AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
‘ 10-Feb-15 3-Nov-16 1.0 1of 62
cd Author: Randy Ramsey
ISSUED TO- COPY NO,

GFX9 SPI Specification

Rev 1.0 - Last Edit: 3-Nov-16

THIS DOCUMENT CONTAINS |

INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF AMD THROUGH
UNLICENSED USE OR UNAUTHORIZED DISCLOSURE.

1. Preserve this document’s integrity:

= Do not reproduce any portions of it.

= Do not separate any pages from this cover.

2. This document is issued to you alone. Do not transfer it to or share it with another person, even within your

organization,

3. Store this document in a locked cabinet accessible only by authorized users. Do not leave it unattended.

4. When you no longer need this document, return it to AMD. Please do not discard it.

“Cogyrght 2012, Advanced Mcero Devices, Inc. ("AMD™). AF rights reserved. This work contans confidential, propritary to the reader nfarmation and trade
secrets of AMD. No part of this document may be used, reproduced, or transmitted & any form or iy any means without the 2rior written permission of AMD.~

AMD, the AMD Arrow Logo and comanations thereof are trademarks of Advanced Mcro Deviees, ne. PCle & a registered trademark of POILSIG, HOMI s a

trademark of HOMI Licensing, LLC.

AMD (NYSE: AMD) s a semmconductor design innovator wading the next e of vwvid digital experences with its ground-breaking AMD Fusion Accelerated
Processing Units (APU). AMD's graphics and computing technologios power 3 varety of devices including PCs, game consoles and the powerful compuners that
drive the Internet and businesses, For more information, visit httay//www amd.com,

ATI Ex. 2027
IPR2023-00922
Page 1 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, MUM, PAGE
‘ 10-Feb-15 3-Nov-16 1.0 2 of 62
Revision History
Date Revision Description

ATI Ex. 2027
IPR2023-00922
Page 2 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM,

3-MNov-16

10-Feb-15 1.0

PAGE
3 of 62

Table of Contents
1 INTRODUCTION

11 I PN R B i e P o ot i e AR i i e G iy

1.2 DeFINMONS

1.22 Terminolagy

1.3 Tow LEviL DESCREFTION .,

131 LRI Chip f.eu'eJ'Dm‘u F.'uw Dragrum
132 Chip Level Dhagrom e
133 SPI Rlnck Diagram ..

AR L

2 FEATURES / FUNCTIONALITY

21 S1aGE AsD ORGANZE Diata FoR SHADER LAUNCH....
2.2 CokrUTE Sanen [CS)

221 Resource Probing iy g e

222 Threedgrowp Ordering ... il vt e e B

223 Threedgrous Hoalting nm:\‘ Dfmrd'lng
224 Quiedre Stodus...
225 Umordered .Dlsputches
226 Stote Forwording to 504G ..

227 First Wave of DIspotol ...
228 Compute Shoder index Terms ...

2.3 VGET-5P1 "ViRT™ SHADERS ...
2.3.1 E5, G5, V5 chrmlng
2.3.2 Gn-chip G5 .. g
233 Tesselfgion i dni sk "
2.3.4 Distribwted Temﬂuhﬂ-rr a7 e

2341 Work Crestion D!s:rlpl:lm'l e e i o e i

2342 Offchip LOSID Changes.

2343 Ofichip LDS Dealtocation Changes ...
2.4 PigEL SHADER [PS) ...

24.1 Pixel Data F.I'nnr

2411 Calculate Per-Pixed L Harﬂ:grﬂn: I::onn:llrum-s.
24132 Pull Model ...

24.2 Scole Hes-u.l'uﬂm Based on Screen men f? 125},
2421 Visuslizing the Scaling

2421 Impacts 10 BCY BQUATIONS . ricmimssis msnms sssmssbsms samsssiese

3 ENDOF SPEC UPDATES, BEYOND THIS POINT INFO MAY BE OUT OF DATE

i1l Support for 16 pixels perSH. ...

312 Uégue Sample Pasitions per Pleel ...
3.2 DS PARAMETER DATA LOADNNG FOR PIELS................

321 Crgerization of Daba in the Porameter Cache.
322 VS-PS Remapping

223 Flat Shoding .
224 ants,m'teﬂutmde

225 PARAM GEN

326 Support D:he,per Parometer D:n:he nnu‘ Avaidd Du,prrm:e Dnm

3261 Performance ..

3.3 PoEL SHADER VGEPR INITIALIZATION

34 T L I CU OO i oo s o o L et e e s A o R

ATI Ex. 2027
IPR2023-00922
Page 3 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM,

3-MNov-16

10-Feb-15 1.0

PAGE
4ofb2

ComBINED DaTa FLOW .,
3.5 RESOURCE ALLOCATION
3.6.1 U and SJM'DAHIgﬂmmI! ia
i6ll SIMD Assignment Tor Work D-rstrlbulmrl -ind Inpul Baﬂﬂwll‘.ﬂh T
262 GPR Management,.. A i
FE3 LS MONGGEMEIE oo rormessssisrssssressstssmssrerasasssers s ssanes
6.4 L BRI ..t b miem o i e
385 Seratek ...,
166 Barrier......
267 Benlky O5 Threadgroups ...
31568

3681 Late Vs Allacation .
169 Allgcation Pr'mn-:y

Pasition Buffer and Pnra-mmr cm‘::.-

3610 Vintwelirotion of Enmpute u.mr Masis

3.6.11 Resource Reservalions 50

3612 Multiplier for Resource LIMis 51

171 Merintoiming Eﬂs nrn'er 53

272 Expovt Grasting... T
38 PERSISTENT STATE 54
39 PaATAL FLUsH EVENTS. -...54
310 Wave/EveNT ORDERING. 55
3.11 EvENT COLLECTION.. i 55
312 vaimnmu'm,ﬁ.l:n'rmﬁ le H:u:n{mn Diausmnpzmth Mum:l 55
3,13 WAVEFRDONT LIFETIME STATUS COUNTERS .. -..56
4 PERFORMAMNCE 58
4.1 BapvrCENTRIC CALCULATION 59
&2 PARAMETER CACHE READ ..o cceciiins 12 8
4.3 GPRLoaDess ... 59
4.4 Poee... i -
a5 GRARHCS H.u.m::l:- THHJJII.MUI’ Cases . 59
a6 PERFORMANCE COUMTERS = ..Bl

4.6.1 Performance Counter Blnrning &1
5 CLOCK GATING (51

ATI Ex. 2027

IPR2023-00922

Page 4 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 5 of 62

Table ufi‘lpum
Figure 1 = SP1 Chip Level Data Flow Diagram... R s e R e
Figuare 2 — Chip Level Dingram ... A a9
Figure 3 - Taplmcl Cnm:nmu Block Imgnm
Figure 3 — C5 Dala Flncm . FE 12
F:gyn.ﬁ—amn:(}}nwm Blucthla,gruh R
Figure 7 = U5 Threadgroup Orrdering .. ik s i b e 14
Figure & — C5 Thread Couni Increment Emmph: :
Figure % — "Verex™ Data Flow VGT-8PI.
Figure 10 - VGT ES, G5, VS Verlex 11|pqu: "
Figure 11 - L5 H5 ES. G5 VS Venex Inpul..
Figure 12 — Pixel Input Data ., e et et 24
Figure 13 - Color Expon Bus ﬁmulmlmn IF:
Figure 14 — Color Expont Bus Arbitration, 2RB ... sisiiens b
Figure 15 - Color Expon Bus Arbitration, 4RB ..
Figure 16 - Color Expon Bus Arbitraion, 2RE«,
Figare 17 - LIS Logical Layvout ..
Figure 18 — Parameter Cache Dmﬂrgmmnn Sy
Figure 19 - Combined Data Flow ...
F:gmn.m—l‘-‘emummﬁmmUpdelFOs i
Figure 21 - Persistent State Update FIFOs . 56
Figure 22 - Performance, H.ﬂl;.m:thhmughpqu Cm "ul'S 'F'S
Figure 23 - Performance, Balanced Throughput Case, ES-GS- VSPS.. ; it ;s
Figure 24 - Performance, Balanced Throughpat Case. L5-HS- E54J5~\'5~P5 LS S S ST |||

ATI Ex. 2027
IPR2023-00922
Page 5 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM,

3-MNov-16

10-Feb-15 1.0

PAGE
& of 62

ul

Introduction

1.1 Open Issues

1.2 Definitions

1.2.1 Acronyms

SP1 - Shader Processor Inpin

S - Scan Comverler

S0} - Bequencer

SO = Sequencer Cache

S0G = 30 Global Block, mstanced in 5P

5X - Shader Export

SP - Shader Processor

CP = Command Processor

CPG — Command Processar, Graphics

CPC = Command Processor, Compiuate

5E = Shader Enging

SH - Shader Armay

CU = Compiste Unit

SIMD - Single Instruction Mubiple Data anit in the shader processor (SP),
UL = Upper Lelt

'R - Upper Right

LL - Lower Lefi

LR - Lower Right

VPR — Vector General Purpose Register in the 5P

SGPR - Scalar General Purpose Register inthe S0

C5 = Compute shader

LS — AP1 ¥erlex shader stage when doing tessellation. writes 1o LD¥S
HS — Hull shesder siage of tessellation

V5= Verex shader, conkd be nommal venices, limal pass of 2 Geometry Shader, or donwin shader,
G5 - Geometry Shader, processes primitives,

ES - Expont Shader, first venex pass of a Geomsetry Shader that processes vertices.
PS ~ Pixel Shader, processes pixcls

VSR ~Verex Inpul Saging Register, hobkls inpat data for vertex threads.,
PSR —Pixel Input Staging Register, holds input data for pisel threads.
LDS ~ Local Diaia Store

s¢_id = Shader Engine Ientification NMumber

sh_id — Shader Amay ldedification Number

MEAA - Multi-zample Anti-Alixsing

EQAA = Enfance Qualiy Anti-Aliasing

This decument describes the requirements, funcliomality, and farget performance of the Shader Processor Inpuat
(2P1) block.

ATI Ex. 2027
IPR2023-00922
Page 6 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 7 of 62

1.2.2 Terminology
Event — an event is a special token sent throwgh (he graphics pipeling which can be uwsed to enforce
syichronization, Nush caches, and repoer status back to the CP. All blocks pipeline these tokens and keep them
ordered with other graphics divia,
Thread: one instance of a shader program being executed on a wavefront. Each thread has its own data which
s unigue from amy other thread.
Wavefromt: This i the basic unil of work, There are 64 thresds per wanvelront, 1 is 2 group of threads Dl can
be exccuted simuliancously on a SIMD.
Threadgroup, Subgroap: Group of threads that mey span several wavelfronis, AN threads are gnarantecd 1o
run on the same CU, This allows for shared CU resources such as e Local Data Siwre (LDS) amd
synchronization resources aeross all threads.
Tessellation Engine: A VGT module that implemends DX tessellation Nuctionality .
Pixel Quad: A 2x2 pixel region,
Pisel Center: Current paxel’s screen coondinaies. gven as PIX_X. 5 PIX_Y .5
Pixel Centroid: Cwrnent pixel’s centroid in screen coordinates, defined as the covered sample location closes! 1o
pixel center, I all samples of a pixel are hit, center will be used for centroid even if center is ot one of the
current sample locations,
Pixel Sample: Location of the sample 1D of the cument ileration when unning af sample frequeency.
Faceidness: The PA determined face fag indicating front or back facing.
Param_gen: Avtomatically generated 5T 1exiure coordinaes. tvpically used with poinis.
SIMD: Single Instruction Multiple Data anit o the shader processor (5P}
Shader Array: A combination of blocks sepamaie and unique for shader processing, including a shader corne
consisting of Conpule Unils
new_vector aka fpos, first_prim_of_shet: Pammeter cache syne token received from the 5C for pixels and
wsed to make sure the SP1 waits for VS 0 finish exporting parameter data before pixels san imving o read i
Helper phuel: Ay non-hit pixel being processed as a part of a quad with other hif pisels.

1.3 Top Level Description

The mein parpese of the 5P i o manage shader respurces and provide shader inpat data to the GPRs and
wavelronts 1w the 50, [accumalates “venex” ivpe shader inpil data from the VIOT (VS, G5, ES, WS, LS} imo
winvelmonts. 1 receives compare shader (C5) data and state from the CPG and CPC on csdata inderfaces.
Resprnces required o process wavelfronts and CUSIMD assignmem in the shader arry (SH) are managed by the
SPLin ters of allocation and de-albocation. SPI passes doti through for the VOT vens and prines. For HS and
G5, 5P1 unrolls threadgroups and subgroups imo wavelronts. For C5, 5P1 unrolls theeadgroops inte wanvelronts
and gencrates an index per thread based on the threadgronp size. Pixel quad data delivered from ihe SC is
accumulamed into wavefroms, The SPI processes this data, per pixel, 10 inserpolate and produce barveenlric
gradicnd data (11} or screen X, Y, andlor primitive faceness data. The SP loads 1) data into WGPR=s and
coordinates moving primitnve atiribute data from the pammcicr caches into a CU Local Daia Store (LDS) for the
prisel shader o use For altfibute iMerpolytion, SP1 syichroniaes the venex shader atnibuate expons with the pivel
shader reading those anrsbwes, guaraiceing that attibate data kas been wilten 10 the paraneier cache belore
allowing PS o nead.

1.3.1 5Pl Chip Level Data Flow Diagram
Figure | shows the blocks and major data paths dirccily and functionally asscciated with the SP1

Inputs froan the VIGT: subgroups, waves, evemts, and venex inpul dada for the data tvpes V5, G5, ES, HS. LS,
Inputs from the SC: pisel data including coverage, primitive informatien and events,

From the CPG: compuie siale, events, threadgronps for GFX,

From the CPC: compue state, evems, threadgroups for asy ne compaie.

Shader input data imo the 55 GPRs and wavelronl inpat to the S0,

V& positien and parameter cache datn writes to the 5X and PC,

Paraneter cache read and LDE wiile conlrols

ATI Ex. 2027
IPR2023-00922
Page 7 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIM, PAGE
‘ 10-Feb-15 3-Nov-16 1.0 8 of 62
Primitive
Connectivity
Verlll———"%/ PA |«
Primitives Position
L Data
LS, HS, SC J
ES, GE VS ~§— -
R— . Input Data
| cl?c | ICPG Pixel Quads With
cs pii e0on DX11CS Cwirage & Prim info
:
SPI Param Cache Read/
LDS write cntl
GPR input PC
Wavefront i
* LDS write Data
. > |
SQ == SP,LDS -
| VS Qutputs SX
Position, Param Cache

Figure 1 = 5P1 Chip Level Data Flow Diagram

Referencing Figure 1, for doing just vertes amd pisel shading, venex and primitmve (ype processing are assoctated
with the green colaned lines. The VGT matially starts ofT sending vertex indices inthe form of vsvens 1o the 5P

and at the same time sending the primitive connectivity 1o the PA identifving how those vertices will get baili

bk imio primitives. The ST bulTers up e vavens into o wavelnont and once it bas received a Tull wavefront of

dura the wave tansfer from the VGT will irigger the SP1 to nelesse the data to the S0 and feed asseciated data

it the GPRs. When the vertex shader stars processing position data, typically it will send out position early 1o
the position buffers in the 38X which then albows the PA 1o read that position data and stan buoilding the primitives

angd producing those prinutves which go trowgh the Scan Converter (5C) o produce pisels. Onee the 5C has

primatives, it will stam producing pisels which ane fed 1o the 5PL Once the 5P1 kas a full winefront of pisels, it
will try and send associated data into the GPRs with the wavelmom 1o the 0. Reads are made 1o copy parameter
drea ot of the parameter coche and write it into an 5P determined mnge of LDS in o panicular CUL

ATI Ex. 2027
IPR2023-00922
Page 8 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 9 of 62

1.3.2 Chip Level Diagram
Figure 2 shows the SPI block and its associpied relationship io chip level iner<connections. Here, the physical
pariitioning of barve legic is shown by the BCI blocks. For the purpese of thas document, the BCH logic will be
considered as part of the logical P design

Upto 16
Compute =
Wmils

Shader
Engine

I

I

1

I

|

Upte 16 |

Compule 1
Units et

|

I

|

I

I

i

I

|

Figure 2 = Chip Level Diagram

ATI Ex. 2027
IPR2023-00922
Page 9 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 10 of 62

1.3.3 SPI Block Diagram

i

' :
Param 2
I: % =l 1 T
4 | f

FP_SP jpc_bals

S1_SPD-ng_podeslioc
PSP sore

A b o4 4
L X

PSP ighaten{DT)
EP_EFwGs)_calT)_Srahin_ Dol

EPilin

BY_ SN0 vwijdons
=1 _SPD-r_saigtors

g1
i
i
:
;
|

A A
S .

E_CPC_ v _sies
-~ -‘| " CIC_SM_wisve_iive

w
3

FP_CPT goa ey dons | SR
EP1 CPC o e g

L

&F0_BF_osdataihT)
SP_CPC_igndatl-T)
SP_OP0_woa partial §¥0-T)

Resource Wave L CRO_SP_cecai | :
Allacation Controllers SP_CPU_ e coemeat ool g partal] | CPG

Y

CPC |

L]

l""\- WET_SN_ e

VOT 5P " vl
P VGT " done

¥

ot

| 01 _poit 1)

", S [noa 5P _chotadT), 1) sC_RC oy | SG
BCI

Figure 3 = Top Level Connectivity Block Diagram

ATI Ex. 2027
IPR2023-00922
Page 10 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE
‘ 10-Feb-15 3-Nov-16 1.0 11 0f 62

Figure 4 — Block Diagram
Diagram copied Mrom alap/gloddocidesigniblocksspi/alx9_SP1_Block _Diagrin.vsd
2 Features / Functionality

2.1 Stage And Organize Data for Shader Launch
The SPI logical block stapes and organizes efTicient loading of shader input daa to the VectorScalar General
Purpose Registers (WVGPR/SGPR) and Local Data Store (LDS) in the Skader Army anmd manages resources
respuned to mn those shader programs, The VGT will have several v pes of inpuls 1o te SP1 eomal venices that
will ereate posttions and pammeters for msterization and pisel processing (V5. which could be nomil vensces or
the final pass of a Geometry Shader), Geometry Shader (G5) primitives, vertices that only expon to memory (ES,
which is the first venex pass of a Geomseiry Shader), ventices acting as (e first stage of 1essellation processing
(L5), and patch data associated with the Holl Shader (HS). The V5. GS. ES, HS. and LS are ofien generalized into
the categony of "verts” when discussing data moving through the 5P The Scan Conventer (SC) delivers pisael
quads 1o the SPI for pixel shading, The CPG block delivers DX11 Compause threadgroups 1o the SP1 for Lo hing
compule shaders. The CPC delivers Asyne Compate threadgroups (o the SPI fer laumching compate shaders.

2.2 Compute Shader [C5)

As shown in Figure 1, Compate Shader input data can come from either the CPG IGFX-CS) or the CPC (Async
C5) C8 waves go through the same resource arbitnition and allocation as all ether supported SPLwavelfront types.

ATI Ex. 2027
IPR2023-00922
Page 11 of 62

."l AMD

ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGE
10-Feb-15 3-Nov-16 1.0 12 of 62

D11 requires support for compute shaders, and the 5P plvs 2 role in getting compule shaders inio the shader
army, Both the CPG and CPC deliver threadgroups to the SPL alomg with persistent stae data that wells the SP1
how 1o process those threadgroups, The SPI s responsible for unrolling cach threadgroap ingo the number of
wavelronts recuuired o process all of the theeads for the theeadgroup,

CS Input

'

C5 Input Resource
Controller == Allocation

||
: ,

Wave SGPR VGPR
Write Cntl Write Write

oo

MewWave Cmd SGPR Data VGPR Data

Fipure 5 = C5 Data Flaw

ATI Ex. 2027

IPR2023-00922

Page 12 of 62

&

ORIGINATE EDIT DATE DOCUMENT-VER, NUM.
10-Feb-15 8-Hov-16

Figure & — Asyne Compute Block Diagram

2.2.1 Resource Probing

I there are wore tean 4 Asyne Compule Pipes present in o conligusation {mone than | compute ME) then pairs of
compule wave contrmollers will share a single probe to Resource Alloc {RA) for allocming resources. Each of the
pair takes alicriating turms wsing the probe 1o request resources, This probing opponunity will allemate between
the two pipelines once every Four clocks unlil & probing pipeling has a work group it Ms and is selected by RA.
Once a pipeline is sebected, it will allocse resources for all waves inits threadgroup before releasing the probe. I
only one pipe of a pair has & threadgroup ready o allocate, it will have exclisive use of the probe for requesting
reaouroes and can contime requesting on every four clock cvele.

Each U5 controller should check s tg_per cw limai, wave_per_sh limil, scratch limit, and crwlker space before
recpuesting resources so i decsn’t tike cveles away from the other cs_ctl shaning o comman probe.

2.2.2 Threadgroup Ordering
Ordering of threadgroups for a given asyne compule pipe needs io be maintained across all SE. The Dispaich
Controller {DC) assigns threadgroups roand-robin to all SE in the chip, and the 8Pls from cach of those SE must
cooperte 10 enseng (il a threadgroup Mrom a given SE i nol albowed 1o probe until ihe thread group befong il has
won allecation. The SPI needs to wail until the first wave of the previous group allocates, bud docs nol necd 1o
wail for all waves of the previous threadgroup.
The Dispaich Controller will send two signals with each threadgroup, lirst_group and kst _group o el the SP
when each dispaich stants and finishes. 1T a group is marked as firsl_group, the C8 controller can stan nequesting
immediately withoul waiting on any previous group, I a iask is pre-cmplod and resianied, the first threadgroup of

ATI Ex. 2027
IPR2023-00922
Page 13 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGE

10-Feb-15 3-Nov-16 1.0 14 of 62

the restan should be marked as first_group even if i is mod the first of the dispatch, Once that Drst_groap allocaics,
the allocating controller sends a ig_alloc pubse 1o the next SPL in the dispatch sequence so that it can stan
respuesting for its group. For allacating growps nuarked as list_groop, no 1g_alloc pulss is sem. This scheme avoids
amy problems that can arise from an implicit erdering scheme where the DC and the SPI both independently
marage threadgroup ordering, First_groups can be seni o any SPIL regandless of where the previous group wis
sent, and last_groups won't creale any left-over status in the 5P Power gating and soft_neset issues are also
avoided since no duplicate statns needs to be kept in svne between DC and SPI, which are physically in separaie
tile=s

5P also supports a mode where a DISPATCH_INITIATOR write clears the baton for that asyne compute pipe
such that the last_1g from the dispaich controller is not mecessany. This is the default behavior for SPL but it can
be disabled by setting SPICONFIG CNTL_1LBATON RESET DISABLE 1o 1.

Dinpach
Crir O
il e T

Figure 7— 5 Threadgroup Ordering

The compute controllers also suppor disabling of entirg SH Tor a given pipe using the
COMPUTE_STATIC_THREAD MOGMT register. This feature is also known as “steening”. and albows a dispaich
1 be sent only (o a subset of the possible SH in a given config. The DC will shadow CUTEN settings and only
send threadgroups o SP1with at least one CU cmbled for the dispatch. When passing/receiving tg_alloe, ench
5P1 needs 1o check its own CU_EN settings. IF the receiving 5P1 has a CU_EN of @ then it should pass the token
along to the next SP1. This passing of the weken through disabled SPI adds extra time between threadgroups
staning, The ADRC will optimize for the case where only a single SH is cuabled for a dispatch by marking every
threadgroup senl o that single SH as both Nirst and st of group. This way o oxdenng lokens ane passed by the
5P1 and the single enabled 5H is allowed to lunch threadgroups as st as possible.

2.2.3 Threadgroup Halting and Discarding
The C5 controller will also respond o halt sagnaling o accomplish precise lunch pre-emption Upon baing
commandad 1o halt by the CPC, the controllzr will findish out any wavefronts from panially staned work groups
and then stall any subsequent imffic from that pipe

CLIENT TARGET halt req 1 IT sserted the receiving hliock must hall the production ol
eompuie work al 8 well-defined pipeline locaison. Afber Baliing,
1 e Feceaver il Feliifm a!‘ﬂ!l_q‘k

I discard is then requested. any ether entrics in the inpul Gfo will be popped and discarded before signaling
buck to the grid dispatcher the SP1 has prepared bo switche A discard_roq will alway s happen within a
halt_reqhaki_sck window, The SPImust be halied before it can be tobd o discand

ATI Ex. 2027
IPR2023-00922
Page 14 of 62

&

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
10-Feb-15 3-Nov-16 1.0 15 of 62

CLIENT TARGET dascard neg I IT asserted the receiving block discand any pencling eompuie work
Thal bas sk vl b allogalad shader feasifoes.

A chent showld only assor thes when both
CLIENT TARGET halt reqand TARGET CLIENT hall ack
are assseried

The C5 coaroller will drive a1 allocared sigral o the CP notifying the DC when a taeadgronp allocates, This is
needed so the DO can trock the exact munber of growps that Bonch versus thoss that are discarded afer a hali,

2.24 Queue Status
Each C5 commaller nmimaing a coun of active wanes for all B quenes e can drive that pipe. SPI provades that
slatus through GRBM reads using several register decodes. One register, SPI_CS0 WF_ACTIVE_STATUS.
containg a single ACTIVE bit for cach quene of each pipe of a given ME, SP1 CS0 WF ACTIVE STATUS is
incdexed by GREMME 1D, SP1_CSOQWF_ACTIVE_COUNT_{0-71 COUNT provides the actiml nuber of
winvefmonts thal are in Might for a specific quene. SP1_CS0 WF ACTIVE _COUNT _{0-7] EVENTS provides the
aciual munber of cvems tha are in Might for a specilic queee. 3P1_CS0 WF ACTIVE COUNT is indexed by
GREMME_ID and GREM PIPE 1D

2.2.5 Unordered Dispatches
DC and SPLalso support an Unerdered Dispatch made using the ORDER_MODE field of the
DISPATCH_INITIATOR. When lunching an Unordered dispatch. the Dispatch Comroller will send every
threadgroup marked with bath Nirstlast_group. This allows the 5P in each 5H 1o launch threadgroups
independently without passing or expecting the order baton,
Unordered mode abso changes the way SP1 responds w halt requests. In the ordered mode, 3P e balt on any
threadgroup boundary and retarm halil_sck with threadgroups stll pending in its input fifo. In the unondered mode.
SP1 will allocaie all threadgroups that have been sent from the DC before reteming halt_ack.

2.2.6 State Forwarding to SQG

All state tmaffic o cach compute pipe necds 1o be passed to the 500 for logging. State writes are senl from the
oulpuls of creditdebit fifos with arbitmation and backpressure o ensure that only 1 controeller sends per clock,

2.2.7 First Wave of Dispatch
SPI suppons S20QUS0C volatile cache deallocation control by marking the first threadgroup of a dispatch that is
sent o each CU and S0C (group of CL. The scorchoard logic used 1o tmck when thseadgroups are senl 1o
CLS0C needs 1o be reset al the starl of each dispatch, so each C8 wave controller needs to provide thas
informeation. The C5 wave controller will ignal “first wave of dispatch™ 1o RA for the first_wave request of the
first threadgroup afler each DISPATCH_INITIATOR
SPI is aware of 50} to SOC mapping. both for this invalidate volatile feature as well as CU busy signaling for clk=
gaic control. The 3P s ifdeled to handle both different numbers of CU (GPLU_ GC NUM _CLPER_SH) and
different numbers of CU-per-80C (GPU GC MAX 3 CLUPER_S0C).

2.2.8 Compute Shader Index Terms

For C5, the SP1can load up 1o 3 index terms as input imo the VGPR, This s a | o 3-Dimersional incrementing
imlex that represends the relative 1D of the theend within ils thresdgroop known as Thread IDInGroop.
COMPUTE_PGM RSRC2 TIDNG COMP_CNT is used to contral the number of compoencnis writien by the SPL
Here is a simple example of how the SP1would generaie the ThreadIDInGrroup across the wavelronts with
incrementing 3 indices.

For a threadgronp with dimension X=3, ¥=16, 2=1, the SP1 would creaie 2 wavelronis 1o process the %6 valid
thrgieds (3% 16* 20, Sequentindly, the thread input values would look like this where the X increments first and
wraps back (o zero, Al cach wrap point, the Y tenn would incremsent all the way up o the Z 1erm incrementing.

ATI Ex. 2027
IPR2023-00922
Page 15 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER. NLUM, PAGE
‘ 10-Feb-15 3-Nov-16 1.0 16 of 62
Theeadlh (XY .2} = 000
Thread| = 100
Thread2 = 200
Threadd = 0,10
Thread®s = 2.15.1
16 threads wide and 4 clocks deep counts demonsisated in Figure ¥,
ooo [1no |zoo legs liae 200 [ozo [ize 220 losn |1ae [230 [oao | a0 |200 |ose
[50 L1 160 260 1,70 1,70 270 081 150 280 940 1540 290 oion | 1000
2000 | k110 | LERO | 2000) 0020 | L1230 | LIX0 | A0 | I3 ! LIF0 | 140 | 1140 | 31440 | oRk0 | LIRS | 2150
ki1 (1N 21k 1 01l 1,1.1 21,1 k21 (A | E 031 131 251 4.1 14,1 241 0.5.1
(AR &350 b, | 160 24,1 7.1 [l A o LE! K1 1 [N = odel | .00
200 | el | RELE 2000 | o002l | Lixd [RTRD | ockd D | ARG | EZ0RD [oddd | B4 | X140 § adsl | LISE) 2181
wrnk [wwew | macew | wwew | oweoew | waes | oweocw | soeew | woex |owex | mwew |owseew | wooew | owooes | weex | s
LOCK LOLX LY 0L NN MO LOLK LOLK AL ALK OAOCK XOOLK LOLK AT ALY IO
Figure & = C5 Thread Count Increment Example
2.3 VGT-SP1"Vert” Shaders
The SPI can receive one thread per clock Trom the WOT for cach of LS, HS, ES, G5, and VS, The LS, ES, and
V5 imicrimces arc all 128 bits wide, G5 is 87 bits wide, and HS is 43 bits. The SP1 takes a serial stream of up 1o 64
thireads from the VG T (one winvefon) and sccwmulkates it into four paralle] lines in the Venex Saging Register
(VERD, masching the VGPR write format and allowing the SPLie minimize the VGPR inpul cveles lor vernex data,
The mderdace between the 5P and the VGPRS is 16 vens # | component wide and the 5P is always trving 1o
write 16 threads per cyele into the GPRs. The SPI arbitrmtes on 4 clock oveles so every time a pamicular type gets
1y write inko the VGPRS it really wants o write 64 thresds, 1691 a time, over 4 cycles, I SP1iried 1o wrile
immedintely 10 the VGPRs every time the VGT coome inwith | serial thread, the other 63 threads of the 4 clock
cvicle would be wasted.
Figure 9 shows the serial stream from the VGT being packed into this 16 wide over 4 clock wanvefront.
| o -
| 1 |
7| [af1[als]|[a]s]a]7][a]a]n]n]|[z]n]u]s
; .'IE. l?. 'I!. ‘I.E- ib:l !-1. = !.‘ll e !ﬁ iﬂ -2:!'. - - ‘RI.M
j (23 %@ % 7 m @] 0a 0a usle
(81| (4843205 | 5283 84 58] u:mum| o o 82 e
0
{83 |
Figure 9 — “¥Yertex™ Data Flow VGT-5F1
ATI Ex. 2027

IPR2023-00922
Page 16 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 17 of 62

2.3.1 ES, G5, VS Processing
In GFXY the change was made o combine ES and GS processing inlo a singhe shader stage so there is mo peed io
symchronize ES-done 1o GE-stan, There is also no need For SPI o pass parcod CU inforngstion from ES 1o GS
groups like was necessany for onchip=05 processing in previous Bamilies, The synchronication of G5 o V5
processing is handled owmside of the SPI(VGT waits on gecount_done from G5 shader belfore generating VS), IT
G5 s passing data 1o V5 uwsing onchip LIS (onchip-GS) then SP must pass subgroup informwaticn from the
producing G o the consuming VS subgroup,

Each venex controller nans independently, with the only interaction being the athitration fer writes 10 a panicular
VER, wniil wavelrens request for resource allocation, There ks only one copy of VSR memery composed of
maltiple banks which bald (he different components. There is a simple prionty arbitration here 1o make sure there
are mo data collisions when muliiple comrollers need w0 write 10 the same memory banks, The pricrity order isa
fixed lowesi-io-highest of LS, HS, ES, G%, V5, Space for multiple wavelronts exists for each pvpse in the SPI
which allows the SP1 o stan copying one wavelront while the VGT stans sending the next wavelmont,

Once a full wavefront of veniex indices are written into ihe YSE and ihe assectated wave irnsfer from the VGT
has oecurred 1o 1ot the SPI know it ks ok o issee that wavelront. the Venes Wave Contrellers will iry 1o allocaie
the resources that the shader needs to exccute in the shader complex. Inthe case of L5/HS and ES/GS groups,
SP1 waits wdil all transfers of all waves of the group (L3-vertHS-ven or ES-vent'GE-prim) hiwe been reccived
before trving bo lwmeh the group. Thas means (e VER must be able 10 bold an entire group®s worth of data, up 1o
o ma of 4 wavelronts, for epch of these group tvpes. 1T the wave/group wins resources allocation, the wave
control information (resouree bases/sizes, siaie_id, pipe_id, eic) is senl to the shader input write controllers to load
the warvefrond 1o the Shader Arnny

Vertex Input from VGT
| [

wave viert
Vertax -))) -
Controller | | dataiwe VSR Write VSR | VSR | VSR | vER
ES GE VS stall |Arbitration _ x | v |z | w
VEI_ready
Y '
Wave |
ESIGS, Adlocation
28 1vE | l 1
o . * Y

Wave Write |SGPR Write | WGPR Write
v '

NewWave Cmd ~ SGPR Data VGPR Data

Figmre 10 = VGT ES, G5, VS Vertex Inpai

ATI Ex. 2027
IPR2023-00922
Page 17 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 18 of 62

2.3.2 On-chip GS
Onchip G5 mode allows the use of onchip LIS space 1o slore the ESGS and GEWE ring bullers, elimirating the
tradfic fo offchip menmoery that is necessary for offchip modes, Typically scenanios with small amplification will
benclin ihe most from this approach, Prior olfchip ES/GS modes used two offclap ring balTers (ol wrapped
individually. and were of a fixed size and base for the entire applicaticn. In the pew combined ES/GS shader the
passing of data from ES 10 GS is always done using enchip LDS space. Onchip versus offchip GS now nefers o
how doda ks being passed from the GS slage to the V3 stage,

The VIGT pantitions the ES/GS work into smaller chunks calbed subgroups. Each ES/GS subgroup gets allocmed
v Compeie Uit 0CLD by the SP1and for onchip GS Ul subgroap stavs onihe sanse CU For ihe durtion of iis
lifetime (which is ES/G5WE). Onchip GS mode requires the SP1 o maintain a tisk grouping for ERAGENVE
processing, ESAGE waves in a subgroup (waves between Mrstlast of subgroup) must all go 1o the same O and
need 10 share & common LTS base and size. The subsequent V3 subgroup musst also go o the same CU and
Launch with the same LIXS base and size and this information i commumcated theough the GS-10-Y'S group fifi,

SPI offers o means of controlling *subgroups between GS owipat and VS consumgiion”,
SPI_SHADER_PGM_RSRC4_GS.GROUP_FIFO_DEPTH will se1 a limit on the number of groups between GS
lnunch and V& launch. This limit will also suppen scaling through the

SPIWCL PIPE_PERCENT GFX.GS_GRP VALUE rcgisier feld.

The 5PI also las to know when all waves of a V5 subgroup have completed so that the onchip-GS LIS can be
freed.

2.3.3 Tessellation

DX 11 Tesszllstion roquires two vertex tvpes through the 5P1: LS and HS. LS is the AP venex shader which
writes 1o the LDS, and HS i the hardware stage thal creatcs tesselmtion Bctors for the 1essellation enging and
oulpul dala for the Demain Shader. The hardware shader stage Oow is LSHSDEESIGE VS), depending on
whether peometry shading 15 enabled (ES/GS) or not (VS), The passing of compated results from LS o HS 15
always done using the onchip LDS of the execwting CUL LIS i5 a per-CU resource and ondy waves send 1o that
CLU cam access i, 50 all waves of a tessellation threadgroup mest be sem 1o the same CUL The onchip LDS space
associsked with an LSMHS threadgroup is freed when the finad HS of the group compleles

HE=10-[¥5 data is always passed using offchip buflening aid SPI is responsible for managiig (s offchip LDS
space. SPI allocates o bufer with cach LSHS thread group and then frees the bulTer once all DS that source the
data are compleie,

ATI Ex. 2027

IPR2023-00922

Page 18 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGE

10-Feb-15 3-Nov-16 L0 19 of 62
Vertex Input from VGT
w-E:vE w;rt
Veartex
Controller | T
119, stall Write | Sl el g
ESGSVS ™ Arb
I 'y
vs-r_lraady
Y v
Wave |
Controller | RS
LS/HS, Allocation
ES/GS5.VS
L
Wave Write SGPR Write YGPR Write

{ / v

NewWave Cmd SGPR Data VGPR Data

Figure 11 = L5, H5ESGS,VS Vertex Input

2.3.4 Distributed Tessellation

The mdendbon of distribwied tessellation is jo rebalance the DS work afier the HS siage in order lo gencrale new
primgroups with post iessellation primatives, This erables the workload to be distributed more wifonnly amongst
the svailable VGT and SH units for an ovemll higher performance.

ATI Ex. 2027
IPR2023-00922
Page 19 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIN, PAGE
‘ 10-Feb-15 3-Nov-16 10 20 0f 62
r WD T
o T
14 141
T
o N
¥
VGETo WGT1 | |_"-TGT2 WGET 3|
l] l ,i LE& AL MY
¥ | ¥
SPIO 5Pl ‘ sPI2 SPI3
| THALAS RO
| [iaTe
¥y rTr v —
- WO -
- ™
v T L L
VGTO VGT 1 VGT 2 VGT 3
,l i l l i A
] SRl P2 5P 3

The diagram above shows the data flow.

Mate (i commonly mamed blocks such as VGT 0, WD gic ang the same plivsical block (not duplicated) just re-
drvwi For clarity,

Mote that all vanams have this archilecture, the legacy patch distribution method of all DS seni to parent 5H is
slill supporied but the infrastructure is changed 1o the above

2.3.4.1 Work Creation Description
The unit of work that the VGT creates is a threadgroup, Thene could be multiple threadgroups presend in the
primgroup cach VGT receives, LSS vens are created For the entire threadgroup and then the HS threadgroug
tramsfer is semt o the SPIL. A FLUSH_HS OUTPUT event is insered after all each threadgroup trumsfer. The SP1
allocates onchip LS space and an offchip LDE buffer fer each LSS threadgroup. The SP1 sends the VGT an
HE_done signal per threadgroup when the entire threadgroup completes,

The WD noeds 1o process threadgroups in the order they were issucd originally by the WDVIANYGT when
producing D8 threadgroups, There is a HS theesdgroup done couner per VGT which is incremenied when the
respective H3_done is received from the SPL AL the beginming of the packet. the VGT fifo with a thread group
tagged first_primgroup will be processed first. This will ensure the lsmch order of the LE/HS is maintained. Aficr
this threndgroup is popped off, is next_fe_id ficld will be used 1o determine which fife s read Crom nexy, All the

ATI Ex. 2027
IPR2023-00922
Page 20 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 210f62

tessellation factors Ffor the patches in an entine threadgroup are feiched from memory and the patches are then sent
to the distribation logic,

Each WGT will receive patches that will potentially be tagged with stan/stop points, Each VGT will only tessellate
the pontion of the patch that is active and will issue the respective DS winves to the SPL The W will create and
irgert the OFFCHIP_HS DEALLOC ovent s the end of each DS threadgroup and broadcast it 1o all VGT,
attaching the appropriste VGT 1D o the event s¢ the SPI knows which frontend allocated the offchip space for
the threadgroup, The VGT 1D of the ariginal theeadgroup will be sent on the new parcm_se 1:0] field of the

VE wave or G3_subgrp interfaces. The SPIwill laanch the DS waves on any available CU and the HS ootput
data will be feiched from offchip memorny. Once all D5 of the threadgroup complete the SP1 will handle the
OFFCHIF HE DEALLOC cvent by incrementing cither gs offchip done count or vs offchip done count in the
approprizie SP1as idemilied by parend_se. 10 an SPLsees an evend with o paren_se tha does nol satch ifs own
SE_ I, a done signal will be forwarded to the approprinte 5PL Offichip LD3 will always be deallocated by the
OFFCHIF HE DEALLOC cvent. occuming when the event pops off the SP1"s event'wave criwler.

2.3.4.2 Offchip LDS ID Changes

With distributed tessellation the DS from a given LSHES can be sent to other SE and those other 5E do not have
aceess 1o the parent SPU's group information. Beeause of that, the disiributed DS noed anather way 1o get the
offchp ks id atlocated 1o their parent LSS, The WD will add o per-SE offchip Ids_id counter Uhal meremems
for cach tesscliation threadgroup that is ssoed 1o that SE. This offchip_lds_id will be stored threwgh the WD and
VGT for each custanding thresdgroup and patch and then sent 1o the SPEwith every TS wave on the GS or VS
wive imterface. The evert_id Hield on these interaces is increased to 7 bits and is wsed o send offchip_kis id for
wive of subgroup transfers.

SPI sl allocates offchip space with LSHS and malkes sure et the nesa balfer is available, but the 1D 5 assigned
b and delivered from the WD, VGT_HS OFFCHIP_PARAM.OFFCHIP _BUFFERING specifics the curment
number of offchip bulTers and offchip_ids_sd should reset (0 0 for each SE whenever thit register value changes
(5P1 docs not reset if the register is rewritten with the same valse). OFFCHIP_BUFFERIMNG is divided between
the numiber of SE in the config, regandless of front-cnd harvesting, and cach SE's 1D should count from @ o
((BUFFERINGNUM_SE) = 1)

The OFFCHIP_BUFFERING ficld will range 0311 representing [-302 baflers, A sewing of O is not usefil for
this register and being able to represent 512 allocated bulTers allows suppor for 128 bulTers * 4 SE in larger
configurations,

The offclap ks id sent 10 SP1will be a 1ot of nine bits, two bits of parent_s¢ and ihe seven bil event_id camving
offchip_kis_id count from the parent LS/HS.

2.3.4.3 Offchip LDS Deallocation Changes

In previous projects the work associaled with a given 3E’s offchip LIS allecation was only ever sent fo that sams
SE. This mcand thad all LS/HSTS for a threadgroup wend 1o the same SE and a given SE"s offchip space could be
deallocated based solely on work comgdeting in tha 5E, ES and V5 :mﬁuingn.s 5 coubd also potentially
complele o of order with respect fo each other, and offchip LIS manapger dealt with that by keepang a FIFO
history of allecation order (ESS 15 DE) along with group done counls for cach of GS and DS,

ATI Ex. 2027
IPR2023-00922
Page 21 of 62

ANMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
‘ 10-Feb-15 3-Nov-16 1.0 22 of 62
Cder
FIFQ | wi_hevadg oup_donn s
.

vi_ i l n

&s,_thveadgrosn_done,_oount {j
i _eh

W

T

s

! done_count '-I
>07
oede_ffa e I
ilree alfchip &)

- . decrement \
\ ESor¥s. |

SPIincremented the ES/VS group done count when an ES/VS lstwave that lunched with offchip LDS enabled
popped from a wave controller’s craowler, meximimning order within a shadgr stage, Once the done count
comesponding to the order FIFO owipat was greater than 0. 5P1 would deallocate the of fchip space, pop the order

FIFCY, and decrement the appropriate done_ooun

Distributed Tessellaion means that tessellation work onginating on a given SE (and therefore assecibed with that
SE's managed offchip space) can also be sent to other 3E, This means that a given 5E has 1o cnsure thai all other
SE are done using an offchip allocation before deallocing and reusing that space, In onder 1o handle this, the SPI
will wee i scheme similar (o the one wsed for parameler cache deallocation across muliiple Shader Engines whens
the 5P signal 1o cach other when they sce a dealloc they do nol own. For instance, if SPI2 pops an
OFFCHIP_HS DEALLOC ¢vend witha VGT_ID of 0 from a V'S or GS crawler then it will send a sigral io SPI0

miher than doing amyihang with is own oflchip LIS mgmt,

7[00, 1,2}_5%1_wstpdonein_valid
-

4
S1[0,1.3)_5P1_gutpdanin_vilid
4

" o
iSPI_ﬂ (SED)
rder wi_Ehreadgroup_done_oound_ieN
Fird L o
.
g_theesdproup_done_couns e j
v_ls_ds L_’, vi st h_rr’;wmm_"-,l
! Tl GEor VS |
A
I/_ Al seN
| done_count |
N
wider_fil_ne
[Frover ffihigs Bdil)
. 4

L1

'SPI_1 (SE1),
SPI_2(5E2), |)
|SPI_3 |SE3)

:)

o

Each SPI has o keep a done counl for every SE and check thal all done coums are greater than rero belore Mroging
anoffchip LDS bufTer. When offchip LIS is freed. all 3E done counts for the frecing shader stape (G5 or WS)

ATI Ex. 2027
IPR2023-00922
Page 22 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 230f 62

decrement iogether. 17 a frondend is disabled (as specificd by CC_GCO/GC_USER_PRIM. CONFIG regs) then the
5P atiached 1o thet frontend will not receive an OFFCHIP_HS DEALLOC event, The SPUs offchip LDS
deallocation logic should not wait for pulses from ether 3P that are connected 1o disabled frontends, and also
should mot decrement the done count associated with those SPL All counis assecinted with a disabled froniend 5P
should be held an 0 as bong as (e frontend is disabled so that the counts will be in a known good stie il the
fromtend is enabled at a kater time.

The move 1@ only supponing offchip ressellaiion (HS-DS enly throaugh ofTehip LDS) means that 5P no longer
needs an H5-D3 group fife o pass information (o the DX stage. However, SP1 docs still offer a means of
controlling ®groups between HS outpat and DS consumption® similkar to what the progmmmable depth group fifo
offered previowsly, 3P SHADER PGM_RSRC3 HSGROUP FIFD DEPTH will set a limit on the number of
groups between LEHS offehip allocation aml DS consumpdion, This lindt will also suppen scaling ihrough the
SPI_WCL_FIPE_PERCENT_GFX.HS_GRF_VALUE rcgister field.

2.4 Pixel Shader (PS)

Figure 12 shows the ow of prsel datn theowgh (e SP1 The SP1 gets input data for pixels from the Scan
Camverer {53C). Wave control information ells the SP1 which quads are hit, parameter cache sync and de-
alioeaiion tokens, and if the trnsfer is an event. The 3C also delivers quad and per primitive barveemiric
infermation 10 the Barve mlerpolation nath. As quads are being recerved from the 5C, the Pixel Input Controller
will buffer the comtrel infermation until a full wavelfront is received. The qued infermation is alse Mowing down
the baryeemtric math pipe where the SP1ealculstes the per pixel I and Woienns and can also store ofT sereen X7,
primtive facedness, and other ancillary lerms. The data pets delivered o the Pixel Stagng Registers for storge
umtil the wavelront is ready to launch. Once a full wavelmom is saccumulated, the SPIrequests to allocate resources
and, once gramted, the wavelfront is sent to the varions Write Comrollers which coondinge the loading of PS5 data
tor the SH.

PSR data is read and sem o VGPR=, attiribute data is copied (rom the PC inte the LDS of the appropriate CL
and other various lermis are written into SGPRs. Onoe the full wavelrom of pixel data is seal to VGPRs, SGPRs,
and the LDS, the Wave Wiile Controlier sends the wave 10 the S0 10 insliale piecl shader execution.

ATI Ex. 2027
IPR2023-00922
Page 23 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 24 of 62
Pixel Input from SC
l |
Wave quad, baryc data
.Bar'rc:
Fipeline
Piced
Staging
" Regs
paceacy. PSR}
T i
PSS Wave
Control e Resource
Alloaation
L] ot L PC

Wane Wrile SGPR Wiita VGEPR Write LDS Wite g

oo K

NewWave Cmd SGPR Data VGPR Data LDS Data

Fiigure 12 — Piscl Impast [kata

241 Pixel Data Flow
SPI nccepts pesel quad rowes from the 5C al the peak mie of 2 quads (8 pisels) per clock per packer containing:

Primilive control dada:
paremeter cache base pointers - where attributes of the vertices that erented the primitives that created
thoae pisels are located in the parameter cache
first_prm_of slof aka new_vector «1his is how the SPI makes sure (2 stinbule divta for the primitives that
created these pixcls is actually in the parmmeter cache before a read is atlempted
dealloc tokens - ket the SP1 know that this is the ast prims frem the Last venes of 2 VS wavelion so i is ok
1o free wp all of the associated stiribule data
end_of vector Mag - Informs the SP1 ths 15 the 1ast row of a pixel wavefront, and can happen carly prior o
getting all 16 quads
firsi_quad_of _prim — Atached o the fiest quad created by each primitive
prim_vpe = associsied with each quad
Chand Drata:
sereen (XY) - where the quad is located in screen space
centermost sample i - The centroid of each pixel i cach quad
iterated sample mumber - which sample is onning during sample frequency pisel shading
peer pixel coverage — meask identifyving all hit pixel samgles as determined by the 5C
Primitive Daia:
perspectnve/lingar barveentnc gradicnts, depth (Z) information

ATI Ex. 2027
IPR2023-00922
Page 24 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE
‘ 3-MNov-16

10-Feb-15 1.0 250f 62

2.4.1.1 Calculate Per-Pixel 1] Barycentric Coordinates
The SPI receives 1 gadicnt infomaation from the SC ona per quad basis (all valwes anc 32-bit IEEE).

Iy Wi — value of 1AW an rel vix (valoe of line_stipple_tex_coord at ref vix with linear gradicnt)
I Widx — LW rate of change in x {line_stipple_icx coord mie of change with lincar gradicnt)
IneWiddy = W mane of change in v (ling_stipple_tex_coord raile of change with near gradiend)
IW — value of I'W at ref vix

IWdx — I'W e of change inx

IWely — I'W rade of change iny

JWD = valoe of W at ref vix

TWdx — IW mie of change in x

JTWdy — JW mc of change iny

The SPI uses the following equations 1o calculme per-pixel L1LW. One baryceninic triplet (LLW) is computed per
cvele per quad, so all of the math below is instanced per quasd in each SPI

The 5P calculates the distance of the cument quad’s upper lefi pixe] 1o the reference veriex and wses that distance
to calculate the temms IWrel, JWrel, and Imv'Wrel which are the valuses at the wpper lefi pisxel of the quad and
ke as the “reference pixel”

Reference Pixel (1 per quamd):

(deden_x amd delta_v are 16,8 2's comp convert (o 0L pt distance of quad UL pixel from vertex ()
IWrel = [Wao + (delta_x * Twdx) + (delia_y * Iwdy)

JWrel = 1Wo + (delm_x * Jwdx) + (deba_v * Jwdy)

T Weel = Inv'Wo + (delia_x * I W)y + (delia_v * InvWdvy

11 and per pixel W values are stared in 32 -bit IEEE fMoal

Delua Pivels (3 per quad):

The SPI only does the full distance math to calculate the value for the upper Left pisel. The other 3 pixels ane
calculated as della distances from the referemoe venex. This is a hardware savings in the subimaction math since
the subtmction will be a simall distance swalhin e quad versus a potentially large distance froan the relerence
vertess The trade ofT is Ivency on the other three pisels since these caleulations canmot complete until the
reference pixel obtains its calculaged result, The delta caleulations are fixed point math, while all ather
calculations ane in Moat.

delin_x. delia y — distance from upper left reference piel to this pixel (UR, LL, or LR).

delta_Pixels(3 per gquady: (dela_x and delin_v are 2.8 2% comp comer 1o 1M distance from Rel Pl
IWpix = IWrel + (delta_x * Twdx) + (delia_v * Twdy)

TWpix = JWrel + (deha x ® Iwdx) + (delta_y * Twdy)

T Wi = Do Wrel # (delta_x * InvWidx) + (dela_v * Wy)

Wpix = L0 Inv'Wpix Tor all 4 pixels
Ipix = lwpax * Wpix for all 4 pixels
Tpix =lwpix ® Wpix for all 4 pixcls

All of ihe barvceniric gradient calculations are IEEE float. The only differenoe between the twe equations here
arg the delta_x and delia_y being the distange from the UL pesel of the quad instead of the distance from the
reference verex and the initial termis here being the valoes ai the UL pixel instead of the reference veriex

When processing linear grsdicms, (we special cases are created by the Bact that the Imy'W term is overboaded with
ling_stipple_tex_coord information (dependent on state control). The barve begic has (o force Wpix do 1.0 fer the
fimal Tw amd Jw noelizplics so that the 1) ferms are nod cormapted by the stipple ferm, The Ine'Wpix math is nsed o

ATI Ex. 2027
IPR2023-00922
Page 25 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 26 of 62

calculaic per-pixel line_ stipple tex coord values, and those terms have 1o be piped around the Wpix imverse
Tunction,

2.4.1.2 Pull Model

Fixed Tunction atrbute imerpolation hardware bas been removed fromohe SPI for several generations now, with
all meribute interpolatson happening in the shader mchiding our stamdard choices of center, centroid. or current
fragment. The DX pull-model feature is a method that allows the shader to interpolate an atiribote at any
tecation within the pixel, and we accomgplish that through the SPLby loading 17W, LW, and 1 as input to the PS
s the shader com calculmte Hs own gradients and then ineep 0. 1, and W o sy desined sample eation. When
cnabled. the SPI calculates 1AW, I'W, and 3 at pixel center and loads them into YGPR along with amy other
ciabled terms,

The SPI still performs per-pixel 1 inerpolation to support pre-DX 11 stvle attribute interpelation that takes place
at a fixed st of locations. If an app only wanls to use center, centraid. or fmgment when sanypling attribuics, those
10 values can be provided by the SPL 17 a pixel shader s doing "1re pull model” where il is sampling anributes
matiple times at locations throughoan the prsel, the SP1 will provide (1110W terms as input. The pixel shewder
then has o caleulate gradients for the *MW terms, imerpolate themn to the desired sample lecation, recip 1/W, mult
times LW and 1AW 1o get 1 ottt location, and then inserpolate cach atribute at that location.

It is also possible that an app might use both methods, with most attnboes only sampling at piscl
cenercentroid/ragment, bl mavbe a couple thal need o use *truc pull model®, In this mode, the shader could
cither do evenvtiang and calculate all the 17 iself. or enable muliiple 17 terms from the SPI

Ag i example, sav a shader wanis 4 perspective-cemect atinbines sampled M pixel centroid, 2 non-perspective
cormeet (lingar) attabwes sampled a1 pixel comter, and 1 attrbute 10 do "o pull model” and sample all over the
place. This scemano could et up the SPI ke thas:

PERSF_CENTER_EMA =0

PERSP_CENTROID ENA =1

PERSP_SAMPLE_ENA =0

PERSF_PULL_MODEL_EMNA=1

LINEAR_CENTER_ENA = |

LINEAR_CENTROID_ENA =0

LINEAR_SAMPLE ENA =0

With this, perspestive=correct U sampled at picgl centrid and non=perspective cormect (hincar) 1 sampled ol pixel
cenler are available directly to the P5, so no extra ALU instructions ane necded to calculate the 1 before those
atirdases indcrpelaic. ALY and TEX grdient instructions will have o happen to cale 11 before the ®tnse pall
mdelel” antribae can imerpokate,

The app could also just configure the SPI like this (and this is te for every single pisoz] shader):
PERSP CENTER_ENA =10

PERSF LENTRDID ENA =0

PERSF SAMPLE ENA =10

I'ERSP__PULL__MDL‘IEI _EMa=|

LINEAR_CENTER_ENA =

LINEAR_CENTROID_ENA =0

LINEAR_SAMPLE ENA =0

Bud then there needs 1o be extm ALL and TEX gradient irstmictions o cals each set of 1 needed for pitribote
intcrpelation, not just befone those attnbules that wamt 1o do toe pall model.

ATI Ex. 2027
IPR2023-00922
Page 26 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE
‘ 3-MNov-16

10-Feb-15 1.0 27 of 62

2,42 Scale Resolution Based on Screen Location (9.125)

The BCT imapact from “scale resolution based on screen space” is i the calculation locations for the pixcls of a
quad shifi and scale when the feature is enabled. The Upper Lefi pixel of a quad shifis by halll a pixel during '3
scaling and it shifis by 1.5 pixels during ' scaling, The delia X and delia Y 1o ihe other 3 poagls of the quad will be
scaled up by 40174 resolution) or 2 (1/2 resolution). The quads. quady. and 11.W slopes that are passed 1o the BCl
by the SC rensain unchanged

2.4.2.1 Visualizing the Scaling
In the chosen T Scaling” approach the sample locations in the upper left pisel of a scaled quad do not map io the
s locations in wscaled space. This means that all 4 of the BCD pixel evaluations ane impaciod when scaling.

= For 4 scale factor the UL pixel coner 35 offset by halla plxel

o For scabe fctor the UL pisel center s ofTset by 1.3 pinels

= [nboth scale Tctors, sample locatns (ol have been specificd as distances lrom paxel center need 1o scale

In the example bebow, scale Gctors of ¥4 in X and Y in Y are used. This means that the BCI would need 1o caloulae
the UL pisel-center value ai a location (2.0, 1,0} pixels from the wpper left comer of the quad (rather than s wsaal
(15, L5])

Scaled Tile (0,0). Each 24 pixel region maps to
an entire tile in Unscaled Space.

Unscaled Tile at Tile Coordinates (0,0) "True Scaling” - geometry scaled relative to
Relative to the Upper Left of Supertile the upper left.
T T T T | 1 1
* HHe T
1 7 1 S EEI]
4 ;. - : Y | - - {P Mipﬂ-'ln Mml-n HIFEI.II:I
1 - - == Unscated Tie | Unscaled Tile | Unscaled Tile
BLAEERa 179 {1.0) 120) (3.0)
- - - o -~
T §
= = |
& 1 H 1
4 Maps to Maps to MMaps to Maps to
: - - = Unscaled Tile | UnscaledTile | Unscaled Tile | Unscaled Tile
EFYE R + e {0.1) (L1} 2.1 [3.1]
' e H o
e e e T T T

1

Another way 10 view the BCI scaling is by looking & a singhe unscaled input quad and secing how (e sample
locations move, This example shows an incoming qiekd dunng $xAA with a svmmetnc samphe patterm wnd 1he
implicd sample location of pixel-center.

ATI Ex. 2027

IPR2023-00922
Page 27 of 62

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
10-Feb-15 3-Nov-16 1.0 28 of 62

0.9

nrLd

The upper lelt comer of the quad is considered to be (040 for this example and thal reference point does not move as
the pixel conter and sample locations shif) and scale, The nexi diagrams show how sample locations move for
dilferent scaling cases. The new “scaled pigls” are cutlingd in hicanvy black Hnes, The liglder blue lincs represenl e
lecations of unscaled pixe] edges and are shown to help visnalize how the snmples are moving

oo 0.0

+@+ +@+ @ @ @

oo
se
oo

scalex=], scaley=0

¢le-
P

o olo

‘i_+

scalex=1, scaley=1

ATI Ex. 2027
IPR2023-00922
Page 28 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER. NLUIM, PAGE
‘ 10-Feb-15 3-Nov-16 1.0 29 of 62
o0
|
@ @ ® @
O O
® @ @ ®
[|
]
@ @ @ @
o O
@ @ o ®
|
scalens2, scaley=2
2.4.2.2 Impacts to BCI Equations
The scan convercr needs o pass scabe factors per quad o the SFL
seabex| 1200 == 0 full, 1 ; half, or 2: quarer
seabey [1:0] == 0 full. 1 : half, or 2: gquarter
Assuming all pixel censers, the Upper Lefi (UL) caloulation becomes:
shafted_x = (scalex == 1) 7 1 : (scalex == 2) T 2: 0.5
shifted v = (scaley == 137 1 : (scaley == 2) 7 2 : 0.5
ATI Ex. 2027

IPR2023-00922
Page 29 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 30 of 62

UL_= rel_+ ({quad_x + shified_x - rel_x) * wdx) + (fquad v + shified v - rel v} * <bowdy)

The other pixels are calculated as (again, assuming all pixel centers..)
UR_= UL _ + (d _dx <= scalex)
LL_<be> = UL_= + {d_dv <= scalay)
LR_<hb>=LL_+ {d dx << scalex)
Ch ds i, Diw, ifw, o jiw)

The mome generic form of this equation for handling amy allowable sample location within cach pixel is a bit morne
imvalved. The UL sample location meny not be at pixel conter, and arbitany sample points in the UL pixel don’t
simply shifl by 0.5 or 1.0 plxels when sealing. The following diagem shows the distinee A" from reference verex
Wi o unscaled UL sample 10 1 in green as companed to the distance from V0 10 scaled UL sample [0 1 i red.

® /‘ My
S S - =]
i = p,.--"""'"-
_.___..r'""
e O
® .

Sample lecation siate setiings have 2 formal of 4b signed ofTset frem pixel conter and range Crom -5'16 10 716,
Chge the UL sampleid and ofset is delermined (center, centroid, sample) the Upper Left (UL} calculation
bocomes:

Reference Pisel (1 per guadd, ULk
scaled offset x = (samgde_offsel x << scale x)+ {(scalex==1)7 | : {scalex==2)72:0.%)
scaled _offser v = (sample_oflfser_y << seale_v) + ((scaley == 137 1 : (scaley = 2) 7 21 0,5)

delia_x and delta v are 16,8 2"s comp comer to Mt distance of quad UL samnple location Trom vertex 0.
quasd_xy is the upper kel screen space lecation of the current quad, I5quad _xy is quantized based on scale
factor then the wbd below Tor (quad + scaled_olfser) can be implementied as o concalemation

deltn_x = quad_x + scaled ofTsel_x = rel_x

delta v = quad v + scaled offset v - rel y

IWref = IWo + (delta_x * Iwdx) + (dela_v * Iwdy)
IWrel = IWo + (delia_x * Jwdx) + (delia v * Jwdy)
T Wred = DnvWo =+ tdelia_x * InvWdx) + (delia_y * InvWdy)

The distance between sample locations inthe UL pixel and sample locations in the other three pixels do simply scale
bised on scale factor. The next diagram shows the distance A between unscaled UL_sample 0 and UR_sample_1 in

ATI Ex. 2027
IPR2023-00922
Page 30 of 62

."l AMD

ORIGINATE
10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER, NLIRM,
1.0

PAGE
3lofe2

green & comparcd e the distance B between scaled UL sample 0 and UR_samgde_ 1 inred ina scale facior 2

B=2*A
@ @
e o | o e
O o
® o [o ®
I |

The modificd distance between the UL and delia pixels is a simple scaling of the current distance calculation, This
mgans (he BCT can leave the existing distance logse between UL amd UR, LL, LR and then scale ithe resudt (add 1 or

2 1o the exponent).

Delta Pivels (3 per quadl):
delia_x, delia_v - distance From unscaled upper lelt sunple poing to this pixel's (UR, LL, or LR) wisgaled

sample peint

delia_Pixels(} per guad):
delta_x and delta_v are 4.8 2's comp comvert 1o [pt distance from Bef Pixel

['Wpix = IWrel + (delta_x * scale x * Iwdx) + (delia_ v * scale v * lwdy)

IWpix = I'Wrel' + (delta_x * scale_x ® Jwdx) +{delia_yv ¥ scale_v * Jwdyv)

ImyWpix = InvWrel + (deha_x * scabe_x * ImvWdx) + (delta_ vy * scale v ® Tm/Widy)

3 END OF SPEC UPDATES, BEYOND THIS POINT
INFO MAY BE OUT OF DATE

3.1.1 Support for 16 pixels per SH

This config has two independent pixel paths (packer, BC quad-pair, ps_cil, sc_spi inierface, PSR, eic) per Shader

Enging but only ong Shader Armw, The twe ps_ctl will boah request to the same resource allos block, with wones
fram cither packer being allewed 1o excoute on amy of the 4 SIMD of a Compute Unit. SPI will have age based
arbitesiion between ihe two ps_ctl which is based on where they are with respect o ihe VS that produced the

ATI Ex. 2027
IPR2023-00922
Page 31 of 62

“'l AMD

ORIGINATE
10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER, NLIRM,
1.0

PAGE
32ofe2

prams/picels the ps_ctl arc working on, This will be done by companng the vix_symc cni (sum of vix_sync_cni_q
and ose vix_sync_ent g inn 2 SE configh and giving priority to the ps_ctl with the higher value since tha
controller is working on “older” prmitives. 15 vix_syoc_ont_sum is equal between the two ps_cil, pricrity will
ping-pong between tham
[T only one PS5 is requesting and it s, i wins
If bath P'5 are requesting bul only one fits, the one that Tits wins.

[f both PS are requesting and both fit and ages are equal, ping-pong priority decides who wins,

IF both are requesting and boah 1 and ages are mod equal, older one wins

Because waves from cither packer can launch to either SIMD pair, thos using both cxpon busses, cxpon
arbitmtion for color data needs to corsider which packer lunched the requesting wavelroms. Ina 4 DB/SH
config, SPL expon arbitetion cannol allow iwo transfers to the same DB pair a1 the same time on (e two expon
busses (ie. if bus is cxporting o DBOC then bus] can only expart a color il it is for DB13)

5P — sP &P = &P
1z Export Data 1gam -
L
~ B
sX
Y
Color Buffe (0BG I
W "
A
DED

Figure 13 = Color Export Bus Arbitration, |RE

ATI Ex. 2027
IPR2023-00922
Page 32 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, MLIM, PAGE
‘ 10-Feb-15 R enia e L0 330f 62
5P — =P sP —_ sp
16300 = Export Data 1exzam -
Y
P B
sx
Coder Byt DB -’.‘a&u&.ﬂ'ﬂl:ﬂ1 e Eusias DD Citiext Bt DET
LEFT ST RHGHT
-
I}Bﬂ DB'I
Figure 14 = Color Export Bus Arbitration, ZRE
5P — BR BF . 8P
185328 =t Export Data 16
Y
i .
Codor Bufes DEO Coler Bafler DB o Beafer 0BT el DEY
e A
v . v
D80 DE1 DE2 DE3

Figure 15 — Color Export Bus Arbitration, 4RE

ATI Ex. 2027

IPR2023-00922

Page 33 of 62

&

AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGE
10-Feb-15 3-Nov-16 1.0 34 0f 62

sp - 5P e #p - &p

TEnalh —- Export Data 1eeam
Y
4 ™
sX
Coeer By DA
. ¥y
+)
DB+ 0 DB+ 1

Figure 16 = Color Export Bus Arbitration, TREB+

There is still only one 64-deep color scorchaard per SX, with waves from both packers sharing those 64
scorchoard entrics, SPLwill keep a single pixe]_alboe fifo for the SH and will allocate color export space for all
piseel waves in the same order as they allocste shoder resources, regardless of phr_id. Color bufTer space 15
nmenaged separately for pled' |, bot the scoreboard space is shared. The next entry in the pixel_alloc o mist
check for space in its particidar color bullers and check tat there is an available scorchoand entiy belione semvicing
the paxel allocation.

For a 4DB per SX config there is one color biffer per DB in the SX and one 5X_SP1_db bus per DB for Mreeing
that space. 5X_5P1_db_buos_ad wall always be 0 in this conlig becanse there 15 8 onc-lo=0n¢ relabonship between
DBs and color buffers, regardiess of the simd pairexpor bus that processediexpored the pisel dat

3.1.2 Unique Sample Positions per Pixel

The BCI lag state storage 1 suppor unique locations for all 16 samgdes ineach of the 4 pixels of a quad, When
looking up sample bocations. a pieel uses it sanple i o mux he siate dat associated with that particular pixel,

3.2 LDS Parameter Data Loading for Pixels

For gach PS, the 5PI needs to copy all attribuics associated with ihe primitives in that pixel wavelront 1o the LDS
The VS cancxpord up io 32 attribuies 1o the parmeter cache, plus the 5P1 can genemie an additional pamm_gen
term. The SP1 kas to write every attribwic * cach primdtive in the pixel wavelmont, With 33 afirbacs, if cvery
quand 15 Trom g wmigque prin thad would be 33% 16 = 523 LDS writes. This would noke the pixel side of processing
mumn al s slowest pisel por clk mae,

With cach quad received Trom the SC, the SPI gets prim bowndary (Mag For first quad of 2 prom) and pee-veriex
param cache base information (where in the panumeter cache to read the attibae dota for the vertices that created
the quad), The SPI stores ¢ach of the base pointers for each unigue prim and total prim couwnt 10 know how many
prmdtives exist in the pixel wavelmonl.

ATI Ex. 2027
IPR2023-00922
Page 34 of 62

AM D ORIGINATE EDIT DATE
‘ 10-Feb-15 3-MNov-16

DOCUMENT-VER, NLIRM,
1.0

PAGE
35of62

The SPI can request iwo primitives of siribute data per clock ol of the parameter coche and write that data 1o 1he
LS. There are some cases that can’t request o the mate of 2 primitives per clock. This is because thoss
primitivies are made up of venices, the sitrbuates of each venex are in a specific parameter cache bank, and if
conseculive primitives have venices in the same bank then the SPLcan”t read than daa al the same time (this is

known as a bank conflict). Comsequently, the SP1 can send onby one read asddress o the PC per bank.

For cach atiribute going 1o ihe LDS, the SPI eveles throngh cach primitive in the pixel wavelront, wriling cither
one or two prims every clock. Ench attnbate is 354 bits, made up of 3 128 bit tenms, 1T the SPLis processing 2
primitives per clock, then 2# 384 bits of data is being tmnsfemed per clock.

LIS Attribute Terms:

Wi, wahee of attribate ol the reference vertex 0 of the primitive

V0, value of attribote o venex | - vemex O
VI, value of ateribste o vertex 1 - verex

The PC perfonns the difference 1o avoid needing additional PS istructions for imerpolaion.

- 384D (3 x 128D}

Prim 0 Atinbute 0w, W1-v0, V2D

Local Data Store (LDS)
Logical Layout

Prim 1 Attnbute 0 %0, V1-¥0, V2-40

Prim M Attibute 0 W0, V1-V0, V20

Prim O Attnibute 1 %0, V1-v0, VZ2-vi0

Prim 1 Attribute 1 Vi, V4-V0, V20

Prim N Atribute 1 WD, V1-Y0, V2-v0

Figure 17 = LDS Logical Lavout

3.21 Organization of Data in the Parameter Cache
The Venex Shader atiribute ouiput is written fo the PC with ihe formam shown in the folbowing diagrum

ATI Ex. 2027
IPR2023-00922
Page 35 of 62

’.

ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE

B
=
o

10-Feb-15 3-Nov-16 1.0 36 of 62

Bank
a 1 2 3 4 5 B T 4 9 10 11 1z 13 14 15
Line 0= a0] W | W | | | | |] | | | | | | | Wil
i-Al v w1 w2 VIS
1=AZ w | v | v | | | | | | | | | | | v
I-A0 | w5 | wir | viE | | | | | va
4—- A1 b 1] V7 Vik i
5=AZ ¥IE | V7 i | | | | | | | | | | [| v
G-AD | w2 | vil | va4 | | | | vag
7-AL [v | wa | | | | | | | | [| [| | wam
B— AT [T WAy
g=pg | W8 v | v | | el
10-A1L | WA | v | v | el
11-42_| wa | vn | wa wal

Figure 18 — Parameter Cache Data Organization

The parameicr cache is 16 banks wide, naaching the widih of wavelronis being cxecuted in the shader army. Esch
bank is writien by one of the 16 V5 thremds exporting on a given phase. Data is packed by veriex into the siorge
such that the atinbuies of a given verex ane writien to sequential addresses of that verl's destination bank_

The SPI sends the base address for each VS wanve 1o the parameter cache Tor each wrile onihe expasddr inerface
(hase_addel = pc_base), The parnmeter cache offsets cach attribute write by the mteribaste mamber received Trom the
20 on the export command interface. The parameier cache offsels each phase wnie by the number of enabled
attribuies specificd by 3P on the expaddr interface (hase_addrl = vs_export_couni),

In the: example above, pc_base would be 0 amd the sccond phase of attribute? would wrile at (3 + {phase®*num_atir)
+ aiir nump = (0 + "3+ =%,

I the case of half=pack waves, the wiites for plase? and phase3 would bave O wnle-masks so thess locations will
not be writlen into the pammeter cache.

3.2.2 VS-PS Remapping
The 5PI prevides suppont for the driver implementation of Verex Shader (V5) oulpat 1o Pixel Shader (PS5} imput
re-mapping. The SP1 can bead up o 32 pommal parameters from the pamameter cache inte the LDS. For each pisel
shader inpa. the driver can specily the autribute number that shoubd be read Trom the parnseier coche. Thas
specificd atnbute number 15 added 1o the primative”s pammeter cache pointers to determine the read address sent
to the PC.IF a PS input parameter has no matching WS oatput then the driver can sct a bit for that pammeier
irstmicting the SPE o instend load a selecable “definlt” value for the current pasameier,

3.2.3 Flat shading
Fla sheding means that all pixcls of a primitive shoubd get the same paramcicr value from a proveking veries,

Using LDS read instructions to move the imerpolated data is the expected method for "constamt shading” in
DA 0. In DX 1, intcrpolants muest declane shading as constant and there is ne global renderstate disable, so
therefore (e compiler knows exacily which imerpolaris 1o read dircetly Trom the LTS,

There is a flat_shade disable in DX9, but we don have 1o preserve MAMTNFAnteger terms excactly in DX9 so
always ising interp istnctions is fing (here, When Mt shading thess tvpe attribites, SP1uses provoking vix froin
P& 1o swizrde the param cache pointers before reading the attribute data so that the constant shading term is
leaded 1o PO SP1 drives the commect muee_select to PC so that P10 and P20 are forced to O inthe param cache
before sending to the LDS. When the imerp instniction is excomted the operation will be PO + 0 + 0, sresulting in
Pk For all pixels.

ATI Ex. 2027
IPR2023-00922
Page 36 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 37 of 62

3.24 Point Sprite Override

per<channel selects ol 0,1 5 L parom cache value on the LIS loads.

The SPI will send the approprisic musscl bits o the PC io tell if do overnide the pamm data before sending it o
the LI¥S, When the pixel shader sources the LIS, i will get the overmde param daia and will get ihe correct
(3,10} in the destination VGPR.

3.2.5 PARAM_GEN

Pixel Adtribule loading from the parometer cache indo the LDE can include an 3P1 generated parameser
“param_gen” ST valwe, This data is tvpically used for anti-aliasing of poinis or lines. The LD¥S input tenn is
leaded with W=T, Z=58, ¥=0, X=0, Il PARAM_GEN is set, lds_load will write 1he parmm_gen term o LIS
ndddmess (NUM_INTERP).

3.2.6 Support Deeper Parameter Cache and Avoid Duplicate Data

GFXIP_7 offers suppon For rensoving the duplication of the data in the pammeter caches by keeping the same
ot of memories (in order o have the resd ports svailable) bat splitting the allocmion betwesn even and odd
parameters, POO block will still contain 64 memonics bul will only store the X and Y conspoments for 16 venices
and 2 parameters (1 even param and one odd parn). PCT will do e sime bt for 2 and W ocomponens. Then to
puarantes there are no conflicts for parameter reads, SEOSP1 will read even parmeters on even phases and odd
parameters on odd phases and SE1_SPL will read even paranscters on odd phases and odd paminciens on evien
phases. The difference engine pipeling will be insemed after the parameters ane read and POO will have the dill
engane for SE0 while PCT will beve the diff engine for SE 1. SPI allocs space for an even number of atributes in
paranm cache. rounding up VS EXPORT _COUNT when necessary .

3.2.6.1 Performance

Il the WS exporis an odd mimber of attributes then the final atinbute should be exporied twice, once to cach of the
cvenand odd kabves of the parmm cache. From a V3 poind of vicw, this means crabling an additional expon icom
aned e writing the final real attribate (o the ¢xim 1erm

Ira PE linked o a WS with an odd munber of cxports also has an odd monber of inpod attribages and soorces one
more atinbute from the even parm cache than ihe odd pamm cache, ame PS5 Topud aturibute thai sources the final
real VE cxponl (OFFSET == final V5 export) should have its DUPhcale bil set so the LDS wnibe contraller knows
the atiribute can be read on cither param cache phase,

SPI_PFS_INPUT CNTL_*.DUP - “DUPlicate”™ bil that tags a P5 Input Aurnbute as having been
duplicated in both evenand odd param cache halves so that it can be read on cither phase.

I the WS exporis only a single term i sl peeds io be duplicated o ihe odd parm cache so that PS waves can
read the attribute from cither bank on conseoutive clocks. IFa 5 with odd mom_exports has knowledpe that a
specific atiribade neay or msay nof be used by different linked P3, that attribuie should be duplicaicd. The
conditional atinbuie could be moved o the Last spol in the parameter cache, or it condd be duplicated in place. IT
duplicated in place, the OFFSET field for subsequant P5 inputs needs 1o ke adjusted accordingly by the drver

As an example. if V5 atirbute 1D 2 i conditionally used by dilferent S and il e nwoved e the list spot in e
parameter cache, the pammeter cache data and corresponding PS input seitings could look like this;

PSInput Semantic Offsat Dup

PCO PC1 0 2 4 1
Even Odd 1 4 3

] 1 2 3 2

3 4 3 0 0

2 2 4 1 1

ATI Ex. 2027
IPR2023-00922
Page 37 of 62

1 AMD ORIGINATE
‘ 10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER, NLIRM,
1.0

PAGE
38 of 62

I thent sane cose iestead duplicates attribute 10 2 in place, the parameier cache data and PS inpu setlings woulkd

look like this:

PCO PC1
Even Odd
L1} 1
2 2
3 4

PS5 Input Semantic Dffset

DuUp

1] 2

1

o | e | B e
e | w s

Ll l=RE-R L0

The LIS wriie conrolier will hove two separmie sitnbule machines, one for even OFFSET attribuies and one for
odd OFFEET attributes. The even maching alwayvs handles even OFFSETs and the odd machine always handles
odd OFFSETs. Simce DUP will only cver be sei for a PS ingud sourcing (he final real V'S export when there are an
odd total number of exports, only the even LDS nmchane will need 1o handle DUP sinbules,

7 the even maching reaches anatribute marked with DUP, it is allowed 1o generate reads 1o both halves of the
porsmeier coche amd will do so in successive clocks. Any DUP read from the even maching will override rends
from the oxbd machane, blocking the odd maching until (e DUP ainbuts is complete,

3.3 Pixel Shader VGPR initialization

Two 5P registers. 8P1_PS_INPUT_ENA and SP1_PS_INPUT_ADDE. control the enabling of 11 calculations and
specifving of VGPR initialization. SP1_PS_INPUT _EMA is used o determine what gradicnts are engblod for
setup, whether per-pixel £ is cnobled, wion (erms anre ealoulsied andior passed through the barve logic, amd what is
loaded ints VGPR for PS. SPI_PS_INPUT_ADDR can be used to manipulate the VGPR destination of terms that
are enabled by TNFLUT _EMA, tvpically providing a way 1o maintain consistent VGPR addressing when terms arc
removed Trom INPUT_ENA. 10is valid 1o seta bit in ADDE when the corresponding bit in ENA s not set, bt if
the EMA bt 1= g2t then the cormesponding bit in ADDE must also be set. These two registers contain an idemtical

sl of fickds and consist of the following:

ATI Ex. 2027
IPR2023-00922
Page 38 of 62

AHD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 8-Hov-16 10 39 of 62
PE.RE:P_EAHPLE.__EI«LE FERSP SAMPLE 1 YGRRD
FERSF SRMPLE J VGPR1
FE.REPHEEMEH“EM FERSP CENTEE 1 VGEPR2
FERSF CENTER J VGPR2
PLRSP_C!HI‘HDID_M PERSE CENTROID I Ve R
FERSE CENTROID J WVEPRS
PERSE PULL MODEL ENA | PERSP PULL MODEL ISW VEPRE
- Ll - T ot e —
FERSP PULL MCDEL J/W VGPRT
FERSEP FULL MGDEL L/W VG_!‘RE
LINEAR_SAMPLE ENAR LINEAR SAMPLE I VEPRD
LIH_'EI.H. ERMPLE J VG_E:F.IIZI
LINEAR_CENTER_ENA LINEARE CENTER I VEPRL1
LINEAR CENTER J VG_EF-IZ
LINEAR_CENTROID ENA LINEAR CENTECID I WVEPRLI
LINEAR CENTROID J VGPR14
LINE STIPPLE TEX EMA | LINE STIPPLE TEX WVEPELS
Fo5 X FLOAT ENA O3 X FLOAT '-"ﬁ_i‘_l&ﬁ
P38 Y FLOAT EHA POS Y FLOAT WGPRLT
P05 I FLOAT ENA POS % FLOAT VGFRLE
POS W FLOAT EHA POS W FLOAT VEPRLS
FRONT FACE ENA FEONT FACE VGPRI0
ANCI LI..I'.RY_EH.P. Ml_ln.dntlzﬁ; 1&] ., VGPR21
Swlahﬂm[ll:ﬂl,
Prim Typ[l:0]
SAMFPLE COVERAGE ENA SAMPLE COVERAGE VGPRLZ
Ppog FINED PT EMA Position ([¥[1E], X{1E]] WVEPR2 3

Thie above table shows VGPR destinations for P5S when all possible terms arc enabled. If PS_INPUT _ADDR ==
PS_INPUT_ENA, then PE VGPRs pack iowards VGPRO as terms are disabled,

PERSE_SAHPLE EHA 1 1 PEREE_SAMPLE [VEERD
PERSP SAMFLE J VGFRL
PERSE_CENTER_EHA I 1 PERSE CENTER I VEERZ
o PERSP_CENTER J VGPRA
FERSE_CENTROLD EHR | O 1] PERSE_CENTRCID 1
PERSF CENTROID J
FERSE_PULL_HODEL_ENA | @ 1] PERSF PULL MODEL 1/W

FERSF_FULL_MODEL J/W
PERSPF PULL MODEL 1/W

LINEAR_SAMFLE_ENR 1] 1] LINEAR SAMPLE I
LINEAR SAMPLE J
LINERR_CENTER_ENA [1 LINEAF, CENTER I

LINEAR CENTER J

LINEAFR, CENTROID I

LINEAR CENTROID J
e a——

=

LINEAR CENTROID EHA | O

=
xxuxxxélﬂxxah{xnxxxwﬂx

LINE ST1FPPLE_TE% _EWA | O [LINE STIPPLE TEX

P05 X FLOAT FPih 1 1 FOS_K_FLOAT A
P05 ¥ FLOAT EMA 1 1 P8 1 FLOAT S
PO5 T FLOAT Eih 0] POS £ FLOAT

P05 W FLOAT ENA [] [P03 W FLOAT

FRCHT FACE EMNA 0] FRONT FACE

ANCILLARY EHA (] (] Ancil Data

SAMPLE COVERAGE ENA | @ [SFAMPLE COVERAGE

POS FIRED PT EHA 0] Positien (Y1161, AL16]]

ATI Ex. 2027
IPR2023-00922
Page 39 of 62

ﬁ AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM. PAGE

10-Feb-15 3-Nov-16 1.0 40 of 62

However, il PS_INPUT_ADDR = P5_INPUT _EMA then the VGPR destination of enabled icmms can be
menipalated

FERSE_SAMPLE_EHA 1 1 PERSF_SAMFPLE I VGERO
L PERSF SAMPLE J WiFR 1
PERSE_CENTER_EHA 1 1 PERSP CENTER I VGPRZ
FERSF _CENTER 4 VGFRY
EERSE_CENTROID_EMR [1 1 PERSF_CENTROID 1 VGPRA skipped
PERSP_CENTROID J VGPRS skippad
FERSP PULL MODEL EHA (@ 1 PERSE PULL MODEL I/W VGPRE skippad
FERSF_FULL MODEL J/W VGFR!_skipped
FERSP PULL MODEL 1/W VGPRE akipped
LINEAR_SAMFLE_ENA [o LINEAR SAMFLE 1 X
LINERR SHMELE J X
LINEAR_CENTER_ENA @ o LINEAR CENTER I X
LINEAR CENTER J X
LINEAR_CENTROID_ERA | O 1 LINEAR _CENTROID I YGFRS akippad
LINEAR CENTROID J VGFR1D skipped
LINE STIPFLE TEX EHNA | O 1 LINE STIPFLE TEX VGFR11 skipped
POS X FLOAT EHA 1 1 POS X FLORT VEPR12Z
POS ¥ FLOAT EHA 1 1 P31 FLOAT VGPR13
POS % FLOAT EMA [[FO5_Z FLOAT i
P03 W FLOAT ENA L] o FOS W _FLOAT X
FRONT FACE EHA 0 o FRONT FACE X
ANCILLARY ENA ¥ o Ancil Data x
ERMFLE COVERAGE EHA | O 0 SAMFLE COVERAGE ®
POS_FIKED FT_EHA L] 1] Poaltien [¥[1e). X[1e]] | X

Resiriciions on programming of SPI_PS_INFUT_ENA

1) At least one of these nist be enabled:
PERSP_SAMPLE, PERSP_CENTER, PERSP_CENTROID. PERSP_PULL_MODEL
LINEAR _SAMPLE. LINEAR _CENTER, LINEAR_CENTROID, LINE_STIPFLE

3y Mo POS_ W FLT wio onc of PERSP_{SAMPLE, CENTER, CENTROID, or PULL_MODEL)

3.4 Vertex/Pixel Synchronization

The 5P is resporsible Tor synchronizing the submission of pixel waves only afier the required vertex waves haive
compleied to cnsure paruncier dita will be in the parameler caches before loading to the LDS, Pixel shaders
depend on M least one V5 wavelront 1e be complete before PS execution can stan. A P3 in the 5P cainnot be
dependent on a VE wavelront that is also pending in the SPL In order 1o gencrie pixels as a resull of a veriex
shader, the SPI musi have reccived the WS wiveDone message confirming ihai all of ihe veriex aiibuic daia has
been writien o the parameier coche, There can’t be a pixel wavelront i the SP1 which is dependent on o venex
wivelmont in the SPI because in order for the 5P e get pixels generated by o venlex shader, that verntex shader bas
to have been sent to the SO 1o do the venex shading, expon the position ad paraneters, send the positions over o
the SX, through the PA, create the prindtives, scan for pixels in the SC, then pisels enter inio the SP1. Therelore.
the 5P canmod have PE-VE dependency inside of the 5PI; the V3 has 1o already have been issued. The
synchronization that docs happen iz the SP1 has i make sure that before it lets any pivels sssociated witha V8
stant shading, e the VS is completed which means writienall of its export dota oo 1o e parmseter cache, The
design encourages the veriex shader (o export positien carly 5o the ltency 15 mindmized through the 3X-PA-5C
path to get the primitives msieriaed as soon as possible.

ATI Ex. 2027
IPR2023-00922
Page 40 of 62

."l AMD

ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM,

10-Feb-15 3-Nov-16 1.0

PAGE
41 of 62

3.5 Combined Data Flow
The combaned data Mow diagram. Figare 19, shows ol of the input controllers together with the VER write
arbitradion, resource allocation, and shader write coninollers shared between all of the controllers.

C5 Input
1
threadgroups

Vertex Input from VGT Pixel Input from SC
[} I|-|_ I |
e o W quad, bany: dala
Vemex
Controller astawe | VSR
LS,HS, [Toma | Wirita [VER
ESGESVS | = T Ak
f Baryc
| Pipeiine
VEI_ready PER
v]
Wave | "
Contralier _ PRL_reacy
LSHS, | #+——* Resource Y « i
ES.GE.VS Adlocation PS Wave
= ly o Control
-
— | L -PS onilf—
L) L L Ty
Wave Write SGFR Wrie LS Virie:
PC
NewWave Cmd SGPR Data LDS Data

Figure 19 = Combined Data Flow

[vem

¥
VEPR Write

VGPR Data

ATI Ex. 2027
IPR2023-00922
Page 41 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 42 of 62

3.6 Resource Allocation

The SPI manages the following resources as part of wavelronl launching (see online reg spec for mnges and unids)y
VGPR, 3GPR, wavcboller, on-chip LD, bamers, scraich, off<chip LDS, paramcier cache and position buffer
(VS anly), color export buler (P35 only),

GDE commeand and data credits are also managed as GDES export requests ane made.

3.6.1 CUand SIMD Assignment

The SPI is resporsible for Compate Unit {CU) and 3IMD assignmet For all shader types. PS, VS, G5, ES can
sclect between sending a wave o all 4 SIMD of a CU before stepping to the next CU or siepping CU with each
wivelmont (VS, G, ES only when met pan of o group that must go to a specific CU), Each LS dureadgroug always
steps o the next CU. amd HE has (o be semt 1o (e same CL as its parent LS.

3.6.1.1 SIMD Assignment for Work Distribution and Input Bandwidth

In eerdder 1o efliciently wilize ALL resources and shader input busses the SP1 needs o distribule waves acmoss
SIMEF a5 they are allocated. For ALL utilization. wioves should be distibated across all the SIMD ina given CU
as suceessive waves andlor threadproaps are sent to that specifie CUL For inpad bandwidih milization, wries need
1o be distribuled neross all SIMD as ey are allocated - even s wave andfor threadgroup allocation moves from
one CU o the next. These twa desires can sometimes be at adds with each other and we need schemes that can
give us acceptable belawvior for both requareme s,

Tuke om example of o compme dispatch with 2 waves per threadgroup ona 4 CU system. 15 we were only
concerned with ALLT distribution the fellowing pattern would be acceptable:

C WAVE WAVE C WAVE WAVE C WAVE WAVE C WAVE WAVE
u o 1 u o 1 U o 1 u o 1

0 SIMDO SIMD2 0 SiMD1T SIMD3 0 SIMD0D SIMDZ 0 SIMD1 SIMD3
1 SIMDO SIMD2Z 1 SIMD1 SIMD3 1 SIMDO SIMDZ i SMD1 SIMD3
2 SIMDO SIMDZ 2 SIMD1 SIMD3 2 SIMDO SIMD2 2 SIMD1 SIMD2
3 SIMDO SIMD2 3 SIMD1 SIMD3 3 SIMDO SIMDZ 3 SIMD1 SIMD3

This pattem launches the two waves from the first thresdgroup o CUG, SIMDO and 2. the e waves From the
second threadgroup 1o CU L, SIMDG and 2, ele. When the founth ihreadgroup Linnch weaps back around 1o CUO,
witves po bo SIMD and 3. Weork is distibuted micely across all SIMD in each given CU, bl this patierm s ol
good for input bandwidth utilization because there are long sequences of successive waves that do not distribue
across all SIMD. Imeach CU the pattern is (0,2, 1,3 but the lamnch-onder sequence is (00,2,0,2.0,20,3,1.5.1,3,¢1c).
A better pattern that aitacks both wilization problems looks like the following, with waves distnbuting across all
SIMD both For launch order across CU and within each CLL

C WAVE WAVE C WAVE WAVE C WAVE WAVE C WAVE WAVE
u o 1 u o 1 u o 1 u o 1

0 SIMDO ZIMD2 0 SMD1 SIMD3 0 SIMDO SIMDZ 0 SIMD1 SIMDZ
1 SIMD1 SIMD3 1 SIMDD SIMD2 1 SIMD1 SIMD3 1 SIMDO SIMD2
2 SIMDD SIMD2 2 SiMD1 SIMD3 2 SIMDO SIMD2 2 SIMD1 SIMD3
3 SIMD1 SIMD3 3 SIMDD SIMD2 3 SIMD1 SIMD3 3 SIMDO SIMD2

This example also illustmbes how the tvo ulilization soluliois con be al odds with each other. When the feurth
thireadgroup launch wraps from CUS back to CUD the input bandwidth preference would be (o allocate 1o
SIMITHE 2 bt the ALL utilization preference i3 o allocate o SIMD 3.

There are several register fickls that control how SPI distribates compute work o CU and/or SINIR.

ATI Ex. 2027
IPR2023-00922
Page 42 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 43 of 62

COMPUTE RESOURCE _LIMITS - FORCE SIMD _DIST
b= Try 1o balance inpaut bandwidih as threadgroups walk CU
1 = Foree equal SIMD distribution within a CU, ignoring input bandwidth concems

COMPUTE_RESOURCE_LIMITS - SIMD_DEST _CNTL
= acdjust prefemed SIVD I there's a condlict with previous start for target CU
1 = dont adjust and always prefer DEST SIMD

COMPUTE_RESOURCE_LIMITS - CU_GROUP_COUNT
Mumber of threadgroups 1o attcmpt to send o a CU before moving on o the next CU

IFFORCE_SIMIEY_DIST is setto | then 5P will always pick back up on the SIMID where it bell ofT ihe kst time i
senl a threadgroup o the destination CU. The setting of 3IMD_DEST_CNTL is ignored when

FORCE_SIMD _DIST is 1.

When force FORCE_SIMD_DIST is 0, SP1 tries 10 balance inpat bandwidih by following a SIMD patiern of
(0.2, 1.3} even as it walks through CU. SIMD _DEST _CNTL can be used to tweak this behavior (o either puarnsce
inpait bandwidih {1 = prefermed for purely input limited cases), or aticmpl 0 also balance SIMD distinbution within
O (0 = preferred for coses that are nod input limited)

3.6.2 GPR Management

The 5P1 provides VISGPR resource immmagement for each SIMD (sec online regisior spec Tor ranges and units),
VGPR and SGPR are allocated for each wavefront that bunches (o the Shader Armay

3.6.3 LDS Management
5P provides resource mamagenent for LDS space Tor each CU

Ench CS first_wave allocates COMPUTE._PGM_RSRC2LDS SIZE,
Each LS first_wave allocates SPI_SHADER PGM_RSRC? LS LDS SIZE,
Each ES first_subgrp allocites SP1_SHADER_PGM_RSRC2_ES.LDS_SIZE.

Each PS wave allocaies;
{numy_ps inpud_alinbules ® 12 * nom_prims_in_ wavelnon) +
SPI_SHADER_PGM _RSRCI PSEXTRA LDS SIZE

The =* 12" is doe (o PO, P10, P20 gach of which is 4 dwords (XY ZW), The maximum number of prims in o wive
is 16

I there are 32 inkerpodants and 16 prims, the resuliis 12 * 32 * 16 = 6144 dwords,
Including param_gen il becomes 12 * 33 * 16= 6336 dwords, which is the maccimum required LDS space for P5
attribic data,

3.64 Wave Buffer

Provide resource maragement for wave buffer entries for cach SIMD. Each allocated wwvefront consumes. ane
ey inits destication SIMD

3.6.5 Scratch

The SPI provides scrmich resource management, ako kpown as the temp baffer or icmp ring. for all shader tvpes.
Serach management uses o scheme where the driver allocates wip space based on a desired number of in-Night
wirves in the svstem, The SPT will divide the drver-sallocated mng imlo cqual chunks per shader armry, and also
implement a managemen scheme that allows GFX types to shane a common ring. There will be one set of
resouree management in the SPT shared between GEX ivpes. and one for cach of the C8 pipes.

ATI Ex. 2027
IPR2023-00922
Page 43 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE

‘ 10-Feb-15 3-Nov-16 1.0 44 of 62
Ir{ SE0_SHO Driver spaciies total wave shots allecaled.
5P| divides wave slobs into NUM_SE * NUM_SH_PER_SE
equal parts to be used by each SH
_ Driver specifies sze of a
&mﬂﬁh‘ _J-"' b A D } wave_shol 30 5P| can generate
Aficca L f i T ciffsat for aach wave as it s
iy - SE1_SHO / weava_siol ianched.
desired_wawves_per_sh* Fi .
7
ra
wave_siot N

In ihis scheme, the driver will program the following 8-stxe negister ficlds:

SPI_TMPRING_SIZE

WAVES|11:0] - Total stz of allocaied region in number of waves, max is 32 per CU, wave slots are not tied
directly 1o CU, bul the max mumber of waves we wanl in Might i€ a Tonction of the number of CU in the system,
WAVESIZE[24:12] — Amount of space used by cach wave in dwords, format is [2(0:8] since each wave is 64
threads (6 bits), The API specs temp space in lerms of 4 dword (component) vectors per thread up 1o a max of 4K
d-component vectors (16K * 64 threads = 1M dwords per wine), plus the drver needs somse addiiional space. The
current register sizg supports a mnge of 0= (2M=1) dwonds

The physical base of the TMPRING will be specilied as a resource. cither loaded a5 user-dua or fetched by the
50, The SP1 will provide o wave-specific offset as an SGPR term whach the shader uses alomg with the resource
1o generate phyvsical addresses. This means shaders that spill 1o scmich require two additional SGFR dwoernds for
th resource and offse.

The SPI1 will divide SP1_TMPRING_WAVES into cqual chunks per 3H and maindnin separle managemen for
cach SH, Temp space will be mamaged with an allocation scheme that allows owl-el-order deallocation so waves
can free their space as soon s the shoder completes.

Ench shader stage will have | persistemt state bit (PGMV_RERC2_*5 SCRATCH_EM) specifying whether the
shader uses wmp space or nob, IF 3 shader does not use temp space, it will not allocae a wave_slot,

The driver has o check bound shaders for a draw/dispatch versus SPILTMPRING_ WANVESIZE for that cmd
buflfer ring 1o make sure it is targe cnough, 17 ned, the driver needs 1o cither allocate a now e ring of reonganize
the existing ring by changing WAVES and WAVESIZE. I the currently allocated memory region 15 reorguned
(change WAVES and WAVESIZE bul keep samie resource). a PARTIAL_FLUSH through PS is required to
protect (he space until all pending work is done with iemp, IF 3 mew teimp ring is allocated then theee s ne need o
fush. The resource (persistent user_data) can change 1o point 1o e new surface, WAVESIZE can change so the
SPI pencrates the cormect offset for waves launched using the new surface, and the management logic will just
trmsilion 1o using the new semings as cach shader stage reaches the now dmwidispateh. There ny be some
period of thine when the obd and tew surlfaces are nol Tully used since the SP1 scorcbaard will contain a mix of

ATI Ex. 2027
IPR2023-00922
Page 44 of 62

10-Feb-15 1.0 45 of 62

winvcs from the (wo temp surfaces. The scorcboard and alloc logic do not care which sarface contains the
albocated tenp space since that info is passed 1o the shader program through the resource and ofTsel SGPR values,
The SPI only needs 1© know which temp_wave_slot was used by a given wanvefront so the cormect scoreboard bil
can be cleared when the wave compleies.

AHD ORIGINATE EDIT DATE DOCUMENT-VER, NLIM. PAGE
‘ 3-"0'-'-15

scdrebaard B o lrarsilion
from suriaced to surface |

surfaced

The TMPRING will typically be configured 1o some defiult six¢ providing enough space for fypical shader usage,
and only needs fo change when a shader with a very large TMPRING nsage is bound.

3.6.6 Barrier
Bamier respurces have a Mxed pool of 16 in each CU and are used to sy nchronize multiple wavefrons ina
threadgreup. Only HS and C8 need barriers in the 50 because those are the only shader ivpes that can share data
berween threads throngh the LDS, 17 a threadgroup consists of only one wavefront (64 threads or lessh, no barrier
resoures is allocated by the SPL

3.6.7 Bulky CS Threadgroups
C8 persistent stite inchsdes a bit that can mark the dispatch as “bulky”™, SP1 manages a single bulky slot per CU
that is consumed whenever a bulky threadgroup allocates o that CUL 1T the bulky slot is in nse. a new C8 request
marked as bulky will net B on than CU. Even single-wave threndgroups can be nurked as bulky, and ondy one of
those is wllowed on a CU at a given time. Only one bulky allecation 15 allowed ona CU. bt other types ancluding
hulky C5) can =il allecate to that CL if other resources are satisfied.

ATI Ex. 2027
IPR2023-00922
Page 45 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 46 of 62

3.6.8 Position Buffer and Parameter Cache

Parameter Cache and pesition bulfer space are managed for V5 only. V& wanves allocale panuncter and position
space unless a given wave is only processing as stream-out and nod mstenzing or is 3 “null wave” that is only scnt
1o deallocaie resources at the end of 3 growp. In the non=allocating cases the shadder won't be allowed 1o write o
gither of these buffers and space is not wasted. Pammeter cache is deallocated om the PS side when the final
primitive using verices from ihe VS has issued all of its pixcls, The SC passes along a token to the SPI indicating
that the parmneter cache space can be de-allocated. Posstion bulTer i deallocated as the PA drains positions from
the 53X, There is a signal send from the 5X 10 5P indicating that position bulfer space is frecing,

The regisier PA_CL_VE_OUT_CNTL register s snooped by the 5P fer position bulTer caleulation
vE_pasilion_count =
(1 +PA CL VS OUT CNTL GET VS OUT MISC VEC EMA(data) +
PA CL VS OUT CNTL GET VS QUT CCDISTO VEC ENAfdata) +
PA_CL_VE_OUT_CNTL_GET_VS_OUT_CCDISTI_VEC_ENA(data)) * 64

GPU_&8X_ POSE_EXPORT _REG_BUFFER_SIZE defines the physical size of the position buffer and the defaub
selting of SP1_SX_EXPORT BUFFER_SLZES POSITION_BUFFER_SIZE. This regester field can be wsed 1o
limit the amount of position space that the SPI allows 1o be in use at amy given time.

There is one kerical pasanseier cache for the entime chip, VS waves will be seni te all Shader Engines, and each SE
s alfowed to use pnd must manage | nom_SE) of the param cache. The register SPLYS OUT_CONFIG is wsed
to determing the amount of space Lo allocaic,

pe_alloe_space = (vs_expon_cownt'GPLU_ GC_ PC_PTR_WIDTH)= 1} * (ivs_hall_pack) 72 : 41}

When W5 _HALF_PACK is set the VGT will create partial V5 waves every 32 vertices (instead of a full 64). only
filling the wave halfl full. This means each wave only needs half as much pammeter cache space.

When the pammeter cache storage is two parameters wide (PC_PTR_WIDTH = 2} the equation will round up 10
the mearcst evien value and then divide by 2. Allscation always stans on an the even bank so there will be wasied
space for odd vs_expon_coonl seitings, altbough that sasted odd slon con be used 10 belp performance of reads
thirgspeh the DUPLICATE functionality deseribed in a previous seclion.

GPU_SX_ PARAMETER _CACHE DEPTH defines the plvsical sive of the paraimeter cache,
5P1_CONFIG CNTL_1LPC LIMIT _ENABLESIZE can be wsed to artificially limit the amount of parameter
cache space (hat the SPL allows o be inose at amy given time,

3.6.8.1 Late VS Allocation

The SPI supports position and param cache allocation after shader resource alloc, similar to PS color bufTer alloc,
lbowing VS 1o stan execution withoul having poafpe space lor ¢xpons, This imeans we can have more VS in
Migehd thisian M3 a0 posipe space and that means we provide more latency liding for VS feichiig and pre-gxport
ALL.

V5 ke alloc s an airempd 10 deal with cases that are curremby botllenscked by the member of VS waves (sl ¢an
be in Might. From Evergreen through S5 VS waves have o alboc both parnmeter cache and position bafTer space
befone launching, which means those resounces can limil the number of WS waves in flighi. There are cases where
the majority of the VS Latency is before any pos or param ¢xpon (e feich a bunch of data indtially, process it, then
oulpul). and late WS alloc can help hide that indtial btency by allowing VS waves 1o Lnnch without having their
cxpon space. Those W5 waves can stan and Feich their daia and ondy stall if they reach an cxpor instruction
befiore their space has been allocated

Ideally, LATE_ALLOC WE should onby be st high enough io keep P3 fed with work - amy higher than that and
ncwer WS arc just taking up resources that could be applicd 1o older PS. Inother words, if a given draw is not W5
latency limited then LATE_ WS ALLOC won't help (and could petemtially hur) perormance. Verex shobers

ATI Ex. 2027
IPR2023-00922
Page 46 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 47 of 62

with lods of Batency befone their first cxpon, cither feiches or ALU instructions, will be the best candidates fo take
advantage of ke alloc

And finally, care must be taken when setting LATE_ALLOC VS = 0 gince it can canse a deadlock with P8, V&
are allowed 1o kunch without having expon space and those VS consume shared shader resources (GPR. scraich)
urdil they ane able o export and complete, The pos/param resounces VS is waiting on ane freed by PS, so PS have
1 be able 10 make progress in order for these VS to alloc, expont, and complete. IF late alloc VS take so moch of
the shared resources that BS cannol allee and make progress, we will deadlock, This is only expecied w happen
when VS + P resource wsage is very large relative to resources avaalable: = 3/47 of VGPR or SGPR. or scratch is
crabled with a small total scratch pool, only a couple of CU presend (small configh, cic. The higher the total
VEPS resource nsage is relative w wtal resounces available, the smaller LATE ALLOC WS should be set

Similar to the L5/FS LDE deadbock scenanio. lale alloc V5 SIMD deadlock can be avoided by guamniecing there
is ol least one CU that can mun PS bt ot VS (nsing PGR_RSRCS CUEMN settings). CU resowurce deadbosck can
alse be avorded using reservations on a single CU w0 guaraniee there ane resources avadlable 1o PS that VS cannol
use. Scmich pool deadlock can be avedded by muaking sure that LATE_ALLOC VS is always bess than
SPI_TMPRING SIZE WAVES when V3 uses scrch

3.6.9 Allocation Priority

The 3-ring arbiteation priosity scheme from S1will be exaended to handle the new HP3D and nuliiple
asynchronous compute pipes. The participating pipes will be any HP3D wsk (LS, HS, ES, GS, VS, PS), GFX sk
(L5, H5, E5. G5, V5 P5, C5), and four of the cight Compute Pipes presented by the pipe pair arbitration, The
Compute Pipes presemed will have one of the following pipe priorities, determined by the
CPF_SP1_papeN_priority inerface for cach pape:

C5_HIGH = iypically above HPSD
C5_MEDUIM - wypically betwean HP3 D and GFX
C5_LOW - below GFX

To resolve o tie between multiple compute pipes of the same pipe prority level. a least recently issoed (tolem
pole) circuit will be emploved. Each time a pipe is selected 1o issue any work to the shader core, the pipe will be
v 1o botlom of the least recently bssuedd cincuin and thiss nake that pipe the lowest prionity of s PRIORITY
unlil some cther pipe of the same PRICRITY issoes a wave.

Coaming oul of resel, the least recently issued List wall be P =% P7 with pipe 0 the most Gvored matially Tor ihe
given pipe priority. The disgnom below illustmtes the pipe arbitration. OF the five prienity levels of C8 HIGH,
HF3D, C8 MEDUIM, GFX, C5 LOW, from highest 1o lowest priority levels the best winner will be chosen
MOTE: 1T there are graphics twsk in HP3D: the HP3D pipe arbitration can win, but the post graphics stoder tope
arbitmtion could result ina GFX wove sclection. Doe to the pipelining of HP3D and GFX inthe smne physical
pipcling, there are cases where GFX or HPSD could be more important fo the prierity winmer.

The follewing table shows (he totem pele amangemen from lefl o dght. The Pnowhere nis the compate pipe
providing the work group and ihe (-, H, M. L}, - No work, H — pipe priority High, M - pipe priority Medium, L -
pipe prionity Low, Forench tine period (he four ow of cight C3 pipes that survive pipe pair arbindion are shown
in red, and the underlined pipeling is (he one that pipe arbitmtion will sclect from the & competing pipelines.

ATI Ex. 2027
IPR2023-00922
Page 47 of 62

&

AMD ORIGINATE EDIT DATE DOCUMENT-VER. NUM. PAGE
10-Feb-15 SEN-In 1.0 48 of 62

The cument programmabbe based priority selection machine enables Mexable prionity selection berween the
pipelines of the sysicm. [can be setugs to gt a fixed proriy of revolving priority between the pipes cither line
grun ar coarse grain. The following non=conlext configurstion regrsters set by privibeged OS5/LLD dunng sclup

SPI_ARB_CYCLES_0.TS1_DURATION (16 bits)
SPI_ARB_CYCLES_1.T52_DURATION (16 bits)
SPI_ARB_CYCLES_1.753_DURATION (16 bits)

Granularity is 16, 64, 128, or 256 clocks sciks depending on DUR_MULT,
Range 16ns to 16ms at 1GHZ clock

Regisier (o specify prionty level ordening of cach time period
SPI_ARB_PRIORITY.PIPE_ORDER_TSO (3 bits)

Pricritization crders for Time slices

it = C5_H. HP3D, C5 M, GFX, OS5 L

] — HP3D, C5_H, C5 M. GFX, CS L

0%2 — HP3D, €5 H, GFX, CS M, CS L

03 — HP3D, GFX, C5_H, C5_M. C5_L

d = C5 H.CS M, CS_ L. HPID. GFX

5 — 05 M, O3 L HP3D, GFX, CS H

U6 - CS_L, HP3D, GFX, €5 H, CS M
SPI_ARB_PRIORITY.PIPE_ORDER_TSI (3 bits), Same encoding as T30
SPI_ARB_PRIORITY.PIPE_ORDER_TSZ (3 bits), Same encoding as TS0

SPI_ARB_PRIORITY,PIPE_ORDER_TS3 (3 hits), Same encoding as TS0

SPI_ARB_PRIORITY.TS0_DUR_MULT |2 bits)
SPI_ARE_PRIORITY.TS1_DUR_MULT (2 bits)
SPI_ARB_PRIORITY.T52_DUR_MULT |2 bits)
SPI_ARBE_PRIORITY.TS3_DUR_MULT (2 bits)
Murmber of sclks used to Increment duration count: 0-16, 1-64, 2-128, 3-256.

ATI Ex. 2027
IPR2023-00922
Page 48 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM,

10-Feb-15 3-Nov-16 1.0

PAGE
49 o0f62

Huardware Queue Descnpior (HOD Regisier o specily prionity of a given pipe
CP_HOD_PIPE_PRIORITY, PIPE_PRIORITY {2 bits)
il = U5 Low
il - 5 Medium
2 - 5 High

Esample @ - Fixed priority order
T50_Dusation = TS1_Duragion = T52_Duration = TS3_Duriion = 16
Pipe Owder TS0 = Pipe Order TS1 = Pipe_Onder TS2 = Pipe Owder TS3 = 2
Result in priority 2 selection from highest o lowest
HPAD} pipe always sclected if present
Any C5_H job surviving 1o fiml pipe arbitration
Amy GFX task ready 1o go
Any C5 M job sunviving 1o final pipe arbitrtion
And last oy C5_L

Example 1 - Alfernate HP3D and CS_H as higher priorviey S0/50
Ts0_Duration=TS1_Durion = T52_Dumation = 16
Ta3_Dumation = 48

Pipe_Owder TS0 = Pipe_Order TS| = Pipe_Ornder TS2 =12
Pipe_Osder TS3=10

50fa of the time Resull in prionty 2 selection omder from highest to lwest
HPAD pipe always selected il prescnt
Any C5_H job surviving to final pipe arbitation
Amy GFX sk ready 1o go
Any C5 M job sunviving 1o final pipe arbitrion
And lnst any C5 L
St of the time Result in pronty O selection onder from highest o lowest
Amy C5_H job surviving to final pipe arbitmtion
HPSLY pipe always selecied if present
Amy C5_M job sunaving 1o linal pipe arbitmtson
Any GFX task ready 1o go
And last amy C85 L

Example 2 - Picking ketween Graphies Stages

SPI_OONFIG CNTL.GPR_WRITE_PRIORITY applics across all graphics requests, regandless of HPAD or

GFX.

If GPR_WRITE_PRIORITY = Low -= High (LS, HS, ES, G5, V5, P5), and the current PIPE_ORDER is (] =

HE3D, C5_H, C5_M, GFX, C5_L and we have res from
Pi_High
P53 Med
P7_High
LS HP3D
VE GFX
PS GFX

Then the compute work will lose 10 gmphics becanse there is an HP3D request and HP3E s highesl pnonty
given the currem PIPE_ORDER. But the final winner in this example will be PS5 because i Fas the highest

GPR_WRITE_PRIORITY

ATI Ex. 2027
IPR2023-00922
Page 49 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 50 of 62

11 durasiion amd ordering are all desired ke be consiant, then sctiing up ihis machine once provides a constant
prionty between C5_H, HF3D, CS_M |, GFX, C5_L papes.

At reset or change in progranuming the machine will restan in order contineously:
TS0 =3 TS1 2 TS2=» T3 < TS0 ¢ic

The registers can be programmed at amy time without idling the shader core.

3.6.10 Virtualization of Compute Unit Masks
The progmmmable 5P1_SHADER_PGM_RSRC3.CU_EM registers provide a logical representation of the CU in
a given config, with bits 0 1o MN-1 representing the M possible CL that can be erabled in that config. Depending on
which phvsical CU are disabled by ihe SHADER_ARRAY _CONFIG regs, the SP1will shifl the logeeal CU_EN
setlings to create o physical enable mask consistent with the cument config. When CU_EM masks are virmalized
the 5P1 docsn’t need anigos scttings per SH for CU masking. i cach SH has o vinualize based onits own
SHADER_ARRAY CONFIG sciting

As an example, ke a pan that kas 10 physical CU and one disabled CU (CU4). The CU_EN settings ane shified
based on the config sering, with cach bit above the disabled CU moving up 1o an enabled CLI

cuo 1 2 3] SHADER_ARRAY CONFIG.
[alololol1lelo INACTIVE_CU (physical, per SH)
cUg 1 2 3 4 5 6 T 8 9

SPI_SHADER_PGM_RSRC3*,
(4111111411110 CU_EMN {logical, persistent state)

CUM4 disabled,
shift en bits
CUe 1 2 3 4 5 6 7 8 9 \ifualized CU enable mask
i[a[A [T a1]1]1] (enysicad

The SP1 suppons any manber from O o (NUM_CL - 1) disabled CLL

3.6.11 Resource Reservations

In arder o suppon configs with one operatioral CLU feither due 1o config, karvesting, or clk/power gating), we
nced 1o solve the problem of deadiock between TS and PS in the LDS. S pans could do this by seiting a
reservation on hall of the LDS for P5, but that means no other tvpes are allowed to use that LDS incloding C5. 5]
resoures reservation works by only allowing the one specified tvpe to use the reserved resounces. For GFXTP T,
the desise 15 1o b able 1o set a reservanbon and allow meltiple tvpes (o wse that reserved space, This will be done
by replacing the TYPE_A/B Giclds of SPI_RESOURCE _RESERWE with a new ficld that is a one-hot mask. one
bit for cach pipe, gfx stage, eic ko specify which ivpes are allowed o use the reservation. The SP1 registers for
controlling respierce reservalions ane shown below.

5P1_RESOURCE_RESERVE_CU 0 -n

VGPR 30 =0-8 blocks of 16 VGPR per SIMDY, (64 VGPRCL)
SGPR T =08 blocks of 32 SGPR per SIMID; (128 SGPR&CU)
LI¥s 118 = 0-8 blocks of 4Kbyics LDS

ATI Ex. 2027
IPR2023-00922
Page 50 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE
‘ 3-MNov-16

10-Feb-15 1.0 51of62

WAVES 14:12 =0-5blocks of | per SIMD (4 Waves/CL)
BARRIERS 18:15 =0-8 basricrs per CLI

§P1_RESOURCE_RESERVE_EN CU 0 -n

EM i s Enable the reservalions
TYPE_MASK 15:1 (st 1=P5.2=V8 3-8 4= B8 S5=HS 6 =15 7= DXCS, 8:15=
CRO-CET

QUELE_MAZK 2306 (x0 Ie=CrieueShony, 17=0ueueSledl, 18=0uneweSlon, | . . 23=0ueneSlorT
For all enabled compuie pipes in the ype nmask
RESERVE_SPACE ONLY 24:24 Mode bit for resemve type use of rescrvation space
0 - Use both the available reserved and non-resenved space
1 - Useonly ihe available reserved space

The RESERVE_SPACE ONLY feature is only honored for compute only resenvations. I the TYPE_MASK
inchxles any GFX_*, (PS. V&, G5, ES. HS, L8.CS) task in the reservation this bit will be foreed w0 and prevent
the use of RESERVE_SPACE_ONLY feature.

Similar s per-type CU_EN regs, reservation settings wne abso virnsilized soch tha (e regisiers are logical and
hardware maps them te physical CU based on the current SHADER_ARRAY _CONFIG,

3.6.12 Multiplier for Resource Limits
WCL_PIPE_PERCENT_{GFX/HP3D). WCL_PIPE_PERCENT_C5{0.7} = 5 bit value when: 0=1/32, 1=242 .,
3 =10 beoomes a multiplier of the pipeline wave in-Might registers o that o scheduling thread can provide
asynchronous of synchronous control of the wave limit distribugion scross pipelines

Graphics wave limils ane specilied s 5P1SHADER_PGM_RSRCIWAVE LIMIT]S:0]. WAVE_LIMIT has a
granalarity of 16 and 3 seiting of 0 disables the limit

Ok = o limit,

0 = up to 16 waves allowed.

(2 = wp to 32 waves allowed,

31 = up to 496 wines allowed

Compite wanve limils are specificd sz COMPUTE_RESOURCE_LIMITS WAVES PER_SH[9:0], which has 5
gramulanity of 1 and o setting of 0 disables the: limit, © = oo limdl, | = 1 wanvg allowed, 1023 = 1023 waves,

When PIPE_PERCENT is multiplicd with WAVE_LIMIT the result should not be allowed to imncale or round o
0, which would effectively dizabile the wave limit, SP@ will make sure tho if WAVE_LIMIT > 0, the mindmm
albowed muliplicd result will be 1 wave.

3.7 ExportArbitration

Export requests are made on | or possibly muliiple expon requess busses. They must simply be added o the
expont request bufTer (ERB) ihat is dedicated to the bus making the request. The skat in the bafTer is uniguely
identified by the cu-id, tag-ud provided with the request, The tags are divided evenly across the export busscs,

E.g il there are 12 fags available with 2 expon busses, then tg-ids =5 are reserved for export bus 0 and tigs 6=11
are reserved for expon bus 1

ATI Ex. 2027
IPR2023-00922
Page 51 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE

3-Mow-16
‘ 10-Feb-15 Lo 52 of 62
[L]
Mt e o ke sack rew wea
Dt A Tmreeeni bor rerpeg Ty
Froveies asrend age leil & raee wea
s]
L B, GEC P W W g Tops =T
- P
ae :] skt | ons fan
T | L e T i o ot
Enoh wwrvem age misaity T Frpm el S0 age CUmAINT CNT
e o Srivy W = LT B
£+ _,.r'" i mge 1 e i wroree ¥ [0 w0
[m—y - MW e e R T W g L8
Bl i Sk ey Wy by e - Comwxen R T 2 Lo
L eald B pec maigad | L) N Oy rel_ggm § oF 2 gran
i g W e ‘\.._ b =l i by
ATt Ty o Ll el EHT
P aga 1 [
s i & W d el el =]
g | i B L B g £, -
- 1 Oma e T R e
e o e TR
L — ET o
Ergiet fari . .
R
M =
e | I e O el O 0 O el of el
ILP'M WLPD || EiDs | 05 LR Ll
/ Weg i | Sagod | Mmoo | | Psgont Bmord | PAegyort || Wegond
el

Ve A A R w4 el a L)
il W el CUSERED W

o C e DL o S

Arfcbes poc; refwiy ol of by fom

The arbitrmtion mbes are as follows:

Arbitration occurs 1o grant access o all expon busses (2 or 4) fora given 4 phase cyvele,
There ane 4 cxpor types (Position (POS), Parameter Cache (PC), GDE and Color (OOL))
Arbitarion granis ocour &6 follows:

A Xhosses: Simd W1 granted on phase 0. Simd 273 granted on phase 2.

b. 4 busses: Simd N gramted on phase N (N=0,1,2.3)
A fixed, but programanable prioiiy, based onexpon fvpe is naindxined, E.G. Color con be assigned 1o 2
higher prieniiy thai GDS,
Within the POS, PC, and COL pypes relative wave ages (per expor bus) are maintained. This means the
cxpon redquest is assigned an age based upon the age of its request wave, and not based upon the order the
request was received. Obder exports are prionitized over vounger,
GI¥S request tvpe is mainipned in request order age, and o single order for all request busses s maintaingd,
GDS type (and only GDS) also requires an allocaiion of GDS resources be perfonmed befone issning a GDS
prant. The resprces are a GDE “CMDT input bulTer, and a GDS "DATA” input buffer. The arbiser
mantains o count of available space (decrementing such space for each gramd. and incrementing the spaos
available under control of a “free™ bos from the GIYS, For cach GI¥S export o be granted the Asbiter
requires | CMD gpace, and 4 DATA spaces 20 cach comimand granted will decrement 1 values
accordingly. There is a GDS_CMID FREE and 2 GDS DATA_FREE. Each of these adds | to it
respective coumter,

cod_count == cfg_specific_cmd_count_delault;
data_counl == ¢fg_specific_data_coum_defank:

IF(femed_connt == 1) && (data_count == 43
Grmd_pds_requests <= TRUE:

Else
Grand_pds_requests <= FALSE;

ATI Ex. 2027
IPR2023-00922
Page 52 of 62

."l AMD

ORIGINATE
10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER, NLIRM,

1.0

PAGE
S3of62

IF (gds_expor_granied)

Cnd_count <= cmd_coum = 1;
Crata_coamnt <= data_count — 4,

IT{pds_spi_cmed_Free)

Cmd_count <= ¢md_connt + 1;

IFigds spi_dala_frec)

Drata_count <= data_count + 1;

% Conflict mies: Beeause (e resource being exponted o may have a single wrile por, if is legal For centain
combinations 10 occur on the (maliple) exporn gram busses for @ given 4-phase ovele:
At mwost one bus can grant a POS requcst
Al most one bus can grant either a PC ora GDE request. Some single SH configs have 2 busses
from 35X s param cache, allowing 5P to grant a PC expon on both busses.
Configs with one packer per SH have no restnctions on color bulTer grams, Conligs with (wo
packers per SH can only allow exports destined for a given DB pair on one expon bas al 4 time,
PC grands are funher constrained as there is a single logical write port fo the PC shared by all

a
b.

S

d

previous busses choioe, amd 5o on.

3.7.1 Maintaining GDS order

sheders ina system.

This is accomplished by having cach Wave Buffer in a system skew ils PC grands, by componenl,

by 51 unicue amount from all other wave bufTers in the syslem

% To provide faimess, each arbiter cycle rotmes priorities amongst the expon bisses. The bus with highest
pricarity chaoses its prefered cxpon. The next bus chooses its prefermed expoen — bt in light of the

Two Busses:
bus O, basl
busl, bust
Four Busses

Busty, busl, bis, bus?
BEusl, bus2. bus3, busi
B2, bus3, busi, bus]
Bus3, busth, busl, bus2

To keep GDS in strct onder across both expor busses, o fifo is used. The Nilfo is wiritten for ¢nch expor request,
providing the index indo the cxpon request balfer for cach such roquest (IF there are o busses, the lifo is wide

enongh to recond two indices af a fime),

This FIFC when nof emiply enters oo arbitrtion . The anbiter may thus choose a GO request as a wirmer, IF
=0, the index is present to the cxpon control block (which contains the export roquest memory), The relevant
data is looked up For the winning gramt, and otherwise the grant will act much as o grnt on 3 non=GDS 1vpe

3.7.2 ExportGranting

When the arbiter selects o given expon for granting. the index of the export is used to read the associnied data
from the expon request bufTer. The index is wsed to regenerate o cu=id and a tag-id. [T this is (he final gmnt of a

given request then (req mask will be wero after the updaie), then the “done” fag is assercd.

When the done Nag is asserted the request is complete pnd counters, eic may be wpdated 1o reflect this.

ATI Ex. 2027

IPR2023-00922

Page 53 of 62

AM D ORIGINATE EDIT DATE DOCUMENT-VER, NLIRM, PAGE
‘ 3-MNov-16

10-Feb-15 1.0 54 of 62

3.8 Persistent State
The SPI supports persistent stale management for graphics shader stagees, bodh for HP3D and GFX. For each
shader stage, there is stomge for one whole set of staie s the shader launch poim preceded by fifo storage For
incremental wpcdaies, The updme fifos provide siorge for some mumber of words that could gither cover o lot of
draw/dispatch calls with small state changes or a few with large stite changes. For this class of stale, (he
persistent et is used wniil all waves using the sei have been Eaunched, s which time the wavelront launch is
stabled while the persestent st s updited with (e incremenial stale clanges, Onee all updates have been applicd
(up until the next DRAW INITIATOR) the shader stage is allowed o launch waves from the new state st Each
shader stage can do ils respective update independently and likely an diffierem times.

The independent persistent state per stage decowples the shader stage state from sther stages and pipelines. Thas
results in better wse of the remaining 7 sees of context state (8th st will be clear state) by minimizing how ofien
the shared state seis are needed. The shader stage state can be many small state changes or a few large siate
changes. The update and lnal persistent storage will be doubled so the inermpted GEX state las a place o be
saved while HPSD work is processed. The disgrum below shows the fifos and stomge for persistent state and

siaging.

P L - -

L G i i med OF
l_gaeand = 0

FER PFEDN ¥ WE B GF EF EF i HE L% LE
FIFO FUF O riFra | Firo L] FFC rero | Fro Frg | FIFoQ FIFCe FEFQ
Tl | R TRA M0 | ek R M Al | ek 20 b ST | Hch Bt] WA | e
& @ = =) = =)
Bebch B Fd B T Pl PR ke
 d » F F
[FEE T FEGT o VE 1 Ex ES HE HE = L=
PFary Fary Farn Parn Pars Pary Fays Pora. Peen Fgam Pern Pam
Thlm AR T “lmlm f=1"5) Shalm tEmbe inte - T - T Zalm “hstn
Thom 38 | Y= Ao 38 | X3S | | 3D=3S | T3S Apaw s | A2ew2S | | 32w 3S | AZunas I | TS

P Phmpe Shombel Ve wptonl Wgsd

Figure 10 — Persistent State Update FIFOs

3.9 Partial Flush Events
SP1 provides suppont for pamial pipe Mushes thaoigh evend synchondzation with the CP. The only way to change
static resource allocation and config state 15 10 exther Mush the whole pipe or wse partial Mush events, The
difference betwesn doing a P5_PARTIAL_FLUSH and a full pipe Mush is that the PS guaramess that the pisel

ATI Ex. 2027
IPR2023-00922
Page 54 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 55 of 62

shader has lnished, bui docs nod guaranice that all daia has been wnlten out g0 memoery, The baency savings is
the dalference between wailing for memory wriles (o complete,

3.10 Wave,/Event Ordering

5P needs o maintain wince amd evenl ordening for cortmn functonality. such as feree/Thush event sigraling and
V& _done-to-PE_fpos synchronization. Since waves can comglede their shader program and pop ofT the wane
buifer out of erder, SPI needs another method for remembering order. To accomplish this the SPT will keep an
evend_wave_crawler For coch shader vpe that gets pushed for every wave and For events of ierest to that tvpe. A
“done’ status bit is kept for each crowler spot and the crawler cannot advance past a wave until that spot”’s done hit
is set, This allows waves 1o complete and deallec shared resources out of order while also kecping evems and
waves i onder,

3.11 Event Collection

SP1 must collect eeraln cvem_bd across graphics skader types and sotily (he CP when the cvents are doie, These
events are end_of_pipe (EOP) type events and CONTEXT_DONE. For CONTEXT_DONME. SP1 must see the
cvend across all of LS HS ES G5 VE PSn before signaling the CP. For EOP evemts, SPI must see the event across
all of LS, HS.ES.GS. VS PSnand DX 1-CS before signaling CP. EOP events inclide CACHE FLUSH TS,
CACHE_FLUSH_AND_INV_TS. BOTTOM_OF_PIPE_TS. FLUSH_AND_INV_DB_DATA_TS. and
FLUSH_AND NV CB_DATA TS

3.12 H/V (horizontal/vertical) Pixel Picker (for Debug and Performance Analysis)
Registers for controlling this feature, SP1_{MWPL} TRAP SCREEN:

PESBA_LO This is the pre-shader base addness | 39:8]

This specifics the address in memory of the shader progeam that will be
invoked by pixels of imerest,

PEMA_LO This is the pre-shader memory address | 34%:5] - This specified the address
in wemery used 1o stone the daln structure used by the pixel picker pre-
shader, The memory can contain constands, atomic varables and an append
negion

GPR_MIMN.VGPR_MIN MNusher of Vector General Purpose Registers (VGPR) needed for the pre-
shader, I7 (his is Lrger than (e mimber of VGPRs needed by the mtive
shader, the 5P1 wses this setting for amy wavelronl that uses the pre-shader.
Mote: The pre-shader is responsible for preserving VGPRS il it plans 1o
resume the naive shader.

GPR_MIMN.SGPR_MIN Number of Scalar General Porpose Registers (SGPR) needed for the pre-
ahader in additipm (o the 16 extm tmp registers. I this is rger than the
namiber of SGPRS needed by the native shader, the SP1 uses this setting for
amy wavelront that uscs the pre-shader. Mote: The pre-shader is responsible
Tor preserving SGPRs il plans o resume the native shader and these are in
adcition 1o e 16 extm mp regisers,

SPI also shadows the privibeged 5C register contmlling locking of the TRAP SCREEM settings by a prvileged

clicnt.

" PA_SC P3D_TRAP SCREEN HV LOCK | Disables wriles to P30 (P0) TRAP SCREEMN regs by non- |
MSABLE_NOMN_PRIYV_WRITES privibeged clients.
PA_SC_HP3D_TRAP SCREEN HV LOCK | Disables writes to HP3D (P1) TRAP SCREEN regs by
DISABLE MNON_PRIYV_WRITES non=privileged clicms.

ATI Ex. 2027
IPR2023-00922
Page 55 of 62

3-MNov-16

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

1.0 56 of 62

10-Feb-15

SPI gets new trap_mesk bits from SC_SPL pc prim bus, 4 bis per quad, and builds it into a 64 bt mask for the
wirvelmont, Iamy of the bils ane 1 0 means that the Pixel Picker Featine is enabled and the pixel represented by e

set bil was detecied by the SC as a pixed of interest (FOI) for the Pixel Picker Feature,

A nom-zere tmpmask for the wavefront will cause the 2P1 te allocate an extra 16 3GPRs (the trap SGPRs) for the

wirve. ITthe SP1_TRAP_SCREEM_WGPE_MIN regisier value is larger than normal pixel shader's VGPR

recpuinemens, the SP1 chiooses the larger allocation. I he SP1_TRAP_SCREEN _SGPR_MIN megister value is
karger than mormal pixel shader 3GPR requircments, the SPI chooses the larger albocation prior o the bumg of the

exirn 16 imp SGPRs

Mext, the SP1 sets up the wavelront 1o run the pre=shader prior (o (he nonnal shader by loading the exira necessany

siate as follows:

Program Count (FC) € Pre-shader base address (PSBA)

(implemps 6, T) “ Pre-shader memony address (PSMA)

(tmapicmps 8_ 9} L Pre-shader 64 bit pisel-of-interest mask

(empicmps 10,115 “ Mormal pixel shader Progrmm Base Address (PBA) for contimence

Priv = | % pre-shader is o special trap handler in privileged mode that has access 1o an extr 16 SGPRs and

polentially the indicated sdditional VGPReSRGPRs. Ciher traps will be blocked until preshader completes.

Addimonally the Foellowing is requaned iFa genenic mp roune exists:
THA + trap base addness

TMA trap memory address
TrapEnable = |
T Wlf..m.ﬂ
.'f TTMPI0 | P& LD |
TTMPFE | PRAMASKEAO] |
Logical View of e [
SGPRs for a Wave Trap TTHPA
EOFRs TTMPA
| TTMPR |
Trapg S PC—
[A, -
% E ma
{ s e
SIZE-F | SOPR M3 1
Logical SGPRs |
Aleweahs e of {I
SGPR_ MBI and | |
RSACT. SGPRS S —
SGRR T
[|
\ [PR |
L | SGPAT

Figure 21 — Persistent State Update FIFOs

3.13 Wavefront Lifetime Status Counters
The overall intent of this featare is to;

ATI Ex. 2027
IPR2023-00922
Page 56 of 62

1 AMD ORIGINATE
‘ 10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER. NLUM, PAGE
1.0 57 of 62

Mecasun: the maximum wvelfront lifetime for enchitask (up to 21 tol including HP3D [L3. HS. E5.
G5, V5, PS). GFX |CE, LS, HE, ES, GS, VE, PE|, C% [Pipe 0-7]} with a mininuum granulariiy of 1024

GPU clocks

« Provide o feedback mechanism (inweompt (hrough SOGY iC amy wavelront lifetime exoeeds the maxinmm

programumable latency value

A new plivsical CLE_CNT13:0] will be provided 1o count SCLKS wixd provide a lower speed chock 1o the

winvefmont counter updabe process.

For cach phvsical wavelrom thal can be active in the sysigm ol a time, sorage fora 31 bi
(WF_LIFETIME_CNT]30:0]) wave lifetime connl, a 1 it START Nag and 1 bit ACTIVE Nag will be provided
There will be 40 instances {10 WavesSIMD * 4 SIMDVCL) for each CU in the system. The wave bype and
sonerce pipeling will be obiained from existing storage inothe current wave baffer, The coums stored in these
Focatbons will havg a sMursie ol the max possible value, The START Mag will be used 10 resel the respecting
count bo e on the Nirst update afller a wavefront has stared. The ACTIVE Nag will be used to indicage the
counter should be incremented and that a test against nax value and lmit valise for the tvpe needs 1o be done,

The selution will be controlled and momitored based on the Fellowing repgisters:

Register Niume

R

Deseriplion

WF_LIFETIME_EN

W

Emable For the Wavelront lifetime cownter [eature,
=% CLK_CNT is disabled from counding
1 = CLKE CHT is enabled 1o coum

WF_LIFETIME_SAMPLE_PERIOD|30]

W

The kardware will add a counter (CLE_CMNT]13:0]) that will
incremem an per core clock (SCLE, period of 1.23ns) if
WF_LIFETIME_EN==|,

This register will indicate the nomber of clocks (in units of 1024
SCLES) requined for CLE_CNT[13:0 to count 1o Inigger a
process o merement each sctive WF_LIFETIME _CNT and test
Agminst limit registers.

This connter controls the time unil grmalanty used 1o measune
the lefetime of each wavelrom. The mange of settings will be @
(1024 SCLK) < 135 (16,380 SCLES) inwmts of 1024 SCLEKs

Based ona SCLE mnning ot 300MH:, the mnge of the period
settings supponcd by this coumter is ~1.280s (o 19 2us

WF_LIFETIME_LIMIT[31:0]

A 32<bil render state limat register per pipeling (HP3D, GFX, CS
Pik—PTh, 10 in total. This render state register has two Debds:

[31] = EN_WARMN = When sel, indicates that the warmang
mechanism for waverfrongs initiated from this ning/pipe has bocn
cnabled, The GPL will generaie an ingroupt o ihe host for (he
first winvefront of each tvpe that exceeds the programmable
maximum lifetime valuc.

[3000] = MAX_CNT = The WF_LIFETIME_CNT[30:0] will be
tested against this limit, if excecded
o Capture max time for task type in MAX_STATUS
& Send intermap if EM_WARMN is set and thas s the lirst
agecurmence for task type since stanes was last read.

WF_LIFETIME STATUS[31:0]

Cinly

MAX CHT|300:0] — worst case wave lifetime duration since |ast
read,

INT GEMERATED[31] —hardwarce kit 1o prevent issuing mone

ATI Ex. 2027
IPR2023-00922
Page 57 of 62

&

AM D ORIGINATE

10-Feb-15

EDIT DATE
3-MNov-16

DOCUMENT-VER. NLUM, PAGE
1.0 58 of 62

thean one iermupt per wine Bpe since lst stamus poll. Clered
when WF_LIFETIME_STATUS is read.

Thene will be ome instances of this register for each task (21 totaly
HPID (LS, HE. ES. G5, V&, P5),
GFX (C5, LS, HS, ES, G5, V&, F5),
C8 (P0-T)
Repister will capture the largest WF_LIFETIME_CNT for each
task by pe.

o The firsg time & wavelront exceeds it limin regisier
{WF_LIFETIME _LIMIT), if the EN_WARN [lag is s¢1 an
interrupd will be genermbed.

» Spbsequent intermupts for the offending wave hpe will be
mask undil the status regisicr has been read. (Hidden stale
per MAX STATUS regisier will crable interrupi mask)

The purpose of this registers is te recond the nmximum mnning
value for a given waverfront type for each pipe/ring. The user can
reand this sl of regisiers 1o leam (he mmximam mnning valucs a
Ay given lime,

This ks how the above registers are wsed:

= Forench tck of the SCLE_ I (WF_LIFETIME_EN == 1) CLK_CNT 15 incremented by 1
o Aleach CLE CNT == WF LIFETIME SAMPLE PERIOD, initime winvg lifclime counls process

Resct CLE._CNT =,
For each wave

o I wivefront has START fag == 1 in wave buller

= Jero the count and clear star Nag
o Else if ACTIVE fMag in wave buffer is sci

= Increment WE_LIFETIME CNTsby |

o Ifnew WE_LIFETIME_CNT > WF_LIFETIME_STATUS.MAX CNT of it’s tvpe’s
» Sel comesponding WF_LIFETIME_STATUS MAX_CNT = WF_LIFETIME_CNT
o IFpew WE_LIFETIME_CNT > WF_LIFETIME_LIMIT MAX_CNT (limit register per vpe)
» I['WF_LIFETIME_STATUS.INT GENERATED &
WF_LIFETIME_LIMIT.EN_ WARN

s Ciencrale intermgd for ask

+ Set hidden WF_LIFETIME_STATUS.INT_GENERATED = |
+ SetWF LIFETIME STATUS(iype) = WF_LIFETIME_CNT

End For wang

s Readofa WF_LIFETIME_STATUS register will set ficlds MAX_ CWT=0 and INT_GENERATED=0
& When a wavelront is created the START fMag and ACTIVE Mag will be set
& A the commpletionfexit of the wavefront the active Mag will be cleared, preventing flse readingsfusage of 5

stale count

4 Performance

CS5 » desired perdormance of lyanching 16 threads per SE when VGPR angd SGPR load times allow
PS = desired performance of launching 16 threads per SE when WGPR, SGPR., and LDS load times allow
Verlex types — desined performance of | verex per clock when VGPR and 3GPR load times allow

ATI Ex. 2027
IPR2023-00922
Page 58 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 59 of 62

The SPI's goal will be fo efficiently usc a single VGPR write port phasc to bead the required ingai YVGPR and
saturate the nse of the wires o the SP

The 5PI's goal will be o efficiently use all four phases of the single SGPR write bus te bead the regquired inpat
SCGPR and saturate the use of the wines o the SCL

4.1 Barycentric Calculation

There will be 4 quads worth of barycentric logic (2 per picker) to cnable 16 pivels per clock. Ay fully coverced
quad pair row should ealculate cemter'centroid 1 inone clk imstead of two il both are cnabled.,

4.2 Parameter Cache Read

Read parameter data for atinbae interpolation from the parmmeter cache storage in the 5X at a rie of two
primitives per clock. sssuming there are no bank select conflicts betwesn the two primitives, and direet the writing
of that data to the LDS.

4.3 GPR Loading

Sustain loading 1 verex componend per clock perSE for V5, GS, ES. HS, and LS from the VGT 1o the 5P
VGIPRs for peak verex rates.

Sustain 1 C5 wavelront issue every 4 clocks (16 threads per clk) when writing < 3 VGPR components and < 17
SGPR dwerds. For mulii-SE configs, this can only be achieved for ordered threadgroups = 1 wave for async
compute due 1o the sigraling that nust occur between SPLo maintain threadgrowp lunch order.

Sustain 1 P5 wavelfront issue every 4 clocks {1 fmm ench packer every & clocks), 16 threads per clk, when writing
< 3 VGPR componcnis and < 17 3GPR dwords.

4.4 Pixel
Sustain 8 pixels per clock per packer with one 17 and two attributcs when there are ne more than 4 primitives per
pisel vecior and cy lindrical wrap is disabled and there are no parameicr cache pointer conflicis. Performunce
should scale elMicienby with cach additional interpolamt and'or GPR load,

4.5 Graphics Balanced Throughput Cases

Figure 22 shows the balanced throughpat case of WS and PS only where a test provides precisely the amount of
dawn recpuared (o demonstrate the peak performance of the desipn. This example assumes a conlig that can provide
4 quads per ¢k w the 5P with 2 VGPR input bisses (o load dvin. Each V5 wave takes 64 clocks o banld and o
mininmm of 4 clocks to send through the SPI and inio the MGPRs. Each PR wave takes a minimum of 8 clocks,
buat withe 2 anpant busses that is equivalent 1o | wave every 4 clocks, INevery VE creates exactly 15 PS, the pipe is
perfectly balanced through the SP1 ko the VGPR

— 64 clocks ——j
VGT_SPl_vsvert |

SC_SPl_ep

SPI_SH_input

ATI Ex. 2027
IPR2023-00922
Page 59 of 62

10-Feb-15 3-Nov-16 1.0 60 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

Figure 22 - Performance, Balanced Throughput Case, VS-S

Figure 23 shows the balanced case when Geometry Shading is enabled, ES.GS.VS take 64 clocks 1o budld, 4
clocks fo issue, cach PS iakes 4 clocks, IWevery ES creates | GS, every G5 creates 1 V5, every V5 creales 13 PS,
the pape is perfectly balanced through the SP1

— 64 clocks ——
VGT_SPl_vsvert |

VGT_SPi_esvert | 4 :

VGT_SPI_gsprim

SC_SPI_ep CEORTRRRrneetT CECerrerrnrnf|
SPI_SH_input TR | | CEECE TR | |

4 clocks

Figure 23 = Performance, Balanced Throughpot Case, E5-GS-V5-P5

This illustrmates why multiple buffers cxast for the tvpes amiving from the WGT. Inthe described peak mode, with
all of these tvpes amiving in parallel, there is a wavelront for 3 different types amving at the same time. The SPI
can only send ihe wavelront o the GPR onc ai a ime. 17 the SP1 was single buffered, the other two that didn’i win
first woukd have o stall the VOT inputs uwndil the lirs was 1ssued 10 the S0, The SP1 does indeed have multiple
buffers to prevent this bottbencek from happening.

Figure 24 shows the balanced throughpat case for Tessellation along with Geomelry shading. LS, HS, ES. G5,
VE, PS - 5 wave types coming from the VGT every 64 clocks.

ATI Ex. 2027
IPR2023-00922
Page 60 of 62

1 AMD ORIGINATE EDIT DATE DOCUMENT-VER, NUM, PAGE

10-Feb-15 3-Nov-16 1.0 61 of 62

— 64 clocks
VGT_SPl_vsvert |

VGT_SPl_esvert |

VGT_SPI_gsprim
VGT_SPI_lsvert

VGT_SPI_hsvert

SC_SPl_ep NORARRNANNNE i RRRRRRRRNRnE

SPI_SH_input (10 T T ETEETOTRTRTRTRTNRST ¥ | T TARNRTAEAT 17 [[
u
4 clocks

Figure 24 - Performance, Balanced Throughput Case, L5-HS-ES-GS-V5-PS

4.6 Performance Counters
The list of 5P perfcounter selects is defined in .. fdoc/desipnblocks/spi/pedcount xls

4.6.1 Performance Counter Binning

SPI_PERFCOUNTER_BINS.® MIN/ MAX define the mnge for which an ssocied counter should
increment. The BIN® at the end of a perfoount select determines which BIM setting that panticular count looks
at, and the range of BIM for cach count is given in spibl. For instance, if one of the perfoount sebects is set 1o
SPI_PTR_BUFF_PRIM_BING, BINO_MIN & sel to 0, and BING_MAX iz set 1o 4, then the count should
mcrement far ench wive that contians between 1 and 5 primitives.

5 Clock Gating

The SPI acts as the CGTS (shader core) clock gating master controller. When the SPI stans receiving new shader
waork For processing, the clock gate state machine begins the process of tuming on the ALL clocks. The SP1 muost
see "all clocks on™ go active from ihe clock gate Sh before unching wavelronis.

The 5PI also includes CGTT medivm grain clock gating that allows the SP1 clocks to fum off when the block is
idliz,

ATI Ex. 2027
IPR2023-00922
Page 61 of 62

AHD ORIGINATE EDIT DATE DOCUMENT-VER, MLIM, PAGE
‘ 10-Feb-15 it 10 62 of 62
EPI_M Clock Gating
ca_gite_scik
: | ook vy 8 R e & Shala (Rl
'F"::"'_) T iopet FIROw 22 Puee comrtars, 10 rega
~esc_sewl {:_'_ i M o pon K T bdefRos Sataane
TTOR,_EFM_mgeg_ovemide]; & —_}] e Do s, e i P s
g G _CHoan 1 —-ﬁ-D- _.n...rl.ru-;-i
i 1 s 9ok
L L[m"-| | "
| I ogft_dym_pcl Dot 8 clvees P b
bu | Jhﬂgﬂm E
oan_ “—:' DELAY i -:_-ﬁ_) n;-Ep}.nn
r/::l | il T tym_ ook vl
I F'y H o
N | _l‘f_____"____}m.mwms
oy | B OV :’r'f-:II'I'F;;"I i fhre
N iy | ARR ¥ 13118
ogtt_clk_ctrl_reg{1:Q) e e 8
SPI_S Clock Gating
local
e Opfi_xisii_ncke [0 R b o S
Sii.ii0 I, V.
TTCR_SPIS_mgeg e L ! ogR_reg_ ool [oss i SRR e T8 Al
sP_5Pe sea_comre | | = E * bl el e
b oot -
*
L MO s s
mrl_h:-_gl:nr .. BELAY
l,l"‘ul W!T . dhyn_pel_vid
l.d"h & -
[R O
o by Lﬂ'r_mu_m-num 3
W T 1]
cgR_clk_cir_regf31:0]

ATI Ex. 2027
IPR2023-00922
Page 62 of 62

