 clocks (10.20 usec). Minimum time programmed into this register should equal to the depth of the read-return data path. (Default = $0x0F$)				

RBBM_SKEW_CNTL						
Skew Control Register						
Field Name	Bit(s)	Description				
RESERVED	31:10	Reserved				
SKEW_COUNT	9:5	Current Value of the Skew Counter. Read-Only.				
SKEW_TOP_THRESHOLD	4:0	Upper Skew Counter Threshold. Default = $0x04$.				
		Must be a non-zero even number.				

RBBM_Spec_R400.doc - 62024 Bytes *** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

02/07/03 03:46 PM

AMD1044_0211927

ATI Ex. 2066 IPR2023-00922 Page 116 of 291

9.2 Non-Real-Time WAIT_UNTIL Control Register (Updated: 10-24-2002)

Non-Real Time Busy = (not CP_RBBM_rt_enable and (RC_RBBM_cntx0_busy or SQ_RBBM_cntx0_busy or SC_RBBM_cntx0_busy)) or (PA_RBBM_busy or VGT_RBBM_no_dma_busy or SQ_RBBM_cntx17_busy or RC_RBBM_cntx17_busy or SC_RBBM_cntx17_busy);

Non-Real Time Clean = ((not CP_RBBM_rt_enable and RC_RBBM_entx0_clean) or CP_RBBM_rt_enable) and RC_RBBM_entx17_clean;

The Non-Queued flag must be set to '0' in the CP when writing to this register.

WAIT_UNTIL (WO) – Only CP Accesses Register Explicit Synchronization Register					
Field Name	Bit(s)	Description			
ENG_DISPLAY_SELECT	31	Determines if WAIT_UNTIL condition is for Display/Overlay Engine 1 or 2. (Applicable only to the WAIT_OV_FLIP and wait conditions for bits 3:0.)			
WAIT_BOTH_CRTC_FLIP	30	Wait for 'Pending Flip' signal to be OFF from both display engines.			
Unused	29:28	Unused			
WAIT_IDCT_SEMAPHORE	27	Wait for IDCT Semaphore			
Reserved	26:24	Reserved			
CMDFIFO_ENTRIES	23:20	Number of entries (1 to 15) to wait for if the WAIT_CMDFIFO bit is ON. The FIFO is 16-deep, but one of the entries is taken by the Wait_Until command.			
WAIT_EXTERN_SIGNAL	19	Wait for Conditioned External Signal to be Set (See Extern_Trig_Cntl Register).			
WAIT_HOST_IDLECLEAN	18	Wait for Host Interface/Host Data Path to be idle and clean. This is the MH_hdp_clean signal being asserted.			
WAIT_3D_IDLECLEAN	17	Wait for processing to be done and the caches in the RB to be flushed.			
WAIT_2D_IDLECLEAN	16	Same as WAIT_3D_IDLECLEAN in R400.			
WAIT_3D_IDLE	15	Wait for processing to be done.			
WAIT_2D_IDLE	14	Same as WAIT_3D_IDLE in R400.			
WAIT_AGP_FLUSH	13	Wait for AGP Flush to complete (When BIF_RBBM_agp_flush signal is '0'.)			
Reserved	12	Reserved			
WAIT_OV_FLIP	11	Wait for selected overlay flip signal to be <u>de-asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. DIOVL_update_pending D2OVL_update_pending			
WAIT CMDFIFO	10	Wait until there are at least "CMDFIFO ENTRIES" values in the Command FIFO.			
Reserved	9	Reserved			
WAIT CP DMA IDLE	8	Wait for CP DMA Channel to be idle.			
WAIT DMA VIPH3 IDLE	7	Wait for VIP Host DMA Channel 3 to be idle			
WAIT DMA VIPH2 IDLE	6	Wait for VIP Host DMA Channel 2 to be idle			
WAIT DMA VIPH1 IDLE	5	Wait for VIP Host DMA Channel 1 to be idle			
WAIT DMA VIPH0 IDLE	4	Wait for VIP Host DMA Channel 0 to be idle			
WAIT_CRTC_VLINE	3	Wait for selected VLINE signal to be <u>asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_FE_CRTC_VLINE	2	Wait for Falling Edge of selected VLINE signal. Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_RE_CRTC_VLINE	1	Wait for Rising Edge of selected VLINE signal. Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_CRTC_PFLIP	0	Wait for the 'Pending Flip' signal to be <u>de-asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. D1GRPH_update_pending D2GRPH_update_pending			

RBBM_Spec_R400.doc — 62024 Bytes *** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

02/07/03 03:46 PM

AMD1044_0211928

ATI Ex. 2066 IPR2023-00922 Page 117 of 291

9.3 Real-Time WAIT_UNTIL Control Register (Updated: 10-24-2002)

The RTS_WAIT_UNTIL register controls the wait logic for the real-time stream.

Real Time Busy = CP_RBBM_rt_enable and (RC_RBBM_entx0_busy or SQ_RBBM_entx0_busy);

Real Time Clean = (CP_RBBM_rt_enable and RC_RBBM_cntx0_clean) or (not CP_RBBM_rt_enable);

Notes:

1. IDCT Semaphore is not included. The Wait_Reg_Mem function will be used as an alternative for Real-Time streams.

RTS_WAIT_UNTIL (WO) – Only CP Accesses Register Real-Time Stream Explicit Synchronization Register					
Field Name	Bit(s)	Description			
ENG_DISPLAY_SELECT	31	Determines if WAIT_UNTIL condition is for Display/Overlay Engine 1 or 2. (Applicable only to the WAIT_OV_FLIP and wait conditions for bits 3:0.)			
WAIT_BOTH_CRTC_FLIP	30	Wait for 'Pending Flip' signal to be OFF from both display engines			
Unused	29:20	Unused			
WAIT_EXTERN_SIGNAL	19	Wait for Conditioned External Signal to be Set (See Extern_Trig_Cntl Register).			
WAIT_HOST_IDLECLEAN	18	Wait for Host Interface/Host Data Path to be idle and clean			
Reserved	17	Reserved			
WAIT_RT_IDLECLEAN	16	Wait for Real-Time to be Idle and Clean.			
Reserved	15	Reserved			
WAIT_RT_IDLE	14	Wait for Real-Time to be Idle.			
WAIT_AGP_FLUSH	13	Wait for AGP Flush to complete (When BIF_RBBM_agp_flush signal is '0'.)			
Reserved	12	Reserved			
WAIT_OV_FLIP	11	Wait for selected overlay flip signal to be <u>de-asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. D1OVL_update_pending D2OVL update pending			
Unused	10:9	Unused			
WAIT_CP_DMA_IDLE	8	Wait for CP DMA Channel to be idle.			
WAIT_DMA_VIPH3_IDLE	7	Wait for VIP Host DMA Channel 3 to be idle.			
WAIT_DMA_VIPH2_IDLE	6	Wait for VIP Host DMA Channel 2 to be idle.			
WAIT_DMA_VIPH1_IDLE	5	Wait for VIP Host DMA Channel 1 to be idle.			
WAIT_DMA_VIPH0_IDLE	4	Wait for VIP Host DMA Channel 0 to be idle.			
WAIT_CRTC_VLINE	3	Wait for selected VLINE signal to be <u>asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_FE_CRTC_VLINE	2	Wait for Falling Edge of selected VLINE signal. Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_RE_CRTC_VLINE	1	Wait for Rising Edge of selected VLINE signal. Eng_Display_Select controls which overlay flip signal to observe. D1MODE_vline D2MODE_vline			
WAIT_CRTC_PFLIP	0	Wait for the 'Pending Flip' signal to be <u>de-asserted</u> . Eng_Display_Select controls which overlay flip signal to observe. D1GRPH_update_pending D2GRPH_update_pending			

RBBM_Spec_R400.doc — 62024 Bytes *** **O ATI Confidential. Reference Copyright Notice on Cover Page O** ***

AMD1044_0211929

ATI Ex. 2066 IPR2023-00922 Page 118 of 291 This register appears only in the CP's non-real-time path through the RBBM. After being written, consecutive transactions will be held-off until the idle status (defined below) is met. Note that the data is stalled prior to the Command FIFO and Event Engine in the RBBM and that both "queued" and "non-queued" transactions are held-off.

The CP PM4 packet "WAIT_FOR_IDLE" writes to this register on the CP data path.

NQWAIT_UNTIL (WO) Non-Queued Explicit Synchronization Register				
Field Name	Bit(s)	Description		
RESERVED	31:1	Reserved		
WAIT_GUI_IDLE	0	Wait for graphics engine to be idle with <u>non-Real Time</u> processing, and for Command FIFO to be empty.		

RBBM_Spec_R400.doc — 62024 Bytes *** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211930

ATI Ex. 2066 IPR2023-00922 Page 119 of 291

9.5 Performance Monitoring Registers (Updated: 10-29-2002)

The RBBM also shadows the CP_PERFMON_CNTL[3:0] for resetting, enabling, and disabling the counters.

RBBM_PERFCOUNTER1_HI (RO) Performance Counter #1 High			
Field Name	Bit(s)	Description	
Reserved	31:16	Reserved	
PERF_COUNT1_HI	15:0	Performance Counter #1 High Bits.	

RBBM_PERFCOUNTER1_LO (RO) Performance Counter #1 Low		
Field Name	Bit(s)	Description
PERF_COUNT1_LO	31:0	Performance Counter #1 Lower Bits.

RBBM_PERFCOUNTER2_HI (RO) Performance Counter #2 High			
Field Name	Bit(s)	Description	
Reserved	31:16	Reserved	
PERF_COUNT2_HI	15:0	Performance Counter #2 High Bits.	

RBBM_PERFCOUNTER2_LO (RO) Performance Counter #2 Low		
Field Name	Bit(s)	Description
PERF COUNT2 LO	31:0	Performance Counter #2 Lower Bits.

	RBBM_PERFCOUNTER1_SELECT (R/W) Performance Counter #1 Select		
Field Name	Bit(s)	Description	
Reserved	31:6	Reserved	
PERF_COUNT1_SEL	5:0	Counter #1 Input Select.	

RBBM_PERFCOUNTER2_SELECT (R/W) Performance Counter #2 Select		
Field Name	Bit(s)	Description
Reserved	31:6	Reserved
PERF_COUNT2_SEL	5:0	Counter #2 Input Select.

RBBM_Spec_R400.doc — 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

9.6 Debug Registers (Updated: 10-25-2002)

The debug register is in the design in case there is a need to have any static register settings.

BIF can write to this register by snooping it without going through the RBBM's scheduling (arbitration). When BIF requests a write to this register, it will ignore the RBBM_BIF_rdy. This write request will be decoded as soon as it enters RBBM after input register stage and the very next clock, RBBM_DEBUG register will be written. If IGNORE_RTR is set, then it will allow RBBM to release the pending requests in the scheduler. The advantage of BIF able to write to the RBBM_DEBUG register without RBBM_BIF_rdy is, it allows system to come out of stuck condition, which might have occurred due to one of the clients not being ready. CP can also write to this register but as if it is writing to any other register. In case CP and BIF are trying to write to this register at the same time, BIF will over-write CP and write from CP will be ignored.

Note: As the write request to RBBM_DEBUG register from BIF is snooped within, it will not be allowed to get scheduled later in the pipe. Also, the read request for this register is similar to other register reads (will not be snooped). If read and write request to this register occurs at the same time then the previously registered data will be put on the read bus.

RBBM_DEBUG RBBM_DEBUG Register			
Field Name	Bit(s)	Description	
RBBM_DEBUG	31:16	Reserved	
HYSTERESIS_RT_GUI_ACTIVE	15:12	Keep asserting RT_GUI_ACTIVE for these many more clocks after it is deasserted. Default=0.	
HYSTERESIS_NRT_GUI_ACTIVE	11:8	Keep asserting GUI_ACTIVE for these many more clocks after it is deasserted. Default=0.	
UNUSED	7:3	Reserved	
IGNORE_CP_SCHED_NQ_BIF	4	If set the CP Paths' Scheduler Status is Ignored in the Host's NQ wait conditions. Default = 0.	
IGNORE_CP_SCHED_ISYNC	3	If set the CP Paths' Scheduler Status is Ignored in the Isync wait conditions. Default = 0.	
IGNORE_CP_SCHED_WU	2	If set the CP Paths' Scheduler Status is Ignored in the Wait_Until wait conditions. Default = 0.	
IGNORE_RTR	1	If set, the RBBM will ignore all real-time and non-real-time ready-to-receive signals when processing a transaction. Default = 0.	
SWAP_BE	0	Swaps byte enables of BIF Data for endian swaps if set. Default = 0 .	

AMD1044_0211932

ATI Ex. 2066 IPR2023-00922 Page 121 of 291

RBBM_READ_ERROR Captures Error Information for Read Operations that Timed-Out		
Field Name	Bit(s)	Description
READ_ERROR	31	Read Error in RBBM Read: 0 - No Error 1 - Read error occurred in RBBM during read operation Write: 0 - Force Clear the Error condition status 1 - Set Read Error (For state restoration from power-down) Cleared when RDERR INT ACK bit is set in RBBM INT ACK register.
READ_REQUESTER	30	Indicates whether a BIF or CP read resulted in an error condition. Read: 0 - CP 1 - Host Write: (For state restoration from power-down) 0 - CP 1 - Host
UNUSED	29:17	Unused
READ_ADDRESS	16:2	Read: Target address for the read operation where an error was detected. Write: Target address for the read operation where an error was detected. (Write is for state restoration from power-down)
Reserved	1:0	Reserved

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211933

ATI Ex. 2066 IPR2023-00922 Page 122 of 291 When a bit is set in this register, the soft reset signal to the corresponding unit will be set. The signal will remain asserted until the bit is cleared.

The RBBM_SOFT_RESET register is mapped to the same address in the IO and MMR decode spaces.

RBBM_SOFT_RESET Soft Reset Generation		
Field Name	Bit(s)	Description
Reserved	31:19	Reserved for Future Assignment
SOFT_RESET_CGM	18	Soft Reset to this block. Default = 0
SOFT_RESET_ROM	17	Soft Reset to this block. Default = 0
SOFT_RESET_VGT	16	Soft Reset to this block. Default = 0
SOFT_RESET_SC	15	Soft Reset to this block. Default = 0
SOFT_RESET_IDCT	14	Soft Reset to this block. Default = 0
SOFT_RESET_VGA	13	Soft Reset to this block. Default = 0
SOFT_RESET_CG	12	Soft Reset to this block. Default = 0
SOFT_RESET_DISP	11	Soft Reset to this block. Default = 0
SOFT_RESET_VIP	10	Soft Reset to this block. Default = 0
SOFT_RESET_DB	9	Soft Reset to this block. Default = 0
SOFT_RESET_MC	8	Soft Reset to this block. Default = 0
SOFT_RESET_RB	7	Soft Reset to this block. Default = 0
SOFT_RESET_SX	6	Soft Reset to this block. Default = 0
SOFT_RESET_SQ	5	Soft Reset to this block. Default = 0
SOFT_RESET_RC	4	Soft Reset to this block. Default = 0
SOFT_RESET_MH	3	Soft Reset to this block. Default = 0
SOFT_RESET_PA	2	Soft Reset to this block. Default = 0
SOFT_RESET_BIF	1	Soft Reset to this block. Default = 0
SOFT_RESET_CP	0	Soft Reset to this block. Default = 0

RBBM_Spec_R400.doc — 62024 Bytes *** [©] ATI Confidential. Reference Copyright Notice on Cover Page [©] ***

AMD1044_0211934

ATI Ex. 2066 IPR2023-00922 Page 123 of 291

9.8 RBBM Status (Updated 10-24-2002)

The RBBM status register provides status for transactions in the RBBM and "Busy" status for other clients in the chip.

RBBM_STATUS (RO) Chip & RBBM Status Register		
Field Name	Bit(s)	Description
GUI_ACTIVE	31	Non-Real-Time Graphics Pipe is Busy GUI_ACTIVE = Non-RT_Busy (From Wait_Until Register) or CP_RBBM_nrt_busy or PFRQ_PENDING or CFRQ_PENDING or CPRQ_PENDING or VGT_DMA_BUSY.
RC_RBBM_cntx0_busy	30	Renderer Common is Busy for Context #0.
RC_RBBM_cntx17_busy	29	Renderer Common is Busy for Contexts #1 through #7.
SQ_RBBM_cntx0_busy	28	Sequencer is Busy for Context #0.
SQ_RBBM_cntx17_busy	27	Sequencer is Busy for Context #1 through #7.
VGT_RBBM_busy	26	Vertex Grouper Tessellator is Busy.
PA_RBBM_busy	25	Primitive Assembly is Busy.
SC_RBBM_cntx0_busy	24	Scan Converter is Busy for Context #0.
SC_RBBM_cntx17_busy	23	Scan Converter is Busy for Contexts #1 through #7
TPC_RBBM_busy	22	Texture Pipeline Common is Busy.
u0_SX_RBBM_busy	21	Shader Export #0 is Busy.
u1_SX_RBBM_busy	20	Shader Export #1 is Busy.
MH_RBBM_coherency_busy	19	Surface Coherency Logic is Busy.
MH_Clean	18	Memory Hub is Clean.
CP_RBBM_rt_enable	17	Real-Time Enable from the CP.
CP Non-Real-Time Busy	16	Command Processor is Busy for non-Real-Time (CP_RBBM_nrt_busy).
CP Real-Time Busy	15	Command Processor is Busy for Real-Time (CP_RBBM_rt_busy).
RBBM_WU_BUSY	14	The RBBM's Non-Real Time Wait Until Unit is Busy. i.e. Waiting for a Non-Real-Time synchronization event.
RBBM RT WU BUSY	13	The RBBM's Real-Time Wait Until Unit is Busy
		i.e. Waiting for a Real-Time synchronizing event.
VGT BUSY NO DMA	12	Busy from the VGT that does not include the Index DMA engine status.
PFRQ PENDING	11	There is a request from the CP's Pre-Fetch Parser Pending in the RBBM.
CFRQ_PENDING	10	There is a queued request from the CP Pending in the RBBM. Includes the RBBM_EE_BUSY status.
CPRQ PENDING	9	There is a non-queued request from the CP Pending in the RBBM.
HIRQ_PENDING	8	There is a BIF request Pending in the RBBM.
RTRQ_PENDING	7	There is a Real-Time request Pending in the RBBM. Includes the RBBM_RT_WU_BUSY status.
RT_GUI_ACTIVE	6	Real-Time Graphics Pipe is Busy RT_GUI_ACTIVE = RT_Busy (From RTS_Wait_Until Register) or CP_RBBM_rt_busy or RTRQ_PENDING.
TC_RBBM_busy	5	Texture Cache is Busy.
CMDFIFO AVAIL	4:0	Number of available entries in the Command FIFO.

RBBM_Spee_R400.doc — 62024 Bytes *** [©] ATI Confidential. Reference Copyright Notice on Cover Page [©] ***

02/07/03 03:46 PM

AMD1044_0211935

ATI Ex. 2066 IPR2023-00922 Page 124 of 291

9.9 RBBM Status #2 (Updated 05-22-2002)

The RBBM Status #2 register provides visibility for input signals that are not included in the RBBM_STATUS register.

RBBM_STATUS2 (RO) RBBM Status #2 Register			
Field Name	Bit(s)	Description	
RC_RBBM_cntx17_clean	31	RC is clean for contexts #1 through #7.	
RC_RBBM_cntx0_clean	30	RC is clean for context #0.	
Reserved	29:14	Reserved	
IDCT_semaphore	13	Semaphore Status from IDCT.	
PAD_extern_signal	12	Status Signal from Pads of Chip.	
VIP_RBBM_h0dma_idle	11	VIP's Host DMA Channel 0 is Idle.	
VIP_RBBM_h1dma_idle	10	VIP's Host DMA Channel 1 is Idle.	
VIP_RBBM_h2dma_idle	9	VIP's Host DMA Channel 2 is Idle.	
VIP_RBBM_h3dma_idle	8	VIP's Host DMA Channel 3 is Idle.	
D1OVL_update_pending	7	Flip Pending from Overlay 1.	
D2OVL_update_pending	6	Flip Pending from Overlay 2.	
D1MODE_vline	5	Status from 1 st Display Controller.	
D2MODE_vline	4	Status from 2 nd Display Controller.	
D1GRPH_update_pending	3	Pending Flip status from 1 st Display Controller.	
D2GRPH_update_pending	2	Pending Flip status from 2 nd Display Controller.	
BIF_RBBM_agp_flush	1	AGP Flush.	
MH_hdp_clean	0	HDP Clean.	

9.10 Implicit Sync Control (Updated 10-25-2002)

The implicit sync controls in the RBBM are only for legacy controls not related to 2D/3D switches. The 2D/3D synchronization is managed in the CP. The implicit sync controls only affect the non-real-time path (CF path).

Isync control waits for CF's scheduler request to be empty and CP's scheduler request to be empty, then it waits for 48 clocks to sample Non-RT graphics pipe idle. The 48 clock wait is to make sure all the pending initiators have been received by the clients (i.e. Not stuck in the repeater flops).

RBBM_ISYNC_CNTL Implicit Synchronization Control		
Field Name	Bit(s)	Description
Reserved	31:6	Reserved
ISYNC_CPSCRATCH_IDLEGUI	5	A write to any of the CP's Scratch Registers stalls if the Graphics Engine is busy processing non-Real Time transactions. Default = 0.
ISYNC_WAIT_IDLEGUI	4	A write to the WAIT_UNTIL register stalls if the Graphics Engine is busy processing non-Real Time transactions. Default = 0.
Reserved	3:0	Reserved

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD1044_0211936

ATI Ex. 2066 IPR2023-00922 Page 125 of 291

9.11 RBBM Interrupt Registers (Updated: 04-26-2002)

The following registers control the interrupt functionality in the RBBM.

RBBM_INT_CNTL (R/W) RBBM Interrupt Control				
Field Name	Field Name Bit(s) Description			
Reserved	31:20	Reserved		
GUI_IDLE_INT_MASK	19	 GUI Idle Mask The mask is used to enable the generation of the interrupt. 0 – Disabled (Default – Also cleared on Reset) 1 – Enabled: Interrupt will generate interrupt to the BIF. 		
Reserved	18:1	Reserved		
RDERR_INT_MASK	0	Interrupt Mask for a detected Read Error. The mask is used to enable the generation of the interrupt. 0 – Disabled (Default – Also cleared on Reset) 1 – Enabled: Interrupt will generate interrupt to the BIF.		

RBBM_INT_STATUS (R/W) RBBM Interrupt STATUS				
Field Name	Field Name Bit(s) Description			
Reserved	31:20	Reserved		
GUI_IDLE_INT_STAT	19	Interrupt status for GUI Idle. <u>Read:</u> 0 – No Event (Interrupt did not occur) 1 – Event Occurred <u>Write:</u> 0 – No affect. (Default – Also cleared on Reset) 1 – Set Interrupt Status (For state restoration from power-down).		
Reserved	18:1	Reserved		
RDERR_INT_STAT	0	Interrupt status for a detected Read Error. <u>Read:</u> 0 – No Event (Interrupt did not occur) 1 – Event Occurred <u>Write:</u> 0 – No affect. (Default – Also cleared on Reset) 1 – Set Interrupt Status (For state restoration from power-down).		

RBBM_INT_ACK (WO) RBBM Interrupt Acknowledge			
Field Name	Bit(s)	Description	
Reserved	31:20	Reserved	
GUI_IDLE_INT_ACK	19	Interrupt acknowledge for a GUI Idle Interrupt. <u>Write:</u> 0 – No affect. 1 – Clear Interrupt Status (Non-Persistent Write).	
Reserved	18:1	Reserved	
RDERR_INT_ACK	0	Interrupt acknowledge for a detected Read Error. <u>Write:</u> 0 – No affect. 1 – Clear Interrupt Status (Non-Persistent Write).	

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD1044_0211937

ATI Ex. 2066 IPR2023-00922 Page 126 of 291

13 October, 2000

0.002

MASTER_INT_SIGNAL (RO) Master Interrupt Signal – Read Only				
Field Name Bit(s)		Description		
RBBM_INT_STAT	31	Interrupt from the RBBM		
CP_INT_STAT	30	Interrupt from the CP		
Reserved	29:16	Reserved		
MC1_INT_STAT	15	Interrupt 1 from the Memory Controller		
MC0_INT_STAT	14	Interrupt 0 from the Memory Controller		
VGT_INT_STAT	13	Interrupt from the Vertex Grouper Tessellator		
PA_INT_STAT	12	Interrupt from the Primitive Assembly		
DEBUG_INT_STAT	11	Interrupt from the DEBUG Unit.		
RB_INT_STAT	10	Interrupt from the Renderer Backend		
RC_INT_STAT	9	Interrupt from the Renderer Common		
SX_INT_STAT	8	Interrupt from the Shader Export		
SQ_INT_STAT	7	Interrupt from the Sequencer		
CG_INT_STAT	6	Interrupt from the Clock Generator		
MH_INT_STAT	5	Interrupt from the Memory Hub		
Reserved	4	Reserved		
IDCT_INT_STAT	3	Interrupt from the IDCT		
VIP_INT_STAT	2	Interrupt from the VIP		
VGA_INT_STAT	1	Interrupt from the VGA		
DISPLAY_INT_STAT	0	Interrupt from Display Engine		

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211938

ATI Ex. 2066 IPR2023-00922 Page 127 of 291

9.12 External Trigger Control Register (Updated: 10-24-2002)

Updated: 10/24/2002 John Carey

The RBBM inputs the signal "PAD_extern_signal" from the pads of the chip. This input is double-registered and then a rising edge detection is performed to set a set/reset flop. The output of the S/R flop is used for both the Real-Time and Non-Real-Time WAIT_EXTERN_SIGNAL wait_until conditions. It is also output from the RBBM as RBBM_extern_signal and is used for initiating Real-Time stream. The following is a diagram of how the PAD_extern_signal is processed:

R400 External Trigger

EXTERN_TRIG_CNTL PAD External Signal Control			
Field Name	Bit(s)	Description	
Reserved	31:2	Reserved	
EXTERN_TRIG_READ	1	<u>Read-Only:</u> 0 – Indicates WAIT condition is active for the External Trigger.1 – Indicates WAIT condition is not active for the External Trigger.	
EXTERN_TRIG_CLR	0	Write-Only: 0 – No affect. 1 – Clears External Trigger Set/Reset Flop (Non-Persistent Write).	

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD1044_0211939

ATI Ex. 2066 IPR2023-00922 Page 128 of 291

10. Performance Counters (Updated: 11-07-2002)

The RBBM contains two identical 48-bit Performance Counters to aid in measuring the performance of various blocks. This is accomplished by counting the number of clock cycles for which various status signals are asserted (true) from their respective blocks over some period of time. The following combinations are possible by setting PERFCOUNTER_SELECTs to the appropriate listed value:

PERF_SEL[5:0]	Signal Combination for Counting
0x0	Tie High – Count Number of Clocks
0x1	Non-Real-Time Busy
0x2	RC_RBBM_cntx0_busy
0x3	RC_RBBM_cntx17_busy
0x4	SQ_RBBM_cntx0_busy
0x5	SQ_RBBM_cntx17_busy
0x6	VGT_RBBM_busy
0x7	VGT_RBBM_no_dma_busy
0x8	PA_RBBM_busy
0x9	SC_RBBM_cntx0_busy
0xA	SC_RBBM_cntx17_busy
0xB	TPC_RBBM_busy
0xC	TC_RBBM_busy
0xD	u0_SX_RBBM_busy
0xE	u1_SX_RBBM_busy
0xF	MH_RBBM_coherency_busy
0x10	CP_RBBM_nrt_busy
0x11	CP_RBBM_rt_busy
0x12	CP_RBBM_dma_busy
0x13	Non-RT Waiting on IDCT Semaphore **
0x14	Non-RT Waiting for "Both CRTC PFLIP" **
0x15	Non-RT Waiting for External Trigger **
0x16	Non-RT Waiting for CP's DMA to go Idle **
0x17	Non-RT Waiting for AGP Flush **
0x18	Non-RT Waiting for Host Idle Clean Status **
0x19	Non-RT Waiting for Graphics Pipe to be Idle **
0x1A	Non-RT Waiting for Graphics Pipe to be Idle and Clean **
0x1B	RBBM_BIF_int - Combined Interrupt Signal to the BIF.

** Note: These performance conditions do not include the 48 additional clocks that the RBBM waits for the previous initiators to arrive at the clients before evaluating the wait condition.

RBBM_Spec_R400.doc - 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

02/07/03 03:46 PM

AMD1044_0211940

ATI Ex. 2066 IPR2023-00922 Page 129 of 291

11. Design for Test (Updated: 10-29-2001)

Signals in the RBBM are connected to the Test Bus for observation at the pins of the chip. The RBBM decodes select 0x02 as in prior designs. Refer to the R400 RBBM test bus document for details on the wiring.

12. Power Management (Updated: 04-02-2002)

The clock within the RBBM is a permanent clock. No clock gating is used to disable the RBBM clock. The input "sclk" is run through the ati_master_permanent clock gating module so that the RBBM's clock is aligned to other clients in the design.

13. Physical Aspects (Updated: 04-02-2002)

16x48 RAM for the Command FIFO will be included in the R400 design.

RBBM_Spec_R400.doc -- 62024 Bytes *** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211941

ATI Ex. 2066 IPR2023-00922 Page 130 of 291

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	1 of 34
Author: Larry	Seiler			
1 T		0		
Issue Io:		Сору М	10:	
	R400 Men	nory Format	Specification	
		3	•	
		Version 0. <u>1(</u>	<u>)</u>	
Overview: Thi	s specification describes how	v pixels and other data are	stored in the frame buffer.	
Document L	location : C:\r	100\doc_lib\design\chip\me	emory\R400_MemoryFormat.doc	
Current Intra				
	Name/Dept	AITING VALU	Signature/Date	
Remarks:				
			INFORMATION THAT (
SUBSTA			TEREST OF ATI TECHN	OLOGIES
	INC. THROUGH	JNAUTHORIZED	JSE OR DISCLOSURE.	
"Copyright 200)1, ATI Technologies Inc. A	Il rights reserved. The ma	aterial in this document constitutes	an unpublished
work created i	in 2001. The use of this cop ork The copyright notice is n	pyright notice is intended of an admission that public	to provide notice that ATI owns a cation has occurred. This work cont	copyright in this ains confidential
proprietary info	prmation and trade secrets of	ATI. No part of this docur	nent may be used, reproduced, or ti	ransmitted in any
torm or by any	means without the prior writt	en permission of ATT Tech	Indidales Inc."	
	·	-	5	

R400_MemoryFormat.doc
George Bytes***
C ATI Confidential. Reference Copyright Notice on Cover Page

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211942

ATI Ex. 2066 IPR2023-00922 Page 131 of 291 0000

Table Of Contents

1.	BACKGROUND	4
1.1	System vs. Local Memory	4
1.2	Local Memory Subsets	4
1.3	Units of Memory	5
2.	DATA ELEMENT FORMATS	6
2.1	Displayable Pixel Formats	6
2.2	Renderable Pixel Formats	6
2.3	Texel-Only Formats	8
2.4	Special Data Formats	9
3.	1D TILED MEMORY FORMATS1	0
3.1	1D Micro-Tile Formats1	0
3.2	1D Macro-Tile Formats1	1
3.3	1D Address Equations12	2
4.	2D TILED MEMORY FORMATS1	3
4.1	2D Micro-Tile Formats13	3
4.2	2D Macro-Tile Formats 14	4
4.3	Special 2D Micro-Tile Formats 1	5
1 1		

4.5	2D Address Equations	18
5.	3D TILED MEMORY FORMATS	20
5.1	3D Micro-Tile Formats	20
5.2	3D Macro-Tile Formats	21
5.3	3D Address Equations	22
6.	MIPMAP STORAGE	23
6.1	Packing 2D Mipmaps	23
6.2	2D Mipmap Equations	25
6.3	Packing 3D Mipmaps	25
6.4	3D Mipmap Equations	25
7.	DESTINATION COLOR COMPRESSION	v 25
7.1	Destination Color Format	26
7.2	Fragment Mask Format	26
8.	DEPTH AND STENCIL FORMATS	28
8.1	Compressed Stencil Formats	28
8.2	Zplane Depth Representation	30
8.3	Zplane Storage Formats	31
8.4	Pmask Storage Formats	33

Table Of Figures

Figure 1: Local Memory Subset for Banks AB5	Figure 19: 3D Micro-Tile Layout Within Tiles20
Figure 2: One-Component Renderable Pixel Formats 7	Figure 20: Pixel Format within 3D Micro-Tiles21
Figure 3: Two-Component Renderable Pixel Formats 7	Figure 21: 3D Macro-Tile Two Subset Format21
Figure 4: Three-Component Renderable Pixel Formats	Figure 22: 3D Macro-Tile Four Subset Format
7	Figure 23: 3D Macro-Tile Eight Subset Format22
Figure 5: Four-Component Renderable Pixel Formats 8	Figure 24: Mipmap Chain Storage Offsets24
Figure 6: 32-Bit Tile Data Word for Render Backend 10	Figure 25: Mipmap Chain Unused Pixels25
Figure 7: 1D Micro-Tile Data Formats10	Figure 26: Fragment Mask Bit Format
Figure 8: 1D Micro-Tile 1-bit Data Formats11	Figure 27: Fragment Mask 1-Bit/Pixel Format
Figure 9: 1D Macro-Tile Formats11	Figure 28: Fragment Mask 1-Bit/Sample Format27
Figure 10: 2D Micro-tile Layout Within Tiles	Figure 29: Fragment Mask Bit Storages Format27
Figure 11: Pixel Format within 2D Micro-Tiles14	Figure 30: Depth Storage Formats
Figure 12: 2D Macro-Tile Mappings15	Figure 31: Per-Triangle Zplane Format
Figure 13: 2D Micro-tiling for Nonstandard Pixels16	Figure 32: Zplane Format Shifted Numbers
Figure 14: 4-bit and 24-bit Micro-Tile Formats16	Figure 33: One to Four Zplane Depth Tile Formats32
Figure 15: 2D Macro-Tiling for 32-Bit Per-Tile Data16	Figure 34: Eight or More Zplane Depth Tile Formats.32
Figure 16: Bank-Swapped 2D Macro-Tile Mappings.17	Figure 35: Pmask Interleave For 8 Samples
Figure 17: RB-Swapped 2D Macro-Tile Mappings 18	Figure 36: Pmask Interleave For 1, 2, or 4 Samples .34
Figure 18: Dual-Swapped 2D Macro-Tile Mappings18	Figure 37: Pmask Interleave For 4 and 6 Samples 34

Table Of Tables

Table 1: Fmask Storage Required Per Tile2	7
Table 2: Stencil Compression Modes2	Э

R400_MemoryFormat.doc 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211943

ATI Ex. 2066 IPR2023-00922 Page 132 of 291 Revision Changes:

Rev 0.1 (Larry Seiler) Date: March 8, 2001

Rev 0.2 (Larry Seiler) Date: June 25, 2001

Rev 0.3 (Larry Seiler) Date: July 3, 2001 Rev 0.4 (Larry Seiler) Date: October ???, 2001 Rev 0.5 (Larry Seiler) Date: December 20, 2001 Rev 0.6 (Larry Seiler) Date: January 29, 2002

Rev 0.7 (Larry Seiler) Date: March 5, 2002

Rev 0.8 (Larry Seiler) Date: June 4, 2002

Rev 0.8B (Larry Seiler) Date: Rev 0.9 (Larry Seiler) Date: May, 2003, minor edits July 10, 2003 <u>Rev 0.10 (Larry Seiler)</u> <u>Date: October 1, 2003</u> First draft

Complete rewrite. Added 1D and 3D formats and modified the 2D formats. Added addressing modes, and some information on depth compression.

Added more 3D formats and compressed formats. Various minor changes.

Partially updated version

Revised micro-tile formats, significant additions.

Updated color and depth compression formats, added pixel format descriptions, added tiling for pertile data and non-standard pixels.

Change to 32x32 2D macro-tile size and 32x16x4 3D macro-tile size. Added addressing equations and 2D mipmap packing.

File name and location changed. All surfaces now have a 4KB alignment constraint for allocation. Pitch must be 256-byte multiple for linear arrays. LocalBase eliminated from tiling equations. Zplane format changed. Multi-sample color format changed.

Changed Zplane format to include the MultiSample bit, changed a parenthesis in 3D Ytile computation

Added alternate 2D tiling formats for efficient depth buffering and to support depth with a 3D slice.

Change depth format: separate/expanded modes interleave depth values for multi-sampling and Pmask data is now stored after the Zplanes.

R400_MemoryFormat.doc ... 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211944

ATI Ex. 2066 IPR2023-00922 Page 133 of 291

1. Background

This document describes how the R400 family maps pixels and other data into local (video) memory and system (AGP) memory. The R400 uses 32-bit device addresses that map both local memory and system memory within a 2^{32} -byte device address space. Local memory is accessed through one, two or four memory controllers that each access up to 2^{28} -bytes (256M-bytes) of on-board memory.

Data can be organized into 1D, 2D or 3D arrays. Types of data include coordinates/normals, uncompressed pixels/texels, uncompressed depth/stencil values, and a variety of compressed data formats. 2D and 3D arrays can be organized in interleaved tiles for higher performance. All array sizes can be stored in a linear format, which stores pixels along a scanline at sequential device addresses, but R400 does not support depth buffer operations in linear format.

The subsections below describe some important common characteristics of all of the memory formats in all of the array sizes. These topics include dividing local memory into disjoint subsets, address alignment constraints, and address modes. Following sections describe the bit formats of individual data elements (pixels, texels, etc.), tiling formats for 1D, 2D, and 3D arrays of data elements, and special tile formats for multi-sample data and depth/stencil data.

1.1 System vs. Local Memory

Data can be stored either in local (on-board or frame buffer) memory or in system (AGP/PCI) memory. A specified range of the device address space maps to local memory and the rest maps to system memory.

Logic blocks that compute device addresses need not be aware of whether an address is in local or system memory, though some logic blocks (e.g. the Display Controller) require data in local memory due to latency issues. The system memory bus has significantly lower bandwidth than the local memory bus and has tremendously longer read latency. AGP memory accesses use either 256-bit or 512-bit bursts.

{Give specific ranges for AGP latency. Reference Tom's memory space spec.}

1.2 Local Memory Subsets

The R400 family accesses local on-board memory through one to four independent memory controllers. The R400 has four memory controllers, each of which provides access to one quarter of the local memory. The RV400 has two memory controllers, each of which provides access to half of the local memory. A future integrated version of the chip will have a single memory controller.

Each memory controller is associated with a corresponding render backend block. Each render backend can only access the local memory associated with its own memory controller. Hence the local memory is divided into subsets, so that each memory controller stores the pixels or other data elements that are processed by its associated render backend. All of the render backends can access system memory.

DDRAM memory is divided into multiple banks and pages. Each bank is in effect a separate memory array inside the DDRAM. Each page contains bits from a single row in the internal DDRAM memory array for a given bank. The size of a page in bytes depends on the specific DDRAM part and the number that are used for a single memory controller. Accessing data within the same page of a bank (which is called "column access") is dramatically faster than accessing data in a different page of the bank (which is called "row access"). Accordingly, much effort in the tiling design goes into grouping accesses that are on the same page and avoiding situations where two different pages in a bank must be accessed without intervening accesses in other banks.

Each memory controller contains two separate memory subsets, in order to improve memory access efficiency. The R400 family supports DDRAM memory that is organized into four banks: A, B, C, and D, so each of the two memory subsets per memory controller contains data from two of the banks. For each memory controller, one subset includes banks A and B and the other subset includes banks C and D. Since R400 has four memory controllers, it has eight

R400_MemoryFormat.doc 🗆 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211945

ATI Ex. 2066 IPR2023-00922 Page 134 of 291

∕ıî	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	5 of 34

memory subsets, which are called ab0, ab1, ab2, ab3, cd0, cd1, cd2, and cd3. RV400 has two memory controllers, so its four memory subsets are called ab0, ab1, cd0, and cd1.

Within a memory subset, memory accesses alternate between two banks at the page boundaries. Consider memory subset ab0. The first word of this memory subset is in page 0 of bank A. This is followed by the rest of the words of bank A in page 0, then by page 0 of bank B. Next comes page 1 of bank A, then page 1 of bank B, etc. As a result, the two banks are interleaved on a page-by-page basis. The figure below illustrates this bank alternation for a DDRAM with pages consisting of 256 words. The word size depends on the specific DDRAM type. Each MC reads 64-bit words from multiple DDRAMs in parallel, depending on the DDRAM configuration.

page 0 bank A				page 0 bank B			page 1 bank A				page 1 bank B				
word 0	word 1		word 255	word 0	word 1		word 255	word 0	word 1		word 255	word 0	word 1		word 255

Figure 1: Local Memory Subset for Banks AB

Dividing the memory into subsets in this fashion ensures that sequential accesses within a memory subset are always either within the same page or are within different banks. For example, suppose that a sequential access starts at page 0, bank A, word 255. A large number of accesses to bank B occur before accessing bank A, page 1, word 0. This gives the DDRAM array time to perform the slow "row access" to bank A, in parallel with the fast "column accesses" within bank B.

1.3 Units of Memory

This document describes memory formats in terms of four levels of addressable units in local and system memory. Each addressable unit has different address alignment constraints.

Individual data elements have a wide variety of sizes. Each occupies 2^{N} -bytes for some value of N and each is naturally aligned on a 2^{N} -byte boundary. The most common size is 4-bytes (32-bits), which could represent, for example, a 32-bit ARGB pixel or a 32-bit IEEE floating point value.

Data elements are organized into 16-byte (128-bit) micro-tiles. This corresponds to the read/write bus size between each memory controller and its render backend, though each memory access reads or writes an aligned pair of micro-tiles. A micro-tile may contain four 32-bit floats or a larger number of smaller data elements. For 1D arrays, a micro-tile always contains sequential data in the 1D array. For 2D and 3D arrays, a micro-tile contains data from a single scanline for 16-bit, 32-bit, 64-bit, and 128-bit data elements.

Tiles are variable-sized. For 1D arrays, each tile stores exactly 64-bytes (512-bits), which stores a variable number of data elements, e.g. 64 8-bit pixels or four 128-bit pixels that each contain four 32-bit floats. For 2D and 3D arrays of pixels or texels, each tile stores an 8x8 array of data elements, which occupies a multiple of 64-bytes (512-bits). The most typical data element size for 2D arrays is 32-bits, which results in a 256-byte (2K-bit) tile size. 2D arrays can also store a single per-tile data element, instead of 64 pixel or texel data elements. The Render Backend uses this mode.

A **macro-tile** is the basic unit of memory allocation in both linear and tiled formats. For linear arrays, each macro-tile is exactly 4K-bytes and contains exactly 16 tiles. For 2D tiled arrays, each macro-tile contains 32x32 pixels, arranged as a 4x4 sub-array of 8x8 pixel tiles. For 3D tiled arrays each macro-tile contains 32x16x4 pixels, arranged as a 4x2x4 sub-array of 8x8x1 pixel tiles.

Finally, a **surface** is a contiguous range of device address space that is all interpreted the same way, e.g. as either a linear array or a 2D or 3D tiled array with a specific pitch and pixel size. Each surface must start on a 4K-byte aligned address in device address space.

2. Data Element Formats

This section describes pixel formats, texel formats, per-tile data formats, and other types of data elements that the R400 reads and writes. These formats are used in the Memory Hub (MH) block to support client memory accesses, in the Texel Central (TC) block to read and interpolate data for the shader programs, and in the Render Backend (RB) block to read and write data render data.

R400_MemoryFormat.doc ... 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211946

ATI Ex. 2066 IPR2023-00922 Page 135 of 291 The following subsections divide the data element formats into four groups. Displayable pixel formats are fully supported by R400, including displaying them to the monitor. Renderable pixel formats are usable as render targets with full support for alpha blending (with one exception), as well as for texture inputs. The Texel-Only Pixel formats may be used as texel inputs or render targets, but cannot be alpha blended. The Texel-Only formats cannot be used as render targets. Finally, the Special Data Formats have specific, limited uses.

Each pixel contains between one and four components, named C0 through C3. The TC and RB blocks both contain pixel format descriptors that specify how to interpret the components as numbers and how to map them to the four components that are computed in the shader pipe. The MH block passes them through without interpretation.

{Note: define the number formats here: floating-point, repeating fraction, integer, etc.}

2.1 Displayable Pixel Formats

The pixel formats described below are fully supported by the MH, TC, and RB blocks. Additionally, each of these frame buffer formats may be displayed to the monitor.

{List the displayable pixel formats. Questions: (1) is GRPH_SWAP_RB supported for all formats, or only for the ones listed in the display spec? (2) How are YUV modes supported, and which ones? (3) How does the display logic support unsigned vs. signed vs. float number formats? All three expand differently for use with the linear interpolation table.}

2.2 Renderable Pixel Formats

Renderable pixel formats are those that the RB (render backend) block can produce. They are also fully supported by the MH and TC blocks. Each pixel contains between one and four components, named C0 through C3. The MH block transfers whole pixels without interpreting their content. The TC and RB blocks both contain pixel format descriptors that specify how to interpret the components as numbers and how to map them to the four components that are computed in the shader pipe. The TC allows an arbitrary mapping of the input components to the shader pipe components. The RB supports more limited component mappings, as described below.

The figures in this subsection list multiple names for each renderable pixel format. Names of the form FMT_* are enumeration constants from enum type SurfaceFormat. Names of the form COLOR_* are enumeration constants from enum type ColorFormat, which contains the subset of surface formats that are renderable. Each COLOR_* enumeration name has the same value as a corresponding FMT_* enumeration name.

The figure below illustrates the single-component renderable pixel formats, with their enumeration names. The 8-bit format has three separate pairs of names to support format numbers used by legacy code. The 16-bit formats can either be explicitly floating point or else may use one of several fixed-point number formats. For the 32-bit component size, only the floating-point format is renderable, and the Render Backend cannot alpha blend that component size. The Render Backend can map either the shader pipe Red or Alpha channel to C0.

FMT_32FLOAT (COLOR_32FLOAT): not alpha-blendable

Figure 2: One-Component Renderable Pixel Formats

The next figure illustrates the two-component renderable pixel formats. Each format contains two equal size components, labeled C0 and C1. As for the single-component formats, the Render Backend cannot render to 32-bit

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211947

ATI Ex. 2066 IPR2023-00922 Page 136 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	7 of 34

components unless they are floating point and cannot alpha blend even floating point 32-bit components. The Render Backend can map either the shader pipe GR or AR components to C1 and C0, in that order.

Figure 3: Two-Component Renderable Pixel Formats

The next figure illustrates the three-component renderable pixel formats. Each format contains two components of one size and one component that is one bit different in size, labeled C0, C1 and C2. The Render Backend can map either the shader pipe BGR or RGB components to C2, C1 and C0, in that order.

Figure 4: Three-Component Renderable Pixel Formats

The final figure illustrates the four-component renderable pixel formats. Two of the formats reduce the size of the C3 component and the rest provide an equal number of bits to each component. As for the two-component formats, the RB can render either floating-point or fixed-point 16-bit components, but only floating-point 32-bit components, and it cannot alpha-blend 32-bit components. The Render Backend can map either the shader pipe ABGR or ARGB components to C3, C2, C1 and C0, in that order.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211948

ATI Ex. 2066 IPR2023-00922 Page 137 of 291

	ORIGINATE DATE 10 July, 2003	E EDIT DATE	ИM,	R400 Framo Spec	e Buffer Layout ification		PAGE 8 of 34
15 1:	2 11 8 7	4 3 0	15	14 10	9 5	4	0
C3<3:0>	C2<3:0> C1<3	:0> C0<3:0>	C3	C2<4:0>	C1<4:0>	С	0<4:0>
FM	IT_4_4_4_4 (COLOR_	_4_4_4)		FMT_1_5_5	5_5 (COLOR_1_	_5_5_	_5)
31 2-	4 23 16 15	8 7 0	30 3	1 29 20	19 10	9	0
C3<7:0>	C2<7:0> C1<7	:0> C0<7:0>	C3	C2<9:0>	C1<9:0>	C	:0<9:0>
FMT FMT_	8_8_8_8 (COLOR_8 8_8_8_8_A (COLOR_	8_8_8_8) or 8_8_8_8_A)		FMT_2_10_10_	_10 (COLOR_2_	_10_1	0_10)
63	48 47	32	31		16 15		0
	C3<15:0>	C2<15:0>		C1<15:0>	C0<1	5:0>	
- FMT	_16_16_16_16 (COLOR	_16_16_16_16) or FMT_^	16_16_	16_16_FLOAT (CO	LOR_16_16_16_	16_FL	_OAT)
127	96 95	64	63	:	32 31		0
	C3<31:0>	C2<31:0>		C1<31:0>	C0<3	31:0>	

FMT_32_32_32_FLOAT (COLOR_32_32_32_32_FLOAT): not alpha-blendable

Figure 5: Four-Component Renderable Pixel Formats

2.3 Texel-Only Formats

The pixel formats described below are supported by the MH and TC but cannot be read or written by the RB. The MH passes them through without interpreting the bits in each pixel. The MH and TC also support the renderable pixel formats, which are described in the preceeding subsection.

{Describe the YUV formats.}

Y8	7	Byte0 Y[7:0]	0]								
010/11/4/4	31	Byte3	24	23	Byte2 V[7:0]	16	15	Byte1 Y[7:0]	8	7	Byte0	0
AV10444	31	Byte3	24	23	Byte?	16	15	Byte1	 	7	Byte0	
VYUY422		V0[7:0]	24	25	Y1[7:0]	10		U0[7:0]			Y0[7:0]	
	31	Byte3	24	23	Byte2	16	15	Byte1	8	7	Byte0	0
YVYU422		Y1[7:0]			V0[7:0]			Y0[7:0]			U0[7:0]	

The DX formats provide texture compression. The bitmap formats store glyphs in one of several bit orders. {provide more detail.}

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211949

ATI Ex. 2066 IPR2023-00922 Page 138 of 291

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	9 of 34
DXT1	63 Byte7 T33 T32 T31 T 31 Byte3 R1[4:0]	56 55 Byte6 48 4 '30 T23 T22 T21 T20 24 23 Byte2 16 1 G1[5:0] B1[4:0] 1 1	A7 Byte5 40 39 Byte4 T13 T12 T11 T10 T03 T02 T01 15 Byte1 8 7 Byte0 R0[4:0] 60[5:0] 80[4:0]	32 Tóo 0
DXT2/DXT3	127 Byte15 T33 T32 T31 T 95 Byte11 R1[4:0]	120119 Byte14 1121 30 T23 T22 T21 T20 88 87 Byte10 80 7 G1[5:0] B1[4:0] B1 7	11 Byte 13 104103 Byte 12 T13 T12 T11 T10 T03 T02 T01 79 Byte 9 72 71 Byte 8 R0[4:0] G0[5:0] B0[4:0] B0[4:0]	96 T00 64
	63 Byte7 A33[3:0] A32[3:1 31 Byte3 A13[3:0] A12[3:1	56 55 Byte6 48 4 0] A31[3:0] A30[3:0] A30[3:0] </td <td>I7 Byte5 40 39 Byte4 A23[3:0] A22[3:0] A21[3:0] A20[3:0] I5 Byte1 8 7 Byte0 A03[3:0] A02[3:0] A02[3:0] A00[3:0] A00[3:0]</td> <td>32 3:0] 0 3:0]</td>	I7 Byte5 40 39 Byte4 A23[3:0] A22[3:0] A21[3:0] A20[3:0] I5 Byte1 8 7 Byte0 A03[3:0] A02[3:0] A02[3:0] A00[3:0] A00[3:0]	32 3:0] 0 3:0]
DXT4/DXT5	127 Byte15 T33 T32 T31 T 95 Byte11 R1[4:0]	120119 Byte14 1121 30 T23 T22 T21 T20 88 87 Byte10 80 7 G1[5:0] B1[4:0] B1[4:0] B1	11 Byte 13 104103 Byte 12 T13 T12 T11 T10 T03 T02 T01 79 Byte9 72 71 Byte8 R0[4:0] G0[5:0] B0[4:0] B0[4:50]	96 T00 64
	63 Byte7 T33 T32 31 Byte3 T10 T03	56 55 Byte6 48 4 T31 T30 T23 1 24 23 Byte2 16 1 102 T01 T00 1 1	I7 Byte5 40 39 Byte4 22 T21 T20 T13 T12 15 Byte1 8 7 Byte0 A1[7:0] A0[7:0] A0[7:0] A0[7:0]	32 T11 0

Each value in DXT1 format is treated as a 64-bit pixel that decodes to 4x4 texels. Each value in DXT2 to DXT5 format is treated as a 128-bit pixel that decodes to 4x4 texels. In linear format, N sequential DXTC pixels decode to a 4Nx4 region of texels. In tiled format, 64 sequential DCTC pixels form an 8x8 tile, which decodes to a 32x32 region of texels.

{Include the depth and depth/stencil formats.}

{Describe the following formats:}

1 (1D only)
1_REVERSE (1D only)
16_MPEG
16_16_MPEG
8_INTERLACED
16_INTERLACED (fixed)
16_INTERLACED (float)
16_INTERLACED (expand)
32_AS_8_INTERLACED
32_AS_8

2.4 Special Data Formats

This subsection describes arrayable data elements that have specific, limited purposes.

The Render Backend uses an array of Tile Data words, which store 32-bits for each 8x8 pixel tile. The Tile Data word stores compression and hierarchical information for each tile. The figure below illustrate the Tile Data word. The Cmask field stores the compression format for the Color0 buffer. The Zmask field stores the compression format for depth data in the Depth/Stencil buffer. The Smask field stores the compression format and hierarchical data for the

R400_MemoryFormat.doc all 69729 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211950

ATI Ex. 2066 IPR2023-00922 Page 139 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	10 of 34

stencil data in the Depth/Stencil buffer. Finally, the Zrange field encodes bounds on the minimum and maximum depth values in the tile for hierarchical depth kills.

31	12	11	8	7	4	3	0
Zrange<19:0>		Smask<3	0>	Zmask<3:)>	Cmask<3:	0>

Figure 6: 32-Bit Tile Data Word for Render Backend

<u>{Document the depth formats}</u> Each16-bit pixel consists of a 16-bit repeating fraction depth value, which represents the range [0..1]. Each 32-bit pixel represents an 8-bit stencil value in the low order byte and a 24-bit depth value in the high bytes. The depth is either a 24-bit repeating fraction or a floating point representation with a 4-bit exponent, which represents the range [0..2), though values greater than 1 are not allowed.

{This includes all of the uncompressed formats that are not destination color formats, including bitmap formats, YUV formats, uncompressed depth/stencil values, etc.}

3. 1D Tiled Memory Formats

This section describes tiled memory formats for 1D arrays. In system memory, there is no difference between 1D tiled format and linear format. In local memory, the tiling format describes how the 1D data is interleaved across the memory subsets. For Local Tiled and System Tiled mode, the memory allocated for a 1D array must start and end on a 4Kbyte boundary. For System Linear mode, the array must start and end on a 64-byte boundary.

3.1 1D Micro-Tile Formats

The figure below shows 1D micro-tile formats within a 64-byte tile for 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit data elements. In each case, the tile size is 64-bytes (512-bits) or four 16-byte (128-bit) micro-tiles. Each row in the figure below is a single micro-tile.

127		96 95					64 63				32 31				0
D 15	D 14	D 13	D 12	D 11	D 10	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
D 31	D 30	D 29	D 28	D 27	D 26	D 25	D 24	D 23	D 22	D 21	D 20	D 19	D 18	D 17	D 16
D 47	D 46	D 45	D 44	D 43	D 42	D 41	D 40	D 39	D 38	D 37	D 36	D 35	D 34	D 33	D 32
D 63	D 62	D 61	D 60	D 59	D 58	D 57	D 56	D 55	D 54	D 53	D 52	D 51	D 50	D 49	D 48
	8-bit data														

127	96	95	64	63	32	31	0	_	127	96	95 64	63 3	2 31 0
D 7	D6	D 5	D 4	D 3	D 2	D 1	D 0		Dat	ta 3	Data 2	Data 1	Data 0
D 15	D 14	D 13	D 12	D 11	D 10	D 9	D 8		Dat	ta 7	Data 6	Data 5	Data 4
D 23	D 22	D 21	D 20	D 19	D 18	D 17	D 16		Data	a 11	Data 10	Data 9	Data 8
D 31	D 30	D 29	D 28	D 27	D 26	D 25	D 24		Data	a 15	Data 14	Data 13	Data 12
			16-bi	t data							32-bi	t data	
127	96	95	64	63	32	31	0		127	96	95 64	63 3	2 31 0
	Dat	a 1			Dat	ta 0					Da	ta 0	
	Dat	a 3			Dat	a 2					Da	ta 1	
	Dat	a 5			Dat	a 4					Da	ta 2	
	Dat	a 7			Dat	a 6					Da	ta 3	
			64-bit	data				•			128-b	t data	

Figure 7: 1D Micro-Tile Data Formats

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211951

ATI Ex. 2066 IPR2023-00922 Page 140 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	11 of 34

The texture unit also supports packed 1-bit pixel formats for use as text fonts. {Draw a figure describing these formats, including the bit order.}

Figure 8: 1D Micro-Tile 1-bit Data Formats

Finally, note that bytes are stored in local memory packed from lsb to msb of successive data elements, that is, littleendian order. Three byte swap reorderings are supported for data stored in system memory. R400 automatically converts between the different byte swap modes, based on a field that is stored with the offset for each surface.

3.2 1D Macro-Tile Formats

The following figure shows the organization of tiles within a macro-tile for 1D arrays. Each 1D macro-tile occupies 4Kbytes. The left-hand figure shows the organization in system memory, which is simply a linear sequence of 64 64-byte tiles. The column in the center of the figure gives the byte address relative to to the start of the macro-tile, for each tile.

Figure 9: 1D Macro-Tile Formats

The remainder of the above figure shows the arrangement of micro-tiles in local memory for 2-8 memory subsets (1-4 memory controllers). Tiles are numbered separately within each memory subset. These formats spread sequential array accesses evenly across the memory controllers at a relatively fine granularity. Within a memory controller, these formats produce a burst within one memory subset before switching to the other memory subset. The goal is to produce a large enough burst within a bank to cover the time required to open a page in a different bank, while keeping the bursts small enough to reduce the buffering required to spread sequential accesses across all of the memory controllers.

R400_MemoryFormat.doc 🗆 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD1044_0211952

ATI Ex. 2066 IPR2023-00922 Page 141 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	12 of 34

The linear array form can also be used for 2D or 3D arrays. A 2D or 3D linear arrays is first converted to a 1D array by computing *Index* = $X + Y^*Pitch + Z^*Height^*Pitch$. R400 can read texture maps from 2D and 3D linear arrays and can write to them for bitblts. R400 does not support rendering (alpha blending and/or depth buffering) to 2D or 3D arrays that are stored in linear format.

3.3 1D Address Equations

This subsection presents equations for computing addresses in a 1D array. These are also used in computing 2D and 3D array addresses (subsections 4.4 and 5.3). These equations are also implemented in address conversion library code (address.h and address.c). Boldface represents names of parameters that are used in the C library.

The first list below defines parameters that are constant for a given surface. *Size* and *Subsets* may be derived from *DataSize* and *Pipes*, but are defined separately to simplify the equations. *SurfaceBase* is the byte address of the start of the surface, which must be 4K-byte aligned. *SurfaceBase* may be expressed relative to the start of the entire 2^{32} -byte device address space or within a subrange of the complete device address space, provided that the subrange is also 4K-byte aligned.

Size	Bytes per pixel: can be 1, 2, 4, 8, or 16 (or fractions of a byte for non-pixel data)
DataSize	64 times Size, equals the total bytes of data in a 2D or 3D tile
Pipes	Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4
Subsets	Total number of memory subsets: equals twice the number of pipelines
SurfaceBase	Byte address of pixel zero in device address space or subrange, must be 4K-byte aligned

The second list below names parameters that depend on which pixel is accessed in the 1D array. 1D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list. *MemSelect* and *BankSelect* may be derived from *Subset*, or vice versa. *MacroNumber*, *TileNumber*, and *TileAddr* are temporary values used in computing the other parameters.

Index	Pixel index into the array
Byte Addr	Byte address of the pixel in device address space (or a 4K-byte aligned subrange)
LocalAddr	Byte address of the pixel within its memory subset, starting at byte 0 in the address range
MemSelect	Number of the memory controller that stores this pixel
BankSelect	0 for banks AB or 1 for banks CD, together with MemSelect determines the memory subset
Subset	Subset number, which equals BankSelect + 2*MemSelect
MacroNumber	Sequential number of the macro-tile containing the pixel, starting from device address 0
TileNumber	Sequential number of the tile containing the pixel, within its memory subset and its macro-tile
TileAddr	Byte address of the pixel within its tile, which is entirely contained in a single memory subset

The following equations use *Index* to compute the other address terms, particularly *ByteAddr*. This is used to convert an array access into a device address. Typically *LocalAddr* is not required as part of this step, but it is included for completeness.

TileAddr	= (Index*Size) mod 64;	// 64 bytes per tile
TileNumber	= ((Index*Size/64) mod 32) / Pipes;	// cycle through MCs within each half-macro-tile
MacroNumber	= (Index*Size + SurfaceBase) / 4096;	// 4096 bytes per macro-tile
MemSelect	= (Index*Size/64) mod Pipes;	// cycle through MCs each 64 bytes
BankSelect	= (Index*Size/2048) mod 2;	// CD banks are in high half of each macro-tile
Subset	= BankSelect + 2*MemSelect;	// subset number
Byte Addr	= SurfaceBase + Index*Size;	
LocalAddr	= MacroNumber*4096/Subsets + TileAd	ddr + TileNumber*64:

The following equations use *ByteAddr* to compute the other address terms, particularly *LocalAddr* and *Subset*. This is used to convert a device address into a local memory address within a particular memory subset. Typically *Index* is not required as part of this step, but it is included for completeness.

TileAddr	= ByteAddr mod 64;	// 64 bytes per tile
TileNumber	= ((ByteAddr/64) mod 32) / Pipes;	// cycle through MCs within each half-macro-tile
MacroNumber	= (ByteAddr) / 4096;	// 4096 bytes per macro-tile

R400_MemoryFormat.doc D 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211953

ATI Ex. 2066 IPR2023-00922 Page 142 of 291

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE				
	10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	13 of 34				
MemS	Select = (ByteAddr/64) r	nod Pipes; //	// cycle through MCs each 64 bytes					
BankS	Select = (ByteAddr/2048) mod 2; //	// CD banks are in high half of each macro-tile					
Subse	et = BankSelect + 2	*MemSelect; // subset number						
Index	= (ByteAddr – Su	rfaceBase) / Size;						

LocalAddr = MacroNumber*4096/Subsets + TileAddr + TileNumber*64;

The final set of equations use *LocalAddr* and *Subset* to compute the other address terms, particularly *ByteAddr*. The equations for 2D and 3D arrays use (X, Y) addresses to produce *LocalAddr* and *Subset*, which these equations convert into device addresses. Typically only *ByteAddr* is required as the result of this step but the others are provided for completeness.

= Subset / 2;	
= Subset mod 2;	
= LocalAddr mod 64;	// 64 bytes per tile
= (LocalAddr /64) mod (64/Subsets);	// 64 tiles in a macro-tile, over all the subsets
= LocalAddr * Subsets / 4096;	// 4096 bytes per macro-tile
= 4096*MacroNumber+2048*BankSele	ct+32*Subsets*TileNumber +64*MemSelect+TileAddr;
= (ByteAddr – SurfaceBase) / Size;	
	 Subset / 2; Subset mod 2; LocalAddr mod 64; (LocalAddr /64) mod (64/Subsets); LocalAddr * Subsets / 4096; 4096*MacroNumber+2048*BankSele (ByteAddr – SurfaceBase) / Size;

4. 2D Tiled Memory Formats

This section describes how the R400 family stores tiled 2D data arrays. Each tile contains an 8x8 array of data elements. Each 8x8 tile has a micro-tile format that depends on the data element size. Each 2D macro-tile contains a 4x4 array of tiles, which covers 32x32 pixels. This is different from 1D formats, where each tile and macro-tile stores a fixed number of bytes. Like the 1D formats, each 2D tiled surface must start on a 4K-byte boundary.

4.1 2D Micro-Tile Formats

R400 arranges pixels within 8x8 tiles in order to meet two conflicting goals. First, sequential accesses from memory should contain pixels from a roughly square region within the tile. This improves efficiency by a modest amount, due to rendering locality. Second, display updates must be efficient with only one line buffer. This implies that each 256-bit memory access should contain pixels from only two scanlines.

To meet these goals, R400 stores even scanlines of the 8x8 tile in even-numbered micro-tiles and stores odd scanlines in odd-numbered micro-tiles. The figure below shows the order of micro-tiles within an 8x8 tile for the five pixel sizes. For 128-bit pixels, each micro-tile covers a single pixel. For 8-bit pixels, each 256-bit access includes pixels from four different scanlines. This requires display accesses to throw away half of the 8-bit data that it reads, but this loss of efficiency is acceptable for 8-bit pixels. For all other pixel sizes, a 256-bit access reads from just two scanlines.

Micro-Tile 0 <63:0>	Micro-Tile 0	MT 0	MT 2	1	0	2	4	6	0	2	4	6	8	10	12	4
Micro-Tile 1 <63:0>	Micro-Tile 1	MT 1	MT 3		1	3	5	7	1	3	5	7	9	11	131	5
Micro-Tile 0 <127:64>	Micro-Tile 2	MT 4	MT 6		8	10	12	14	16	18	20	22	24	26	28	30
Micro-Tile 1 <127:64>	Micro-Tile 3	MT 5	MT 7	1	9	11	13	15	17	19	21	23	25	27	293	31
Micro-Tile 2 <63:0>	Micro-Tile 4	MT 8	MT 10	1	16	18	20	22	32	34	36	38	40	42	444	16
Micro-Tile 3 <63:0>	Micro-Tile 5	MT 9	MT 11	1	17	19	21	23	33	35	37	39	41	434	454	17
Micro-Tile 2 <127:64>	Micro-Tile 6	MT 12	MT 14	1	24	26	28	30	48	50	52	54	56	586	306	32
Micro-Tile 3 <127:64>	Micro-Tile 7	MT 13	MT 15]	25	27	29	31	49	51	53	55	57	59	51 6	33
8-bit Pixels	16-bit Pixels	32-bit	Pixels		6	4-bit	Pixel	s		12	28-	bit	Pi	xe	s	_

For 32-bit and larger pixels, the patterns above map each 256-bit access to a 1:1 or 2:1 region within the tile, therefore meeting the square region criterion. 16-bit pixels have a less efficient 4:1 region, but this is acceptable since smaller pixels require less memory bandwidth. Smaller pixels are also less important in the R400 timeframe. This micro-tile format is efficient enough that it is used for all uncompressed 2D pixel and texel arrays, even though texels do not need to be displayed to the screen.

R400_MemoryFormat.doc ... 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211954

ATI Ex. 2066 IPR2023-00922 Page 143 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	14 of 34

The figure below shows the (x,y) address of the pixels or texels inside the 16-byte (128-bit) micro-tiles. Only the first two micro-tiles are shown for each pixel size. Except for 8-bit pixels, these micro-tiles only include data from the first two rows of the tile. For 8-bit pixels, they cover the first four rows of the 8x8 tile.

(one micro	p-tile is 12	8 bits, as s	signified by	y the bold	outline fo	r each mic	ro-tile									
	127:120	119:112	111:104	103:96	95:88	87:80	79:72	71:64	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0	
8-bit	(7,2)	(6,2)	(5,2)	(4,2)	(3,2)	(2,2)	(1,2)	(0,2)	(7,0)	(6,0)	(5,0)	(4,0)	(3,0)	(2,0)	(1,0)	(0,0)	
data	(7,3)	(6,3)	(5,3)	(4,3)	(3,3)	(2,3)	(1,3)	(0,3)	(7,1)	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,1)	
16-bit	Pixel	(7,0)	Pixel	(6,0)	Pixel	(5,0)	Pixel	(4,0)	Pixel	(3,0)	Pixel	(2,0)	Pixel	(1,0)	Pixel	(0,0)	
data	Pixel	(7,1)	Pixel	(6,1)	Pixel	(5,1)	Pixel	(4,1)	Pixel (3,1) Pixel (2,1)				Pixel (1,1) Pix			kel (0,1)	
32-bit		Pixel (3,0)				Pixel (2,0)			Pixel (1,0)			Pixel (0,0)					
data		Pixel	(3,1)		Pixel 2,1)			Pixel (1,1)			Pixel (0,1)						
64-bit				Pixel	(1,0)							Pixel	(0,0)				
data		Pixel (1,1)						Pixel (0,1)									
128-bit		Pixel (0,0)															
data Pixel (0,1)																	

Figure 11: Pixel Format within 2D Micro-Tiles

4.2 2D Macro-Tile Formats

Each 2D macro-tile stores a 32x32 array of pixels, organized into 16 8x8 tiles. The macro-tile format depends on the number of memory subsets, which is twice the number of memory controllers. The following figure shows the layout of 8x8 tiles within 32x32 macro-tiles for 1, 2, and 4 memory controllers. Bold lines mark 32x32 macro-tiles. Light lines mark 8x8 tiles. The upper line of text in each 8x8 tile specifies the memory subset and the lower line of text specifies the order of the tiles within their memory subset.

The three macro-tile formats have several properties in common. First, each macro-tile allocates an equal number of 8x8 tiles to each memory subset, which makes it simpler to allocate memory. Second, tile addresses in memory increase from left to right within each macro-tile and between macro-tiles on the same scanline. Finally, moving vertically by one macro-tile increments the tile address by a value *L*, which is equal to the pitch (line length) in pixels, divided by four times the number of memory controllers. The pitch must be a multiple of 32 pixels.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211955

ATI Ex. 2066 IPR2023-00922 Page 144 of 291
ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	15 of 34
one MC with two memory subsets	two MCs with four memory subsets	four MCs with eight memory subsets	
ab ab ab ab 0 2 4 6	ab0 ab1 ab0 ab1 0 0 2 2	ab0 ab1 ab2 ab3 0 0 0 0	
ab ab ab ab 1 3 5 7	ab1 ab0 ab1 ab0 1 1 3 3	ab2 ab3 ab0 ab1 1 1 1 1	
cd cd cd cd 0 2 4 6	cd0 cd1 cd0 cd1 0 0 2 2	cd0 cd1 cd2 cd3 0 0 0 0	
cd cd cd cd 1 3 5 7	cd1 cd0 cd1 cd0 1 1 3 3	cd2 cd3 cd0 cd1 1 1 1 1 1	
ab ab ab ab L 2+L 4+L 6+L	ab0 ab1 ab0 ab1 L L 2+L 2+L	ab0 ab1 ab2 ab3 L L L L	
ab ab ab ab 1+L 3+L 5+L 7+L	ab1 ab0 ab1 ab0 1+L 1+L 3+L 3+L	ab2 ab3 ab0 ab1 1+L 1+L 1+L 1+L	
cd cd cd cd L 2+L 4+L 6+L	cd0 cd1 cd0 cd1 L L 2+L 2+L	cd0 cd1 cd2 cd3 L L L L L	
cd cd cd cd 1+L 3+L 5+L 7+L	cd1 cd0 cd1 cd0 1+L 1+L 3+L 3+L	cd2 cd3 cd0 cd1 1+L 1+L 1+L 1+L	

Figure 12: 2D Macro-Tile Mappings

Another common property is that if there are N memory controllers, then each Nx1 row of tiles places a tile in each memory controller. This is necessary for efficient display accesses. The display reads across rows of 8x8 tiles and sometimes requires a significant fraction of the total memory bandwidth. Alternating between the memory controllers allows the display to spread its bandwidth equally between them. This also makes it more efficient to render large primitives, since the Scan Converter steps horizontally before it steps vertically. The bank alternation within a memory subset ensures that page crossings do not occur while rendering horizontal swaths of pixels.

The remaining property that the macro-tile formats have in common is that the upper half of each macro-tile uses bank AB memory subsets and the lower half uses bank CD memory subsets. This reduces page crossings when rendering vertical swaths of pixels. A vertical line first touches two tiles in AB subsets, followed by two tiles in CD subsets. The next tile is once again in an AB subset and could be on a different page of the same bank as the initial accesses. Interspersing the CD subset accesses makes it more likely that the Memory Controller will have accesses to perform while waiting for the bank to become ready. However, vertical motion is not as efficient as horizontal motion in these macro-tile formats.

Finally, note that the first memory controller on odd rows of 8x8 tiles is offset by 1 for two memory controllers and is offset by two for four memory controllers. This has the effect that each 2x2 block of tiles hits each memory controller the same number of times. Putting together all of these properties, the 8x8 tiles nearest to any tile that are in the same memory controller are either on the same page of the same bank or are in a different bank. Further, with two or four memory controllers, moving horizontally or vertically to an adjacent tile also moves to a different memory controller.

4.3 Special 2D Micro-Tile Formats

The previous section describes micro-tile formats for standard pixel sizes. The Render Backend requires several additional pixel sizes for depth, stencil, and multifragment mask data. These pixels require special micro-tile formats that are only read and written by the Render Backend. Additionally, the Render Backend requires a micro-tile format that stores a single data element per tile, instead of a data element per pixel.

The following figure illustrates the micro-tile packing formats for non-standard pixel sizes. Like the standard micro-tile formats, these formats put even scanlines into even micro-tiles and odd scanlines into odd micro-tiles. The smallest allowed pixel size is 4-bits, since at that size an entire tile occupies one even and one odd micro-tile. The 4-bit and 12-bit formats do not permit byte masking of individual pixels. All but the 4-bit format cause pixels to cross micro-tile boundaries. All but the 48-bit format cause micro-tiles to touch multiple scanlines (as does the 8-bit micro-tile format). For these reasons, surfaces that use these formats are not readable or writable by software through the Memory Hub. They are only read and written by the Render Backend.

R400_MemoryFormat.doc 🗅 69729 Bytes*** 🕲 ATI Confidential. Reference Copyright Notice on Cover Page 🕲 ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211956

ATI Ex. 2066 IPR2023-00922 Page 145 of 291

A î	ORI 1	GINATE D 0 July, 200	NATE DATE EDIT			r date "d MN	E 1MM,	R400 Frame Buffer Layout Specification				1	PAGE 6 of 34	
Micro-Tile 0	<31:0>		Micro-	Tile 0 <9	5:0>			Micro-	-Tile 0	MT2 lo	<63:0>	MT 0	MT 2	MT 4
Micro-Tile 1	<31:0>		Micro-	Tile 1 <9	5:0>			Micro-	-Tile 1	MT3 lo		MT 1	MT 3	MT 5
Micro-Tile 0	<63:32>	<127:96>	MT 0	MT 2 <6	53:0>		<127:64>	MT2 hi	Micro	-Tile 4	<63:0>	MT 6	MT 8	MT 10
Micro-Tile 1	<63:32>	<127:96>	MT 1	MT 3 <6	53:0>		<127:64>	MT3 hi	Micro	-Tile 5		MT 7	MT 9	MT 11
Micro-Tile 0	<95:64>		MT 2 <1	27:64>	MT 4	<31:0>		Micro-	Tile 6	MT8 lo	<63:0>	MT 12	MT 14	MT 16
Micro-Tile 1	<95:64>		MT 3 <1:	27:64>	MT 5	<31:0>		Micro-	-Tile 7	MT9 lo		MT 13	MT 15	MT 17
Micro-Tile 0 <	127:96>		Micro-T	ile 4 <12	7:32>		<127:64>	MT8 hi	Micro-	Tile 10	<63:0>	MT 18	MT 20	MT 22
Micro-Tile 1 <	127:96>		Micro-T	ile 5 <12	7:32>		<127:64>	MT9 hi	Micro-	Tile 11		MT 19	MT 21	MT 23
4-bit Pix	els		12-	bit Pixe	ls			24-	-bit Pix	els		48-	bit Pix	els

Figure 13: 2D Micro-tiling for Nonstandard Pixels

The figure below shows the (x,y) address of the pixels or texels inside the 16-byte (128-bit) micro-tiles for the 4-bit and 24-bit pixel sizes. Each row specifies a different micro-tile. 4-bit data occupies just two micro-tiles. 24-bit data requires 12 micro-tiles, with some pixels splitting across micro-tile boundaries. 12-bit pixels and 48-bit pixels require 6 and 24 micro-tiles, respectively.

one micro-tile is 128 bits, as signified by the bold outline for each micro-tile

	127			96	95			64	63			32	31			0	_
bit ita		Pixel ((7-0, 6)			Pixel (7-0, 4)			Pixel (7-0, 2)			Pixel (7-0, 0)		mt0
4 p		Pixel ((7-0, 7)			Pixel (7-0, 5)			Pixel (7-0, 3)			Pixel (7-0, 1)		mt1
					1												
		Pi	ixel (4,	0)	P	xel (3,	0)	Pi	ixel (2,	0)	Pi	ixel (1,	0)	Pi	ixel (0,0	D)	mt0
		Pi	ixel (4,	1)	P	ixel (3,	1)	Pi	ixel (2,	1)	Pi	ixel (1,	1)	Pi	ixel (0,	1)	mt1
ıta	Pixel	(2,2)	P	ixel (1,	2)	P	ixel (0,	2)	P	xel (7,	0)	P	ixel (6,	0)	Pixel	(5,0)	mt2
l da	Pixel	(2,3)	P	ixel (1,	3)	P	ixel (0,	3)	P	xel (7 ,	1)	Pi	ixel (6,	1)	Pixel	(5,1)	mt3
ixe	Pi	ixel (7,	2)	P	ixel (6,	2)	Pi	ixel (5,	2)	Pi	ixel (4,	2)	P	xel (3 ,	2)		mt4
рő	Pi	ixel (7,	3)	P	ixel (6,	3)	Pi	xel (5,	3)	Pi	ixel (4,	3)	P	xel (3 ,	3)		mt5
cke		Pi	ixel (4,	4)	P	ixel (3,	4)	Pi	ixel (2,	4)	Pi	ixel (1,	4)	Pi	ixel (0,4	4)	mt6
t pa		P	ixel (4,	5)	P	ixel (3,	5)	Pi	ixel (2,	5)	Pi	ixel (1,	5)	Pi	ixel (0,	5)	mt7
-bit	Pixel	(2,6)	P	ixel (1,	6)	P	ixel (0,	6)	P	xel (7,	4)	Pi	ixel (6,	4)	Pixel	(5,4)	mt8
24	Pixel	(2,7)	P	ixel (1,	7)	P	ixel (0,	7)	P	xel (7,	5)	Pi	ixel (6,	5)	Pixel	(5,5)	mt9
	Pi	xel (7,	6)	P	ixel (6,	6)	Pi	xel (5,	6)	Pi	ixel (4,	6)	P	xel (3,	6)		m10
	Pi	xel (7,	7)	P	ixel (6,	7)	Pi	xel (5,	7)	Pi	ixel (4,	7)	P	xel (3,	7)		m11

Figure 14: 4-bit and 24-bit Micro-Tile Formats

Finally, data that is stored on a per-tile basis is not micro-tiled at all. Instead, each tile simply stores a specified number of bits. The Render Backend stores 32-bits per tile to record the tile's compression. In this case, the macro-tile format is exactly the same as described in the previous section, except that there may be fewer than 512-bits per tile. **{Note**: say a lot more about this.}

one MC with two memory subsets								
ab	ab	ab	ab					
0.0	0.2	1.0	1.2					
ab	ab	ab	ab					
0.1	0.3	1.1	1.3					
cd	cd	cd	cd					
0.0	0.2	1.0	1.2					
cd	cd	cd	cd					
0.1	0.3	1.1	1.3					

 two MCs with four

 memory subsets

 ab0
 ab1
 ab0
 ab1

 0.0
 0.0
 0.2
 0.2

 ab1
 ab0
 ab1
 ab0

 ab1
 ab0
 ab1
 ab0

 ab1
 ab0
 ab1
 ab0

 0.1
 0.1
 0.3
 0.3

 cd0
 cd1
 cd0
 cd1

 0.0
 0.0
 0.2
 0.2

 cd1
 cd0
 cd1
 cd0

 0.1
 0.1
 0.3
 0.3

four MCs with eight memory subsets

ab0	ab1	ab2	ab3	ab0	ab1	ab2	ab3
0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2
ab2	ab3	ab0	ab1	ab2	ab3	ab0	ab1
0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3
cd0	cd1	cd2	cd3	cd0	cd1	cd2	cd3
0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2
cd2	cd3	cd0	cd1	cd2	cd3	cd0	cd1
0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3

Figure 15: 2D Macro-Tiling for 32-Bit Per-Tile Data

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211957

ATI Ex. 2066 IPR2023-00922 Page 146 of 291

4.4 Alternate 2D Macro-Tile Formats

There are three variations of the standard 2D macro-tile formats. These variations exist to improve performance for depth buffering and to allow a 2D depth buffer to be used in conjunction with a slice from a 3D color buffer. R400 does not support these alternate for display buffers, but they may be used for rendering, memory apertures, and texture mapping. {Check whether the 3D slice format actually gets supported for texture maps.} As with the figures in section , these figures show a box per 8x8 tile, with the upper line of text in each box listing the banks and RB number and the lower line of text giving the order in which the tiles are stored within their memory subset.

The figure below shows an alternate 2D tiling pattern that swaps the AB and CD bank assignment relative to the standard pattern that is described in section 4.2. This macro-tile pattern is particularly appropriate for depth buffers. If the same 2D tiling is used for both the depth buffer and the color buffer, then large area operations will tend to cause the Render Backend to read and write both of them in the AB banks or both of them in the CD banks. Using the bank-swapped alternate tiling illustrated below for the depth buffer increases the number of different banks that are likely to be open at the same time, thus increasing memory efficiency.

one me	e MC mory	with subs	two sets	two me	MCs mory	with subs	four sets	four me	MCs mory	with subs	eight sets
cd 0	cd 2	cd 4	cd 6	cd0 0	cd1 0	cd0 2	cd1 2	cd0 0	cd1 0	cd2 0	cd3 0
cd 1	cd 3	cd 5	cd 7	cd1 1	cd0 1	cd1 3	cd0 3	cd2 1	cd3 1	cd0 1	cd1 1
ab 0	ab 2	ab 4	ab 6	ab0 0	ab1 0	ab0 2	ab1 2	ab0 0	ab1 0	ab2 0	ab3 0
ab 1	ab 3	ab 5	ab 7	ab1 1	ab0 1	ab1 3	ab0 3	ab2 1	ab3 1	ab0 1	ab1 1
cd L	cd 2+L	cd 4+L	cd 6+L	cd0 L	cd1 L	cd0 2+L	cd1 2+L	cd0 L	cd1 L	cd2 L	cd3 L
cd 1+L	cd 3+L	cd 5+L	cd 7+L	cd1 1+L	cd0 1+L	cd1 3+L	cd0 3+L	cd2 1+L	cd3 1+L	cd0 1+L	cd1 1+L
ab L	ab 2+L	ab 4+L	ab 6+L	ab0 L	ab1 L	ab0 2+L	ab1 2+L	ab0 L	ab1 L	ab2 L	ab3 L
ab 1+L	ab 3+L	ab 5+L	ab 7+L	ab1 1+L	ab0 1+L	ab1 3+L	ab0 3+L	ab2 1+L	ab3 1+L	ab0 1+L	ab1 1+L

Figure 16: Bank-Swapped 2D Macro-Tile Mappings

A 2D depth buffer may be used with a single slice of a 3D color buffer. This requires a 2D tiling pattern that maps each pixel to the same RB that it is mapped to in the 3D tiling pattern. Section 5.2 describes 3D macro-tiling patterns, which map pixel in an (x,y) column to one of two RBs, depending on the value of Z. One of the two RB assignments matches the RB assignments in the standard 2D macro-tiling pattern. The other RB assignment swaps the RB numbers. The swapped 2D macro-tiling pattern below matches this alternate RB mapping for 3D slices. A 2D depth surface may be used with slices of a 3D color array by selecting either the standard or this swapped macro-tiling pattern, depending on the slice selected from the 3D array.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0211958

ATI Ex. 2066 IPR2023-00922 Page 147 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	18 of 34
one MC with two memory subsets	two MCs with fo memory subset	ur four MCs with eight s memory subsets	
ab ab ab ab 0 2 4 6	ab1 ab0 ab1 a 0 0 2 2	b0 ab2 ab3 ab0 ab1 2 0 0 0 0	
ab ab ab ab 1 3 5 7	ab0 ab1 ab0 a 1 1 3	b1 ab0 ab1 ab2 ab3 3 1 1 1 1	
cd cd cd cd 0 2 4 6	cd1 cd0 cd1 cd 0 0 2 3	d0 cd2 cd3 cd0 cd1 2 0 0 0 0	
cd cd cd cd 1 3 5 7	cd0 cd1 cd0 cd 1 1 3 3	d1 cd0 cd1 cd2 cd3 3 1 1 1 1 1	
ab ab ab ab L 2+L 4+L 6+L	ab1 ab0 ab1 a L L 2+L 2	b0 ab2 ab3 ab0 ab1 +L L L L L	
ab ab ab ab 1+L 3+L 5+L 7+L	ab0 ab1 ab0 al 1+L 1+L 3+L 3·	b1 ab0 ab1 ab2 ab3 +L 1+L 1+L 1+L 1+L	
cd cd cd cd L 2+L 4+L 6+L	cd1 cd0 cd1 cd L L 2+L 2-	d0	
cd cd cd cd 1+1 3+1 5+1 7+1	cd0 cd1 cd0 cd	d1 cd0 cd1 cd2 cd3	

Figure 17: RB-Swapped 2D Macro-Tile Mappings

The final new macro-tiling pattern is a combination of the preceeding two. The macro-tilings illustrated above and below allow selecting a 2D pattern that either does or does not swap the AB and CD banks relative to the 3D slices that do not match the standard 2D macro-tiling. The 3D macro-tiling described in section 5.2 matches the pattern below because it swaps both RBs and banks. So the pattern above, that swaps just the RBs, should be used to cause a 2D depth surface to use a different bank for each tile than the 2D tile pattern uses.

one me	e MC mory	with subs	two sets	two me	MCs mory	with subs	four sets	four me	MCs mory	with subs	eight sets
cd 0	cd 2	cd 4	cd 6	cd1 0	cd0 0	cd1 2	cd0 2	cd2 0	cd3 0	cd0 0	cd1 0
cd 1	cd 3	cd 5	cd 7	cd0 1	cd1 1	cd0 3	cd1 3	cd0 1	cd1 1	cd2 1	cd3 1
ab 0	ab 2	ab 4	ab 6	ab1 0	ab0 0	ab1 2	ab0 2	ab2 0	ab3 0	ab0 0	ab1 0
ab 1	ab 3	ab 5	ab 7	ab0 1	ab1 1	ab0 3	ab1 3	ab0 1	ab1 1	ab2 1	ab3 1
cd L	cd 2+L	cd 4+L	cd 6+L	cd1 L	cd0 L	cd1 2+L	cd0 2+L	cd2 L	cd3 L	cd0 L	cd1 L
cd 1+L	cd 3+L	cd 5+L	cd 7+L	cd0 1+L	cd1 1+L	cd0 3+L	cd1 3+L	cd0 1+L	cd1 1+L	cd2 1+L	cd3 1+L
ab L	ab 2+L	ab 4+L	ab 6+L	ab1 L	ab0 L	ab1 2+L	ab0 2+L	ab2 L	ab3 L	ab0 L	ab1 L
ab 1+L	ab 3+L	ab 5+L	ab 7+L	ab0 1+L	ab1 1+L	ab0 3+L	ab1 3+L	ab0 1+L	ab1 1+L	ab2 1+L	ab3 1+L

Figure 18: Dual-Swapped 2D Macro-Tile Mappings

4.5 2D Address Equations

This subsection presents equations for computing addresses in a 2D array. This is a two-step process that makes use of the 1D array equations of subsection 3.3. The first list below defines parameters that are constant for a given surface. The second list names parameters that depend on which pixel is accessed in the array. 2D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list.

Size	Bytes per pixel: can be 1, 2, 4, 8, or 16 (or 1/8 for 1-bit pixels)
DataSize	64 times Size, equals the total bytes of data in a 2D tile
Pipes	Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4
Subsets	Total number of memory subsets: equals twice the number of pipelines

R400_MemoryFormat.doc 0 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211959

ATI Ex. 2066 IPR2023-00922 Page 148 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	19 of 34

SurfaceBase	Byte address of pixel zero in device address space, must be 4K-byte aligned
TileSize	Bytes per tile: equals 64*Size, except for special tile formats that contain multiple pixel arrays
TileBase	Byte address of first pixel in a tile: normally zero, a multiple of 64 for special tile formats
Pitch	The width of each scanline in pixels, must be a multiple of 32
AltBank	Boolean that selects alternate 2D macro-tile pattern that exchanges banks AB and CD
SwapRB	Boolean that selects swapping the RB numbers in the 2D macro-tile pattern
x v	Pixel location in the 2D array
	The location in the 2D array
LocalAddr	Byte address of the pixel within its memory subset, starting from device address 0
SubsetOffset	Byte address of the pixel within its memory subset, starting from pixel (0,0) of the surface
MemSelect	Number of the memory controller that stores this pixel
BankSelect	0 for banks AB or 1 for banks CD, together with MemSelect determines the memory subset
Subset	Subset number, equals BankSelect + 2*MemSelect
MacroOffset	Sequential number of the macro-tile containing the pixel, starting from SurfaceBase
TileNumber	Sequential number of the tile containing the pixel, within its memory subset and its macro-tile
TileAddr	Byte address of the pixel within its tile, starting from the first byte of the tile
TileOffset	Byte address of the pixel within its tile, relative to TileBase (which is normally zero)

The following equations use X and Y to compute the other address terms, particularly *Local*Addr and *Subset*. The final set of equations in subsection 3.3 uses these results to produce a device address.

BankSelect	= ((Y/16) mod 2) ^ AltBank;	// Banks change for high/low half of each macro-tile
MemSelect	= (X/8 + ((Y/8 mod 2)^SwapRB)*(Pipes/2	2)) mod Pipes; // Offset memory in alternate rows
Subset	= BankSelect + 2*MemSelect;	// subset number
TileNumber	= ((X mod 32)/8/Pipes)*2 + (Y/8 mod 2);	<pre>// Odd tile numbers are in odd rows</pre>
MicroByte	= (X mod 8 + ((Y mod 8)/2)*8)*Size	<pre>// Byte address within tile for even scanlines</pre>
-		// Odd scanlines get odd micro-tiles within an 8x8 tile
TileOffset	= (MicroByte mod 16) + (Y mod 2)*16 +	(MicroByte/16)*32;
TileAddr	= TileBase + TileOffset;	// The tile may contain other data as well
MacroOffset	= (X/32) + (Y/32) * (Pitch/32);	// There are Pitch/32 macro-tiles per row
SubsetOffset	= MacroOffset*TileSize*16/Subsets + Til	eNumber*TileSize + TileAddr;
LocalAddr	= SurfaceBase/Subsets + SubsetOffset;	

The following equations use **AltBank**, **SwapRB**. LocalAddr and **Subset** to compute the other address terms, particularity the (X, Y) array address. The final set of equations in subsection 3.3 convert a device address into LocalAddr and Subset and these equations complete the conversion to an (X, Y) array address.

MemSelect	= Subset / 2;	
BankSelect	= Subset mod 2;	
SubsetOffset	= LocalAddr – SurfaceBase/Subsets;	// subset address in surface
TileAddr	= SubsetOffset mod TileSize;	<pre>// byte address within the tile</pre>
TileOffset	= TileAddr - TileBase;	// byte address within subset of the tile
MacroOffset	= SubsetOffset * Subsets / 16 / TileSize;	<pre>// 16*TileSize bytes per macro-tile</pre>
TileNumber	= SubsetOffset/TileSize mod (16/Subsets);	// 16 8x8 tiles per macro-tile over all subsets
MicroByte	= TileOffset mod 16 + (TileOffset/32)*16;	// byte address within even micro-tiles
Ymacro	= MacroOffset*32/Pitch;	// Macro-tile offset vertically
Xmacro	= MacroOffset mod Pitch/32;	// macro-tile offset horizontally
Ytile	= (BankSelect^AltBank)*2 + (TileNumber mod	2);// tile 0, 1, 2, or 3 vertically in macro-tile
Xtile	= (MemSelect + ((Y/8 mod 2) ^SwapRB)*Pipe	s/2) mod Pipes + (TileNumber/2)*Pipes;
Ymicro	= ((MicroByte mod 16)/8 + (TileOffset/32)*2) /	Size; // row pair in tile due to micro-tiling
Xbyte	= MicroByte mod (8*Size);	// byte address within first 8x1 scanline
Y	= Ymacro*32 + Ytile*8 + Ymicro*2 + (TileOffse	et/16 mod 2);
Х	= Xmacro*32 + Xtile*8 + Xbyte/Size;	

Note that these equations also work for non-standard pixel sizes and per-tile data. For 4-bit or 24-bit pixels, set Size to $\frac{1}{2}$ or 3, set *TileSize* to the number of bytes in the tile, e.g. 64*32 and set *TileBase* to the starting byte in the tile for the pixel data, e.g. 0 or 8*64. For per-tile data, set *TileSize* to the number of bytes of data per tile and set X and Y to multiples of 8, that is, the lowest pixel address for the specified tile. This forces *MacroOffset* to zero, which causes *Size* to be ignored.

R400_MemoryFormat.doc 0 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211960

ATI Ex. 2066 IPR2023-00922 Page 149 of 291

5. 3D Tiled Memory Formats

This section describes how the R400 family stores tiled 3D data arrays. Each tile contains an 8x8x1 array of data elements. Each 8x8x1 tile has a micro-tile format that depends on the data element size. Each 3D macro-tile contains a 4x1x4 array of tiles, which covers 32x8x4 pixels. This is different from 1D formats, where each tile and macro-tile stores a fixed number of bytes. Like the 1D formats, each 3D tiled surface must start on a 4K-byte boundary. Additionally, each NxMx4 slice of the 3D array must start on a 4K-byte boundary, so that individual 3D slices may be accessed as if they are a 2D array. {Is the 4K-byte restriction necessary?}

5.1 3D Micro-Tile Formats

Tiles in 3D arrays cover 8x8x1 data elements, even though the best aspect ratio for 3D tiles is probably a 4x4x4 array of data elements. That aspect ratio would provide the greatest degree of locality for random reads, for example, and therefore should be more efficient. However, the implementation is simpler if 3D tile formats are similar to 2D tile formats, for two reasons. First, this reduces the amount of multiplexing and address decoding required to read 3D texels. Second, it makes it simpler to render to (X, Y) slices within the 3D array. Therefore, the 3D tile formats encode an 8x8x1 tile of data elements, in exactly the same way as for 2D tiles.

The figure below shows how an 8x8x1 tile divides into micro-tiles for different pixel sizes. The numbers are the relative micro-tile addresses within the tile. 64-bits is the maximum size allowed for texels in 3D arrays. Unlike 2D arrays, 3D arrays do not support 4-bit and 24-bit pixel sizes.

Figure 19: 3D Micro-Tile Layout Within Tiles

The figure below shows the format of texels inside each 16-byte (128-bit) micro-tiles. Pixels from even scanlines are in the lower 64-bits of each micro-tile and pixels from odd scanlines are in the upper 64-bits.

R400_MemoryFormat.doc 🗅 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0211961

ATI Ex. 2066 IPR2023-00922 Page 150 of 291

	ORIG	ORIGINATE DATE				EDIT DATE			DOCUMENT-REV. NUM.					PAGE
	10	10 July, 2003			[date ∖@ "d MMMM,			C	GEN-CXXXXX-REVA					21 of 34
C one	e micro-tile is 128	8 bits, as signified b	y the bol	d outline fo	r each mio	cro-tile								
127	7:120 119:112	111:104 103:96	95:88	87:80	79:72	71:64	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
8-bit (7	(6,2) (6,2)	(5,2) (4,2)	(3,2)	(2,2)	(1,2)	(0,2)	(7,0)	(6,0)	(5,0)	(4,0)	(3,0)	(2,0)	(1,0)	(0,0)
data (7	(6,3) (6,3)	(5,3) (4,3)	(3,3)	(2,3)	(1,3)	(0,3)	(7,1)) (6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,1)
16-bit P	ixel (7,0)	Pixel (6,0)	Pixe	l (5,0)	Pixel	(4,0)	Pixe	el (3,0)	Pixel	(2,0)	Pixel	(1,0)	Pixel	(0,0)
data P	ixel (7,1)	Pixel (6,1)	Pixe	l (5,1)	Pixel	(4,1)	Pixe	el (3,1)	Pixel	(2,1)	Pixel	(1,1)	Pixel	(0,1)
_														
32-bit	Pixel	(3,0)		Pixel	(2,0)			Pixel	(1,0)			Pixel ((0,0)	
data	Pixel	(3,1)		Pixe	el 2,1) Pixel (1,1) Pix			Pixel ((0,1)					
64-bit		Pixel	(1,0)							Pixel	(0,0)			
data		Pixel (1,1)					Pixel (0,1)							
128-bit						Pixel	(0,0)							
data						Pixel	(0,1)							

Figure	20:	Pixel	Format	within	3D	Micro-Tiles
igaio		1 1/101	i viina.			

{Note: We should find a way to determine if we lose significant performance by not implementing 4x4x4 3D tiles.}

5.2 3D Macro-Tile Formats

The 3D macro-tile formats store a 32x16x4 array of data elements. This size allows reasonably efficient movement through the 3D array in either the X, Y, or Z directions, as described below. Although the tile size is 16 in Y, software should constrain the size in Y to a multiple of 32. That guarantees that each NxMx4 slab of 3D data occupies a multiple of 4K-bytes, even for 8-bit data elements. It is also simpler than enforcing a different Y height constraint for 3D arrays than for 2D arrays. The macro-tile size is expressed as 32x16x4, however, rather than as 32x32x4, because the 32x8x4 macro-tile size stores a contiguous array of bytes within each of the memory subsets. A 32x32x4 region includes bytes from two discotguous regions within each memory subset, unless the pitch happens to equal 32.

The following figures show the layout of 8x8x1 tiles within 32x16x4 macro-tiles for 3D arrays. Each figure shows two macro-tiles (slab 0 and slab 1) comprising a 32x16x8 region, since even and odd slices in Z use a different subset pattern. Each row of a figure shows the four slices within a macro-tile. Light lines mark tiles within the macro-tiles. The upper line of text in each tile specifies the memory subset. The lower line specifies the tile number within that memory subset. *S* equals the number of tiles per subset in a slice of the 3D array.

slab	0, slio	ce 0 ((Z=0)	slab	0, slio	ce 1 ((Z=1)	-	slab	0, slio	ce 2 ((Z=2)	slab	0, slio	<u>ce 3 (</u>	Z=3
ab 0	ab 4	ab 8	ab 12	ab 1	ab 5	ab 9	ab 13		ab 2	ab 6	ab 10	ab 14	ab 3	ab 7	ab 11	ab 15
cd 0	cd 4	cd 8	cd 12	cd 1	cd 5	cd 9	cd 13		cd 2	cd 6	cd 10	cd 14	cd 3	cd 7	cd 11	cd 15
slab	1, slio	ce 0 ((Z=4)	slab	1, slio	ce 1 ((Z=5)		slab	1, slio	ce 2 ((Z=6)	slab	1, slio	ce 3 (Z=7
cd	cd	cd	cd	cd	cd	cd	cd		cd	cd	cd	cd	cd	cd	cd	cd
S	4+S	8+S	12+S	1+S	5+S	9+S	13+S		2+S	6+S	10+S	14+S	3+S	7+S	11+S	15+8

Figure 21: 3D Macro-Tile Two Subset Format

The figure above shows the tiled format for two memory subsets. This occurs when there is just one rendering pipeline. Movement in Y or Z through the 3D array hits both memory subsets. Movement in X hits only one memory subset, but alternates between the two banks within that subset. If the page size is 256 64-bit words and pixels are 64-bits in size or smaller, horizontally adjacent tiles are either in the same page of the same bank or are in different

R400_MemoryFormat.doc 0 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211962

ATI Ex. 2066 IPR2023-00922 Page 151 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	22 of 34

banks. This is not true for 128-bit pixels, but in that case sweeping across a single tile hits eight 256-bit accesses in the same page.

slab	0, sli	ce 0 ((Z=0)	_	slab	0, slio	ce 1 ((Z=1)	 slab	0, slio	ce 2 ((Z=2)	_	slab	0, slio	ce 3 ((Z=3)
ab0 0	ab1 0	ab0 4	ab1 4		ab0 1	ab1 1	ab0 5	ab1 5	ab0 2	ab1 2	ab0 6	ab1 6		ab0 3	ab1 3	ab0 7	ab1 7
cd1 0	cd0 0	cd1 4	cd0 4		cd1 1	cd0 1	cd1 5	cd0 5	cd1 2	cd0 2	cd1 6	cd0 6		cd1 3	cd0 3	cd1 7	cd0 7
slab	1, sli	ce 0 ((Z=4)		slab	1, slio	ce 1 ((Z=5)	slab	1, slio	ce 2 ((Z=6)		slab	1, slio	ce 3 ((Z=7)
slab cd1 S	1, sli cd0 S	ce 0 (cd1 4+S	(Z=4) cd0 4+S		slab cd1 1+S	1, slio cd0 1+S	ce 1 (cd1 5+S	(Z=5) cd0 5+S	slab cd1 2+S	1, slio cd0 2+S	ce 2 (cd1 6+S	(Z=6) cd0 6+S		slab cd1 3+S	1, slio cd0 3+S	ce 3 (cd1 7+S	(Z=7) cd0 7+S

Figure 22: 3D Macro-Tile Four Subset Format

The figures above and below show the tiled format for four and eight memory subsets. Movement in Y or Z through the 3D array hits two memory subsets in different pipelines. Movement in X hits half of the memory subsets, one per pipeline. If the page size is 256 64-bit words and pixels are 64-bits in size or smaller, horizontally adjacent tiles in the same pipeline are either in the same page of the same bank or are in different banks. This is not true for 128-bit pixels, but in that case sweeping across a single tile hits eight 256-bit accesses in the same page.

Figure 23: 3D Macro-Tile Eight Subset Format

5.3 3D Address Equations

This subsection presents equations for computing addresses in a 3D array. This is a two-step process that makes use of the 1D array equations of subsection 3.3. The first list below defines parameters that are constant for a given surface. The second list names parameters that depend on which pixel is accessed in the array. 3D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list.

Size	Bytes per pixel: can be 1, 2, 4, 8, or 16
DataSize	64 times Size, equals the total bytes of data in the 3D tile
Pipes	Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4
Subsets	Total number of memory subsets: equals twice the number of pipelines
SurfaceBase	Byte address of pixel zero in device address space, must be 4K-byte aligned
TileSize	Bytes per tile (should always equal 64*Size for 3D arrays, defined for consistency with 2D)
TileBase	Byte address of first pixel in a tile (should always be zero for 3D arrays)
Pitch	The width of each scanline in pixels, must be a multiple of 32
Height	The height of each slice in scanlines, must be a multiple of 16 (should be multiple of 32)
X , Y , Z	Pixel location in the 3D array
LocalAddr	Byte address of the pixel within its memory subset, starting from device address 0
SubsetOffset	Byte address of the pixel within its memory subset, starting from pixel (0,0) of the surface

R400_MemoryFormat.doc == 69729 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page @ ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211963

ATI Ex. 2066 IPR2023-00922 Page 152 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date \@ "d MMMM,	GEN-CXXXXX-REVA	23 of 34

MemSelect	Number of the memory controller that stores this pixel
BankSelect	0 for banks AB or 1 for banks CD, together with MemSelect determines the memory subset
Subset	Subset number, equals BankSelect + 2*MemSelect
MacroOffset	Sequential number of the macro-tile containing the pixel, starting from SurfaceBase
TileNumber	Sequential number of the tile containing the pixel, within its memory subset and its macro-tile
TileAddr	Byte address of the pixel within its tile, starting from the first byte of the tile
TileOffset	Byte address of the pixel within its tile, relative to TileBase (which is normally zero)

The following equations use X, Y and Z to compute the other address terms. This is used to convert an array access into a *Subset* and *LocalAddr*. The final set of equations in subsection 3.3 uses these results to produce a device address.

BankSelect	= (Y/8 + Z/4) mod 2;	// CD banks alternate every 8 Y and 4 Z
MemSelect	= (X/8 + BankSelect*(Pipes/2)) mod Pipes;	// Offset memory in alternate rows and slabs
Subset	= BankSelect + 2*MemSelect;	// subset number
TileNumber	= (Z mod 4) + ((X mod 32)/8/Pipes)*4;	<pre>// Groups of four tiles vertically</pre>
MicroByte	= (X mod 8 + ((Y mod 8)/2)*8)*Size	// Byte address within tile for even scanlines
	// Odd	scanlines get odd micro-tiles within an 8x8 tile
TileOffset	= (MicroByte mod 16) + (Y mod 2)*16 + (Micro	Byte/16)*32;
TileAddr	= TileBase + TileOffset;	// The tile may contain other data as well
MacroOffset	= (X/32) + (Pitch/32) * ((Y/16) + (Height/16)*(Z/	(4));
SubsetOffset	= MacroOffset*TileSize*32/Subsets + TileNum	ber*TileSize + TileAddr;
LocalAddr	= SurfaceBase/Subsets + SubsetOffset;	

The following equations use *LocalAddr*, *BankSelect* and *MemSelect* to compute the other address terms. This is used to convert a device address into an (X, Y) array address. The final set of equations in subsection 3.3 produces *LocalAddr*, *BankSelect* and *MemSelect* from a device address.

SubsetOffset	= LocalAddr – SurfaceBase/Subsets;	// relative subset address in surface				
TileAddr	= SubsetOffset mod TileSize;	// byte address within the tile				
TileOffset	= TileAddr - TileBase;	<pre>// byte address within subset of the tile</pre>				
MacroOffset	= SubsetOffset * Subsets / 32 / TileSize;	// 32*TileSize bytes per macro-tile				
TileNumber	= SubsetOffset/TileSize mod (32/Subsets);	// 32 8x8 tiles per macro-tile over all subsets				
MicroByte	= TileOffset mod 16 + (TileOffset/32)*16;					
Z	= (TileNumber mod 4) + (MacroOffset*32*16/Pit	ch/Height)*4;				
Ymacro	= (MacroOffset*32/Pitch mod Height/16);	// Macro-tiles vertically within a slab				
Ytile	= (BankSelect + (Z/4 mod 2)) mod 2;	// tile 0 or1 vertically in macro-tile				
Y	= Ymacro*16 + Ytile*8 + (TileOffset/16/Size)*2 +	· (TileOffset/16 mod 2);				
Xmacro	= MacroOffset mod Pitch/32;					
Xtile	= (MemSelect + BankSelect*Pipes/2) mod Pipes	s + (TileNumber/4)*Pipes;				
Xbyte	= MicroByte mod (8*Size);	// Byte address within first 8x1 scanline				
X	= Xmacro*32 + Xtile*8 + Xbyte/Size:	•				

6. Mipmap Storage

{This section is for any special issues involving texture storage that belong in a whole-chip document instead of in the TC block spec. At present the only such issue is mipmap storage.}

6.1 Packing 2D Mipmaps

Small 2D surfaces waste a lot of space if each dimension must be increased to a multiple of 32. This is a particular problem for mipmap chains, which produce many small mipmaps. For example, if each mipmap produced by a 32x32 texture map requires a full macro-tile, then the mipmap chain requires 6*32*32 = 6144 pixels instad of 1365 pixels. The problem is worse for small texels, since each surface must start on a 4K-byte boundary. With 8-bit texels, the mipmap chain would require 6*4K-bytes = 24K-bytes, instead of 1365-bytes.

R400 solves this problem in two ways. First, each texture is specified with two surface descriptors. The first points to the base texture map, which has dimensions that are increased to multiples of 32. The second points to the start of

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211964

ATI Ex. 2066 IPR2023-00922 Page 153 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	24 of 34

the mipmap chain and R400 automatically computes the starting address of each subsequent mipmap in the chain. Each texture map in the mipmap chain has its dimensions increased to a power of 2 and each starts at an address that is a multiple of 4K-bytes.

Additionally, R400 packs the small mipmaps at the tail of the mipmap chain into a single 32x32 tile. Each mipmap has a position in the final tile that is based solely on the maximum of the width and height of that mipmap. The figure below shows the layout. Each mipmap in the chain is increased in size, if necessary, to a square mipmap with width and height equal to a power of two. The location where each mipmap is stored depends solely on its (increased) size. Any mipmap in the chain that has width > 16 or height > 16 is stored as a separate surface that uses a multiple of 4K-bytes. The final mipmaps also require a minimum of 4K-bytes, which is larger than a single 32x32 macro-tile for 8-bit and 16-bit texels.

Figure 24: Mipmap Chain Storage Offsets

If the mipmaps are actually squares with width and height equal to a power of two, the above format uses 341 of 1024 pixels in the two tiles, wasting 683 or 2/3 of the pixels in the tile. The figure below shows examples of mipmaps with non-square aspect ratios and the number of pixels wasted in each case. Note that for each mipmap, texel (0,0) is stored in the same location as for the corresponding square mipmaps in the figure above.

Figure 25: Mipmap Chain Unused Pixels

Rendering to mipmaps that are packed this way requires altering the window offset. For example, to render to a mipmap that is expanded to 16x16, set the base address to the start of the macro-tile and increase the X offset by 16.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211965

ATI Ex. 2066 IPR2023-00922 Page 154 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	25 of 34

Future chips may use different offsets or packing formats, so the driver should obtain mipmap positions and offsets from code that is delivered with the hardware.

6.2 2D Mipmap Equations

{Describe how R400 computes the position of each mipmap in the chain and the total memory required for any mipmap chain.}

6.3 Packing 3D Mipmaps

{Define a 3D mipmap packing format.}

{Proposal: pack the final 3D mipmaps into a 32x32x32 cube, which contains 16 3D macro-tiles. Each 3D mipmap is expanded to a cube with all three sizes equal to a power of two that is greater than or equal to its largest dimension. }

{Variant: The same as the above, except only force the X and Y dimensions to match. Allow the Z dimension to be a power of two that is less than X or Y. This causes the packed mipmap to use a variable number of tiles.}

6.4 3D Mipmap Equations

{Describe how R400 computes the position of each mipmap in the chain and the total memory required for any mipmap chain.}

7. Destination Color Compression

R400 supports rendering to pixels with 1, 2, 3, 4, 6, or 8 samples per pixel. To a large extent, the aliased mode (1 sample per pixel) is just a special case of the multi-sample modes (2, 3, 4, 6, or 8 samples per pixel), though there are some operations, such as multi-buffer rendering, that are available only for single-sample pixels.

R400 stores multi-sample color data as fragments. A fragment is a pixel color together with a mask that specifies the samples within the pixel where that color is visible. As a result, if an operation writes a single color to an entire pixel, e.g. in the interior of a triangle, only one color (plus the mask) is necessary to describe the entire pixel. If there are S samples per pixel, the pixel could have as many as S fragments, but multiple fragments are only needed if multiple triangles are visible within a single pixel. Unless triangles are extremely small, it is quite common for a pixel to have just one fragment. The maximum number of fragments per pixel within an 8x8 tile is also typically small, so fragments result in significant compression. {For example, if there are eight samples per pixel and an average of less than 2 colors per pixel within a tile, storing fragments results in approximately 4x compression relative to supersampling.}

The following subsections describe the format of color data and fragment mask data.

7.1 Destination Color Format

R400 stores multi-sample pixels in two separate surfaces: one surface for pixel colors and a separate surface for the fragment masks (Fmasks). R400 uses a 4-bit Cmask field to specify storage format for the fragment mask and color. The figure below illustrates the color storage format for each value of Cmask.

If Cmask=Background, no color or fragment data is stored for the tile. Instead, each pixel is treated as having a single fragment that covers the entire pixel and is equal to the color_clear value. No data needs to be stored in the color surface in this mode.

If Cmask=Expanded, R400 stores a separate color for each sample. Starting at the base address, R400 stores a complete 2D tiled array for the color at sample 0, followed by a complete 2D tiled array for the color at sample 1, and so forth for the total number of samples per pixel. This format allows the texture logic and software to read multi-sample data by reading S individual 2D arrays for S-sample pixels.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211966

ATI Ex. 2066 IPR2023-00922 Page 155 of 291

Figure 26: Fragment Mask Bit Format

The FragmentN formats allow compression when there are 2 or more samples per pixel. The choices are Fragment1, Fragment2, Fragment4, and Fragment 8 modes, which encode tiles with a maximum of 1, 2, 4, or 8 fragments in any single pixel. In these Cmask modes, each successive 2D array stores a single color per pixel from fragment 0 up to the maximum number of fragments. If the triangles in a scene are relatively large, then most tiles are likely to have at most one or two fragments per pixel. Storing different fragment colors in separate 2D arrays allows more tiles to share the same DDRAM page. This allows larger DDRAM page bursts when there are a small number of fragments per pixel.

7.2 Fragment Mask Format

A fragment mask consists of a set of n-bit fragment mask values, or Fmasks, with one such number per sample in each pixel. Each pixel within an 8x8 tile uses the same number of bits per Fmask. The number of bits in each Fmask depends on the maximum number of fragments per pixel within an 8x8 tile. If each pixel contains exactly one fragment, then no Fmask is required, since a single color completely covers each pixel. If a pixel in the tile contains 2 fragments but none contain more, then each Fmask requires 1-bit to select between one of two fragments per pixel. Similarly, 2-bit fragment masks are required if there is a maximum of 3 or 4fragments per pixel and 3-bit fragment masks are required if there is a maximum of 5 to 8 fragments per pixel. There cannot be more than 8 fragments per pixel, since there cannot be more than 8 samples that could have separate colors.

The Fmask buffer stores one or more 64-bit words per tile. Each 64-bit word stores one bit of Fmask data for one sample of each pixel in the 8x8 tile. The figure below shows the correspondence between the pixels of the tile and the bits in one 64-bit Fmask word.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
word 0	(7,1)	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,1)	(7,0)	(6,0)	(5,0)	(4,0)	(3,0)	(2,0)	(1,0)	(0,0)
word 1	(7,3)	(6,3)	(5,3)	(4,3)	(3,3)	(2,3)	(1,3)	(0,3)	(7,2)	(6,2)	(5,2)	(4,2)	(3,2)	(2,2)	(1,2)	(0,2)
word 2	(7,5)	(6,5)	(5,5)	(4,5)	(3,5)	(2,5)	(1,5)	(0,5)	(7,4)	(6,4)	(5,4)	(4,4)	(3,4)	(2,4)	(1,4)	(0,4)
word 3	(7,7)	(6,7)	(5,7)	(4,7)	(3,7)	(2,7)	(1,7)	(0,7)	(7,6)	(6,6)	(5,6)	(4,6)	(3,6)	(2,6)	(1,6)	(0,6)

Figure 27:	Fragment	Mask	1-Bit/Pixel	Format
------------	----------	------	-------------	--------

The following figure shows multiple 64-bit words that store one Fmask bit each for each of S samples per pixel. The complete Fmask data stores 1, 2 or 3 copies of this set of S 64-bit words. This storge structure allows the RB to read and write either 1-bit, 2-bits, or 3-bits for each sample in the tile. The following table shows the number of micro-tiles required to store a tile of Fmask data for each number of samples and each

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211967

ATI Ex. 2066 IPR2023-00922 Page 156 of 291

A li	ORIGINATE DATE 10 July, 2003	E EDIT DATE [date \@ "d MMMI	DOCUMENT-R M, GEN-CXXXX	DOCUMENT-REV. NUM. GEN-CXXXXX-REVA		
63	48	47 32	31 16	15	0	
÷ s s	word 3, sample 0	word 2, sample 0	word 1, sample 0	word 0, sa	mple 0	
nas mpl		•	••			
bit Fr	word 3, sample S-1	word 2, sample S-1	word 1, sample S-1	word 0, sam	nple S-1	

Figure 28: Fragment Mask 1-Bit/Sample Format

Samples per Pixel	Cmask = Fragment1	Cmask = Fragment2	Cmask = Fragment4	Cmask = Fragment8
1 sample per pixel	0 of 0 micro-tiles	(not used)	(not used)	(not used)
2 samples per pixel	0 of 1 micro-tiles	1 of 1 micro-tiles	(not used)	(not used)
3 samples per pixel	0 of 3 micro-tiles	1.5 of 3 micro-tiles	3 of 3 micro-tiles	(not used)
4 samples per pixel	0 of 4 micro-tiles	2 of 4 micro-tiles	4 of 4 micro-tiles	(not used)
6 samples per pixel	0 of 9 micro-tiles	3 of 9 micro-tiles	6 of 9 micro-tiles	9 of 9 micro-tiles
8 samples per pixel	0 of 12 micro-tiles	4 of 12 micro-tiles	8 of 12 micro-tiles	12 of 12 micro-tiles

Table 1: Fmask Storage Required Per Tile

Finally, the following figure shows the layout of a single tile of Fmask data for each number of samples per pixel and each FragmentN mode. Each row represents S*64-bits of Fmask data. Note that the FragmentN modes are not used when there is only one sample per pixel. In that case, the only allowed Cmask modes are Background and Expanded.

Figure 29: Fragment Mask Bit Storages Format

8. Depth and Stencil Formats

This section describes how the R400 family stores depth and stencil data at varying levels of compression. R400 supports 1, 2, 3, 4, 6, or 8 samples per pixel. Multi-sampled 8x8 tile formats must allocate enough frame buffer memory to be able to fall back to storing a separate value per sample in the cases where the data cannot be compressed. Therefore compression reduces the amount of data that must be read or written, but not the amount of memory that must be allocated.

The figure below illustrates the formats for storing depth data in a tile, depending on the 4-bit Zmask field in the 32-bit tile data word for each tile. If Zmask=Expanded, <u>single-sample</u> depth data is stored in standard micro-tile format as 16-bit or 32-bit pixels. This Expanded format allows <u>single-sample</u> depth and stencil values to be read and written by software and by the texture logic. All other depth formats are only readable and writable by the Render Backend depth logic and by address utility code that translates the compressed formats.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211968

ATI Ex. 2066 IPR2023-00922 Page 157 of 291

Figure 30: Depth Storage Formats

Remaining values of Zmask represent depth compression formats that store the stencil bits separately from depth bits. This allows depth and stencil to be accessed and compressed independently. If Zmask=Background, no depth data is stored in the tile. Instead, each depth value equals the depth_clear value. If Zmask=1-5, depth data is represented as Zplanes, which are described in the following subsection. If Zmask=Separate, depths are stored as a packed array of 16-bit or 24-bit values. The toal number of depth values is 64S, where S is the number of samples per pixel. These are stored as S adjacent arrays of 64 packed depth values, one per sample, similar to the format for storing multiple color fragments.

The following subsections describe stencil compression and Zplane compression.

8.1 Compressed Stencil Formats

The stencil buffer stores 8-bits per sample and is stored together with the depth buffer. Rendering operations can modify a pixel's stencil value based on the result of the depth test and on comparing the current stencil value to a reference value. The reference comparison can also be used to disable modifying the depth and color of the pixel. Allowed stencil modification operations are keeping the old value, setting it to zero, replacing it with the reference value, incrementing it, decrementing it, and inverting it.

The following is a brief summary of common uses of the stencil buffer. See the OpenGL Programming Guide for more information on these algorithms, except for shadow volumes, which is a more recent technique. Most of these algorithms use just two stencil values and set the same stencil value at each pixel that is written in a given triangle. The shadow volume method uses a range of values [base–N..base+N] for some base stencil value, where N depends on the number of overlapping shadows.

- 1) Stippling and irregular masking: set the stencil to define the pixels that can be updated.
- 2) Capping: invert the stencil on each pixel update to find places where clipping exposes an object's interior.
- 3) Non-convex polygons: invert the stencil on each pixel update to find the interior of a non-convex polygon.
- 4) Write once: change the stencil when writing the pixel; don't write if the stencil has already been changed.
- 5) Decals: change the stencil when writing the pixel; only write the decal where the stencil was changed.
- 6) Shadow Volumes: inc/dec the stencil based on projections of occluding objects, to find shadow regions.

Given these usages, R400 supports four types of stencil compression. The following table shows the four stencil compression modes, as selected by the 4-bit Smask field of the 32-bit tile data word. A fast stencil clear of the tile sets Smask to zero, indicating that the entire tile equals the stencil clear color. If Smask!=0, the lower three bits specify whether any stencil values in the tile are greater than (bit 2), less than (bit 1), or equal to (bit 0) a specified stencil compare value. If there aren't any stencil values greater than or less than the stencil compare value, then they all equal the stencil compare value, so again no bits need to be stored for the stencil values.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211969

ATI Ex. 2066 IPR2023-00922 Page 158 of 291

1 Î	ORIGINATE DATE 10 July, 2003	EDIT DATE [date \@ "d MMMM,	DOCUMENT-REV. NUM. GEN-CXXXXX-REVA	PAGE 29 of 34				
Smask	Stencil Compression Mode							
0000	0-bits per stencil: every stencil in the entire tile is equal to the stencil clear value							
0001	0-bits per stencil: every stencil in the entire tile is equal to the stencil compare value							
0010-0111	4-bits per stencil: each	4-bits per stencil: each stencil is the sum of the stencil base value plus an unsigned 4-bit offset						

8-bits per stencil: every stencil in the entire tile is equal to the stencil clear value

8-bits per stencil: each stencil stores the full 8-bit value

Table 2: Stencil Compression Modes

8-bits per stencil: every stencil in the entire tile is equal to the stencil compare value

If the stencils are not all equal to the clear color or the compare color, then there are still two choices. A stencil base value may be used to compress the stencils. The stencil base value is typically set to $max(0, stencil_compare - 8)$. If all the stencil values are in the range [base .. base+15], then a 4-bit offset is sufficient to specify each stencil value, relative to the stencil base. This is primarily useful for multi-sampled pixels. Finally, full 8-bit values may be stored for each stencil if any stencil values are outside the base range or if the stencil surface needs to be decompressed in order to allow software or the texture controller to read them.

If Zmask!=Expanded, stencil values are stored packed together at the start of the tile. If Zmask=Expanded, 8-bit stencils are interleaved with 24-bit depth values to produce 32-bit depth/stencil values, regardless of the value of Smask. This is the only interaction between stencil compression and depth compression. Zmask is only set to Expanded when writing a tile with depth compression disabled or after expanding the depth buffer to uncompressed format.

The table below shows the number of micro-tiles required to store stencil values, depending on the number of samples per pixel. These sizes apply for all depth compression modes except for Lockable. In Lockable mode, stencil values are stored as the lower byte of 32-bit words, for which the upper 24-bits are a depth value. Stencil compression is not available together with the Lockable depth mode, which is only produced as a result of a specific operation that converts single-sample depth/stencil values into a form that is directly readable and writable by software.

Samples per Pixel	Smask = 0000-0001	Smask = 0010-0111	Smask = 1000-1111
1 sample per pixel	0 micro-tiles	2 micro-tiles	4 micro-tiles
2 samples per pixel	0 micro-tiles	4 micro-tiles	8 micro-tiles
3 samples per pixel	0 micro-tiles	6 micro-tiles	12 micro-tiles
4 samples per pixel	0 micro-tiles	8 micro-tiles	16 micro-tiles
6 samples per pixel	0 micro-tiles	12 micro-tiles	24 micro-tiles
8 samples per pixel	0 micro-tiles	16 micro-tiles	32 micro-tiles

	Table	3:	Stencil	Storage	Sizes	in	Micro-Tiles	3
--	-------	----	---------	---------	-------	----	--------------------	---

A future chip could provide delta-encoded compression for stencil values in place of R4000's base/offset compression. This should allow significantly higher compression ratios for multi-sample stencil buffers.

If the stencils are stored as 8-bit values, they are micro-tiled in the stanard way for 8-bit pixels. Compressed 4-bit stencils are stored in a special micro-tile format that uses a 64-bit micro-tile instead of the standard 128-bit micro-tile. As for 8-bit stencils, the format depends on the number of samples. The compressed stencil formats are identical to the formats used for 4-bit Pmask values, which are described in subsection 8.4 below.

8.2 Zplane Depth Representation

1000 1001

1001-1111

R300 introduced compressing depth values by storing a plane equation for each triangle that intersects a tile. The plane equation allows the depth logic to compute a depth value at each sample, so that it is not necessary to store the individual depth values. The tile also stores a mask that specifies which of multiple plane equations to use at each sample.

The R400 Zplane compression format adapts the R300 technique to R400's 8x8 tiles and provides higher precision. As in R300, each Zplane is associated with a single triangle. Therefore, if four triangles are visible in an 8x8 tile, then the compressed tile must store four Zplanes and a 2-bit per sample mask that specifies which Zplane is visible at each sample. If only one triangle is visible in an 8x8 tile, then the compressed tile only needs to store that triangle's Zplane.

R400_MemoryFormat.doc 0 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211970

ATI Ex. 2066 IPR2023-00922 Page 159 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	[date ∖@ "d MMMM,	Specification	30 of 34

The following figure shows the 96-bit Zplane format used in R400. A Zplane contains six values. The slope in X and Y per subpixel (SlopeX and SlopeY) are each specified as a 30-bit fixed point S3.26 number. The depth value at the center of the 8x8 tile (CenterZ) is a 27-bit fixed point S3.23 number. Larger values for SlopeX, SlopeY, and CenterZ must be wrapped to these ranges by dropping higher order bits in fixed-point notation. So long as the depth values computed at sample points inside the primitive are in the range [-8..8), dropping the higher order bits does not affect the final depth value computed by R400 at sample points inside the primitive. The MultiSample bit is described below.

Figure 31: Per-Triangle Zplane Format

The ShiftXY and ShiftZ fields specify bit shift values for the SlopeX, SlopeY, and CenterZ fields, so that they can specify more accurate values with smaller ranges. The figure below shows how ShiftZ affects CenterZ and how ShiftXY affects SlopeX and SlopeY. When the shift is zero, the fixed-point value is converted to an S3.42 fixed-point value (for example) by appending low order zeros, which leaves the numeric value unchanged. Larger ShiftXY or ShiftZ values shift the fixed-point value right by the specified number of bits, sign extending the high order bits. These shifted values represent numbers in the range $[-2^{3-shift}.2^{3-shift}]$. When ShiftZ==15, CenterZ represents values as small as 2^{-38} . When ShiftXY==15, SlopeX and SlopeY represent values as small as 2^{-34} . The slopes represent the change in depth per subpixel, so the smallest nonzero change in depth is 2^{-37} per pixel or 2^{-34} per tile. The smallest nonzero magnitude representable in the 24-bit floating-point depth format is also 2^{-34} , so Zplanes allow specifying a slope of one lsb per tile in all depth formats.

Figure 32: Zplane Format Shifted Numbers

The MultiSample bit specifies whether this Zplane was rendered with multisampling disabled, so that all samples are at the same location, or whether this Zplane was rendered with multisampling enabled, so that multiple samples occur at different locations within the pixel. Clients may enable and disable multisampling while rendering a scene, e.g. disabling it to render high quality anti-aliased lines with alpha blending. Disabling multisampling does not reduce the number of sample points per pixel – it simply moves them all to the same location. The MultiSample bit ensures that when a Zplane is converted to individual samples, this occurs using the multisample state that was valid at the time that the Zplane was generated, so that expanding the Zplane produces the same depth values that would occur if storing a separate depth value per sample.

Computing CenterZ and ShiftZ from a floating-point value FloatZ is straightforward. First convert FloatZ into an S3.42 value FixedZ, truncating low order bits of precision instead of rounding and dropping higher order bits to wrap around to this range. If FloatZ < -4 or FloatZ >= 4, then ShiftZ = 0 and CenterZ = (FixedZ + 2^{-24}) <45:18>, that is, round off the lower 19 bits of FixedZ and use the remaining higher order bits as CenterZ. For smaller magnitudes of FloatZ, count the number of high order bits B in FixedZ that match the sign bit, up to 15. For example, in 0xF2, three high order bits match the sign bit. This can also be determined from the exponent of FloatZ. Then ShiftZ = B and CenterZ = (FixedZ + 2^{-24-B}) <45-B:19-B>, that is, truncate the upper B bits of FixedZ and round off the lower 18-B bits of FixedZ. Finally, check whether rounding FixedZ caused CenterZ to overflow. If so, then ShiftZ = B+1 and CenterZ = 0x4000000 (2.0).

R400_MemoryFormat.doc D 69729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211971

ATI Ex. 2066 IPR2023-00922 Page 160 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	31 of 34

Computing SlopeX, SlopeY and ShiftXY from floating-point values FloatX and FloatY is similar. First convert FloatX and FloatY into S3.42 values FixedX and FixedY, truncating low order bits of precision instead of rounding and dropping higher order bits to wrap around to this range. If FloatX < -4, FloatX >= 4, FloatY < -4, or FloatY >= 4, then ShiftXY = 0, SlopeX = (FixedX + 2^{-27}) <45:16>, and SlopeY = (FixedY + 2^{-27}) <45:16>. For smaller magnitudes, count the number of high order bits BX and BY in FixedX and FixedY that match the sign bit, up to 15, and set B = min(BX,BY). This can also be determined from the exponents of FloatX and FloatY. Then ShiftXY = B, SlopeX = (FixedX + 2^{-27-B}) <45–B:16–B>, and SlopeY = (FixedY + 2^{-27-B}) <45–B:16–B>. Finally, check whether rounding FixedX or FixedY caused SlopeX or SlopeY to overflow. If so, then ShiftXY = B+1 and the overflowing slope or slope equals 0x10000000 (2.0).

Depth values and slopes can be significantly larger than the S3.N fixed-point formats supported above. R400 uses two's complement wraparound for depths and depth gradients. For example, if the true value of SlopeX is 8, the value stored in the Zplane format must be wrapped around to -8. In general, if a slope or CenterZ is outside the range [-8..8), represent it as a fixed point value, truncate higher order bits of integer precision and treat integer bit<3> as the sign bit to get the value to store in the Zplane format, along with a shift value of zero. This works provided that depth values computed at sample points inside the triangle are always in the range [-8..8).

8.3 Zplane Storage Formats

The figures below illustrates the five Zplane formats, which differ based on the number of Zplanes required in the tile and on whether there is one or multiple samples per pixel. Each Zplane occupies 96-bits, so each pair of Zplanes requires three 64-bit words. The Pmask data stores plane mask bits that specify which Zplane to use at each sample in the tile. For Zplane2 mode, there is a 1-bit Pmask per sample or an S-bit Pmask per pixel. For Zplane4 mode, there is a 2-bit Pmask per sample or a 2S-bit Pmask per pixel. For Zplane6 and Zplane16 modes, there is a 4-bit Pmask per sample or a 4S-bit Pmask per pixel.

Figure 33: One to Four Zplane Depth Tile Formats

The single-sample and multi-sample storage formats differ in the location of the Pmask bits. Single-sample modes pack the Pmask bits immediately after the Zplanes. This reduces the number of 256-bit memory accesses required to read or write the compressed depth. Multi-sample formats all store the Pmask bits starting 16*96-bits after the start of the Zplane data. This simplifies the logic without increasing the number of 256-bit accesses.

Note that the Zplane16 mode only stores all 16 Zplanes for multi-sample depth values. For 32-bit single-sample depth values, Zplane16 mode only stores 12 Zplanes, due to the limited size of the tile. Zpane16 format is not supported for 16-bit single-sample depth values, since there is only room in the tile for 8 Zplanes.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211972

ATI Ex. 2066 IPR2023-00922 Page 161 of 291

Figure 34: Eight or More Zplane Depth Tile Formats

The following table shows how many 128-bit (16-byte) micro-tiles are required to store an 8x8 tile of 16-bit or 24-bit depth data for each of the Zplane modes. To determine the number of 256-bit memory accesses required for each format, divide by 2 and round up. For comparison, the table also lists the number of micro-tiles required in the Separate and Expanded formats. The micro-tiles required for Expanded format are listed in parenthese and includes storage for stencil data, if any. Typically, the total tile size for depth/stencil data equals the size of Expanded mode and the amount of memory allocated for depth data within each tile equals the size of the Separate format. Zplane16 mode Requires too many micro-tiles when there is one sample per pixel, so Zplane16 mode can only be used with 2 or more samples per pixel.

Samples	Zplane1	Zplane2	Zplane4	Zplane8	Zplane16	Separate (or Expanded) (6-7)	
per Pixel	(1)	(2)	(3)	(4)	(5)	16-bit depth	24-bit depth
1	0.75	2	4	8	(N/A)	8 (8)	12 (16)
2	0.75	2.5	5	10	16	16 (16)	24 (32)
3	0.75	3.0	6	12	18	24 (24)	36 (48)
4	0.75	3.5	7	14	20	32 (32)	48 (64)
6	0.75	4.5	9	18	24	48 (48)	72 (96)
8	0.75	5.5	11	22	28	64 (64)	96 (128)

Table 4: Depth Storage Sizes in Micro-Tiles

The storage required by the Zplane formats goes up significantly as the number of samples increases, since the number of bits required to store the mask is proportional to the number of samples. A future chip could achieve higher levels of multi-sample compression by encoding the mask data, taking advantage of the fact that adjacent samples typically use the same Zplane.

8.4 Pmask Storage Formats

The compressed depth formats store a Pmask value per sample, which specifies the Zplane that must be used to compute the depth at that sample. Zplane8 and Zplane16 modes store 4-bits per Pmask, Zplane 4 mode stores 2-bits per Pmask, and Zplane2 mode stores 1-bit per Plask. Zplane1 mode does not require a Pmask, since the entire tile is covered by a single Zplane.

The Pmask data is stored as an 8x8 tile in a modified micro-tile format. The pmask values for all of the samples for a pixel are combined into a single pmask-pixel, which is then micro-tiled using 64-bit micro-tiles for 4-bit Pmasks, 32-bit micro-tiles for 2-bit Pmasks, and 16-bit micro-tiles for 1-bit Pmasks. This causes the Pmask micro-tiling to match up

R400_MemoryFormat.doc
G 69729 Bytes***
C ATI Confidential. Reference Copyright Notice on Cover Page

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211973

ATI Ex. 2066 IPR2023-00922 Page 162 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	33 of 34

with the micro-tiling for 8-bit stencil values, which makes it easier for R400 to interleave corresponding stencil and Pmask data in the internal depth/stencil cache.

The figure below shows the Pmask storage pattern for 8-sample pixels. Even and odd scanlines interleave each 16Nbits, where N is the number of bits per Pmask. Each pmask-pixel contains eight N-bit Pmask values. Therefore, a single 16N-bit interleave is filled by two pmask-pixels. As a result, the interleave pattern stores Pmask values for two horizontally adjacent pixels on an even scanline, then two horizontally adjacent pixels on an odd scanline, and so forth. This is like the standard micro-tile format, except that the micro-tile size is 16N-bits instead of 128-bits.

	64N-1	48N	48N-1	32N	32N-1	16N	16N-1	0
0	pmask (2-3, 1)		pmask (2-3, 0)		pmask (0-1, 1)		pmask (0-1, 0)	
1	pmask (6-7, 1)		pmask (6-7, 0)		pmask (4-5, 1)		pmask (4-5, 0)	
2	pmask (2-3, 3)		pmask (2-3, 2)		pmask (0-1, 3)		pmask (0-1, 2)	
3	pmask (6-7, 3)		pmask (6-7, 2)		pmask (4-5, 3)		pmask (4-5, 2)	
4	pmask (2-3, 5)		pmask (2-3, 4)		pmask (0-1, 5)		pmask (0-1, 4)	
5	pmask (6-7, 5)		pmask (6-7, 4)		pmask (4-5, 5)		pmask (4-5, 4)	
6	pmask (2-3, 7)		pmask (2-3, 6)		pmask (0-1, 7)		pmask (0-1, 6)	
7	pmask (6-7, 7)		pmask (6-7, 6)		pmask (4-5, 7)		pmask (4-5, 6)	

N-bit Pmask, 8-sample: 16N-bit interleave of even/odd scanlines

Figure 35: Pmask Interleave For 8 Samples

The next figure shows the Pmask storage patterns for 1-sample, 2-sample, and 4-sample pixels. As before, even and odd scanlines interleave each 16N-bits, where N is the number of bits per Pmask. Each pmask-pixel contains eight N-bit Pmask values. Therefore, a single 16N-bit interleave is filled by two pmask-pixels. As a result, the interleave pattern stores Pmask values for two horizontally adjacent pixels on an even scanline, then two horizontally adjacent pixels on an odd scanline, and so forth. This is like the standard micro-tile format, except that the micro-tile size is 16N-bits instead of 128-bits.

	64N-1 56N 56I	V-1 48N	48N-1 40N	40N-1 32	2N 32N-1	24N 24N	-1 16N	16N-1	8N	8N-1	0
0	pmsk(0-7,7) pm	sk(0-7,5)	pmsk(0-7,6) pmsk(0-7	,4) pmsk	(0-7,3) pm:	sk(0-7,1)	pmsk(0	-7,2)	pmsk(0-	7,0)
		N-bit	Pmask, 1-sa	mple: 16N-I	bit interle	ave of ever	n/odd sca	anlines			
	64N-1	48N	48N-1	32	2N 32N-1		16N	16N-1			0
0	pmask (0-3	7, 3)	pmask	c (0-7, 2)		pmask (0-7	, 1)	pn	nask	(0-7, 0)	
1	pmask (0-	7, 7)	pmask	c (0-7, 6)		pmask (0-7	, 5)	pn	nask	(0-7, 4)	
		N-bit	Pmask, 2-sa	mple: 16N-I	bit interle	ave of ever	n/odd sca	anlines			
	64N-1	48N	48N-1	32	2N 32N-1		16N	16N-1			0
0	pmask (4-	7, 1)	pmask	c (4-7, 0)		pmask (0-3	, 1)	pn	nask	(0-3, 0)	
1	pmask (4-	7, 3)	pmask	(4-7, 2)		pmask (0-3	, 3)	pn	nask	(0-3, 2)	
										(0 0 4)	
2	pmask (4-	7, 5)	pmask	c (4-7, 4)		pmask (0-3	, 5)	pn	nask	(0-3, 4)	
2 3	pmask (4- pmask (4-	7, 5) 7, 7)	pmask pmask	x (4-7, 4) x (4-7, 6)		pmask (0-3 pmask (0-3	, 5) , 7)	pn pn	nask nask	(0-3, 4) (0-3, 6)	

Figure 36: Pmask Interleave For 1, 2, or 4 Samples

The final figure shows the Pmask storage patterns for 3-sample and 6-sample pixels. For these non-power-of-two sample sizes, the Pmask values for some samples of a pixel may be in a different 16N-bit interleave from the Pmask values for the rest of the samples of a pixel. This is notated by marking pixels with letters *a* to *c* for 3-sample pixels or *a* to *f* for 6-sample pixels. So for example, the interleave marked "pmask (0a-5a, 0)" stores all of the Pmask values for Y=0 and X=0 through 4, and also stores the Pmask for the first sample of pixel (5,0).

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211974

		ORIO 1	GINATI 0 July, .	E DAT 2003	E	E [date	DIT D/ \@ "d	ATE MMMN	Л,	R4	l00 Fra Sp	me Bu ecifica	iffer Lay ation	out	:	PAGE 34 of 34
	64N-1	56N	56N-1	48N	48N-1	40N	40N-1	32N	32N-	1 24N	24N-1	16N	16N-1	8N	8N-1	0
0	pmsk(0a-2b,3) pmsk(5b-7c,1)				pmsk(0	0a-2b,2)	pmsk(5	b-7c,0)		pmask (0a-5a,	1)	pm	ıask (0a-5a,0)	
1	pmask (0a-5a, 5)				р	mask (0a-5a,	4)		pmask (2c-7c, 3	3)	pn	nask	(2c-7,2)	
2	pmask (2c-7c, 7)				р	pmask (2c-7c,6)			pmsł	k(0a-2b,7)	pmsk(5	b-7c,5)	pmsk(0a	-2b,6)	pmsk(5b-	7c,4)
				N-bit	Pmask	, 3-san	nple: 1	6N-bit	interi	leave of	even/o	dd sca	nlines			
	64N-1			48N	48N-1			32N	32N-	·1		16N	16N-1			0
0	p	mask (2e-5b,	1)	pmask (2e-5b,0)			pmask (0a-2d, 1)			pmask (0a-2d,0)					
1	p	mask (0a-2d, 3	3)	pmask (0a-2d,2)			pmask (5c-7f,1)			pmask (5c-7f,0)					
2		pmask ((5c-7f,3	3)	p	mask	(5c-7f,2	2)	pmask (2e-5b, 3)			pmask (2e-5b,2)				
3	p	mask (2e-5b,	5)	р	mask (2e-5b,	4)		pmask (0a-2d,	5)	pm	iask (0a-2d,4)	
4	p	mask (0a-2d, '	7)	pmask (0a-2d,6)				pmask	(5c-7f,5	5) 	pn	nask ((5c-7f,4)		
5		pmask	(5c-7f,7	')	p	mask	(5c-7f,6	5)		pmask (2e-5b, [°]	7)	pm	iask (2e-5b,6)	
				N-bit	Pmask	, 6-san	nple: 1	6N-bit	interi	leave of	even/o	dd sca	nlines			

Figure 37: Pmask Interleave For 4 and 6 Samples

Another way to think of these storage formats is to treat them as compressed versions of 8-bit storage formats. Imagine padding out the Pmask values to 8-bits, and then storing them as 8S-bit pixels, where there are S samples. This storage format would use the standard 128-bit microtiling. The 4-bit Pmask format above is the same as this 8-bit format, except with bits<7:4> of each byte omitted. This results in a 64-bit micro-tile, as described above. Similarly, 2-bit and 1-bit Pmask values are stored the same as this 8-bit format, except with bits<7:2> and bits<7:1> omitted from each byte, respectively. The RB logic stores each Pmask value with the stencil value for the same sampleThis compression format makes it easier for the RB logic to match them up, since it means that the sequence of stencil values matches the sequence of Pmask values in memory.

R400_MemoryFormat.doc 🗆 69729 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211975

ATI Ex. 2066 IPR2023-00922 Page 164 of 291

Ar	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXX-REVA	1 of 34
uthor:	Larry Seiler			
ssue To:		Copy I	No:	
	D400 Man		Cassification	
	R400 Wen	lory Format	Specification	
		Version 0.1)	
verview: Th	his specification describes how	pixels and other data are	stored in the frame buffer.	
AUTOMATI	CALLY UPDATED FIELDS:			
Document	Location : C:\r4	00\doc_lib\design\chip\m	emory\R400_MemoryFormat.doc	
Current Int	ranet Search Title: R400	APPROVALS	ecification	
	Name/Dept	AFFROMALS	Signature/Date	
Remarks:				
THE				
THIS DO	OCUMENT CONTAIN	S CONFIDENTIAL	INFORMATION THAT C	OULD BE
SUBSTA	NTIALLY DETRIMENT	AL TO THE INTE	REST OF ATT TECHNOLO	GIES INC.
	THROUGH UN	AUTHORIZED US	E OR DISCLOSURE.	
Opportant 00	04 ATI Technologica los All a	ishte cases and The mote	dat in this desurrant associations on u	meublished week
copyright 20 created in 20	01, ATT rechnologies inc. All r 001. The use of this copyrid	ights reserved. The mate	provide notice that ATI owns a (copyright in this
inpublished w	vork. The copyright notice is no	ot an admission that publi	cation has occurred. This work cont	ains confidential,
proprietary inf	formation and trade secrets of	ATI. No part of this docur	nent may be used, reproduced, or tr	ansmitted in any
orm or by any	y means without the prior writte	n permission of ATI Tech	nologies Inc."	
R400_MemoryFe	ormat. doc 789729 Bytes#*** © ATI Con	fidential. Reference Cor	oyright Notice on Cover Page ⊚ **	• 1001/00 /

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211976

ATI Ex. 2066 IPR2023-00922 Page 165 of 291

Table Of Contents

1.	BACKGROUND4	i.
1.1	System vs. Local Memory4	
1.2	Local Memory Subsets	
1.3	Units of Memory5	ł.
2.	DATA ELEMENT FORMATS	ľ
2.1	Displayable Pixel Formats	Ì.
2.2	Renderable Pixel Formats	Ì
2.3	Texel-Only Formats	ŀ
2.4	Special Data Formats	ľ
3.	1D TILED MEMORY FORMATS 10	
3.1	1D Micro-Tile Formats10	Ĺ
3.2	1D Macro-Tile Formats11	
3.3	1D Address Equations 12	
4.	2D TILED MEMORY FORMATS 13	1
4.1	2D Micro-Tile Formats	ł
4.2	2D Macro-Tile Formats14	
4.3	Special 2D Micro-Tile Formats 15	ł
4.4	Alternate 2D Macro-Tile Formats 17	

4.5	2D Address Equations	. 18
5.	3D TILED MEMORY FORMATS	. 20
5.1	3D Micro-Tile Formats	. 20
5.2	3D Macro-Tile Formats	. 21
5.3	3D Address Equations	. 22
6.	MIPMAP STORAGE	. 23
6.1	Packing 2D Mipmaps	. 23
6.2	2D Mipmap Equations	. 25
6.3	Packing 3D Mipmaps	. 25
6,4	3D Mipmap Equations	. 25
7.	DESTINATION COLOR COMPRESSION	. 25
7.1	Destination Color Format	. 26
7.2	Fragment Mask Format	. 26
8.	DEPTH AND STENCIL FORMATS	. 28
8.1	Compressed Stencil Formats	. 28
8.2	Zplane Depth Representation	. 30
8.3	Zplane Storage Formats	. 31
8.4	Pmask Storage Formats	. 33

Table Of Figures

Figure 1: Local Memory Subset for Banks AB	Figure 20: Pixel Format within 3D Micro-Tiles
Figure 2: One-Component Renderable Pixel Formats7	Figure 21: 3D Macro-Tile Two Subset Format
Figure 3: Two-Component Renderable Pixel Formats7	Figure 22: 3D Macro-Tile Four Subset Format
Figure 4: Three-Component Renderable Pixel Formats 7	Figure 23: 3D Macro-Tile Eight Subset Format
Figure 5: Four-Component Renderable Pixel Formats .8	Figure 24: Mipmap Chain Storage Offsets
Figure 6: 32-Bit Tile Data Word for Render Backend 10	Figure 25: Mipmap Chain Unused Pixels
Figure 7: 1D Micro-Tile Data Formats	Figure 26: Fragment Mask Bit Format
Figure 8: 1D Micro-Tile 1-bit Data Formats	Figure 27: Fragment Mask 1-Bit/Pixel Format
Figure 9: 1D Macro-Tile Formats	Figure 28: Fragment Mask 1-Bit/Sample Format27
Figure 10: 2D Micro-tile Layout Within Tiles	Figure 29: Fragment Mask Bit Storages Format27
Figure 11: Pixel Format within 2D Micro-Tiles	Figure 30: Depth Storage Formats
Figure 12: 2D Macro-Tile Mappings15	Figure 31: Per-Triangle Zplane Format
Figure 13: 2D Micro-tiling for Nonstandard Pixels 16	Figure 32: Zplane Format Shifted Numbers
Figure 14: 4-bit and 24-bit Micro-Tile Formats	Figure 33: One to Four Zplane Depth Tile Formats 32
Figure 15: 2D Macro-Tiling for 32-Bit Per-Tile Data 16	Figure 34: Eight or More Zplane Depth Tile Formats32
Figure 16: Bank-Swapped 2D Macro-Tile Mappings 17	Figure 35: Pmask Interleave For 8 Samples
Figure 17: RB-Swapped 2D Macro-Tile Mappings 18	Figure 36: Pmask Interleave For 1, 2, or 4 Samples34
Figure 18: Dual-Swapped 2D Macro-Tile Mappings18	Figure 37: Pmask Interleave For 4 and 6 Samples 34
Figure 19: 3D Micro-Tile Layout Within Tiles	

Table Of Tables

Table 1: Fmask Storage Required Per Tile	Table 3: Stencil Storage Sizes in Micro-Tiles
Table 2: Stencil Compression Modes	Table 4: Depth Storage Sizes in Micro-Tiles

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211977

ATI Ex. 2066 IPR2023-00922 Page 166 of 291

Revision Changes:

Rev 0.1 (Larry Seiler) Date: March 8, 2001

Rev 0.2 (Larry Seiler) Date: June 25, 2001

Rev 0.3 (Larry Seiler) Date: July 3, 2001 Rev 0.4 (Larry Seiler) Date: October ???, 2001 Rev 0.5 (Larry Seiler) Date: December 20, 2001 Rev 0.6 (Larry Seiler) Date: January 29, 2002

Rev 0.7 (Larry Seiler) Date: March 5, 2002

Rev 0.8 (Larry Seiler) Date: June 4, 2002

Rev 0.8B (Larry Seiler) Date: Rev 0.9 (Larry Seiler) Date: May, 2003, minor edits July 10, 2003 Rev 0.10 (Larry Seiler) Date: October 1, 2003 First draft

Complete rewrite. Added 1D and 3D formats and modified the 2D formats. Added addressing modes, and some information on depth compression.

Added more 3D formats and compressed formats. Various minor changes.

Partially updated version

Revised micro-tile formats, significant additions.

Updated color and depth compression formats, added pixel format descriptions, added tiling for pertile data and non-standard pixels.

Change to 32x32 2D macro-tile size and 32x16x4 3D macro-tile size. Added addressing equations and 2D mipmap packing.

File name and location changed. All surfaces now have a 4KB alignment constraint for allocation. Pitch must be 256-byte multiple for linear arrays. LocalBase eliminated from tiling equations. Zplane format changed. Multi-sample color format changed.

Changed Zplane format to include the MultiSample bit, changed a parenthesis in 3D Ytile computation

Added alternate 2D tiling formats for efficient depth buffering and to support depth with a 3D slice.

Change depth format: separate/expanded modes interleave depth values for multi-sampling and Pmask data is now stored after the Zplanes.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211978

ATI Ex. 2066 IPR2023-00922 Page 167 of 291

1. Background

This document describes how the R400 family maps pixels and other data into local (video) memory and system (AGP) memory. The R400 uses 32-bit device addresses that map both local memory and system memory within a 2¹²-byte device address space. Local memory is accessed through one, two or four memory controllers that each access up to 2²⁶-bytes (256M-bytes) of on-board memory.

Data can be organized into 1D, 2D or 3D arrays. Types of data include coordinates/normals, uncompressed pixels/texels, uncompressed depth/stencil values, and a variety of compressed data formats. 2D and 3D arrays can be organized in interleaved tiles for higher performance. All array sizes can be stored in a linear format, which stores pixels along a scanline at sequential device addresses, but R400 does not support depth buffer operations in linear format.

The subsections below describe some important common characteristics of all of the memory formats in all of the array sizes. These topics include dividing local memory into disjoint subsets, address alignment constraints, and address modes. Following sections describe the bit formats of individual data elements (pixels, texels, etc.), tiling formats for 1D, 2D, and 3D arrays of data elements, and special tile formats for multi-sample data and depth/stencil data.

1.1 System vs. Local Memory

Data can be stored either in local (on-board or frame buffer) memory or in system (AGP/PCI) memory. A specified range of the device address space maps to local memory and the rest maps to system memory.

Logic blocks that compute device addresses need not be aware of whether an address is in local or system memory, though some logic blocks (e.g. the Display Controller) require data in local memory due to latency issues. The system memory bus has significantly lower bandwidth than the local memory bus and has tremendously longer read latency. AGP memory accesses use either 256-bit or 512-bit bursts.

{Give specific ranges for AGP latency. Reference Tom's memory space spec.}

1.2 Local Memory Subsets

The R400 family accesses local on-board memory through one to four independent memory controllers. The R400 has four memory controllers, each of which provides access to one quarter of the local memory. The RV400 has two memory controllers, each of which provides access to half of the local memory. A future integrated version of the chip will have a single memory controller.

Each memory controller is associated with a corresponding render backend block. Each render backend can only access the local memory associated with its own memory controller. Hence the local memory is divided into subsets, so that each memory controller stores the pixels or other data elements that are processed by its associated render backend. All of the render backends can access system memory.

DDRAM memory is divided into multiple banks and pages. Each bank is in effect a separate memory array inside the DDRAM. Each page contains bits from a single row in the internal DDRAM memory array for a given bank. The size of a page in bytes depends on the specific DDRAM part and the number that are used for a single memory controller. Accessing data within the same page of a bank (which is called "column access") is dramatically faster than accessing data in a different page of the bank (which is called "row access"). Accordingly, much effort in the tiling design goes into grouping accesses that are on the same page and avoiding situations where two different pages in a bank must be accessed without intervening accesses in other banks.

Each memory controller contains two separate memory subsets, in order to improve memory access efficiency. The R400 family supports DDRAM memory that is organized into four banks: A, B, C, and D, so each of the two memory subsets per memory controller contains data from two of the banks. For each memory controller, one subset includes

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211979

ATI Ex. 2066 IPR2023-00922 Page 168 of 291

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	5 of 34

banks A and B and the other subset includes banks C and D. Since R400 has four memory controllers, it has eight memory subsets, which are called ab0, ab1, ab2, ab3, cd0, cd1, cd2, and cd3. RV400 has two memory controllers, so its four memory subsets are called ab0, ab1, cd0, and cd1.

Within a memory subset, memory accesses alternate between two banks at the page boundaries. Consider memory subset ab0. The first word of this memory subset is in page 0 of bank A. This is followed by the rest of the words of bank A in page 0, then by page 0 of bank B. Next comes page 1 of bank A, then page 1 of bank B, etc. As a result, the two banks are interleaved on a page-by-page basis. The figure below illustrates this bank alternation for a DDRAM with pages consisting of 256 words. The word size depends on the specific DDRAM type. Each MC reads 64-bit words from multiple DDRAMs in parallel, depending on the DDRAM configuration.

F	bage 0	bank	A	F	age 0	bank	в	F	age 1	bank	A	P	age 1	bank	В
word 0	word		word 255	word	word		word 255	word	word		word 255	word 0	word		word 255

Figure 1: Local Memory Subset for Banks AB

Dividing the memory into subsets in this fashion ensures that sequential accesses within a memory subset are always either within the same page or are within different banks. For example, suppose that a sequential access starts at page 0, bank A, word 255. A large number of accesses to bank B occur before accessing bank A, page 1, word 0. This gives the DDRAM array time to perform the slow "row access" to bank A, in parallel with the fast "column accesses" within bank B.

1.3 Units of Memory

This document describes memory formats in terms of four levels of addressable units in local and system memory. Each addressable unit has different address alignment constraints.

Individual data elements have a wide variety of sizes. Each occupies 2^N-bytes for some value of N and each is naturally aligned on a 2^N-byte boundary. The most common size is 4-bytes (32-bits), which could represent, for example, a 32-bit ARGB pixel or a 32-bit IEEE floating point value.

Data elements are organized into 16-byte (128-bit) micro-tiles. This corresponds to the read/write bus size between each memory controller and its render backend, though each memory access reads or writes an aligned pair of microtiles. A micro-tile may contain four 32-bit floats or a larger number of smaller data elements. For 1D arrays, a micro-tile always contains sequential data in the 1D array. For 2D and 3D arrays, a micro-tile contains data from a single scanline for 16-bit, 32-bit, 64-bit, and 128-bit data elements.

Tiles are variable-sized. For 1D arrays, each tile stores exactly 64-bytes (512-bits), which stores a variable number of data elements, e.g. 64 8-bit pixels or four 128-bit pixels that each contain four 32-bit floats. For 2D and 3D arrays of pixels or texels, each tile stores an 8x8 array of data elements, which occupies a multiple of 64-bytes (512-bits). The most typical data element size for 2D arrays is 32-bits, which results in a 256-byte (2K-bit) tile size. 2D arrays can also store a single per-tile data element, instead of 64 pixel or texel data elements. The Render Backend uses this mode.

A macro-tile is the basic unit of memory allocation in both linear and tiled formats. For linear arrays, each macro-tile is exactly 4K-bytes and contains exactly 16 tiles. For 2D tiled arrays, each macro-tile contains 32x32 pixels, arranged as a 4x4 sub-array of 8x8 pixel tiles. For 3D tiled arrays each macro-tile contains 32x16x4 pixels, arranged as a 4x2x4 sub-array of 8x8x1 pixel tiles.

Finally, a surface is a contiguous range of device address space that is all interpreted the same way, e.g. as either a linear array or a 2D or 3D tiled array with a specific pitch and pixel size. Each surface must start on a 4K-byte aligned address in device address space.

R400_MemoryFormat.doc 769729 Bytes ***
C ATI Confidential. Reference Copyright Notice on Cover Page

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211980

ATI Ex. 2066 IPR2023-00922 Page 169 of 291

2. Data Element Formats

This section describes pixel formats, texel formats, per-tile data formats, and other types of data elements that the R400 reads and writes. These formats are used in the Memory Hub (MH) block to support client memory accesses, in the Texel Central (TC) block to read and interpolate data for the shader programs, and in the Render Backend (RB) block to read and write data render data.

The following subsections divide the data element formats into four groups. Displayable pixel formats are fully supported by R400, including displaying them to the monitor. Renderable pixel formats are usable as render targets with full support for alpha blending (with one exception), as well as for texture inputs. The Texel-Only Pixel formats may be used as texel inputs or render targets, but cannot be alpha blended. The Texel-Only formats cannot be used as render targets. Finally, the Special Data Formats have specific, limited uses.

Each pixel contains between one and four components, named C0 through C3. The TC and RB blocks both contain pixel format descriptors that specify how to interpret the components as numbers and how to map them to the four components that are computed in the shader pipe. The MH block passes them through without interpretation.

{Note: define the number formats here: floating-point, repeating fraction, integer, etc.}

2.1 Displayable Pixel Formats

The pixel formats described below are fully supported by the MH, TC, and RB blocks. Additionally, each of these frame buffer formats may be displayed to the monitor.

{List the displayable pixel formats. Questions: (1) is GRPH_SWAP_RB supported for all formats, or only for the ones listed in the display spec? (2) How are YUV modes supported, and which ones? (3) How does the display logic support unsigned vs. signed vs. float number formats? All three expand differently for use with the linear interpolation table.}

2.2 Renderable Pixel Formats

Renderable pixel formats are those that the RB (render backend) block can produce. They are also fully supported by the MH and TC blocks. Each pixel contains between one and four components, named C0 through C3. The MH block transfers whole pixels without interpreting their content. The TC and RB blocks both contain pixel format descriptors that specify how to interpret the components as numbers and how to map them to the four components that are computed in the shader pipe. The TC allows an arbitrary mapping of the input components to the shader pipe components. The RB supports more limited component mappings, as described below.

The figures in this subsection list multiple names for each renderable pixel format. Names of the form FMT_* are enumeration constants from enum type SurfaceFormat. Names of the form COLOR_* are enumeration constants from enum type ColorFormat, which contains the subset of surface formats that are renderable. Each COLOR_* enumeration name has the same value as a corresponding FMT_* enumeration name.

The figure below illustrates the single-component renderable pixel formats, with their enumeration names. The 8-bit format has three separate pairs of names to support format numbers used by legacy code. The 16-bit formats can either be explicitly floating point or else may use one of several fixed-point number formats. For the 32-bit component size, only the floating-point format is renderable, and the Render Backend cannot alpha blend that component size. The Render Backend can map either the shader pipe Red or Alpha channel to C0.

R400_MemoryFormat.doc 769729 Bytes ***
ATI Confidential. Reference Copyright Notice on Cover Page ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211981

ATI Ex. 2066 IPR2023-00922 Page 170 of 291

Figure 2: One-Component Renderable Pixel Formats

The next figure illustrates the two-component renderable pixel formats. Each format contains two equal size components, labeled C0 and C1. As for the single-component formats, the Render Backend cannot render to 32-bit components unless they are floating point and cannot alpha blend even floating point 32-bit components. The Render Backend can map either the shader pipe GR or AR components to C1 and C0, in that order.

Figure 3: Two-Component Renderable Pixel Formats

The next figure illustrates the three-component renderable pixel formats. Each format contains two components of one size and one component that is one bit different in size, labeled C0, C1 and C2. The Render Backend can map either the shader pipe BGR or RGB components to C2, C1 and C0, in that order.

Figure 4: Three-Component Renderable Pixel Formats

The final figure illustrates the four-component renderable pixel formats. Two of the formats reduce the size of the C3 component and the rest provide an equal number of bits to each component. As for the two-component formats, the RB can render either floating-point or fixed-point 16-bit components, but only floating-point 32-bit components, and it cannot alpha-blend 32-bit components. The Render Backend can map either the shader pipe ABGR or ARGB components to C3, C2, C1 and C0, in that order.

R400_MemoryFormat.doc 180729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211982

ATI Ex. 2066 IPR2023-00922 Page 171 of 291

Aï	ORIGINATE DATE 10 July, 2003	EDIT DATE 1 October, 2003	R400 Frame Bu Specifica	R400 Frame Buffer Layout Specification					
15 1	2 11 8 7	4 3 0	15 14 10 9	5 4	0				
C3<3:0>	C2<3:0> C1<3:0>	> C0<3:0>	C3 C2<4:0> C	C1<4:0> C0	0<4:0>				
FN	MT_4_4_4 (COLOR_4_	4_4_4)	FMT_1_5_5_5 (COLOR_1_5_5_	5)				
31 2	24 23 16 15	8 7 0 3	0 31 29 20 19	10 9	0				
C3<7:0>	C2<7:0> C1<7:0>	> C0<7:0>	C3 C2<9:0> C	C1<9:0> C0	0<9:0>				
FM FMT	T_8_8_8_8 (COLOR_8_8 8_8_8_8_A (COLOR_8_	_8_8) or 8_8_8_A)	FMT_2_10_10_10 (COLOR_2_10_10	0_10)				
63	48 47	32 31	16 1	5	0				
	C3<15:0>	C2<15:0>	C1<15:0>	C0<15:0>					
FMT	_16_16_16_16 (COLOR_1	6_16_16_16) or FMT_16_1	6_16_16_FLOAT (COLOR	_16_16_16_16_FL	OAT)				
127	96 95	64 63	32 3	1	0				
	C3<31:0>	C2<31:0>	C1<31:0>	C0<31:0>					

FMT_32_32_32_32_FLOAT (COLOR_32_32_32_32_FLOAT): not alpha-blendable

Figure 5: Four-Component Renderable Pixel Formats

2.3 Texel-Only Formats

The pixel formats described below are supported by the MH and TC but cannot be read or written by the RB. The MH passes them through without interpreting the bits in each pixel. The MH and TC also support the renderable pixel formats, which are described in the preceeding subsection.

{Describe the YUV formats.}

Y8	7	Byte0 [Y[7] 0]	0						
AVYU444	31	Byte3	24 23	Byte2	16 15	Byte1	8 7	Byte0	0
VYUY422	31	Byte3	24 23	Byte2 ¥1[7:0]	16 15	Byte 1 [U0[7:0]	8 7	Byte0 Y0[7:0]	0
YVYU422	31	Byte3 Milt of	24 23	Byte2 Vo[7:0]	16 15	Byte1	8 7	Byte0	0

The DX formats provide texture compression. The bitmap formats store glyphs in one of several bit orders. {provide more detail.}

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211983

ATI Ex. 2066 IPR2023-00922 Page 172 of 291

11	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	9 of 3
DXT1	63 Byte7 T\$3 T\$2 T\$1 T 31 Byte3	56 55 Byte6 40 40 \$0 T23 T22 T21 T20 T 24 23 Byte2 16 11	7 Byte5 40.39 Byte4 113 T12 T11 T10 T03 T02 T01 6 Byte1 8 7 Byte0	32 T¢0
DXT2/DXT3	127 Byte 15 T33 T32 T31 T 96 Byte 11 R8[4 D]	120119 Byte14 11211 20 T23 T22 T21 T20 1 86 87 Byte10 80 71 60 71 60 71 65 87 Byte10 80 71 60 71 60 71 60 71	1 Byte13 104103 Byte12 1 Byte13 104103 Byte12 1 12 111 110 103 102 101 9 Byte9 72 71 Byte8 1 R0[4-0] 1 100[5 0] 1 100[4	96 Too 64
	63 Byte7 433[3:0] 432[3:1 31 Byte3 413[3:0] 412[3:1	56 55 Byte6 48 43 a] 431]3 a] 430]3 a] 24 23 Byte2 16 14 a] 411]3 a] 410]3 a]	7 Byte5 40.39 Byte4 Å23(3.0) Å22(3.0) Å21(3.0) Å2 5 Byte1 8 7 Byte0 Å03(3.0) Å02(3.0) Å01(3.0) Å02	32 3[3:0] 3[3:0]
DXT4/DXT5	127 Byte15 T\$3 T\$2 T\$1 T 06 B-m11	120119 Byte14 11211 a0 T23 T22 T21 T20 1	1 Byte13 104103 Byte12 113 112 111 110 103 102 101	96 TOO
	63 Byte7 1733 1732	Strip: System Strip: Stri: Stri: Stri: <td>Reĝ(4.0) Solb.0 Bytes 7 Bytes 40.39 Byte4 12 17.24 17.24 17.13 17.12</td> <td>32 7171</td>	Reĝ(4.0) Solb.0 Bytes 7 Bytes 40.39 Byte4 12 17.24 17.24 17.13 17.12	32 7171
	31 Byte3	24 23 Byte2 16 10 Trod trod 1	5 Byte1 8 7 Byte0	

Each value in DXT1 format is treated as a 64-bit pixel that decodes to 4x4 texels. Each value in DXT2 to DXT5 format is treated as a 128-bit pixel that decodes to 4x4 texels. In linear format, N sequential DXTC pixels decode to a 4Nx4 region of texels. In tiled format, 64 sequential DCTC pixels form an 8x8 tile, which decodes to a 32x32 region of texels.

[Include the depth and depth/stencil formats.]

{Describe the following formats:}

1 (1D only)
1_REVERSE (1D only)
16_MPEG
16_16_MPEG
8_INTERLACED
16_INTERLACED (fixed)
16_INTERLACED (float)
16_INTERLACED (expand)
32_AS_8_INTERLACED
32_AS_8

2.4 Special Data Formats

This subsection describes arrayable data elements that have specific, limited purposes.

The Render Backend uses an array of Tile Data words, which store 32-bits for each 8x8 pixel tile. The Tile Data word stores compression and hierarchical information for each tile. The figure below illustrate the Tile Data word. The Cmask field stores the compression format for the Color0 buffer. The Zmask field stores the compression format for depth data in the Depth/Stencil buffer. The Smask field stores the compression format and hierarchical data for the stencil data in

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211984

ATI Ex. 2066 IPR2023-00922 Page 173 of 291

AP	ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
	10 July, 2003	1 October, 2003	Specification	10 of 34

the Depth/Stencil buffer. Finally, the Zrange field encodes bounds on the minimum and maximum depth values in the tile for hierarchical depth kills.

12	11 8	7	4	3	0
	Smask<3:0	Zmask	<3:0>	Cmask<	3:0>
	12	12 11 8 Smask<3:0>	12 11 8 7 Smask<3:0> Zmask	12 11 8 7 4 Smask<3:0> Zmask<3:0>	12 11 8 7 4 3 Smask<3:0> Zmask<3:0> Cmask<

Figure 6: 32-Bit Tile Data Word for Render Backend

{Document the depth formats} Each16-bit pixel consists of a 16-bit repeating fraction depth value, which represents the range [0..1]. Each 32-bit pixel represents an 8-bit stencil value in the low order byte and a 24-bit depth value in the high bytes. The depth is either a 24-bit repeating fraction or a floating point representation with a 4-bit exponent, which represents the range [0..2), though values greater than 1 are not allowed.

{This includes all of the uncompressed formats that are not destination color formats, including bitmap formats, YUV formats, uncompressed depth/stencil values, etc.}

3. 1D Tiled Memory Formats

This section describes tiled memory formats for 1D arrays. In system memory, there is no difference between 1D tiled format and linear format. In local memory, the tiling format describes how the 1D data is interleaved across the memory subsets. For Local Tiled and System Tiled mode, the memory allocated for a 1D array must start and end on a 4Kbyte boundary. For System Linear mode, the array must start and end on a 64-byte boundary.

3.1 1D Micro-Tile Formats

The figure below shows 1D micro-tile formats within a 64-byte tile for 8 bit, 16-bit, 32-bit, 64-bit, and 128-bit data elements. In each case, the tile size is 64-bytes (512-bits) or four 16-byte (128-bit) micro-tiles. Each row in the figure below is a single micro-tile.

127	_		96	95			64	63			32	31			0
D 15	D 14	D 13	D 12	D 11	D 10	D 9	D8	D7	D6	D 5	D4	D 3	D 2	D1	D 0
D 31	D 30	D 29	D 28	D 27	D 26	D 25	D 24	D 23	D 22	D 21	D 20	D 19	D 18	D 17	D 16
D 47	D 46	D 45	D 44	D 43	D 42	D 41	D 40	D 39	D 38	D 37	D 36	D 35	D 34	D 33	D 32
D 63	D 62	D 61	D 60	D 59	D 58	D 57	D 56	D 55	D 54	D 53	D 52	D 51	D 50	D 49	D 48
							8-bit	data							

127	96	95	64	63	32	31	0
D7	D6	D 5	D4	D3	D2	D1	D0
D 15	D14	D13	D 12	D 11	D 10	D 9	D 8
D 23	D 22	D 21	D 20	D 19	D 18	D 17	D 16
D 31	D 30	D 29	D 28	D 27	D 26	D 25	D 24

16-bit data

27	96 95	64 63	32 31	0
	Data 1		Data 0	
	Data 3		Data 2	
	Data 5		Data 4	
	Data 7		Data 6	
		64-hit data		

127	96	95	64	63	32 31	0
Data	13	Data	12	Data 1		Data 0
Data	17	Data	a 6	Data 5		Data 4
Data	11	Data	10	Data 9		Data 8
Data	15	Data	14	Data 13	3	Data 12
			2010			

32-bit data

127	96	95	64 63	32	31	0
			Data 0			
			Data 1			
			Data 2			
			Data 3			
			128-bit data	8		

Figure 7: 1D Micro-Tile Data Formats

R400_MemoryFormat.doc 789729 Bytes***
ATI Confidential. Reference Copyright Notice on Cover Page

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211985

ATI Ex. 2066 IPR2023-00922 Page 174 of 291

	0

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	11 of 34

The texture unit also supports packed 1-bit pixel formats for use as text fonts. {Draw a figure describing these formats, including the bit order.}

to	be	specified
to	be	specified

Figure 8: 1D Micro-Tile 1-bit Data Formats

Finally, note that bytes are stored in local memory packed from lsb to msb of successive data elements, that is, littleendian order. Three byte swap reorderings are supported for data stored in system memory. R400 automatically converts between the different byte swap modes, based on a field that is stored with the offset for each surface.

3.2 1D Macro-Tile Formats

The following figure shows the organization of tiles within a macro-tile for 1D arrays. Each 1D macro-tile occupies 4Kbytes. The left-hand figure shows the organization in system memory, which is simply a linear sequence of 64 64-byte tiles. The column in the center of the figure gives the byte address relative to to the start of the macro-tile, for each tile.

system memory	one MC with two memory subsets		two MCs with four memory subsets	four MCs with eight memory subsets
tile 0	ab, tile 0	0x000	ab0, tile 0	ab0, tile 0
tile 1	ab, tile 1	0x040	ab1, tile 0	ab1, tile 0
tile 2	ab, tile 2	0x080	ab0, tile 1	ab2, tile 0
tile 3	ab, tile 3	0x0C0	ab1, tile 1	ab3, tile 0
tile 30	ab, tile 30	0x780	ab0, tile 15	ab2, tile 7
tile 31	ab, tile 31	0x7C0	ab1, tile 15	ab3, tile 7
tile 32	cd, tile 0	0x800	cd0, tile 0	cd0, tile 0
tile 33	cd, tile 1	0x840	cd1, tile 0	cd1, tile 0
tile 34	cd, tile 2	0x880	cd0, tile 1	cd2, tile 0
tile 35	cd, tile 3	0x8C0	cd1, tile 1	cd3, tile 0
tile 62	cd, tile 30	0xF80	cd0, tile 15	cd2, tile 7
tile 63	cd, tile 31	0xFC0	cd1, tile 15	cd3, tile 7

Figure 9: 1D Macro-Tile Formats

The remainder of the above figure shows the arrangement of micro-tiles in local memory for 2-8 memory subsets (1-4 memory controllers). Tiles are numbered separately within each memory subset. These formats spread sequential array accesses evenly across the memory controllers at a relatively fine granularity. Within a memory controller, these formats produce a burst within one memory subset before switching to the other memory subset. The goal is to produce a large enough burst within a bank to cover the time required to open a page in a different bank, while keeping the bursts small enough to reduce the buffering required to spread sequential accesses across all of the memory controllers.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211986

ATI Ex. 2066 IPR2023-00922 Page 175 of 291

-	0	

The linear array form can also be used for 2D or 3D arrays. A 2D or 3D linear arrays is first converted to a 1D array by computing *Index* = X + Y*Pitch + Z*Height*Pitch. R400 can read texture maps from 2D and 3D linear arrays and can write to them for bitblts. R400 does not support rendering (alpha blending and/or depth buffering) to 2D or 3D arrays that are stored in linear format.

3.3 1D Address Equations

This subsection presents equations for computing addresses in a 1D array. These are also used in computing 2D and 3D array addresses (subsections 4.4 and 5.3). These equations are also implemented in address conversion library code (address.h and address.c). Boldface represents names of parameters that are used in the C library.

The first list below defines parameters that are constant for a given surface. Size and Subsets may be derived from DataSize and Pipes, but are defined separately to simplify the equations. SurfaceBase is the byte address of the start of the surface, which must be 4K-byte aligned. SurfaceBase may be expressed relative to the start of the entire 2²²-byte device address space or within a subrange of the complete device address space, provided that the subrange is also 4K-byte aligned.

 Size
 Bytes per pixel: can be 1, 2, 4, 8, or 16 (or fractions of a byte for non-pixel data)

 DataSize
 64 times Size, equals the total bytes of data in a 2D or 3D tile

 Pipes
 Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4

 Subsets Total number of memory subsets: equals twice the number of pipelines
 1, 2, or 4

 SurfaceBase
 Byte address of pixel zero in device address space or subrange, must be 4K-byte aligned

The second list below names parameters that depend on which pixel is accessed in the 1D array. 1D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list. *MemSelect* and *BankSelect* may be derived from *Subset*, or vice versa. *MacroNumber*, *TileNumber*, and *TileAddr* are temporary values used in computing the other parameters.

Index	Pixel index into the array
ByteAddr	Byte address of the pixel in device address space (or a 4K-byte aligned subrange)
LocalAddr	Byte address of the pixel within its memory subset, starting at byte 0 in the address range
MemSelect	Number of the memory controller that stores this pixel
BankSelect	0 for banks AB or 1 for banks CD, together with MemSelect determines the memory subset
Subset	Subset number, which equals BankSelect + 2*MemSelect
MacroNumber	Sequential number of the macro-tile containing the pixel, starting from device address 0
TileNumber	Sequential number of the tile containing the pixel, within its memory subset and its macro-tile
TileAddr	Byte address of the pixel within its tile, which is entirely contained in a single memory subset

The following equations use *Index* to compute the other address terms, particularly *ByteAddr*. This is used to convert an array access into a device address. Typically *LocalAddr* is not required as part of this step, but it is included for completeness.

TileAddr	= (Index*Size) mod 64:	// 64 bytes per tile
TileNumber	= ((Index*Size/64) mod 32) / Pipes;	// cycle through MCs within each half-macro-tile
MacroNumber	= (Index*Size + SurfaceBase) / 4096;	// 4096 bytes per macro-tile
MemSelect	= (Index*Size/64) mod Pipes;	// cycle through MCs each 64 bytes
BankSelect	= (Index*Size/2048) mod 2;	// CD banks are in high half of each macro-tile
Subset	= BankSelect + 2*MemSelect;	// subset number
ByteAddr	= SurfaceBase + Index*Size;	
LocalAddr	= MacroNumber*4096/Subsets + TileAd	ldr + TileNumber*64;

The following equations use ByteAddr to compute the other address terms, particularly LocalAddr and Subset. This is used to convert a device address into a local memory address within a particular memory subset. Typically Index is not required as part of this step, but it is included for completeness.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211987

ATI Ex. 2066 IPR2023-00922 Page 176 of 291

11	OR)	GINATE DATE 0 July, 2003	EDIT DATE 1 October, 2003	DOCU GEN-	MENT-REV. NUM. CXXXXX-REVA	PAGE 13 of 34
TileA TileN Macr Mem Bank Subs Inde:	ddr lumber roNumber iSelect iSelect set x	= ByteAddr mod (= ((ByteAddr/64) = (ByteAddr/64) r = (ByteAddr/64) r = (ByteAddr/2048 = BankSelect + 2 = (ByteAddr – Su	54; mod 32) / Pipes; 96; nod Pipes; i) mod 2; *MemSelect; infaceBase) / Size;	// 64 bytes per // cycle through // 4096 bytes p // cycle through // CD banks and // subset number	tile n MCs within each half- per macro-tile n MCs each 64 bytes e in high half of each n er	macro-tile
Loca	Addr	= MacroNumber*	4096/Subsets + TileAd	idr + TileNumber	*64:	

The final set of equations use *LocalAddr* and *Subset* to compute the other address terms, particularly *ByteAddr*. The equations for 2D and 3D arrays use (X,Y) addresses to produce *LocalAddr* and *Subset*, which these equations convert into device addresses. Typically only *ByteAddr* is required as the result of this step but the others are provided for completeness.

MemSelect	= Subset / 2;	
BankSelect	= Subset mod 2;	
TileAddr	= LocalAddr mod 64;	// 64 bytes per tile
TileNumber	= (LocalAddr /64) mod (64/Subsets);	// 64 tiles in a macro-tile, over all the subsets
MacroNumber	= LocalAddr * Subsets / 4096;	// 4096 bytes per macro-tile
ByteAddr	= 4096*MacroNumber+2048*BankSele	ct+32*Subsets*TileNumber +64*MemSelect+TileAddr
Index	= (ByteAddr - SurfaceBase) / Size;	

4. 2D Tiled Memory Formats

This section describes how the R400 family stores tiled 2D data arrays. Each tile contains an 8x8 array of data elements. Each 8x8 tile has a micro-tile format that depends on the data element size. Each 2D macro-tile contains a 4x4 array of tiles, which covers 32x32 pixels. This is different from 1D formats, where each tile and macro-tile stores a fixed number of bytes. Like the 1D formats, each 2D tiled surface must start on a 4K-byte boundary.

4.1 2D Micro-Tile Formats

R400 arranges pixels within 8x8 tiles in order to meet two conflicting goals. First, sequential accesses from memory should contain pixels from a roughly square region within the tile. This improves efficiency by a modest amount, due to rendering locality. Second, display updates must be efficient with only one line buffer. This implies that each 256-bit memory access should contain pixels from only two scanlines.

To meet these goals, R400 stores even scanlines of the 8x8 tile in even-numbered micro-tiles and stores odd scanlines in odd-numbered micro-tiles. The figure below shows the order of micro-tiles within an 8x8 tile for the five pixel sizes. For 128-bit pixels, each micro-tile covers a single pixel. For 8-bit pixels, each 256-bit access includes pixels from four different scanlines. This requires display accesses to throw away half of the 8-bit data that it reads, but this loss of efficiency is acceptable for 8-bit pixels. For all other pixel sizes, a 256-bit access reads from just two scanlines.

8.hit Pivele	16-bit Pivele	32-hit	Divale	6	d.bit	Pivel	le		1	28.	ьá	P	vin.	le	
Micro-Tile 3 <127:64>	Micro-Tile 7	MT 13	MT 15	25	27	29	31	4	51	53	55	57	59	61 6	3
Micro-Tile 2 <127:64>	Micro-Tile 6	MT 12	MT 14	24	26	28	30	48	50	52	54	56	58	60 6	12
Micro-Tile 3 <63:0>	Micro-Tile 5	MT 9	MT 11	17	19	21	23	33	35	37	39	41	43	45	17
Micro-Tile 2 <63:0>	Micro-Tile 4	MT 8	MT 10	16	18	20	22	32	34	36	38	40	42	44	16
Micro-Tile 1 <127:64>	Micro-Tile 3	MT 5	MT 7	9	11	13	15	17	19	21	23	25	27	29	31
Micro-Tile 0 <127:64>	Micro-Tile 2	MT 4	MT 6	8	10	12	14	16	18	20	22	24	26	28	30
Micro-Tile 1 <63:0>	Micro-Tile 1	MT 1	MT 3	1	3	5	7	1	3	5	7	9	11	13	5
Micro-Tile 0 <63:0>	Micro-Tile 0	MTO	MT 2	0	2	4	6	0	2	4	6	8	10	121	4

Figure 10: 2D Micro-tile Layout Within Tiles

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211988

ATI Ex. 2066 IPR2023-00922 Page 177 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	1 October, 2003	Specification	14 of 34

For 32-bit and larger pixels, the patterns above map each 256-bit access to a 1:1 or 2:1 region within the tile, therefore meeting the square region criterion. 16-bit pixels have a less efficient 4:1 region, but this is acceptable since smaller pixels require less memory bandwidth. Smaller pixels are also less important in the R400 timeframe. This micro-tile format is efficient enough that it is used for all uncompressed 2D pixel and texel arrays, even though texels do not need to be displayed to the screen.

The figure below shows the (x,y) address of the pixels or texels inside the 16-byte (128-bit) micro-tiles. Only the first two micro-tiles are shown for each pixel size. Except for 8-bit pixels, these micro-tiles only include data from the first two rows of the tile. For 8-bit pixels, they cover the first four rows of the 8x8 tile.

one micro	o-tile is 12	8 bits, as	signified b	y the bold	outline to	r each mir	cro-tile								
127:120	119.112	111.104	103.96	95.88	87.80	79:72	71:64	63.56	55:48	47:40	39:32	31:24	23:16	15:8	7.0
(7,2)	(6,2)	(5,2)	(4,2)	(3,2)	(2,2)	(1,2)	(0,2)	(7,0)	(6,0)	(5,0)	(4,0)	(3,0)	(2,0)	(1,0)	(0,0)
(7,3)	(6,3)	(5,3)	(4,3)	(3,3)	(2,3)	(1,3)	(0,3)	(7,1)	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,1)
Pixel	(7,0)	Pixel	(6,0)	Pixel	(5,0)	Pixel	(4,0)	Pixel	(3,0)	Pixel	(2,0)	Pixe	(1,0)	Pixel	(0,0)
Pixel	(7,1)	Pixel	(6,1)	Pixel	(5,1)	Pixel	(4,1)	Pixel	(3,1)	Pixel	(2,1)	Pixel	(1,1)	Pixel	(0,1)
	Pixel (3,0) Pixel (2,0)						Pixel (1,0)					Pixel (0,0)			
	Pixel	(3,1)			Pixe	12,1)		Pixel (1,1) Pixel (0,1)							1
			Pixel	(1,0)							Pixe	(0,0)			
	Pixel (1,1)							Pixel (0,1)							
							Pixe	(0,0)							3
							Pixe	(0,1)							
	one micr 127 120 (7,2) (7,3) Pixel	one micro-Ne is 12 127:120 119:112 (7,2) (6,2) (7,3) (6,3) Pixel (7,0) Pixel (7,1) Pixel	one micro-tile is 128 bits, as 127.120 119:112 111.104 (7,2) (6,2) (5,2) (7,3) (6,3) (5,3) Pixel (7,0) Pixel Pixel (7,1) Pixel Pixel (3,0) Pixel (3,1)	one micro-tile is 128 bits, as signified b 127.120 119:112 111.104 103.96 (7,2) (6,2) (5,2) (4,2) (7,3) (6,3) (5,3) (4,3) Pixel (7,0) Pixel (6,0) Pixel (7,1) Pixel (6,1) Pixel (3,0) Pixel (3,1) Pixel Pixel Pixel	one micro-tile is 128 bits, as signified by the bold 127.120 119.112 111.104 103.96 95.88 (7,2) (6,2) (5,2) (4,2) (3,2) (7,3) (6,3) (5,3) (4,3) (3,3) Pixel (7,0) Pixel (6,0) Pixel Pixel (7,1) Pixel (6,1) Pixel Pixel (7,1) Pixel (6,1) Pixel Pixel (3,0) Pixel (3,1) Pixel (1,0) Pixel (1,1)	Pixel (7,2) (6,2) (5,2) (4,2) (3,2) (2,2) (7,3) (6,3) (5,3) (4,3) (3,3) (2,3) Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (7,1) Pixel (6,1) Pixel (5,0) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (3,0) Pixel (5,1) Pixel Pixel (3,1) Pixel Pixel Pixel (1,0) Pixel Pixel (1,1)	Pixel (7,0) Pixel (6,0) Pixel (5,1) Pixel (2,0) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (2,0) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel Pixel (3,0) Pixel (2,0) Pixel (2,0) Pixel (1,0) Pixel (1,1) Pixel (1,1)	Pixel (7,2) (6,2) (5,2) (4,2) (3,2) (2,2) (1,2) (0,2) (7,3) (6,3) (5,3) (4,3) (3,3) (2,3) (1,3) (0,3) Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (4,0) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (4,1) Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (4,1) Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel (3,1) Pixel (2,0) Pixel (4,1) Pixel (1,0) Pixel Pixel (1,1) Pixel Pixel	One micro-Ne is 128 bits, as signified by the bold outline for each micro-Ne 127.120 119.112 111.104 103.96 95.88 87.80 79.72 71.64 63.56 (7,2) (6,2) (5,2) (4,2) (3,2) (2,2) (1,2) (0,2) (7,0) (7,3) (6,3) (5,3) (4,3) (3,3) (2,3) (1,3) (0,3) (7,1) Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (4,0) Pixel Pixel (7,1) Pixel (6,1) Pixel (5,1) Pixel (4,1) Pixel Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel Pixel (3,1) Pixel (2,0) Pixel (2,0) Pixel (1,0) Pixel (1,1) Pixel (1,0) Pixel (0,0) Pixel (0,0)	Pixel (7,0) Pixel (6,0) Pixel (5,1) Pixel (4,0) Pixel (3,0) Pixel (3,1) Pixel (1,0) Pixel (2,0) Pixel (0,0) Pixel (0,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,0) Pixel (0,0)	Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (4,0) Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel (3,1) Pixel (1,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,1) Pixel (0,1) Pixel (0,1)	Pixel (7,0) Pixel (6,0) Pixel (5,1) Pixel (4,0) Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel (3,1) Pixel (1,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,0)	Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (4,0) Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel (3,1) Pixel (1,0) Pixel (1,1) Pixel (0,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,1) Pixel (0,1) Pixel (0,1)	Pixel (7,0) Pixel (6,0) Pixel (5,0) Pixel (4,0) Pixel (3,0) Pixel (5,1) Pixel (4,1) Pixel (3,1) Pixel (2,0) Pixel (1,1) Pixel (0,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,1) Pixel (0,1) Pixel (0,1)	Pixel (7,0) Pixel (6,0) Pixel (5,1) Pixel (4,0) Pixel (3,1) Pixel (1,0) Pixel (1,1) Pixel (0,0) Pixel (1,1) Pixel (1,1) Pixel (0,0) Pixel (0,1) Pixel (0,1) Pixel (0,1)

Figure 11: Pixel Format within 2D Micro-Tiles

4.2 2D Macro-Tile Formats

Each 2D macro-tile stores a 32x32 array of pixels, organized into 16 8x8 tiles. The macro-tile format depends on the number of memory subsets, which is twice the number of memory controllers. The following figure shows the layout of 8x8 tiles within 32x32 macro-tiles for 1, 2, and 4 memory controllers. Bold lines mark 32x32 macro-tiles. Light lines mark 8x8 tiles. The upper line of text in each 8x8 tile specifies the memory subset and the lower line of text specifies the order of the tiles within their memory subset.

The three macro-tile formats have several properties in common. First, each macro-tile allocates an equal number of 8x8 tiles to each memory subset, which makes it simpler to allocate memory. Second, tile addresses in memory increase from left to right within each macro-tile and between macro-tiles on the same scanline. Finally, moving vertically by one macro-tile increments the tile address by a value *L*, which is equal to the pitch (line length) in pixels, divided by four times the number of memory controllers. The pitch must be a multiple of 32 pixels.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211989

ATI Ex. 2066 IPR2023-00922 Page 178 of 291

Ari	

ORIGINATE	DATE	EDIT D	DATE		DOCU	MEN	VT-R	EV. N	IUM.	PAGE
10 July, 2	003	1 Octobe	er, 2003		GEN+CXXXXX-REVA					15 of 34
one MC w memory s	ith two ubsets	two M	ICs with hory sub	four sets	fo	ur I mei	MCs	with subs	eight ets	
ab ab a 0 2	ab ab 4 6	ab0 a	ab1 ab0 0 2	ab1 2	а	b0 0	ab1 0	ab2 0	ab3 0	
ab ab a 1 3	ab ab 5 7	ab1 a	ab0 ab1 1 3	ab0 3	а	b2 1	ab3 1	ab0 1	ab1 1	
cd cd 0 0 2	cd cd 4 6	cd0 c	0 2	cd1 2	0	d0 0	cd1 0	cd2 0	cd3 0	
cd cd o 1 3	cd cd 5 7	cd1 c	cd0 cd1 1 3	cd0 3	0	d2 1	cd3 1	cd0 1	cd1 1	
ab ab a L 2+L 4	ab ab +L 6+L	ab0 a	ab1 ab0 L 2+L	ab1 2+L	а	b0 L	ab1 L	ab2 L	ab3 L	
ab ab a 1+L 3+L 5	ab ab +L 7+L	ab1 a 1+L 1	ab0 ab1 1+L 3+L	ab0 3+L	a 1	b2 +L	ab3 1+L	ab0 1+L	ab1 1+L	
cd cd c L 2+L 4	cd cd +L 6+L	cd0 c	2+L	cd1 2+L	0	d0 L	cd1 L	cd2 L	cd3 L	
cd cd (cd cd	cd1 (cd0 cd1	cd0	0	d2	cd3 1+1	cd0	od1	

Figure 12: 2D Macro-Tile Mappings

Another common property is that if there are N memory controllers, then each Nx1 row of tiles places a tile in each memory controller. This is necessary for efficient display accesses. The display reads across rows of 8x8 tiles and sometimes requires a significant fraction of the total memory bandwidth. Alternating between the memory controllers allows the display to spread its bandwidth equally between them. This also makes it more efficient to render large primitives, since the Scan Converter steps horizontally before it steps vertically. The bank alternation within a memory subset ensures that page crossings do not occur while rendering horizontal swaths of pixels.

The remaining property that the macro-tile formats have in common is that the upper half of each macro-tile uses bank AB memory subsets and the lower half uses bank CD memory subsets. This reduces page crossings when rendering vertical swaths of pixels. A vertical line first touches two tiles in AB subsets, followed by two tiles in CD subsets. The next tile is once again in an AB subset and could be on a different page of the same bank as the initial accesses. Interspersing the CD subset accesses makes it more likely that the Memory Controller will have accesses to perform while waiting for the bank to become ready. However, vertical motion is not as efficient as horizontal motion in these macro-tile formats.

Finally, note that the first memory controller on odd rows of 8x8 tiles is offset by 1 for two memory controllers and is offset by two for four memory controllers. This has the effect that each 2x2 block of tiles hits each memory controller the same number of times. Putting together all of these properties, the 8x8 tiles nearest to any tile that are in the same memory controller are either on the same page of the same bank or are in a different bank. Further, with two or four memory controllers, moving horizontally or vertically to an adjacent tile also moves to a different memory controller.

4.3 Special 2D Micro-Tile Formats

The previous section describes micro-tile formats for standard pixel sizes. The Render Backend requires several additional pixel sizes for depth, stencil, and multifragment mask data. These pixels require special micro-tile formats that are only read and written by the Render Backend. Additionally, the Render Backend requires a micro-tile format that stores a single data element per tile, instead of a data element per pixel.

The following figure illustrates the micro-tile packing formats for non-standard pixel sizes. Like the standard micro-tile formats, these formats put even scanlines into even micro-tiles and odd scanlines into odd micro-tiles. The smallest allowed pixel size is 4-bits, since at that size an entire tile occupies one even and one odd micro-tile. The 4-bit and 12-bit formats do not permit byte masking of individual pixels. All but the 4-bit format cause pixels to cross micro-tile boundaries. All but the 48-bit format cause micro-tiles to touch multiple scanlines (as does the 8-bit micro-tile format). For these reasons, surfaces that use these formats are not readable or writable by software through the Memory Hub. They are only read and written by the Render Backend.

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211990

ATI Ex. 2066 IPR2023-00922 Page 179 of 291

A Î	ORIGINATE D	ATE 03	1	EDI Octo	T DATE	E 003	R400 Frame Buffer Layout Specification					PAGE 16 of 34		
Micro-Tile 0 <31	:0>	Micro	-Tile 0 <9	5:0>	1		Micro	-Tile 0	MT2 lo	<63:0>	MT 0	MT 2	MT 4	
Micro-Tile 1 <31	:0>	Micro-	-Tile 1 <9	5:0>	1		Micro	-Tile 1	MT3 lo		MT 1	MT 3	MT 5	
Micro-Tile 0 <63:	32> <127.96>	MTO	MT 2 <6	63:0>	1	<127:64>	MT2 hi	Micro	-Tile 4	<63:0>	MT 6	MT 8	MT 10	
Micro-Tile 1 <63.3	32> <127.96>	MT 1	MT 3 <6	63:0>	1	<127:64>	MT3 hi	Micro	-Tile 5		MT 7	MT 9	MT 11	
Micro-Tile 0 <95:	84>	MT 2 <1	127:64>	MT 4	<31:0>		Micro	Tile 6	MT8 lo	<63:0>	MT 12	MT 14	MT 16	
Micro-Tile 1 <95:0	84>	MT 3 <1	127:64>	MT 5	<31:0>		Micro	-Tile 7	MT9 lo		MT 13	MT 15	MT 17	
Micro-Tile 0 <127:	96>	Micro-T	Tile 4 <12	7:32>		<127:64>	MT8 hi	Micro	Tile 10	<63:0>	MT 18	MT 20	MT 22	
Micro-Tile 1 <127:	96>	Micro-T	Tile 5 <12	7:32>	1	<127:64>	MT9 hi	Micro	Tile 11	1	MT 19	MT 21	MT 23	
4-bit Pixels	A	12-	bit Pixe	els			24	-bit Pi	cels	703	48	bit Pix	els	

Figure 13: 2D Micro-tiling for Nonstandard Pixels

The figure below shows the (x,y) address of the pixels or texels inside the 16-byte (128-bit) micro-tiles for the 4-bit and 24-bit pixel sizes. Each row specifies a different micro-tile. 4-bit data occupies just two micro-tiles. 24-bit data requires 12 micro-tiles, with some pixels splitting across micro-tile boundaries. 12-bit pixels and 48-bit pixels require 6 and 24 micro-tiles, respectively.

127	96 9	95	6	4 63		32 31		(
Pixel (7-0, 6) Pixel		Pixel (Pixel (7-0, 4) Pixel (el (7-0, 2)	7-0, 2) Pixel		0)
Pixel (7-0, 7) Pixel (4,0) Pi		Pixel (Pixel (7-0, 5) Pixel (3,0) Pixel (Pixel (7-0, 3) ixel (2,0) Pixel (1,0)		Pixel (7-0, 1)	
		Pixel (3,						
Pix	el (4,1)	Pixel (3,	1)	Pixel (2,1)	Pi	xel (1,1)	Pixel (0,1)	
Pixel (2,2)	Pixel (1,2) P	ixel (0,2)	Pixel	(7.0)	Pixel (6,0)) Pix	el (5,0)
Pixel (2,3)	Pixel (1,3) P	ixel (0,3)	Pixel	(7,1)	Pixel (6,1	(el (6,1) Pixel (5,1	
Pixel (7,2) Pix	(el (6,2)	Pixel (5,2)	Pixel (4,2	2) Piz	Pixel (3,2)	
Pixel (7,3) Pix	(el (6,3)	Pixel (5,3)	Pixel (4,3	3) Piz	Pixel (3,3)	
Pix	el (4,4)	Pixel (3,	(4)	Pixel (2,4)	Pi	cel (1,4)) Pixel (0,4)) Pixel (0,5)	
Pix	el (4,5)	Pixel (3,	,5)	Pixel (2,5)	Pi	cel (1,5)		
Pixel (2,6)	Pixel (1,6) P	ixel (0,6)	Pixel	(7,4)	Pixel (6,4	t) Pix	el (5,4)
Pixel (2,7) Pixel (1,7)) P	Pixel (0,7)		(7,5)	Pixel (6,5	5) Pix	el (5,5)
Pixel (7,6) Pixel ((el (6,6)	(6) Pixel (5,6)		Pixel (4,6)		Pixel (3,6)	
Pixel (7.7) Pia	(el (6.7)	Pixel (7) Pixel (4.		7) Pi	Pixel (3,7)	

Figure 14: 4-bit and 24-bit Micro-Tile Formats

Finally, data that is stored on a per-tile basis is not micro-tiled at all. Instead, each tile simply stores a specified number of bits. The Render Backend stores 32-bits per tile to record the tile's compression. In this case, the macro-tile format is exactly the same as described in the previous section, except that there may be fewer than 512-bits per tile. {Note: say a lot more about this.}

one MC with two memory subsets

ab	ab	ab	ab
0.0	0.2	1.0	1.2
ab	ab	ab	ab
0.1	0.3	1.1	1.3
cd	cd	cd	cd
0.0	0.2	1.0	1.2
cd	cd	cd	cd
0.1	0.3	1.1	1.3

two MCs with four memory subsets

ab0	ab1	ab0	ab1
0.0	0.0	0.2	0.2
ab1	ab0	ab1	ab0
0.1	0.1	0.3	0.3
cd0	cd1	cd0	cd1
0.0	0.0	0.2	0.2
cd1	cd0	cd1	cd0
0.1	0.1	0.3	0.3

four MCs with eight memory subsets

ab0	ab1	ab2	ab3	ab0	ab1	ab2	ab3
0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2
ab2	ab3	ab0	ab1	ab2	ab3	ab0	ab1
0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3
cd0	cd1	cd2	cd3	cd0	cd1	od2	cd3
0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2
cd2	cd3	cd0	cd1	cd2	cd3	cd0	cd1
0.1	0.1	01	0 1	03	03	03	03

Figure 15: 2D Macro-Tiling for 32-Bit Per-Tile Data

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211991

ATI Ex. 2066 IPR2023-00922 Page 180 of 291
AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	17 of 34

4.4 Alternate 2D Macro-Tile Formats

There are three variations of the standard 2D macro-tile formats. These variations exist to improve performance for depth buffering and to allow a 2D depth buffer to be used in conjunction with a slice from a 3D color buffer. R400 does not support these alternate for display buffers, but they may be used for rendering, memory apertures, and texture mapping. {Check whether the 3D slice format actually gets supported for texture maps.} As with the figures in section , these figures show a box per 8x8 tile, with the upper line of text in each box listing the banks and RB number and the lower line of text giving the order in which the tiles are stored within their memory subset.

The figure below shows an alternate 2D tiling pattern that swaps the AB and CD bank assignment relative to the standard pattern that is described in section 4.2. This macro-tile pattern is particularly appropriate for depth buffers. If the same 2D tiling is used for both the depth buffer and the color buffer, then large area operations will tend to cause the Render Backend to read and write both of them in the AB banks or both of them in the CD banks. Using the bank-swapped alternate tiling illustrated below for the depth buffer increases the number of different banks that are likely to be open at the same time, thus increasing memory efficiency.

one	MC mory	with subs	two sets	two mer	MCs	with subs	four sets	four me	MCs mory	with subs	eight ets
cd	cd	cd	cd	cd0	cd1	cd0	cd1	cd0	cd1	cd2	cd3
0	2	4	6	0	0	2	2	0	0	0	0
cd	cd	cd	cd	cd1	cd0	cd1	cd0	cd2	cd3	cd0	cd1
1	3	5	7	1	1	3	3	1	1	1	1
ab	ab	ab	ab	ab0	ab1	ab0	ab1	ab0	ab1	ab2	ab3
0	2	4	6	0	0	2	2	0	0	0	0
ab	ab	ab	ab	ab1	ab0	ab1	ab0	ab2	ab3	ab0	ab1
1	3	5	7	1	1	3	3	1	1	1	1
cd	cd	cd	cd	cd0	cd1	cd0	cd1	cd0	cd1	cd2	cd3
L	2+L	4+L	6+L	L	L	2+L	2+L	L	L	L	L
cd	cd	cd	cd	cd1	cd0	cd1	cd0	cd2	cd3	cd0	cd1
1+L	3+L	5+L	7+L	1+L	1+L	3+L	3+L	1+L	1+L	1+L	1+L
ab	ab	ab	ab	ab0	ab1	ab0	ab1	ab0	ab1	ab2	ab3
L	2+L	4+L	6+L	L	L	2+L	2+L	L	L	L	L
ab	ab	ab	ab	ab1	ab0	ab1	ab0	ab2	ab3	ab0	ab1
1+L	3+L	5+L	7+L	1+L	1+L	3+L	3+L	1+L	1+L	1+L	1+L

Figure 16: Bank-Swapped 2D Macro-Tile Mappings

A 2D depth buffer may be used with a single slice of a 3D color buffer. This requires a 2D tiling pattern that maps each pixel to the same RB that it is mapped to in the 3D tiling pattern. Section 5.2 describes 3D macro-tiling patterns, which map pixel in an (x,y) column to one of two RBs, depending on the value of Z. One of the two RB assignments matches the RB assignments in the standard 2D macro-tiling pattern. The other RB assignment swaps the RB numbers. The swapped 2D macro-tiling pattern below matches this alternate RB mapping for 3D slices. A 2D depth surface may be used with slices of a 3D color array by selecting either the standard or this swapped macro-tiling pattern, depending on the slice selected from the 3D array.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211992

ATI Ex. 2066 IPR2023-00922 Page 181 of 291

11	ORIGII 10 J	NATE July, 1	E DAT 2003	E	ED 1 Oc	NT D	ATE r, 20	03		R400	Frame Spec	e Buf	fer La ion	ayout	PA 18 o	GE f 34	
	one me	e MC	with subs	two sets		two me	MCs mory	with subs	four		four me	MCs mory	with subs	eight ets			
	ab 0	ab 2	ab 4	ab 6		ab1 0	ab0 0	ab1 2	ab0 2		ab2 0	ab3 0	ab0 0	ab1 0			
	ab 1	ab 3	ab 5	ab 7		ab0 1	ab1 1	ab0 3	ab1 3		ab0 1	ab1 1	ab2 1	ab3 1			
	cd 0	cd 2	cd 4	cd 6		cd1 0	cd0 0	cd1 2	cd0 2		cd2 0	cd3 0	cd0 0	cd1 0			
	cd 1	cd 3	cd 5	cd 7		cd0 1	cd1 1	cd0 3	cd1 3		cd0 1	cd1 1	cd2 1	cd3 1			
	ab L	ab 2+L	ab 4+L	ab 6+L		ab1 L	ab0 L	ab1 2+L	ab0 2+L		ab2 L	ab3 L	ab0 L	ab1 L			
	ab 1+L	ab 3+L	ab 5+L	ab 7+L		ab0 1+L	ab1 1+L	ab0 3+L	ab1 3+L		ab0 1+L	ab1 1+L	ab2 1+L	ab3 1+L			
	cd L	cd 2+L	cd 4+L	cd 6+L		cd1 L	cd0 L	cd1 2+L	cd0 2+L		cd2 L	cd3 L	cd0 L	cd1 L			
	cd 1+L	cd 3+L	cd 5+L	cd 7+L		cd0 1+L	cd1 1+L	cd0 3+L	cd1 3+L		cd0 1+L	cd1 1+L	cd2 1+L	cd3 1+L			

Figure 17: RB-Swapped 2D Macro-Tile Mappings

The final new macro-tiling pattern is a combination of the preceeding two. The macro-tilings illustrated above and below allow selecting a 2D pattern that either does or does not swap the AB and CD banks relative to the 3D slices that do not match the standard 2D macro-tiling. The 3D macro-tiling described in section 5.2 matches the pattern below because it swaps both RBs and banks. So the pattern above, that swaps just the RBs, should be used to cause a 2D depth surface to use a different bank for each tile than the 2D tile pattern uses.

one	MC mory	with subs	two sets	two f	MCs	with subs	four	four me	MCs	with subs	eight ets
cd	cd	cd	cd	cd1	cd0	cd1	cd0	cd2	cd3	cd0	cd1
0	2	4	6	0	0	2	2	0	0	0	0
cd 1	cd 3	cd 5	cd 7	cd0 1	cd1 1	cd0 3	cd1 3	cd0	cd1 1	cd2	od3 1
ab	ab	ab	ab	ab1	ab0	ab1	ab0	ab2	ab3	ab0	ab1
0	2	4	6	0	0	2	2	0	0	0	0
ab	ab	ab	ab	ab0	ab1	ab0	ab1	ab0	ab1	ab2	ab3
1	3	5	7	1	1	3	3	1		1	1
cd	cd	cd	cd	cd1	cd0	cd1	cd0	cd2	cd3	cd0	cd1
L	2+L	4+L	6+L	L	L	2+L	2+L		L	L	L
cd	cd	cd	cd	cd0	cd1	cd0	cd1	cd0	cd1	cd2	od3
1+L	3+L	5+L	7+L	1+L	1+L	3+L	3+L	1+L	1+L	1+L	1+L
ab	ab	ab	ab	ab1	ab0	ab1	ab0	ab2	ab3	ab0	ab1
L	2+L	4+L	6+L	L	L	2+L	2+L		L	L	L
ab	ab	ab	ab	ab0	ab1	ab0	ab1	ab0	ab1	ab2	ab3
1+L	3+L	5+L	7+L	1+L	1+L	3+L	3+L	1+L	1+L	1+L	1+L

Figure 18: Dual-Swapped 2D Macro-Tile Mappings

4.5 2D Address Equations

This subsection presents equations for computing addresses in a 2D array. This is a two-step process that makes use of the 1D array equations of subsection 3.3. The first list below defines parameters that are constant for a given surface. The second list names parameters that depend on which pixel is accessed in the array. 2D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list.

Size	Bytes per pixel: can be 1, 2, 4, 8, or 16 (or 1/8 for 1-bit pixels)
DataSize	64 times Size, equals the total bytes of data in a 2D tile
Pipes	Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211993

ATI Ex. 2066 IPR2023-00922 Page 182 of 291

10/01/03 02:23 PM

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN+CXXXXX-REVA	19 of 34

Subsets Total n	umber of memory subsets: equals twice the number of pipelines	
SurfaceBase	Byte address of pixel zero in device address space, must be 4K-byte aligned	
TileSize	Bytes per tile: equals 64*Size, except for special tile formats that contain multiple pixel arrays	
TileBase	Byte address of first pixel in a tile: normally zero, a multiple of 64 for special tile formats	
Pitch	The width of each scanline in pixels, must be a multiple of 32	
AltBank	Boolean that selects alternate 2D macro-tile pattern that exchanges banks AB and CD	
SwapRB	Boolean that selects swapping the RB numbers in the 2D macro-tile pattern	
X, Y	Pixel location in the 2D array	
LocalAddr	Byte address of the pixel within its memory subset, starting from device address 0	
SubsetOffset	Byte address of the pixel within its memory subset, starting from pixel (0,0) of the surface	
MemSelect	Number of the memory controller that stores this pixel	
BankSelect	0 for banks AB or 1 for banks CD, together with MemSelect determines the memory subset	
Subset	Subset number, equals BankSelect + 2*MemSelect	
MacroOffset	Sequential number of the macro-tile containing the pixel, starting from SurfaceBase	
TileNumber	Sequential number of the tile containing the pixel, within its memory subset and its macro-tile	
TileAddr	Byte address of the pixel within its tile, starting from the first byte of the tile	
TileOffset	Byte address of the pixel within its tile, relative to TileBase (which is normally zero)	

The following equations use X and Y to compute the other address terms, particularly LocalAddr and Subset. The final set of equations in subsection 3.3 uses these results to produce a device address.

BankSelect	= ((Y/16) mod 2) ^ AltBank; //	Banks change for high/low half of each macro-tile
MemSelect	= (X/8 + ((Y/8 mod 2)^SwapRB)*(Pipes/2))	mod Pipes; // Offset memory in alternate rows
Subset	= BankSelect + 2*MemSelect;	// subset number
TileNumber	= ((X mod 32)/8/Pipes)*2 + (Y/8 mod 2);	// Odd tile numbers are in odd rows
MicroByte	= (X mod 8 + ((Y mod 8)/2)*8)*Size	// Byte address within tile for even scanlines
0.010110-00000	, , , , , , , , , , , , , , , , , , , ,	Odd scanlines get odd micro-tiles within an 8x8 tile
TileOffset	= (MicroByte mod 16) + (Y mod 2)*16 + (M	/licroByte/16)*32;
TileAddr	= TileBase + TileOffset;	// The tile may contain other data as well
MacroOffset	= (X/32) + (Y/32) * (Pitch/32);	// There are Pitch/32 macro-tiles per row
SubsetOffset	= MacroOffset*TileSize*16/Subsets + TileN	lumber*TileSize + TileAddr;
LocalAddr	= SurfaceBase/Subsets + SubsetOffset:	

The following equations use AltBank, SwapRB. LocalAddr and Subset to compute the other address terms, particularity the (X, Y) array address. The final set of equations in subsection 3.3 convert a device address into LocalAddr and Subset and these equations complete the conversion to an (X, Y) array address.

MemSelect	= Subset / 2;	
BankSelect	= Subset mod 2;	
SubsetOffset	= LocalAddr - SurfaceBase/Subsets;	// subset address in surface
TileAddr	= SubsetOffset mod TileSize;	// byte address within the tile
TileOffset	= TileAddr - TileBase;	// byte address within subset of the tile
MacroOffset	= SubsetOffset * Subsets / 16 / TileSize;	// 16*TileSize bytes per macro-tile
TileNumber	= SubsetOffset/TileSize mod (16/Subsets);	// 16 8x8 tiles per macro-tile over all subsets
MicroByte	= TileOffset mod 16 + (TileOffset/32)*16; // by	te address within even micro-tiles
Ymacro	= MacroOffset*32/Pitch;	// Macro-tile offset vertically
Xmacro	= MacroOffset mod Pitch/32;	// macro-tile offset horizontally
Ytile	= (BankSelect^AltBank)*2 + (TileNumber mod	2);// tile 0, 1, 2, or 3 vertically in macro-tile
Xtile	= (MemSelect + ((Y/8 mod 2) ^SwapRB)*Pipe	s/2) mod Pipes + (TileNumber/2)*Pipes;
Ymicro	= ((MicroByte mod 16)/8 + (TileOffset/32)*2) /	Size; // row pair in tile due to micro-tiling
Xbyte	= MicroByte mod (8*Size);	// byte address within first 8x1 scanline
Y	= Ymacro*32 + Ytile*8 + Ymicro*2 + (TileOffs	et/16 mod 2);
x	= Xmacro*32 + Xtile*8 + Xbyte/Size;	An the stand standard and the standard standar

Note that these equations also work for non-standard pixel sizes and per-tile data. For 4-bit or 24-bit pixels, set Size to 1/2 or 3, set TileSize to the number of bytes in the tile, e.g. 64*32 and set TileBase to the starting byte in the tile for the

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211994

ATI Ex. 2066 IPR2023-00922 Page 183 of 291

ORIGINATE DATE EDIT DATE R400 Frame Buffer Layout 10 July, 2003 1 October, 2003 Specification	PAGE 20 of 34
---	------------------

pixel data, e.g. 0 or 8*64. For per-tile data, set *TileSize* to the number of bytes of data per tile and set X and Y to multiples of 8, that is, the lowest pixel address for the specified tile. This forces *MacroOffset* to zero, which causes *Size* to be ignored.

5. 3D Tiled Memory Formats

This section describes how the R400 family stores tiled 3D data arrays. Each tile contains an 8x8x1 array of data elements. Each 8x8x1 tile has a micro-tile format that depends on the data element size. Each 3D macro-tile contains a 4x1x4 array of tiles, which covers 32x8x4 pixels. This is different from 1D formats, where each tile and macro-tile stores a fixed number of bytes. Like the 1D formats, each 3D tiled surface must start on a 4K-byte boundary. Additionally, each NxMx4 slice of the 3D array must start on a 4K-byte boundary, so that individual 3D slices may be accessed as if they are a 2D array. {Is the 4K-byte restriction necessary?}

5.1 3D Micro-Tile Formats

Tiles in 3D arrays cover 8x8x1 data elements, even though the best aspect ratio for 3D tiles is probably a 4x4x4 array of data elements. That aspect ratio would provide the greatest degree of locality for random reads, for example, and therefore should be more efficient. However, the implementation is simpler if 3D tile formats are similar to 2D tile formats, for two reasons. First, this reduces the amount of multiplexing and address decoding required to read 3D texels. Second, it makes it simpler to render to (X, Y) slices within the 3D array. Therefore, the 3D tile formats encode an 8x8x1 tile of data elements, in exactly the same way as for 2D tiles.

The figure below shows how an 8x8x1 tile divides into micro-tiles for different pixel sizes. The numbers are the relative micro-tile addresses within the tile. 64-bits is the maximum size allowed for texels in 3D arrays. Unlike 2D arrays, 3D arrays do not support 4-bit and 24-bit pixel sizes.

8-bit Pixels	16-bit Pixels	32-bit	Pixels	6	4-bit	Pixel	ls		12	8-1	bit I	Pix	els	
Micro-Tile 3 <127:64>	Micro-Tile 7	MT 13	MT 15	25	27	29	31	49	51	53	55 5	7 56	61	63
Micro-Tile 2 <127:64>	Micro-Tile 6	MT 12	MT 14	24	26	28	30	48	50	52	54 5	6 58	60	62
Micro-Tile 3 <63:0>	Micro-Tile 5	MT 9	MT 11	17	19	21	23	33	35	37	39 4	1 43	45	47
Micro-Tile 2 <63:0>	Micro-Tile 4	MT 8	MT 10	16	18	20	22	32	34	36	38 4	042	44	46
Micro-Tile 1 <127:64>	Micro-Tile 3	MT 5	MT 7	9	11	13	15	17	19	21	23 2	5 27	29	31
Micro-Tile 0 <127:64>	Micro-Tile 2	MT 4	MT 6	8	10	12	14	16	18	20	22 2	4 26	28	30
Micro-Tile 1 <63:0>	Micro-Tile 1	MT 1	MT 3	1	3	5	7	1	3	5	7 8	9 11	13	15
Micro-Tile 0 <63.0>	Micro-Tile 0	MT 0	MT 2	0	2	4	6	0	2	4	6 8	3 10	12	14

Figure 19: 3D Micro-Tile Layout Within Tiles

The figure below shows the format of texels inside each 16-byte (128-bit) micro-tiles. Pixels from even scanlines are in the lower 64-bits of each micro-tile and pixels from odd scanlines are in the upper 64-bits.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211995

ATI Ex. 2066 IPR2023-00922 Page 184 of 291

41		ORIGINATE DATE 10 July, 2003				E 1 C	EDIT D. October	ATE r, 2003	ě	DOCUMENT-REV. NUM. GEN-CXXXXX-REVA						PAGE 21 of 34		
C	one micro	>tle is 12	8 bits, as	signified b	y the bold	outline to	r each mic	pro-tile		222				2225		-		
1	(7.2)	(6.2)	(5.2)	103.96	95:88	8/30	/1 2)	/1:64	63.56	55:48	47:40	39:32	3124	23:16	15.8	7.0		
data	(7,3)	(6,3)	(5,3)	(4,2)	(3,3)	(2,3)	(1,3)	(0,2)	(7,1)	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,0)		
16-bit	Pixel	(7.0)	Pixel	(6.0)	Pixel	(5.0)	Pixel	(4.0)	Pixel	(3.0)	Pixel	(2.0)	Pixel	(1.0)	Pixe	(0,0)		
data	Pixel	(7,1)	Pixel	(6,1)	Pixel	(5,1)	Pixel	(4,1)	Pixel	(3,1)	Pixel	(2,1)	Pixel	(1,1)	Pixe	(0,1)		
32-bit		Pixel	(3,0)			Pixel	(2,0)			Pixe	(1,0)			Pixe	1 (0,0)			
data		Pixel	(3,1)			Pixe	12,1)			Pixel	(1,1)	_		Pixe	(0,1)			
64-bit				Pixel	(1,0)							Pixel	1 (0,0)					
data				Pixel	(1,1)							Pixel	l (0,1)					
128-bit	_							Pixel	(0,0)									
data								Pixel	el (0,1)							- 8		

Figure	20:	Pixel	Format	within	3D	Micro-Tiles
--------	-----	-------	--------	--------	----	-------------

{Note: We should find a way to determine if we lose significant performance by not implementing 4x4x4 3D tiles.}

5.2 3D Macro-Tile Formats

The 3D macro-tile formats store a 32x16x4 array of data elements. This size allows reasonably efficient movement through the 3D array in either the X, Y, or Z directions, as described below. Although the tile size is 16 in Y, software should constrain the size in Y to a multiple of 32. That guarantees that each NxMx4 slab of 3D data occupies a multiple of 4K-bytes, even for 8-bit data elements. It is also simpler than enforcing a different Y height constraint for 3D arrays than for 2D arrays. The macro-tile size is expressed as 32x16x4, however, rather than as 32x32x4, because the 32x8x4 macro-tile size stores a contiguous array of bytes within each of the memory subsets. A 32x32x4 region includes bytes from two discotguous regions within each memory subset, unless the pitch happens to equal 32.

The following figures show the layout of 8x8x1 tiles within 32x16x4 macro-tiles for 3D arrays. Each figure shows two macro-tiles (slab 0 and slab 1) comprising a 32x16x8 region, since even and odd slices in Z use a different subset pattern. Each row of a figure shows the four slices within a macro-tile. Light lines mark tiles within the macro-tiles. The upper line of text in each tile specifies the memory subset. The lower line specifies the tile number within that memory subset. S equals the number of tiles per subset in a slice of the 3D array.

slab	slab 0, slice 0 (Z=0) slab 0, slice 1 (Z=					(Z=1)	slab 0, slice 2 (Z=2)				(Z=2)	slab 0, slice 3 (Z=3				
ab	ab	ab	ab	ab	ab	ab	ab		ab	ab	ab	ab	ab	ab	ab	ab
0	4	8	12	1	5	9	13		2	6	10	14	3	7	11	15
cd	cd	cd	cd	od	od	cd	cd		cd	cd	cd	cd	cd	cd	od	cd
0	4	8	12	1	5	9	13		2	6	10	14	3	7	11	15
slab	1, sli	ce 0 ((Z=4)	slab	1, sli	ce 1	(Z=5)		slab	1, sli	ce 2	(Z=6)	slab	1, sli	ce 3	(Z=7
cd S	cd 4+S	cd 8+S	cd 12+S	cd 1+S	od 5+S	cd 9+S	cd 13+S		cd 2+S	cd 6+S	cd 10+S	cd 14+S	cd 3+S	cd 7+S	od 11+S	cd
ab	ab	ab	ab	ab	ab	ab	ab		ab	ab	ab	ab	ab	ab	ab	ab
S	4+S	8+S	12+S	1+S	5+S	9+S	13+S		2+S	6+S	10+S	14+S	3+S	7+S	11+S	15+

Figure 21: 3D Macro-Tile Two Subset Format

The figure above shows the tiled format for two memory subsets. This occurs when there is just one rendering pipeline. Movement in Y or Z through the 3D array hits both memory subsets. Movement in X hits only one memory subset, but alternates between the two banks within that subset. If the page size is 256 64-bit words and pixels are 64-bits in size or

R400_MemoryFormat.doc 189729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211996

ATI Ex. 2066 IPR2023-00922 Page 185 of 291

A î	ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
	10 July, 2003	1 October, 2003	Specification	22 of 34

smaller, horizontally adjacent tiles are either in the same page of the same bank or are in different banks. This is not true for 128-bit pixels, but in that case sweeping across a single tile hits eight 256-bit accesses in the same page.

slab	0, sli	ce 0	(Z=0)	slab	0, sli	ce 1	(Z=1)	slab	0, sli	ce 2	(Z=2)	slab	0, sli	ce 3	(Z=3)
ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1
0	0	4	4	1		5	5	2	2	6	6	3	3	7	7
cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0
0	0	4	4	1	1	5	5	2	2	6	6	3	3	7	7
slab	1, sli	ce 0 ((Z=4)	slab	1, sli	ce 1	(Z=5)	slab	1, sli	ce 2	(Z=6)	slab	1, sli	ce 3	(Z=7)
cd1	cd0	cd1	cd0	cd1	cd0	cd1	cd0	od1	cd0	cd1	cd0	cd1	cd0	cd1	cd0
S	S	4+S	4+S	1+S	1+S	5+S	5+S	2+S	2+S	6+S	6+S	3+S	3+S	7+S	7+S
ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1	ab0	ab1

Figure 22: 3D Macro-Tile Four Subset Format

The figures above and below show the tiled format for four and eight memory subsets. Movement in Y or Z through the 3D array hits two memory subsets in different pipelines. Movement in X hits half of the memory subsets, one per pipeline. If the page size is 256 64-bit words and pixels are 64-bits in size or smaller, horizontally adjacent tiles in the same pipeline are either in the same page of the same bank or are in different banks. This is not true for 128-bit pixels, but in that case sweeping across a single tile hits eight 256-bit accesses in the same page.

Figure 23: 3D Macro-Tile Eight Subset Format

5.3 3D Address Equations

This subsection presents equations for computing addresses in a 3D array. This is a two-step process that makes use of the 1D array equations of subsection 3.3. The first list below defines parameters that are constant for a given surface. The second list names parameters that depend on which pixel is accessed in the array. 3D address equations use the parameters in the first list and one or more of the parameters in the second list to define the remaining parameters in the second list.

Size	Bytes per pixel: can be 1, 2, 4, 8, or 16
DataSize	64 times Size, equals the total bytes of data in the 3D tile
Pipes	Total number of Render Backend/Memory Controller pipelines: 1, 2, or 4
Subsets Total n	umber of memory subsets: equals twice the number of pipelines
SurfaceBase	Byte address of pixel zero in device address space, must be 4K-byte aligned
TileSize	Bytes per tile (should always equal 64*Size for 3D arrays, defined for consistency with 2D)
TileBase	Byte address of first pixel in a tile (should always be zero for 3D arrays)
Pitch	The width of each scanline in pixels, must be a multiple of 32
Height	The height of each slice in scanlines, must be a multiple of 16 (should be multiple of 32)
X. Y. Z	Pixel location in the 3D array
LocalAddr	Byte address of the pixel within its memory subset, starting from device address 0

R400_MemoryFormat.doc 79729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211997

ATI Ex. 2066 IPR2023-00922 Page 186 of 291

A î	ORIGINATE DATE		EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003		1 October, 2003	GEN-CXXXXX-REVA	23 of 34
Subs Mem Bank Subs Mac TileN TileA TileO	setOffset Select set roOffset Jumber sddr Dffset	Byte address of the mail Number of the mail 0 for banks AB of Subset number, e Sequential number Sequential number Byte address of the Byte address of the statement of the stat	he pixel within its memory emory controller that stores 1 for banks CD, together equals BankSelect + 2*Mer er of the macro-tile contain er of the tile containing the he pixel within its tile, starti he pixel within its tile, relating	subset, starting from pixel (0,0) of the this pixel with MemSelect determines the mer nSelect ing the pixel, starting from SurfaceB pixel, within its memory subset and ng from the first byte of the tile we to TileBase (which is normally ze	ne surface mory subset Base its macro-tile ro)

The following equations use X, Y and Z to compute the other address terms. This is used to convert an array access into a *Subset* and *LocalAddr*. The final set of equations in subsection 3.3 uses these results to produce a device address.

BankSelect	= (Y/8 + Z/4) mod 2;	// CD banks alternate every 8 Y and 4 Z						
MemSelect	= (X/8 + BankSelect*(Pipes/2)) mod Pipes;	// Offset memory in alternate rows and slabs						
Subset	= BankSelect + 2*MemSelect;	// subset number						
TileNumber	= (Z mod 4) + ((X mod 32)/8/Pipes)*4;	// Groups of four tiles vertically						
MicroByte	= (X mod 8 + ((Y mod 8)/2)*8)*Size	// Byte address within tile for even scanlines						
	// Oc	Id scanlines get odd micro-tiles within an 8x8 tile						
TileOffset	= (MicroByte mod 16) + (Y mod 2)*16 + (Micro	roByte/16)*32;						
TileAddr	= TileBase + TileOffset;	// The tile may contain other data as well						
MacroOffset	= (X/32) + (Pitch/32) * ((Y/16) + (Height/16)*)	(Z/4));						
SubsetOffset	= MacroOffset*TileSize*32/Subsets + TileNumber*TileSize + TileAddr;							
LocalAddr	= SurfaceBase/Subsets + SubsetOffset;							

The following equations use LocalAddr, BankSelect and MemSelect to compute the other address terms. This is used to convert a device address into an (X, Y) array address. The final set of equations in subsection 3.3 produces LocalAddr, BankSelect and MemSelect from a device address.

SubsetOffset	= LocalAddr - SurfaceBase/Subsets;	// relative subset address in surface						
TileAddr	= SubsetOffset mod TileSize;	// byte address within the tile						
TileOffset	= TileAddr - TileBase;	// byte address within subset of the tile						
MacroOffset	= SubsetOffset * Subsets / 32 / TileSize;	// 32*TileSize bytes per macro-tile						
TileNumber	= SubsetOffset/TileSize mod (32/Subsets);	// 32 8x8 tiles per macro-tile over all subsets						
MicroByte	= TileOffset mod 16 + (TileOffset/32)*16;							
Z	= (TileNumber mod 4) + (MacroOffset*32*16/	Pitch/Height)*4;						
Ymacro	= (MacroOffset*32/Pitch mod Height/16); // Ma	acro-tiles vertically within a slab						
Ytile	= (BankSelect + (Z/4 mod 2)) mod 2;	// tile 0 or1 vertically in macro-tile						
Y	= Ymacro*16 + Ytile*8 + (TileOffset/16/Size)*	2 + (TileOffset/16 mod 2);						
Xmacro	= MacroOffset mod Pitch/32;							
Xtile	= (MemSelect + BankSelect*Pipes/2) mod Pip	pes + (TileNumber/4)*Pipes;						
Xbyte	= MicroByte mod (8*Size);	// Byte address within first 8x1 scanline						
X	= Xmacro*32 + Xtile*8 + Xbyte/Size;							

6. Mipmap Storage

{This section is for any special issues involving texture storage that belong in a whole-chip document instead of in the TC block spec. At present the only such issue is mipmap storage.}

6.1 Packing 2D Mipmaps

Small 2D surfaces waste a lot of space if each dimension must be increased to a multiple of 32. This is a particular problem for mipmap chains, which produce many small mipmaps. For example, if each mipmap produced by a 32x32 texture map requires a full macro-tile, then the mipmap chain requires 6*32*32 = 6144 pixels instad of 1365 pixels. The

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211998

ATI Ex. 2066 IPR2023-00922 Page 187 of 291

ORIGINATE DATE	EDIT DATE	R400 Frame Buffer Layout	PAGE
10 July, 2003	1 October, 2003	Specification	24 of 34

problem is worse for small texels, since each surface must start on a 4K-byte boundary. With 8-bit texels, the mipmap chain would require 6*4K-bytes = 24K-bytes, instead of 1365-bytes.

R400 solves this problem in two ways. First, each texture is specified with two surface descriptors. The first points to the base texture map, which has dimensions that are increased to multiples of 32. The second points to the start of the mipmap chain and R400 automatically computes the starting address of each subsequent mipmap in the chain. Each texture map in the mipmap chain has its dimensions increased to a power of 2 and each starts at an address that is a multiple of 4K-bytes.

Additionally, R400 packs the small mipmaps at the tail of the mipmap chain into a single 32x32 tile. Each mipmap has a position in the final tile that is based solely on the maximum of the width and height of that mipmap. The figure below shows the layout. Each mipmap in the chain is increased in size, if necessary, to a square mipmap with width and height equal to a power of two. The location where each mipmap is stored depends solely on its (increased) size. Any mipmap in the chain that has width > 16 or height > 16 is stored as a separate surface that uses a multiple of 4K-bytes. The final mipmaps also require a minimum of 4K-bytes, which is larger than a single 32x32 macro-tile for 8-bit and 16-bit texels.

Figure 24: Mipmap Chain Storage Offsets

If the mipmaps are actually squares with width and height equal to a power of two, the above format uses 341 of 1024 pixels in the two tiles, wasting 683 or 2/3 of the pixels in the tile. The figure below shows examples of mipmaps with nonsquare aspect ratios and the number of pixels wasted in each case. Note that for each mipmap, texel (0,0) is stored in the same location as for the corresponding square mipmaps in the figure above.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0211999

ATI Ex. 2066 IPR2023-00922 Page 188 of 291

Figure 25: Mipmap Chain Unused Pixels

Rendering to mipmaps that are packed this way requires altering the window offset. For example, to render to a mipmap that is expanded to 16x16, set the base address to the start of the macro-tile and increase the X offset by 16. Future chips may use different offsets or packing formats, so the driver should obtain mipmap positions and offsets from code that is delivered with the hardware.

6.2 2D Mipmap Equations

{Describe how R400 computes the position of each mipmap in the chain and the total memory required for any mipmap chain.}

6.3 Packing 3D Mipmaps

{Define a 3D mipmap packing format.}

{Proposal: pack the final 3D mipmaps into a 32x32x32 cube, which contains 16 3D macro-tiles. Each 3D mipmap is expanded to a cube with all three sizes equal to a power of two that is greater than or equal to its largest dimension. }

{Variant: The same as the above, except only force the X and Y dimensions to match. Allow the Z dimension to be a power of two that is less than X or Y. This causes the packed mipmap to use a variable number of tiles.}

6.4 3D Mipmap Equations

{Describe how R400 computes the position of each mipmap in the chain and the total memory required for any mipmap chain.}

7. Destination Color Compression

R400 supports rendering to pixels with 1, 2, 3, 4, 6, or 8 samples per pixel. To a large extent, the aliased mode (1 sample per pixel) is just a special case of the multi-sample modes (2, 3, 4, 6, or 8 samples per pixel), though there are some operations, such as multi-buffer rendering, that are available only for single-sample pixels.

R400 stores multi-sample color data as fragments. A fragment is a pixel color together with a mask that specifies the samples within the pixel where that color is visible. As a result, if an operation writes a single color to an entire pixel, e.g. in the interior of a triangle, only one color (plus the mask) is necessary to describe the entire pixel. If there are S samples per pixel, the pixel could have as many as S fragments, but multiple fragments are only needed if multiple triangles are visible within a single pixel. Unless triangles are extremely small, it is quite common for a pixel to have just one fragment. The maximum number of fragments per pixel within an 8x8 tile is also typically small, so fragments result in significant compression. (For example, if there are eight samples per pixel and an average of less than 2 colors per pixel within a tile, storing fragments results in approximately 4x compression relative to supersampling.)

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212000

ATI Ex. 2066 IPR2023-00922 Page 189 of 291

The following subsections describe the format of color data and fragment mask data.

7.1 Destination Color Format

R400 stores multi-sample pixels in two separate surfaces: one surface for pixel colors and a separate surface for the fragment masks (Fmasks). R400 uses a 4-bit Cmask field to specify storage format for the fragment mask and color. The figure below illustrates the color storage format for each value of Cmask.

If Cmask=Background, no color or fragment data is stored for the tile. Instead, each pixel is treated as having a single fragment that covers the entire pixel and is equal to the color_clear value. No data needs to be stored in the color surface in this mode.

If Cmask=Expanded, R400 stores a separate color for each sample. Starting at the base address, R400 stores a complete 2D tiled array for the color at sample 0, followed by a complete 2D tiled array for the color at sample 1, and so forth for the total number of samples per pixel. This format allows the texture logic and software to read multi-sample data by reading S individual 2D arrays for S-sample pixels.

The FragmentN formats allow compression when there are 2 or more samples per pixel. The choices are Fragment1, Fragment2, Fragment4, and Fragment 8 modes, which encode tiles with a maximum of 1, 2, 4, or 8 fragments in any single pixel. In these Cmask modes, each successive 2D array stores a single color per pixel from fragment 0 up to the maximum number of fragments. If the triangles in a scene are relatively large, then most tiles are likely to have at most one or two fragments per pixel. Storing different fragment colors in separate 2D arrays allows more tiles to share the same DDRAM page. This allows larger DDRAM page bursts when there are a small number of fragments per pixel.

7.2 Fragment Mask Format

A fragment mask consists of a set of n-bit fragment mask values, or Fmasks, with one such number per sample in each pixel. Each pixel within an 8x8 tile uses the same number of bits per Fmask. The number of bits in each Fmask depends on the maximum number of fragments per pixel within an 8x8 tile. If each pixel contains exactly one fragment, then no Fmask is required, since a single color completely covers each pixel. If a pixel in the tile contains 2 fragments but none contain more, then each Fmask requires 1-bit to select between one of two fragments per pixel. Similarly, 2-bit fragment masks are required if there is a maximum of 3 or 4fragments per pixel and 3-bit fragment masks are required if there is a maximum of 5 to 8 fragments per pixel. There cannot be more than 8 fragments per pixel, since there cannot be more than 8 samples that could have separate colors.

The Fmask buffer stores one or more 64-bit words per tile. Each 64-bit word stores one bit of Fmask data for one sample of each pixel in the 8x8 tile. The figure below shows the correspondence between the pixels of the tile and the bits in one 64-bit Fmask word.

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212001

ATI Ex. 2066 IPR2023-00922 Page 190 of 291

-	0

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	27 of 34

2	15	14	13	12	11	10	9	8	7	6	5	. 4	3	2	1	0
word 0	(7,1)	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)	(0,1)	(7,0)	(6,0)	(5,0)	(4,0)	(3,0)	(2,0)	(1,0)	(0,0)
word 1	(7,3)	(6,3)	(5,3)	(4,3)	(3,3)	(2,3)	(1,3)	(0,3)	(7,2)	(6,2)	(5,2)	(4,2)	(3,2)	(2,2)	(1,2)	(0,2)
word 2	(7,5)	(6,5)	(5,5)	(4,5)	(3,5)	(2,5)	(1,5)	(0,5)	(7,4)	(6,4)	(5,4)	(4,4)	(3,4)	(2,4)	(1,4)	(0,4)
word 3	(7.7)	(6,7)	(5,7)	(4,7)	(3,7)	(2,7)	(1,7)	(0,7)	(7,6)	(6,6)	(5,6)	(4,6)	(3,6)	(2,6)	(1,6)	(0,6)

Figure 27: Fragment Mask 1-Bit/Pixel Format

The following figure shows multiple 64-bit words that store one Fmask bit each for each of S samples per pixel. The complete Fmask data stores 1, 2 or 3 copies of this set of S 64-bit words. This storge structure allows the RB to read and write either 1-bit, 2-bits, or 3-bits for each sample in the tile. The following table shows the number of micro-tiles required to store a tile of Fmask data for each number of samples and each

Figure 28: Fragment Mask 1-Bit/Sample Format

Samples per Pixel	Cmask = Fragment1	Cmask = Fragment2	Cmask = Fragment4	Cmask = Fragment8
1 sample per pixel	0 of 0 micro-tiles	(not used)	(not used)	(not used)
2 samples per pixel	0 of 1 micro-tiles	1 of 1 micro-tiles	(not used)	(not used)
3 samples per pixel	0 of 3 micro-tiles	1.5 of 3 micro-tiles	3 of 3 micro-tiles	(not used)
4 samples per pixel	0 of 4 micro-tiles	2 of 4 micro-tiles	4 of 4 micro-tiles	(not used)
6 samples per pixel	0 of 9 micro-tiles	3 of 9 micro-tiles	6 of 9 micro-tiles	9 of 9 micro-tiles
8 samples per pixel	0 of 12 micro-tiles	4 of 12 micro-tiles	8 of 12 micro-tiles	12 of 12 micro-tiles

Table 1: Fmask Storage Required Per Tile

Finally, the following figure shows the layout of a single tile of Fmask data for each number of samples per pixel and each FragmentN mode. Each row represents S*64-bits of Fmask data. Note that the FragmentN modes are not used when there is only one sample per pixel. In that case, the only allowed Cmask modes are Background and Expanded.

Cmask Modes for 6 or 8 Samples per Pixel

Figure 29: Fragment Mask Bit Storages Format

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212002

ATI Ex. 2066 IPR2023-00922 Page 191 of 291

8. Depth and Stencil Formats

This section describes how the R400 family stores depth and stencil data at varying levels of compression. R400 supports 1, 2, 3, 4, 6, or 8 samples per pixel. Multi-sampled 8x8 tile formats must allocate enough frame buffer memory to be able to fall back to storing a separate value per sample in the cases where the data cannot be compressed. Therefore compression reduces the amount of data that must be read or written, but not the amount of memory that must be allocated.

The figure below illustrates the formats for storing depth data in a tile, depending on the 4-bit Zmask field in the 32-bit tile data word for each tile. If Zmask=Expanded, single-sample depth data is stored in standard micro-tile format as 16-bit or 32-bit pixels. This Expanded format allows single-sample depth and stencil values to be read and written by software and by the texture logic. All other depth formats are only readable and writable by the Render Backend depth logic and by address utility code that translates the compressed formats.

Figure 30: Depth Storage Formats

Remaining values of Zmask represent depth compression formats that store the stencil bits separately from depth bits. This allows depth and stencil to be accessed and compressed independently. If Zmask=Background, no depth data is stored in the tile. Instead, each depth value equals the depth_clear value. If Zmask=1-5, depth data is represented as Zplanes, which are described in the following subsection. If Zmask=Separate, depths are stored as a packed array of 16-bit or 24-bit values. The toal number of depth values is 64S, where S is the number of samples per pixel. These are stored as S adjacent arrays of 64 packed depth values, one per sample, similar to the format for storing multiple color fragments.

The following subsections describe stencil compression and Zplane compression.

8.1 Compressed Stencil Formats

The stencil buffer stores &bits per sample and is stored together with the depth buffer. Rendering operations can modify a pixel's stencil value based on the result of the depth test and on comparing the current stencil value to a reference value. The reference comparison can also be used to disable modifying the depth and color of the pixel. Allowed stencil modification operations are keeping the old value, setting it to zero, replacing it with the reference value, incrementing it, decrementing it, and inverting it.

The following is a brief summary of common uses of the stencil buffer. See the OpenGL Programming Guide for more information on these algorithms, except for shadow volumes, which is a more recent technique. Most of these algorithms use just two stencil values and set the same stencil value at each pixel that is written in a given triangle. The shadow volume method uses a range of values [base–N..base+N] for some base stencil value, where N depends on the number of overlapping shadows.

- 1) Stippling and irregular masking: set the stencil to define the pixels that can be updated.
- Capping: invert the stencil on each pixel update to find places where clipping exposes an object's interior.
- Non-convex polygons: invert the stencil on each pixel update to find the interior of a non-convex polygon.

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212003

ATI Ex. 2066 IPR2023-00922 Page 192 of 291

2	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	29 of 34

- 4) Write once: change the stencil when writing the pixel; don't write if the stencil has already been changed.
- Decals: change the stencil when writing the pixel; only write the decal where the stencil was changed.
- 6) Shadow Volumes: inc/dec the stencil based on projections of occluding objects, to find shadow regions.

Given these usages, R400 supports four types of stencil compression. The following table shows the four stencil compression modes, as selected by the 4-bit Smask field of the 32-bit tile data word. A fast stencil clear of the tile sets Smask to zero, indicating that the entire tile equals the stencil clear color. If Smask!=0, the lower three bits specify whether any stencil values in the tile are greater than (bit 2), bes than (bit 1), or equal to (bit 0) a specified stencil compare value. If there aren't any stencil values greater than or less than the stencil compare value, then they all equal the stencil compare value, so again no bits need to be stored for the stencil values.

Smask	Stencil Compression Mode
0000	0-bits per stencil: every stencil in the entire tile is equal to the stencil clear value
0001	0-bits per stencil: every stencil in the entire tile is equal to the stencil compare value
0010-0111	4-bits per stencil: each stencil is the sum of the stencil base value plus an unsigned 4-bit offset
1000	8-bits per stencil: every stencil in the entire tile is equal to the stencil clear value
1001	8-bits per stencil: every stencil in the entire tile is equal to the stencil compare value
1001-1111	8-bits per stencil: each stencil stores the full 8-bit value

Table 2: Stencil Compression Modes

If the stencils are not all equal to the clear color or the compare color, then there are still two choices. A stencil base value may be used to compress the stencils. The stencil base value is typically set to max(0, stencil_compare - 8). If all the stencil values are in the range [base .. base+15], then a 4bit offset is sufficient to specify each stencil value, relative to the stencil base. This is primarily useful for multi-sampled pixels. Finally, full 8-bit values may be stored for each stencil if any stencil values are outside the base range or if the stencil surface needs to be decompressed in order to allow software or the texture controller to read them.

If Zmask!=Expanded, stencil values are stored packed together at the start of the tile. If Zmask=Expanded, 8-bit stencils are interleaved with 24-bit depth values to produce 32-bit depth/stencil values, regardless of the value of Smask. This is the only interaction between stencil compression and depth compression. Zmask is only set to Expanded when writing a tile with depth compression disabled or after expanding the depth buffer to uncompressed format.

The table below shows the number of micro-tiles required to store stencil values, depending on the number of samples per pixel. These sizes apply for all depth compression modes except for Lockable. In Lockable mode, stencil values are stored as the lower byte of 32-bit words, for which the upper 24-bits are a depth value. Stencil compression is not available together with the Lockable depth mode, which is only produced as a result of a specific operation that converts single-sample depth/stencil values into a form that is directly readable and writable by software.

Samples per Pixel	Smask = 0000-0001	Smask = 0010-0111	Smask = 1000-1111
1 sample per pixel	0 micro-tiles	2 micro-tiles	4 micro-tiles
2 samples per pixel	0 micro-tiles	4 micro-tiles	8 micro-tiles
3 samples per pixel	0 micro-tiles	6 micro-tiles	12 micro-tiles
4 samples per pixel	0 micro-tiles	8 micro-tiles	16 micro-tiles
6 samples per pixel	0 micro-tiles	12 micro-tiles	24 micro-tiles
8 samples per pixel	0 micro-tiles	16 micro-tiles	32 micro-tiles

Table 3: Stencil Storage Sizes in Micro-Tiles

A future chip could provide delta-encoded compression for stencil values in place of R4000's base/offset compression. This should allow significantly higher compression ratios for multi-sample stencil buffers.

If the stencils are stored as 8-bit values, they are micro-tiled in the stanard way for 8-bit pixels. Compressed 4-bit stencils are stored in a special micro-tile format that uses a 64-bit micro-tile instead of the standard 128-bit micro-tile. As for 8-bit stencils, the format depends on the number of samples. The compressed stencil formats are identical to the formats used for 4-bit Pmask values, which are described in subsection 8.4 below.

R400_MemoryFormat.doc 769729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212004

ATI Ex. 2066 IPR2023-00922 Page 193 of 291

-	0	

8.2 Zplane Depth Representation

R300 introduced compressing depth values by storing a plane equation for each triangle that intersects a tile. The plane equation allows the depth logic to compute a depth value at each sample, so that it is not necessary to store the individual depth values. The tile also stores a mask that specifies which of multiple plane equations to use at each sample.

The R400 Zplane compression format adapts the R300 technique to R400's 8x8 tiles and provides higher precision. As in R300, each Zplane is associated with a single triangle. Therefore, if four triangles are visible in an 8x8 tile, then the compressed tile must store four Zplanes and a 2-bit per sample mask that specifies which Zplane is visible at each sample. If only one triangle is visible in an 8x8 tile, then the compressed tile only needs to store that triangle's Zplane.

The following figure shows the 96-bit Zplane format used in R400. A Zplane contains six values. The slope in X and Y per subpixel (SlopeX and SlopeY) are each specified as a 30-bit fixed point S3.26 number. The depth value at the center of the 8x8 tile (CenterZ) is a 27-bit fixed point S3.23 number. Larger values for SlopeX, SlopeY, and CenterZ must be wrapped to these ranges by dropping higher order bits in fixed-point notation. So long as the depth values computed at sample points inside the primitive are in the range [-8..8), dropping the higher order bits does not affect the final depth value computed by R400 at sample points inside the primitive. The MultiSample bit is described below.

Figure 31: Per-Triangle Zplane Format

The ShiftXY and ShiftZ fields specify bit shift values for the SlopeX, SlopeY, and CenterZ fields, so that they can specify more accurate values with smaller ranges. The figure below shows how ShiftZ affects CenterZ and how ShiftXY affects SlopeX and SlopeY. When the shift is zero, the fixed-point value is converted to an S3.42 fixed-point value (for example) by appending low order zeros, which leaves the numeric value unchanged. Larger ShiftXY or ShiftZ values shift the fixed-point value right by the specified number of bits, sign extending the high order bits. These shifted values represent numbers in the range [-2^{3-ahift}...2^{3-ahift}). When ShiftZ==15, CenterZ represents values as small as 2³⁵. When ShiftXY==15, SlopeX and SlopeY represent values as small as 2⁴¹. The slopes represent the change in depth per subpixel, so the smallest nonzero change in depth is 2³⁷ per pixel or 2³⁴ per tile. The smallest nonzero magnitude representable in the 24-bit floating-point depth format is also 2³⁴, so Zplanes allow specifying a slope of one lsb per tile in all depth formats.

The MultiSample bit specifies whether this Zplane was rendered with multisampling disabled, so that all samples are at the same location, or whether this Zplane was rendered with multisampling enabled, so that multiple samples occur at different locations within the pixel. Clients may enable and disable multisampling while rendering a scene, e.g. disabling it to render high quality anti-aliased lines with alpha blending. Disabling multisampling does not reduce the number of

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212005

ATI Ex. 2066 IPR2023-00922 Page 194 of 291

48	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN+CXXXXX-REVA	31 of 34

sample points per pixel – it simply moves them all to the same location. The MultiSample bit ensures that when a Zplane is converted to individual samples, this occurs using the multisample state that was valid at the time that the Zplane was generated, so that expanding the Zplane produces the same depth values that would occur if storing a separate depth value per sample.

Computing CenterZ and ShiftZ from a floating-point value FloatZ is straightforward. First convert FloatZ into an S3.42 value FixedZ, truncating low order bits of precision instead of rounding and dropping higher order bits to wrap around to this range. If FloatZ < -4 or FloatZ >= 4, then ShiftZ = 0 and CenterZ = (FixedZ + 2⁻²⁴) <45:18>, that is, round off the lower 19 bits of FixedZ and use the remaining higher order bits as CenterZ. For smaller magnitudes of FloatZ, count the number of high order bits B in FixedZ that match the sign bit, up to 15. For example, in 0xF2, three high order bits match the sign bit. This can also be determined from the exponent of FloatZ. Then ShiftZ = B and CenterZ = (FixedZ + 2^{-24-B}) <45–B:19–B>, that is, truncate the upper B bits of FixedZ and round off the lower 18–B bits of FixedZ. Finally, check whether rounding FixedZ caused CenterZ to overflow. If so, then ShiftZ = B+1 and CenterZ = 0x4000000 (2.0).

Computing SlopeX, SlopeY and ShiftXY from floating-point values FloatX and FloatY is similar. First convert FloatX and FloatY into S3.42 values FixedX and FixedY, truncating low order bits of precision instead of rounding and dropping higher order bits to wrap around to this range. If FloatX < -4, FloatX >= 4, FloatY < -4, or FloatY >= 4, then ShiftXY = 0, SlopeX = (FixedX + 2^{27}) <45:16>, and SlopeY = (FixedY + 2^{27}) <45:16>. For smaller magnitudes, count the number of high order bits BX and BY in FixedX and FixedY that match the sign bit, up to 15, and set B = min(BX,BY). This can also be determined from the exponents of FloatX and FloatY. Then ShiftXY = B, SlopeX = (FixedX + 2^{27-B}) <45–B:16–B>, and SlopeY = (FixedY + 2^{-27-B}) <45–B:16–B>. Finally, check whether rounding FixedX or FixedY caused SlopeX or SlopeY to overflow. If so, then ShiftXY = B+1 and the overflowing slope or slope equals 0x10000000 (2.0).

Depth values and slopes can be significantly larger than the S3.N fixed-point formats supported above. R400 uses two's complement wraparound for depths and depth gradients. For example, if the true value of SlopeX is 8, the value stored in the Zplane format must be wrapped around to -8. In general, if a slope or CenterZ is outside the range [-8..8), represent it as a fixed point value, truncate higher order bits of integer precision and treat integer bit<3> as the sign bit to get the value to store in the Zplane format, along with a shift value of zero. This works provided that depth values computed at sample points inside the triangle are always in the range [-8..8).

8.3 Zplane Storage Formats

The figures below illustrates the five Zplane formats, which differ based on the number of Zplanes required in the tile and on whether there is one or multiple samples per pixel. Each Zplane occupies 96-bits, so each pair of Zplanes requires three 64-bit words. The Pmask data stores plane mask bits that specify which Zplane to use at each sample in the tile. For Zplane2 mode, there is a 1-bit Pmask per sample or an S-bit Pmask per pixel. For Zplane4 mode, there is a 2-bit Pmask per sample or a 2S-bit Pmask per pixel. For Zplane8 and Zplane16 modes, there is a 4-bit Pmask per sample or a 4S-bit Pmask per pixel.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212006

ATI Ex. 2066 IPR2023-00922 Page 195 of 291

The following table shows how many 128-bit (16-byte) micro-tiles are required to store an 8x8 tile of 16-bit or 24-bit depth data br each of the Zplane modes. To determine the number of 256-bit memory accesses required for each format, divide by 2 and round up. For comparison, the table also lists the number of micro-tiles required in the Separate and Expanded formats. The micro-tiles required for Expanded format are listed in parenthese and includes storage for stencil data, if any. Typically, the total tile size for depth/stencil data equals the size of Expanded mode and the amount of memory allocated for depth data within each tile equals the size of the Separate format. Zplane16 mode

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212007

ATI Ex. 2066 IPR2023-00922 Page 196 of 291

4	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	10 July, 2003	1 October, 2003	GEN-CXXXXX-REVA	33 of 34

Requires too many micro-tiles when there is one sample per pixel, so Zplane16 mode can only be used with 2 or more samples per pixel.

Samples	Zplane1	Zplane2	Zplane4	Zplane8	Zplane16	Separate (or E	xpanded) (6-7)
per Pixel	(1)	(2)	(3)	(4)	(5)	16-bit depth	24-bit depth
1	0.75	2	4	8	(N/A)	8 (8)	12 (16)
2	0.75	2.5	5	10	16	16 (16)	24 (32)
3	0.75	3.0	6	12	18	24 (24)	36 (48)
4	0.75	3.5	7	14	20	32 (32)	48 (64)
6	0.75	4.5	9	18	24	48 (48)	72 (96)
8	0.75	5.5	11	22	28	64 (64)	96 (128)

Table 4: Depth Storage Sizes in Micro-Tiles

The storage required by the Zplane formats goes up significantly as the number of samples increases, since the number of bits required to store the mask is proportional to the number of samples. A future chip could achieve higher levels of multi-sample compression by encoding the mask data, taking advantage of the fact that adjacent samples typically use the same Zplane.

8.4 Pmask Storage Formats

The compressed depth formats store a Pmask value per sample, which specifies the Zplane that must be used to compute the depth at that sample. Zplane8 and Zplane16 modes store 4-bits per Pmask, Zplane 4 mode stores 2-bits per Pmask, and Zplane2 mode stores 1-bit per Plask. Zplane1 mode does not require a Pmask, since the entire tile is covered by a single Zplane.

The Pmask data is stored as an 8x8 tile in a modified micro-tile format. The pmask values for all of the samples for a pixel are combined into a single pmask-pixel, which is then micro-tiled using 64-bit micro-tiles for 4-bit Pmasks, 32-bit micro-tiles for 2-bit Pmasks, and 16-bit micro-tiles for 1-bit Pmasks. This causes the Pmask micro-tiling to match up with the micro-tiling for 8-bit stencil values, which makes it easier for R400 to interleave corresponding stencil and Pmask data in the internal depth/stencil cache.

The figure below shows the Pmask storage pattern for 8-sample pixels. Even and odd scanlines interleave each 16Nbits, where N is the number of bits per Pmask. Each pmask-pixel contains eight Nbit Pmask values. Therefore, a single 16N-bit interleave is filled by two pmask-pixels. As a result, the interleave pattern stores Pmask values for two horizontally adjacent pixels on an even scanline, then two horizontally adjacent pixels on an odd scanline, and so forth. This is like the standard micro-tile format, except that the micro-tile size is 16N-bits instead of 128-bits.

	64N-1	48N 48	N-1	32N	32N-1	16N	16N-1	0
0	pmask (2-3, 1)		pmask (2-3, 0)		pmask (0	0-1, 1)	pmask (0-1, 0)	
1	pmask (6-7, 1)	- 8	pmask (6-7, 0)		pmask (4	4-5, 1)	pmask (4-5, 0)	- 8
2	pmask (2-3, 3)		pmask (2-3, 2)	ŝ	pmask (0	0-1, 3)	pmask (0-1, 2)	- 3
3	pmask (6-7, 3)		pmask (6-7, 2)		pmask (4	4-5, 3)	pmask (4-5, 2)	
4	pmask (2-3, 5)		pmask (2-3, 4)		pmask (0	0-1, 5)	pmask (0-1, 4)	
5	pmask (6-7, 5)		pmask (6-7, 4)	- 8	pmask (4	4-5, 5)	pmask (4-5, 4)	
6	pmask (2-3, 7)		pmask (2-3, 6)	- 3	pmask (0	0-1,7)	pmask (0-1, 6)	
7	pmask (6-7, 7)		pmask (6-7, 6)		pmask (4	4-5, 7)	pmask (4-5, 6)	

N-bit Pmask, 8-sample: 16N-bit interleave of even/odd scanlines

Figure 35: Pmask Interleave For 8 Samples

The next figure shows the Pmask storage patterns for 1-sample, 2-sample, and 4-sample pixels. As before, even and odd scanlines interleave each 16N-bits, where N is the number of bits per Pmask. Each pmask-pixel contains eight N-bit Pmask values. Therefore, a single 16N-bit interleave is filled by two pmask-pixels. As a result, the interleave pattern

R400_MemoryFormat.doc 189729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212008

ATI Ex. 2066 IPR2023-00922 Page 197 of 291

1	0	
	n	
	L	

stores Pmask values for two horizontally adjacent pixels on an even scanline, then two horizontally adjacent pixels on an odd scanline, and so forth. This is like the standard micro-tile format, except that the micro-tile size is 16N-bits instead of 128-bits.

	64N-1	56N	56N-1	48N	48N-1	40N 4	0N-1	32N	32N-1	24N	24N-1	16N	16N-1	8N	8N-1		0
) [pmsk((0-7,7)	pmsk(0)-7,5)	pmsk(0	0-7,6) p	msk(0	-7,4)	pmsk(0)-7,3)	pmsk((0-7,1)	pmsk(0	-7,2)	pmsk	(0-7	.0)
0		22		N-bit I	Pmask,	1-samp	le: 16	N-bit	interlea	ve of	even/o	dd sca	anlines		189		- 25
	64N-1			48N	48N-1			32N	32N-1			16N	16N-1				0
) [р	mask	(0-7, 3)	S	p	mask (0	-7, 2)		p	mask	(0-7, 1)	(pr	nask	(0-7,	0)	
ା	p	mask	(0-7,7)		p	mask (0	-7, 6)		p	mask	(0-7, 5)		pr	nask	(0-7,	4)	
													the second se				
2			3	N-bit I	Pmask,	2-samp	le: 16	N-bit	interlea	ve of	even/oo	dd sca	anlines				
े 	64N-1		j)	N-bit I 48N	Pmask, 48N-1	2-samp	le: 16	N-bit 32N	<i>interlea</i> 32N-1	ve of	even/oo	dd sca 16N	nlines 16N-1				0
' I	64N-1 p	mask	(4-7, 1)	N-bit I 48N	Prnask, 48N-1 pi	2-samp mask (4	ve: 16	N-bit 32N	interlea 32N-1 P	we of mask	even/oo	dd sca 16N	nlines 16N-1 pr	nask	(0-3,	0)	0
	64N-1 p	mask mask	(4-7, 1)	N-bit I 48N	Pmask, 48N-1 pi	2-samp mask (4 mask (4	le: 16 -7, 0) -7, 2)	N-bit 32N	interlea 32N-1 p	we of mask mask	even/oo (0-3, 1) (0-3, 3)	dd sca 16N	nlines 16N-1 pr	nask nask	(0-3,	0)	0
	64N-1 p p	mask mask mask	(4-7, 1) (4-7, 3) (4-7, 5)	N-bit I 48N	Pmask, 48N-1 pi pi	2-samp mask (4 mask (4 mask (4	-7, 0) -7, 2) -7, 4)	N-bit 32N	interlea 32N-1 pi pi	mask mask mask	(0-3, 1) (0-3, 3) (0-3, 5)	dd sca 16N	nlines 16N-1 pr pr	nask nask nask	(0-3, (0-3,	0) 2) 4)	0

Figure 36: Pmask Interleave For 1, 2, or 4 Samples

The final figure shows the Pmask storage patterns for 3 sample and 6-sample pixels. For these non-power-of-two sample sizes, the Pmask values for some samples of a pixel may be in a different 16N-bit interleave from the Pmask values for the rest of the samples of a pixel. This is notated by marking pixels with letters a to c for 3-sample pixels or a to f for 6-sample pixels. So for example, the interleave marked "pmask (0a-5a, 0)" stores all of the Pmask values for Y=0 and X=0 through 4, and also stores the Pmask for the first sample of pixel (5,0).

	64N-1	56N	56N-1	48N	48N-1	40N	40N-1	32N	32N-1	24N	24N-1	16N	16N-1	8N	8N-1	0
0	pmsk(0a	-2b,3)	pmsk(5b	-7c,1)	pmsk(0a	1-2b,2)	pmsk(5	b-7c,0)	pr	nask ((0a-5a,	1)	pma	ask ((0a-5a,0)	
1	pm	pmask (0a-5a, 5) pmask (0a-5a			0a-5a,4	4)	pn	nask (2	2c-7c,	3)	pmask (2c-7,2)					
2	pm	ask (2	2c-7c, 7)	pr	nask (2c-7c,6	3)	pmsk(0a	a-2b,7)	pmsk(5	b-7c,5)	pmsk(0a-	2b,6)	pmsk(5b-7	(c,4)
			- 7	N-bit	Pmask,	3-sar	nple: 10	5N-bit	interlea	ve of	even/o	dd sca	nlines		1997	100
	64N-1			48N	48N-1			32N	32N-1			16N	16N-1			0

	04N-1	4011 40(1-1	32N 32N-1 10N	10N-1 U
0	pmask (2e-5b, 1)	pmask (2e-5b,0)	pmask (0a-2d, 1)	pmask (0a-2d,0)
1	pmask (0a-2d, 3)	pmask (0a-2d,2)	pmask (5c-7f,1)	pmask (5c-7f,0)
2	pmask (5c-7f,3)	pmask (5c-7f,2)	pmask (2e-5b, 3)	pmask (2e-5b,2)
3	pmask (2e-5b, 5)	pmask (2e-5b,4)	pmask (0a-2d, 5)	pmask (0a-2d,4)
4	pmask (0a-2d, 7)	pmask (0a-2d,6)	pmask (5c-7f,5)	pmask (5c-7f,4)
5	pmask (5c-7f,7)	pmask (5c-7f,6)	pmask (2e-5b, 7)	pmask (2e-5b,6)
	AI	hit Pmack & cample: 16	N hit interleave of even/add ac	apligas

N-bit Pmask, 6-sample: 16N-bit interleave of even/odd scanlines

Figure 37: Pmask Interleave For 4 and 6 Samples

Another way to think of these storage formats is to treat them as compressed versions of 8-bit storage formats. Imagine padding out the Pmask values to 8-bits, and then storing them as 8S-bit pixels, where there are S samples. This storage format would use the standard 128-bit microtiling. The 4-bit Pmask format above is the same as this 8-bit format, except with bits<7:4> of each byte omitted. This results in a 64-bit micro-tile, as described above. Similarly, 2-bit and 1-bit Pmask values are stored the same as this 8-bit format, except with bits<7:2> and bits<7:1> omitted from each byte, respectively. The RB logic stores each Pmask value with the stencil value for the same sampleThis compression format makes it easier for the RB logic to match them up, since it means that the sequence of stencil values matches the sequence of Pmask values in memory.

R400_MemoryFormat.doc 789729 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

10/01/03 02:23 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0212009

ATI Ex. 2066 IPR2023-00922 Page 198 of 291

Kaleidoscope Clock Block Architecture and Implementation Spec

AUTHOR

JIMMY LAU

Revision 1.113

File Path: //depot/r400/doc_lib/design/blocks/dc/dccg/DCCG.docMarch 31, Jan 26-2000 4:03:00 PM

WARNING

This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclose.

Copyright 2001, ATI Technologies Inc. All right reserved. The material in this document constitutes an unpublished work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this unpublished work. The copyright notice is not an admission that publication has occurred. This work contains confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213421

ATI Ex. 2066 IPR2023-00922 Page 199 of 291

Table Of Contents

Open Issues					
<u>1.1</u>	Open Feature Issues	.4			
1.2	Open Implementation Issues	.4			
Top	<u>b Level Diagram</u>	.5			
Intr	oduction to DCCG	.5			
3.1	Purpose/Application	. 5			
3.2	Feature Requirements	. 5			
3.2.	1 SCLK Domain Feature List	. 5			
3.2.2	2 PCLK Domain Feature List	. 5			
3.3	Relationship to Other Blocks	. 5			
3.4	Structure	. 6			
3.5	References	.6			
Inp	ut Data and Signal Interface	.7			
4.1	Input Interface Spec(s)	. 7			
4.2 .		. 8			
4.3	Used Subset of Shared Bus	. 8			
4.4	Control Signals Affecting Input Data	. 8			
4.5	Input Interface State Machine(s)	. 8			
Out	tput Data and Signal Interface	.9			
5.1	Output Interface Spec(s)	. 9			
5.2	Control Signals Affecting Output Data	10			
<u>5.3</u>	Output Interface State Machine(s)	10			
Dat	a Processing Algorithms	11			
Har	dware Implementation	11			
7.1	Pipelining and Processing Logic Blocks	11			
7.2	Memory Requirements	11			
7.3	State Machine(s) and Control Logic	11			
7.4	Timing and Data Flow Control	11			
7.5	Clocking and Power Management	11			
Gat	te Area and Macros	12			
8.1	Pre-Implementation Estimates of Pipelining and Gate Area	12			

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

8.2	Actual Gate Area
Block	Programming Guide13
<u>9.1</u>	Register Field List
sub-r	nodule Specification19
10.1	SCLK Domain
10.2	PCLK Domain
10.2.1	DISPLAY PLL DIVIDERS
10.2.2	Reference Divider
10.2.3	Feedback Divider
10.2.4	Slip Requestor for Fractional Feedback Divider
10.2.5	Post Divider
10.2.6	Slip Requestor for Post Divider
10.2.7	Functional Clock Gating for Pixel Clock
10.3	TMDS Links
10.4	TV VCLK Generation
10.5	One-shot Dynamic Stopping/Running Clock for Debug Purpose
10.6	Read Back Test Counter
10.7	Clock TST Control

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

1 Open Issues

List all open issues. Include short description of resolution when closed. This should not be detailed.

1.1 Open Feature Issues

1 Issue: Resolution:

2 Issue: Resolution:

1.2 Open Implementation Issues

1					
Iss	ue:				
Re	sol	uti	0	n	

2 Issue: Resolution:

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213424

ATI Ex. 2066 IPR2023-00922 Page 202 of 291

2 Top Level Diagram

DCCG Top Level Diagram : //depot/r400/doc_lib/design/blocks/dc/dccg/dccg.vsd

3 Introduction to DCCG

3.1 Purpose/Application

DCCG provides core clock and pixel clock branches to various blocks inside DC1 and DC2. It receives clock inputs from external pins or display PLLs, performs reference, feedback and post divisions on the pixel clocks, and finally gate the various core and pixel clock branches based on activities and power states of the chip.

3.2 Feature Requirements

3.2.1 SCLK Domain Feature List

- Provide gated clock branches for different blocks in DC and DO.
- Busy signals can be extended.
- Provide clock-on signals to monitor the behavior of gated clocks.
- Provide reset signals according to the different reset conditions for different gated clock branches.

3.2.2 PCLK Domain Feature List

- Provide functional gated clock branches for different blocks in DO only.
- Fractional feedback divider by using slip request circuitry for PLLs.
- Fractional post divider by using slip request circuitry for PLLs.
- Reference divider for PLLs.
- The clock root can be one of PLL1, PLL2 and external clock source.
- Provide TVCLK branch by using DTO
- Provide clock branches for dual-link(or two single links) for TMDS
- Anti-glitch circuitry to minimize glitch when the frequency is changed.
- One-shot mode for debug purpose.
- Test counter to be read back to monitor the frequency of the clock roots.
- Clock branches can be selected to the Generic A or Generic B output pin through Dispout.
- Different TST clocks for different branches in the TST mode.

3.3 Relationship to Other Blocks

The DC is split into DC1 and DC2 in order to bring down the gate count. The SCLK and PCLK branches are distributed as shown in the diagram.

Clock Distribution Diagram for DC and DO

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

3.4 Structure

3.5 References

Purpose	File Path & Name
Test Plan	
Architectural Outline	
Block spec for block that includes this block (if applicable)	
Block specs for all sub-blocks of this block (if applicable)	
Programming Guide	
Others	

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213426

ATI Ex. 2066 IPR2023-00922 Page 204 of 291

4 Input Data and Signal Interface

4.1 Input Interface Spec(s)

Signal Name	Source	Description
IO_DCCG_pciclk	10	Raw PCI clock.
IO_DCCG_xtalin	IO	Crystal clock.
IO_DCCG_generic_sig1	IO	Generic pin 1 as clock input.
IO_DCCG_generic_sig2	IO	Generic pin 2 as clock input.
IO_DCCG_scan_clk	IO	Scan clock input.
IO_DCCG_test_clk	IO	Test clock input.
CG_DCCG_sclk	CG	Global SCLK.
CG_DCCG_sclk_rst	CG	Reset for global SCLK.
CG_DCCG_hi_reset	CG	De-glitched PCI reset.
CG DCCG soft reset	CG	Global reset.
VGA_DCCG_clock_speed	VGA	Pixel clock speed in VGA mode. 0 = 25 MHz 1 = 28 MHz
VGA_DCCG_crtc1_mode_en	VGA	Indicates whether VGA mode is enabled for CRTC1.
VGA_DCCG_crtc2_mode_en	VGA	Indicates whether VGA mode is enabled for CRTC2.
VGA_DCCG_crtc1_timing_sel	VGA	Indicates whether VGA timing mode is selected for CRTC1.
VGA_DCCG_crtc2_timing_sel	VGA	Indicates whether VGA timing mode is selected for CRTC2.
PIPLL_DCCG_oclk	PPLL	Output clock from display PLL 1.
P1PLL_DCCG_oslelk0	PPLL	Slipable output clock for post divider from display PLL 1.
PIPLL_DCCG_oslclk1	PPLL	Slipable output clock for feedback divider from display PLL 1.
P1PLL_DCCG_slip0_ack	PPLL	Slip clock acknowledge for post divider from display PLL 1.
P1PLL_DCCG_slip1_ack	PPLL	Slip clock acknowledge for fractional feedback divider from display PLL 1.
P2PLL_DCCG_oclk	P2PLL	Output clock from display PLL 2.
P2PLL_DCCG_oslelk0	P2PLL	Slipable output clock for post divider from display PLL 2.
P2PLL_DCCG_oslclk1	P2PLL	Slipable output clock for feedback divider from display PLL 2.
P2PLL_DCCG_slip0_ack	P2PLL	Slip clock acknowledge for post divider from display PLL 2.
P2PLL_DCCG_slip1_ack	P2PLL	Slip clock acknowledge for fractional feedback divider from display PLL 2.
DISP_DCCG_crtc1_en	DISP	CRTC1 enable, as pixel clock gating condition.
DISP_DCCG_crtc2_en	DISP	CRTC2 enable, as pixel clock gating condition.
DISP_DCCG_daca_en	DISP	DACA enable, as pixel clock gating condition.
DISP_DCCG_dacb_en	DISP	DACB enable, as pixel clock gating condition.
DISP_DCCG_tmdsa_en	DISP	TMDSA enable, as pixel clock gating condition.
DISP_DCCG_hdcp_en	DISP	HDCP enable, as pixel clock gating condition.
DISP_DCCG_dvoa_en	DISP	DVOA enable, as pixel clock gating condition.
DISP_DCCG_lvds_en	DISP	LVDS enable, as pixel clock gating condition.
DISP_DCCG_tv_en	DISP	TVOUT enable, as pixel clock gating condition.
DISP_DCCG_crtc1_vsync_event	DISP	VSYNC occurs for CRTC1.
DISP_DCCG_crtc2_vsync_event	DISP	VSYNC occurs for CRTC2.
DISP_DCCG_crtc1_hsync_event	DISP	HSYNC occurs for CRTC1.
DISP_DCCG_crtc2_hsync_event	DISP	HSYNC occurs for CRTC2.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

RBBM_DCCG_regclk_active	RBBM	SCLK gating condition from RBBM.
CG_BLK_pm_disable	CG	SCLK gating condition from CG.
MH_memclk_active	MH	SCLK gating condition from MH.
DCCIF_memclk_active	DCCIF	SCLK gating condition from DCCIF.
VGA_busy	VGA	VGA is busy, do not gate the SCLK_G_VGA.
DISP DCP busy	DISP	DCP is busy, do not gate the SCLK_G_DCP.
DISP_SCL1_busy	DISP	SCL1 is busy, do not gate SCLK_G_SCLK1.
DISP_SCL1C busy	DISP	SCL1C is busy, do not gate SCLK_G_SCLK1C.
DISP_SCL2_busy	DISP	SCL2 is busy, do not gate SCLK_G_SCLK2.
DISP_SCL2C_busy	DISP	SCL2C is busy, do not gate SCLK_G_SCLK2C.
RBBMIF_DCCG_addr [16:2]	RBBMIF	Address for DCCG register access.
RBBMIF_DCCG_rstr	RBBMIF	Read strobe for DCCG register access.
RBBMIF_DCCG_wstr	RBBMIF	Write strobe for DCCG register access.
RBBMIF_DCCG_wben [3:0]	RBBMIF	Byte enable for DCCG register access.
RBBMIF_DCCG_dec	RBBMIF	Decode signal specific for DCCG register access.
RBBMIF_DCCG_wrdata [31:0]	RBBMIF	Write data for DCCG register access.
OTHERS_DCCG_rddata [31:0]	?	Input from register read data daisy chain.

4.2

4.3 Used Subset of Shared Bus

- 4.4 Control Signals Affecting Input Data
- 4.5 Input Interface State Machine(s)

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD1044_0213428

ATI Ex. 2066 IPR2023-00922 Page 206 of 291

5 Output Data and Signal Interface

5.1 Output Interface Spec(s)

Signal Name	Destination	Description
DCCG PIPLL reset	PPLL	Reset signal to display PLL 1.
DCCG_PIPLL_sleep	PPLL	Power down signal to display PLL 1.
DCCG PIPLL pcp [2:0]	PPLL	Charge pump gain for display PLL 1.
DCCG P1PLL pdc [1:0]	PPLL	Duty cycle for display PLL 1.
DCCG PIPLL pvg [2:0]	PPLL	VCO gain for display PLL 1.
DCCG PIPLL tcpoff	PPLL	Force output of charge pump for display PLL 1 to become
	12710130015	high impedance.
DCCG_PIPLL_tvcomax	PPLL	When TCPOFF is high, force VCO to run at maximum
	174500043	possible frequency for display PLL 1.
DCCG_P1PLL_refsel	PPLL	Selects reference clock input for display PLL 1.
DCCG_P1PLL_fbsel	PPLL	Selects feedback clock input for display PLL 1.
DCCG_P1PLL_refclk0	PPLL	Reference clock 0 for display PLL 1.
DCCG_PIPLL_refelk1	PPLL	Reference clock 1 for display PLL 1.
DCCG_P1PLL_fbclk0	PPLL	Feedback clock 0 for display PLL 1.
DCCG_P1PLL_fbclk1	PPLL	Feedback clock 1 for display PLL 1.
DCCG_P1PLL_slip0_req	PPLL	Slip clock request for post divider to display PLL 1.
DCCG_P1PLL_slip1_req	PPLL	Slip clock request for fractional feedback divider to display PLL 1.
DCCG P2PLL reset	P2PLL	Reset signal to display PLL 2.
DCCG P2PLL sleep	P2PLL	Power down signal to display PLL 2.
DCCG P2PLL pcp [2:0]	P2PLL	Charge pump gain for display PLL 2.
DCCG P2PLL pdc [1:0]	P2PLL	Duty cycle for display PLL 2.
DCCG P2PLL pvg [2:0]	P2PLL	VCO gain for display PLL 2.
DCCG P2PLL tcpoff	P2PLL	Force output of charge pump for display PLL 2 to become
	2.33.569	high impedance.
DCCG_P2PLL_tvcomax	P2PLL	When TCPOFF is high, force VCO to run at maximum possible frequency for display PLL 2.
DCCG P2PLL refsel	P2PLL	Selects reference clock input for display PLL 2.
DCCG P2PLL fbsel	P2PLL	Selects feedback clock input for display PLL 2.
DCCG P2PLL refelk0	P2PLL	Reference clock 0 for display PLL 2.
DCCG P2PLL refelk1	P2PLL	Reference clock 1 for display PLL 2.
DCCG P2PLL fbclk0	P2PLL	Feedback clock 0 for display PLL 2.
DCCG P2PLL fbclk1	P2PLL	Feedback clock 1 for display PLL 2.
DCCG P2PLL slip0 req	P2PLL	Slip clock request for post divider to display PLL 2.
DCCG_P2PLL_slip1_req	P2PLL	Slip clock request for fractional feedback divider to display PLL 2.
DCCG DISP pclk crtc1	DISP	PCLK for CRTC 1.
DCCG DISP pclk crtc2	DISP	PCLK for CRTC 2.
DCCG DISP pclk daca	DISP	PCLK for DAC A
DCCG DISP pclk dacb	DISP	PCLK for DAC B
DCCG DISP pclk tmdsa	DISP	PCLK for TMDSA.
DCCG DISP pclk hdcp	DISP	PCLK for HDCP.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

DCCG DISP pclk dvoa	DISP	PCLK for DVOA.
DCCG DISP pclk lvds	DISP	PCLK for LVDS.
DCCG DISP pclk tv	DISP	PCLK for TVOUT.
DCCG DISP pelk erte1 rst	DISP	PCLK reset for CRTC 1.
DCCG DISP pclk crtc2 rst	DISP	PCLK reset for CRTC 2.
DCCG DISP pclk daca rst	DISP	PCLK reset for DAC A
DCCG DISP pclk dacb rst	DISP	PCLK reset for DAC B
DCCG DISP pclk tmdsa rst	DISP	PCLK reset for TMDSA.
DCCG DISP pclk hdcp rst	DISP	PCLK reset for HDCP.
DCCG DISP pclk dvoa rst	DISP	PCLK reset for DVOA.
DCCG DISP pclk lvds rst	DISP	PCLK reset for LVDS.
DCCG DISP pclk tv rst	DISP	PCLK reset for TVOUT.
DCCG_selk_p_dc	DC	Permanent SCLK for DC.
DCCG sclk r rbbmif	RBBMIF	Globally gated SCLK for RBBMIF.
DCCG_sclk_m	DMIF, DCCIF, DCCARB	Globally gated SCLK for DMIF, DCCIF, DCCARB.
DCCG sclk r disp	DISP	Register clock for DISP and VGA.
DCCG_sclk_r_tvout	TVOUT	Register clock for TVOUT.
DCCG sclk r vip	VIP	Register clock for VIP.
DCCG_sclk_g_vga	VGA	Functionally gated SCLK for VGA.
DCCG_sclk_g_dcp	DCP, LB	Functionally gated SCLK for DCP and write buffer in LB.
DCCG_sclk_g_scl1	SCL1	Functionally gated SCLK for data pipe of scaler 1.
DCCG_sclk_g_scl1c	SCLIC	Functionally gated SCLK for control logic of scaler 1.
DCCG_sclk_g_scl2	SCL2	Functionally gated SCLK for data pipe of scaler 2.
DCCG_sclk_g_scl2c	SCL2C	Functionally gated SCLK for control logic of scaler 2.
DCCG_sclk_r_rbbmif_rst	RBBMIF	Reset for DCCG_sclk_r_rbbmif.
DCCG_sclk_m_rst	DMIF, DCCIF, DCCARB	Reset for DCCG_sclk_m.
DCCG_sclk_r_disp_rst	DISP	Reset for DCCG_sclk_r_disp.
DCCG_sclk_r_tvout_rst	TVOUT	Reset for DCCG_sclk_r_tvout.
DCCG_sclk_r_vip_rst	VIP	Reset for DCCG_sclk_r_vip.
DCCG_sclk_g_vga_rst	VGA	Reset for DCCG_sclk_g_vga.
DCCG_sclk_g_dcp_rst	DCP, LB	Reset for DCCG_sclk_g_dcp.
DCCG_sclk_g_scl1_rst	SCL1	Reset for DCCG_sclk_g_scl1.
DCCG_sclk_g_scl1c_rst	SCL1C	Reset for DCCG_sclk_g_scl1c.
DCCG_sclk_g_scl2_rst	SCL2	Reset for DCCG_sclk_g_scl2.
DCCG_sclk_g_scl2c_rst	SCL2C	Reset for DCCG_sclk_g_scl2c.
DCCG_OTHERS_rddata [31:0]	?	Output to register read data daisy chain.

5.2 Control Signals Affecting Output Data

5.3 Output Interface State Machine(s)

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD1044_0213430

ATI Ex. 2066 IPR2023-00922 Page 208 of 291

- 6 Data Processing Algorithms
- 7 Hardware Implementation
- 7.1 Pipelining and Processing Logic Blocks
- 7.2 Memory Requirements
- 7.3 State Machine(s) and Control Logic
- 7.4 Timing and Data Flow Control
- 7.5 Clocking and Power Management

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213431

ATI Ex. 2066 IPR2023-00922 Page 209 of 291

- 8 Gate Area and Macros
- 8.1 Pre-Implementation Estimates of Pipelining and Gate Area
- 8.2 Actual Gate Area

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213432

ATI Ex. 2066 IPR2023-00922 Page 210 of 291

9 Block Programming Guide

9.1 Register Field List

Field Name	Bits	R/W	Default	Description
VGA25_PPLL_REF_DIV_SRC [2:0]	3	R/W	0x0	Source clock selection for the display PLLs reference divider in VGA timing mode with 25MHz pixel clock. 0 = XTALIN 1 = GENERIC_SIG1 2 = GENERIC_SIG2 3 = spread spectrum clock ?
VGA28_PPLL_REF_DIV_SRC [2:0]	3	R/W	0x0	Source clock selection for the display PLLs reference divider in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_REF_DIV_SRC [2:0]	3	R/W	0x0	Source clock selection for display PLL1 reference divider in extended timing mode.
EXT2_PPLL_REF_DIV_SRC [2:0]	3	R/W	0x0	Source clock selection for display PLL2 reference divider in extended timing mode.
VGA25_PPLL_REF_DIV [9:0]	10	R/W	0x?	Reference divider value for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA28_PPLL_REF_DIV [9:0]	10	R/W	0x?	Reference divider value for display PLLs in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_REF_DIV [9:0]	10	R/W	0x0	Reference divider value for display PLL1 in extended timing mode.
EXT2_PPLL_REF_DIV [9:0]	10	R/W	0x0	Reference divider value for display PLL2 in extended timing mode.
EXT1_PPLL_UPDATE_LOCK	1	R/W	0x0	Lock bit for double buffering of display PLL1 registers in extended timing mode. If lock bit is enabled, any update in the registers will not be copied to the active buffers. Otherwise, any update in the registers will be copied to the active buffers in the next rising edge of the reference clock input to the reference divider.
EXT1_PPLL_UPDATE_PENDING	1	R		Readback for double buffering status of display PLL1 registers in extended timing mode. 0 = update done 1 = update pending
EXT1_PPLL_UPDATE_SYNC	1	R/W	0x0	Selects trigger position of double buffering of display PLL1 registers in extended timing mode. 0 = update ASAP 1 = update in VSYNC region
EXT2_PPLL_UPDATE_LOCK	1	R/W	0x0	Lock bit for double buffering of display PLL2 registers in extended timing mode.
EXT2_PPLL_UPDATE_PENDING	1	R		Readback for double buffering status of display PLL2 registers in extended timing mode.
EXT2_PPLL_UPDATE_SYNC	1	R/W	0x0	Selects trigger position of double buffering of display PLL2 registers in extended timing mode.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

EXT1_HTOT_SLIP [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips to do in display PLL1 in extended timing mode, at every HSYNC, for post divider.
EXT1_HTOT_CNTL_EDGE	1	R/W	0x0	Selects which HSYNC edge the slip correction for post divider is done for display PLL1 in extended timing mode.
EXT1_HTOT_CNTL_W	1	W (W trigger)	0x0	Writing to this register triggers the update of the slip count from pending buffer to active buffer. It is associated with the HTOTAL slip control in display PLL1 in extended timing mode.
EXT2_HTOT_SLIP [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips to do in display PLL2 in extended timing mode, at every HSYNC, for post divider.
EXT2_HTOT_CNTL_EDGE	1	R/W	0x0	Selects which HSYNC edge the slip correction for post divider is done for display PLL2 in extended timing mode.
EXT2_HTOT_CNTL_W	1	W (W trigger)	0x0	Writing to this register triggers the update of the slip count from pending buffer to active buffer. It is associated with the HTOTAL slip control in display PLL2 in extended timing mode.
VGA25_PPLL_FB_DIV [10:0]	11	R/W	0x0	Feedback divider value for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA28_PPLL_FB_DIV [10:0]	11	R/W	0x0	Feedback divider value for display PLLs in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_FB_DIV [10:0]	11	R/W	0x0	Feedback divider value for display PLL1 in extended timing mode.
EXT2_PPLL_FB_DIV [10:0]	11	R/W	0x0	Feedback divider value for display PLL2 in extended timing mode.
VGA25_PPLL_FB_DIV_FRACTION [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips for display PLLs fractional feedback divider in VGA timing mode with 25MHz pixel clock.
VGA28_PPLL_FB_DIV_FRACTION [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips for display PLLs fractional feedback divider in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_FB_DIV_FRACTION [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips for display PLL1 fractional feedback divider in extended timing mode.
EXT2_PPLL_FB_DIV_FRACTION [2:0]	3	R/W	0x0	Selects number of 1/5 PLLCLK phase slips for display PLL2 fractional feedback divider in extended timing mode.
VGA25_PCLK_SRC [2:0]	3	R/W	0x0	Selects source of main pixel clocks in VGA timing mode with 25MHz pixel clock. 0 = CPUCLK 1 = SCAN clock 2 = output clock of display PLL. 3 = GENERIC_SIG1 4 = GENERIC_SIG2
VGA28_PCLK_SRC [2:0]	3	R/W	0x0	Selects source of main pixel clocks in VGA timing mode with 28MHz pixel clock.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

EXT1_PCLK_SRC [2:0]	3	R/W	0x0	Selects source of main pixel clock 1 in extended timing mode.
EXT2_PCLK_SRC [2:0]	3	R/W	0x0	Selects source of main pixel clock 2 in extended timing mode.
VGA25_PPLL_POST_DIV [3:0]	4	R/W	0x0	Post divider value for display PLLs in VGA timing mode with 25MHz pixel clock. 0 = divided by 1 1 = divided by 2 2 = divided by 4 3 = divided by 8 4 = divided by 8 5 = divided by 16 6 = divided by 16 7 = divided by 12 8 = divided by 24 9 = divided by 32
VGA28_PPLL_POST_DIV [3:0]	4	R/W	0x0	Post divider value for display PLLs in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_POST_DIV [3:0]	4	R/W	0x0	Post divider value for display PLL1 in extended timing mode.
EXT2_PPLL_POST_DIV [3:0]	4	R/W	0x0	Post divider value for display PLL2 in extended timing mode.
VGA25_PPLL_PCP [2:0]	3	R/W	0x4	Charge pump gain for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA25_PPLL_PDC [1:0]	2	R/W	0x2	Duty cycle for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA25_PPLL_PVG [2:0]	3	R/W	0x4	VCO gain for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA25_PPLL_TCPOFF	1	R/W	0x0	Force output of charge pump for display PLLs to become high-impedance in VGA timing mode with 25MHz pixel clock.
VGA25_PPLL_TVCOMAX	1	R/W	0x0	when TCPOFF is high, force VCO to run at maximum possible frequency for display PLLs in VGA timing mode with 25MHz pixel clock.
VGA28_PPLL_PCP [2:0]	3	R/W	0x4	Charge pump gain for display PLLs in VGA timing mode with 28MHz pixel clock.
VGA28_PPLL_PDC [1:0]	2	R/W	0x2	Duty cycle for display PLLs in VGA timing mode with 28MHz pixel clock.
VGA28_PPLL_PVG [2:0]	3	R/W	0x4	VCO gain for display PLLs in VGA timing mode with 28MHz pixel clock.
VGA28_PPLL_TCPOFF	1	R/W	0x0	Force output of charge pump for display PLLs to become high-impedance in VGA timing mode with 28MHz pixel clock.
VGA28_PPLL_TVCOMAX	1	R/W	0x0	when TCPOFF is high, force VCO to run at maximum possible frequency for display PLLs in VGA timing mode with 28MHz pixel clock.
EXT1_PPLL_PCP [2:0]	3	R/W	0x4	Charge pump gain for display PLL1 in extended timing mode.
EXT1_PPLL_PDC [1:0]	2	R/W	0x2	Duty cycle for display PLL1 in extended timing mode.
EXT1_PPLL_PVG [2:0]	3	R/W	0x4	VCO gain for display PLL1 in extended timing mode.

1.4

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

EXT1_PPLL_TCPOFF	1	R/W	0x0	Force output of charge pump for display PLL1 to become high-impedance in extended timing mode.
EXT1_PPLL_TVCOMAX	1	R/W	0x0	when TCPOFF is high, force VCO to run at maximum possible frequency for display PLL1 in extended timing mode.
EXT2_PPLL_PCP [2:0]	3	R/W	0x4	Charge pump gain for display PLL2 in extended timing mode.
EXT2_PPLL_PDC [1:0]	2	R/W	0x2	Duty cycle for display PLL2 in extended timing mode.
EXT2_PPLL_PVG [2:0]	3	R/W	0x4	VCO gain for display PLL2 in extended timing mode.
EXT2_PPLL_TCPOFF	1	R/W	0x0	Force output of charge pump for display PLL2 to become high-impedance in extended timing mode.
EXT2_PPLL_TVCOMAX	1	R/W	0x0	when TCPOFF is high, force VCO to run at maximum possible frequency for display PLL2 in extended timing mode.
P1PLL_REFCLK_SEL	1	R/W	0x0	Enables jitter rejecter on display PLL1 reference clock.
P1PLL_FBCLK_SEL	1	R/W	0x0	Enables jitter rejecter on display PLL1 feedback clock.
P1PLL_RESET	1	R/W	0x1	Resets display PLL1.
P1PLL_SLEEP	1	R/W	0x1	Power down display PLL1.
P2PLL_REFCLK_SEL	1	R/W	0x0	Enables jitter rejecter on display PLL2 reference clock.
P2PLL_FBCLK_SEL	1	R/W	0x0	Enables jitter rejecter on display PLL2 feedback clock.
P2PLL_RESET	1	R/W	0x1	Resets display PLL2.
P2PLL_SLEEP	1	R/W	0x1	Power down display PLL2
P1PLL_TIMING_MODE_STATUS [1:0]	2	R		Readback of timing mode in which display PLL 1 is running in. 0 = extended timing mode. 1 = reserved. 2 = VGA timing mode with 25MHz pixel clock. 3 = VGA timing mode with 28MHz pixel clock.
P2PLL_TIMING_MODE_STATUS [1:0]	2	R		Readback of timing mode in which display PLL 2 is running in.
PCLK_CRTC1_RESET	1	R/W	0x0	Soft reset of PCLK_CRTC1.
PCLK_CRTC1_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_CRTC1.
PCLK_CRTC2_RESET	1	R/W	0x0	Soft reset of PCLK_CRTC2.
PCLK_CRTC2_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_CRTC2.
PCLK_DACA_RESET	1	R/W	0x0	Soft reset of PCLK_DACA.
PCLK_DACA_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_DACA.
PCLK_DACB_RESET	1	R/W	0x0	Soft reset of PCLK_DACB.
PCLK_DACB_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_DACB.
PCLK_TMDSA_RESET	1	R/W	0x0	Soft reset of PCLK_TMDSA.
PCLK_TMDSA_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_TMDSA.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

PCLK_HDCP_RESET	1	R/W	0x0	Soft reset of PCLK_HDCP.
PCLK_HDCP_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_HDCP.
PCLK_DVOA_RESET	1	R/W	0x0	Soft reset of PCLK_DVOA.
PCLK_DVOA_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_DVOA.
PCLK_LVDS_RESET	1	R/W	0x0	Soft reset of PCLK_LVDS.
PCLK_LVDS_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_LVDS.
PCLK_TV_RESET	1	R/W	0x0	Soft reset of PCLK_TV.
PCLK_TV_GATE_DISABLE	1	R/W	0x0	Disables functional gating of PCLK_TV.
CRTC1_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_CRTC1. 0 = main pixel clock 1. 1 = main pixel clock 2.
CRTC1_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_CRTC1. 0 = non-inverted clock source. 1 = inverted clock source.
CRTC2_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_CRTC2.
CRTC2_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_CRTC2.
DACA_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_DACA.
DACA_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_DACA.
DACB_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_DACB.
DACB_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_DACB.
TMDSA_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_TMDSA.
TMDSA_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_TMDSA.
HDCP_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_HDCP.
HDCP_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_HDCP.
DVO_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_DVO.
DVOA_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_DVOA.
LVDS_CLK_SRC	1	R/W	0x0	Selects clock source for PCLK_LVDS.
LVDS_CLK_INV	1	R/W	0x0	Chooses inverted clock source for PCLK_LVDS.
REGCLK_DISP_RESET	1	R/W	0x0	Soft reset of SCLK_R_DISP.
REGCLK_DISP_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_R_DISP.
REGCLK_TV_RESET	1	R/W	0x0	Soft reset of SCLK_R_TVOUT.
REGCLK_TV_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_R_TVOUT.
REGCLK_VIP_RESET	1	R/W	0x0	Soft reset of SCLK_R_VIP.
REGCLK_VIP_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_R_VIP.
SCLK_VGA_RESET	1	R/W	0x0	Soft reset of SCLK_G_VGA.

ATI Confidential © This document contains confidential information that could be substantially detrimental to the interest of ATI Technologies Inc. through unauthorized use or disclosure.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

SCLK_VGA_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_VGA.
SCLK_DCP_RESET	1	R/W	0x0	Soft reset of SCLK_G_DCP.
SCLK_DCP_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_DCP.
SCLK_SCL1_RESET	1	R/W	0x0	Soft reset of SCLK_G_SCL1.
SCLK_SCL1_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_SCL1.
SCLK_SCL1C_RESET	1	R/W	0x0	Soft reset of SCLK_G_SCL1C.
SCLK_SCL1C_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_SCL1C.
SCLK_SCL2_RESET	1	R/W	0x0	Soft reset of SCLK_G_SCL2.
SCLK_SCL2_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_SCL2.
SCLK_SCL2C_RESET	1	R/W	0x0	Soft reset of SCLK_G_SCL2C.
SCLK_SCL2C_GATE_DISABLE	1	R/W	0x0	Disable gating of SCLK_G_SCL2C.
	-			

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213438

ATI Ex. 2066 IPR2023-00922 Page 216 of 291
10.1 SCLK Domain

Although the CG block is responsible for the generation of the core clock from the PLLs for the entire chip, the SG provides the gated version of this core clock for the DC. These gated clock branches are generated based on the different clock gating conditions from the various blocks. The single gater structure is shown in the Figure of "SCLK gater.

The "block busy extender" extends the busy signal to a number of "turn off latency" programmed by a register of 6bits. There is an "or" gate and a flop inside "ati master clock gater". The result of "or" gate, which is "OR" of the enable signal and the permanent disable signal, drives the gater to turn on the gated clock. The pipelined flops are used to turn on the gated clock as soon as possible when the rising edge arrives, but turn off the gated clock a few clocks later when the falling edge occurs. The clock-on signal is asserted a few clocks later when the gated clock is turned on and de-asserted a few clocks early when the gated clock is turned off. In this way, it guarantees that within the "high" period of clock-on signal, there is always a few clocks margin for the gated clock. The timing diagram is shown in the Figure of "SCLK Timing Diagram".

It should be pointed that the gated clock branches for Scaler1 and Scaler2 are slight different from all the other branches. The clock-on signal is asserted 2 clocks early in order to save two entries of synchronization fifo.

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213439

ATI Ex. 2066 IPR2023-00922 Page 217 of 291

DCCG_sclk_p_dc	TURN_OFF_LATENCY
<"<	M_{s-s}
busy	
busy_extended	
d3	
d4	
gated_clock	سسسرد
clock_on	

Figure 2 SCLK Timing Diagram

The SG receives busy signals or active signals from the various blocks in DC. It combines these signals to generate the internal busy signals to drive the "SCLK gater". If the SCLK_GATE_DISABLE remains to high, which is programmed through register write, all gated clock function is disabled in SCLK domain. Different register can also control the gated clock function for individual sclk branch.

The gated clock conditions of different branches are listed bellow.

sclk_r_rbbmif_busy = Q_RBBM_DCCG_regclk_active Q_SCLK_GATE_DISABLE
sclk_m_busy = Q_SCLK_Q_DCT_DC_memreq DISP_DCCG_cursor_busy DISP_DCCG_icon_busy DCCIF_dc_busy VIP_DCCG_busy Q_SCLK_M_GATE_DISABLE Q_SCLK_GATE_DISABLE
sclk_r_disp_busy = RBBMIF_DCCG_dispreg_busy Q_REGCLK_DISP_GATE_DISABLE Q_SCLK_GATE_DISABLE
sclk_r_tvout_busy = RBBMIF_DCCG_tvoutreg_busy Q_REGCLK_TV_GATE_DISABLE Q_SCLK_GATE_DISABLE
sclk_r_vip_busy = RBBMIF_DCCG_vgareg_busy RBBMIF_DCCG_vipreg_busy Q_REGCLK_VIP_GATE_DISABLE Q_SCLK_GATE_DISABLE

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213440

ATI Ex. 2066 IPR2023-00922 Page 218 of 291

```
ATI Technologies Inc.
```

sclk_g_vga_busy = VGA_DCCG_busy | Q_SCLK_VGA_GATE_DISABLE | Q_SCLK_GATE_DISABLE

sclk_g_vip_busy = VIP_DCCG_busy | Q_SCLK_VIP_GATE_DISABLE | Q_SCLK_GATE_DISABLE

sclk_g_dcp_busy = DCP_DCCG_busy | RUN_CLK_DEBUG_DCP_LB_SCL_SCLK | Q_SCLK_DCP_GATE_DISABLE | Q_SCLK_GATE_DISABLE

sclk_g_scl1_busy = SCL1_DCCG_busy | RUN_CLK_DEBUG_DCP_LB_SCL_SCLK | Q_SCLK_DCP_GATE_DISABLE | Q_SCLK_GATE_DISABLE

sclk_g_scl2_busy = SCL2_DCCG_busy | RUN_CLK_DEBUG_DCP_LB_SCL_SCLK | Q_SCLK_DCP_GATE_DISABLE | Q_SCLK_GATE_DISABLE

10.2 PCLK Domain

The DCCG in DO is responsible for generating pixel clocks for different display mode. The frequency source can be PLL1, PLL2 or external source depending on the frequency that the mode requires. The top-level diagram of PCLK shows in the Figure PCLK Top Diagram. The main pixel clock1 and main pixel clock2 can be considered as the two clock roots.

PCLK Top Diagram

10.2.1 DISPLAY PLL DIVIDERS

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213441

ATI Ex. 2066 IPR2023-00922 Page 219 of 291

There are three dividers associated with each display PLL.

- (1) Reference Divider (Incoming clock is divided by a factor of M)
- (2) Feedback Divider (Incoming clock is divided by a factor of N)
- (3) Post Divider (Incoming clock is divider by a factor of P)

These three dividers, together with the frequency of the input clock, will determine the frequency of the output clock.

$$f_{out} = f_{in} \times \frac{N}{M \times P}$$

In the following subsections, we will look at each divider in more detail.

10.2.2 Reference Divider

The diagram below depicts the reference divider.

PPLL_REF_DIV_SRC[3:0]

Figure 4 Reference Divider of PLL

The input to the reference divider is one of the following clock sources :

PCICLK
 Crystal clock
 GENERICA
 GENERICB
 VPCLK
 VIPCLK
 VIPCLK
 DVOCLK1
 HSYNCA
 HSYNCB
 SSIN

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213442

ATI Ex. 2066 IPR2023-00922 Page 220 of 291

The signal PPLL_REF_DIV_SRC controls which one of the above clock sources goes into the reference divider. PPLL_REF_DIV_SRC gets its value from one of the four sets of registers, depending on the timing mode (VGA or extended) and which display PLL (P1PLL or P2PLL).

The algorithm used inside the reference divider is quite simple. At reset, the counter inside the reference divider is initially loaded with the divider value (M), from one of the 4 sets of reference divider registers, also depending on the timing mode and which display PLL. The counter, which runs at the input clock of the reference divider, will be decrement by 1 after each clock. When the counter reaches a value of one, it will be loaded with an updated value of M. The output clock have a value of 1 when the counter value is larger than M/2, and a value of 0 when counter is smaller than or equal to M/2. Therefore, its frequency will be 1/M of the input frequency and its duty cycle is almost 50%. The output clock of the reference divider will go directly to the reference clock input of the display PLL.

The above Figure describes the logic to choose which one of the four registers is used as the reference divider value and reference divider clock source. If both VGA_DCCG_mode_en and VGA_DCCG_timing_sel are 1, that means VGA timing mode. Reference divider will use either VGA25_xxx or VGA28_xxx, depending on speed of pixel clock in VGA timing mode, determined by VGA_DCCG_clock_speed. If extended timing mode, reference divider for PLL 1 will use EXT1_xxx and reference divider for PLL 2 will use EXT2_xxx.

When the reference divider register is updated, the input to the reference divider not updated right away. The register value is first copied to a pending buffer and stays there. When certain conditions are met, the value in the pending buffer will be copied to the active buffer, which is the input to the reference divider. Double buffering works as follows :

- (1) Before any register update is performed, the lock bit associated with the register is set to 1.
- (2) Then the register is updated. This will set the update pending bit associated with the register to 1. The new register value will be copied to a pending buffer and stays there.
- (3) Set the lock bit to 0. The state machine will then wait for the counter in the reference divider to wrap around from 0 to M, then to M-1. Then the new value in the pending buffer will be copied to the active buffer. Also the updated pending bit will be cleared to 0. Notice that if lock bit is kept to be 1, update of the active buffer will never occur even when the counter reaches M-1.
- (4) Set the lock bit back to 1.

The reason to use double buffering is that we want the values for the reference and feedback dividers to be updated at the same moment. Although the registers for different dividers are written at different times, double buffering can

AMD1044_0213443

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

make sure that they arrive to the active buffers of the dividers at the same moment. Double buffering can also be delayed until the next VSYNC. This is enabled by setting register EXT1/2_PPLL_UPDATE_SYNC to 1.

Note that double buffering is not enabled in VGA timing mode.

10.2.3 Feedback Divider

The diagram below depicts the feedback divider.

The feedback divider takes the output clock from the display PLL and divides the frequency by N, the output clock of the feedback divider goes to the feedback clock input of the display PLL.

The algorithm used inside the feedback divider is similar to the reference divider. At reset, the counter inside the feedback divider is initially loaded with the divider value (N), from one of the four feedback divider registers, depending on the timing mode and which display PLL. The counter, which runs at the slipable output clock from display PLL, is decremented by 1 after each clock. When the counter reaches 1, it will be loaded with an updated value of N. The output clock will have a value 1 when the counter is larger than N/2, and a value of 0 when counter

AMD1044_0213444

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

is smaller than or equal to N/2. The output clock of the feedback divider will have a frequency 1/N of the input clock, and it also have an almost 50% duty cycle.

The feedback divider value can come from one of the four registers. If both VGA_DCCG_mode_en and VGA_DCCG_timing_sel are 1, feedback divider will use either VGA25_xxx or VGA28_xxx, depending on value of VGA_DCCG_clock_speed. Otherwise, feedback divider for PLL 1 will use EXT1_xxx and feedback divider for PLL 2 will use EXT2_xxx. The below Figure describes the muxing logic.

Figure 6 PLL Feedback Divider Source Register Selection

Double buffering is also used to update the active buffers for feedback divider values. The algorithm used for reference and feedback dividers are identical. Values of both dividers are updated at the same time.

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

ATI Ex. 2066 IPR2023-00922 Page 223 of 291

10.2.4 Slip Requestor for Fractional Feedback Divider

The diagram below depicts the slip requestor for fractional feedback divider.

Figure 7 PLL Feedback Divider Slip Requestor State Diagram

The counter algorithm used in the feedback divider can only divide the input clock frequency by an integer value. In order to divide the input clock frequency by a fractional value, a technique called slip request is employed. At every output clock from the feedback divider, a certain number of slip request is made to the output clock of the display PLL. Each slip request will make one output clock of the PLL elongated by 1/5 of the period. That is equivalent to adding 1/5 to the feedback divider value. Therefore, the counter inside the feedback divider, together with the slip request will be able to make a fractional feedback divider, with fractional part of the divider value rounded to the nearest 0.2.

Look at the state diagram on the left hand side of the above Figure.

- (1) In the IDLE state, the counter inside the feedback divider is initially loaded with the feedback divider value (N). At each input clock of the feedback divider, the counter is decremented by 1. When the counter reaches a value of 1, counter will be wrapped around to N. The transition of a counter value from 1 to N is also the rising edge of the output clock from the feedback divider. At that moment, the state machine will transition to the START state. Also note that slip counter is initially set to 0.
- (2) In the START state, the slip request circuit will make a slip request by toggling the level of the request signal. At the same time, the slip counter will increment from initial value of 0 to 1. The display PLL acknowledges the slip request by toggling the level of the acknowledge signal, and at the same time, slip the output clock of the PLL by 1/5 of the period. Then the state machine will transition to the CONTINUE state.

AMD1044_0213446

ATI Ex. 2066 IPR2023-00922 Page 224 of 291

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

- (3) In the CONTINUE state, the slip counter will be checked against the number of slip requests the slip circuit is supposed to make. If it has not finished all the slip requests, it will continue to make them and increment the slip counter by 1 for each request made. Once it has finished make all slip request, and that each request is acknowledged and performed by the display PLL, the state machine will transition to the stop state.
- (4) In the STOP state, the slip request circuit will not make any slip request, and the slip counter will be reset to 0. Then the state machine will return to the IDLE state and wait for another rising edge of the output clock from the feedback divider.

The number of slip request to make in each period of the output clock from the feedback divider is stored in the signal PPLL_FB_DIV_FRACTION. The signal gets its value from one of the four sets of registers, depending on the timing mode (VGA or extended) and which display PLL (P1PLL or P2PLL). If both VGA_DCCG_mode_en and VGA_DCCG_timing_sel are 1, fractional feedback divider will use either VGA25_xxx or VGA28_xxx, depending on value of VGA_DCCG_clock_speed. Otherwise, fractional feedback divider for PLL 1 will use EXT1_xxx and fractional feedback divider for PLL 2 will use EXT2_xxx. Figure 4A describes the muxing logic.

EXT1/2_PPLL_FB_DIV_FRACTION[2:0]	
VGA25_PPLL_FB_DIV_FRACTION[2:0]	
VGA28_PPLL_FB_DIV_FRACTION[2:0]	
VGA_DCCG_clock_speed	
VGA_DCCG_mode_en	
VGA_DCCG_timing_sel	

Figure 8 PLL Fractional Feedback Divider Register Source Selection

Double buffering is also used to update the active buffers for fractional feedback divider values. The algorithm used for reference and fractional feedback dividers are similar. The main difference is that the number of slips to make per feedback clock is updated at the time when the counter in the feedback divider changes from 1 to N. This will make sure that the slip circuit will perform an updated number of slips at the same time when the counter in the feedback divider is updated with a new value. That will effectively update the integral and fractional part of the divider value at the same time.

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213447

ATI Ex. 2066 IPR2023-00922 Page 225 of 291

10.2.5 Post Divider

The diagram below depicts the post divider.

Figure 9 PLL Post Divider and the Mux

The following are the clock sources of the display PLL post divider :

- (1) External clock, input of reference divider
- (2) PLL clock

The signal POST_DIV_SRC determines the clock source to the input of the post divider. POST_DIV_SRC gets its value from one of the four sets of registers, depending on the timing mode (VGA or extended) and which display PLL (P1PLL or P2PLL). The signal PPLL_POST_DIV will determine the value for post divider. PPLL_POST_DIV also gets its value from one of the four sets of registers, depending on timing mode and which PLL. If both VGA_DCCG_mode and VGA_DCCG_timing_sel are 1, post divider will use either VGA25_xxx or VGA28_xxx for its clock source and divider value, depending on value of VGA_DCCG_clock_speed. Otherwise, post divider for PLL 1 will use EXT1_xxx and post divider for PLL2 will use EXT2_xxx.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213448

ATI Ex. 2066 IPR2023-00922 Page 226 of 291

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

The post divider uses the input clock to generate a limited number of clock outputs whose periods are integral multiples of the input clock. The following multiples are generated : 2, 3, 4, 6, 8, 12, 16, 24, 32. Instead of using the counter algorithm employed by reference and feedback dividers, the following algorithm is used to generate these divided clocks :

If (reset) then DIV 2 CLK = 0 DIV_3A_CLK = 0 DIV_3B_CLK = 0 DIV_4_CLK = 0 DIV_6_CLK = 0 DIV_8_CLK = 0 DIV_12_CLK = 0 DIV_16_CLK = 0 DIV_24_CLK = 0 DIV 32 CLK = 0 Else if (At rising edge of input clock) then DIV_2_CLK = not (DIV_2_CLK and (DIV_3A_CLK or DIV_3B_CLK or DIV_6_CLK)) DIV_3A_CLK = not DIV_3B_CLK and not DIV_3A_CLK DIV 3B CLK = DIV 3A CLK DIV_4_CLK = not (DIV_4_CLK xor DIV_2_CLK) DIV_4_CLK = not (DIV_4_CLK xor DIV_2_CLK) DIV_6_CLK = not (DIV_6_CLK xor (DIV_3A_CLK or DIV_3B_CLK)) DIV_8_CLK = not (DIV_8_CLK xor (DIV_2_CLK or DIV_4_CLK)) DIV_12_CLK = not (DIV_12_CLK xor (DIV_3A_CLK or DIV_3B_CLK or DIV_6_CLK)) DIV_16_CLK = not (DIV_16_CLK xor (DIV_2_CLK or DIV_4_CLK or DIV_8_CLK)) DIV_24_CLK = not (DIV_24_CLK xor (DIV_3A_CLK or DIV_3B_CLK or DIV_6_CLK or DIV_12_CLK)) DIV_32_CLK = not (DIV_32_CLK xor (DIV_2_CLK or DIV_4_CLK or DIV_6_CLK or DIV_12_CLK)) DIV_32_CLK = not (DIV_32_CLK xor (DIV_2_CLK or DIV_4_CLK or DIV_8_CLK or DIV_16_CLK)) End if (At falling edge of input clock) DIV_3D_CLK = DIV_3A_CLK DIV_3E_CLK = DIV_3D_CLK DIV_3_CLK = DIV_3A_CLK or DIV_3D_CLK (just combinatorial)

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213449

ATI Ex. 2066 IPR2023-00922 Page 227 of 291

The waveform of the divided clocks looks like the diagram below (DIV_24_CLK and DIV_32_CLK does not exist in R300) :

IDIVIDIR_CLK 0	كوالوكول والوالوالو لاوالوالوالوال	اولاولاولاولاوا
001V_2_0LK 1		
ONTV_3_CLK 0		
001V_4_CLK 0		
IUTV_6_CLK 0		
GUITY_S_CLK 0		
001V_12_01K 0		
001V_16_01K 0		

Look at figure 5 again. The divided clocks, together with all the input clock sources of the post divider will go into a larger mux. The larger mux uses signals PCLK_SRC and PPLL_POST_DIV to choose one of the input clocks to be the main pixel clock. PPLL_POST_DIV determines the divider value of the post divider. The following post divider values are available : 1, 2, 3, 4, 6, 8, 12, 16, 24 and 32. Notice that both PCLK_SRC and PPLL_POST_DIV are not double buffered.

When either the clock source to the post divider or the post divider value is changed, it can cause instability and glitches to the main pixel clock. Therefore, an anti-glitch circuit is needed.

Figure 6 describes how the anti-glitch functions.

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

ATI Ex. 2066 IPR2023-00922 Page 228 of 291

Figure 11 Anti-glitch Circuit State Diagram

In figure 5, all the divided clocks and the input clock sources for the post divider will be the source of the bigger mux. Whenever the clock sources to the bigger mux changes, caused by either change in PCLK_SRC or PPLL_POST_DIV, there will be a change of clock source to the bigger mux.

In figure 6, the anti-glitch circuit state machine is initially transitioned from RESET state to "RUN CLOCK" state, in which the main pixel clock is running smoothly. Whenever the clock source register or the post divider value register changes, the value in the pending buffer will be different from the register values. The state machine will detect this change of clock source and transition to the "STOP CLOCK" state. In the "STOP CLOCK" state, the main pixel clock is temporarily gated off. The state machine then transitions to the "change clock source" state. In this state, the register changes will then be transferred to the pending buffer and finally to the active buffer. The change in the active buffer will switch the clock source of the main pixel clock. Notice that the main pixel clock is still gated off in this state. After the switch of the main pixel clock source, the state machine will transition back to the "RUN CLOCK" state. The main pixel clock source and resumes the clock.

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213451

ATI Ex. 2066 IPR2023-00922 Page 229 of 291

10.2.6 Slip Requestor for Post Divider

Another feature related to the display PLL is that the output clock can be slipped a number of times for each line of the display. This is accomplished by adding a slip request circuit to the display PLL output clock. The slip requestor for post divider is similar to the slip requestor for the fractional feedback divider. They are different in the conditions when the slip request will be made. Notice that this slip requestor is not enabled in VGA timing mode.

Figure 12 PLL Post Divider Slip Requestor

The state machine of the slip requestor for post divider works as follows :

- (1) In the IDLE state, the slipable output clock from the display PLL is running at a regular frequency, i.e. period of each clock cycle is the same. At the HSYNC of each display line, the state machine will transition to the START state. The register EXT1/2_HTOT_CNTL_EDGE determines whether the transition of state happen in the positive or negative edge of HSYNC.
- (2) In the START state, the slip request circuit will make a slip request by toggling the level of the request signal. At the same time, the slip counter will increment from initial value of zero to one. The display PLL acknowledges the slip request by toggling the level of the acknowledge signal, and at the same time, slip the output clock of the PLL by 1/5 of the period. Then the state machine will transition to the CONTINUE state.
- (3) In the CONTINUE state, the slip counter will be checked against the number of slip requests the slip circuit is supposed to make. If it has not finished all the slip requests, it will continue to make them and increment the slip counter by 1 for each request made. Once it has finished make all slip request, and that each request is acknowledged and performed by the display PLL, the state machine will transition to the stop state.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213452

ATI Ex. 2066 IPR2023-00922 Page 230 of 291

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

(4) In the STOP state, the slip request circuit will not make any slip request, and the slip counter will be reset to 0. Then the state machine will return to the IDLE state and wait for the HSYNC in the next line.

The number of slip request to make in each horizontal line of the display is stored in the active buffer HTOT_PPLL_SLIP. When the slip count register is updated, it will be copied to the pending buffer and stays there. The new value in the pending buffer will not be copied to the active buffer until there is a trigger event. The trigger event is the write trigger signal generated by writing to the register EXT1/2_HTOT_CNTL_W. This trigger event will generate an update request to update the active buffer that holds the number of slips to be performed per horizontal line. After the new value is copied from the pending buffer to the active buffer, an acknowledge signal is generated to turn off the request. This is illustrated in the state diagram on the right hand side of figure 7.

The post divider slip circuit can be disabled by setting the register EXT1/2_HTOT_SLIP to 0.

10.2.7 Functional Clock Gating for Pixel Clock

The two main pixel clocks, one for each CRTC is functionally gated to provide pixel clocks for each display device. The clock branches include PCLK_CRTC1, PCLK_CRTC2, PCLK_DACA, PCLK_DACB, PCLK_TMDSA, PCLK_HDCP, PCLK_DVOA. Each clock branch have different gating conditions, but they are usually the enables for the device associated with the clock branch. The functional gating of each branch can be disabled by individual register bit.

The below diagram depicts the muxing and functional clock gating of each branch of the pixel clock.

PCLK_DIAGRAM

Main pixel clock 1 and main pixel clock 2, and there inversions, serve as inputs to the PCLK_CRTC1 and PCLK_CRTC2, as well as pixel clock branches for various devices. They will first go through a mux and an antiglitch circuit. Then output of the anti-glitch circuit will be functionally gated by individual conditions of each display device to become the pixel clock for that device. The table below describes the clock source muxing and functional gating of each pixel clock branch.

CLOCK	Clock muxing register	Clock source	Clock gating enable	Feature enable	Clock Status
PCLK CRTC1	CRTC1_CLK_SRC = 0	Pixel clock 1	PCLK_CRTC1_GATE_DIS = 1		Always run
Contraction of the second second	CRTC1_CLK_SRC = 1	Pixel clock 2	PCLK_CRTC1_GATE_DIS = 0	CRTC1_EN = 0	Stop
				CRTC1_EN = 1	Always run
PCLK_CRTC2	CRTC2_CLK_SRC = 0	Pixel clock 1	PCLK_CRTC2_GATE_DIS = 1	encerna Sacara	Always run
	CRTC2_CLK_SRC = 1	Pixel clock 2	PCLK_CRTC2_GATE_DIS = 0	CRTC2_EN=0	Stop
				CRTC2_EN = 1	Always run
PCLK DACA	DACA_CLK_SRC = 0	Pixel clock 1	PCLK_DACA_GATE_DIS = 1	and a second second	Always run
	DACA_CLK_SRC = 1	Pixel clock 2	PCLK_DACA_GATE_DIS = 0	DACA_EN = 0	Stop
				DACA_EN = 1	Always run
PCLK_DACB	DACB_CLK_SRC = 0	Pixel clock 1	PCLK_DACB_GATE_DIS = 1	Second Street and	Always run
	DACB_CLK_SRC = 1	Pixel clock 2	PCLK_DACB_GATE_DIS = 0	DACB_EN = 0	Stop
				DACB_EN = 1	Always run
PCLK_TMDSA	TMDSA_CLK_SRC = 0	Pixel clock 1	PCLK_TMDSA_GATE_DIS = 1		Always run
	TMDSA_CLK_SRC = 1	Pixel clock 2	PCLK_TMDSA_GATE_DIS = 0	TMDSA_EN = 0	Stop
-	- 22 C			TMDSA EN = 1	Always run
PCLK HDCP	HDCP_CLK_SRC = 0	Pixel clock 1	PCLK HDCP GATE DIS = 1		Always run

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD1044_0213453

ATI Ex. 2066 IPR2023-00922 Page 231 of 291

I

	HDCP_CLK_SRC = 1	Pixel clock 2	PCLK_HDCP_GATE_DIS = 0	HDCP_EN = 0	Stop
				HDCP_EN = 1	Always run
PCLK_DVOA	DVOA_CLK_SRC = 0	Pixel clock 1	PCLK_DVOA_GATE_DIS = 1	news States in	Always run
	DVOA_CLK_SRC = 1	Pixel clock 2	PCLK DVOA GATE DIS = 0	DVOA_EN=0	Stop
				DVOA EN = 1	Always run

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213454

ATI Ex. 2066 IPR2023-00922 Page 232 of 291

10.3 TMDS Links

The feature of R500 includes a second internal TMDS link in order to support display resolution larger than 1600x1200 at 60Hz refresh rate. These dual links operates at two different modes, which are dual-link mode and two-single-link mode.

In the dual link mode, the display clock is running at 330 MHz. The two separate fifo store the pixel data for even pixels and odd pixels. Although one TMDS link can only support 165 MHz pixel rate, with the second link, a total bandwidth of 330Mpixel per second can be supported.

In the two single link mode, the two TMDS links operates separately at the frequency of 165 MHz. The clock source in these two single links can be from the same crtc1 or crtc2 clock source. They also can be from the different crtc1 and crtc2 clock source depending on the mode setting.

The DCCG block in DO is responsible for generating clocks for TMDSA and TMDSB through the clock tree synthesis. The frequency of these two clocks is 330 MHz in the dual-link mode and 165 MHz in the two-single-link mode.

The TMDSCLKBLK generates the clean version of the clocks. In the dual link mode, the data synchronizer needs "divide-by-two" version of clock in order to read the data from the separate data fifo of even pixels and odd pixels. If "divide-by-two" is done in TMDSCLKBLK, the frequency of TMDSA_DIRECT and TMDSB_DIRECT is 165 MHz. Otherwise the frequency is 330 MHz. This means that this "divide-by-two" will be done the TMDS macro. In the case of two-single-links, the frequency is 165 MHz.

The clock source selection depends on the mode control and the source control.

```
// if (dual link tmds)
   if (tmds clock from crtc1)
        pclk_tmdsa = pclk_crtc1
        pclk_tmdsb = pclk_crtc1
   else
        pclk_tmdsa = pclk_crtc2
        pclk tmdsb = pclk crtc2
 else if (single link mode)
   if (tmdsa clock from crtc1)
        pclk tmdsa = pclk crtc1
   else
        pclk_tmdsa= pclk_crtc2
   if(tmdsb clock from crtc1)
        pclk_tmdsb = pclk_crtc1
   else
        pclk_tmdsb = pclk_crtc2
```

The detailed clock generation diagram shows in the following link.

DUAL_LINK_TMDS_CLOCK

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213455

ATI Ex. 2066 IPR2023-00922 Page 233 of 291

10.4 TV_VCLK Generation

A method of Discrete Time Oscillator (DTO) is used to generate TV_VCLK. The algorithm used by DTO is basically a scaling algorithm.

Let's take NTSC as an example:

If the scaling ratio for NTSC = 35/121 = 0.289256

The accumulator is reset at 0. After that at each cycle of pixel clock, it is incremented by the scaling ratio. At each pixel clock cycle where the integer part of the accumulator is incremented, the TV_VCLK will generate a pixel clock pulse. Otherwise, TV_VCLK will be zero.

DTO also outputs the phase coefficient for the upsampler at each pixel clock. The fractional part of the accumulator is used as the phase coefficient.

Pixel clock cycle	Accumulator value	TV_VCLK
0	0	zero
1	0.289256	zero
2	0.578512	zero
3	0.867768	zero
4	1.157024	pixel clock pulse
5	1.446280	zero
6	1.735536	zero
7	2.024792	pixel clock pulse
8	2.314048	zero
9	2.603304	zero
10	2.892560	zero
11	3.181816	pixel clock pulse
12	3.471072	zero
13	3.760328	zero
14	4.049584	pixel clock pulse

The pixel clock and TV_VCLK will look like the below diagram.

pixel clock	JUU			nnn
TV_VCLK		Π	_Π	

In the hardware implementation, we want to calculation in fix point instead of floating point. Therefore, we need to approximate the scaling ratio with an unsigned integer. In R500, a 32-bit register field is defined to represent the scaling ratio.

DTO_VCLK_INC[31:0]

The following formula is used to calculate the register value based on scaling ratio:

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213456

ATI Ex. 2066 IPR2023-00922 Page 234 of 291

DTO_VCLK_INC = integer part(scaling_ratio x 2³¹)

The size of the accumulator is defined as 32 bits for R500.

tvclk_accumulator[31:0]

The accumulator is initially reset to 0. At each pixel clock cycle, tvclk_accumulator is incremented by DTO_VCLK_INC. At the pixel clock cycle where tvclk_accumulator[31] is 1, the accumulator has overflowed. DTO will output a pixel clock pulse at this cycle. Also at each pixel clock cycle, the 8-bit msb (bit 30 to 23) of the accumulator will be used as the phase coefficient for the upsampler.

After the accumulator has been incremented with the scaling ratio for N times, where N is the denominator of the scaling ratio, its fractional part should be equal to zero, with the integer part equal to the numerator of the scaling ratio. However, since we round off the fractional part when we calculate DTO_VCLK_INC, this will not happen. To correct this, we need to add an offset to the accumulator every N pixel clock cycles, where N is the denominator of the scaling ratio.

In order to keep track of the number of cycles the accumulator has been incremented, we define a 12-bit register to store the denominator of the scaling ratio.

DTO_VCLK_DENOMIN[11:0] = Denominator of the scaling ratio - 1

The counter tvclk_denominator_count is initialized to 0. At each pixel clock cycle, it is incremented by one. When counter reaches DTO_VCLK_DENOMIN, it will be reset to 0. At this same cycle, the accumulator is incremented by (DTO_VCLK_INC + offset) to compensate for the round off of DTO_VCLK_DENOMIN.

A 32-bit register is defined to represent the value added to the accumulator every N cycles, where N is the denominator of the scaling ratio.

DTO_VCLK_INC_CORR[31:0]

DTO_VCLK_INC_CORR = Numerator x 231 - DTO_VCLK_DENOMIN x DTO_VCLK_INC

```
The algorithm to generate TV_VCLK_EN is described as below.
//algorithm
At every pixel clock cycle
If(reset)
       tvclk_accumulator <= 0
       tvclk_denominator_count <= 0
       upsampler_phase <= 0
else
       if(tvclk_denominator_count == DTO_VCLK_DENOMINATOR)
              tvclk_accumulator <= tvclk_accumulator[30:0] + DTO_VCLK_INC_CORR
              tvclk_denominator_count <= 0
       else
              tvclk_accumulator <= tvclk_accumulator[30:0] + DTO_VCLK_INC
              tvclk_denominator_count <= tvclk_denominator_count + 1
if(reset)
       upsampler_phase = 0
       TV VCLK EN <= 0
Else
       Upsampler_phase <= tvclk_accumulator[30:23]
       TV VCLK EN = tvclk accumulator[31]
```

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213457

10.5 One-shot Dynamic Stopping/Running Clock for Debug Purpose

One-shot dynamic stopping/running clock has been implemented as a new feature in R400 and R500 compared to previous projects. This feature makes clocks of a certain braches stopped or run dynamically in order to analyze the status of the chip through the debug bus. After a particular clock branch is stopped, it can be advanced one or more clock cycles through register-write and will stop again when it is finished.

There are two modes of one-shot dynamic stopping/running clock, manual mode and trigger mode. The manual mode is under register control, which register-write makes clock stopping or running at a particular moment. In the trigger mode, the clock is stopped when a trigger event on the test debug data bus is detected as the matching pattern that is expected.

The clocks branches are controlled by one-shot debug mode are listed bellow.

SCG in DC branches

- System clock branch used by DCP (sclk_g_dcp)
- System clock branch used by VGA renderer (sclk_g_vga)

DCCG in DO branches

- System clock branches used by SCL1 and SCL2 (sclk_g_scl1, sclk_g_scl2)
- Pixel clock branch used by the primary main pixel clock source (main_pix1clk)
- Pixel clock branch used by the secondary main pixel clock source (main_pix2clk)

The registers are listed bellow.

```
SCG:
SCG ONE SHOT CLOCKING CNTL
ł
 SCG_ONE_SHOT_CLOCKING_MODE [1:0]
 SCG_TEST_DEBUG_DATA_TRIGGER_ONE_SHOT_EN
}:
SCG_ONE_SHOT_STOP_CLOCKS_CNTL
{
 SCG ONE SHOT STOP DCP SCLK
 SCG_ONE_SHOT_STOP_VGA_SCLK
};
SCG_ONE_SHOT_RUN_CLOCKS_CNTL
{
 SCG ONE SHOT RUN DCP SCLK
 SCG DCP SCLK OVERALL STATUS
 SCG_ONE_SHOT_RUN_VGA_SCLK
 SCG_VGA_SCLK_OVERALL_STATUS
};
SCG_ONE_SHOT_RUN_CLOCKS_COUNT
ł
 SCG_ONE_SHOT_RUN_DCP_SCLK_COUNT [7:0]
SCG_ONE_SHOT_RUN_VGA_SCLK_COUNT [7:0]
}:
DCCG_SCL_ONE_SHOT_STOP_CLOCKS_CNTL
ł
```

AMD1044_0213458

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

```
DCCG_ONE_SHOT_STOP_SCL_SCLK
}:
DCCG_SCL_ONE_SHOT_RUN_CLOCKS_CNTL
ł
DCCG_ONE_SHOT_RUN_SCL_SCLK
DCCG_SCL_SCLK_OVERALL_STATUS
}:
DCCG_SCL_ONE_SHOT_RUN_SCL_SCLK_COUNT
ł
DCCG_ONE_SHOT_RUN_SCL_SCLK_COUNT
};
ONE_SHOT_STOP_CLOCKS_CNTL_MIRROR
{
 SCG ONE SHOT STOP DCP SCLK
DCCG_ONE_SHOT_STOP_SCL_SCLK
};
ONE_SHOT_RUN_CLOCKS_CNTL_MIRROR
{
 SCG_ONE_SHOT_RUN_DCP_SCLK
DCCG_ONE_SHOT_RUN_SCL_SCLK
};
DCCG:
DCCG_ONE_SHOT_CLOCKING_CNTL
{
 DCCG_ONE_SHOT_CLOCKING_MODE [1:0]
 DCCG_TEST_DEBUG_DATA_TRIGGER_ONE_SHOT_EN
}:
DCCG_ONE_SHOT_STOP_CLOCKS_CNTL
 DCCG_ONE_SHOT_STOP_PIX1CLK
 DCCG_ONE_SHOT_STOP_PIX2CLK
};
DCCG_ONE_SHOT_RUN_CLOCKS_CNTL
 DCCG_ONE_SHOT_RUN_PIX1CLK
 DCCG_PIX1CLK_OVERALL_STATUS
 DCCG_ONE_SHOT_RUN_PIX2CLK
 DCCG_PIX2CLK_OVERALL_STATUS
};
DCCG_ONE_SHOT_RUN_CLOCKS_COUNT
 DCCG_ONE_SHOT_RUN_PIX1CLK_COUNT [7:0]
DCCG_ONE_SHOT_RUN_PIX2CLK_COUNT [7:0]
};
```

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD1044_0213459

ATI Ex. 2066 IPR2023-00922 Page 237 of 291

10.6 Read Back Test Counter

The test counter is implemented to calculate pixel clock frequency. This pixel clock can be selected from one of the pclk_main1 and pclk_main2. The method is using SCLK as a reference. If the test counter enable is set, the test counter will increment by 1. This test counter enable bit is programmed through RBBMIF. It can be enabled a number of clock cycles of SCLK and then disabled. After that the RBBM will read back the counter number to calculate the frequency for pixel clock.

The register field is defined as below.

TEST_COUNT_MUX_CLK (select pclk_main 1 or pclk_main 2) TEST_COUNT_EN RESET_TEST_COUNT TEST_COUNT[23:0] (read only)

If the TEST_COUNT_EN is set for M cycles of SCLK, and the TEST_COUNT value is N cycles of pixel clock. The pixel clock frequency is calculated as below formula:

PCLK_frequency = N * SCLK_frequency/M

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD1044_0213460

ATI Ex. 2066 IPR2023-00922 Page 238 of 291

10.7 Clock TST Control

The TST control for SCLK domain is included in CG block. The PCLK domain TST control is done inside DCCG. There are four test clock sources:

TST_DCCG_test_pixclk TST_DCCG_test_dvoclk TST_DCCG_test_fcp TST_DCCG_test_tck

In the scan debug mode, all these TST sources come from IO_TST_TCK. However in the functional test mode, they are from the different IO ports.

These TST clock sources are used for the different PCLK branches as below description.

```
If(TST_DCCG_test_sel[1])

PIX1CLK = TST_DCCG_test_pixclk

PIX2CLK = TST_DCCG_test_pixclk

PCLK_DVOCLK_C/D = TST_DCCG_test_dvoclk

PCLK_FCP = TST_DCCG_test_fcp

PCLK_tv = TST_DCCG_test_pixclk

Tvclk = TST_DCCG_test_tck

end
```

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD1044_0213461

ATI Ex. 2066 IPR2023-00922 Page 239 of 291

Revision Changes

This section is optional for changes to the document before the first official release to other groups (rev 1.0). After that point, all changes must be briefly detailed in this section.

Rev 0.1 Jimmy Lau Date: June 4, 2002 Initial revision. Rev 0.2 Jimmy Lau Date: June 4, 2002 Fix the problem that top level diagram cannot be accessed. Add sections 3.1, 3.2 and 3.3 Rev 0.3 Jimmy Lau Date: June 9, 2002 Major update after specs review. Rev 1.0 Jie Zhou Date: April 4, 2003 Major update for R500. Add TMDS Link, TVCLK generation, one-shot mode for debug purpose, Read back test counter, TST mode. Rev 1.1 Jie Zhou Date: Oct 8, 2003 Add DTO, test counter, fix Hyperlink

ATI Technologies Inc. Confidential. Reference Copyright Notice on Cover Page.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213462

ATI Ex. 2066 IPR2023-00922 Page 240 of 291

1	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	4 November, 200231	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	1 of 25
Author: Larry	Seiler	1000¢"1		
ssue To:		Copy No	:	
R400) Memory Cor	troller Archit	tectural Specifica	tion
		Version 0.87		
	is is an architectural encoific	ation for the P400 Memory	Controller block (MC). It provides a	n oveniew of
the the	e required capabilities and ex	pected uses of the block. It	t also describes the block interfaces	, internal sub-
ble	ocks, and provides internal st	ate diagrams.		
AUTOMATIC	CALLY UPDATED FIELDS:			
Document L	.ocation :	enot/r400/doc_lib/design/blo	cks/mc/R400_MemCtLdocD:/Perform	e\r400\arch\d
	400 MamCti das	APPROVALS		
	Name/Dept		Signature/Date	
Pemarke				
Action (S.				
THIS DO	CUMENT CONTAIN	S CONFIDENTIAL	INFORMATION THAT CO	OCLD BE
SUBSTA		NIAL TO THE INTE		JOGIES
	INC. THROUGH L	INAUTHORIZED U	SE UK DISULUSUKE.	
Copyright 200	01, ATI Technologies Inc. Al	I rights reserved. The mate	erial in this document constitutes ar	n unpublished
unpublished w	ork. The copyright notice is n	ot an admission that publica	tion has occurred. This work contain	s confidential,
proprietary info form or by any	ormation and trade secrets of means without the prior writte	ATI. No part of this docume on permission of ATI Technol	ent may be used, reproduced, or trans ologies Inc."	smitted in any
R400 MemCtl docR4	00 MemCtiR400 MemCti doc 00 46950 Rytes	🚥 🛛 🗛 🗛 🗠	ference Convright Notice on Cove	r Page @ ***

10/18/02 10:50 AM10/18/02 10:50 AM01/25/02 05:41 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213463

ATI Ex. 2066 IPR2023-00922 Page 241 of 291

ORIGINATE DATE	EDIT DATE	R400 Memory Controller	PAGE
4 November, 200231 March, 200231 March	[date \@ "d MMMM,	Architectural Specification	2 of 25

3.2

-Priority Logic.

3.3 Refresh Generator

Table Of Contents

1.	OVERVIEW
1.1	Top Level Block Diagram2
1.2	Memory Configurations
1.3	Memory Formats
2.	CLIENT INTERFACE (MCCI)2
2.1	MCCI Block Diagram2
2.2	Receiving Requests from RB and MH2
2.3	Returning Information to MH and RB2
2.4	Render Backend Queues2
2.5	Memory Hub Queues
3.	ORDERING ENGINE (MCO)2
3.1	MCO Block Diagram2
3.2	Priority Logic
3.3	Refresh Generator2
4.	PROTOCOL ENGINE (MCP)2
4.1	MCP Block Diagram
4.2	Protocol Engine Commands2
5.	BUS AND PIN INTERFACES
5.1	MCCI Interfaces with MH and RB2
5.2	MC Pin Interface
1.	OVERVIEW
1.1	Top Level Block Diagram4
1.2	Memory Configurations4
1.3-	-Memory Formats
2.	CLIENT INTERFACE (MCCI)
2.1	MCCI Block Diagram
2.2	Receiving Requests from RB and MH7
2.3	Returning Information to MH and RB8
2.4-	Render Backend Queues9
2.5-	-Memory Hub Queues
3.	ORDERING ENGINE (MCO)11
3.1-	MCO Block Diagram

Table Of Figures

Figure 1: MC Top Level Block Diagram	2
Figure 2: MCCI Block Diagram	2
Figure 4: Content Addressable Texture Queue	2
Figure 5: Ordering Engine Block Diagram	2
Figure 6: Address Subfields	2
Figure 7: Protocol Engine Block Diagram	2
Figure 8: MC DRAM_CMD Register Definition	2
Figure 1: MC Top Level Block Diagram	4
Figure 2: MCCI Block Diagram	7
Figure 3: Content Addressable Texture Queue	10

Table Of Tables

Table 1: MCP Command Bus Operations	Table 5: M
Table 2: MC Access Interface2	Table 5: R
Table 4: RB Access Interface2	Table 6: RE

Table 5:	MH QueueCount Interface.	2
Table 5:	RB QueueCount Interface	2
Table 6:	RBMH TagReturn Interface	2

R400 MemCtl.docR400_MemCtl.R400_MemCtl.doc 00 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD1044_0213464

ATI Ex. 2066 IPR2023-00922 Page 242 of 291

4.	PROTOCOL ENGINE (MCP)	14
4.1-	MCP Block Diagram	
4.2	-Protocol Engine Commands	
5.	BUS AND PIN INTERFACES	17
5.1	MCCI Interfaces with MH and RB	17
5.2	-MC Pin Interface	21
1.	OVERVIEW	4
1.1-	Top Level Block Diagram	4
1.2	-Memory Configurations	4
1.3	-Memory Formats	5
1.4	Open Issues	5
2.	PROTOCOL ENGINE (MCP)	10
2.1-	-MCP Block Diagram	10
2.2	Protocol Engine Commands	10
3.	ROUTING ENGINE (MCR)	10
3.1-	MCR Block Diagram	10
3.2	MCR Data Transfers	10
4.	ORDERING ENGINE (MCO)	10
4.1-	MCO Block Diagram	
4.2	Render Backend Queues	11
4.3	Memory Hub Queues	11
4.4	-Priority Logic	11
4.5	Priority Ordering Examples	14
5.	PERFORMANCE MODELLING	15
6.	BUS AND PIN INTERFACES	15
6.1	MCO Interfaces with MH and RB	
6.2	MCR Interfaces with MH and RB	
6.3	MCP Interfaces with MCO and MCR	
6.4	MC Pin Interface	20

12

14

Figure 4: Ordering Engine Block Diagram	11
Figure 5: Address Subfields	12
Figure 6: Protocol Engine Block Diagram	15
Figure 7: MC DRAM CMD Register Definition	16
Figure 1: MC Top Level Block Diagram	4
Figure 2: Protocol Engine Block Diagram	10
Figure 3: Routing Engine Block Diagram	10
Figure 4: Ordering Engine Block Diagram	10
Figure 5: Address Subfields	
Figure 6: Content Addressable Texture Queue	11

	ORIGINATE DATE	EDIT DAT	E	DOCUMENT-REV. NUM.	PAGE
	4 November, 200231	[date \@ "d M	MMM,	GEN-CXXXXX-REVA	3 of 25
Table 8: MH	Read Data Request	(readdatareg)	Table	3: MH ClientAddr Interface	
Interface		2	Table	4: RenderAddr Interface	
Table 9: RB Re	ad Interface		Table	5: MH QueueCount Interface	
Table 10: MH	Read Interface		Table	6: RB QueueCount Interface	
Table 1: MCP	Command Bus Operations		Table	7: MH AddrReturn Interface	
Table 2: MH A	ccess Interface		Table	8: RBMH TagReturn Interface	
Table 3: RB A	ccess Interface		Table	9: RB RenderWrite Interface	
Table 4: MH G	ueueCount Interface		Table	10: MH ClientWrite Interface	
Table 5: RB Q	ueueCount Interface		Table	11: RB RenderWrite Interface	
Table 6: RBMH	TagReturn Interface		Table	12: MH ClientRead Interface	
Table 8: MH	Read Data Request	(readdatareg)	Table	13: RB RenderReg Interface	
Interface		20	Table	14: MH ClientReg Interface.	
Table 9: RB Re	ad Interface		Table	15: MemCmd Interface (34 bits)	
Table 10: MH	Read Interface	21	Table	17: MemWrite Interface (152 bits)	
Table 1: MCP	Command Bus Operations		Table	19: MemRead Interface (137 bits)	
Table 2: Norma	al and Urgent Queue Prior	ties14	A DECEMBER OF	er aller en ur aller en andre die einer die st	

R400_MemCtl.docR400_MemCtlR400_MemCtl.doc III 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213465

ATI Ex. 2066 IPR2023-00922 Page 243 of 291

	ORIGINATE DATE	EDIT DATE	R400 Memory Controller Architectural Specification	PAGE			
	4 November, 200231	[date \@ "d MMMM,	Architectural Specification	4 of 25			
Revision	History:						
Rev 0.1 (Larry	Seiler)	First	draft.				
Date: March 6,	2001						
Rev 0.2 (Larry	Seiler)	Con	plete rewrite. Divides the MC ir	nto three			
Date: April 13,	2001	sect prot dese	sections: routing engine, ordering engine, and protocol engine, with updated interfaces. Does not describe how the ordering engine selects requests.				
Rev 0.3 (Larry	Seiler)	Con	Complete update of the Ordering Engine, details of Protocol Engine and External Interfaces, updates to Routing Engine and lesser changes.				
Date: May 9, 2	001	Prot Rou					
Rev 0.4 (Larry	Seiler)	Add	Added internal interfaces, modified the MCO texture queue, added ordering examples and other updates.				
Date: June 6, 2	2001	que					
Rev 0.5 (Larry	Seiler)	Elim	Eliminated AutoTag & changed how tag is returned,				
Date: August	9, 2001	to R Rev	to RB address request, many lesser changes. (N.B.: Rev 0.5a just fixes typos in the interface tables)				
Rev 0.6 (Ken 0	Correll)	Upd	ated interface tables.				
Date: Dec 13,	2001						
Rev 0.7 (Bob I	Bloemer and Bei Wang)	Exte	ensive changes.				
Date: Jan. 14	, 2002						
Rev 0.8 (Bob I	Bloemer and Bei Wang)	Upd spec	ated client interface block diagram and cs.	l interface			

R400 MemCtl.docR400_MemCtlR400_MemCtl.doc D 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213466

ATI Ex. 2066 IPR2023-00922 Page 244 of 291

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 November, 200231	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	5 of 25

1. Overview

The Memory Controller (MC) reads and writes the local memory and converts between the memory clock domain and the core clock domain. There is one MC per render pipeline. The R400 and R450 have four render pipelines and hence four memory controllers. The RV400 has two renderpipelines and hence two memory controllers.

Each MC accepts read and write requests from the global Memory Hub (MH) and from the Render Backend (RB) in its render pipeline. The MC also transfers data between the MH and its RB. The memory clock can be slower than the core clock or can be up to twice as fast as the core clock, so the MC converts between the two clock rates.

1.1 Top Level Block Diagram

The MC can be thought of as containing three sub-blocks. The Client Interface (MCCI) puts requests into the proper queues and routes read and write data. The Ordering Engine (MCO) handles the memory clock end of the queues and schedules the memory accesses. The Protocol Engine (MCP) buffers read/write commands, read data, and write data and performs the actual memory accesses. The figure below shows the relationship of these three sub-blocks and the names of the busses that connect them to each other and to other blocks.

Figure 1: MC Top Level Block Diagram

The clock crossing from core clock to mem clock occurs in the queues and dual ported memories that connect the client interface to the rest of the MC. With the heads of the queues in the core clock domain the clients can access the queues without waiting to cross a clock boundary. By having the tails of the queues in the memory clock domain the ordering engine sees all the queues and can select the next access knowing the state of each DRAM bank.

The pins transfer 64 bits to or from the DRAMs twice per clock. In the pads this is converted to 128 bits once per clock. Read and write data is stored in 128-bit wide memories; transfers to or from the pads can occur at a rate of 128 bits per mem clock. The design is optimized for a memory clock to core clock ratio of 1 or somewhat higher. However the design will function correctly at any ratio.

1.2 Memory Configurations

The MC supports regular DDRAM2-style parts and Elpida DDRAM, both of which have four banks and 8 or 9 column address bits. The MC does not support non-DDR SDRAM <u>or SGRAM</u>. The MC supports only a 64-bit wide memory data bue. We will support up to one rank of 64M x 16b (1Gb) DRAMS, or 512 MB per MC. This support applies to the logic in the MH and MC. This will increase the width of address field on MH_MC_access bus to 23 bits, plus one bit for the subset field. Note that 1Gb DRAMS require one additional address pin per MC over the original design of 512MB for 4 MCs; whether that is included is a separate issue. This support would allow a total of 2 GB on four MCs. This is not necessarily a supported configuration, due to issues outside of the MC.

R400 MemCtl.docR400_MemCtlR400_MemCtl.doc III 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213467

ATI Ex. 2066 IPR2023-00922 Page 245 of 291

Formatted: Font: Times New Roman, Bold, Complex Script Font: Bold

1	Ĩ		GINATE DAT	E <u>31</u> [EDIT D	ATE MMMM,	R40 Archi	0 Memory tectural Sp	Controlle	er on	PAGE 6 of 25
The may ranks ar banks in	The maximum memory size is 512 MB total, 256 MB per MC. 11-14 rows and 8-10 column bits are supported. Two ranks are allowed, but in that configuration the number of row bits is limited to 13. The latest DDR II spec calls for 8 banks in the 1Gb and larger parts; this is not supported in the MC.										
Class	1	<u>I/O</u> V.	On-Chip Term.	Data Inv.	Size	Speed	Width	Banks	Rows	Cols	Supported In R400?
GDDF	<u> 111 </u>	1.8v.	High	~	256Mb	600 MHz.	X 32	4	12	9	~
GDDF	2 11	1.8v.	Mid		128Mb	500 MHz.	X 32	4	12	8	~
DDR I		1.8v.	?		256Mb	333 MHz.	X 16	4	13	9	~
122.000	1.0	1.8v.	?		512Mb	333 MHz.	X 16	4	13	10	×
Elpida	1	1.8v.	Mid	~	64Mb	300 MHz.	X 32	4	11	8	¥
Elpida		1.8v.	Mid	~	128Mb	?	X 32	4	?	?	×
GDDF	<u> </u>	<u>2.5v.</u> -3.0v.	None		128Mb & 256Mb	<u>To</u> 500 MHz.	<u>X 32</u>	4	12	8180	
		<u>1.8v.</u>	None		128Mb & 256Mb	<u>To</u> 500 MHz.	<u>X 32</u>	4	<u>12</u>	8 & 9	~
DDRI	L	<u>2.5v.</u>	None		64Mb to 256Mb	<u>To</u> <u>300 MHz.</u>	<u>X 16</u>	4	12 & 13	818191	

The MC uses Fetch-4 mode on all memory parts. Fetch-4 mode uses a burst of two memory clocks to read or write four 64-bit data words. Fetch-2 mode (1-clock bursts of two data words) will never be used, even on slower DDRAMs that support this mode, since fetch-2 does not provide extra slots on the command bus for activate and prefetch commands. It now appears that all DDRAMs under consideration for R400 will support Fetch-4 mode, so R400 will not use Fetch-8 mode (a four clock burst of eight data words), even on parts that support it.

A key issue for the memory controller design is finding ways to hide the latency between finishing with a row in a particular bank until a different row can be accessed in that bank. Typical row cycle times for the least expensive parts are in the range of 60ns, which is 18 to 30 memory clocks for 300MHz to 500MHz to DDRAMs. This is the design center, though the MC should also be able to take advantage of more expensive parts with shorter row cycle times, e.g. down to 36ns, or 13-22 clocks. The time from the last access in one row to the first access of a different row in the same bank is typically 2/3 of the row cycle time, or 12 to 30 memory clocks for 300MHz to 500MHz DDRAMs.

The MC hides prefetch and row access latency by scheduling accesses to other banks while a given bank is changing rows. The MC selects accesses from multiple address queues, based on the latency requirements of each client and the time needed to hide precharge and row activate cycles. With the sole exception of texture read accesses, the MC does not change the order of accesses within an address queue. Therefore, clients should be designed so that they typically group together accesses that are in the same row.

Another key issue is minimizing the number of transitions between reading and writing on the memory bus. On older, DDRAM1 parts, a sequence of reads->writes->reads wastes 4-5 clocks on the data bus, due to turnaround time on the bus and inside the memory parts. With DDRAM2 parts, current estimates are for 7-12 clocks wasted on the data bus, with larger numbers for the faster parts. A enhanced write proposal would reduce this to 2-4 clocks, but even if parts are designed that support enhanced writes, we cannot depend on using those parts. Therefore, read and write buffers need to be large enough to reduce the number of read->write->read transitions.

Finally, we must allow the memory clock to run faster than the core clock, to give us more configuration flexibility. This requires that the MC support more than 128-bits per clock for both address requests and data transfers. Each MC address request specifies a 256-bit addressable unit. Most requests will read or write the entire 256-bits, though some may only access half of that data. Both the RB and the MH can make one request per clock, so address requests exceed 128-bits per clock. Data transfers occur over separate 128-bit read and write busses. Given a mix of reads and writes, the MC can therefore support a memory clock rate up to twice as fast as the core clock rate. In practice, the memory clock is unlikely to ever be more than 50% faster than the core clock.

R400_MemCtl.docR400_MemCtlR400_MemCtlR400_MemCtl.doc 0 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213468

ATI Ex. 2066 IPR2023-00922 Page 246 of 291

A î	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE		
	4 November, 200231 March, 200231 March	[date \@ "d MMMM,	GEN-CXXXXX-REVA	7 of 25		
1.2 Memory Formete						

1.3 Memory Formats

The R400 Memory Format Specification describes the format of data in local memory. Some of the details are important for this specification and are reproduced here. All data stored in the local memory uses tiled formats, where the precise tiling format depends on the dimensionality of the data: 1D, 2D, or 3D. The MH can translate the tiled formats so that its clients can access memory linearly, but direct accesses from the RB always used tiled formats.

The R400 frame buffer formats divide local memory into eight disjoint subsets. Each memory controller contains two subsets that are organized by banks. In memory controller 0, for example, subset ab0 contains all of the memory words addressed in banks A and B. Subset cd0 contains all of the memory words addressed in banks C and D. RV400 frame buffer formats are similar, except that the RV400 divides local memory into four disjoint subsets, since the RV400 has only two memory controllers instead of four.

The 2D and 3D tiling formats interleave even/odd scanline pairs within each 128-bit access. Adjacent 128-bit words step through an 8x8 pixel tile before stepping to the next tile. Since the smallest pixel size is 8-bits, this means that the smallest allocatable unit of memory is 512-bits. After filling a page in bank A (for example) with 8x8 blocks, the next 128-bit word comes from the same page on bank B. When bank B is full, the next 128-bit word comes from the next page in bank A, etc. As a result, stepping horizontally to the next 8x8 tile can never change to a different page within the same bank. Vertically, 2D and 3D tiling alternates between the AB and CD memory subsets, so that stepping vertically also can never change to a different page within the same bank. 3D tiling also alternates memory subsets when stepping in the Z direction.

{Open Issue: *How many different DDRAM types will R400 support?* DDRI, SGRAM, DDRII, and 500MHz type, maybe Elpida and Infineon memory. Elpida has 64Mbit memory at 350-400Mhz, but market is coalescing to 128Mbit at this frequency range. But Elpida has the advantage of internal termination (helpful for mobile products)}

R400 MemCtl.docR400_MemCtl.R400_MemCtl.doc DD 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213469

ATI Ex. 2066 IPR2023-00922 Page 247 of 291

2.1 MCCI Block Diagram

Figure 2: MCCI Block Diagram

The MCCI (MC Client Interface) is the interface between the requestors MH, RB and the MC Ordering engine and Protocol engine. It organizes requests from MH and RB into different queues before passing them on to the Ordering Engine. It reorganizes 32-bit words from MH write requests into 128-bit words. It handles address and tag return depending on the result of arbitration from Ordering Engine. It passes read data coming back from the Protocol Engine on to the requestors MH and RB. It routes requests and data between MH and RB. The boundary between MCCI and the rest of MC is also the interface between SCLK and MCLK.

R400_MemCtl.doc.R400_MemCtl.doc ______ 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213470

ATI Ex. 2066 IPR2023-00922 Page 248 of 291

Figure 2: MCCI Block Diagram

2.2 Receiving Requests from RB and MH

The MH and RB each has their own access bus to the MC (MH Access Bus and RB Access Bus). Each Access bus has the Request portion and the Write Data portion each with their own valid bit (validrequest and validdata). Each portion also has their own destination fields (requestqueue and dataqueue) indicating different requests from different sources to be deposited into different destination queues (to either Ordering engine or the other requestor, MH or RB). Since the two access busses feed into two different same-page detection logic and a non-overlapping set of queues in the MCCI, there is no conflict when the two sends information simultaneously. Instead of having handshake signals, only a send signal is needed per bus to indicate that the bus has something to send. All requests can be for 128-bits of data or 256-bits. On the data side of the bus, the data field of the MH bus is 32 bits wide and that of the RB bus is 128 bits wide. There is also a one-bit word field to indicate which half of the 256-bits the current cycle of data is for. Also for every byte of data there is one bit of bytevalid. For the MH bus, since the data cycle is only 32-bits, there is a 2-bit select field to indicate the position of the word within a 128-bit word. There is also an endofword field to signal the end of a 128-bit transfer. Write data can precede the write request, but the last cycle of data has to match the write request. Other cycles of the data can be matched with other read requests. This increases the utilization of the access busses. There is no longer any wordvalid bits since we eliminated the half populated case. RB will always access 256-bit data at a time. Even if it has only 128 bits of valid data it will still send the other cycle with the proper masks. MH will always send at least one access bus transfer for each of the two 128b words of write data. MH can

R400 MemCtl.docR400-MemCtlR400_MemCtl.doc DD 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213471

ATI Ex. 2066 IPR2023-00922 Page 249 of 291

		ORIGINATE DATE	EDIT DATE	R400 Memory Controller	PAGE
		4 November, 200231	[date \@ "d MMMM,	Architectural Specification	10 of 25

also send "dummy_write" (also must be 2 cycles) that has all data mask set to zero. The MCCI will mark that request with a same page bit and return a tag on this request. But dummy_write would create bubbles on MCP pipelines.

For those accesses that read or write to the frame buffer, their information is organized into two or three sets of queues (depending on whether the access is read or write) going from MCCI to the Ordering Engine. There are the arbitration queues that contain just enough information for the Ordering Engine to pick the next winner. There are the address store queues and the write data store queues that can be indexed by the Ordering Engine once a winner has been picked to access the complete request information. Each of those groups of queues is divided according to destination and all requests within the same queues are in order. For example, an RB Write AB request would have its arbitration information in its own arbitration queue, address queue and data queue, but they are all in the same order. This way when the queues cross over to the Ordering Engine, the MCO can arbitrate for the winner and then depending on the destination queue index into the corresponding address and data queues and simply select the top entry to access the complete request information. Each of the arbitration queues and simply select the top entry to access the complete request into the corresponding address and data queues and simply select the top entry to access the complete request information. Each of the arbitration queues is 8 deep, as is each of the address queuee. The data queues are 128-bits wide and 16 deep each with every 2 entries corresponding to an address queue entry. Tile and host queues will be 8 deep as well.

But before the information can be stored in the queues, they have to go through some organization. For the arbitration queues, there is the same page logic. The same page logic operates on the request portion of the bus. It compares the address (rank, bank, and row) and operation (read or write) of the latest request to that of the last request in the same queue to generate a same page bit. This bit will be later used by the Ordering Engine to determine whether there is any same page advantage to be exploited in arbitration. The MCCI then puts just enough address information (rank, bank, and op) together with the same page bit into the corresponding destination queue awaiting arbitration. A special case is one of the MH's clients, Texture Cache, a read only client. Requests from this client go into a special CAM to be reordered to extract more of the same page sequentiality (explained in 2.5). The output of the CAM is the fed into two arbitration queues. In addition, the data portion of the MH access bus has to be assembled into 128-bit words suitable for storage in the MH data queue.

2.3 Returning Information to MH and RB

The MCCI needs to communicate information back to the MH and RB as well. For those requests that access the frame buffer, once the arbitration has selected a winner and passed that information to the MCCI and its Read Buffer Allocation logic, the MCCI needs to send a queue count signal back to MH and RB to indicate which queue has been selected winner so that the requester will know that a FIFO space has been freed up in that particular queue. This is passed through the MH QueueCount Bus and RB QueueCount Bus. If the access is a write, then tag information (for MH) or queue information (for RB) should also be returned via the RBMH TagReturn bus upon winning. (Is this necessary?) Meanwhile when the access is a read, the Read Buffer Allocation logic allocates a Read Buffer space to the winner and then sends back on the TagReturn bus the index of the buffer space together with the tag/queue information. The source is always noted to indicate whether the request is from MH or RB. The MH or RB can then request for that read data through RB readdatareq bus and MH readdatareq bus with the proper index indicated. The MCCI will return the appropriate data if the valid bit for that entry is set. When there are read data requests from both RB and MH they will be serviced one from each at a time to maintain fairness. There will need to be skid buffer in addition to storage buffer for read data requests. Note that tag return is a don't care for RB writes to frame buffer, but since the logic already exists for RB reads anyway, always return tag.

The Read Data Buffer has one write port and one read port. The write port interfaces to the Protocol Engine and the read port to the MH and RB read bus. The Read Buffer has a Valid bit associated with each pair of 128-bit word. This valid bit is set when the MCP writes that location and is cleared when RB or MH reads that location. There is also a Allocated bit associated with each entry. Once the entry is allocated to a particular read request, the Allocated bit will be set to 1. Upon receiving data into that location, the Valid bit will be set to 1 as well. As soon as the read data has been passed back on the read bus to MH or RB, both the Allocated bit and the Valid bit are cleared. Both the Valid bit and the Allocated bit are determined on the core clock side. The indices of freed up entries are sent from core clock side to MCLK side to be allocated to winning reads. The indices of data returned from MCP are sent across the other direction. The read data buffer will have 128 pairs of 128-bit entries, so will hold the data from 64 read requests. To prevent deadlock, minimum allocations are set for (groups of) clients. The following minimum and maximum number of buffers will be enforced:

- RB: minimum 8 for all RB queues; a programmable maximum, tentatively set to 32.
- Host: 1, minimum and maximum. There can be only one read outstanding.

R400_MemCtl.docR400_MemCtlR400_MemCtlAdoc 00 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213472

ATI Ex. 2066 IPR2023-00922 Page 250 of 291

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE		
	4 November, 200231	[date \@ "d MMMM,	GEN-CXXXXX-REVA	11 of 25		
Shared: minimum 1; a programmable maximum.						

• Texture: minimum 1, but this should be revisited when the architecture of the cache is set. A programmable

- maximum.
 Display: 16 minimum and maximum. Logic will be included to hold off the display requests until 8 read
- Display. To minimum and maximum. Logic will be included to hold on the display requests drait of buffers are free.

To further prevent deadlock, TC should not allow multiple reads on the same cacheline. Also no client should have a read dependent on a previous read.

Any write operation to frame buffer that the RB performs needs to have the corresponding location in the Texture Cache invalidated. They are Write AB, WriteCD, and Tile writes. The information used to invalidate the cache is the coordinate and base fields related to those requests. So for each of the three types of requests, there needs to be an 8-deep FIFO from the RB access bus to the Address Return decoding logic storing the coord and base information. These queues behave similarly to the address and data queues that pass the clock boundary to the Ordering Engine, except they stay within SCLK. When a write operation wins arbitration, the Arb winner logic will select the top entry in one of the three queues and send that back to MH on Address Return bus.

{Open Issue: There is talk from Steve that texture cache invalidation might be handled entirely outside of MC (in SW?) which would eliminate the need for these coordinate and base queues}

There is also a routing functionality in the MCCI. Certain access requests are not destined for the frame buffer and the MCCI needs to route these requests to MH and RB accordingly. Whenever RB performs a system memory access or texture cache fetch, the MCCI has to route the corresponding address and data to the MH. It does so by stealing cycles from the MH Read bus, with the proper source and destination noted on the busses. A system memory write requires three cycles of the MH Read bus, one to send the address and two to send the data. The address is always sent first. Likewise when the MH has data to send back to the RB in response to a TC fetch or system memory read, cycles will be stolen from the RB read bus to send these data with the proper source indicated.

A couple of restrictions on RB->MH requests:

 An AGP write request is 2 cycles on the RB_MC_access bus, but it has to be followed by 1 cycle free of other RB->MH requests.

No two RB->MH requests can appear on the RB_MC_access bus at the same time.

These restrictions are necessary because of the limited amount of request buffering available in MC. If two requests were sent on the same cycle, and there is also a contention with the MH read data return, only one of the incoming requests would be saved and buffered.

<u>MH->RB</u> requests such as AGP read data return and multi-sample requests are always sent in 8 data cycles on the <u>MH_MC</u> access bus.

2.4 Render Backend Queues

The Render Backend reads and writes depth data, color data, and tile data. The RB can read or write local memory or can write this data to the MH for transfer to system memory. The RB also responds to requests from the Texture Unit by computing shadow coverage and filtered pixel colors and sending the results to the Texture Unit via the MH. The RB has six request queues that are divided among these different types of accesses.

The RB Tile queue stores read and write requests for tile data. The tile data stores hierarchical Z and color/depth compression information for each 8x8 tile, in groups of 16 tiles. This queue requires few entries, since there will usually be very few requests outstanding at the same time. The queue stores both read and write requests.

The two RB Read queues store read requests for color and depth data. One queue holds the requests to the local bank A/B subset, the other to the local C/D subset. Now requests for color are not likely to be on the same page as requests for depth. So if color and depth requests are interleaved one color request followed by one depth request, multiple requests to the same page will be separated in the queue and not detected. So when the RB merges the color request stream with the depth stream it should keep the requests to the same page together.

R400_MemCtl.docR400_MemCtlR400_MemCtlR400_MemCtl.doc 0 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213473

ATI Ex. 2066 IPR2023-00922 Page 251 of 291

Formatted: Bullets and Numbering

	ORIGINATE DATE	EDIT DATE	R400 Memory Controller	PAGE
	4 November, 200231	[date \@ "d MMMM,	Architectural Specification	12 of 25

The two RB Write queues store write requests for color and depth data. As for reads, one queue holds the requests to the local bank A/B subset, the other to the local C/D subset. And as for reads the RB should keep writes to the same page together.

Finally, the RB External AGP and TC fetch queues are used for system memory requests. This request is not passed to the Ordering Engine; instead, it is sent over the MH Read buss on the next few clocks without using queues. Other traffic on these busses is delayed. Addresses that are marked as coming from the RB External queue represent external accesses, so the MH converts them into AGP transactions.

The RB processes data in units of 512-bits. All 8x8 tiles of color and depth data occupy a multiple of 512-bits in the frame buffer. Even the tile data comes in units of 512-bits. A tile of 32-bit pixels occupies 2048 bits. The RB may not need to access all of an 8x8 tile, but typically the RB accesses multiple 256-bit words within each tile. As a result, requests in the RB Read and Write queues have a lot of coherency, so that multiple sequential requests are in the same page.

2.5 Memory Hub Queues

The Memory Hub processes memory accesses from the Display Unit, the Texture Unit, the AGP/PCI, and a variety of low bandwidth sources, such as the Video Interface Port (VIP). The MH merges all of these accesses onto a single address request bus to the MC. Each request specifies one of four request queues, depending on the source of the request. As with the RB request queues, most of the queued address requests are stored in a common dual ported memory.

The Host Access queue stores writes and possibly one read from AGP/PCI accesses where R400/RV400 is the slave. Additionally, servicing this queue is Urgent if there is a read in the queue, since the host may block until the read is serviced. Otherwise the queue is low priority. Host reads and writes go into the same queue to ensure that order is preserved.

The Shared queue stores read and write requests from several MH clients. This queue has high priority since these clients may stall if they don't get data in time. To handle the case where the real time clients are not receiving the accesses they require, the MH can make the shared queue urgent.

The Display Read queue stores long sequences of reads from up to four different surfaces: a main display surface and an overlay surface for two video outputs. This queue has the lowest priority, except when the MH signals that Display Read is Urgent. Then it has a very high priority, since a display artifact may occur if the Display Unit does not receive data in time. The output of the display queue is enabled for non-eff1 arbitration only if there is space for at least eight requests in the read buffer. Eff1 requests are same page requests that would follow a beginning non-eff1 request. Thus at least eight same page requests would be processed without interruption if they are present in the gueue.

Texture read requests are first entered into a CAM to attempt to group accesses on the same page. The MH receives texture requests from the L2 texture cache in an arbitrary order, since the pipelines are not synchronized and since texture accesses would be somewhat chaotic even if they were. The L2 cache removes requests for texels that are already in the L2 cache (or that it already requested) and passes the rest of the requests to the MC.

The Texture queue accomplishes this reordering by providing a 16 entry CAM. The figure below illustrates the CAM entries. Each contains one address request register and a 16-bit comparator, which compares the contents against the most recent texture read address. Priority logic selects the oldest address request register that matches the most recent texture read address, or the oldest address request register if none of them match. When the priority logic selects a texture read as the next access.

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213474

ATI Ex. 2066 IPR2023-00922 Page 252 of 291
	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE			
	4 November, 200231	[date ∖@ "d MMMM,	GEN-CXXXXX-REVA	13 of 25			
Figure 43: Content Addressable Texture Queue							

that register is read out and the registers with newer requests transfer their results to close the gap. As a result, the texture queue is able to group texture requests onto the same page within the most recent 16 requests.

3. Ordering Engine (MCO)

The MC Ordering Engine (MCO) fetches read/write address requests from queues and schedules the memory accesses. There are multiple request queues. Memory accesses occur in order within a given queue. The Ordering Engine selects which queue to service based on latency requirements for the different clients and based on minimizing dead cycles on the memory bus. The ordering engine works entirely on memory clock.

3.1 MCO Block Diagram

The MC Ordering Engine inputs address requests from the Render Backend and the Memory Hub. It produces a sequence of memory access commands for the MC Protocol Engine and a sequence of accesses that are returned to the Memory Hub. The figure below shows the basic structure of the MCO. The Priority Logic looks at the next address from each queue, combines this with information about the efficiency of various accesses and whether a queue has been declared "urgent", and decides on the next address to send to the MC Protocol Engine.

Figure 5446: Ordering Engine Block Diagram

Ten queues feed the priority logic. The storage for these queues is separate for each queue so that it can respond more quickly. The priority logic only receives from each FIFO the five bits needed for the arbitration decision:

- 2 bits DRAM bank
- 1 bit DRAM rank
- 1 bit operation (0 -> read, 1 -> write)
- 1 bit same page (1 -> this request is on the same page as the last one in this queue)

The address and other data for the request are stored in the address and write data memories. These are addressed by a pointer for each queue. The winner of arbitration is immediately placed in a short queue to cross the clock

R400 MemCtl.docR400_MemCtlR400_MemCtlR400_MemCtl.doc 0 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

Formatted: Font: Times New Roman, Bold

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213475

ATI Ex. 2066 IPR2023-00922 Page 253 of 291

ORIGINATE DATE	EDIT DATE	R400 Memory Controller	PAGE
4 November, 200231	[date \@ "d MMMM,	Architectural Specification	14 of 25

boundary to the client interface. There each winner is decoded and the appropriate transfer is generated back to the client.

The read buffers are managed by the memory controller. They are allocated when the read operation enters the Protocol Engine, and released when the client reads the data. A valid bit is set when the read data is stored into the buffer. Client reads of the buffer are held up until the data is marked valid.

The operation of the Ordering Engine proceeds as follows. The arbiter selects the top of one of the queues as the next operation to be done based on information saved about the previous winner. That queue entry is popped off and sent several places. It goes to the address and write data memories; the correct queue pointer is used to pop off the address and the write data if necessary. The winner is also sent to the client interface for client notification and to the read buffer allocation logic to receive a read buffer index if needed. When all of this completes, the access is sent to the protocol engine for processing.

Figure 7 below shows some examples of how the MCO interprets the address as passed down from the MCCI. The complete address is indicated with the two fields: address and subset. The actual bank number is indicated with a combination of subset and bank bits. The subset bit "s" indicates whether the request is for subset (bank group) AB or CD. In MCCI, this bit selects the destination queue the request would go into and therefore is placed in its own field apart from the address field in the Access bus. Between the row address and column address is the bank select bit that chooses between Bank A and B if subset AB, or between Bank C and D if subset CD. This bit is so placed to avoid having nearby pixels on different rows of the same bank, but rather same row different banks. "r" selects between two ranks of memory chips. The number of bits indicating row address depends on the DRAM type. So is the number of bits for column address. However, since the address selects a burst of 4, the least significant two column bits are truncated. "x" specifies bits that are unused. Note bank A,B,C,D corresponds to 0,1,2,3 on DRAMs.

Figure 6557: Address Subfields

3.2 Priority Logic

The priority logic can be viewed as a simple fixed priority arbiter that selects the highest priority request as the next winner. However each queue can enter the arbitration at several different levels; which levels depends on the state of three fairness counters and the properties of the queue, the request at the head of the queue, and the last winner. These counters implement a limited round robin algorithm among some of the queues.

It is useful to think of queues making requests at several different efficiency levels. These efficiency level definitions are similar to those used in prior memory controllers; they relate the current request to the previous winner:

- efficiency 1. (EFF1) The current request has the same operation and is on the same page as the previous winner.
- efficiency 2. (EFF2) The current request has the same operation and rank but a different bank in relation to the previous winner, or it's EFF1.
- efficiency 3. (EFF3) The current request is to a different bank or rank relative to the previous winner, or it's EFF1.
- efficiency 4. (EFF4) All requests.

Note that if a request qualifies at a certain efficiency level, it will also qualify at all lower levels.

R400 MemCtl docR400_MemCtlR400_MemCtl.doc III 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213476

ATI Ex. 2066 IPR2023-00922 Page 254 of 291

Formatted: Font: Times New Roman, Bold, Complex Script Font: Bold

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
4 November, 200231	[date \@ "d MMMM,	GEN-CXXXXX-REVA	15 of 25

The priority logic takes in the bank status from from the protocol engine. This status indicates when a particular bank can take a request to another page. There is no point issuing a request to a busy bank, so the priority logic removes from consideration all requests to busy banks, other than EFF1 requests. This keeps the ordering engine from issuing requests to a bank while it is precharging. Note that this approach eliminates the requirement to have the EFF3 level of requests in arbitration. The reason to look for another bank is to avoid choosing a bank that is busy. But that can't happen when the bank status is used. A modified EFF2 is still used to give priority to the same operation and rank. So the efficiency definitions are modified as follows:

- efficiency 1. (EFF1) Same as above.
- modified efficiency 2. (EFF2') The current request has the same operation and rank as the previous winner, and it is to a non-busy bank.
- modified efficiency 4. (EFF4') The current request is to a non-busy bank.

In general the priority logic puts requests that are more efficient (with a lower efficiency number) at higher priority. Fairness counters are used to limit the number of contiguous requests of a particular type. This hopefully prevents many accesses of the same type from locking out indefinitely otherwise higher priority requests that are not as efficient. One fairness counter, SAME_PAGE_COUNT, counts the number of contiguous same page accesses. When the counter expires, EFF1 requests are shut off. Since an EFF1 request is probably to a busy bank, it will not make a request at EFF2' or EFF4' until the bank closes. This makes it likely that some other EFF2' or EFF4' request will win. Another counter, SAME_PAGE_COUNT_URGENT, also counts contiguous accesses at EFF1. If the counter expires and an urgent request is pending, EFF1 requests are shut off. Since urgent requests then become the highest priority, one of them will win. This counter has no effect unless it is set to a value less than the SAME_PAGE_COUNT counter would. The SAME_OP_COUNT counter counts contiguous non-EFF1 accesses made with the same operation. When the count expires all EFF2' accesses are shut off. So EFF2' requests are forced to EFF4'.

The MH Host, Display, and Shared queues may be marked by the MH to be urgent. This status causes their requests to enter arbitration at a higher level regardless of their efficiency. This is meant to be used only by time critical clients when their accesses are being held off too long. Since ignoring efficiency will reduce total memory performance, the client should not use urgency often. The definition and handling of urgency differs for each of the queues that can be urgent:

- Display: Urgent status will be set when the interface wire is pulsed. It will be cleared when the display read
 data buffers are full.
- Host: Urgent status will be set when the interface wire is pulsed. It will be cleared when the queue is empty. The host can only have one read outstanding, and fast writes will be distributed over the four MCs, so the queue will empty quickly.
- Shared: Urgent status is declared as long as the interface wire is asserted. Currently only the xDCT block
 uses urgent. The MH will assert shared urgent to all four MCs when it detects xDCT urgent. This approach
 may cause the urgent state to be held longer than necessary, but using urgent with the shared queue does
 not have a huge effect on priority. The shared queue is already near the top of the list, and DRAM bank
 status is never ignored. So urgent here only causes the shared queue to go above the RB tile queue and
 bypass the same op efficiency level.

Within each efficiency level the requests are normally ordered as follows, highest priority first:

- RB tile
- MH shared
- MH Texture A/B and MH Texture C/D
- RB read A/B and RB read C/D
- RB write A/B and RB write C/D
- MH Display

For each of MH Texture, RB read, and RB write, the A/B and C/D queues are in a round robin. For each non-EFF1 arbitration, the priority of A/B and C/D are switched for all three queue pairs. This attempts to give all banks equal priority.

Both RB and MH Texture are likely to be high bandwidth clients. Since the texture unit is earlier in the pipeline it should have higher priority. However it may be that allowing the RB some minimum bandwidth will improve performance, so the programmable TEXTURE_WIN_COUNT fairness counter was added. Texture non-EFF1 wins are counted; when the count expires both MH Texture queues are made lower priority than the RB queues. Within each efficiency level the order becomes:

R400 MemCtl.docR400_MemCtlR400_MemCtl.doc 0 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213477

ATI Ex. 2066 IPR2023-00922 Page 255 of 291

	ORIGINATE DATE	EDIT DATE	R400 Memory Controller	PAGE	
	4 November, 200231	[date \@ "d MMMM, Architectural Specification	16 of 25		
 RB tile 	8				

- MH shared
- RB read A/B and RB read C/D RB write A/B and RB write C/D
- MH Texture A/B and MH Texture C/D
- MH Display

This priority is maintained until any RB request wins. Then the counter is reloaded and the priority returns to normal.

The overall priority is then, highest first:

- EFF1
- Urgent MH Display .
- Urgent DRAM refresh .
- Urgent MH host
- Urgent MH shared .
- FFF2 .
- EFF4
- MH host .
- DRAM refresh .

Note that only one queue may have an EFF1 request because same page is detected only within a queue. These requests will probably be handled special in the priority logic, and not go through the arbiter.

3.2.1 Write-Read Bus Turnaround Enhancement

Current DRAMs cannot transfer data for many clocks during a transition from write to read. After the last write there is a several clock delay before a read command may be issued. Then the data bus is idle until the CAS latency period is past. To increase the data bus utilization and thus DRAM throughput an enhancement is being considered that would allow additional write data to be transferred during this transition period. The commands and addresses to write this data would be sent after the read commands are finished, at the point of read to write transition.

This raises several challenges for the ordering and protocol engines. At the time the Ordering Engine makes the transition from write to read, it must issue the read accesses at full rate. But it must also select several writes that it will issue at the later read to write transitions. These writes will have their data sent to the Protocol Engine for transmission to the DRAMs, but the addresses and commands must be saved somewhere. How is the Ordering Engine to know what are the correct writes to select to be sent after the reads? What bank will the last reads be to? {To be further discussed}

3.3 Refresh Generator

Data is maintained in the DRAMs by issuing Auto Refresh commands. The Auto Refresh approach requires that the MC issue periodic refresh commands to the DRAMs with sufficient frequency to ensure that each row is refreshed within the maximum refresh time specified by the DRAM manufacturer. The row address counters are maintained within the DRAM, and the same row in each bank is refreshed simultaneously.

The refresh generator is implemented in three stages. First, there is a simple divide-by-64 counter that runs on the memory clock. Second, there is a software-programmable timer that defines the nominal row refresh interval. Typically, DRAMs require a 7.8 us row refresh rate. Third, there is a refresh request log counter. The request log counter is initialized to 7, then increments for every required refresh and decrements for every refresh actually performed. Refresh requests are made as long as the counter is non-zero, and an urgent condition exists if the counter is greater than 11 (decimal). The requests return to normal once the counter is below 9. This allows at least 4 refresh requests to pass through whenever the urgency wins arbitration. This method allows refreshing to "work ahead" when there is no meaningful work in the queues, and to tolerate some period of denial. The maximum refresh interval to any single row will be within 1% of the requirement with this method.

Issue: Do we support 1/2 clock speed and Auto Refresh? If so we need to make the first divider programmable. Or we can select between two counters, divide by 64, and divide by 32.

R400 MemCtl.docR400_MemCtl.R400_MemCtl.doc 0 46950 Bytes***
ATI Confidential. Reference Copyright Notice on Cover Page *** 10/18/02 10:50 AM10/18/02 10:50 AM01/25/02 05:41 PM

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213478

ATI Ex. 2066 IPR2023-00922 Page 256 of 291

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE			
	4 November, 200231	[date \@ "d MMMM,	GEN-CXXXXX-REVA	17 of 25			
1. Drotocol Engine (MCD)							

4. Protocol Engine (MCP)

The MC Protocol Engine (MCP) initializes the DDRAM and performs burst reads, burst writes and refresh cycles under the control of the MC Ordering Engine (MCO). The first subsection below describes the basic functionality of the MCP. The second subsection describes the commands passed to the MCP from the MCO.

4.1 MCP Block Diagram

The MC Protocol Engine (MCP) accepts the winning requests' address command and write data from the MC Ordering Engine (MCO). It pipelines the request as controlled by the DRAM Timing Generator and outputs command and write data on the memory bus. The Timing Generator also sends bank status information (whether a particular bank is busy or not) back to the MCO to help it select the next winner. The MCP accepts a read index from the MCCI

for read operations and sends back the read data to MCCI to be written into the Read data buffer at location indicated by the Index. There is a software controlled command unit which can hold off the MCP pipeline and inject custom commands for purposes of debugging, controlling self refresh, or managing initialization and ACPI power state transitions.

R400 MemCtl.docR400_MemCtl.R400_MemCtl.doc 0 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213479

ATI Ex. 2066 IPR2023-00922 Page 257 of 291

R400 MemCtl.docR400_MemCtlR400_MemCtl.doc D 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***
10/18/02 10:50 AM10/18/02 A

AMD1044_0213480

ATI Ex. 2066 IPR2023-00922 Page 258 of 291

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

			D 400 Marray Ocates	PAGE	
	4 November, 2002 31	[date \@ "d MMMM.	Architectural Specification	20 of 25	
423 P	March 200221 March	ing Read Data			Formatted: Bullets and Numbering
Any data re commands. buffer and c overwritten. Once the <u>E</u> correct add seen by MC from the firm	ad by commands issued thr Each time ISSUE DRAM continuing to the next higher DRAM reads are complete t ress and reading the MC. E 2 POINTER. Each read of st read set MC. POINTER t	ough the software comma CMDS is set, the read da address for each read. I he read data can be acc RDBUF_DATA register. MC_RDBUF_DATA increr o 0 and read MC_RDBUF	Ind unit is stored in the read data buffi- ta is stored beginning at address 0 or Note that any old data in the read data essed by setting the MC_POINTER The data from each read occupies 8 nents MC_POINTER by one. So to a F_DATA 8 times. MC_POINTER will	er, like all read f the read data a buffer will be register to the addresses as ccess the data now be 8, the	
address of t	the first word of the second L	RAM read command.	-d-	-	Formatted: Bullets and Numbering
It is possible must have sequence d needed writ pass throug looping, set The only wa included in					
data in buffe	ers 0 to 31, and repeating.	ach buffer uses 8 address	2 read commands, and so continuous of MC_POINTER, as described above	sly stores read	Formatted: Font color: Auto
{Open Issue make sure t	e: Are software reads and w the command has been exec	rites to the RBBM in order suted.}	? If so software can read a register a	fter the write to	
{Open Issue refresh? N Steve and C	e: Is the SW approach to po ot that much difference in p Greg are working on it.}	wer management adequa ower. Current plan is to	te?—Is it OK for R400 desktop produc let the CP handle the ACPI power st	t to not do self ate transitions.	
4.24.3 F	Protocol Engine C	ommands		•	Formatted: Bullets and Numbering
The MC Ord MCP. The F command. 512MB fram	dering Engine (MCO) uses the Protocol Engine always exect These fields support up to the buffer using two 64-bit with	ne MemCmd bus to send l utes the commands in ord 32Mbits of memory behin le memory controllers.	burst read, burst write, and refresh cor er. The following is a description of the d each data pin. This is enough to s	mmands to the e fields of each upport up to a	
Bar Col Rov Rar Ope Inde	nk (2-bits): 0: bank A; 1: bank Addr (7-bits): Stores column wAddr (13-bits): {what is the nk (1-bit): selects bwtween tw eration (3-bits): Specifies the ex (6-bits): Specifies the loca	k B; 2: bank C: 3: bank D address bits<8:2> for a bu maximum number of row a vo ranks of memory chips memory operation with its tion(s) to use in the Memory	urst 4 access address bits?} that use the same data pins address context (see table below) ory Read or Memory Write buffer		
The table bo that it scheo burst. With to indicate t	elow describes the operatior dules other address request a 64-bit wide memory contro hat it is on a different page o	is supported by the MCP. s. The MCO issues a sep. Iller, these are 256-bit bur r the same page as the pr	The MCO schedules refresh cycles in arate burst read or burst write cycle fo sts. The MCO also marks each read a evious access to the same bank.	the same way or each 4-word and write burst	
R400 MemCtl.docR	<u>1400 MemCti</u> R400_MemCti.doc □□ 46950 Byt	₅s*** © ATI Confidential.	Reference Copyright Notice on Cov 10/18/02 10:50 AM10/18/02 10:50 AM10/18/02 10:50 AM10/18/02	ver Page © *** ^{22.05:41 PM}	

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213482

ATI Ex. 2066 IPR2023-00922 Page 260 of 291

ORIGINATE DATE		E EDIT DATE		DOCUMENT-REV. NUM.	PAGE	
				GEN-CXXXXX-REVA	21 of 25	
Name	Description			Notes		
Null No-op				MCP ignores this invalid command		
Refresh Initiate an auto		-refresh cycle]	MCO decides when MCP must refresh		
10 (reserved)				{Do we need commands for specia		
11 (reserved)				operations?}		
00 R_Diff Read burst for		the RB, on a different page	•	This burst is on a different page from		
N_Diff	Write burst for the RB, on a different page		9	the most recent burst to the sar	ne bank.	
R_Same	Read burst for the RB, on the same page			This burst is on the same pag	e as the	
W_Same Write burst for the RB, on the same p				most recent burst to the same bank.		
	Anorem An	ORIGINATE DATE 4 November, 200231 March Description Iame Description No-op Iame Initiate an auto (reserved) (reserved) (reserved) (reserved) R_Diff Read burst for V_Diff V_Diff Write burst for Read burst for V_Same Write burst for	ORIGINATE DATE EDIT DATE 4 November, 200234. [date \@ "d MMMM, Marceb 200234. [date \@ "d MMMM, Iame Description 1000000000000000000000000000000000000	ORIGINATE DATE EDIT DATE 4 November, 200234 [date \@ "d MMMM, Marce Description Iame Description Iull No-op Refresh Initiate an auto-refresh cycle (reserved) (reserved) R_Diff Read burst for the RB, on a different page R_Same Read burst for the RB, on the same page V_Same Write burst for the RB, on the same page	ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. 4 November, 200234 [date \@ "d MMMM, GEN-CXXXXX-REVA Moreb 200234 Moreb Moreb Iame Description Notes Iull No-op MCP ignores this invalid comma Refresh Initiate an auto-refresh cycle MCO decides when MCP must (reserved) {Do we need commands for operations?} R_Diff Read burst for the RB, on a different page This burst is on a different page V_Diff Write burst for the RB, on the same page This burst is on the same page V_Same Write burst for the RB, on the same page This burst is on the same page	

Table 1113: MCP Command Bus Operations

The MCP uses the Index field to select where to access the Memory Read buffer for a given burst. The Index specifies an aligned pair of 128-bit entries in the queue. 128-bit bursts use either the lower or upper half, depending whether the burst column address is even or odd.

5. Bus and Pin Interfaces

The three Memory Controller sub-blocks interface to the Memory Hub (MH), the Render Backend (RB), and the local memory pins. This section describes these interfaces and the busses between the MC sub-blocks. The first subsection below describes address interfaces between the MC Ordering Engine (MCO) and the RB and MH. The second subsection below describes data interfaces between the MC Routing Engine (MCR) and the RB and MH. The third subsection describes interfaces between the MC Protocol Engine (MCP) and the other two MC sub-blocks. The final subsection describes the local memory pin interface.

Note that in the tables that follow the convention used is that MC*n* refers to any of the distinct instantiations of the MC, MC0, MC1, MC2, or MC3.

5.1 MCCI Interfaces with MH and RB

There are four types of busses between the MCCI and the MH and RB. All except for Address return bus are defined for both RB and MH:

- <u>Access bus</u>: Sends request address and write data from MH and RB to MCCI
- Queue count bus: Returns indicator about each arbitration queue freeing up to MH and RB
 Read data request bus: For MH and RB to request read data in the MCCI read data buffer once they received
- the tag/index.
 <u>Read data return bus</u>: Returns read data from MCCI to RB or MH.

5.1.1 Access Bus

MH Access specifies a 256-bit burst read or write address and associated information. The MH may send whenever it has either valid address or valid data and will indicate so by asserting the send bit. Address together with subset select the 256-bit word to access (refer to section 3.1 for more on address format). Write selects a read or write transfer and Requestqueue selects one of 4 different arbitration queues that store requests from Memory Hub clients (TC will be split into different queues after the CAM). MH also sends down a tag field with each request and keeps track of them through tagreturn bus. Urgent bits specifies whether the MCO should raise the priority of this Queue. Dataqueue selects destination for data which could be the RB. Since TC and DC are read only clients, they are not valid as write data queues. MH transfers 32 bits per cycle due to routing constraints as well as the fact that it is relatively low bandwidth (as compared to RB). Select specifies the relative position of the 32 bit word in the 128 bit word. Endofword is important to signal end of an 128 bit transfer, especially for the first half of a 256-bit. For the second half the indication can be derived by the fact that the write request will accompany the data in the same cycle,

R400_MemCtl.docR400_MemCtlR400_MemCtl.doc DD 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213483

ATI Ex. 2066 IPR2023-00922 Page 261 of 291

	ORIGINATE DATE	EDIT DATE	R400 Memory Controller Architectural Specification	PAGE
	4 November, 200231 March, 200231 March	[date \@ "d MMMM,	, to meetaral opeomoutori	22 of 25
but MH o	uarantees the Endofword to be	AGP read data return and multi-sa	mple requests	

are always sent in 8 data phases.

Name	Bits	Description
MH_MCn access send	1	R400 standard flow control
MH_MCn_access_validrequest	1	request portion of transfer is valid
MH_MCn_access_requestqueue	3	Selects one of the MH request queues
		<u>0: HI</u>
		<u>1: TC</u>
		2: DC
		3: Shared
	-	4:7 not valid target for requests
MH_MCn_access_address	24	Address of this 256-bit access within this memory controller,
		allows reach of 512MB per MC which equals the system
		maximum. Format is Device Addr – FB_START
MH_MCn_access_write	1	U: read request; 1: write request
MH_MCn_access_tag	5	MH generated tag associated with this access
MH MCn access validdata	1	data portion of transfer is valid
MH MCn access dataqueue	3	Selects one of the MH request queues
Min_Mon_decese_dataquede	≤	0: HI
		1: TC
		2: DC
		3: Shared
		4: not used
		5: dest is RB in response to system memory read
		6: dest is RB in conjunction with TC fetch_shadow request
		7: dest is RB in conjunction with TC fetch_multisample request
MH_MCn_access_word	1	Selects a 128-bit word out of the 256-bit buffer location
MH_MCn_access_bytevalid	4	Overloaded field:
		If data_queue is 0, 1, 2, or 3 then use as bytevalids. If 1, the
		corresponding byte should be written by the destination
		the PP read back to the PP in multiple phases
		nbase0: hite[3:0] = tag[3:0]
		phase1: hits[3:0] = tag[7:4]
		phase2: $bits[0] = tag[8]$
MH MCn access select	2	Selects which 32 bit section of the 128 bit word is being transferred
MH_MCn access data	32	data for this cycle
MH_MCn_access_endofword	1	Indicates that this transfer completes this 128 bit word
MH_MCn access dcurgent	1	Display requests, pulsed, serviced while read buffers are available
MH_MCn_access_sharedurgent	1	Shared requests, level, urgent priority until signal is lowered
MH_MCn access hiurgent	1	Host requests, pulsed, serviced until request queue is empty

Table 2: MC Access Interface

Table 224: MH Access Interface

RB Access bus is similar to the MH access bus. It transfers 128 bits of write data rather than 32 and therefore requires no Endofword bit. The Address is 26 bits instead of 23 bits. This allows the RB to specify a 256-bit access out of the 2³²-byte system address space for AGP accesses. Also the RB does not have a tag field because it does not keep track of the requests. The TC fetch requests (shadow and multisample) are a different type of access. These requests are not made to the MC but to MH, so they have special formats and the request is actually sent in the data field of the access bus rather than the "normal" request fields. This is why the requestqueue field does not use codes 6 and 7.

R400 MemCtl.docR400_MemCtl.R400_MemCtl.doc III 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***
10/18/02 10:50 AMI0/18/02 A

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213484

ATI Ex. 2066 IPR2023-00922 Page 262 of 291

	ORIGINATE DATE	E	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
	4 November, 200231	[date	e \@ "d MMMM,	GEN-CXXXXX-REVA	23 of 25	
Name	Maron (1073) Maron	Bits	Description			
RBn_MCn_a	ccess_validrequest	1	The Rrequest (R	Bn_MCn_access_write) is valid		
RBn_MCn_access_subset		4	0: use the AB me Not valid for AGE	emory subset; 1: use the CD memory accesses	subset	
RBn_MCn_a	ccess_address	2 <u>7</u> 6	Address of this 2	56-bit aligned access. (2 ³² /2 ⁵ =2 ²⁷)acc	ess within	
RBn MCn a	ccess write	1	0: read request:	1: write request		
RBn MCn a	ccess tag	9	Tag, to be return	ed to the RB with the read data		
RBn_MCn_access_requestqueue			Selects one of <u>six</u> five RB request queues 0: ReadAB 1: ReadCD 2: WriteAB 3: WriteCD 4: Tile 5: AGP access 6: <u>TC fetch shadow(not used)</u> reserved 7: <u>TC fetch multisample (not valid for any RB request, data only)</u> reserved			
RBn MCn a	ccess validdata	1	Request is valid			
RBn_MCn_a	ccess_dataqueue	3	Selects one of fo 0: ReadAB (not v 1: ReadCD (not v 2: WriteAB 3: WriteCD 4: Tile 5: AGP access 6: TC fetch_shad 7: TC fetch_multi	ur RB write request queues for this tra alid for an RB write request) /alid for an RB write request) /ow <u>(not valid for any RB request)(not</u> /sample (not valid for any RB request)	unsaction	
RB <i>n_</i> MC <i>n_</i> a	ccess_word	1	Selects a 128-bit for writes. Coinc 0: The least signi	word out of the 256-bit buffer location ident with the data. ficant 128 bits; 1: The most significan	Valid only	
RBn_MCn_a	ccess_data	128	128 The 128-bit data for this transfer			
RBn_MCn_a	ccess_bytevalid	16	If 1, the correct destination <u>1: The</u> byte must not be	esponding byte should be writter e corresponding byte must be writter written to memory	n by the en; 0: The	

Table 4335: RB Access Interface

5.1.2 Queue Count Bus

The MH and RB QueueCount Interfaces allow the MC's clients to track how many request queue entries are available for use. MH and RB each keeps internal counters for the available entries in each arbitration queue. They are decremented for every request sent and incremented when the corresponding queuecount signal is asserted.

Name	Bits	Description
MCn_ MH_queuecount_hi	1	HI request queue has had one entry read out
MCn_ MH_queuecount_tc	1	TC request queue has had one entry read out
MCn_ MH_queuecount_dc	1	DC request queue has had one entry read out
MCn_MH_queuecount_shared	1	Shared request queue has had one entry read out

Table 5446: MH QueueCount Interface

R400 MemCtl docR400-MemCtlR400-MemCtlR400-MemCtl.doc DD 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD1044_0213485

ATI Ex. 2066 IPR2023-00922 Page 263 of 291

1	Ai	ORIGINATE DATE	Idate		R400 Memory Controller Architectural Specification	PAGE	
		4 November, 200231	luate			24 01 25	
Т	Name	and a second sec	Bits	Description			
1	MCn_RBn_queuecount_readab		1	ReadAB request queue has had one entry read out			
	MCn RBn queuecount readcd		1	ReadCD request	queue has had one entry read out		
	MCn_RBn_queuecount_writeab		1	WriteAB request	queue has had one entry read out		
	MCn_RBn_queuecount_writecd		1	WriteCD request	queue has had one entry read out		
	MCn_RBn_	_queuecount_tile	1	Tile request queu	ue has had one entry read out		

Table 6557: RB QueueCount Interface

5.1.3 Tag Return Bus

The TagReturn interface for the MH and RB provides tags and or indices that indicate when the MC has completed 256-bit reads and writes. The MH and the RB both read this interface and select the tags for their own MC requests. The MH and RB must be able to accept a tag on every clock cycle, so no handshake signal is required. The index field is interpreted the same way by both MH and RB, but the tag field is read by MH as the tag that it sent on the access bus, read by RB as the queue identifier as on the access bus.

Name	Bits	Description
MCn_tagreturn_send	1	data is valid on this cycle
MCn_tagreturn_index	6	Selects an aligned pair of 128-bit words in the read buffer
MCn_tagreturn_tag	6	Either the MH tag or the RB queue identifier
MCn_tagreturn_write	1	Write request if 1, else read request
MCn_tagreturn_source	1	0: MH request; 1: RB request

Table 7669: RBMH TagReturn Interface

5.1.4-Read Data Request Bus

5.1.55.1.4

The RB Read Data Request interface specifies a 256-bit read from the Memory Data Read Buffer.

Name	Bits	Description	
RBn_MCn_readdatareq_send	4	Ready to send	
MCn_RBn_readdatareq_rtr	1	Ready to receive a new RB read request	
RBn MCn readdatareg index	6	Selects a 256-bit location to read from the data buffer	

Table 714: RB Read Data Request (readdatareq) Interface

The MH Read Data Request interface specifies a 256-bit read from the Memory Data Read Buffer.

Name	Bits	Description
MH_MCn_readdatareq_send	1	Data is valid on this clock
MCn_MH_readdatareq_rtr	1	Ready to receive a new MH read request
MH_MCn_readdatareq_index	6	Selects a 256-bit location to read from the data buffer
MH_MCn_readdatareq_tag	6	Tag for this transaction
MH MCn readdatareq queue	2	which request queue generated this read data 0: HI 1: TC
		2: DC 3: SharedQueue for this transaction

Table <u>98815</u>: MH Read Data Request (readdatareq) Interface

R400 MemCtl.docR400_MemCtlR400_MemCtl.doc 0 46950 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213486

ATI Ex. 2066 IPR2023-00922 Page 264 of 291

Formatted: Bullets and Numbering

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	4 November, 200231 March, 200231 March	[date \@ "d MMMM,	GEN-CXXXXX-REVA	25 of 25
E 1 (E 1 E		-		

5.1.65.1.5 Read Data Return Bus

The RB Read interface specifies a 128-bit read of data into the RB. The source field indicates whether the data comes from MC (frame buffer) or the MH. As a result the index field is overloaded to indicate index to read data buffer if the source is MC, or indicate the nature of the data if the source is MH. Word field specifies whether this transfer is the upper or lower half of the 256-bit word.

Name	Bits	Description
MCn_RBn_read_send	1	Data is valid on this clock
MCn_RBn_read_tag	9	Overloaded field:
		source == MC: The RB's original read request tag is returned
		source == MH: Encoded value specifying nature of the data
		tag = 0x40: Multi-sample request from TC
		Others: As indicated by MH
MCn_RBn_read_word	1	128-bit word out of the 256-bit buffer location
MCn_RBn_read_source	1	0: source is MC; 1:source is MH;
MCn_RBn_read_data	128	The 128-bit data for this transfer

Table 109920: RB Read Interface

The MH Read interface is defined similarly to the RB Read Interface, except the index is not returned.

Name	Bits	Description
MCn_MH_read_send	1	Data is valid on this clock
MC <i>n</i> _MH_read_tag	6	Overloaded field: source == mc0: tag = 0: RB AGP access descriptorexternal AGP access address Tag = 0: RB AGP mite data portion Tag = 5: RB AGP write data portion memory Tag = 6: tag = 7: data to TC in response to Fetch_shadow (no longer valid) Tag = 7: data to TC in response to Fetch_multisample
MCn_MH_read_word	1	128-bit word out of the 256-bit buffer location
MCn_MH_read_source	1	0: source is MC;1: source is RB
MC <i>n_</i> MH_read_data	128	If source =. <u>= rb</u> 1 and tag = <u>=</u> 0: bits [0]: <u>0:read, 1:write-subset</u> bits [<u>31:522:4]:</u> <u>Device address of access [31:5]</u> address bits [<u>40:32</u> 23]: <u>AGP request tag</u> write <u>-bits [127:24] unused</u> <u>if source == mcElse</u> : Read data returned to MHThe <u>128-bit data for this transfer</u>
MC <i>n</i> _MH_read_bytevalid	16	If 1, the corresponding byte should be written by the destination. Not used when source = 1 and tag = 0.

Table 11101021: MH Read Interface

5.2 MC Pin Interface

{To be specified}

R400 MemCtl doc R400_MemCtlR400_MemCtlR400_MemCtl.doc DD 46950 Bytes*** C ATI Confidential. Reference Copyright Notice on Cover Page C ***

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0213487

ATI Ex. 2066 IPR2023-00922 Page 265 of 291 **TP Block Performance**

The first 3 sections of this document identify areas that affect performance. The fourth section defines the performance cases that need to be verified along with details explanations of how to construct these tests.

3 things control flow within the TP:

tpc_walker state machine tpc_aligner state machine tpc_rr_fifo latency FIFO

The state machines are counters that count down form a variable maximum count. For performance, each state machine must:

generate the proper number of cycles determine the worst case cycles over the 4 TPs properly

Both state machines also read from FIFOs separating them from the previous pipeline. Thus, it is necessary to verify the following:

Proper FIFO functionality, size, and watermarks Optimal read logic.

- 1. tpc_walker
- 1.1 State machine

For mipmapping where TP0..3 require a maximum of n cycles, tpc_walker must generate n cycles for each cycle from the SQ/SP, n=[1..2].

For volume filtering where TP0..3 require a maximum of n cycles, tpc_walker must generate n cycles for each cycle from the SQ/SP, n=[1..2].

For hicolor cases where TP0..3 require a maximum of n cycles, tpc_walker must generate n cycles for each cycle from the SQ/SP, n=[1..4].

For anisotropic cases where TP0..3 require a maximum of n cycles, tpc_walker must generate n cycles for each cycle from the SQ/SP, n=[1,2,4,6,8,10,12,14,16].

For a combination of hicolor, mipmapped, volume filtering, and anisotropic filtering modes where TP0..3 require a maximum of h, m, v, and a cycles for each mode respectively, tp_walker must generate h*m*v*a cycles for each cycle from the SQ/SP, h=[1..4], m=[1..2], v=[1..2], a=[1,2,4,6,8,10,12,14,16].

1.2 Control

Is the tpc_walker state machine sending TP_SQ_dec back to SQ as early as possible?

Are the following FIFOs read by the walker state machine properly sized to work with the SQ TP interface?

tpc_walker_fifo tp_lod_fifo tp_coord_fifo

- 2. tpc_aligner
- 2.1 State machine

For alignment cases where TP0..3 require a maximum of n cycles, does tpc_aligner generate n cycles for each cycle from the SQ/SP, n=[1,2,4].

2.2 Control

Is the FIFO read enable optimal?

Is the RTR that stalls the previous pipeline section optimal? This involves the FIFO control logic as well as FIFO sizes and watermarks.

Are RTRs from following pipelines being efficiently handled (no extra stalls)?

3. tpc blend

TPC_TC_rtr and whether the tpc_rr_fifo latency FIFO is full are the 2 condition that stall the tpc_aligner. The latency FIFO will cause stall, but it has been sized to handle typical memory latencies. 3.1 Control

Is tpc_rr_fifo sized properly? That is, is there an unresonable amount of stalling for actual memory latencies

4. Cases to Test

Assuming no external bottlenecks (0 memory latency, 100% cache hits), each cycle requires the following number of cycles to complete:

h*m*v*a*al

- h # of cycles to handle the DATA_FORMAT [1,2,3,4]
- m mip filter mode [1,2]
- v volume filte rmode [1,2]
- a aniso filter mode [12,4,6,8,10,12,14,16]
- al alignment multicyling [1,2,4]

Ideal performance can be computed using the observations above as a basis.

4.1 General Test Characteristics

All tests must render a destination region large enough to reach steady state performance. The tests must also eliminate TC and memory system bottlenecks. Unless otherewise notes, the tests in sections 4.3, 4.4, and 4.5 have the following characteristics:

• Destination regions is 128x128 defined by V0, V1, V2, and V3. This area can be filled using two triangles defined V0, V1, V3, and V0, V3, and V2.

V0.[x,y] = [0.0, 0.0] V1.[x,y] = [128.0, 0.0] V2.[x,y] = [0.0, 128.0] V3.[x,y] = [128.0,128.0]

- BORDER_SIZE = 0, BORDER_COLOR = ARGB White
- The base texture map is defined by:

Width = 128Height = 128

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

Depth = 2

These are to be programmed into the const.SIZE according to the dimension of the texture map required: normally 2D, 3D for cases with volume filter.

- DIM=2D, unless volume filtering is enabled, in which case it is set to 3D
- MAX_ANISO set to 16:1 to avoid concealing incorrect aniso ratio setup with a clamp. Where the case
 name does not specify an aniso ratio, it is disabled.
- Clamp modes X, Y, and Z should all be set to "clamp to border color". This will remove TC and the memory subsystem as bottlenecks
- The texture coordinates (s, t, w) should be programmed as follows

V0.[s,t] = [2.0, 2.0] V1.[s,t] = [2.0+(n*sqrt(2)), 2.0] V2.[s,t] = [2.0, 2.0+sqrt(2)] V3.[s,t] = [2.0+(n*sqrt(2)), 2.0+sqrt(2)] $V\{0..3\}.p(aka r) = 0.5f$

The s and t coordinates are meant to create a 50-50 blend between the mip levels 0 and 1 (base map and the next one down) n is defined by the desired aniso ratio, n:1. The w coord of 0.5 will create a texture z coord of 1, which will require a 50-50 blend between 2 z layers when volume filter is turned on. When vol filter is off, it will just clamp to one of the levels.

IF POSSIBLE, BECAUSE ALL TEXELS MAP TO BORDER, IT MAY NOT BE NECESSARY TO INITIALIZE THE TEXTURE.

4.2 Gathering of Performance data

The number of cycles elapsed can be approximated by counting the time between the first rising and last falling edge on the TP_SP_data_valid signal. Ideal cycles have been calculate with:

128*128 / 16 pixels/clock * h * m * v * a

h, m, v, a defined at the start of section 4.

4.3 FMT_8_8_8_8 Even-sized Texture Maps

Mode	Pixels	hicolor	mip	volume	aniso	Ideal	Actual	%
mip point, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear, vol point, aniso disabled	16384	1	2	1	1	2048	2080	98%
mip point, vol linear, aniso disabled	16384	1	1	2	1	2048	2080	98%
mip point, vol point, aniso 2:1	16384	1	1	1	2	2048	2080	98%
mip point, vol point, aniso 4:1	16384	1	1	1	4	4096	4156	99%
mip point, vol point, aniso 6:1	16384	1	1	1	6	6144	6236	99%
mip point, vol point, aniso 8:1	16384	1	1	1	8	8192	8312	99%
mip point, vol point, aniso 10:1 (a)	16384	1	1	1	10	10240	10392	99%
mip point, vol point, aniso 12:1	16384	1	1	1	12	12288	12468	99%
mip point, vol point, aniso 14:1 (a)	16384	1	1	1	14	14336	14544	99%
mip point, vol point, aniso 16:1	16384	1	1	1	16	16384	16624	99%
mip linear, vol point, aniso 2:1	16384	1	2	1	2	4096	4156	99%
mip linear, vol point, aniso 4:1	16384	1	2	1	4	8192	8312	99%
mip linear, vol point, aniso 8:1	16384	1	2	1	8	16384	16624	99%
mip linear, vol point, aniso 16:1	16384	1	2	1	16	32768	33248	99%
mip point, vol linear, aniso 2:1	16384	1	1	2	2	4096	4156	99%
mip point, vol linear, aniso 4:1	16384	1	1	2	4	8192	8312	99%
mip point, vol linear, aniso 8:1	16384	1	1	2	8	16384	16624	99%
mip point, vol linear, aniso 16:1	16384	1	1	2	16	32768	33248	99%
mip linear, vol linear, aniso 2:1	16384	1	2	2	2	8192	8312	99%
mip linear, vol linear, aniso 4:1	16384	1	2	2	4	16384	16624	99%
mip linear, vol linear, aniso 8:1	16384	1	2	2	8	32768	33248	99%
mip linear, vol linear, aniso 16:1	16384	1	2	2	16	65536	66496	99%
mip point, vol point, aniso 16:1 clamped to 1:1 (1)	16384	1	1	1	1	1024	1040	98%
mip point, vol point, aniso 16:1 clamped to 2:1 (1)	16384	1	1	1	2	2048	2076	99%
mip point, vol point, aniso 16:1 clamped to 4:1 (1)	16384	1	1	1	4	4096	4156	99%
mip point, vol point, aniso 16:1 clamped to 8:1 (1)	16384	1	1	1	8	8192	8312	99%
mip point, vol point, aniso 16:1 clamped to 16:1 (1)	16384	1	1	1	16	16384	16624	99%
mip linear frac=0, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip point, vol linear frac=0, aniso disabled (b)	16384	1	1	2	1	2048	2076	99%
mip linear tri_juice 1/6 frac=1/8, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear tri_juice 1/4 frac=7/32, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear tri_juice 3/8 frac=21/64, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%

(1) The following texture coordinates (s, t, w) should be programmed with different values from above:

V1.[s,t] = [2.0+(16*sqrt(2)), 2.0]

V3.[s,t] = [2.0+(16*sqrt(2)), 2.0+sqrt(2)]

MAX_ANISO set to ratio as specified by "clamped to n:1".

- (a) Setting up an exact n:1 ratio caused the actual stepping to be n+2:1. The ratio was modified to slightly less than n:1 to acheive the numbers listed. Using the exact ratio, the actual number of cycles would have been the same as that for the n+2:1 ratio.
- (b) To simplify control of the TP, zero fractions in the depth coordinate will still generated 2 cycles. This is because the decision to multicycle is made before the fraction can be found.

4.4 FMT_16_16_16_16 Even-sized Texture Maps

Mode	Pixels	hicolor	m ip	volum e	aniso	ldeal	Actual	%
m ip point, volpoint, aniso disabled	16384	2	1	1	1	2048	2080	98%
m ip linear, vol point, aniso disabled	16384	2	2	1	1	4096	4160	98%
m ip point, vol linear, aniso disabled	16384	2	1	2	1	4096	4160	98%
m ip point, vol point, aniso 2:1	16384	2	1	1	2	4096	4160	98%
m ip point, vol point, aniso 4:1	16384	2	1	1	4	8192	8316	99%
m ip point, vol point, aniso 6:1	16384	2	1	1	6	12288	12476	98%
m ip point, volpoint, aniso 8:1	16384	2	1	1	8	16384	16632	99%
m ip point, vol point, aniso 10:1 (a)	16384	2	1	1	10	20480	20792	98%
m ip point, vol point, aniso 12:1	16384	2	1	1	12	24576	24948	99%
m ip point, volpoint, aniso 14:1 (a)	16384	2	1	1	14	28672	29108	99%
m ip point, volpoint, aniso 16:1	16384	2	1	1	16	32768	33264	99%
m ip linear, vol point, aniso 2:1	16384	2	2	1	2	8192	8316	99%
m ip linear, vol point, aniso 4:1	16384	2	2	1	4	16384	16632	99%
m ip linear, vol point, aniso 8:1	16384	2	2	1	8	32768	33264	99%
m ip linear, vol point, aniso 16:1	16384	2	2	1	16	65536	66528	99%
m ip point, vollinear, aniso 2:1	16384	2	1	2	2	8192	8316	99%
m ip point, vollinear, aniso 4:1	16384	2	1	2	4	16384	16632	99%
m ip point, vol linear, aniso 8:1	16384	2	1	2	8	32768	33264	99%
m ip point, vol linear, aniso 16:1	16384	2	1	2	16	65536	66528	99%
m ip linear, vol linear, aniso 2:1	16384	2	2	2	2	16384	16632	99%
m ip linear, vol linear, aniso 4:1	16384	2	2	2	4	32768	33264	99%
m ip linear, vol linear, aniso 8:1	16384	2	2	2	8	65536	66528	99%
m ip linear, vol linear, aniso 16:1	16384	2	2	2	16	131072	133056	99%
m ip point, vol point, aniso 16:1 clam ped to 1:1 (1)	16384	2	1	1	1	2048	2080	98%
m ip point, volpoint, aniso 16:1 clam ped to 2:1 (1)	16384	2	1	1	2	4096	4156	99%
m ip point, volpoint, aniso 16:1 clam ped to 4:1 (1)	16384	2	1	1	4	8192	8316	99%
m ip point, volpoint, aniso 16:1 clam ped to 8:1 (1)	16384	2	1	1	8	16384	16632	99%
m ip point, vol point, aniso 16:1 clam ped to 16:1 (1)	16384	2	1	1	16	32768	33264	99%

AMD1044_0215877

ATI Ex. 2066 IPR2023-00922 Page 270 of 291

4.5 FMT_32_32_32_32 Even-sized Texture Maps

Mode	Pixels	hicolor	m ip	volum e	aniso	ldeal	Actual	%
m ip point, vol point, aniso disabled	16384	4	1	1	1	4096	4160	98%
m ip linear, vol point, aniso disabled	16384	4	2	1	1	8192	8320	98%
m ip point, vol linear, aniso disabled	16384	4	1	2	1	8192	8320	98%
m ip point, vol point, aniso 2:1	16384	4	1	1	2	8192	8320	98%
m ip point, vol point, aniso 4:1	16384	4	1	1	4	16384	16636	98%
m ip point, volpoint, aniso 6:1	16384	4	1	1	6	24576	24956	98%
m ip point, vol point, aniso 8:1	16384	4	1	1	8	32768	33272	98%
m ip point, vol point, aniso 10:1 (a)	16384	4	1	1	10	40960	41592	98%
m ip point, vol point, aniso 12:1	16384	4	1	1	12	49152	49908	98%
m ip point, vol point, aniso 14:1 (a)	16384	4	1	1	14	57344	58228	98%
m ip point, vol point, aniso 16:1	16384	4	1	1	16	65536	66544	98%
m ip linear, vol point, aniso 2:1	16384	4	2	1	2	16384	16636	98%
m ip linear, vol point, aniso 4:1	16384	4	2	1	4	32768	33272	98%
m ip linear, vol point, aniso 8:1	16384	4	2	1	8	65536	66544	98%
m ip linear, vol point, aniso 16:1	16384	4	2	1	16	131072	133088	98%
m ip point, vol linear, aniso 2:1	16384	4	1	2	2	16384	16636	98%
m ip point, vol linear, aniso 4:1	16384	4	1	2	4	32768	33272	98%
m ip point, vol linear, aniso 8:1	16384	4	1	2	8	65536	66544	98%
m ip point, vol linear, aniso 16:1	16384	4	1	2	16	131072	133088	98%
m ip linear, vol linear, aniso 2:1	16384	4	2	2	2	32768	33272	98%
m ip linear, vol linear, aniso 4:1	16384	4	2	2	4	65536	66544	98%
m ip linear, vol linear, aniso 8:1	16384	4	2	2	8	131072	133088	98%
m ip linear, vol linear, aniso 16:1	16384	4	2	2	16	262144	266176	98%
m ip point, vol point, aniso 16:1 clam ped to 1:1 (1)	16384	4	1	1	1	4096	4160	98%
m ip point, vol point, aniso 16:1 clam ped to 2:1 (1)	16384	4	1	1	2	8192	8316	99%
m ip point, vol point, aniso 16:1 clam ped to 4:1 (1)	16384	4	1	1	4	16384	16636	98%
m ip point, vol point, aniso 16:1 clam ped to 8:1 (1)	16384	4	1	1	8	32768	33272	98%
m ip point, vol point, aniso 16:1 clam ped to 16:1 (1)	16384	4	1	1	16	65536	66544	98%

AMD1044_0215878

ATI Ex. 2066 IPR2023-00922 Page 271 of 291 4.6 FMT_8_8_8_8 Odd-sized Texture Maps

Odd-sized texture maps are used to stress the aligner state machine, both with and without the presence of walker multicycling. Both cases vary slightly from the standard form described in 4.1.

Non-anisotropic filtering cases:

• The base texture map is defined by:

```
Width = 7
Height = 7
Depth = 4
```

These are programmed into the const.SIZE according to the dimension of the texture map required.

- MAX_ANISO set as specified in the test case name
- Clamp modes X, Y, and Z are set to wrap. The clamp-to-border trick can't be used since that would optimize the number of texel requests to one through the aligner, making it unnecessary to multicycle.
- The texture coordinates (s, t, w) should be programmed as follows

 $\begin{array}{l} V0.[s,t] = [0.0, 0.0], [0.0, 0.5], [0.5, 0.0] \\ V1.[s,t] = [0.0, 0.0], [0.0, 0.5], [0.5, 0.0] \\ V2.[s,t] = [0.0, 0.0], [0.0, 0.5], [0.5, 0.0] \\ V3.[s,t] = [0.0, 0.0], [0.0, 0.5], [0.5, 0.0] \\ V\{0..3\}.p(aka r) = 0.5f \end{array}$

Constant s and t coordinates minimize the amount of cache accesses and create predictable alignment behavior. The 3 values above used are for 4-cycle, 2-cycle horizontal, and 2-cycle vertical alignment stalls, respectively.

• SetGradients* commands are used to set up a desired LOD and aniso ratio.

Anisotropic filtering cases are the same as the non-anisotropic odd-mapped cases except:

• The texture coordinates (s, t, w) should be programmed as follows

V0.[s,t] = [0.0, 0.0] V1.[s,t] = [0.0 + s', 128.0 + t'] V2.[s,t] = [(i*128.0) + s', 128.0 + t'] V3.[s,t] = [(i*128.0) + s', 0.0 + t'] $V\{0..3\}.p(aka r) = 0.5f$

S' is 0.0 if an alignment stall is desired in the horizontal dimension or 0.5 if not. T' is 0.0 if an alignment stall is desired in the vertical dimension or 0.5 if not. The parameter i is used to set up an i:1 anisotropic ratio. The endpoints being 128.0 mean that each sample will land on the same point in the texture map, just on different copies.

Mode	Pixels	c h	m ip	V O I	aniso	align	ld e a l	Actual	%
m ip point, vol point, aniso disabled , all ee	16384	1	1	1	1	4	4096	4156	99%
m ip point, vol point, aniso disabled , 2 ee x	16384	1	1	1	1	2	2048	2076	99%
m ip point, vol point, aniso disabled , 2 ee y	16384	1	1	1	1	2	2048	2076	99%
m ip linear, vol point, aniso disabled, all ee	16384	1	2	1	1	4	8192	8312	99%
m ip linear, vol point, aniso disabled, 2 ee x	16384	1	2	1	1	2	4096	4156	99%
m ip linear, vol point, aniso disabled, 2 ee y	16384	1	2	1	1	2	4096	4156	99%
m ip point, vol linear, aniso disabled, all ee	16384	1	1	2	1	4	8192	8312	99%
m ip point, vol linear, aniso disabled, 2 ee x	16384	1	1	2	1	2	4096	4156	99%
m ip point, vol linear, aniso disabled, 2 ee y	16384	1	1	2	1	2	4096	4156	99%
m ip linear, vol linear, an iso disabled, all ee	16384	1	2	2	1	4	16384	16624	99%
m ip linear, vol linear, an iso disabled , 2 ee x	16384	1	2	2	1	2	8192	8312	99%
m ip linear, vol linear, an iso disabled, 2 ee y	16384	1	2	2	1	2	8192	8312	99%
m ip point, vol point, aniso 2:1, all ee	16384	1	1	1	2	4	8192	8312	99%
m ip point, vol point, aniso 16:1, all ee	16384	1	1	1	16	4	65536	66496	99%
m ip linear, vol point, aniso 2∶1 , all ee	16384	1	2	1	2	4	16384	16624	99%
m ip linear, vol point, aniso 16:1, all ee	16384	1	2	1	16	4	131072	132992	99%
m ip point, vol linear, aniso 2∶1 , all ee	16384	1	1	2	2	4	16384	16624	99%
m ip point, vol linear, aniso 16:1, all ee	16384	1	1	2	16	4	131072	132992	99%
m ip linear, vol linear, aniso 2:1, all ee	16384	1	2	2	2	4	32768	33248	99%
m ip linear, vol linear, an iso 16:1, all ee	16384	1	2	2	16	4	262144	265984	99%

ATI Ex. 2066 IPR2023-00922 Page 273 of 291

4.7 FMT_16_16_16_16 Odd-sized Texture Maps

Mode	Pixels	c h	m ip	V O I	aniso	align	ld e a l	Actual	%
m ip point, vol point, aniso disabled, all ee	16384	2	1	1	1	4	8192	8316	99%
m ip point, vol point, aniso disabled , 2 ee x	16384	2	1	1	1	2	4096	4156	99%
m ip point, vol point, aniso disabled, 2 ee y	16384	2	1	1	1	2	4096	4156	99%
m ip linear, vol point, aniso disabled, all ee	16384	2	2	1	1	4	16384	16632	99%
m ip linear, vol point, aniso disabled, 2 ee x	16384	2	2	1	1	2	8192	8320	98%
m ip linear, vol point, aniso disabled, 2 ee y	16384	2	2	1	1	2	8192	8316	99%
m ip point, vol linear, aniso disabled, all ee	16384	2	1	2	1	4	16384	16632	99%
m ip point, vol linear, aniso disabled, 2 ee x	16384	2	1	2	1	2	8192	8316	99%
m ip point, vol linear, aniso disabled, 2 ee y	16384	2	1	2	1	2	8192	8316	99%
m ip linear, vol linear, an iso disabled, all ee	16384	2	2	2	1	4	32768	33264	99%
m ip linear, vol linear, an iso disabled , 2 ee x	16384	2	2	2	1	2	16384	16632	99%
m ip linear, vol linear, an iso disabled, 2 ee y	16384	2	2	2	1	2	16384	16632	99%
m ip point, vol point, aniso 2∶1, all ee	16384	2	1	1	2	4	16384	16632	99%
m ip point, vol point, aniso 16:1, all ee	16384	2	1	1	16	4	131072	133056	99%
m ip linear, vol point, aniso 2:1, all ee	16384	2	2	1	2	4	32768	33264	99%
m ip linear, vol point, aniso 16:1, all ee	16384	2	2	1	16	4	262144	266112	99%
m ip point, vol linear, aniso 2:1, all ee	16384	2	1	2	2	4	32768	33264	99%
m ip point, vol linear, aniso 16:1, all ee	16384	2	1	2	16	4	262144	266112	99%
m ip_linear, vol linear, an iso_2∶1 , all ee	16384	2	2	2	2	4	65536	66528	99%
m ip linear, vol linear, an iso 16:1, all ee	16384	2	2	2	16	4	524288	532224	99%

AMD1044_0215881

ATI Ex. 2066 IPR2023-00922 Page 274 of 291

4.8 FMT_32_32_32_32 Odd-sized Texture Maps

Mode	Pixels	c h	m ip	vol	aniso	align	ld e a l	A c tu a l	%
m ip point, vol point, aniso disabled, all ee	16384	4	1	1	1	4	16384	16636	98%
m ip point, vol point, aniso disabled , 2 ee x	16384	4	1	1	1	2	8192	8316	99%
m ip point, vol point, aniso disabled , 2 ee y	16384	4	1	1	1	2	8192	8316	99%
m ip linear, vol point, aniso disabled, all ee	16384	4	2	1	1	4	32768	33272	98%
m ip linear, vol point, aniso disabled, 2 ee x	16384	4	2	1	1	2	16384	16636	98%
m ip linear, vol point, aniso disabled, 2 ee y	16384	4	2	1	1	2	16384	16636	98%
m ip point, vol linear, aniso disabled, all ee	16384	4	1	2	1	4	32768	33272	98%
m ip point, vol linear, aniso disabled, 2 ee x	16384	4	1	2	1	2	16384	16636	98%
m ip point, vol linear, aniso disabled, 2 ee y	16384	4	1	2	1	2	16384	16636	98%
m ip linear, vollinear, aniso disabled, all ee	16384	4	2	2	1	4	65536	66544	98%
m ip linear, vollinear, aniso disabled, 2 ee x	16384	4	2	2	1	2	32768	33272	98%
m ip linear, vol linear, an iso disabled, 2 ee y	16384	4	2	2	1	2	32768	33272	98%
m ip point, vol point, aniso 2:1 , all ee	16384	4	1	1	2	4	32768	33272	98%
m ip point, vol point, aniso 16:1, all ee	16384	4	1	1	16	4	262144	266176	98%
m ip linear, vol point, aniso 2:1, all ee	16384	4	2	1	2	4	65536	66544	98%
m ip linear, vol point, aniso 16:1, all ee	16384	4	2	1	16	4	524288	532352	98%
m ip point, vol linear, aniso 2:1, all ee	16384	4	1	2	2	4	65536	66544	98%
m ip point, vol linear, aniso 16:1, all ee	16384	4	1	2	16	4	524288	532352	98%
m ip linear, vollinear, an iso 2:1, all ee	16384	4	2	2	2	4	131072	133088	98%
m ip linear, vol linear, aniso 16:1, all ee	16384	4	2	2	16	4	1048576	1064704	98%

AMD1044_0215882

ATI Ex. 2066 IPR2023-00922 Page 275 of 291

A1. Performance Counters

Though not directly related to block performance, these counters have been included here for completeness.

A1.1 TPC status

tpc_busy tpc_stalled tpc_starved tpc_working

TPC is busy when anything from the top (SQ_TP ati_dff_in) to the bottom (TP_SP_data_valid ati_dff_out) is busy.

It's hard to visualize what stalled, starved, and working look like when viewing TPC as a whole. There may be starved and stalled situations within TPC, but not from around its periphery. These signals will thus be defined according the following:

TPC is starved when the lower pipe (blend) is idle waiting for data from the TC but the TPC as a whole is busy. This can be true if any part of the upper pipe (lod, aniso) is busy. This is a little misleading, since the upper pipe may be doing useful work.

TPC is stalled when:

- TC is stalling the upper pipe and lower pipe is empty. The second part of that is important, since if the lower pipe is busy and the TC is stalling the upper pipe, TPC as a whole is still doing useful work.
- TPC must wait for the proper phase before writing data to the SP. This one's a tricky one as it really isn't a stall. It's more like a deferring buffer

TPC is doing work when any of the pipelines are busy. This is tpc busy excluding the fifos. This busy includes:

- input instr/const gatherer TI_TCG_busy
- walker pipe TW_TCG_busy
- aligner pipe AL TCG busy
- blend pipe TB TCG busy
- formatter pipe SP TCG busy (??)

The 3 definitions above do not add up cleanly, but hopefully provide some extra useful information. I believe the tpc_busy count to be the only accurate count at this level.

A1.2 TPC walker status

This set of registers monitors the status of the TPC/TP pipe from the walker state machine up to the SQ_TP interface. Note that the input instr/const gathering logic is separte in the TPC status but is included with this walker state.

tpc_walker_busy tpc_walker_stalled tpc_walker_starved tpc_walker_working

The walker is busy is if any of the following blocks are busy:

- Input instr/const gatherer TI_TCG_busy
- Walker pipe TW_TCG_busy
- Walker fifo, state machine and read control FW_TCG_busy

The walker is stalled if the aligner is not ready to receive, indidated by TW_TA_rtr.

The walker is starved if the walker fifo is not empty, but the input and walker pipes are. This indicates that the walker is still busy trying to send data on to the aligner, but the SQ/SP is not sending more data along and thus starving the input and walker pipes.

The walker is doing useful work if the input and walker pipes are busy.

A1.3 TPC aligner status

This set of registers monitors the status of the TPC/TP pipe from top of the aligner pipe to the TC and top of the latency fifo.

tpc_aligner_busy tpc_aligner_stalled tpc_aligner_starved tpc_aligner_working

The aligner is busy is if any of the following blocks are busy:

- Aligner pipe AL_TCG_busy
- Aligner fifo, state machine and read control FA_TCG_busy

The aligner is stalled if:

- TC not ready to receive, indicated by a flopped version TC_TPC_rtr.
- Blender not ready to receive, indicated by TA_TB_rtr.

The aligner is starved if the aligner fifo is not empty, but the input and walker pipes are. This idicates that the aligner is still busy trying to send data on to the TC and latency FIFOs, but the walker is not sending more data along and thus starving the aligner pipe.

The aligner is doing useful work if the aligner pipe is busy.

A1.4 TPC blender status

These registers monitor the TPC/TP pipe the top of the latency FIFO down to the bottom of the output FIFO (or bottom of the sp_tp_formatter, TBD).

tpc_blend_busy tpc_blend_stalled tpc_blend_starved tpc_blend_working

The blender is busy is if any of the following blocks are busy:

- Latency fifo (read return FIFO) FR_TCG_busy
- Blender pipe TB_TCG_busy
- Output fifo, state machine and read control FO_TCG_busy
- Formatter pipe SP_TCG_busy

The blender is unstallable, so we will modify this counter to count the number of cycles a read from the output is delayed because of the incorrect phase.

The blender is starved if the latency fifo is not empty and no data is coming back from the cache. This is when q_rfifo_empty and rfifo_ren are low.

The blender is doing useful work if the blender and formatter pipes are busy.

A1.5 TPC Counts

- 0 # of valid cycles on the output of the walker state machine
- 1 # of phases with any 1:1 aniso, bilin, or point sampling
- 2 # of phases with any aniso (>1:1 ratio) filtering
- 3 # of phases with any mip filtering
- 4 # of phases with any volume filtering
- 5 # of phases with mip and volume filtering
- 6 # of phases with mip and aniso (>1:1 ratio) filtering
- 7 # of phases with volume and aniso (>1:1 ratio) filtering
- 8 # of phases with 2:1 aniso sampling
- 9 # of phases with 4:1 aniso sampling
- 10 # of phases with 6:1 aniso sampling
- 11 # of phases with 8:1 aniso sampling
- 12 # of phases with 10:1 aniso sampling
- 13 # of phases with 12:1 aniso sampling
- 14 # of phases with 14:1 aniso sampling
- 15 # of phases with 16:1 aniso sampling
- 16 # of phases with mip, volume and aniso (>1:1 ratio) filtering
- 17 # of 2-cycle misaligned phases
- 18 # of 4-cycle misaligned phases

A1.6 TP Counts

- 0 # of quads that are point samples (including 1:1 aniso samples that are point sampled)
- 1 # of quads that are bilinearly filtered (including 1:1 aniso samples that are bilinearly filtered)
- 2 # of quads with any aniso (>1:1 ratio) filtering
- 3 # of quads with any mip filtering
- 4 # of quads with any volume filtering
- 5 # of quads with mip and volume filtering
- 6 # of quads with mip and aniso (>1:1 ratio) filtering
- 7 # of quads with volume and aniso (>1:1 ratio) filtering
- 8 # of quads with 2:1 aniso sampling
- 9 # of quads with 4:1 aniso sampling
- 10 # of quads with 6:1 aniso sampling
- 11 # of quads with 8:1 aniso sampling
- 12 # of quads with 10:1 aniso sampling
- 13 # of quads with 12:1 aniso sampling
- 14 # of quads with 14:1 aniso sampling
- 15 # of quads with 16:1 aniso sampling
- 16 # of quads with mip, volume and aniso (>1:1 ratio) filtering
- 17 # of 2-cycle misaligned quads
- 18 # of 4-cycle misaligned quads
- 19 no valid pixels in quad
- 20 1 valid pixel in quad
- 21 2 valid pixels in quad
- 22 3 valid pixels in quad
- 23 4 valid pixels in quad
- A1.7 Summary

TPC

0 - # of valid cycles on the output of the walker state machine 1 - # of phases with any 1:1 aniso, bilin, or point sampling 2 - # of phases with any aniso (>1:1 ratio) filtering 3 - # of phases with any mip filtering 4 - # of phases with any volume filtering 5 - # of phases with mip and volume filtering 6 - # of phases with mip and aniso (>1:1 ratio) filtering 7 - # of phases with volume and aniso (>1:1 ratio) filtering 8 - # of phases with 2:1 aniso sampling 9 - # of phases with 4:1 aniso sampling 10 - # of phases with 6:1 aniso sampling 11 - # of phases with 8:1 aniso sampling 12 - # of phases with 10:1 aniso sampling 13 - # of phases with 12:1 aniso sampling 14 - # of phases with 14:1 aniso sampling 15 - # of phases with 16:1 aniso sampling 16 - # of phases with mip, volume and aniso (>1:1 ratio) filtering 17 - # of 2-cycle misaligned phases 18 - # of 4-cycle misaligned phases 24 - tpc busy 25 - tpc stalled 26 - tpc starved 27 - tpc working 28 - tpc walker busy 29 - tpc walker stalled 30 - tpc walker starved 31 - tpc walker working 32 - tpc aligner busy 33 - tpc aligner stalled 34 - tpc aligner starved 35 - tpc aligner working 36 - tpc blend busy 37-tpc blend stalled 38 - tpc blend starved 39 - tpc blend working

TP0..3

- 0 # of quads that are point samples (including 1:1 aniso samples that are point sampled)
- 1 # of quads that are bilinearly filtered (including 1:1 aniso samples that are bilinearly filtered)
- 2 # of quads with any aniso (>1:1 ratio) filtering
- 3 # of quads with any mip filtering
- 4 # of quads with any volume filtering
- 5 # of quads with mip and volume filtering
- 6 # of quads with mip and aniso (>1:1 ratio) filtering
- 7 # of quads with volume and aniso (>1:1 ratio) filtering
- 8 # of quads with 2:1 aniso sampling
- 9 # of quads with 4:1 aniso sampling
- 10 # of quads with 6:1 aniso sampling
- 11 # of quads with 8:1 aniso sampling
- 12 # of quads with 10:1 aniso sampling
- 13 # of quads with 12:1 aniso sampling

- 14 # of quads with 14:1 aniso sampling
- 15 # of quads with 16:1 aniso sampling
- 16 # of quads with mip, volume and aniso (>1:1 ratio) filtering
- 17 # of 2-cycle misaligned quads
- 18 # of 4-cycle misaligned quads
- 19 no valid pixels in quad
- 20 1 valid pixel in quad
- 21 2 valid pixels in quad
- 22 3 valid pixels in quad
- 23 4 valid pixels in quad

A1.8 How TPC pipe sections map to TP pipe sections

TPC input instr/const gatherer	-> TP input instr/const gather
TPC walker pipeline	-> TP LOD deriv and aniso pipelines
TPC walker FIFO	-> TP LOD and COORD FIFOs
TPC aligner pipeline	-> TP addresser pipeline
TPC aligner FIFO	-> TP aligner FIFO
TPC latency FIFO	-> TP aligner logic (no state), TP_TC interface, TP latency FIFO
TPC blend pipe	-> TP blend pipeline (ch_blend, tt, hicolor)
TPC output FIFO	-> TP output FIFO
SP_TP_formatter	-> SP_TP_formatter

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

Mode	Pixels	hicolor	mip	volume	aniso	Ideal	Actual	%
mip point, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear, vol point, aniso disabled	16384	1	2	1	1	2048	2080	98%
mip point, vol linear, aniso disabled	16384	1	1	2	1	2048	2080	98%
mip point, vol point, aniso 2:1	16384	1	1	1	2	2048	2080	98%
mip point, vol point, aniso 4:1	16384	1	1	1	4	4096	4156	99%
mip point, vol point, aniso 6:1	16384	1	1	1	6	6144	6236	99%
mip point, vol point, aniso 8:1	16384	1	1	1	8	8192	8312	99%
mip point, vol point, aniso 10:1 (a)	16384	1	1	1	10	10240	10392	99%
mip point, vol point, aniso 12:1	16384	1	1	1	12	12288	12468	99%
mip point, vol point, aniso 14:1 (a)	16384	1	1	1	14	14336	14544	99%
mip point, vol point, aniso 16:1	16384	1	1	1	16	16384	16624	99%
mip linear, vol point, aniso 2:1	16384	1	2	1	2	4096	4156	99%
mip linear, vol point, aniso 4:1	16384	1	2	1	4	8192	8312	99%
mip linear, vol point, aniso 8:1	16384	1	2	1	8	16384	16624	99%
mip linear, vol point, aniso 16:1	16384	1	2	1	16	32768	33248	99%
mip point, vol linear, aniso 2:1	16384	1	1	2	2	4096	4156	99%
mip point, vol linear, aniso 4:1	16384	1	1	2	4	8192	8312	99%
mip point, vol linear, aniso 8:1	16384	1	1	2	8	16384	16624	99%
mip point, vol linear, aniso 16:1	16384	1	1	2	16	32768	33248	99%
mip linear, vol linear, aniso 2:1	16384	1	2	2	2	8192	8312	99%
mip linear, vol linear, aniso 4:1	16384	1	2	2	4	16384	16624	99%
mip linear, vol linear, aniso 8:1	16384	1	2	2	8	32768	33248	99%
mip linear, vol linear, aniso 16:1	16384	1	2	2	16	65536	66496	99%
mip point, vol point, aniso 16:1 clamped to 1:1 (1)	16384	1	1	1	1	1024	1040	98%
mip point, vol point, aniso 16:1 clamped to 2:1 (1)	16384	1	1	1	2	2048	2076	99%
mip point, vol point, aniso 16:1 clamped to 4:1 (1)	16384	1	1	1	4	4096	4156	99%
mip point, vol point, aniso 16:1 clamped to 8:1 (1)	16384	1	1	1	8	8192	8312	99%
mip point, vol point, aniso 16:1 clamped to 16:1 (1)	16384	1	1	1	16	16384	16624	99%
mip linear frac=0, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip point, vol linear frac=0, aniso disabled (b)	16384	1	1	2	1	2048	2076	99%
mip linear tri_juice 1/6 frac=1/8, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear tri_juice 1/4 frac=7/32, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%
mip linear tri_juice 3/8 frac=21/64, vol point, aniso disabled	16384	1	1	1	1	1024	1040	98%

Mode	Pixels	hicolor	mip	volume	aniso	Ideal	Actual
mip point, vol point, aniso disabled	16384	2	1	1	1	2048	2080
mip linear, vol point, aniso disabled	16384	2	2	1	1	4096	4160
mip point, vol linear, aniso disabled	16384	2	1	2	1	4096	4160
mip point, vol point, aniso 2:1	16384	2	1	1	2	4096	4160
mip point, vol point, aniso 4:1	16384	2	1	1	4	8192	8316
mip point, vol point, aniso 6:1	16384	2	1	1	6	12288	12476
mip point, vol point, aniso 8:1	16384	2	1	1	8	16384	16632
mip point, vol point, aniso 10:1 (a)	16384	2	1	1	10	20480	20792
mip point, vol point, aniso 12:1	16384	2	1	1	12	24576	24948
mip point, vol point, aniso 14:1 (a)	16384	2	1	1	14	28672	29108
mip point, vol point, aniso 16:1	16384	2	1	1	16	32768	33264
mip linear, vol point, aniso 2:1	16384	2	2	1	2	8192	8316
mip linear, vol point, aniso 4:1	16384	2	2	1	4	16384	16632
mip linear, vol point, aniso 8:1	16384	2	2	1	8	32768	33264
mip linear, vol point, aniso 16:1	16384	2	2	1	16	65536	66528
mip point, vol linear, aniso 2:1	16384	2	1	2	2	8192	8316
mip point, vol linear, aniso 4:1	16384	2	1	2	4	16384	16632
mip point, vol linear, aniso 8:1	16384	2	1	2	8	32768	33264
mip point, vol linear, aniso 16:1	16384	2	1	2	16	65536	66528
mip linear, vol linear, aniso 2:1	16384	2	2	2	2	16384	16632
mip linear, vol linear, aniso 4:1	16384	2	2	2	4	32768	33264
mip linear, vol linear, aniso 8:1	16384	2	2	2	8	65536	66528
mip linear, vol linear, aniso 16:1	16384	2	2	2	16	131072	133056
mip point, vol point, aniso 16:1 clamped to 1:1 (1)	16384	2	1	1	1	2048	2080
mip point, vol point, aniso 16:1 clamped to 2:1 (1)	16384	2	1	1	2	4096	4156
mip point, vol point, aniso 16:1 clamped to 4:1 (1)	16384	2	1	1	4	8192	8316
mip point, vol point, aniso 16:1 clamped to 8:1 (1)	16384	2	1	1	8	16384	16632
mip point, vol point, aniso 16:1 clamped to 16:1 (1)	16384	2	1	1	16	32768	33264

% 98% 98% 98% 98% 99% 98% 99% 98% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 98% 99% 99% 99% 99%

AMD1044_0215889

ATI Ex. 2066 IPR2023-00922 Page 283 of 291

Mode	Pixels	hicolor	mip	volume	aniso	Ideal	Actual
mip point, vol point, aniso disabled	16384	4	1	1	1	4096	4160
mip linear, vol point, aniso disabled	16384	4	2	1	1	8192	8320
mip point, vol linear, aniso disabled	16384	4	1	2	1	8192	8320
mip point, vol point, aniso 2:1	16384	4	1	1	2	8192	8320
mip point, vol point, aniso 4:1	16384	4	1	1	4	16384	16636
mip point, vol point, aniso 6:1	16384	4	1	1	6	24576	24956
mip point, vol point, aniso 8:1	16384	4	1	1	8	32768	33272
mip point, vol point, aniso 10:1 (a)	16384	4	1	1	10	40960	41592
mip point, vol point, aniso 12:1	16384	4	1	1	12	49152	49908
mip point, vol point, aniso 14:1 (a)	16384	4	1	1	14	57344	58228
mip point, vol point, aniso 16:1	16384	4	1	1	16	65536	66544
mip linear, vol point, aniso 2:1	16384	4	2	1	2	16384	16636
mip linear, vol point, aniso 4:1	16384	4	2	1	4	32768	33272
mip linear, vol point, aniso 8:1	16384	4	2	1	8	65536	66544
mip linear, vol point, aniso 16:1	16384	4	2	1	16	131072	133088
mip point, vol linear, aniso 2:1	16384	4	1	2	2	16384	16636
mip point, vol linear, aniso 4:1	16384	4	1	2	4	32768	33272
mip point, vol linear, aniso 8:1	16384	4	1	2	8	65536	66544
mip point, vol linear, aniso 16:1	16384	4	1	2	16	131072	133088
mip linear, vol linear, aniso 2:1	16384	4	2	2	2	32768	33272
mip linear, vol linear, aniso 4:1	16384	4	2	2	4	65536	66544
mip linear, vol linear, aniso 8:1	16384	4	2	2	8	131072	133088
mip linear, vol linear, aniso 16:1	16384	4	2	2	16	262144	266176
mip point, vol point, aniso 16:1 clamped to 1:1 (1)	16384	4	1	1	1	4096	4160
mip point, vol point, aniso 16:1 clamped to 2:1 (1)	16384	4	1	1	2	8192	8316
mip point, vol point, aniso 16:1 clamped to 4:1 (1)	16384	4	1	1	4	16384	16636
mip point, vol point, aniso 16:1 clamped to 8:1 (1)	16384	4	1	1	8	32768	33272
mip point, vol point, aniso 16:1 clamped to 16:1 (1)	16384	4	1	1	16	65536	66544

ATI Ex. 2066 IPR2023-00922 Page 284 of 291

% 98% 99% 98% 98% 98%

AMD1044_0215890

ATI Ex. 2066 IPR2023-00922 Page 285 of 291

Mode	Pixels	ch	mip	vol	aniso	align	Ideal	Actual	%
mip point, vol point, aniso disabled, all ee	16384	1	1	1	1	4	4096	4156	99%
mip point, vol point, aniso disabled, 2 ee x	16384	1	1	1	1	2	2048	2076	99%
mip point, vol point, aniso disabled, 2 ee y	16384	1	1	1	1	2	2048	2076	99%
mip linear, vol point, aniso disabled, all ee	16384	1	2	1	1	4	8192	8312	99%
mip linear, vol point, aniso disabled, 2 ee x	16384	1	2	1	1	2	4096	4156	99%
mip linear, vol point, aniso disabled, 2 ee y	16384	1	2	1	1	2	4096	4156	99%
mip point, vol linear, aniso disabled, all ee	16384	1	1	2	1	4	8192	8312	99%
mip point, vol linear, aniso disabled, 2 ee x	16384	1	1	2	1	2	4096	4156	99%
mip point, vol linear, aniso disabled, 2 ee y	16384	1	1	2	1	2	4096	4156	99%
mip linear, vol linear, aniso disabled, all ee	16384	1	2	2	1	4	16384	16624	99%
mip linear, vol linear, aniso disabled, 2 ee x	16384	1	2	2	1	2	8192	8312	99%
mip linear, vol linear, aniso disabled, 2 ee y	16384	1	2	2	1	2	8192	8312	99%
mip point, vol point, aniso 2:1, all ee	16384	1	1	1	2	4	8192	8312	99%
mip point, vol point, aniso 16:1, all ee	16384	1	1	1	16	4	65536	66496	99%
mip linear, vol point, aniso 2:1, all ee	16384	1	2	1	2	4	16384	16624	99%
mip linear, vol point, aniso 16:1, all ee	16384	1	2	1	16	4	131072	132992	99%
mip point, vol linear, aniso 2:1, all ee	16384	1	1	2	2	4	16384	16624	99%
mip point, vol linear, aniso 16:1, all ee	16384	1	1	2	16	4	131072	132992	99%
mip linear, vol linear, aniso 2:1, all ee	16384	1	2	2	2	4	32768	33248	99%
mip linear, vol linear, aniso 16:1, all ee	16384	1	2	2	16	4	262144	265984	99%

ATI Ex. 2066 IPR2023-00922 Page 286 of 291

Mode	Pixels	ch	mip	vol	aniso	align	Ideal	Actual	%
mip point, vol point, aniso disabled, all ee	16384	2	1	1	1	4	8192	8316	99%
mip point, vol point, aniso disabled, 2 ee x	16384	2	1	1	1	2	4096	4156	99%
mip point, vol point, aniso disabled, 2 ee y	16384	2	1	1	1	2	4096	4156	99%
mip linear, vol point, aniso disabled, all ee	16384	2	2	1	1	4	16384	16632	99%
mip linear, vol point, aniso disabled, 2 ee x	16384	2	2	1	1	2	8192	8320	98%
mip linear, vol point, aniso disabled, 2 ee y	16384	2	2	1	1	2	8192	8316	99%
mip point, vol linear, aniso disabled, all ee	16384	2	1	2	1	4	16384	16632	99%
mip point, vol linear, aniso disabled, 2 ee x	16384	2	1	2	1	2	8192	8316	99%
mip point, vol linear, aniso disabled, 2 ee y	16384	2	1	2	1	2	8192	8316	99%
mip linear, vol linear, aniso disabled, all ee	16384	2	2	2	1	4	32768	33264	99%
mip linear, vol linear, aniso disabled, 2 ee x	16384	2	2	2	1	2	16384	16632	99%
mip linear, vol linear, aniso disabled, 2 ee y	16384	2	2	2	1	2	16384	16632	99%
mip point, vol point, aniso 2:1, all ee	16384	2	1	1	2	4	16384	16632	99%
mip point, vol point, aniso 16:1, all ee	16384	2	1	1	16	4	131072	133056	99%
mip linear, vol point, aniso 2:1, all ee	16384	2	2	1	2	4	32768	33264	99%
mip linear, vol point, aniso 16:1, all ee	16384	2	2	1	16	4	262144	266112	99%
mip point, vol linear, aniso 2:1, all ee	16384	2	1	2	2	4	32768	33264	99%
mip point, vol linear, aniso 16:1, all ee	16384	2	1	2	16	4	262144	266112	99%
mip linear, vol linear, aniso 2:1, all ee	16384	2	2	2	2	4	65536	66528	99%
mip linear, vol linear, aniso 16:1, all ee	16384	2	2	2	16	4	524288	532224	99%

ATI Ex. 2066 IPR2023-00922 Page 287 of 291

Mode	Pixels	ch	mip	vol	aniso	align	Ideal	Actual	%
mip point, vol point, aniso disabled, all ee	16384	4	1	1	1	4	16384	16636	98%
mip point, vol point, aniso disabled, 2 ee x	16384	4	1	1	1	2	8192	8316	99%
mip point, vol point, aniso disabled, 2 ee y	16384	4	1	1	1	2	8192	8316	99%
mip linear, vol point, aniso disabled, all ee	16384	4	2	1	1	4	32768	33272	98%
mip linear, vol point, aniso disabled, 2 ee x	16384	4	2	1	1	2	16384	16636	98%
mip linear, vol point, aniso disabled, 2 ee y	16384	4	2	1	1	2	16384	16636	98%
mip point, vol linear, aniso disabled, all ee	16384	4	1	2	1	4	32768	33272	98%
mip point, vol linear, aniso disabled, 2 ee x	16384	4	1	2	1	2	16384	16636	98%
mip point, vol linear, aniso disabled, 2 ee y	16384	4	1	2	1	2	16384	16636	98%
mip linear, vol linear, aniso disabled, all ee	16384	4	2	2	1	4	65536	66544	98%
mip linear, vol linear, aniso disabled, 2 ee x	16384	4	2	2	1	2	32768	33272	98%
mip linear, vol linear, aniso disabled, 2 ee y	16384	4	2	2	1	2	32768	33272	98%
mip point, vol point, aniso 2:1, all ee	16384	4	1	1	2	4	32768	33272	98%
mip point, vol point, aniso 16:1, all ee	16384	4	1	1	16	4	262144	266176	98%
mip linear, vol point, aniso 2:1, all ee	16384	4	2	1	2	4	65536	66544	98%
mip linear, vol point, aniso 16:1, all ee	16384	4	2	1	16	4	524288	532352	98%
mip point, vol linear, aniso 2:1, all ee	16384	4	1	2	2	4	65536	66544	98%
mip point, vol linear, aniso 16:1, all ee	16384	4	1	2	16	4	524288	532352	98%
mip linear, vol linear, aniso 2:1, all ee	16384	4	2	2	2	4	131072	133088	98%
mip linear, vol linear, aniso 16:1, all ee	16384	4	2	2	16	4	1048576	1064704	98%

ATI Ex. 2066 IPR2023-00922 Page 288 of 291
TP Debug Registers

1. Overview

The following is an overview of the TP registers space.

0x0000..0x0007 – TP/TC functional 0x0008..0x000b – TCR debug/extra 0x000c..0x000f – TCF debug/extra

0x0010..0x0013 - Unused

0x0014.0x002b – TCR performance 0x002c..0x005b – TCF performance 0x005c..0x005f – TP/TC clock gating

0x0060..0x0067 – Unused 0x0060 TPC_DEBUG0 0x0064 TPC_DEBUG1

0x0068..0x006b - TP functional

0x006c..0x006f - TP debug/extra

0x0070..0x00ff - TP functional/performance

0x0074..0x00d3 - TP functional/performance

0x0100..0x011b - VC functional 0x011c..0x014f - VC debug

0x0150..0x0167 - TCM performance

//0x0200..0x029f - TP debug regs // 0x0200..0x21f - TPC debug regs // 0x0220..0x23f - TP0 debug regs // 0x0240..0x25f - TP1 debug regs // 0x0260..0x27f - TP2 debug regs // 0x0280..0x29f - TP3 debug regs

0x0300..0x035f - TC debug regs 0x0380..0x03bf - TC debug regs

There is a large region of free space at $0x2^{**}$ where a number of debug registers can be added. However, trying to fill this area with TPC/TP signals is actually hard, perhaps overkill. The following sections define TP/TPC debug registers with minimal additional register locations, using

2. TPC

FPC_CNTL_STATUS	<tpdec:0x0004> 32 {</tpdec:0x0004>							
TPC INPUT BUSY	0	NUM R;						
TPC TC FIFO BUSY	1	NUM R; // includes fifo empty						
TPC STATE FIFO BUSY	2	NUM R; // includes fifo empty						
TPC FETCH FIFO BUSY	3	NUM R; // includes fifo empty						
TPC WALKER PIPE BUSY	4	NUM R;						

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0215894

ATI Ex. 2066 IPR2023-00922 Page 289 of 291

<pre>TPC_WALK_FIFO_BUSY TPC_WALKER_BUSY TPC_ALIGNER_PIPE_BUSY TPC_ALIGNER_BUSY TPC_RLIGNER_BUSY TPC_RR_FIFO_BUSY TPC_BLEND_PIPE_BUSY TPC_OUT_FIFO_BUSY TPC_OUT_FIFO_BUSY TF_TW_RTS TF_TW_RTS TF_TW_RTS TF_TW_TATE_RTS TF_TW_TA_RTS TW_TA_LAST_RTS TW_TA_LAST_RTS TW_TA_RTS TA_TB_RTS TA_TB_RTS TA_TB_RTS TA_TB_RTS TA_TF_RTS TA_TF_RTS TA_TF_TC_FIFO_REN TP_SQ_dec TPC_BUSY };</pre>	5 NUM R; 6 NUM R; 9 NUM R; 9 NUM R; // includes fifo empty 10 NUM R; 12 NUM R; // includes fifo empty 13 NUM R; 14 NUM R; // includes fifo empty 15 NUM R; 16 NUM R; // DEBUG field 17 NUM R; // DEBUG field 19 NUM R; // DEBUG field 20 NUM R; // DEBUG field 21 NUM R; // DEBUG field 22 NUM R; // DEBUG field 23 NUM R; // DEBUG field 24 NUM R; // DEBUG field 25 NUM R; // DEBUG field 25 NUM R; // DEBUG field 26 NUM R; // DEBUG field 27 NUM R; // DEBUG field 30 NUM R; // DEBUG field 31 NUM R;
TPC_DEBUG_0 LOD_CNTL IC_CTR WALKER_CNTL ALIGNER_CNTL PREV_TC_STATE_VALID WALKER_STATE ALIGNER_STATE CLK_GATE_OVERRIDE REG_CLK_EN TPC_CLK_EN SQ_TP_WAKEUP };	<pre><tpdec:0x006c> 32 { 1:0 NUM R; // DEBUG field 3:2 NUM R; // DEBUG field 7:4 NUM R; // DEBUG field 10:8 NUM R; // DEBUG field 12 NUM R; // DEBUG field 25:16 NUM R; // DEBUG field 27:26 NUM R; 29 NUM R; 30 NUM R; 31 NUM R;</tpdec:0x006c></pre>
TPC_DEBUG_1 };	<tpdec:0x0070> 32 {</tpdec:0x0070>

3. TP

TPA CNTL STATUS		<tpdec:0x0000> 32 {</tpdec:0x0000>
TP INPUT BUSY	0	NUM R:
TP LOD BUSY	1	NUM R:
TP LOD FIFO BUSY	2	NUM R:
TP ADDR BUSY	3	NUM R;
TP ALIGN FIFO BUSY	4	NUM R:
TP ALIGNER BUSY	5	NUM R;
TP TC FIFO BUSY	6	NUM R;
TP RR FIFO BUSY	7	NUM R;
TP FETCH BUSY	8	NUM R;
TP CH BLEND BUSY	9	NUM R;
TP TT BUSY	10	NUM R;
TP HICOLOR BUSY	11	NUM R;
TP BLEND BUSY	12	NUM R;
TP OUT FIFO BUSY	13	NUM R;
TP OUTPUT BUSY	14	NUM R;
IN LC RTS	16	NUM R;
LC LA RTS	17	NUM R;
LA_FL_RTS	18	NUM R;
FL_TA_RTS	19	NUM R;
TA_FA_RTS	20	NUM R;
TA_FA_TT_RTS	21	NUM R;
FA_AL_RTS	22	NUM R;
FA_AL_TT_RTS	23	NUM R;
AL_TF_RTS	24	NUM R;

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0215895

AL_TF_TT_RTS	25	NUM	R;			
TF TB RTS	26	NUM	R;			
TF TB TT RTS	27	NUM	R;			
TB TT RTS	28	NUM	R;			
TB TT TT RESET	29	NUM	R;			
TB TO RTS	30	NUM	R;			
TP BUSY	31	NUM	R;			
}; —						
TP@ DEBUG	<	TPDE	C:0	x00	00> 32	{
Q LOD CNTL	1:0	NUM	R;	11	DEBUG	field
CLK GATE OVERRIDE	2	NUM	R;			
Q SQ TP WAKEUP	3	NUM	R;			
FL TA ADDRESSER CNTL	20:4	NUM	R;	11	DEBUG	field
REG CLK EN	21	NUM	R;			
PERF CLK EN	22	NUM	R;			
TP CLK EN	23	NUM	R;			
Q WALKER CNTL	27:24	NUM	R;	11	DEBUG	field
Q ALIGNER CNTL	30:28	NUM	R;	11	DEBUG	field
};						

AMD CONFIDENTIAL BUSINESS INFORMATION - SUBJECT TO THE PROTECTIVE ORDER

AMD1044_0215896

ATI Ex. 2066 IPR2023-00922 Page 291 of 291