
cd Author: Randy Ramsey

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGEé& 10-Feb-15 3-Now-16 1.0 1 of 62

GFX9 SPI Specification

Rev 1.0 — Last Edit: 3-Nov-16

THIS DOCUMENT CONTAINS| INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTALTO THE INTEREST OF AMD THROUGH

UNLICENSED USE OR UNAUTHORIZED DISCLOSURE.

Preserve this document's integrity:

= Do not reproduce any portionsof it.

=> Donot separate any pages from this cover.

. This documentis issued to you alone. Do not transfer it to or share it with another person, even within your

organization.

. Store this document in a locked cabinet accessible only by authorized users. Do not leaveit unattended.

. When you no longer need this document, return it to AMD.Please do not discard it.

“Copyright 2012, Advanced Micra Devices, Inc. ("AMD"). AS rights reserved. This work contains confidential, proprietary to the reader information and trade
secrets of AMD. No part of this document may be used, reproduced, or tranamitted is any form or by any meacs without the prior written permission of AMD.”

AMD, the AMD Arrow Logo and com®inations thereof are trademarks of Advanced Micro Devices, Inc. PCle & a registered trademark of PCI-SIG, HOMI is a
trademark’ of HDMI Licensing, LLC.

AMD (NYSE: AMD) is a semiconductor design innovator wading the next era of vivid digital experiences with its ground-breaking AMD Fusion Accelerated
Processing Units (APU). AMD's graphics and computing technologies power a warlety of devices including PCs, game consoles and the powerful computers that
drive the intemet and businesses, For more information,visit httoy//www.amd.com,

ATI Ex. 2027

IPR2023-00922

Page 1 of 62

ATI Ex. 2027
IPR2023-00922

Page 2 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 LO 2 of 62

Revision History

|___Date|_Revision|Description

ATI Ex. 2027

IPR2023-00922

Page 2 of 62

ATI Ex. 2027
IPR2023-00922

Page 3 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,
3-Nov-1610-Feb-15 1.0

Table of Contents

aed6

1.1 ENatesies essaarednessaahia eeegodisseesetapaeely

1.21 Acronyms
122 Terrninolagy ...-

1.3 Tor Leven Descee Ton..

1.3.1 SP) Chip Level Data ‘FlowwDiagram.
13.3 SPY Block Sitignitn Eelbbetlherearabcaprpotdsantah

2 FEATURES f FUNCTIONALITY accccccsesesacsesacsesactneastotasansnsassnsanseinsinsacaniasa 1 ssastasansnta oa ssasa navamsa ia niasaactasetaeasrans 11

a1 STAGE AND ORGANIZE DATA FOR SHADER LAUNCH.ic...cicccccitcecciis cscctasescinsrassissadasesatasoseteimnstarcietesascttisisstaiaismasioien Lb

2.20 COMPUTE SHADER heserig inhiicksbese eee

227 Threodgrowp Halting netBiscrding| Ouewve Stotws.... ‘ta
225 Unordered Dispatches...
2.206 Stote Forwording to S06...‘i
a2.7 First Wave ofDispoten......
2.2.8 Compute Shader index Terms...

2300 VGT-SPI WERT" SHADERS. ..cccccua

231 ES, G$, Va Processing
2d Orechip GS ccs
2453 Tesselotion ..2.2.0)...03.
234 Oistributed Tesseilotion

23.4.1 Work Creation Description
2.34.2 OMfchip LOS ID Changes...
2.3.4.3 Offchip LOS Gealiocation Changes

2.4 Piet SHADER (PS)... Se
244 Pree! Dota Flow. slaEEaeseaaodal af enlace alc credsei Metises

2.4.1.1 Calculate Per:Pind0earycentnc Coovdiiriag:24.12 Pull Miodel ...
242 Scole ResolutionBosedon1 Screen ‘Lotenion (9.125).

2.4.2.1 Visualizing the Scaling
2A22 Impacts to BC! Equation

3 END OF SPEC UPDATES, BEYOND THIS POINT INFO MAW BE OUT OF DWATEscrcrerrersesereeenteerereriee41

B12 Saucerfar DG pov ls aSAoocis infersccsce teleunis mi havedestocwmbancisremnini in inmnicianneinineeitll
3.12 Undque Sample Pesnians per Piel... hoje astheatepace malafa LIT STHeeerie

3.2 LOS Parameter Data LoAgine FoR Pines... RuakeRat

3.21 Orgeniation of Date in the Parameter‘Cache... a
Bee|USPSReingaareolataerreeea
G2 ESRReeeeecercaedgral
a2 Point Sorte Querride.
a5 PARAMGEN... ai iSectatae

3.2.6 Support DeeperPePorometerCacheindAvoid!dDupcateData... seicistercie wiseoutenaaa42.6.1 Performance .. ches ahseeiasiis feeta te
3.4 Proce. SHADER VGPR INITIALIZATION .. Firat ba sabe ak cfdadRHaeLeveeri riSeSSOLT

3.4 VERTEX, POE. SVRICHHIROUILEATIONssnSafhathvgi ast EeedWfpaipcaedncne Pde Caa

 SwwwGoo

ATI Ex. 2027

IPR2023-00922

Page 3 of 62

ATI Ex. 2027
IPR2023-00922

Page 4 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 aes 1.0
BEE:ACCnmRERADATA PRCiiissshingledinulinbinentsi
2.6 RESOURCE ALLOCATION...

364 CU end SMD Acslannient.= ‘ia
3.6.1.1 SIMO Assignment for Work Distribution endInput Bandwidth ss

3.64 Wove Guffer....... eye

3.6.6 Barrier......

36? Balky CS Threadkiroups...
36.8 Position Gaffer and ParameterCache... ecahepucttr atnpaendateett eh eeeaniCaled

3.6.8.1 Late V5 Allocation .. smi ltiiteipctkeaaaai

3.6.3 Alfecation Priarity -..
3.6.10 Virtwelization of Crcapetis‘UnitMocks.
3.6.11 Aesource Reservations..

3.6.12 Multiplier for Resource Limits.

371 Meintonning Gosaieta
B72 Expert Graneting........ ’

EMM ==)G77OEEroSeORPePRPSP
Se ParPet veiceanata sjarsispsecsenaterineniciEeeanaeA

3.10 Wave/Event ORDERING.
3.11 Event COLECTION.. sinindtnimeg (mr ganivinniabsin gee

4,12 HA fontoowiou,ceincad)PoePree(FonBeauxANDg Pearoiainiceeed3.130WAVEFRONT LIFETIME STATUS COUNTERS ..

i
ore
‘aH
5
<n

sh
54

ere

SS

oroDE

Fh PRBPUPOURIMICEvais iiete reincnc in bia nsepasiton pista nose rdn an puttae reese vs iuiun pain wins prints nseidooamte mereniseei

ee BRETCUioadeeeGeneec
a2 PPRMDME TERE CMTE PENDigspintspnceetemganya Lagpnwde ge asUNGR
AL, GAPEiisccaaccitccaacaccdnc
44 PREeins pe ishacess emcaip natnii r
45 (GRAPHICS BALANCED THROANSHIPUT CASES wooo.ceeoctc tases nics rahecist ieeeies ecb reso tesesnesiestasaieieecione

BLEGATING cscrersetacacraraesntaesnssetmeaeacioes epesneemeatanrstn tats egataed eta edeneae OngaELALEEAEa1

 S2eBEER
=

ATI Ex. 2027

IPR2023-00922

Page 4 of 62

ATI Ex. 2027
IPR2023-00922

Page 5 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,
3-Nov-1610-Feb-15 1.0

TableoereFigure | = SPI Chip Level Data Flow Diagram... is aibarpiciea pebiiales eucich stadiarence bebicutecbetuat aaaae
Figure 2— Chip Level Dingram ... jaeorees SEee eea

Figure 3 ~“ees ConnectivityBlockDiagram,
Figure 3- CS Data Flow... . — cecsereenees vavaterennneresestereees oe
Figure 6 — Asyne Compute BlockDiagram. ssi ratils higiig miata piesa anid
Figure 7 = CS Threadgroup Ordering ... cia tiiitiheete fim her riickrerelard 14

Figure &— CS Thread Count Increment Esumple. LiFigure 9 —"Vertex” Data Flaw WOT-SPI...
Figure 10 - VGT ES, GS, VS Vertex Input... soy ms i moka PnLm mp .
Figure 11 = LS_H8.E8,.G5.V5 Vertex [npaut...... PARSPSTeaedchodaagennedAan rg pieete lt
Figure 12 — Pixel Input Data .. bpatateseaeueseseaenugeteteneerapipseasatasusnnetetestamunettusnenseteieeeeramninensees24
Figure 13 — Color Expon Bus Arbitration,RB... int mii egress Wo isns Bia atc ode
Figure 14 — Color Export Bus Arbitration, 2RB. .. achasedaandarrianor jana
Figure 13 - Color Expon Bus Arbitration, 4B... aaeeeeta Ad
Figure 16 — Color Export Bus Arbitration, RB. sutatat alii eocaTneans aah pr afeetierienaha eee |
Figure 17 —- LDS Logical Lavout .. chesuebebeseaneeaee sosesteeabvavinasnsinanenicieseanseeees a5

Figure 18 - Parameter Cache DisaOrganica i Gehan SthFigure 19 — Combined Data Flow i sistant pips bs hyn tadba bwin ines mes pl au
Figure 20 — Persistent State Update FIFOs... nn asechip Gadaipa memp asian
Figure 21 — Persistent State Update FIFOs ... pila ie A
Figure 22 - Performance, Balanced Throughput Case, WS.PS a i)
Figure 23 — Performance, Balanced Throughput Case, ES-G5-VS-PS.... : paca ft
Figure 24 - Perfomance, Balanced Throughput Case, LS-HS-ES-GS-V5-PS eee|

ATI Ex. 2027

IPR2023-00922

Page 5 of 62

ATI Ex. 2027
IPR2023-00922

Page 6 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 1.03-Nov-16
1=Introduction

This document describes the requirements, functionality, and target performance of the Shader Processor Input
(SPI) block.

1.1 Open Issues

1.2 Definitions

1.2.1 Acronyms
SPI - Shader Processor Input
SC = Scan Comverter

SQ - Sequencer
SOC — Sequencer Cache
SG = 50 Global Block, instanced in SPI
SX. - Shader Export
SP - Shader Processor
CP = Command Processor

CPG — Command Processor, Grphics
CPC— Command Processor, Compute
SE = Shader Engine
SH - Shader Array
CU -— Compute Unit
SIMD - Single instroction Mubiiple Data unit in the shader processor (SP).
UL = Upper Let
UR - Upper Right
LL- Lower Lefl

LR - Lower Right
VGPR — Vector General Purpose Register in the SP
SGPR - Scalar General Purpose Register inthe $O
C5 = Compute shader
LS — API Vertex shader stage when doing tessellation, wntes to LDS
HS — Hull shader stage of tessellation
VS5- Vertex shader, coukl be normal vertices, final pass of a Geometry Shader, or domain shader,
GS - Geometry Shader, processes primitives.
ES - Export Shader, first verex pass ofa Geometry Shader that processes vertices.
PS - Pixel Shader, processes pixels,
VSR -Vertex Input Slaging Register, hokks inpal data for vertex thrends.
PSE -Pixel Input Staging Register, bolds input data for piel threads.
LDS — Local Data Store

se_id = Shader Engine Identification Number
sh_id — Shader Anmay Idendification Number
MSAA — Multi-ample Amti-Aliaging
EQAA = Enhance Quality Anti-Aliasing

ATI Ex. 2027

IPR2023-00922

Page 6 of 62

ATI Ex. 2027
IPR2023-00922

Page 7 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 1.0

1.2.2 Terminology
Event — an event is a special token sent through the graphics pipeline which can be weed to enforce
svochronization, Mush caches, and report status back tothe CP. All blocks pipeline these tokens and keep them
ordered with other griphics dita,
Thread: one instance of a shader preenim being executed ona wavefront. Each thread has its own data which
is unique from any other thread.
Wavefront: ‘Thes tt the basic unit of work, There are 64 threads per wavefront, I isa group of threads thet cam
be executed simuliancously ona SIMD.
Threadgroup, Subgroup: Group of threads that may span several wavefronts, All threads are guaranteed to
run on the same CL, This allows for shared CU resources auch as the Local Data Store (LDS) and
synchronivalion rsounes acooss all threads.
TesseHation Engine: A WOT mmdule that implements D1) tessellation functionality.
Fisel Quad: A 2x2 pixel region,
Pisel Center: Current pixels screen coordinates. grven as PIX_X.5, PIM¥4.
Pixel Centroid: Current pivel’s centroid in screen coordinates, defined as the covered sample location closest bo
pixel cemier, [f all samples of a pixel are hit, comer will be used for centroid even if center is not one of the
current sample locations,
Pisel Sample: Location of the sample ID of the cunent Henvion when mining at sample frequency.
Facedness: The PA determined face flag indicating front or back facing.
Param_gen: Automatically generated ST texture coondinues. typically used with points.
SIMD: Single Instraction Multiple Data unit tn the shader processor (SP)
Shader Array: A combination of blocks separate amd unique for shader processing, including a shader core
consisting of Compute Units
newveetor aka fpos, first_prim_ol_shet: Panumeter cache syne token recemved from the SC for pixels and
used to make sure the SPT waits for V5 te finish exporting parameter data before pixels start trving to read it.
Helper pice: Any non-hit pixel being processed asa part of a quad wath other hit pixels.

3-Nov-16

1.3 Top Level Description
The main purpose ofthe SPI ie to manage shader resources and provide shader input data to the GPRS and
wavelronts to the SQ. (taccunwilates “vertex” ype shader input data fromthe VOT (VS, GS. ES, HS, LS) into
wavelronts, [tl recenics compute shader (CS) data and state from the CPG and CPC on cedata inderfaces.
Reames required to process wavefronts and CU/SIMD assignment in the shader array (SH) are managed by the
SPI in terms of allocation and de-albocation, SPI passes data through for the VOT vers and prin, Por HS and
GS, SPI onrolls threadgroups and subproupes into wavefronts. For CS, SP] unrolls threadgroups inte wanctronts
and generates an index per thread based on the threadgroup sise. Piscel quad data delivered from the SC is
accunmlated inte wavelrons, The SPI processes this data, per pixel, to imerpolate and produce barvecmtric
gradient data (UW) or screen X,Y, andor primitive faceness data. The SP1 loads 1data into WOPRs and
coordinates moving primitive attribute data from the paramecicr caches into a ‘CU Local Data Store (LDS) for the
pixel shader to wise for attribute imerpolation, SPI synchronizes the vertex shader alinibute exports with the pixel
shader reading those aliributes, guaruniceing Uke attribute dati has been written to the parameter cache before
allowing PS t read.

1.3.1 SPI Chip Level Data Flow Diagram
Figure | shows the blocks and major data paths dirccily and functionally associated wiih the SPI.

Inputs from the ViGT: subgroups, waves, events, and vertex inpul data for the dala types VS, GS, ES, HS, LS.
Inputs from the $C: pixel data including coverage, primitive information and events.
From the CPG: compute slate, events, ihreadgroups for GFX.
From the CPC; compute state, events, threadgroups for async compute.
Shader input data into the SGPRs and wavefront input to the $O.
V5 position and parameicr cache dain writes to the SX and PC,
Panuneter cache read and LDS write contrels

ATI Ex. 2027

IPR2023-00922

Page 7 of 62

ATI Ex. 2027
IPR2023-00922

Page 8 of 62

Primitive

Connectivity) _—$————
PA

Primitives Position

Data
LS, HS,

ES, GS, VS

Input Data

Pixel Quads With

cs "eO-n DX11CS “& Prim info
Param Cache Read

LOS write entl

GPRinput
Wavefront data

 LDS write Data

Position, Param Cache

Figure 1—SPI Chip Level Data Flow Diagram

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 10 B of 62

Reterencing Figure 1, for doing just vertex and pixel shading, vertex and primitive Ivpe processing are associated
with the green colored lines. The WGTinitially stars offsending vertex indices tn the form of vsveris to the SPI
and at the same time sending the primitive connectivity to the PA identifying howthese vertices will ect built
back imo primitives, The SPT bullers up the vevens inte a wavelront and once it bas received a full wavefront of
data. the wave trinsfer from the WGT will inigger the SP1 to release the data to the SQ) and feed associated data
Into the GPRs. When the vertex shader Sars processing postlion data, typically it will send ot position early fo

the position buffers inthe SX which then allows the PA to pead that position data and stan building the primitives
and producing those prinuives which go through the Scan Converter (SC) to produce pixels. Onee the SC has
Primatives, it will stant producing pixels which wre fed to (he SPL ‘Onec the SPT has a full wawelront of pisels, it
will tryand send associated data into the GPRs with the wavelront to the SO. Reads are made to copy parameter
dota out of the parameter coche and write it into an SPI determined range of LIDS in a particular CU.

ATI Ex. 2027

IPR2023-00922

Page 8 of 62

ATI Ex. 2027
IPR2023-00922

Page 9 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGEé& 10-Feb-15 a 10 9 of 62
1.3.2 Chip Level Diagram

Figure 2 shows the SPI block and its associated relationship to chip level imer-connections. Here, the physical
partitioning of barvc logic is shown by the BCI blocks. For the purpose of this document, the BCT logic will be
considered as part of the logical SFT design

Uptete
Compute “=Units

Shader

Engine

Upie 16
Compute

Units

Figure 2= (Chip Level Diagram

ATI Ex. 2027

IPR2023-00922

Page 9 of 62

ATI Ex. 2027
IPR2023-00922

Page 10 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGEé& 10-Feb-15 3-Now-16 LO 10 of 62
1.3.3 SPI Block Diagram

| SIMD SIMD SIMO | SIMD
Unit (Up

e
5 ||

alk & th
CEOSP|_ony (CETACae} j

SP_CASS mad (TARORAM_renay GREM

| SPL_SP\ pe sates .= x =— -
S_SPY0-nj_peiesiicc

SP SPiso| core

B3_sneeccr S_50_esppert GPs_SPmaa,1)2SP4_aereesfs,")
| 531ghee) | $Plin

Wave Launch Shad ital pf * other SEWave Buffer ! ization | SPSPLce-T acrecee
Ex ats LDS, VGPR, SGPRaSeereieport SP SPY0-n_vatgdoce i“aE

SA _ SFYC)sabre t

SASSwrve_soee j ; epa

* Cec_S_seve_aaveSPLCPO gee ions | Si

SPAS sta meee dave ; }k
| PD_6Fi_opdata(hT) Fgence

SP_ CPC _tgaao-T) ope |SP_LOPC_feca parteiieT)

Resource Wave CPO. SP_cecuia —| 1 SP

Allecater Cantrallers SP_CPC_teapeoematompe partel) | GPG.
ess

VOT _S5_*_wnew vat,WOT_SP. "vet ia,_———$@<$rt
SPLWOT "sons wo$ete

fF1_ports hi)—
af DCU_SP4_ dota, 1) SCLECLby)|SG

—— BCl ——

Figure 3— Top Level Connectivity Block Diagram

ATI Ex. 2027

IPR2023-00922

Page 10 of 62

ATI Ex. 2027
IPR2023-00922

Page 11 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
10-Feb-15 3-Now-16 Lo 11 of 62

eet [Freier]

Figure 4— Block Diagram

Diagram copied from //etapfgtsWidocdesignblocks/spi/efx9SPLBlockDiagrun,.vsd

2 Features / Functionality

2.1 Stage And Organize Data for Shader Launch
The SPI logical block stages and organizes efficient loading of shader input data to the VectorScalar General
Purpose Registers (VGPR/SGPR) and Local Data Store (LIDS) in the Shader Array and manages resources
requeined to mun those shader programs, The VGT will have several types of inputs to the SPT; normal vertices that
will create positions and parameters for rasterization and pixel processing (V5. which could be normal vertices or
the final pass ofa Geometry Shader), Geometry Shader (GS) primitives, vertices that only expom to memory (ES.
which is the first vertex pass ofa Geometry Shader), wenlices acting as the first stage oftessellation processing
(LS). and patch dam associnted with the Holl Shader (HS). The V5. GS. ES, HS. and LS are offen generalized inte
the category of “verts” when discussing data moving through the SPI, The Scan Converter (SC) delivers pixel
quads to the SPI for pixel shading, The CPG block delivers DX 11 Compare threadgroups to the SPI for lameching
compute shaders. The CPC delivers Asyne Compate threadgroups to the SP] for launching compashaders.

2.2 Compute Shader (CS)
As shown in Figure 1, Compate Shader input data can come fiom enher the CPG (GPX=CS) of the CRC (Asvne
CS). CS waves go through the same resource arbitration and allocation as all other supported SPI wavefront tvpes.

ATI Ex. 2027

IPR2023-00922

Page 11 of 62

ATI Ex. 2027
IPR2023-00922

Page 12 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 3-Now-16 LO 12 of 62
X11 requires support for compute shaders, and the SPI plays a role in getting compute shaders into the shader
ami, Both the CRG and CPC deliver threadgroups to the SPI alone wilh persistent slate dita that tells the SPT
howto process those threadgroups. The SPI is responsible for unrolling cach threadgroup into the number of
wivelronis required to process all of the Uhreads for the threadsroup

CS Input

'
CS Input Resource
Controller == Allocation

Wave SGPR VGPR

Write Cntl Write Write =

NewWave Cmd SGFPR Data VGPR Data

Figure 3= (CS Data Flow

ATI Ex. 2027

IPR2023-00922

Page 12 of 62

ATI Ex. 2027
IPR2023-00922

Page 13 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGEé& 10-Feb-15 a-Now16 LO 13 of 62
EE

Figure &— Asyne Compute Bock Diagram

2.2.1 Resource Probing
Of there are more than 4 Asvnic Compute Pipes present ina configuration (more than | compute ME} then pairs of
compute wave controllers will share a single probe to Resource Alloo (FLA) for allocating resources. Each of the
pair takes alternating tune weing the probe to request resourees, This probing opponunity will altemate between
the two pipelines ance every four clocks until a probing pipeline haga work group that fs and is selected by RA.
Once a pipeline ts selected, it will allocate resources for all waves in its threadgroup before releasing the probe. If
only one pipe of a pair has a threaderoup readyto allocate, it will have exclusive use of the probe for requesting
heiress and can Conlin requesting on every four clock cycle.
Each CS controller should check ts t2_per_cu limat, waee_per_sh limit, scratch Limit, and crawler space before
Tequcsing mesourees so tl docst take cycles away from the other cscil shaning a common probe.

2.2.2 Threadgroup Ordering
Ordering of threadgroups fora given async compute pipe needs to be maintained across all SE. The Dispatch
Controller (DC) assigns threadgroups round-robin to all SE in dhe chip, and the SPls from cach of those SE mast
coopenne io ensure That a threadgroup froma given SE is net allowed to probe until the threadgroup before it has
won allocation. The SPI needs to wait uniil tbe first wave of ihe previous group allocates, bul dees not need to
wail for all waves of the previous threadgroup.
The Dispaich Comroller will send twe signals with each threadgroup, firs_proup and kist_group te tell the SPI
when each dispatch starts and finishes. [fa group is marked as first_group, ihe CS controller can start requesting:
inanediately without waiting on any previous group, Ua task is pre-cmapted and restarted, the first threaderoup of

ATI Ex. 2027

IPR2023-00922

Page 13 of 62

ATI Ex. 2027
IPR2023-00922

Page 14 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 14af 62
the restart should be marked as first_eroup even if it is mot dhe first of the dispatch, Onec that first.group allocaics,
the allocating controller sends a tgalloc pulse to the next SPI in the dispatch sequence so that it can stan
requesting for its group. For allocating groups marked as ligtgroup, ne igalloc pulse is sem. This scheme avoids
any problems that can arise from an implicit ordering scheme where the DC and the SPI both independently
manige threadgroup ordering. First_groups can be sent to any SPI, regardless of where the previous group wats
sent, amd last_eroups won't create anylefi-over status inthe SPL. Power gating and sofl_neset issues are also
avoided since no duplicate aims meeds to be kept in evince between DC and SPL, which are physically in separate
tiles

SP 1 also supports. a mode where a DISPATCHINITIATOR write clears the baton for that asyne compute pipe
such that the last_ig fromthe dispatch controller is not mecessary. This is the default behavior for SPI, but it can
be disabled by setting SPILLCONFIGCNTL_I-BATON_RESET_DISABLEto 1,

Figure 7-— CS Threadgroup Ordering

The compare controllers also support chisabling ofentire SH fora given pipe using the
COMPUTE_STATICTHREADMGMT register. This feature is also known os “steering”, and allows a dispatch
to be sent only toa subse. of the possible SH ina given config. The DC will shadow CU EN settings and only
send ihreadgroups to SPI withat least one CU enabled for the dispatch When passingieceiving tg_alloc, each
SPI needs to check its own CU_EN settings. [f the necciving SPI has a CU_EW of O then it should pass the token
along te the next SPI. This passing of the token through disabled SPI adds extra time between (hreaderoups
staning, The ADC will optimize for the case where only a single SH is enabled fer a dispatch by marking every
threadgroup sent bo that single SH as both first and last of group. ‘This way oo onhening tokens are passed by the
SPand the single enabled SH is allowed to Launch threadgroups as fet as possible.

22.3 Threadgroup Halting and Discarding
The CS controller will also respond to halt signaling to accomplish precise Iainch pre-emption. Upon being
commanded to halt by the CPC, the controller will finish owt any wavefronts from partially staned work romps
and then stall any subsequent traffic trem that pape

CLIENT TARGET halt req I [fasserted the receiving block must halt the production af

compute work ate well-defined pipeline locatson. Alber halting,
I lhe FeBeer Mus Fel a haltack

Ia discard is then nequcsied, any other cobries in the input fifo will be popped and discarded before siznaling
back to the grid dispatcher the SPI has prepaned to switch. A discandreq will always happen within a
halt_req/hali_ack window, The SPI must be halted before it can be told to discard

ATI Ex. 2027

IPR2023-00922

Page 14 of 62

ATI Ex. 2027
IPR2023-00922

Page 15 of 62

ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGE

10-Feb-15 3-Now-16 LO 15 af 62

 Ifasserted the seccving blovk discard anv pending compute work

That has aot Vel been allocated shader rossirces,

Accdient showld only assert thes when both
CLIENT TARGET halt_reqand TARGET CLIENT halt ack
are asxscrted!

 CLIENT TARGET discard neq

The CS comraller will drive aig allocated signal to the CP notifying the DC when a threadgroup allocates, This is
needed so the DC cam track the exec mnber of proupe that Gineh versus those that are discarded afer a hall.

2.24 Queue Status

Exch CS contnoller niuniains a coun of active waves forall 8 quenes the can drive thal pipe. SPI provides that
status through GREreads using several register decodes. One register, SPILLCSQWPR_ACTIVESTATUS,
contains a singk ACTIVE bit for cach queue of cach pipe of a given ME, SPI CSQWFACTIVESTATUS is
inlexed by GREM.MEID, SPICSQWPR_ACTIVECOUNT(0-7) COUNTprovides the actual munber of
warvelronts thal are in Tight for a specific quence. SPILCSQ)WF_ACTIVE_COUNT_{0-7) EVENTS provides the
actual number of evens that arc in flight fora specific quewe. SPLCSOWFACTIVECOUNT ts indexed by
GRBM MEID and GRAM PIPEID

2.2.5 Unordered Dispatches

DC and SPL also support an Unerdered Dispatch made using the ORDERMODE field of the
DISPATCHINITIATOR. When Lamching an Unordered dispatch. the Dispatch Comioller will send every
threadgroup marked with both firstlast_group. This allows the SPI in cach SH to launch threadgroups
independently without passing or expecting the order baton,
Unordered mode also changes the way SP] responds to halt requests. In the ordered mode, SPI can halt on amy
threadgroup boundary: and retinhalt_ack with threadgroups still pending in its input fifo. Inthe unordered mode,
SPI will allocate all threadgroups that have been sent from the DAC before rehoming halt_ack.

2.2.6 State Forwarding to $06
All state traffic to cach compute pipe needs to be passed to the SOG for logging. State writes are sent from the
outputs ofcredindcbit fifos with arbitration and backpressure bo ensure that only | controller sends per clock,

2.2.7 First Wave of Dispatch
SPI suppons SOVSOC volatile cache deallocaiion control by marking the first threeadgroup ofa dispatch that is
sent to cach CU and SOC (group of CL). The scorcboard logic used to tick when threadgroups are sent to
CLYSOC needs to be reset al the start of each dispatch, so cach CS wave controller needs to provide thas
information. The CS wave controller will signal “first wave of dispatch” to LA for the firstwave request of the
first threadgroup afier each DISPATCH INITIATOR
SPI is aware of SQ to SOC mapping. both for this invalidate volatile feature as well a6 CU busysignaling for clk-
gate control, The SPI is ifdePed to handle both different numbers of CU (GPU GCNUMCUPERSH) and
different numbers of ClU-per-SOC (GPUGCMAK3 CU_PER_S0C).

2.2.8 Compute Shader Index Terms
For CS, the SPI can load up to 3 index terms as input imo the VOPR, This i a 1 to 3-Dimersional incrementing
indies that represents the relative [ID of the thread within its threadgroup known as Thread (DinGroup.
COMPUTE_PGOMBSRC?TIDIGCOMPCNT is used io contre! the number ofcomponents written by the SPL
Here is a simple example of bow the SPI would generate the ThreadIDinGroup acioss the wavefronts with
incrementing Fd indices.

Fora threadgroaigy with dimension ¥=3, ¥=16, 2=2, the SPT would create 2 wavefronts to process the 96 valid
threads (3*1"2), Seqpocntially, Ue thread input values would look like this where the X increments [rst and
wraps back io zero, Ateach wrap point, the VY tenn would increment all the way up to the 2 term incrementing.

ATI Ex. 2027

IPR2023-00922

Page 15 of 62

ATI Ex. 2027
IPR2023-00922

Page 16 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, 10-Feb-15 3-Now-16 LO

Thread(X.¥.Z) = 0.0.0
Thread! = 1.0.0
Thread? = 2,0,0
Thread3 = 0,10
Thread#3 = 2.15,

16 threads wide and 4 clocks deep counts demonstrated in Figure &.

fino[200Jaro[iro[210[ozo[azo|2z0Jos[iso|20|eeeeeee
[zoo|ono|10|210|osze|1120|2120|oso|nso|230|oa|1.140|

us[aur[oar [usr [ozs[oar[issfansfour [uur[eur[oss|aPosyTagaTasTactToraTearTomaTeenTagefameVennFaasTeeLoretta

oefsfiefMEGS|SERN|OSA | RMON|XMMLN : KERN|RLS|MAN|REX|REX|mex|sei
fewer|ewer|ewex|em| emer[ewer|emer|ewee|ewer | exe|eee|em|amex|exer | ee

Figure = CS Thread Count Increment Example

2.3 VGT-SPI "Vert" Shaders

The SPI can receive one thread per clock from the WGT for cach of LS, HS, ES. GS, and VS. The LS, ES, and
VS interfaces arc all 128 bits wide, GS is 87 bits wide, and HS is 43 bits. The SPI takes.a serial stream of up to 64
threads fromthe ¥GT (one wavelrom) and accumulates it into four paralle! lines inthe Vertex Staging Register
(VSR), muching the VGPR write formal and allowing the SPL ie minimize the VOPR input eveles for vertex data.
The iverface between the SPland the VGPRs is 16 verts * | component wide and the SPIis always trying to
write 16 threads per cycle into the GPRs. The SPI arbitrates on4 clock cveles so every time a panicular type gets
to winte into the VGPRs it really wants to write 64 threads, 1601 atime, over 4 eveles. Ifthe SPI tried to write
immediately tothe VGPRs every time the VGT came in woh | sertal thread, ihe other 63 threads of the 4 clock
evele would be wasted.

Figure 9 shows the serial stream from the WGT being packed into this 16 wide over 4 chock wovelront.

a fola]a
| >BREEi 28
] 6elmo

Figure 9-*Vertex™ Data Flow VGT-SFI

ATI Ex. 2027

IPR2023-00922

Page 16 of 62

ATI Ex. 2027
IPR2023-00922

Page 17 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 17 af 62
2.3.1 ES, GS, V5 Processing

In GFXthe change was made to combine ES and G5 processing into a single shader slage so there is mo need to
synchronize ES-lone to GS-stan, There is also no mecd for SPT to pass parce CU information from ES te GS
groups like was necessary’ for onchip-GS processing tn previous families. ‘The synchronization of GS io VS
processing is handled outside of the SPI (VOT waits on gscount_done from GS shader before generating VS). If
GS is passing data io VS using onchip LOS (onchip-GS) then SPT must pass subgroup information from the
producing GS to the consuming VS subgroup,

Each vertex controller ruins independently, with the only interaction being dhe arbitration for writes to 9 particular
VSR. until wavelrons request for resource allocation, There is only one copy of VSR memory composed of
multiple banks which bold the different components. Ther: isa simple poionty arbitration here to make sure there
are no data collisions when multiple comtimallers need to write to the same memory banks, The priority onder isa
fixed lowesio-highest of LS, HS, ES, GS, V5, Space for multiple wavelronts exists foreach type inthe SPI
which allows the SPI io slant copying one wavefront while the “GT starts sending the next wavelront,

Once a fall wavefront of vertex indices are written imo the VSR. and ihe assectated wave irnsfer from the VOGT

has occurred to let the SPL know it is ok to issue thal wavefront. the Verex Wave Controllers will try to allocate
the resources that the shader moeds to execute in the shader complex. In the case of LS/H5 and ESAG5 groups,
SPI waits until all transfers of all waves of the group (LS-ver/HS-ven or ES-verGS-prim) have been reecived
before ining to hameh the group. This means the VSR. mest be able to held an entire group's worth of data, up io
amex of4 wavelronts, foreach of these group types. [the wave/group wins resources allocation, the wawe
control information (ressuree bases'sines, stateid, pipe_id, cic) is sent to the shader input write controllers to load
the wavefron to the Shader Array

Vertex Input from VGT

weve vert
'

Vertex ee
Controller|_dalaive_ VSR Write yee|ver | VSR|VSR
ES,Gs.vs|. | wep os

VSt_ready
'

Wave |

Esigs, |™ * Allocation

=| =]
Wave Write \SGPR Write|WGPR Write

+ 4 '
NewWave md SGPR Data VGPR Data

Figure 1 = VGT ES, GS, VS Vertex Input

ATI Ex. 2027

IPR2023-00922

Page 17 of 62

ATI Ex. 2027
IPR2023-00922

Page 18 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,
3-Nov-1610-Feb-15 1.0

2.3.2 On-chip Gs
Onclup GS mode allows the use of onchip LDS space to store the ESGS and GS¥S ring bullers, eliminating the
trafic to offchip menory thal is necessary for offchip modes, Typically socnaries with small amplification will
benefit the most from this approach, Prior offclup ESAGS modes used two offclap ring balers that wrapped
individually, and were ofa fixed size and base for the entire application. In the new combined ESS shader the
passing of data from ES te GS is always done using onchip LOS apace. Onchip versus offchip GS nownefers to
howdata ts being passed from the GS stage io the VS stage,

The ViGT partitions the ESAGS work into smaller chunks called subgroups. Each ES!'GS subgroup gets allocated
tea Compute Unit (CU) by the SPL and for onchip GS that subgroup stays onthe same CU for the duration afits
lifetime (which is EXGSVS). Onchip GS mode requires the SPI to maintain a task grouping for ESAGSVS.
processing. ESGS waves ina subgroup (waves benween firstlast of subgroup) must all go to the same CU and
need to share a common LOS base and size, The subsequent V5 subgroup mus alse po bo the same CU and
launch with the same LIS base and sive and this information t& commumeated through the GS4o-VS greup fils,

SPI offers a means of controlling “subgroups between GS caput and VS consumpion”,
SPL_SHADER_PGOM_RSRC4_OS.0R0UP_FIFO_DEPTH will seta limit on the number of groups between GS
loonch and VS launch. This limit will also suppor scaling through the
SPL_WCL_PIFE_PERCENT_GFX.GS GRP_WALUWE register field.

The SPI also has te know when all waves ofa VS subproeup have completed so that the onchip-GS LDS can be
freed.

2.3.3 Tessellation

DX Tessellation requires two vertex types through the SPI: LS and HS. LS is the API vertex shader which
writes to ihe LOS, and HS ts the hardware stage that creaics tesse lation factors for the tessellation engine and
oulpal data forthe Domain Shader. The handware shader stage Nowts LSYHS->DS(ES/4G5.V5), depending on
whether geometry shading is enabled (ES'GS) or net (WS). The passing ofcomputed results from LS to HS 1s
always dene wing the onchip LDS of the executing CU. LOS is a per-CU resume and only waves sem to that
CL can access it, so all waves ofa tessellation threadgroup mus be sent io the same CU, The onchip LOS space
associated withan LS/HS5 threadgroupis freed when the final HS of the group completes

HS-to-D5 dala is always passed using offclup buffering aid SPI is responsible for managing this offchip LDS
space. SPI allocates a buffer with cach LSVHS threadgroup and then frees the buffer once all DS that source the
data are complete,

ATI Ex. 2027

IPR2023-00922

Page 18 of 62

ATI Ex. 2027
IPR2023-00922

Page 19 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 3-Now-16 LO 19 of 62

Vertex Input from VGT

wave vert

Vertex

Controller |] T
LS.HS datalwe VSR VSR|VSR | VSR VSR

asd stall Write Lat x) ¥ | iw
ES,G5.V5 | Arb }

| | |

vsr_ready

Wave

Controller Bacourée
LS/H3, hy * Allocation
ES/GS.VS

Wave Write SGPR Write VGPR Write

Y j ?
NewWave Cmd SGPR Data VGPR Data

Figure 11 = LS,H5,E8,65,V5 Vertex Input

2.3.4 Distributed Tessellation

The ivicniienof cistribuied tessellationis io rebalance the DS work after the HS siage in oder io generate new
pringroups with post tessellition prmatives. This enables the workload to be disinibuted more unifornnly amongst
the available WOT and SH units for an overall higher performance.

ATI Ex. 2027

IPR2023-00922

Page 19 of 62

ATI Ex. 2027
IPR2023-00922

Page 20 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE 10-Feb-15 3-Now-16 LO 20 af 62

Zz wD | ‘weetCL

Ao Wl

T T

Ye.tf
VGTO VGT1 _ WGT2 VGT 3.

| | Lod eaeT | r
SPIO SPil SPI2 SPI3

| HLAGE| Date

rT TT F wie
- wo =
- =

T ' 7 '

WGTO WGT 2 WOT 2 WGT 2

| ! | es
SPIO SPILL SP12 SPIZ

The diagram above shows the data flow.
Note that commonly named blocks such az VOT 0, WDete are the same plivsical block (not duplicated)jw re-
drawn for clarity,
Note that all vananis have this architecture, the legacy patch distribution method of all DS sent to parent SH is
still supported but the infrastracture is changed to the abowe

2.3.4.1 Work Creation Description
The unit of work that the VOT creates is a threadgroup, There cowld be multiple threadgroups present in the
primgroup cach VOT receives, LS/HS wens are created for the entire threadgroup and then the HS threaderoup
trunsfer is send io the SPL A FLUSHHSOUTPUT event ts inserted afterall each threadgroup trinsfer. The SPI
allocates onchip LDS space and an offchip LDS buffer foreach LS/HS threadgroup. The SPsends the VGT an
H5_done signal per threadgroup when the entire threadgroaup completes.

The WD needs to process threadgroups in the onder they were issued originally by the WDVIAYGT when
producing DS threadgroups. There isa HS theeadgroup done counter per VGT which is incremented when the
respective HS_done ts received from the SPI. At the beginning of the packet, the WGT fifo with a threadgroup
tagged first_primeroup will be processed first. This will ensure the launch order ofthe LS/HS is maintained. After
this teadgroup is popped off, its next_fe_id field will be used to determine whichfife to read from next, All the

ATI Ex. 2027

IPR2023-00922

Page 20 of 62

ATI Ex. 2027
IPR2023-00922

Page 21 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 21 af 62
tesecllation factors for the patches inam entire threadgroup are fetched from memory and the patches are then send
to the distribution blogic,

Each VOT will reecive patches that will potentially be tagged with start/stop points, Each VGT will only tessellate
the portion of the paich that is wctive and will issue the respective DS waves bo the SPL The WE will create and
inert the OFFCHIP_HSDEALLOC event al the end of cach DS threadgrmoup and broadcast i to all VGT,
ditaching the appropriate VGT_ID to the event 50 the SPI knows which frontend allocated the offchip space for
the threadgroup, The WGT_ ID of the original theeadgroup will be sent onthe new parent_se] 0) field of the
V5_wave or GS_subgnp omterfaces. The SPI will launch the DS waves on any available CU and the HS output
data will be feiched from offchip memory. Oneoe all OS of the threadgroup complete the SPI will handle the
OFFCHIF_HSDEALLOC event by incrementing either gsoffchipdonecount orvs_offchipdonecoum inthe
appropriate SPL as idenified by pareni_se. fan SPI sees an event with a parent_se (het does not matchis own
SE_ID. a done stenal willbe forwarded to the appropriate SPL Offchip LDS will abwavs be deallocated by the
OFFCHIP_HSDEALLOC event, occuring when the event pops off the SPI's event'wave crawler.

2.3.4.2 Offchip LDS ID Changes
With distnbuted tessellatbon the DS froma given LS/HS can be sent to other SE and those other SE do not have
aecess to the parent SIPI's group information, Because of that, the distributed OS. need another way to pet the
offchiphisid allocated to their parent LSS, The WD wall add a per-SE offehipIdsid counter that merements
for cach bessellation threadgroup that 1: issucd to that SE. This offchip_lds_id will be stored through the WD and
VOT for each outstanding threadgroup and patch and then seni to the Pl with every DS wave on the GS or V5.
wave interface. The event_id field om these interiiees is increased to 7 bits and ts used to send offchipkisid for
wave or subproup transfers.
SPI sill allocates offchip space with LSVHS and takes sure that the nesa buffer is available, but the ID is assigned
by and delivered from the WO. VGT_HSOFFCHIP_PARAMLOFFCHIPBUFFERING specifies the current
number ofoffchip bullers and offchapidsid should reset to 0 foreach SE wheneverthat register value changes
(SPI docs not reset ifthe register is rewritten with the same value). OFFCHIP_BUFFERING is divided between
the munber of SE inthe config, regardless of front-end harvesting, and cach SEs 1D should count from (to
((GUFFERING/NUM_SE) = 1h

The OFFCHIP_BUFFERING field will range 0-511 representing 1-312 bailfers, A setting of 0 is not useful for
this register ard being able to represend $12 allocated bulters allows support for 12% bullers * 4 SE in larger
configurations,

The offclipidsid send to SPI will be a total of nine bits, two bits of parent_se and the seven bil event_id carving
offchipkisid count from the parent LHS.

2.3.4.3 Offchip LDS Deallocation Changes
In previews projects the work associaled witha given SE's offchip LDS allocation was only ever seni to thal same
SE. This mean that all L8VHS/0for a threadgroup wend to the same SE and a given SE's offchip space could be
deallocated based solely on work completing in that SE, ES and V5 execuling as DS could also potentially
complete out oforder with respect to ench other, and offghip LOS manager dealt with that by keeping a FIFO
history of allocation onder (ES/VS is DS) along wilh group done counts for each of GS and DS,

ATI Ex. 2027

IPR2023-00922

Page 21 of 62

ATI Ex. 2027
IPR2023-00922

Page 22 of 62

EDIT GATE DOCUMENT-VER, NUM,
3-Nov-16 1.0

ier affehsa ds]

SPI incremented the ES/V'S group done comm whenan ESVS listwave that bunched with offchip LOS enabled
popped froma wave controller's crnwler, maintaining order within a shader stage, Once the done count
comesponding to the order FIFO owipat was greater than 0, SPI would deallocate the offchip space, pop ihe order
FIFO),and decrement the appropriate domecount

Disinbuted Tessellation means that tessellation work onginaling on a given SE (and therefore associated with thai
SE's managed offchip space) can also be sent to other SE, This means that a given SE has to ensure thei all other
SE are done using an offchip allocation before dealbocating and reusing that space, In order to handle this, the SPL
will wee a scheme similar to the one used for parameter cache deallocation across multiple Shader Engines where
the SPI signal to cach other when they sce.a dealloc they do not own. For instance, if SPI2 pops an
OFFCHIP_HSDEALLOC event witha VOT_ID of0 froma V5 or GS crawler then it will send a signal to SPIO
nelher than daing amihing with is own offchip LDS mpm.

 aoe
/SP1_O (SEO) |
| SPH{0,1,2}_57_vstpdonela_vaiid

Eon 1 Shreadgroup_done_coun_uch S012)SP|_aetgdoncis_walidF E
e_theeadproup_done_count_aeh ‘SPIL1 (5E1),

‘SPL2(5E2),||
SPL_3 (SE3)

Exch SPI has t keep a dane coun! for every SE and check that all done counts are greater than rere before freeing
anolchip LDS baller, When offchip LDS is freedall SE done counts for the freeing shader sage (G5 or VS)

ATI Ex. 2027

IPR2023-00922

Page 22 of 62

ATI Ex. 2027
IPR2023-00922

Page 23 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 10 23 af 62
decrement together. If a frontend is disabled (as specified by CCGCC_USER_PRIM_CONFIG regs) then the
SPI attached to that fromend will not receive an OFFCHIP HSDEALLOC event, The SPI's offchip LOS
deallocation logic should not wait for pulses from other SPI that are connected to disabled fromiends, and also
should mot decrement the done count associated with those SPI All counts associated with a disabled frontend SP!

should be held at 0 as bong as the frontend it diswbled so that the counts will be ina known good stage if the
frontend is enabled al a later time.

The move to only supporting offehip tessellation (H5-D8 only through offchip LOS) means that SPI ne longer
needs an HS-DS group filo to pass information to the DS stage. However, SPl does still offer a means of
controlling "groups between HS output and DS. consumption” similar to what the progeummable depth group fifo
offered previously. SPLSHADERPGMRSRC3HS.GROUPFIFODEPTH will seta limit onthe number of
groups between LSS olfehip allocation and OS consumpiion, This linat will also supper sealing dirough the
SPI_WCL_PIPE_PERCENT_GFX.HS_GRP_VALUEregister field.

2.4 Pixel Shader (PS)
Figure 12 shows the Dowof proel data through the SPL The SPI gets input data for pixels fromthe Scan
Converter ($C). Wave control information tells the SPT which quads are hit, parameter cache syne and de-
allocation tokens, and if the transferis an event. The SC also delivers quad ane per primitive banyeenmric
information to the Barve interpolation math As quads are being recemed from the SC. dhe Pixel Input Controller
will buffer the contre information wml a fall wavefront is received. The quad information i& alse Mowing down
the baryeentiric math pipe where the SPI calculates the per pixel Land Wtermes and can also store off screen NY,
primitive facedness, and other ancillary terms. Theat data gets delivered to the Prvel Staging Registers for stomge
until dhe wavefront is ready to launch, Onee a full wavefront is accumulated, the SPD requests to allocate resources
and, once granted, the wavefront is sent to the various Write Controllers which coondinwe the loading of PS data
to the SH,

PSE data is read and sent into VOPR, atinbute data is copied from the PC inte the LIDS of the appropriate CL,
and other various terms are written into SGPRs. Once the full wavelrom of pixel data is sent to WOPRs, SGPRs,
and the LDS, the Wave Winte Controller sends the wave to the SQ to initiate pixel shader executpon.

ATI Ex. 2027

IPR2023-00922

Page 23 of 62

ATI Ex. 2027
IPR2023-00922

Page 24 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 24 af G62
Pixel Input from SC

I |
wave quad, baryc data

lBarye
Pipeline

Piel

Staging
* Regs

por.rency (PSR)
t i

PS Wave:

Control eo ResourceAllocation

T 7 , 1 | pe
Wane Vilribe SGPR White VGPR Write LOS Witte |g)|

tf Jf 4 zs
NewWave Cmd SGPR Data VGPR Data LDS Data

Figure 12 — Pixel Input Data

2.4.1 Pixel Data Flow

SPI accepts piel quad rows from the SC at the penk rate of 2 quads (% piwels) per clock per packer comaining:

Primitive control data:

paruneter cache base polmiers - where attributes of the vertices that created the primitives that created
these pinels are located in the parameter cache

first_prim_ofslot aka newvector «his is how the SPI makes sure the atinbute data for the primitives that
created these pixels is actually in the parameter cache before a read is attempted

dealloc tokens - iets the SPT kinowthat this is the Last prim from the last vertex ofa VS waveliront 50 if is ok
to free up all of the asseciated attribute dats

end_ofvector Mag = Informs the SPI this is the last row of a pixel wavefront, and can happen carly prior to
ectting all I quads

first_quad_of prim — Attached to the first quad crenied by cach primitive
Prim_tpe = associated with each quad

Quad Data:
screen (XY) - where the quad is located in screen space
centermost Sumple ad = The centroid of cach pixel in cach quand
iterated sample number - which sample is running during sample frequency picocl shading
per pixel cowerage — mask identifving all bit pixel samples as determined by the SC

Primitive Dana:

perspectivellinear barecenine gradicnts, depth (2) information

ATI Ex. 2027

IPR2023-00922

Page 24 of 62

ATI Ex. 2027
IPR2023-00922

Page 25 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 a-Now-16 1.0 25 of 62

2.4.1.1 Calculate Per-Pixel I] Barycentric Coordinates

The SPI receives 1) gradient information from the SC ona per quad basis (all values ane 32-bit IEEE).

InvWO = value of LOWat refvts (value of line_stipple_tex_coord al refvix with linear gradient)
InvWids — UW rate ofchange in x (linestipple_icx_coord rate of change with linear gradicni)
ImWdy = DV rate ofchange iny (lingstipple_iex_ooord rate ofchange with linear gradiend)
IW) = value of LW at nef vix

[Was — DW mic of change im x
1Wily — IW rate of change iny
JWO = value of JWat ref vix

JWds — JW rate of change in x
JWdy — JW rate of change ins

The SPI uses the following equations to calculate per-pixel LJW. One barceninc triplet (1,4) is computed per
evele per quad, so all of the math belowis insianced per quad in cach SPI

The SPI calculates the distance of the cunent quad’s upper left pixel to the reference veriex and uses that distance
to calculate the terms MWref, JWref, and lovWref which are the values at the upper left pixel of the quad and
kwasthe “reference pixel”

Reference Pixel (1 per quad):
(deltax ard delta_y are 16,5 2's comp convert to ML pt distance of quad UL pixel from vertex
[Wref = [Wo + (delta_x * Twas) + (delta_y * Twdy)
JWref = Wo + (delia_x * Jw) + (debta_y * Jwdy)
InvWeel = Inv We + (deltas * Inv Wis) + (delay * IneWidv)

IJ and per pixel W values are stored in 32-bit IEEE float

Delta Pivels (3 per quad):
The SPI only does the full distance math to calculate the value for the upper left pixel. The other 3 pivels are
calculated aa dclia distances fromthe referenoe vertex. This is a hardware savings in the sultiraction math since
the subimection will be a sinall distance within the quad versus a potentially large distance froin the reference
vertex, The trade off is latency on the other three prvels since these calculitone cannot complete until the
reference pixel obtains iis calculated result, The delta calculations are fived point math, while all other
calculations are im Moat,

delin_x, delta_y — distance from upperleft reference pivel to this pixel (UR, LL, or LR}.

delta_Pixels(3 per quad): (delta_x and delia_yare 2.8 2°s comp convert to Ml pl distance from Ret Piel)
IWpix = [Wref + (deltas * Iwdx) + (delia_y * Iwdv)
IWpix = Weel + (deha_x * Jwdsx) + (delay * Jwedy)
livWipix = InvWref+ (delia_x * lowWeds) + (delay * [ewWay)

Woix = 10+! Inv 'pix for all 4 pixels
Ipix = lwpax * Wpix for all 4 pixels
Jpix =Jwpix * Wpix for all 4 proels

All of the barycentric gradient calculations are IEEE float, The only difference between the two equations here
are the delta_x and delta_vbeing the distance fromthe UL pixel of the quad insicad ofthe distance from the
reference vertex, and the initial tens here being ihe values at the UL panel instead of the reference vertex

When processing linear pradienis, we special cases are created by the Get thant the [ewW term is overtoaded with
ling_stipple_tex_eoord information (dependent on state control). The baryc blogic has to force Wopix do 1.0 for the
final Twand Jw multiplies so that the 1) terms are oot corrupted by the stipple term, The Inv Wipix math is osed to

ATI Ex. 2027

IPR2023-00922

Page 25 of 62

ATI Ex. 2027
IPR2023-00922

Page 26 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 26 af 62
calculaic per-piecel linetippletexcoord values, amd those terms have to be piped around the W pix inverse
function,

2.4.1.2 Pull Model

Fixed function attrimec interpolation hardware has been seeewed fromihe SFI for several generations new, with
all atinbute interpolation happening in the shader inchoding our standard chotces of center, centroid or current
fragment. The DX) pall-model feature is a method that allows the shader to interpolate an attribute at ary
location within the pixel and we accomplish that through the SPI by loading 1/W. LAW, and JAW as input to the PS.
so the shader can coloulate is own emedients and then interp 0. J, and W to anv desired sample location When
enabled. the SPI calculates LW, LOW, and JW at pixel center and loads them into VGPR along with any other
enabled terms.

The SPI still performs per-pisel WJ interpolation to suppor pre-D%1 | stile attribute interpolation that takes place
da fixed set of locations. [f anapp only wants to use center, centroid, or fragment when sampling aitributes, those
1) values can be provided by the SFI, [fa pixel shader is doing “ire pull model” where it is sampling aviribuoes
multiple times at locations throughowl the pivel the SPT will prowide (10JW tens as inpul The pixel shader
then has to calculate gradients forthe JW terms, interpolate themto the desired sample location, recip LW, mult
times LW and JW to get Lat that location, and then interpolate cach actribute at that location.

tis also possible that an app might use both methods, with most alinbutes only sampling at piel
conicrcentroid/irmgment, bul maybe a couple that need to use “troc pull model", In this mode, the shader could
either do eversthing and calculate all the 1 tself or enable multiple 1) terms from the SPL

Asan cxample, saya shader wants 4 perspective-correct aibutes sampled a1 pixel cemroid, 2 non-perspective
cored (lincar) atabutes sampled al pivel center, and 1 attribute to do “tne pull model" and sample all over the
place. This scemuno could set up the SPH like thas:
PERSP_CENTER_ENA=0
PERSP_CENTROIDENA = 1
PERSPSAMPLEENA =0
PERSP_PULL_MODEL_ENA=1
LINEAR_CENTER_ENA = |
LINEAR_CENTROIDENA = 0
LINEAR_SAMPLE_ENA=0

With this, perspective-corect U sampled at pixel centroid and non-perspective correct (linear) LU sampled at pixel
center are available directly to the PS, so no extra ALU instroctions are needed to calculate the UJ before those
ditnbwics interpolate, ALU and TEX gradteni insirections will have to happen to calc U before ihe “tree pall
nde!” atrie can imerpokate,

The app could alsojust configure the SPI like this (and this is trac for every single piccel shader):
PERSPCENTER_ENA = (
PERSP_CENTROIDENA = 0
PERSP_SAMPLEENA =0
PERSPPULLMODEL ENA=1
LINEAR_CENTER_ENA = 0
LINEAR_CENTROID_ENA = 0
LINEAR_SAMPLE ENA =0

Bae then there needs to be exto ALU and TEX gradient insinictions to calc cach set of LU needed for attribute
interpolation, mot just before those atinbutes that want te do tre pull model.

ATI Ex. 2027

IPR2023-00922

Page 26 of 62

ATI Ex. 2027
IPR2023-00922

Page 27 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 LO 27 af 62
2.4.2 Scale Resolution Based on Screen Location (9.125)
The BC] impact from “seals resolution based on screen space” is (hel (he calculation locations for the pixels of a
quad shift amd scale when the feature is enabled. The Upper Lefi pixel of a quad shifis by half a pixel during ¥:
scaling and it-shifis by 1.5 pixels during 4 scaling, The delta X and deli ¥ to the other 3 poorls of the quad willl be
scaled up by 4014 resolution) or 2 (1/2 resolution). The quads, quady, and [JW slopes thal are passed to the BCT
by the SC remain unchanged.

2.4.2.1 Visualizing the Scaling
In the chosen “Time Scaling” approach the sample locations in the upper left pixel of a scaled quad do not map to the
shine locations in unscaled space, This means that all 4 of the BCI pixel evaluations are impacted when scaling.

» Por 4 scale factor the UL pixel center is offset by halla pixel
* For 4: scale factor the UL pixel comer is offset by 1.5 pixels
» Inboth scale factors, sample locaions (het have been specified as distances [rom pixel center need to scale

In the example below, scale faetors of “in X and ' in ¥ are used. This means thatthe BC! would need to caloulaie
the UL pixel-cenier value ala location (2.0, 1,0) pixels from the upper lef comer of the quad (rather than is usa
(8, 0.5)

Scaled Tile (0,0). Each 24 pixel region maps to
an entire tile in Unsealed Space.

Unsealed Tile at Tile Coordinates (0,0) “True Scaling” - geometry scaled relative to
Relative to the Upper Left of Supertile the upper left.

Maps to
Unsealed Tike|Unsealed Tile

(2,0) i
|

a

Maps ta: haps to Maps ta

Unsealed Tike agin Unscaled Tike|Uinscaled Tile(ou (2,1) ;

Another way lo viewthe BCI scaling is by looking ata singh: unecabed input quad and secing how the sample
becalions move, This eaample shows an incoming quad during 4xAA wilh a svimnmetne sample pattern and Whe
Implied sample location of pixel-center.

ATI Ex. 2027

IPR2023-00922

Page 27 of 62

ATI Ex. 2027
IPR2023-00922

Page 28 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGEé& 10-Feb-15 3-Now-16 LO 28 of 62

The upper left comer of the quad is considered to be (0) for this example and that reference point does mot mowe as
the pixel center and sample locations shift and scale, The mexi diagrams showhow sample locations move for
different scaling cases. The new “scaled pixels” are cadlined in heavy black lines. The lighter blue lines represent the
locations of unscaled pixel edges and are shown to help visualize bow the samples are moving,

scalewel, scaleyed:

ATI Ex. 2027

IPR2023-00922

Page 28 of 62

ATI Ex. 2027
IPR2023-00922

Page 29 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 LO 29 of 62

2.4.2.2 Impacts to BCI Equations
The scan comventcr needs to pass scale factors per quad to the SPI.

scabex[120] => 0; full, 1: half or 2: quarter
scabey[10] <> 0: full, 1: half, or 2: quarter

Assuming all pixel centers, the Upper Lett (L/L) caleulution becomes:
shaftedx= (scales = 1) 7 1: (scales == 2) 7 2: 5
shifted y= (scaley == 1) 7 1: (scaley == 2) 7220.5

ATI Ex. 2027

IPR2023-00922

Page 29 of 62

ATI Ex. 2027
IPR2023-00922

Page 30 of 62

UL_= ref_ + ((quad_x + shifted_x - ref_x) * <b=wdx) + ((quad_y + shifted _y - ref_y) * wdy)

The other pixels are calculated as (again, assuming all pixel centers...)
UR_ = UL + (d_dx << scalex)}
LL_sb> = UL_ + (deb_dy << sealey)
LR_ = LL + (d_dx << scalex)
(is ij, Dw, dA, oFji)

The more genenic fon of this equation for handling any allowable sample location within cach pixel is a bil mone
invelved. The UL sample location may not be at pixel center, and arbitrary sample points in the UL pixel don't
simplyshift by 0.3 of 1.0 pixels when scaling. The following diagram shows the distunce “A" from reference vertex
V0 unsealed UL sample 1D 1 in green as companed to the distance from VOto scaled UL sample ID 1 im red.

[|

N|||YTT LtATTACE
ci[||[|[|[|-

BA ces
Sample location state settings have a format of 4b signed offset frompixel comer and range from“8! L6 to 7/b6,
Once the UL sampleid and offset is delenminead (center, centroid, sample) the Upper Left (UL) calculation
becomes:

Reference Pixel (1 per quad, ULe
scaled_offset_x = (samgye_offset_x << scale_x) + ((scalex == 1) 7 1: (sealex == 2) 72:04)
scaled_olfset _y = (sample_olfset_y << scale_y} + ((scaley == 1)7 1: (seabey == 2) 7 2: 0.5)

delia_x and delay are 16.8 2°s comp convert to Mt pt distance of quad UL sainple location from vertex 0.
quadxy is the upper lef screen space location of the current quad, If quadxv is quantized based on scale
factor then the al below for (quad + scaledoffset) can be implemented as a concatenation
delta_x = quad_» + scaled_offset_x = mef_x
deliay = quady + scaled_offset_y - ref_y

[Wref = [Wo + (delta_x * Iwdx) + (delta_y * Iwdy)
IWref = JWo + (delta_x * Jwdx) + (deltia_y * Jwdy)
Iv Wref = InvWo + (deltas * invWeds) (delea_y * lowWey

The distance between sample locations inthe UL pixel and sample locations inthe other three pixels do simply scale
based on scale factor, The next diagram shows the distance A between unscaled UL_sample_0 and UR_sampke_! in

ATI Ex. 2027

IPR2023-00922

Page 30 of 62

ATI Ex. 2027
IPR2023-00922

Page 31 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 3-Now-16 LO 31 of 62
grcen as comparcd te the distance B between scaled UL_sample(and URsample| ined ina scale facior 2
SCCiar,

SecieCeeeEHet
The modified distance between the UL and delia pixels is a simple scaling of the current distance calculation, This
means the BCT cam leave the existing distance logic berweem UL amd UR, LL, LR and then scale the result (add 1 or
2 othe exponent).

Delta Pixels (3 per quad):
deltax. delta_v — distance from unscaled upper lef sample point to this pixels (UR, LL, or LR) unegaled
sample point

delia_Pixels(3 per quad:
delia_x and delta_y are 4.8 2's comp convert to Mi pl distance from Ref Pixel
IWpix = [Wref+ (deltax * scalex * Iwdx} + (delta_y * scaley * Iwdy)
IWpix = JWref + (delia_x * scale_x * Jwds) +(delta_y * seale_y * Jey)
InWpix = [ov Wrefl + (detax * scakx * InvWdx) + ddelta_y * scaley © [oyWiby)

3 END OF SPEC UPDATES, BEYOND THIS POINT
INFO MAY BE OUT OF DATE

3.1.1 Support for 16 pixels per SH

This config has two independent pixel paths (packer, BC] quad-pair, ps_cil, sc_spi interface, PSR,etc) per Shader
Engine but only one Shader Armiw, The two psctl will both request to the same resource alloc block, with waves
from ciiher packer boing allowed to execute on any of dhe 4 SIMD of a Compute Unit. SPT wall have age based
arbitration between the twe ps_cil which is based on where they are wilh respect to the VS that produced the

ATI Ex. 2027

IPR2023-00922

Page 31 of 62

ATI Ex. 2027
IPR2023-00922

Page 32 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO a2 af G2
poime‘procks the pscil arc working om, This will be dome by comparing the vixsynccal (sumof vix_sync_cnlq
and osevix_syne_cnt_q ina 2 SE contig) and giving priority bo the ps_cil with the higher value since that
controller is working on “older” primitives. [fyix_sync_om_sumis equal between the two pe_cil, preity will
ping-pong between them.

Ifonly one PS is requesting ad it fits, i wine.
IPboth PS are requesting but onty one fits, the ome that fits wins.
Ifboth PS are requesting and both fit amd ages are equal, ping-pong priority decides who wins,
Ifboth are requesiing and both fi and ages are mot equal, older one wins.

Because waves from cither packer can launch to either SIMD pair, thos using both expon busses, expan
arbitmiion for color data needs to consider which packer launched the requesting wavefrons. Ina 4 DB/SH
config. SPL expert arbitration cannot allowtwee ininsters to the same DB pair atthe same tine on the two expert
busses (1c. if bust is exporting to DBON then bus!) can only experta colorif it is for DB23)

SP _— SP —- SP ra SP

16x32 Export Data 16x32

DBO

Figure 13 = Color Export Bus Arbitration, IRB

ATI Ex. 2027

IPR2023-00922

Page 32 of 62

ATI Ex. 2027
IPR2023-00922

Page 33 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM, PAGEé& 10-Feb-15 3-Nowe6 LO 33 of 62
SP —| ge ie — SP

16x32b Export Data=18x32

bao DB

Figure 14= Color Export Bus Arbitration, 7RE

- — sp —— sp — 5

18x32 Export Data 16x32

Deo DBI DB2 DB?

Figure 15 — Color Export Bas Arbitration, 4RB

ATI Ex. 2027

IPR2023-00922

Page 33 of 62

ATI Ex. 2027
IPR2023-00922

Page 34 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 10 a4 af G2
1éx2b Export Data texazp

Dat O OBe 1

Figure 16 — Color Export Bos Arbitration, 7RB+

There is still only one 64-deep color scorchoard per SX, with waves fromboth packers sharing those t4
scoreboard entries. SPI will keep a single pivel_alloc fifo for the SH and will allocate color export space for all
pixel waves in the same order as they allocate shader resources, regardless of pkr_id. Color buller space is
managed separately for pkrt |, but the scoreboard space is shared. The next eniry in the pixcl_alloc fifo mast
check for space in its particudar color buffers and check that there is an available soorchoand entry before servicing
the paxel allocation

Fora 4DB per SX config there is one color buffer per DB inthe SX and one 5X_SP1_db bis per DB forfreeing
thal space. SASPLdbbosid wall always be © in this config because there 1s a one-to-one nelabonship beiween
DBs und color buffers, regardless of the simd paivexport bus that processed/exported the pool data.

3.1.2 Unique Sample Positions per Pixel
The BCI has state sorge bo support unique locations for all 16 samples in each of the 4 pixels of a. quad, When
looking op sample locations, a piel ses it sampleid to mux the Mate data associated wath that particular pixel.

3.2 LDS Parameter Data Loading for Pixels
For cach PS, the SPI needs to copyall attributes associated with the primitives in thu pixel wavefront to the LDS
The V5 canexport upto 32 attributes to the panuneter cache, plus the SPI can generic an addiional parum_gen
term, The SPI has te write every attnibuic * cach primitive in the pixel wavelrom, With 33 atinbuies, if ewery
quad is from a unique prom, tht would be 33716 = $23 LDS writes. ‘This would make ihe pixel side of processing
nun al is slowest pixel per clk rate.

With cach quad received from the SC, the SPI gets prim boundary (fig for first quad ofa prim) and per-vertex
param cache base information (where in the panimeter cache to read (he attcbute data for the vertices that created
the quad), The SPL sores cach of the base pointers for cach unique prim and total prim count to knewhow many
Primitives exist in the pixel wavefront.

ATI Ex. 2027

IPR2023-00922

Page 34 of 62

ATI Ex. 2027
IPR2023-00922

Page 35 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 LO 35 of 62
The SPI can request two primitives of atinibute daia per clock out of the parameter cache and write that data to the
LDS. There are some cases that can’t request at the rate of 2 primitives per clock. ‘This is because those
primitives are made up of vertices, the attributes of cach vertex are ina specific parameter cache bank, and if
coMmcculive primitives have verlioes in the same bank then the SPI can’t eead that data al the same time (his bs
known asa bank conflict) Consequently, the SP] can send only one mead address to the PC per bank.

For cach atiribute going to the LOS, the SPI eyeles through eachprimitive in the pixel wavefront, writing cither
one or hwo prims every clock. Each attribute is 84 bits, made up of 3 128 bitters, ithe SPlis processing 2
primitives per clock, then 2°34 bits ofdata is being transfered per clock.

LDS Attribute Terms:

VO, value of attribute at the reference vertex 0 of the primitive
V10, value of atribute al vertex | — vertex 0
VIO. value ofaltribute al vertex 2 = vertex

The AC performs the difference to avoid needing additional PS instructions for mierpolation.

$$3834p(3 x 126)——______» Garnaceira titere US

Logical Layout

Figure 17 = LIDS Logical Layout

3.2.1 Organization of Data in the Parameter Cache
The Vertex Shader attribute output is written to the PC with ihe format shown in the following diagrem.

ATI Ex. 2027

IPR2023-00922

Page 35 of 62

ATI Ex. 2027
IPR2023-00922

Page 36 of 62

EDIT DATE DGCUMENT-VER, NUM, PAGE

3-Mov-16 La 36 of 62
o 1 z 2 4 5 & 7 a a 10 al 1z 13 14 15

Ung O- AD eo) oid wi ved1-Al er " Ww ¥ES
2-Az ‘a vi | ies
a- Ao vit|Wa | | | | | vai
a-Al Wi? Vin TH
5=A2 vi|vin | | i | | | | | | | | | van

6- Ag [val | Maa | | i | | | | | | | | | |7- AL vi Wd way
a AR vo va walt

9= 00 wa | veg10- Al wn kita vel
11-Al wi so | yaa

Figure 18 — Parameter Cache Data Organization

The parameter cache is 1b banks wide, matching the width of wavefronts being executed im the shader array. Each
bank is writen by one of the 16 VS threagts exporting on a given phase. Data is packed by vertex ino the sionige
such that the alinbuies ofa given veries are wiitten to sequential addresses of that yer’s destination bank.

‘The SPI sends the base address for cach VS wave to the parameter cache for each write on ihe expaddr interface
(baseaddi = pobase). The pammeter cache offsets cach attribute write bythe attribute number received from the
80 on the export command interface. The parumeter cache offseis each phase woite by the number of enabled
Minbutes specified by SPl on the expaddr interface (base_addrl = vs_export_count),

In the example abowe, pobase would be 0 and the second phase of atinbudte? would write at (0+ (phase* mumabir)
+ wirnum) = (0+ [834+ 2) = 8,
In the case of half=pack waves, the woites for phase? and phases would have 0 winte-masks so these locations wall
nol be written inte the parameter cache.

3.2.2 WS-PS Remapping
The SPI provides support for the dover implementation of Vertex Shader (WS) outpad to Pixel Shader (PS) input
re-mapping, The SF] can load upio 32 normal paranscters from the parameter cache inte the LDS. For cach pirvel
shader inpail, the driver can specily the attrituite number that should be read fromthe paranseter cache, This
speciiied attribute number 1s added to the prinutive’s parameter cache pointers to determine the read address sent
tothe PC. Ifa PS input paramcter has no matching VS output then the driver can seta bit for that parameter
imimcting the SPL io instead load a selectable “defagh” value for the current paranseter.

3.2.2 Flat Shading
Flat shading means that all pixels of a primitive shoukd gea the same paramcicr value from a provoking veriex.

Using LDS read instructions to move the interpolated data is the expected method for “constant shading” in
DXLO. In DX, intempolants mul declare shading as constant and there is no global renmderstate disable, sa
therefore the compiler knows exactly which interpolants to read directly from the LOS,

There is a Mlat_shade disable in DX, but we don't have to preserve NANMINFinteger tems exactly in DX, so
Always using interp instructions is fing (here, When Mat shading these type attributes, SPL uses provoking vix fein
PA to swiezle the paniun cache pointers before reading the attribute data so that the constant shading term is
loaded to PO. SPdives the cormect mucx_select to PC so that PLO and P20 are forced to 0 in ihe param cache
before sending to the LDS, When the inerp insiniction is executed the operation will be PO +0 + 0, resulting itt
Pu) for all pixels.

ATI Ex. 2027

IPR2023-00922

Page 36of 62

ATI Ex. 2027
IPR2023-00922

Page 37 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO a7 af 62

3.2.4 Point Sprite Override
perschinnel selects of0,15,L parm cache value on the LOS loads.
The SPI will send the appropriaic muxsel bits to the PC to tell it io override the parm data before sending it to
the LDS, When the pixel shader sources the LIDS, tf will get the overnde paramdata and will pet the correct
(3,710) in the destination VGPR.

3.2.5 PARAM_GEN

Pixel Aitnbute loading from the parameter cache into the LDS can include an SPI generated parameter
“parmgen” ST value. This data is tvpically used for anti-aliasing of points or lines. The LDS input tenn is
leaded with W=T, 2=5, ¥=0, X=0, [PARAMGEN és set, ids Joad will write the param_genterm ino LOS
iddress (NUM_INTERP).

3.2.6 Support Deeper Parameter Cache and Avoid Duplicate Data
GPXIP_7 offers support for removing the duplication of the dats in the panuncter caches by keeping the same
moun of memones (in order to have the read ports available) but splitting the allocation between even and odd
parameters, POO block will still contain 64 memories but will only store the X and ¥ components for 16 veniboes
and 2 parameters (1 even paramand one odd parun). PCT will do the same but for # and W components. Then to
puarante: there are no conflicts for parameter reads, SEQ.SP] will read even parameters on ewen phases and odd
parameters on odd phases and SELSPT will read even parameters on odd phases and odd paruncters on even
phases. The difference engine pipeline will be inserted after the parameters are read and POO will have the diff
engine for SE0 while PC. will howe the diff engine for SEI. SPI alloes space for an even momber of attributes in
param cache, rounding up VS_EXPORTCOUNT when necessary.

3.2.6.1 Performance

Ifthe WS exports an odd umber of attributes then the final atinbuie should be exported fwiec, once to cach of the
even and odd halves of (he param cache. Froma VS point of view, this means crabling an additional expon icom
and then writing the fing) peal atiribure te the excir her

Ifa PS linked to a VS with an odd number of exports also has an odd meanber of inpud attributes and sources one
mere attribute from the even paramcache than the odd parum cache, amy PS Lopud aturituate that sources the final
mal VS expo (OFFSET == final VS export) should have its DUPlicate bil set so the LDS wote controller knows
the atiribute can be read on cither param cache phase.

SPL_PS_INPUT_CNTL_*.DUP - “DUPlicate™ bil that tags a PS Input Atinbute as having been
duplicated in both even and odd param cache halwes so that ican be read on ener phase.

ifthe VS exports only a single termif still needs to be duplicated to the odd panun cache so thal PS waves can
tead the atinbute from either bank on consecutive clocks. [Fa VS with odd mom_exports has knowledge that a
specific atinibute may or inay not be used by different linked PS, that attimibute should be duplicaicd, The
conditional atinibute could be mowed to the list spot in the parameter cache, or it cowld be duplicated in place. If
duplicated in place, the OFFSET field for subsequent PS inputs needs to be adjusted accordingly by the dover

Asan example. if VS abinibute ID 2 és conditionally used by different PS and it es neoved to the last spot in the
parameter cache, the panuncter cache data and comesponding PS input setiings could look like thes:

PS input Semantic Offset DUP

ATI Ex. 2027

IPR2023-00922

Page 37 of 62

ATI Ex. 2027
IPR2023-00922

Page 38 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 38 af G2
If that same case instead duplicates attribute 1D 2 in place, the parameter cache data and PS inpul sethings would
book like this:

PS input Semantic Offset DUP

The LOS write controller will have two separate alinibute machines, one for even OFFSETattributes and one for
odd OFFSET attributes. The even machine always handles even OFFSETSand the odd machine albwavs handles
odd OFFSETS, Sime DUP will only ever be set fora PS inpsourcing the final real VS export when there are an
odd total number ofexports, only the even LDS machine will need to handle DUP atinibutes,

Ifthe even machine reaches an attribute marked with DUP,it is allowed to generate reads to both halves of the
parameter cache and will do so in successive clocks. Any DUP read from the even machine will overnde reads
from the odd machine, blocking the odd machine until the DUP atmbute is complete,

3.3 Pixel Shader VGPRinitialization

Two SPI registers. SPI_PS_INPUT_ENA and &P1_PS_INPUT_ADDE, control the enabling of U calculations and
specifving of VOPR initialization SPLPSINPUT_ENA is weed to determine what gradicnis are enablod for
setup, whether per-pixel 2 is enabled, when terms are caloulated anafor passed through the barve logic. and what is
loaded into WOPR for PS. SPI_PS_INPUT_ADDR can be used to manipulate the WGPR destination of terms that
are enabled by INPUT_ENA, tvpically providing a wayto maintain consistent VGPR addressing when terms arc
removed from INPUTENA. Wis valid te set a bil in ADDR when the corresponding bil in ENA is not set, but if
the ENA bit ts set then the corresponding bit in ADDR. must also be set. These two registers comlain an identical
self fichds and consist of the following:

ATI Ex. 2027

IPR2023-00922

Page 38 of 62

ATI Ex. 2027
IPR2023-00922

Page 39 of 62

ORIGINATE EDIT GATE DOCUMENT-VER. NUM,
53-Nov-16.

10-Feb-15 Lo

 PERSP_SAMPLE_ENA

PERSD_CENTES_ENA

PERSP_CENTROID_EWA

PERSP_PULE_MODEL_EWA|PEASP_PULLMODELT/W[VGPRO|
[PERSPPULLMODELJ/W|WGERT_—_—+t

LINEAR_SAMPLE_ENA[LINEARSAMPLETT|VGPRS
[EINEARSAMPLEJ—+(|WaPRIgd

LINEAR_CENTER_ENA

PEIWEARCENTERJ|vaeniz_____—_
LINEAR_CENTROTD_ENA

VGPRIS

[POsW_FLOATEWA|PosW_FLOAT|VaPRis|

ANCILLARYEMA RTA Index [26:16], Vor? 1
Sample_Num[11:6],
Brim Typ[l:o

Position [¥[16], x{16])

The abowe table shows VOPR destinations for PS when all possible terms are enabled. if PS_INPUT_ADDR ==
PS_INPUT_ENA,then FS VGPRs pack towards VGPEO as terms are disabled,

PERSE_SAMPLEEMA 1 1SPaea
PERSE_CENTERENA I PERSP CENTER I \VEPR2SYYtere3osJ
PERSECENTROIDENA PERSE CENTROID I kt~«

PERSP CENTROIO J x

PERSP PULLMODELEMA _ PERSP PULL MODEL 1/WPERSP PULL MODEL a/W

LINEARSAMPLEENA
PERSP PULL MODEL 1/W

LINEAR_CENTER_EMA pe

[oe

Ee

LINEAR CENTER I
LINEAR CENTER J
LINEAR CENTROID I
LINEAR CENTROIO J

LIHE STIPPLE TEX EMA LINE STIPFLE TEX
POS %§ FLOAT FMA Pos % FLOAT GER

[PosyFLOATENA[1[1|POS_yFLOAT|VGPRS—_|
[pos_2FLOATeNA[@|o|Pos2Fionn—s|xSid
[PosWFLOATENA[0[0|POSWFLOAT<ix——_—~+d
[RorFACEEMA|@|0|FRONT FACE xs!

ANCILLARY BNA[a_[0 [aneii Data x
[SAMPLECOVERAGEBWA[0[0|SAMPLECOVERAGE|xi
[PosFIXEDPTENA[0[0|Position[vile],xliel1|x|

LIWEAR_CENTROIDEWA

LINEAR SAMPLE I
LINEAR SAMPLE J

[oT =
ATI Ex. 2027

IPR2023-00922

Page 39 of 62

ATI Ex. 2027
IPR2023-00922

Page 40 of 62

ORIGINATE EDIT DATE DOCUMENT-VER. NUM,

10-Feb-15 3-Now-16 LO
However, if PSINPUTADDR != PSINPUT_ENA then the WGPR destination of enabled tenms can be
mernipalaterl

PERSPSAMPLEJo eae——
|FERSPCENTERJ |V¥GFRS|

pRrmecaerencr_CENTROIDENA Ptpoeee
PERSE _PULL MODEL ENAmmretlieReSEA] xLINEAR SAMPLE J x———|LINEARCENTERTO[XO
|MINEARLCENTROTDENAO003|MIMEARCourrory1_|Veensipped
|LINESTIPPLETEX_EMA|O[2|LINESTIPPLETEX|VGFR11skipped|
|POS_XFLOATEWA[1[|PosxFLOATVGPRIZ
[POSYFLOATENA[1[aPOSYFLOATCLVGPRIZ
|Pos2FLOATEMA[|Oo|Bos 2 FLOAT x
[POSWFLOATENA[OG] POS_W_FLOAT xo
[FRONTFACEEWA[oO[oO|FRowrFaceTK
PANCILLARYEMATOaAmcilData
|SAMPLECOVERAGEENA||0|SAMPLECOVERAGE0|X

Restrictions on programming of SPI_PS_INPUT_ENA
1) At least one of these must be enabled:

PERSPSAMPLE, PERSPCENTER, PERSP_CENTROID, PERSPPULL.MODEL

LINEAR.SAMPLE, LINEAR_CENTER, LINEARCENTROID, LINE_STIPPLE
+) No POSW_FLT wie one of PERSP_{SAMPLE, CENTER, CENTROID, or PULL_MODEL}

3.4 Vertex/Pixel Synchronization

The SPI is responsable for synchronizing the submission of pixel waves only after the required vertex waves have
completed to cneue paruncter data will be in the parameter caches before loading to the LIDS, Pixel shaders
depend on al least one VS wavefront to be complete before PS execution can stan, A PS inthe SPI cannot be
dependent ona VS wavefront that is also pending inthe SPL Un onder io gemenile pixels as a result of a veriex
shader, the SPL must have received the VS waveDone message confirming that all of the vertex attribute data has
been written to the paramier coche, There can’t be a pixel wavefront inthe SPI which is dependent on a vertex
warvelront inthe SPI becouse in order forthe SPI te get pixels generated by a vernex shader,thai vertex shader bas
to have been sent to the §Q to do the vertex shading, export the position and parameters, send the positions aver to
the SX. through the PA, create the primitives, scan for pixels inidhe SC, then pixels enter into the SPI. Therefore.
the SPI cannot have PS-V8 dependencyinside ofthe SPT; the VS has io already have been issued. The
synchronization that does happen is ihe SPI has to make sure that before it lets any pixels associated witha WS.
start shading, that the VS is completed which means vrilien all of is expert data cul to the panumeter cache, ‘The
design encourages the veriex shader to expon position early so the latency is minimized through the $X-PA-SC
path to get the primitives mstenized as soon as possible

ATI Ex. 2027

IPR2023-00922

Page 40 of 62

ATI Ex. 2027
IPR2023-00922

Page 41 of 62

ORIGINATE

10-Feb-15

EDIT DATE DGCUMENT-VER, NUM,

1.03-Nov-16
PAGE

41 of 62
3.5 Combined Data Flow

The combined data flow diagram, Figure 19, shows all of the input controllers together with the VSR wnte
arbilradion, rescurce allocation, and shader write controllers shared between all of the controllers,

CS Input Vertex Input from ¥GT Pixel Input fram SCI l i
rt |

threadgroups Wa ¥ wane quad, barys cata
Vere

Controller idatawe|VSR
LEH, [Jan] Write [© NSF
ES.G8.vs|+ Arb

t Baryc

TH Pipetine
var_ready PSR|VSR

t cs

Vilar: || iene
Controller Per_reacy gen

LS,H5. Bert = Resource —__¥ I 5
ES,G5,V5 Allocation PS Wave
te Cantral

CS Input a
Controllers _, wl
(O-n pipes)

\ PS only¥—
t 7 ¥ TT '

Wave Write SGPR Wille LOS Wile VGPR Write

Pc

NewWave Cmd SGPR Data LDS Data VGPR Data

Figure 19 = Combined Data Flow

ATI Ex. 2027

IPR2023-00922

Page 41 of 62

ATI Ex. 2027
IPR2023-00922

Page 42 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 42 af G2
3.6 Resource Allocation

The SPI manages the following resources as part ofwavefront launching (sec online meg spec for minges and untis)
VOPR, S6PR, wavebullfer, on-chip LDS, barniers, scratch, off-chip LDS, parameter cache and position buffer
(V5 only), color export bulfer (PS only),
GDS command and data credits are also managed as GOS export maquests arc mack.

3.6.1 CU and SIMD Assignment
The SPI is responsible for Compute Unit (CU) and SIMD assignment for all shader types. PS. V5. G5, ES can
select between sending a wave te all 4 SIMD of a CU before stepping to the mest CU of stepping CU with each
wavefront (VS, GS, ES only when net pant ofa group that must go tw a specific CL), Each LS threadgroup always
sleps to the next OU, and HS has to be send to dhe same CU as its parent LS.

3.6.1.1 SIMD Assignment for Work Distribution and Input Bandwidth
In order to efficiently whliee ALL resources and shader input busses the SPneeds to drsinbute waves acmss
SIMD as thev are allocated. For ALU utilization, waves should be distributed across all the SIMD ina given CU
as scetssive waves andor threadpreups arc sent bo that specific CU. For inp bandwidth wilization, waves need
to be distnbuted across all SIMD as they are allocated = even as wave andlor threadgroup allocation mowes from
one CU tothe next. These two desires can sometimes be at odds with cach olher and we need schemes that can

give us acceplable behavior for both roquiremenms.

Take an example ofa compute dispatch with 2 waves per threadgroup ona 4 CU system. If we were only
concemed with ALU distnbution the following pattem would be acceptable:

C WAVE WAVE C WAVE WAVE C WAVE WAVE C WAVE WAVE
uo 1 u 1 uo 1 i)

0 SIMDO SsIMD2 0 SIMDI SIN 0 siMDO siMDz2 0
1 SIMDD SIMDz 61 1 SIMDO SIMDZ2 1

2 SIMDO SIMD2 2 2 SIMDO SIMD2 2
3 SIMDO SIMD2=3 3. SIMDD SIMD2 3

This pattem launches the two waves from the first threadgroup to CUO, SIMDO and 2. the two waves from the
second threaderoup to CU 1, SIMDOand 2, ete, When the fourth threadgroup Lunch wraps back around to CUO,
waves go to SIMD and 3. Work is disinituted nicely across all SIMD in cach given CU, but this paitern ts not
Bod for input bandwidth wiilization because there arc bong sequences of successive waves that do no distnbute
across all SIMD. Imeach CU the pateis (0,215), bot the launch-onder sequence is (0,200,200,20.2, 13,1, 3.ebe).
A better pattern that attacks borh wilizationproblems looks like the following, with waves distributing across all
SIMD both for launch onder across (CU and within each CU.

C WAVE WAVE Cc WAVE WAVE Cc WAVE WAVE C WAVE WAVE
u oO 41 u oO 4 uO 1 ueoo 1

0 SIMDD SIMDz 8 9 SIMDD SIMD2 0
1 i SIMDD SIMD2 1 1 SIMDO SIMD2
2 2 2 2 AD.
3 3. SIMDD SIMD2 3 3 SIMDO SIMD2

This example alse illustrates how the two utilization solutions can be al odds with cach other, When the fourth
threnderoup lunch wraps from CUS back te CLO the input bandwidth preference would be to allocate to
SIMDO,? birt the ALU utilization preference is to allocate to SIMD 13.

There are several register fickis that comirol how SPI distribwics compute work io CU andor SIME.

ATI Ex. 2027

IPR2023-00922

Page 42 of 62

ATI Ex. 2027
IPR2023-00922

Page 43 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15

COMPUTE_RESOURCELIMITS - FORCE_SIMD_DIST
O= Tryio balance inpad bandwidth as threadgroups walk CL
| = Force equal SIMD distribution within a CU, ignoring input bandwidth concems

3-Nov-16 LO 43 of 62

COMPUTERESOURCELIMITS - SIMD_DEST_CNTL
0= adjust prefened SIMD if there's a conflict with previews slart for target CU
L= don't adjust and always prefer DEST SIMD

COMPUTE_RESOURCE_LIMITS - CU_GROUP_COUNT
Number of threadgroups to attempt to send to. a CU before moving onio the next CU

IfFORCESIMDDIST is setie | then SPI will always pick back up on the SIMD where it bef off the Last time tt
sent a threadgroup to the destination CU. The setting of SIMD_DEST_CNTL is ignored when
FORCESIMDDIST is 1.
When force FORCESIMDDIST is 0, SPI tries to balance inpat bandwidth by following a SIMD pane of
(0.2.1.3) even as it walks though CU_ SIMDDEST_CNTL can be used to tweak this behaviorto either guaninice
input bandwidth (1 = preferred for purely input limited cases), or attempt to also balance SIMD disinbution within
aC (0 = preferred for cases that ane ned input limited,

3.6.2 GPR Management
The SPI provides V/SGPR resource immagement for cach SIMD (sce online register spec for ranges and units).
VGPR and SGPR ure allocated for cach wavefront that Lines to the Shader Army

3.6.3 LDS Management
SPI prowides reaource inmatagement for LIDS space foreach CU

Each CS first_wave allocates COMPUTE_PGM RSRC2,LDS_SIZE,
Each LS first_wave allocanes SPLSHADERPOMRSRC?LS.LDSSIZE,
Each ES first_subgep allocates SPLSHADERPGM_RSRC2_ES.LDS.SIZE,

Each FS wawe allocates:

(nanpsinpalinbutes * 12 * numprimsinwavelron) +
SPLSHADERPGMRSRC2PS.EXTRALDSSIZE

The “* 12° is due to PO, PLO, P20 each of which is 4 dwends (XYZ), The tmaxitnm number of prime ina wave
is Ih,

If there are 32 interpelants and 16 prims, the nesuli is 12 * 32 * 16 = 6144 dwords,
Including param_gem il becomes 12°33 * 166336 dwords, which ts the oaecimum required LDS space for PS
aitribuie data,

3.6.4 Wave Buffer

Provide resquree management for wave buffer entries for each SIMD. Each allocated wavefront consumes one
entryinits destination SIMD

3.6.5 Scratch

The SPI provides scmich resource management, ako known as the temp buffer or temp ring. forall shader types.
Sermich management uses.a scheme where the driver allocates temp space based on a desired number of in-flight
waves in the svstem, The SPT will divide the drver<allocuied ning into equal chunks per shader arnry, and also
implement a management scheme that allows GFX types to share a common ring. There will be one set of
renee mnagement inthe SPI shied between GFX ivpes. and one foreach of the CS pipes.

ATI Ex. 2027

IPR2023-00922

Page 43 of 62

ATI Ex. 2027
IPR2023-00922

Page 44 of 62

ORIGINATE

10-Feb-15

EDIT GATE DOCUMENT-VER, NUM,

3-Nov-16 LO

 Oriver specifies total wawe dots allocaled.
SPl divides wave slots into NUM_SE " NUM_SH_PER_SE
equal parts to be used by each SH

- f Driver specifies se of a

‘Scratch Ring if }i ware_aol eo SP] can generate
Afocabed By Driver i offset for each ware as it es

. f launched.
Per_Wwave_usage ff

desined_wawes_per_sh*
In this scheme, ihe driver will program the following 8-siade register ficlds:

SPIL_TMPRINGSIZE
WAVES([11:0| — Total size of allocated region in number of waves, max is 32 per CU, wave_slots are not tied
direclly to CU, bul the max cumber of waves we want in Might is a function of the number of CU in the system.
WAVESIZE[24:12] — Amount of space used by each wave in dwords, format is [20:8] since cach wave is 64
threads (6 bits), The API specs temp space in terms of 4 dword (componcml}) vectors ser thread up to a max of dE
4-component vectors (PGK. * 64 threads = IM dwords per wave), plus the driver needs some addeional space. The
CuNTenl register size supports a range of>(2M=1) dors.

The physical base of the TMPRING will be specified as a resource, cither loaded as user-data or fetched bythe
50. The SP1 will provide a wave-specific offset as an SGPR term which the shader uses along with the resource
bo generate physical addresses. This means shaders that spill to scmich require two additional SGPR dwonds for
the resource and offset.

The SPI will divide SP1TMPRINGWAVES into equal chunks per SH and mainisin separate management for
each SH, Temp space will be managed with an allocation scheme thal allows out-of-order deallocation so waves
can free their space as soonas the shadercompletes.

Each shader stage will have | persistent slate bit (PGM_RSRC2_*S.SCRATCH_EN)specifying whether the
shader uses temp space or not. Ia shader does not use temp space, it will not allocate a wave_slot,

The dover has to check bound shaders fora draw/dispatch versus SPLTMPRINGWAVESIZE for that cmd
buffer ring to make sure it is Lge enough, If eet, the driver needs to either allocate a new temp ring or reorganize
the existing ring by changing WAVES and WAWESIZE, Ufthe currently allocated memory region is reorganised
(change WAVES and WAVESIZE but keep same resource}, a PARTIAL_FLUSH through PS is required to
protect the space until all pending work is done with wimp. Ifanewtemp ring is allocased then there is no need wo
Hush. The resource (persistent user_data) can change to point to the new surface, WAWESIZE can change so the
SP] generates the conect offset for waves launched weing the new surface, and the management logic will just
transition to using the newsctiings as cach shader stage reaches the new drwidispatch, There may be some
period of tine when the old and new surlaces are not fully used since the SP1 scoreboard will contain a tux of

ATI Ex. 2027

IPR2023-00922

Page 44 of 62

ATI Ex. 2027
IPR2023-00922

Page 45 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 3-Now-16 Lo 45 of 62
wares from the twe temp surfaces. The scorchoard and alloc logic do not care which surface contains the
allocated temp space since that info is passed to the shader programthrough the resource anel offset SGPR values,
The SPI only needs to knowwhich temp_wave_slot was used by a given wavefront so the correct scoreboard bit
can be cleared when the wave completes.

SOOreOard BRS im iranaiion
from sumtaont to surface)

The TMPRING will typically be configured to some defiult size providing enough space for bypical shader usage.
and only needs to change when a shader with avery large TMPRING usage is bound,

3.6.6 Barrier

Bamier resources have a fixed pool of 16 in each CU and are used to synchronize multiple wavelroms ina
threadgroup. Only HS and CS need baniers inthe SO because those are the only shader types that can share data
between threads through the LDS, Ifa threadgroup consists of only one wavefront (64 threads or less), no barrier
resauroe is allocated by the SPL

3.6.7 Bulky CS Threadgroups
CS persistent state inchwdes a bit that can mark the dispatch as “bulky”, SIP manages a single bulky slot per CU
that is comumed whenever a bulkw threadgroup allocates to that CU. if the bulkyslot is in ose, a new CS request
marked as bulky will net fit oniCU. Even singke-wave threndsroups can be marked as bulky, and only one of
those is lowed ona CU at a given time. Only onc bulky allocation is allowed ona CU, but otber types cincluding
‘bulky CS) can cll allocate to that CU ifother resources are satisfied

ATI Ex. 2027

IPR2023-00922

Page 45 of 62

ATI Ex. 2027
IPR2023-00922

Page 46 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 1.0

3.6.8 Position Buffer and Parameter Cache

Parameter Cache and pocition buller space ane managed for VS only. VS waves allocate parumeter and position
space unbess a given wave is only processing as siream-oul and mo rastcniving of is a “moll wave” that is only sent
to deallocate resources at the end ofa group. In the non-allocating cases the sheder won’ be allowed to write to
either of these buffers and space is not wasted. Parameter cache is deallocated on the PS side when the final
Primitive using vertices from the VS has issued all of iis pixels. The $C passes along a token to the SPI indicating
that the parvineter cache space can be de-allocated. Position buffer es deallocated as the PA clrains posithons froma
the SX. There is a signal send from the 8X to SPI indicwing that position buffer space is fnecing.

3-Nov-16

The register PA_CL_VS_OUT_CNTL register ts spooped bythe SPI for position buffer caleulation
VS_posilion_coumt =

(1+PA_CL_VSOUTCNTL_GETV8OUTMISCVECENA(data) +
PA_CLVS_OUT_CNTL_GET_VS_OUT_CCDISTO VEC_ENAidata) +
PA_CLV5_OUT_CNTL_GET_V5_OUT_CCDISTI_VEC_ENAjdata}) * 6-4

GPU §X_POS _EXPORT_REG_BUFFER_SLZE defines the physical size of the position buffer and the defauli
selling of SPI_SX_EXPORT_BUFFER_SIZES.POSITION_BUFFER_SLE, This register field can be used to
limit the amount ofposition space thatthe SPI allows to be in use at any given time.

There is one kevical parameter cache for the entire chip. W'S waves will be semi te all Shader Engines, and each SE
is allowed to wee and mst manage (LinumSE) of the param cache. The register SPLVS_OUT_COMNFIG ts wed
to determine the amount of space to allocaic.

pe_alloc_space = (i(vs_expent_couny/GPUGCPC_PTR_WIDTH)+1) * ((vs_half_pack) 72:45

When VS5_HALF_PACK. is set the VGT will create partial VS waves every 32 vertices (instead of a full 64). onby
filling the wave half full. This means each wave only needs half as much parameter cache space,

When the paruncter cache storage is two parameiers wide (PC_PTR_WIDTH = 2) the equation wall round up to
the neared ewen value and then divide by 2. Allocation always starts on an the even bank so there will be wasted
space for odd vs_expor_count settings, although thet wasted odd slot can be used to help performance of reads
throweh the DUPLICATE functionality described in a previous section.

GPU SX_PARAMETERCACHEDEPTHdefines the physical sive of the parameter cache.
SPL_OONFIGCNTL_1PC_LIMIT_ENABLE/SIZE can be used to artificially limit (he amount of parameter
cache space that the SPI allows to be in ase at any given time,

3.6.8.1 Late V§ Allocation

The SPI supports position and param cache allocation after shader resource alloc, similar to PS color balleralloc,
dlowing V5.lo san execution without having pospe space for exports, This means we can have more WS in
fight thin fit in pos'pe space and that mcans we provide more kiency hiding for VS fetching and pre-export
ALU.

VS bie alloc ts an atempa to deal with cases thet are curremly borlenscked by the numberof V5 waves thw can
be in Tight, From Evergreen through S12, WS waves have to alloc both panumneter cache and position baller space
before launching, which means these resourecs can limit the number of VS waves in Might, There are cases where
the majority of the VS Latencyis before any pos or param export (ic feich a bunch ofdata initially, process it, then
oulpul), and late VS alloc can help hide that initial latency by allowing VS waves to laanch without having their
export space. Those VS waves can sant and fetch their data and only stall if they reach an export instruction
before their space has. been allocated

Ideally, LATE_ALLOCV5 should only be set high cnough to keep PS fed with work - any higher than that and
newer VS arc just taking wp resources that could be applied to older PS. In other words, if'a given draw is nol VS
latency limited then LATEWSALLOC won't help (and could potentially hurt) performance, Vertex shaders

ATI Ex. 2027

IPR2023-00922

Page 46 of 62

ATI Ex. 2027
IPR2023-00922

Page 47 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 10 47 of 62
with lots of Latency before their first export, ciiher feiches or ALU instructions, will be the best candidates to take
advantage oflate alloc

And finally, care must be taken when setting LATE_ALLOCVS > 0 since it can cause a deadlock with PS, VS
are allowed to Linch without having expon space and those V5. consume shared shader resources (GPR, scratch)
until they are able to export and complete. The pos!parm resources WS is watling on ane freed by FS, so FS have
to be able to make progress in onder for those VS to alloc, export, and complete. [Ff late alloc VS take so much of
the shared resources that PS cannot alloc and make progress, we will deadlock. This i only expected wo happen
when VS + PS resource wiage is very large relative to resources available: > 3/47 of VGPR of SGPR. or scratch is
enabled with a small total scratch pool, only a couple ofCU presemt (small config), cic. The higher the total
VSNPS resource usage 6 relative to total resources available, the smaller LATE_ALLOMCVS should be set.

Similar to the LSPS LDS deadbeck scenano, late alloc VS SIMD deadlock can be avoided by guarintecing there
is al least one CU that can mun PS but oot VS (osing POM _RSRCS CU_EN setiings). CU resource deadhock can
alse be avoided using reservations on a single CU to guaranties there are resources available to PS thu VS. cannot
use. Scniich pool deadlock canbe aveided by making sure that LATE_ALLOCV5 is always less than
SPLTMPRINGSIZE.WAVES when WS uses somich.

3.6.9 Allocation Priority
The 3-ring arbitration priority scheme from $1 will be extended to handle the new HP3D and multiple
asynchronous compute pipes. The participating pipes will be amy HP3D tsk (LS, HS, BS. GS, VS, PS). GFX tsk
(LS, H§, ES, GS, V5, PS, CS) and four of the cight Compute Pipes presented bythe pipe pair arbitration, The
Compute Pipes presented will have one of the following pipe priorities, determined by the
CPF_SPLpapeS_pnority interface for each pipe:

CS_HIGH = typically abowe HPS
C5_MEDUIM = typically between HP3D and GEX
Cs_Low - below GPX

To resolve a tic between multiple compute pipes of the same pipe prioritylevel, a least recenthy issued (totem
pole) circuit will be employed. Each time a pipe is selected to issue amy work to the shader core, the pipe will be
neved to bottom of the least recently keener) circudd and thus make that pipe ihe kvwest priority of its PRIORITY
voll some olher pipe of the same PRIORITY isanawa,

Coming out of resel, the least recently issued list will be Pb PT with pipe 0 the most fawored initially for the
given pipe priority. The dingmim belowillustrates the pipe arbitration. OF the five priority levels of CS HIGH,
HPSD, CS MEDUIM, GFX, CSLOW, from highest to lowest priority levels the best winner will be chosen
NOTE: [f there are graphics task in HPSD, the HP3D pipe arbitration can win, but the post graphics shader tpe
arbitnetion could result ina GFX wave selection. Due to the pipelining of HPSD and GFX inthe same physical
pipeline, there are cases where GFN or HPSD could be more important to the prienty winner.

The following table shows the totem pole anangement from deft to night. The Pn where n is the compte pipe
providing the work group and the (-, H, M.L),- No work, H — pipe priority High, Ml — pipe priority Medium, L —
pipe prionty Low, Foreach time penod the four ou of eight CS pipes that survive pipe pair arbiinstion are shown
in red, and the underlined pipeline is the one that pipe arbitration will select from the 6 competing pipelines.

ATI Ex. 2027

IPR2023-00922

Page 47 of 62

ATI Ex. 2027
IPR2023-00922

Page 48 of 62

ORIGINATE EDIT DATE DOCUMENT-VER, NUM,

10-Feb-15 3-Now-16 LO

The coment programmable based priority selection machine enables Nesable priority selection between the
pipelines ofthe sysiem. [tcan be sciup to pera fixed priority or revolving prorin berween the pipes cither fine
Etun or coarse proun, The following non-conlex. configuntion regiétiers set by privileged OS/LLD dunng setup.

SPL_ARBCYCLES_0.TS1_DURATION(16 bits)

SPI_ARB_CYCLES_1.752_DURATION(16 bits)
SPI_ARB_CYCLES_1.TS3_DURATION(16 bits)

Granularity is 16, 64, 128, or 256 clocks sclks depending on DUR_MULT,
Range 16ns ta 16ms at GHZ clock

SPILARB_PRIORITY.PIPE_ORDER_TS0 (3 bits)
Prioritization orders for Time slices

dx CSHHPID, CSM. GFX, CSL
Ox] —HP3D, CS_H,CS_M. GFX, CS_L
Ox? —HP3D, CS_H, GFX,CSMCS_L
0x3 — HP3D, GFX, C5_H, CSM, CS_L
Oxt-CSH.CSBL CS_L, HP3D, GFX
Ox$ —CS_M,CS_L, HP3D, GFX, CS_H
0x6 - CS_L, HPID, GEX, CS_H, CS_M

SPI_ARB_PRIORITY.PIPE_ORDER_TS1 (3 bits), Same encoding as TSO
SPI_ARB_PRIORITY.PIPE_ORDER_TS2 (3 bits}, Same encoding as TS0
SPI_ARB_PRIORITY.PIPE_ORDER_TS3 (3 bits), Same encoding as TSO

SPI_ARB_PRIORITY.TS0_DUR_MUILT (2 bits)
5PI_ARB_PRIORITY.TS1_DUR_MULT (2 bits)
SPI_ARB_PRIORITY.TS2_DUR_MULT(2 bits)

SPI_ARB_PRIORITY.1TS2_DUR_MULT (2 bits)
Number of selks used to Increment duration count: 0-16, 1-64, 2-128, 3-256.

ATI Ex. 2027

IPR2023-00922

Page 48 of 62

ATI Ex. 2027
IPR2023-00922

Page 49 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 49 of 62
HuniwareQueueDescopior (HOD)Register iospecity poor:ofgiven pipe

CP_HQD_PIFE_PRIORITY, PIPE_PRIORITY (2 bits}
Ost = 08 Low
Oxl - CS Medium

(ix? - C5 High

Example @- Fixed priority order
TS0_Duration = TS1_Durtion = T32_Duration = TS3_Durvion = 6
PipeOnderTS0= PipeOrderTS) © PipeOnderTS2 = PipeOnderTS3 = 2
Result in prionty 2 selection from highest io lowest

HPSO pipe always selected if present
Any C3_H job surviving to final pipe arbitration
Any GPX task ready to go
Any CS.M job suniving to final pipe arbitration
And list any C5_L

Example 1 - Alternate HPSD and CS_H as higher priority $0/50
TS0_Duration=TS1_Duruion = TS2_Duration = 1é
TS3_Duration = 48
PipeOnder_TS0= PipeOrderTS! = PipeOnderTS2 = 2
Pipe Onder _TS3 = 0

So of the time Resull in pronty 2 selection onder from highest to lowest
HPSD pipe always selected if present
Am C8_H job surviving to final pipe arbitrition
Amv GFX tisk ready bo eo
Any CSMjob sunviving to final pipe arbitetion
And last any (CS_L

Se of the time Result in pronty 0 selection onder from highest to bowest
Any CSH job surviving to final pipe arbitration
HPSDpipe always selected if present
Any CSM1 job sunning to final pipe arbitrvien
Any GPX task ready to go
And last any CSL

Example 2 - Picking between Graphics Stages
SPLOONFIGCNTL.GPR_WRITE_PRIORITY applica across all graphics requests, regardless of HPID or
GFX,

If GPR_WRITE_PRIORITY = Low-> High (LS, HS, ES. GS, VS, PS), and the current PIPE_ORDER is Gs =
HPSD, C5_H..CS_M, GPX, CS_Land we have req fiom

POHigh
P3_Med
P?_High
LS_HP3D
VS_GEX
PS.GFX

Then the compute work will lose to graphics because then: 1s ai HPSD request and HPSD is highest pronty
given the curren PIPEORDER. But the final winner in this example will be PS because if has the highest
GPR_WRITE_PRIORITY

ATI Ex. 2027

IPR2023-00922

Page 49 of 62

ATI Ex. 2027
IPR2023-00922

Page 50 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO SO af 62
Iduration and ordering are all desired to be constant, then ectling up this machine once provides a constant
prionty beiween CS_H, HPSD, CSM, GPX, CS_Lpipes.

Ab reset orchange in programming the machine will restart in order continuously:
TS > TS] } TS2 TS3 TSO cic

The registers can be programmed at any time without idling the shader cor.

3.6.10 Virtualization ofCompute Unit Masks
The proogrmummable 8PlSHADER_PGM_RSRC3.CU_EN megisters provide a logical sepeesemiation of the CU in
a given config, with bits Oto N-1 representing the N possible CU that canbe enabled in thai config, Depending on
which physical CU are desabled by the SHADER_ARBAY_CONFIG regs, the SPL will shill the logecol CU_EN
settings to create a physical enable mask consistent with the cumem config. When CU_EM masks are virtualized
the SPI doesn’t need unique settings per SH for CU masking. but cach SH has to virtualiae based on its own
SHADERARRAY CONFIG seiting

As an cxaimpic, take a part that has 10 physical CU and one disabled CU (CU4). The CU_EWN settings are shifted
based on the config setting, with cach bit abowe the disabled CU moving up to an enabled CU

cuo 1 23 4 5 6 7 8 § SHADER_ARRAY_CONFIG.
olo o ol4io/o0 0) 010.) INACTIVE_CU (physical, per SH)

CUO 12 3 4 5 6 7 8 8 SPI_SHADER_PGM_RSRC3*.
q/1 4/4 ala) 4)4/)4) 0 CULEN dogical, persistent state)

U4 disabled,
shift en bits

cuo 123 4 5 6 7 8 § Virtualized CU enable mask
1/4) 9[4Mt sla f ala] whvsicss

The SFI supportsany munber from 0 to (NUM CU — 1) disabled CU.

3.6.11 Resource Reservations

In order to support configs with one operuional CU (either dec to config, harvesting, or clk/power galing), we
need to solve the problem of deadlock between TS and PS in the LOS. SI parts coukd do his by seating a
meaccation oo halfofthe LDS for PS, but that means no other types arc allowed to use that LDS incloding CS. 51
Feaauree rescrvation works by only allowing the one specified type bo wee the reserved rescunces. For GFXIP_7,
the desire is to be able to set a reservation and allow multiple types lo use that reserved space, This will be done
by replacing the TYPE_A/B fields of SPILRESOURCERESERVE with a newfield that is a one-hot mask one
bit for cach pipe, gfx stage, etc to specify which types are allowed to use the reservation. The $PI registers for
controlling resource reservadions are shown below.

SP_RESQURCE_RESERVE_CU_0-n
VOPR 3:0 = 0-8 blocks of 16 VGPR per SIMD, (64 VOPRSICL)
SGPR Ti = 0-8 blocks of 32 SGPR per SIMD: (128 SGPReCL)
LDS IL = 0-8 blocks of 4kbvies LDS

ATI Ex. 2027

IPR2023-00922

Page 50 of 62

ATI Ex. 2027
IPR2023-00922

Page 51 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO Slaf 62
WAVES=[4:12 = 0-3 blocks of | per SIMD (4 WavestCU)
BARRIERS [R15 = 0-8 barriers per CU

SPI_RESOURCERESERVE_EN_CULO-n
EN 0 Gest Enabbe the reservalions

TYPE_MASK 15:1 i) l= PS.2° V5.3 = 68,4- ES. 5 = H5.6°L5, 7 = DNCS, 15 =
CSO-C&E7

QUEUEMASK 23:1 (xt 16=GneveSlow, 17=QueueSlet], 18QweweSlat2,..., 23=QneueSlotT
for all enabled compute pipes in the type mask

RESERVE_SPACE_ONLY 24:24 Mose bit for reserve type use of reservation space
0 - Use both the available eeserved and mon-reserved space
1 - Use only the available reserved space

The RESERVESPACEONLYfeature is only honored for compute only reservations. If the TYPE_MASE
inches any GFX_*, (PS. V8. GS, ES, HS, LS.08) task in the reservation this bit will be forced to-0 and prevent
the use of RESERVE_SPACE_ONLY feature.

Similar io pertype CU_EN regs, reservation settings ane also virtualized such that the registers are logical and
hardware maps them to pivsical CU based on the current SHADER_ARRAY_CONFIG.

3.6.12 Multiplier for Resource Limits
WCL_PIPE_PERCENT_(GFX/HP3D}, WCL_PIPE_PERCENT_CS(0-7) = $ bit value where 091/32, le2S2.,
31 LO beoomes a multiplier of the pipeline wave in-flight registers so that a scheduling thread can provide
asynchronous of syachronous control of the wave limit distriiiion across pipelines

Graphics wave limits are specified as SPLSHADER_POM_RSRC3.WAVE_LIMIT]$:0). WAWELIMIT has a
eranalanty of 16 and a setting of0 disables the limit

C6) = mo Limnit,

OL = up to 16 waves allowed_
02 = up to 32 waves allowed,

31° up to 496 wawes allowed

Compute wave limits are specified as COMPUTE RESOURCE _LIMITS.WAVESPERSH[9:0), which has a
printalirity of | and a setting of0 disables the limit.= no limit, |= 1 wave allowed, 1023 = 1023 waves.

When PIFEPERCENT ts multiplied with WAVE_LIMIT the rest should not be allowed to inuncate or round to
0, which would effectivelydisable the wave limit, SPI will make sure tha if WAVE_LIMIT > 0, the minimum
allowed multiplied result will be | wave.

3.7 Export Arbitration
Export requests are made on | or possibly multiple export requests busses. They must simply be added po the
export request buffer (ERB) that is dedicated to the bus making the request The shot in the baffer is uniquely
identified by the cu-id, tag-id provided with the request, The tags are divided evenly across the export busses,
E.a. if there are 12 tags available with 2 export busses, then tig-ids 0-3 are reserved for export bus 0 and tags 6-11
are reserved for export bus |.

ATI Ex. 2027

IPR2023-00922

Page 51 of 62

ATI Ex. 2027
IPR2023-00922

Page 52 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, 10-Feb-15 aes 1.0
fra bores

iead orerrend bo ch rea
Carrer bge Teceeet be ergetPreveies gated age fed) Be raeeee

esetd
' ooo He Aen. rer iesae Type tas-

el 1 Bes eg 1 Peaoe ey ope Fa
oe|Ca) ieee ee ie cetFach awpage may I fe ee age oar cet

eeegrind oy Beton Waren art onsom «chage JD eeeeM errs ot Cains, tO
feet Best erg =e heeeeoeee ee tae

AliB eves Sep ema - tere ae ta
Epaainjedinall Ferg pec |eaeee | au Gedy re_age Do a geenedie bye aes Slap bere wel ten period bey
deen = ebhaer =SHT

ad | ea 1 Calin,hte ited Pedeeee |
a (mSha Beet lage a, fe)ot Saterrtst aeage

seb aeeee ofeeCejaiet tri” =
eee ay ne7

- i Se bt eeGegee hereon del Gfee
eLPos | PLPS|| air) ons Free|eR ecoSea ot) Segoe|Beg |) | Beat Begot||Aegon) Sea od

eere 2ee
eee _ee_at OLSie

—™ ee
Arsbere pert relapeed olbay

The arbitration nubes are as follows:

Arbitration occurs to print aecess to all export busses (2 of 4) fora given phase cycle,
There are 4 export types (Position (POS), Parameter Cache (PC), GDS and Color (COL)
Arbiianion grants occur as follows:

a 2 busses: Simd 0!) ranted on phase 0. Simd 2/3 erinted on phase 2.
b. 4busses: Simd S granted on phase N (Ne1.2.3)

A fixed, but programmable priority, based on export ivpe is maintained, E.G, Color can be assigned io a
higher prionty that GDS.
Within the POS, PC, amd COL types relative wave ages (per export bus) ane maintained. This means the
export request is assiined an age based upon the age of its request wave, and not based upon the order the
request was mocived. Older exports are prionitincd ower younger.
GDS request type is mainiained in request onder age, and a single order for all request busses is maintained,
ODS tvpe (and only GDS) also requires an allocation ofGDS resources be performed before issuing a GDS
grant. The resources are a GDS “CMD input buffer, and a GDS “DATA” inpad buffer. The arbiter
Tainan a conn of available space (decrementing such space for cach pram, and incrementing the space
available under control of a “free” bos from the GDS. For cach GDS export to be pranted the Acbiter
requires | CMID space, amd 4 DATA spaces so cach command granted will decrement the values
accordingly. There is GDS CMOFREE anda GDSDATAPREE. Each of these adds | to its
respective counter,

emd_count =" cfgspecific_cmd_count_default:
data_count =~ efe_specific_data_count_defautt:

It (erecomm >= 1) kdb (data_count >= 49)
Grmt_pdsrequests <- TRUE:

Else

Crampdsrequests <= FALSE;

ATI Ex. 2027

IPR2023-00922

Page 52 of 62

ATI Ex. 2027
IPR2023-00922

Page 53 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 53 af 62
If (adsexport_graned)

Cind_count <= cmd_cound = 1,
Datacount <= datacou — 4,

IPitpdsspi_cmd_free)
Cmd_count <= cmd_count + 1;

[fteds_spi_data_free)
Data_count <= data_count + |;

%. Conflict mies: Because the resource being exported to mw havea singke write port, if is legal for certain
combinations to occur onthe (multiple) export grim busses fora given 4-phase cvele:

b.

&

d.

Ad most one bus can grant a POS request
AL most one bas can grant cithera PC ora GDS mquest. Some single SH configs have 2 busses
from 3X te panun cache, allowing SP] to granta PC export on both busses.
Comnfigs with one packer per SH have no resinctions on color buller grants, Configs wilh two
packers per SH can only allow experts destined for a given DB pair on onc export bas at a time,
PC granis arc funher constrained as there is a single logical write port to the PC shared byalll
shaders ina sysbem,
This is accomplished by having cach Wave Buffer ina system skew iis PC grins, by componcni,
bya uniqne amount fiom all other wave buffers in the system

®, To provide fimess, cach arbiter cvele rotates preorities amongst the export busses. The bus with highest
Poort chooses its prefered expon, The nex bos chopees its preferred export — but in light of the
previous busses: choice, and so on.

Two Busses:
bus 0, bus!
bus l, bust)

Four Busses
Bust), bus]. bas2, bust
Bus |, bus?, bus3, bust
Bus?, bus, bust, bus
Biss, bust, bust, bas?

3.7.1 Maintaining GDS order
To keep GDS in strict onder across both export busses, a fifo is uted, The fifo is written for cach export request,
providing the index into the export request buffer for cach such request (If there arc bwo busses, the fifo is wide
enough to record two indices af a time).

This FIFO when not empty enters iio arbitration . The anbiter may thus choose #-GDS request asa winner, If
so, the index is present to the export control block (which contains the export request memory}, The relevant
dita is looked up for the winning grant, ancl otherwise ihe grant vell act much asa grunt ona noneGOS wpe.

3.7.2 Export Granting
Whenthe arbiter selects a given export for granting, the index of the export is used to read the associated data
from the export request buffer, The index is wed to regenerate a cu-id and a tail [fthis is the final grant of a
given request then (req mask will be wero after the update), then the “done” Mag is asserted.

Whenthe done flag is asserted the naquest is complete and counters, ete may be updated to reflect this.

ATI Ex. 2027

IPR2023-00922

Page 53 of 62

ATI Ex. 2027
IPR2023-00922

Page 54 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 1.0

3.8 Persistent State

The SPI supports persistent state management for graphics shader sages, bodh for HP3D and GFX. For each
shader siage, there is storage for one whole set ofstate af the shader launch point preceded by fifo Sorage for
incremental updates, The update fifos provide siorage for some number of words that could either cover a lot of
draw/dispatch calls with small state changes ora few with lange state changes. For this class ofstate, the
persistent set is used until all waves using the sei have been launched, at which time the wavefront launch is
stalled while the persestent et is updated with the incremental state changes, Once all updates have been applied
(up until the nest DRAWINITIATOR) the shader stage is allowed to launch waves from the newstate set. Each
shader stage can de its respective update independently and likely at differen times.

3-Nov-16

The independent persistent state per slage decouples the shader stage stale from ether stages and pipelines. This
results im better use of the remaining 7 sets of contest state (8th sce will be clear state} by minimizing how ofien
the shared state sets are needed. The shader stage state canbe manysmall state changes ora fewLarge state
changes. The update and final persistent storge will be doubled so the interrupted GFX state has a place to be
saved while HPSD work is processed. The diagrim below showsthe fifos and storage for persistent state and
slaging.

omnuer + -

 no oa fe od fee,

ae corsabienroe HA
oom 0

Pe Rege ied Ved Weed

Figure 20 — Persistent State Upalate FIFOs

3.9 Partial Flush Events

SPI provides support for partial pipe Tushes thrach event synchronization with the CP. The only wayto change
sialic resource allocation and config state isto exther Nush the whole pipe or vse partial Mush events, The
difference between doing a PS_PARTIAL_FLUSH and a full pipe Mush is thet the PS guarantees that the piooel

ATI Ex. 2027

IPR2023-00922

Page 54 of 62

ATI Ex. 2027
IPR2023-00922

Page 55 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 55 af 62
shader has finished, bui docs noi guaranice that all data hac been written out bo mcmoen, The latency savings is
the difference between wailing for memory writes bo complete,

3.10 Wave/Event Ordering
SPI needs to muintain wave and event ondenng for certain functionality, such as fence/Tush event signaling and
VS_done-to-PS_[pos synchronization. Since waves can complete their shader program and pop off the ware
buffer out of order, SPI needs another method for remembering onder. To accomplish this the SPI will keep an
event_wave_crawler for cachshader hype that gels pushed for every wave and for events of interest to that ivpe. A
‘done’ status bit is kept for cach crvwler spot and the crawher cannot advance past a wave until that spot's done bit
is set, This allows waves to complete and dealloc shared resources out of order while also keeping events and
waves in order,

3.11 Event Collection

SPI must collect conan event_td across graphics shader wpes and modify the CP when the events are done, These
|evenis arc endofpipe (EOP) type events and CONTEXTDONE. For CONTEXTDONE, SPI must see the
event across all of LS.H5,E5,65,V5,P5n before signaling the CP. For EOP eves, SPI must sec the event across
all of LS.H5.E5,.G5.V5.PSn and OX 11-05 before signaling CP. EOP events incline CACHEFLUSH_TS,
CACHEFLUSH_AND_INV_TS. BOTTOM_OF_PIPE_TS. FLUSH_AND_INV_DB_DATA_TS.and
FLUSH_AND_INV_CB_DATA_TS.

3.12 H/¥ (horizontal/vertical) Pixel Picker (for Debug and Performance Analysis)
Registers for controlling this feature. SPL{PVPL}TRAPSCREEN:

PSBA_LO This is the pre-shader base address [39:3]
This specifics the address in memoryof the shader program ih will be

invoked by pixcls of imercst, .
Thas is the pre-shader memory address [30:8] — This specified the address
in memoryused to store the data structure used by the pixel picker pre-
shader, The memory can contain conianis, atomic variables and an append
region.

GPR_MIN.VGPR_MIN Niunber of Vector General Purpose Registers (VGPR) needed for the pre-
shader, [f his is Larger han the mimber of VOPRneeded by the native
shader, the SPI uses this setting forany wavefront that uses the pre-shader.
Mote: The pre-shader is responsible for preserving VGPRsif it plans to
resume the nvtive shader.

GPR_MIN.SGPR_MIN Muunber of Scalar General Purpose Regisicrs (SGPR) needed for the pre-
shader in addition to the 16 extra trap registers. If this is Larger than the
number of SGPRs needed by the native shader, the SPI uses this setting for
any wavelnont that uses the pre-shader. Mote: The pre-shader & responsible

for preserving SGPEsif it plans to resume the native shader and these are inadlditiots lo the 16 extra trap reg

SPI also shadows the privileged SC register controlling locking of the TRAPSCREEN setuings by a privileged
client.

~ PA_SC_P3D_TRAP_SCREEN_HVLOCK|Disableswritesto P3D(PO)TRAP_SCREEN regs bynon-
DISABLE NON|PRIV_WRITES Wileged clients
PA St ‘HPSDTPTRAP5SCREEN_H HV_LOCR Disables writes to HP3D (Pl) TRAP SCREEN regsregs by

DISABLE NON PRIV WRITES wileged clients.

ATI Ex. 2027

IPR2023-00922

Page 55 of 62

ATI Ex. 2027
IPR2023-00922

Page 56 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,

10-Feb-15 aes 1.0
SPI gets new trapmask bits from SCSPLpcprim bus, 4 bes per quad, and builds tt into a 64 bat mask for the
wavetront, [Pany of the bits ane 1 it means that the Pixel Picker feature is enabled and the pixel represented by the
set bit was detected by the SC us a pixel of interest (POMfor ihe Pixel Picker feature.
A non-acro tripmesk forthe wavefront will cause the SP] te allocate an extra 6 SGPRs (the trap SGPRs) for the
wave. i ihe SPILTRAP_SCREEN_VGPR_MIN register value is larger than normal pixel shader's VGPR
requinements, the SPL chooses the larger allocation [fihe SPILTRAPSCREEN_SGPR_MIN negister value is
Linger than monmal pixel shader SGPR. requirements, the SPI chooses the larger allocation prior to the bump of the
extra 16 trap SCPRs
Next. the SPI sets up ihe wavelront to cunthe pre-shader prior to the nonmal shader by loading the extra necessary
state as follows:

Proemm Coum (PC) © Pre-shaderbase address (PSBA}

(implemps 6, 7} = Pre-shader memory address (PSMA}
(implemps 8. 9} Pre-shader 64 bit pivel-of-interest mask
(impicmps 10,11) = Nonmal pixel shader Progrum Base Address (PBA) for cominuance

Priv = | & pre-shader is a special trap handler in privileged mode that has access to anextmn bG SGPRs and
potentially the indicated additional VGPRs/SRGPRs. Other traps will be blocked until preshader completes.

Additionally the following ts requared Ifa generic tmp newline exists:
TRA © trap base address
TMA € trip memory address
TrapEnable = |

Logical View of
SGPRs for a Wave Trap

Figure 21 — Persistent State Update FIFOs

3.13 Wavefront Lifetime Status Counters
The overall intent of this feature is to:

ATI Ex. 2027

IPR2023-00922

Page 56of 62

ATI Ex. 2027
IPR2023-00922

Page 57 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 57 af G2

« Measure the maximum wavefront lifetime foreach task (up to 21 total including HP3D (LS, Hs, Es.
G5, V5, PS), GFX [CS, LS, HS, ES, GS, VS, PS], CS [Pipe 0-7]) wilha mininum granularity of M24.
OPU eclacks

«Provide a feedback mechanism(intennpl through SOG) if any wavefront lifetime exceeds the maximum
Programmable latency value

Anew plvsical CLA_CNT|I3:0) will be provided to comm SCLES and provide a lower spoed chock to ihe
waverront counter update process.

For cach physical wavefront that can be active in the svsiema a time, storage fora 31 bi
(WF_LIFETIMECNT]S0c)} wave lifetime count, a 1 bu START Mag. ane 1 bit ACTIVE flag will be provided
There will be 40) inslances (10 WavesSIMD * 4 SIMDOVCU) foreach CU inthe system. The wave bype and
source pipeline will be oMained from existing storage inthe current wave tadfer, The counts stored in these
locations will have a sMurate al the thax possible value, The START flag will be used to reset the respective
count to sero on the first update after a wavefront has started. The ACTIVE flag will be used to indicate the
counter should be incremented and that a test against max value and limit value forthe type needs io be done,

The solution will be controlled and monitored based on the following negisters:
Description

WF_LIFETIME_EN Enable forthe Wavelront litetios counter feature.
O CLECNT is disabled from counting
|CLE_CNT is enabled to count

WF_LIFETIME_®&LE_PERIOD3:0] The hardware will add a counter (CLECNT[13:0]) that will
incremcm on per core clock (SCL, period of 1.231) if
WF_LIFETIME_EN == |.

 This register will indicate the nomber of clocks (in units of 1024
SCLES) required for CLECNT13:0] to coat to trigger a
process to increment cach active WFLIFETIMECNT and test
against limit registers.

This counter controls the time unit graialanby used to measure
the lifetime ofcach wavelron. The range of settings willbe ©
(1034 SCLRs) 12 (16.584 SCLES) in units of W024 SCLEs

Based ona SCL. nunning ai SO0MMHs, the ming) ofthe penod
sctlings supponed by this commer is ~1.28u5 bo 192a.

WPF_LIFETIME_LIMIT[#1:0] A320 remdcr slate limal register per pipeline (HP3D. GFX, CS
POo-— PT), 10 in total, This render state register has two feckds:

[21] = EN_WARDS = When sel, indicates thal the warung
mechanism for waverfronts initiated from this ningpipe has boon
enobled, The GPU will generate an interrupt to the host for the
first wavefront ofeach tpe that exceeds the programmable
Maximlifetime value.

[2000] = MAX_CNT = The WF_LIFETIME_CN8T[20:0] wall be
bested against this limit, ifexceaded

«Capture max time for task type in MANSTATUS
® Send interrupt i ENWARN ts set and Whos a5 the first

— eccumence for task type since stans was. last read,
WFLIFETIMESTATUS|31:0] MAXCNT[30:0| -— worst case wave lifetime duratbon since: last

read,

ATI Ex. 2027

IPR2023-00922

Page 57 of 62

ATI Ex. 2027
IPR2023-00922

Page 58 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM,
3-Nov-1610-Feb-15 1.0

thar one inept per wave ype since Last status poll, Cleared
when WF_LIFETIMESTATUS is read.

There will be one instances of thes register for each task (21 total)
HP3D (LS, H5, ES. G5, V5, PS),
GFX (CS, LS, HS, ES, G5, V5, FS),
CS (POT)

Register will capiare the lareest WF_LIFETIMECNT foreach
task bype.

«The first time a wavelront eweceds its limit register
(WE_LIFETIMELIMIT), if the EN_WARWN flag is set an
interrupt will be generated.

* Subsequent interupts for the offending wave hype will be
mask unl the states register has been read. (Hidden staic
per MAX_STATUS register will enable interrupi mask)

The purpose of this registers is te recond the maxiowin nonning
value fora geen waverfront type for each pipe!ring. The weer can
read ihis set of registers to learn ihe maxim monning valucs at
av given time.

This is howthe abowe registers are used:

« Foreach tick of the SCL. if (WFLIFETIMEEN == 1) CLECNT is incremented by|
» Ateach CLR CNT == WF_LIFETIMESAMPLEPERIOD, initiate wave lifetime counts process

Resct CLK_CNT = 0,
For cach wawe

o Ifthe wavefront has START flag == 0 in wave butler
® Zero the count and clear start flag

o Else if ACTIVE flag in wave bulferis sci
© Increment WF_LIFETIMECNTs by I

o fnew WF_LIFETIMECNT > WF_LIFETIMESTATUS.MAXCNT ofit's type's
« Set coresponding WF_LIFETIMESTATUS.MAXCNT = WE_LIFETIMECNT

o If new WF_LIFETIMECNT > WF_LIFETIMELIMIT. MAX_CNT (limi register per type)
«= If 'WE_LIFETIME_STATUS.INTGENERATED &

WF LIFETIMELIMIT.ENWARN
« Grenerate inserrupt for task

* Set hidden WF_LIFETIME STATUS.INT GENERATED = |
« Sei WF_LIFETIMESTATUS(ype) = WF_LIFETIMECNT

End For wave

® Read ofa WF_LIFETIME_STATUS register will set fields MAX _CNT=() and INT_GENERATED=0
« Whena wavefront is created the START flag and ACTIVE flag will be set
« Atthe completonesit ofthe wavefront the active Mag will be cleared, preventing false readings/usage of a

aiale count

4 Performance

CS - desired performance of launching Ithreads per SE when VGPR ane! SGPR load times allow
PS = desired performance of launching 1é threads per SE when VGPR, SGPR, and LDS load times allow
Vertex topes — desired performance of | vertex per clack when VGPR and SGPR load tines allow

ATI Ex. 2027

IPR2023-00922

Page 58 of 62

ATI Ex. 2027
IPR2023-00922

Page 59 of 62

ORIGINATE EDIT DATE DGCUMENT-VER, NUM, PAGE

10-Feb-15 3-Now-16 LO 59 af 62
The SPIs goal will be to efficiently use a single WGPR write port phase to bead the required input VOPR and
saturate the use ofthe wires to the SP
The SPI's goal will be to efficiently use all four phases ofthe single SGPR vote bus to oad the neqpuined impart
SGPR. and saturate the wee of the wires to ihe SQ)

4.1 Barycentric Calculation
There will be 4 quads worth of barvceniric logic (2 per packer) to cnable 16 pixels per clack. Any fully covered
quad pair row should caleulage center'centroid 1in one elk instead of two if both are enabled,

4.2 Parameter Cache Read

Fiend parameterdata for atinbute interpolation from the paruneter cache storage in the SX at a rate of two
primitives per clock, assuming there arc no bank select conflicts between the two primitives, and direet the writing
of hd data to the: LDS.

4.3 GPR Loading
Sustain loading | vertex componen per clock per-SE for VS, GS. ES, HS, and LS fromthe VGT te the SP
VGPERsfor peak vertex rates.

Sustain | CS wavefront issue every 4 clocks (16 threads perclk) when writing < 3 VGPR components and < 17
SGPR dweords. For mulii-SE configs, this can only be achiewed for ordered threadgroups > | wave for async
compute duc to the signaling that must occur between SPI to maintain threadgroup launch order.

Sustain | PS wivetront issuc every 4 clocks (1 from ench packer every § clocks), 16 threads per clk, when writing
<3 VGPER componenis and =< 17 SGPR dwonds.

44 Pixel

Sustain § pixels per clock per packer with one UT and two attributes when there arc no nore than4+ primitives per
pixel vector and cylindrical wrap is disabled and there are mo parameter cache pointer conflicts. Performance
should scale elficiemiy with exch additional interpolant andor GPR load.

4.5 Graphics Balanced Throughput Cases

Figure 22 shows the balanced throughput case of VS. and PS only where a test provides precisely the amount of
dita required to demonstrate the peak performance of the design. This example assumes a config that can provide
4 quads per clk to the SPE with 2 VOPR input basses io load data. Bach WS wave takes $4 clocks to bald and a
miniom of 4 clocks to send through the SPI and into the WGOPRs. Each PS wave takes. a minimum of8 clocks,
but with 2 input busses that is equivabemt to | wave every 4 clocks, [every VS creates exactly 15 PS, the pipe is
perfectly balanced through the SPI into the VGPR.

— 64 clocks

 VGT_SPI_vsvert

SC_SPI_ep t

SPI_SH_input
Puy ! !

4 clocks

ATI Ex. 2027

IPR2023-00922

Page 59 of 62

ATI Ex. 2027
IPR2023-00922

Page 60 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGEé& 10-Feb-15 a-Now-l6 LO 60 of 62
Figure 22 - Performance, Balanced Throughput Case, V5-PS

Figure 23 shows the balanced case when Geometry Shading is enabled, ES.G8.V'S take 64 clocks to build, 4
clocks to issue, cach PS takes 4 clocks, Ifever: ES creaies 1 GS, every GS creates 1 V5, every VS creates 13 PS,
the pape is perfectly balanced through the SPI.

r— 84 clocks
VGT_SPI_vsvert

I

VeT_sPLesvet[a
vetsPlosprim [CE

SC_SPI_ep CO) eT

SPI_SH_input |eee
ud

4 cocks

Figure 23= Performance, Balanced Throughput Case, ES-GS-V5-PS

This illustrates why neuliiple buffers cxast for the types amiving from the WGT. Inthe descnbed peak mxde, with
all ofthese tvpes amiving in parallel, there is a wavefront for 3 different types arming at the same time. The SPI
can only send the wavefront to the GPR one at atime, Ifthe SPI was single buffered, the other two that didn win
first woukd have to stall the WOT inputs undil the first was issued to the SQ). The SPI does indeed have multiple
buffers to prevent this botikeneck from happening.

Figure 24 shows the balanced throughpad case for Tessellation along with Geometry shxting. LS, HS, ES. G5,
V5, PS - 3 wave pes coming from the VOT every 4 clocks.

ATI Ex. 2027

IPR2023-00922

Page 60 of 62

ATI Ex. 2027
IPR2023-00922

Page 61 of 62

 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE
10-Feb-15 3-Now-16 LO 61 of 62

— 64 clocks
VGT_SPI_vsvert

VT_SPL_osvertiii)
versplosprim|
|

VGT_SPI_Isvert | |
VGT_SPI_hsvertSE
SC_SPI_ep IUELTIEHIATL coOOEETOTTTT

C1|EEE|NEE
4 cocks

SPI_SH_input

Figure 24 = Performance, Balanced Throughput Case, L5-HS-ES-G5-V5-P§

4.6 Performance Counters

The list of SPL perfcounter selects 15 defined in ...docdeagn'bocks/sp/penicountsls

4.6.1 Performance Counter Binning
SPLPERFCOUNTER_BINS.*_MIN/MAX define the minge for which an sssocintedd counter should
increment. The BIN® at the end of a pericount select determines which BIN setting that panicular count looks
al, and the range of BIN fer cach count is given in spiblk. For instance, if ome of the perfooant selects is sci to
SPIL_PTR_BUFF_PRIM_BINO, BINOMIN is set to 0, and BING_MAX is set to 4, then the count should
mcroment forench var? thal coniuns between | and 5 primitives.

5 Clock Gating
The SPI acts as the OGTS (shader core) clock paling master confroller. When the SPI starts receiving newshader
work for processing, the clock gate state machine begins the process of tuming on the ALU clocks. The SPI must
sec “allclocks_on” go active from the clock gate SMbefore launching wavelronts.

The SPI also includes CGTT medium grain clock gating that allows the SPI clocks to tum offwhen the block is
idle,

ATI Ex. 2027

IPR2023-00922

Page 61 of 62

ATI Ex. 2027
IPR2023-00922

Page 62 of 62

ORIGINATE EDIT GATE DOCUMENT-VER. NUM,

53-Nov-16. Lo10-Feb-15

‘ogtt_clk_cirl_regf3t-a)

SPI_S Cleek Gating

ape Dies an aparangice. Trot FOaed heir contender, (reg.
ane - aide Olt porter abh_grbr_mtertece etarce

Cerespspeereesahe eb_petet_tticeees

Bere dl he aagel

ege_clk_ctrl_regfat-0] 1se

ATI Ex. 2027

IPR2023-00922

Page 62 of 62

