ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXOOK-REVA 10f 58
il YT
Author: Laurent Lefebvre
Issue To: Copy No:

R400 Sequencer Specification

SQ

Version +-412.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabiliies and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:

Document Location: C:\perforce\rd00Wdoc_lib\designiblocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification
L : APPROVALS S
. 'Name/Dept -y - Signature/Dat
Remarks:

THIS DOCUMENT CONTAINS || \F ORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATl TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished :

work created in 2001. The use of this copyright notice is intended to provide notice that ATl owns a copyright in this

uniublished work. The copyright notice is not an admission that publication has occurred. This work contains L

proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

Exhibit 2028, docRAO0-Sequencerdes 73201 Bytes*** & ATI _Reference Copyright Notice on Cover Page © »=

ATI2028
LGv. ATI
IPR2015-00325

AMD1044_0017308

ATI Ex. 2011
IPR2023-00922
Page 1 of 58

m ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 201519 2 0f58
11 Y
I

Table Of Contents

1o OVERVIEW L.t ece et es e ame e e st a e mea s e e mename a2 ek s amenn£2aneRame 2 e e e e Rnnmeansenemeannsenrmenans

1.1 ToplLevel BIock DIagram ...

1.2 Data Flow graph (SP). .o

1.3 Control Graph. oo e 14

2. INTERPOLATED DATA BUS....

3. INSTRUCTION STOREccooeeee.

4. SEQUENCER INSTRUCTIONS ...ttt ee s ee e m st n e ame e ene s

5. CONSTANT STORES.. ..o ceerieaterceesteaseeaneaee e esaseessesaeeaase s ssessenastassessnsnsasssasesansassenas

5.1 Memory OrganiZatiONS ..o 17 L

5.2 Management of the Control Flow Constants ... 184

53 Management of the re-mapping tables ... 18t
5.3.1 R400 Constant Management ... 1815
5.3.2 Proposal for R400LE constant management ... 1815 -
533 DY DIS oo 2017
534 Free LISt BIOCK .o e 2042
535 De-allocate BIOCK ... 2148 .
5.3.6 Operation of Incremental MOGel......................... 2148 ‘

54 Constant STOre INAeXING......ooii 2148

5.5 Real TIme COMMENUS......ooiiii e 2248

5.6 Constant Waterfalling. ... 2248

6. LOOPING AND BRANCHES ..o et emeee e neaesass e amsaen s saesnsams e s aneaneneane s 2320

6.1 Thecontrolling state. ... 2326

6.2 The Control FIOW PIOGIEIM ... 2326

6.3 Data dependant predicate INStructions.............. e 2022

6.4 HW Detection 0f PV,PS . 2923

6.5 Register file INAEXING ... 2923

6.6 Predicated Instruction support for Texture Clauses ... 3023

6.7 Debugging the ShagRISccooiee e 32323
6.7.1 Method 1: Debugging regiSters ... 3023
6.7.2 Method 2: Exporting the values in the GPRS (12) ..o 3024 ¢

7. PEXEL KILL MASK L. eieeeemm e cremee s e aeeaaneaeame s esneasnsasse s amsananassessnesnses seeanenssnsan 3124

8. MULTIPASS VERTEX SHADERS (HOS) .. oot ee s s eneae 324

9. REGISTER FILE ALLOCATION . ot oottt eee e e sas e ses e se et e nsameesee s 3124

10. FETCH ARBITRATION .ottt ceeanec e sn e as e ene e s s necmnnnennn 3226

11, ALU ARBITRATION ..ot eeeeane e ese e e e s s e s xameanana s e nnnnnnnn 3226

12 HANDLING STALLS .o erccaecas s cessncsm e nn e se e ma s ameneamseaamsanan s s s enneasenns 3327

13. CONTENT OF THE RESERVATION STATION FIFOSoiiieeeeeeceeee e nneaees 332z

T4, THE OQUTPUT FILE. oot c e ee e nss e sre st e e s s anemte s s ameaenssan e emnnnsnnan 33227

BT NI L 2 7 SO 3327

15 Interpolation of constant attributes ... 3428

16. STAGING REGISTERS ..o cococeieeicceeseaceanamasssssmas s sasseasnsansessasansessnsessnsansnsssesssasssnsns 3428

17. THE PARAMETER CACHE ... oeeeieeeeeecrmees e nmea e s ee e amannssameanmesnn e s e s anmnsssenaneasnsas 3630

18, VERTEX POSITION EXPORTING....oiiiiieie et en e n e eme e seneamasseas 3736

| Exhibit 2028.docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017309

ATI Ex. 2011
IPR2023-00922
Page 2 of 58

”‘ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
? ‘ 24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 30f58

19. EXPORTING ARBITRATION .ooiiiioecceiiicnrreeecncarnerenmaaseesnannncsssansaneesemsamsnseeessmsssnessasnsees 3730

20. EXPORTING RULES ...corecccciieeecccinmcenaeecnmeesannssnseessnnsssessansassesensasnsesesnnnnseessansnnnesses 3830

20,1 Parameter caches @XPOrtS ..o 3830

20,2 MEMOTY EXPOTIS oot 3830

20.3 Position exports

21. EXPORTTYPES.... 38

211 VerexX Shading. ..o

21.2 0 PIXEIShATING o oo 38

22, SPECIAL INTERPOLATION MODES ... iieeeeeciiiacccns s cnae s sean s ae e asansseennnnneee 3931

22,1 Realtime COMMANTS ..o 3934

22.2 Sprites/ XY screen coordinates/ FB information..................... 3934

223 Auto generated COUNTEIS..........oiiie e 39
2231 Verex Sha'ers ... 39
2232 PIXElIShAGEIS.......o 39

23. STATE MANAGEMENT ...ccccccenniiee

23.1 Parameter cache synchronization 40

24, XY ADDRESS IMPORTS.....ccccceiemiiicememnaeeeeemmnnnmeeemmmsseeeesmmnsessesannnesssssnnnsesssssnneesssnsses 40,

24.1 Vertex indexes imports

25. REGISTERS ...

25.1 COMITOL

252 CONIEXE. .o

26. DEBUG REGISTERS....ccciieieriimmeeeeccnmmeesseensmnessmensnneesmmassneesmmmnssseesmmansssessmanesssssnsnssessensnn

261 CONIEXL....oo e s

262 CONIIOL .

27. INTERFACGES ...ttt ennvesves s s st sess s sassass st s an s sassasss s assanssans 42,

271 X ernal INterfaCes. o, 42,

272 SCH0 SP INeIaces. .. 42,
2721 SO SPH oo oo 42
2722 U S 43
2723 SQ 1o SX INterpolator BUS ... 45
2724 SQtoSP: Staging Register Data ... 4537
2725 VGT1toSQ : Vertex interface. ... 4538
2726 SQI0SX CONIOIBUSt 4941
27277 SX 1o SQ: QUEPULfile CONTIOL ... i 4944
2728 SQ10 TP CONIOl BUS ..ot 5044
2729 TPto SQ: Texture stall..........o..oooi 5142
27210 SQtoSP: Texture stall.....o.oo e 5142
27.2.11 SQtoSP: GPR and auto COUNTET ...t 5142
27212 SQ 10 SPX INStUCHONS ..o 5243
27.2.13 8P to SQ: Constant address load/ Predicate Set.................ocoooieiii, 5243
27.2.14 SQto SPx: constant BroadCastcocoioiei i 5344
27.2.15 SP0to SQ: Kill VeCtor 1080 ... 5344
27216 SQ 10 CPIRBBM DUS.....ooo oo 5344

Exhibit 2028 docR406—Sequencerdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017310

ATI Ex. 2011
IPR2023-00922
Page 3 of 58

m ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
L 24 September, 2001 4 Segtember 201519 4 0of 58
27217 CP 10 SQ: RBBM BUS........oov.oeeoooeoeee oo, 5344
27218 SQto CP: State report ... 5344
28, OPEN IS GUESvvuciieeiiiesssrenssnsssssasssssssmssssssssssssssssssssnsssssssssssssssssnsssssssssssssssnssssssssnnsssnnes 5844

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017311

ATI Ex. 2011
IPR2023-00922
Page 4 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 5 of 58
A i1} Ta'al

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

Rev 2.0 (Laurent Lefebvre
Date : April 18, 2002

First draft.

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ—SPO interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQ interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.

Updated the interfaces and added a section on
exporting rules.

Added CP state report interface. Last version of the
spec with the old control flow scheme

New control flow scheme

Exhibit 2028 docR406-Seeuencerdec 73201 Bytes™** © ATI _Reference Copyright Notice on Cover Page © **+

AMD1044_0017312

ATI Ex. 2011
IPR2023-00922
Page 5 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 6 of 58
11 Talal
1. Qverview

equencer-is-based-on-the-R300-design-tThe sequencer chooses two ALU slauses-threads and a fetch clause
hread to execute, and executes all of the instructions in a slause-block before looking for a new clause of the same

type. Two ALU e&aase&threads are executed interleaved to hide the ALU latency. L
and-ei AN P i 3 re tain-iostructions Ay £ f-pixel Learti r“r" penge
al g-P o [rFEﬁ) qg b7 3 ryation-station-fo-aly ryation-station-A-FLHEQ iste-beby)
ansati 203 olding.i @ rikil.dh S vay rrant i Taye) ¥ rvation.station. b & A yeoh
; . Frti-4F 4 Ying t f -

atareservation-stati be-chosento-exesute—Th yen ke-at-all-eight resepsation-stations hoose
an-alu-cla 3 and-all-eight-fetch-stations choos toh clay execute—The arbitrator will give
priority to clauses/ Pyt ations-clo o better-of-the-pipelineolder threads. Hwill-net-exesule-an-aly

sa-wuntk-the-feleh-fetohas-iniliated by & £ bl re-completed.-There are two separate sels-of

reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017313

ATI Ex. 2011
IPR2023-00922
Page 6 of 58

ATI Ex. 2011
IPR2023-00922
Page 7 of 58

AMD1044_0017314

= @ 9Bed 19009 uo so0N JubuAdos souass I 1Lv © oo o BT
AMIIAIIA0 K20uINDag [RIIURS) 1T 2anSL]
7 90 PEGT BB
,,,,,,,,,,,,,,,,,,,, -] ay - ay ¥7 ay sl ay r
] v
i CLTTHAAY X T
LY L) L
7 7 o | \L VLVQ 3LRIM XL m
| g0/2d 80/0d - g0/od [+ 80/2d ?zxi@«oﬁi&!af\&:: Y
E— Y —y — LNVISHOD | dL e
1 [
AN SUTINIOM
avay od .
ot~ o [J I o
" o ALVIS HOLFA <
M| ds ds ds ds OISO | 2ewde
j . LSNIXEL
avisL]
#aay
[NTER]) i i i
NOLLISH I o N s N p— N N FisninTy
% > , = FH0LS LSNI
s e W3LNI = = |
” Hseiay
TOHINCD 1 LN .
R os
HYgSSOuO M 7 i
7y pesy 40
S0l SAYAD 2= TOHINOD bt e
| XOLOA 42
TouLNOD SINVISNOD |, paddepy
L/ 7 Om H_O aEsiBey
" i
TI9LS
AW 1S v
8G 10 L WA HKXKDO-NID a816l0g lequsiteg ¢ 100z “Hequeldag $Z ' .
JOvd TANN AF™-LNIWND20d 31va Lid3 31VA LVYNIDIHO mk

” ORIGINATE DATE
.
l ' 24 September, 2001

EDIT DATE
4 September, 2015189
il Tl

R400 Sequencer Specification

PAGE
8 of 58

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017315

ATI Ex. 2011
IPR2023-00922
Page 8 of 58

ﬁ‘ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

'1

' 24 September, 2001 4 September, 201519 GEN-CYXOOOX-REVA 9058
A ST aTa)

1.1 Top Level Block Diagram

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017316

ATI Ex. 2011
IPR2023-00922
Page 9 of 58

” ORIGINATE DATE

.

' 24 September, 2001 4 September, 201519
1)

EDIT DATE

R400 Sequencer Specification

PAGE
10 of 58

Input Arbiter

— VTX RS

PIX RS

Exec Arbiter

ALU

Texture

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017317

ATI Ex. 2011
IPR2023-00922
Page 10 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXOOCK-REVA 11 0f 58
TEEYaYaY
i v
vertex/pixel vector arbiteator
Possible delay for available GPR’s &
1
[T
Texture clause 0 | gyl
G eservation station
ALU clause 0 ¢ ¢
af—peservation station
ps] FIFO o1 .
[Fexture clause 1
eservation station
i FIFO g
ALU clause 1 exture arbitrator
eservation station
.I FIFO Bt .
exture arbitrator [Fexture clause 2
eservation station
<. I FIEQ gt
lag— LU clause 2 - L I
eservation station
‘{ FIFO - B
[Fexture clause 3
eservation station
> FIFO <
leg— AL U clause 3
eservation station
>| FIFO | N
[Texture clause 4
eservation station
> FIFO -
lagg—ALU clause 4
eservation station
T FIFO B Bl
Texture clause 3
reservation station
a FIFO af
lag— LU clanse 5
eservation station
TN FIFO B Bl
[Fexture clause 6
reservation station
i} FIFO <
lagg—ALU clause 6
reservation station
F. FIFO B il
[Fexture clause 7
eservation station
[— ..IFIFO<_ —
lag—f LU clause 7
eservation station
v
Figure 2: Reservation stations and arbiters
& o £ib bove-fi £ e £ no-forobel
4 V 24 g
j onding-on-the-arbitrati £ 4 o pil--eith £34 /4 OX-Or-3-p Losoket. Th £, ot
¥ ¥ § 7 ¥ ¥ 3
TaYary! h‘fr\eac7¢snﬂn ey direse.ofth lmrlvgrm o nm-info i o) \I"v‘l'
0 ¥ g
stermine-fetoh LOD plus-othervarious-small-state bits
Cnrecoint-o pa ¥~ i W obod o by it fore-t first ElEO) allocated by
4 GRRe -k ok a-interpolated.-yval nd-de £ Intnhi,fchn rddinak {arel
= itiesrs e 44 b + H FRT iy k3 rey ¥
¥ £ 7 ¥ ¥ £ ¥ ¥
resuite-into-t GREEs. b fryryns at rye-at by acketinthe first EIEC

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017318

ATI Ex. 2011
IPR2023-00922
Page 11 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 12 of 58
LYYy
OGS rl\ o LG fatch hire.--is t? & + % o1 and.-o ondin]
foto ddress-fa). frert d-Gom i assad-do-the-fal vt identifving.the) }
ell PR _write-ad rthe-fot wen-data O toh-reguest-is-sen -4
ina-ofai n-22e-worh-of data{or-64 i)V Once-all-th suest i o b
¥ ¥ vorth-of a4 . +- G} & B i
Lioon. g int.of.ih ahiro 3, b pnitasrita he-gdata.to.-t e i
: ¥ 7 2} ¥ !
p il v the dayvel fateh.-machin rich ool B {40 thedevall h.siate.-mac o ionih,
that the s .| and-thus-the-datad Y Y . 3 PAMAR Y machineg.i nie-ih oumterof FlEO.1.4
siopib, he-Ald O.ihat data-i 3 o seed-
O t of nd-—the Jovel O-ALLLm i £ soraments-the t B n and ine
r e 4 + £ FE 2 ¥
comp of Ja) natructione o instrucho b L) ankin 4 3 L4
i ! ; ¥
{ oy sting delros nd-andnstrgction.One alast-ingh fion.has-hesndssued -tha.-packel.is 5
5 Jas He-an- : & £ 7 i
inte-ELEQZL
il ha.i achhy ALl olats % L T.Y] ey kb bitare).-one-arbi il ark iy
& .
odddnstructions {4 ¢ ke-o) and o-othor will-arbitrat PN inet Tatal d-olocks YA
r\n!] o ite-bebw 4] bwvo-arbiters-is-that-4 iy not-allowed-$ iok-% SO i mbe s-the-ofl
OHe-B-CUrERthA ing fihe-packetis-not o nderstate).
1.1k pas TS TN oy &) 3 h'ng AL Py toan.e B .3 nosition.if position.ig-re;
4 ¥ ; ¥ f ¥ ¥ -
arbiter-must-pr nt-AlLllclause ha-selected-fib Honalbbufferis-fullfor by - A, Rg with-the
2] sitional.g B fneaded.the it i ndiorad Hans .2 b it
A-so fom for-mulbinas X Pa! ’\nh' P 12 paramet & to-the LTaYT
buffer.Jiih FaTRt BN VRY.] s-full-or-doesn't-hay b TETETN TARY VI W & Bex-oroL %
g + o 14 £}
£ ot J Py
Multioses-ni shader y =t A2 nara rom-the-last e-onh /7)'
Al athar clause BrOGe! inthe. Yy FEAVIRETL (10 1o 1 ira i b, halsst. Al maching.{
-y pai £ e ag-£ toy machines y v b cister-fil g or-the-dostruction
decode-bus-a time. - Similadyonbrone-felch-state b TP to-the-reglster-fle-add
one-time-Arbitration-is-performed-by-th arbiter-bl vo-forthe-A tate-machines i the-foteh 4
maohines) byit bazan 5 e 4 achin tiryes balf fini diobs from
F } - bt v } SCHReSE g b 4 } o

Under this new scheme, the sequencer (8Q) will only use one global state management machine per veclor type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017319

ATI Ex. 2011
IPR2023-00922
Page 12 of 58

” ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

»

‘ . 24 September, 2001 4 September, 201519 GEN-CXXOO0-REVA 13058
A Ml TaTe)

1.2 Data Flow graph (SP)

w
Semesnsaiman x
I
B I j r
)7 o
= = {
Register File 4 | ‘
o l -
i A
m i Ltv MAC [LV~—wJF|]
T . ! te] jre reqy
| ipeline stage |
| pipel g ; -, ~
<
kS
2 /
B >
£ Register File \ I '
¢ A
) I\ I]
scalar input/output Al I
r Y 4 MAC - text{ |requeg
i pipeline stage i N
b=
c
-]
.
< Q - —
o [\ 1
B (8] ;
= i o L1
@ Register File - -
= El
,,,,, . i
. (]
— N MA] Texturel & quest_|a ™~
AAE = a &) \
L =
T
i pipeline stage 3 53 g
1 By
m
L .y —
hid A
§ 15 v
g & Register File
= 2
8 5 1 |
; : []
S 3 Al T texture rej st \
LN
~7 = <scalar Tnput/output [
V
< A
- N S W Mux
bt &
| | ¢
- : _— > g
<
&
]
5
£
~
d
< to Primitive Assembly Unit or RenderBackend >
J

Figure 3: The shader Pipe

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017320

ATI Ex. 2011
IPR2023-00922
Page 13 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 14 of 58
A1 Tk
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
Clause # + Rdy
WrAddr l S S EQ CST WrAddr
CMD
csT
[
Phee CMD éS}T'CSTZCsr; DX A B C Wreo
RdAddr | . i - | WiSeal yyragqr
2 v k4 v v v v ¥
i Ind
By
FETCH SP « OF
WrAddr s

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017321

ATI Ex. 2011
IPR2023-00922
Page 14 of 58

”"‘ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
A
. 24 September, 2001 4 Segtember 201519 GEN-CXXXXX-REVA 15 of 58
i Tatal
RE
B A ‘

TTTe— T — T T St
T ——
e
e T N
S ~\\.\
[— T
[Js buffer (ping-pong buffer) =
5 AD Al A2 B0 (28 bits * 2 (1) + 8 bits * 6 (delta lJs)+4 e
bits*6)* 16 (quads) * 2 (double-buffered) AQ At A2 BO
4096 bits
2 Bt co ct c2 32x128 E
B1 co ci c2 : : :
3 c3 c4 23 Do XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2 c3 c4 c5 Do
768 bits
3224
4 Dt D2 EQ Et
D1 D2 EO E1
i | | | i | i
INTERPOLATORS ‘ : - : :

FIG-FLOAT + EXPANSION |

512 XT;
‘ — =

1w || 2ol || sl

| AULT 1UR‘ ZUR‘ 3UR || AUR_‘ P] || s |} LR || 2LR || 3R 4LR X4

3‘ I e LQQQ ug

Figure S: Interpolation buffers

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017322

ATI Ex. 2011
IPR2023-00922
Page 15 of 58

= @ 9Bed 1909 uo aouoN 3ybuAdog sousRH I 1Ly © oo cormeseniesTonssrar s

wiwiSerp Supup uonejoduy :9 BN

AMD1044_0017323

XA cd ld AX
ol | 1E]| Sb ol v | 1€ | sl
-00-vv | -8z| -zi| 13| oa| zo| og 13| oa| zo| og 09 v -8z |-zb | ©
AN AL A X AX | AX | Ax | 9
65 |Sv | 2| LI 65 v 2 1L
osov | -vz| -g| 03 10 0 zv| 03 19 te) 2v|-95 0y |-v2 | -8 | &
AATALA AX| AX | AX | AX
56 6€ | €2| ss 6e ez |, |,
2508 | 02| £, 00 zal vo LY 09 zal vo W -zs-9e -0z |\ o
AlA|A AX| AX | AX
15 (S€ | 6| oo lG16e 16l oq1 0
IR A \al €0 19| ov La| €0 | 18| ov| -8y ze -ob |0 | gs
AN A AX| AX | AX
= 0a SGvEd 70) o8 t
03 0 Ko o z
| 03| 03 AX 60 |60 | xx|l0 | 1D x| VI s
za %) 09 Y)
X 120/2a | 55 190 v | 4y 00 | 00 el IFS
Xa €9 K| ov 0
AX | +a|1a Ax €01 €0 ax | 8 18] ax Y| OV g4s
o 0 I [AT Y
czlzzl lzliozLell|giL) il obL|shL piL|erl zbL|bbl okl 6L (8L | ZL | 9L |SL |vL (€L |2l | 1L |oL
86109l %Amw‘% 100z ‘tequisides vz
Jovd uoneolyoads Jeocushbes 0ovy J1va La3 F1vA FALVYNIDI-MO

ATI Ex. 2011
IPR2023-00922

Page 16 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 17 of 58

A s TaT S
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions

Al control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017324

ATI Ex. 2011
IPR2023-00922
Page 17 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 201519 18 of 58
" yay

5.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
3Q decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

53.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 86 entries and above.

5.3.2 Proposal for R400LE constant management

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-aliocation mechanismFigure-8:-De-allocation-mechanism). Note that in
the case a state is cleared a value of O is written to the corresponding de-allocation counter location so that when the
SQ is going to report a state change, nothing will be de-allocated upon the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017325

ATI Ex. 2011
IPR2023-00922
Page 18 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXOOOK-REVA 19 of 58
A il Talal
_ Free List
Addross

Renaming Table
Context 0=> N

Free_ptr—»

Current/Last
Context
(8rows of 16- 8 .
bit physical => Logical Address
128 entries copy
in eight clocks) | & Context
Physical
Address
h i
Read_ptr fgissb,
Context
Address of‘pnwca\ address
to Allocats
Global Register
Data Bus Staging Data
Constants — Buffer Physical
location € Memory
available B)
WRTR Staging Write Addr
physical Dealloc
address Counts next
o physical
schedule address
for ready Y
de-alloc } for a!l‘ocate
|
Logical address 1 i Seq
Onthe > Constant
| Request
GlbRegBus L A L |
when Isb are zero This |
f i ‘
first word of write Renaming Table RDeirsst COD?rtteXt } ‘
for 1 Comtext ner pery | 1
Current/Last Logical Logical | | | Cont_ext &
Physical Add Add | | Logical
Address ress ress b_ [Address |
- {Only {If set |
P de- dont |
Logical
Address allocate allocate
if set) or de-
| |allocate) | Renaming

table
N-Contexts

Copy Last held above to
Current Context on receipt
of Set Constant for a
new context (Hide loading —————————————— 3
behind Set State load - 16 clocks)
all other Set States just write cne
entry to current state.

Figure 78: Constant management

Exhibit 2028 docR406—Sequencerdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »= | ﬁf .

AMD1044_0017326

ATI Ex. 2011
IPR2023-00922
Page 19 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 20 of 58
Ail
SQ_STATE#

f——————ADDR

DEALOC

4CNTVW COUNTERS ——WRITE_ENABLE

Free List !
] PREVIOUS
| NOT i‘i STATE
NEW
‘ STATE
VALUE !
e
— I=
VALID
| ¢ |
OR
le———SQ IDLE
AND le——PA_IDLE
ke CP_NEW_STATE_CNTL—
REMAPPING
TABLE la——SET CTXBITS

Figure §9: De-allocation mechanism for R400LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017327

ATI Ex. 2011
IPR2023-00922
Page 20 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 21 0of 58
A HlaTalal

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one ali exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store muitiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017328

ATI Ex. 2011
IPR2023-00922
Page 21 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 22 of 58

A A s TaTal
" between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2X /1 Loads the sequencer with the content of R2.X, also copies the content of R2. X into R1.X
NOP /] latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EC_RT

RT SECTON
(Reads/\Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 918: The instruction store

| Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017329

ATI Ex. 2011
IPR2023-00922
Page 22 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 23 of 58
A H T alal

6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]

Loop_count[7:0]{31:0]

Loop_Start[7:0][31:0]

Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

We'd like to be able to code up a program of the form:

1 Loop

2: Exec TexFeich
3 TexFetch
4; AL

5: ALY

6: TexFetch
7: End Loop

8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing
these dependencies need fo be expressed in the Control Flow instructions. Additionally, without separale 'texture
clauses’ and 'ALU clauses’ we need o know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b would force the thread to stop execulion at this point (before the instruction is executed) and wait until all textures
have been felched. Given the allocation of reserved bits, this would mean that the count of an "Exec’ inshruction
would be limited to aboui 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select - position parameter, pixel or vertex memory, And the size reguired>,

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due fo the
Alloc will occur in order -~ at least until the next serialization or change from ALU to Texiure. In most cases this will
allow the exports fo occur without any further synchronization. Only 'final’ allocations or position allocations are

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017330

ATI Ex. 2011
IPR2023-00922
Page 23 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201510 24 of 58

1 Tatal
quaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be done.

6.2 1 Control flow instructions table

Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46.. 43 40 ... 34 33..16 15...12 11...0
Addressing 0001 REBERVED Instructions type * serialize (9 | Count Exec Address
instructions)

Execute up to 8 instructions at the specified address in the instruction memory. The Instruction type field telis the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized).

NOP

47 [46.43] 2.0

Addressing | 0010 | RESERVED

This is a regular NOP,

Conditional Execute

47 46 . 43 42 41 ... 34 33..186 15 .12 11...0
Addressing 0011 Condition | Boolean | Instructions type + serialize (8 Count Exec Address
address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meels the specified condition then execute the specified
instructions (up to 9 instructions), If the condition is not met, we go on fo the next control flow instruction,

Conditional Execute Predicates

47 46 . 43 42 41 .36 35 .34 33..16 15...12 11..0
Addressing 0010 Condition | RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the
condition is not met, we go on to the next control flow instruction.

Loop Start
47 46 ... 43 | 42 .17 | 16.. 12 | 1.0
Addressing | 0101 RESERVED i loop D | Jump address

Loop Start. Compares the loop Hterator with the end value. If loop condition not met jump fo the address, Forward
jump only. Also computes the index value, The loop id must match belween the starl to end, and alsc indicales which
conirol flow constants should be used with the loop.

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

‘/‘,:,—{: forma#eﬁ: Byl!ei% and Nun"lbe‘ring‘ .

AMD1044_0017331

ATI Ex. 2011
IPR2023-00922
Page 24 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 25 of 58
A A TaT S
Loop End
47 146 . 43| 42 ... 2047 19... 17 [16..12 | 11..0
Addressing | 0011 | RESERVED Predicate break | loop D | start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). if all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy o do.

Conditionnal Call
47 46 .. 43 42 41 .37 35 ...34 33...12 1.0
Addressing o111 Condition RESERVED Predicate vector RESERVED Jump address

if the condition is met, jumps fo the specified address and pushes the control flow program courter on the stack,

Return
47 146 .43 | 42 ... 0
Addressing | 1000 | RESERVED

Pops the topmost address from the stack and jumps fo that address. If nothing is on the stack, the program will just
continue to the next instruction.

47 46 ... 43 42 41...34 33 32...12 11..0
Addressing 1001 Condition | Boolean | FWonly RESERVED Jump address
address
Allocate
47 | 46 .43 | 42..41 [40... 4 | 3.0
Debug | 1010 | Buffer Select | RESERVED | Allocation size

Buffer Select takes a value of the following:

01 — position export (ordered export

10 ~ parameter cache or pixel export (ordered export)
14— pass thru (out of order exports),

If debug is set this is a debug alloc (ignore if debug DB ON register is sef to off).

End Of Program
47 [46 .43 | 42..0

RESERVED | 1011 | RESERVED

Marks the end of the program.

6.3 Implementation

S [Formatted: Bullets and Numbering }

The envisioned implementation has a buffer that maintains the stale of each thread. A thread lives in a given
lecation in the buffer during ifs entire life, but the buffer has FIFO qualiies in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017332

ATI Ex. 2011
IPR2023-00922
Page 25 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 26 of 58

it Talaiel
From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize Execution modifier forces
the thread fo be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state’. The bits kept in the multi-read ported device will be termed 'status’.

'State Bits' needed include:

Control Flow Instruction Pointer (12 bits)
Execution Count Marker 4 bits
Loop lterators (4x9 bits)
Call return pointers (4x12 bits
Predicate Bits(4x64 bits
. Export 1D (1 bit)
7. _Parameter Cache base Ptr (7 bits)
8. GPR Base Pir (8 bits)
9, Context Pir (3 bits),
10. LOD corrections (8x16 bits)

Formatted: Bullets and Numbering

SEIENTRYNTE

Absent from this list are 'Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return pirs, Predicate
bits, PC base plr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Pir, Context Pir and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits' needed include:

s Valid Thread = ‘{ Formatted: Bullets and Numbering j:
Texture/ALU engine needed e S T ———

®

o Texture Reads are oulsianding

+ \Waiting on Texture Read to Complete
» Allocation Wait (2 bits
@
&

00 ~ No allocation needed
01 ~ Position export allocation needed (ordered export
e 10~ Parameter or pixel export needed (ordered export)
s 11 ~pass thru (out of order export)
+ Allocation Size (4 bits)
o Position Allocated
e First thread of a new context
o Eventthread (NULL thread that needs to trickle down the pipe)
e Last(lbit

All of the above fields from all of the entries go into the arbitration circulfry. The arbifration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -~ one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALY arbitration is a little more complicated. First, only threads where either of Texture Reads oulstanding or
Waiting_on Texture Read to Complete are '0 are considered. Then if Allocation Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017333

ATI Ex. 2011
IPR2023-00922
Page 26 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 27 of 58

A if Y

considered if all 'older threads have already done their position allocation (position allocated bits sel). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First thread of a new context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest’ of the threads that pass through the above filters is selected, If the thread needed to allocate, then
at this time the allocation is done, based on Allocation Size. If a thread has its “last” bit sel, then i is also removed
from the buffer, never fo return.

If | now redefine 'clauses’ 1o mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc’ instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Allo¢’ instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses
even if it involved texture fetching.

The Texiure Reads Cutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not vet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a

given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texiure pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texiure unit to return a pointer to the thread buffer on completion that
clears the bit.

E ntrol-flow-programs-areJocated-in-the-R400 prog ing-guide-documen
amp e +-he-R4 grarmming-gul ent:
basic-modelis-as-folloy
der-state-defined-th boundarios:
a -7 i ; L :
p¥2 rfav— 3 -] { el ‘ﬂ} Laight 8 'PV 7 to-the-d rwhere-o i ordrol FOOF & ated
AN . [. .
3, X—-8ha _..3} Iwiin) { il /L xgh 23 £ o-theldocationwh 1 ordrel Qgram located
Pixelshaderfeteh[Z:017:0] Laight 8 bit pointers-to-the location-where lauses-control program ated
Bix aderalul 70070 | eight-8-bit pointers-to-the-location-where-each-clauses-control-program-is tod
Pixel~ —aly 01701 g B t rogram

A-poeintervalue of FF-means-that- the clause doesn’t contain-any-instructions.

Th ﬂ% ra a g‘\ 13 is ted -4 p V! ety astaiVitatel # 11 f‘!n £ 3 - it 4
& ion-of the-plek-two sra-of-the-ahr-exscution) trol-program-is-the-oply-program-aware-of the-clause
boundaries.

The-control program-has-nine-basicinstructions:

Execute

Conditional-execute
Conditional-Execute Predicates
Gonditional-jump
Conditionnal-Call

Return

Leop-star

Loop-end

NORP

Eyools IS hne-5 ifigs har inatriieh in-instruction.s to-bho.e tet
Conditional-execute-checks-a-condition-first,-and-if-true,-causes-the-specified-number-of-instructions-in-instruction
siore-to-be-exeecuted:

Loop-start-resets-the-corresponding -loop-counter-to-the-start-value-on-the-first-pass-after-it-checks-for-the-end
condition-and-if- met-jumps-over-lo-a-specified-address.

Loop-end-increments-{decrements?)-the loop-counter-and-jumps-back the-specified number of instructions.
Conditionnal-Call-jumps-to-an-address-and-pushes-the-1P-counter-on-the-stack i the-condition-is-met-On-the-return

instruction;-th ped-from-the-stack:

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017334

ATI Ex. 2011
IPR2023-00922
Page 27 of 58

” ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
T g

24 September, 2001 4 September, 201519 28 of 58

1 IaTaw]
Conditional—e o Prodicate n lock-ofinstructions-if.all-bit predicate vesto tthe-condition.
Conditional_jumps-iumpsio-a drossif ndition-is-met.
‘f\ﬂ E THA AL } RALIS ””Mp Ty E\!EY\ CERADDRESS i thea 1 " 1 i 15 t’nn
memory-line-Thusthe-compilerrmustinser NOP needed-fo-align-thejumps-on-even CER addresse
yil e itunn i g{ ils, iao than nehadar il e {or adar ont iza) oY kihe nrooram iolaue .
¥ |8 | b p— - - - 1 ud g-
ot dab g jeten . T 5 condition ey b ont e i g xr. 23 i 2 raale
the-sroaram-(ola and-setthe debug ste
YA, l"! 3, ’Fi : a&'ut' ‘(hite in ol + & o by nk b oy l'F! M- st t ¥y u_r\ ik Stxl 4
store.
o o

A-value-of-1-in-the-Addressing-means-that-the-addrese-specified-in-the o field-{orin-the-jump-address
i !n!l i B O LITE = - i dé{ i g fiald. ie d {eh 12 a-dafa than tha addrace | lative
to.th e £ i 11 nt g vl 'r’\ ora
Note that whenever-a field-is marked-as RESERVED, it is-assumed-that-all the bits-of the field-are cleared-(0).

Execute-up-to-dicinstructions-at-the-specified-address-in-the-instruction-memeny- - Last-is-set, - this-is-the-last-group-of

instructions-of elause:

This-s-a-r NOR - Last his-s-the last instruct he

I ecified-Boole bits-can-address-256-Booleans) ts-the-specified-condition-then-execute-the-specified
mstructsens {up-to-dk-instructions)-1f-Last-is-set-then-if-the-condition-is-met;-this-is-the-last group-of-instructions-to-be
e ause-Hthe-condition-is-not-met,- we-go-on-to-the-next-control flow-instruction.:

Check-the-AND/OR-of all-current-predicate-bits. - AND/OR-match he-conditio te-th ceified-number-of
Abli"l’\ Vit o de A f‘\ﬁD&' 4h‘rhnlq” Ii ord k7 np‘ﬂnv&h V' ! a n‘f 2!
set-thenif the condition-is-met,this-is the-last group-of instruct to-be-e ted-in-th S condi

met-we-go-on-to-the-next-control- flow-instruction.

Loop-Start-Compares-the-loop-iterator-with-the-end-value.-lf-loop-condition-not-met-jump-to-the- addfess Foxward
i v Also-computes the index.va e loon-id-must- match bet the start a tes-which

JEFY HY- Vaile: HOOP FFY A Py @ H ey

control-flow constants should-be-used-with-the-loop.

Loop-end.—Increments-the-counter-by-one; pa the-loo nt-with-the-end-value: cop-condition-mek;
continueelse jump-BACK fo the-start-of the-loop.

The-way-this-i ib

Q.

does-not-prevent-nested-lo and-the-inclusion-of-the-| id-make this-easy-to-do-

4 ondition-is-met. i mps_.tc%!n :\9 ified-add Fet pc ih 1ol rg_rrﬂ ar-on-the-stack.

Pops-the-topmost-address-from-the-stack-and-jurmps-to-that-address. If-nothing-is-on-the-stack, the-program-will-just
centinue-to-the-next-instruction:

f-condition-met;-jumps-to- ddress.- FORWARD- jump lowed-if-bit-31 -Bit-31-is-only-an-oplimization-for-the
compiler-and d-NCOY d-to-th B

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017335

ATI Ex. 2011
IPR2023-00922
Page 28 of 58

ﬁ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
“
’ ' 24 September, 2001 4 September, 201518 GEN-CXOO00-REVA 29 of 58
A H T alal
sont-dnfinid B8y TNRYTI G bl e rodnetesd-of 8.0 i Iy 56 - tHmesl ik
ki & h;gh {24 e o S vl £ - hinetn Tavamt It g ks COR-RY
debug-GRPRs-
. . B . . o *[Formatted: Bullets and Numbering]:
6-360.4 Data dependant predicate instructions M T

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the resuit is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported’ fo the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# —~ SETEO
PRED_SETE1_# -~ SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?} = S B e :
. de «’[Formatted: Bullets and Numbering

6-46.5 HW Detection of PV,PS *I L e

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non- : e ‘

masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by

comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

. . . : i { Formatted: Bullets and Numbering }
6-56.6 Register file indexing N e— S
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the

data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6

0 0 ‘absolute register’
o} 1 ‘relative register’
1 0 ‘previous vector'
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017336

ATI Ex. 2011
IPR2023-00922
Page 29 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 30 of 58

A laie]
" The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Prad 12 lnebooetion B ort-for 13 1 5

ot te reo-Clatd A v e H it Fax sreat] lon- ek it Lihy 4 -bite-foribe-f rech 3
perpredicate-vestor-in-the-F £ tationeA-va 1-means-that-one-cre-more-clements-in-th tor-bay
yalk £ o it 4 o oty fol bl oot Y11 £01 that-n TN 2 2
vector-have-his-predicate-bi W A-thi ip-over-the-texture-feleh.-We-have-to-make-sure-the-invalid
pixels.aren’t-considered-with-this-optimization.

6-66.7 Debugging the Shaders

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

6-6-10.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notfification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6-6-20.7.2 Method 2: Exporting the values in the GPRs (12}

The sequencer will have a debug active, count register and an address register for this mode-and-3-bits-per-clau

specifving-th tion-mode-fo se.- The-mode

Neormal

2)Debug-Kill -
1iPebug-Addr+-Gount

‘[Formatted: Bullets and Numbering }

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017337

ATI Ex. 2011
IPR2023-00922
Page 30 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXKX-REVA 31 0f58
A il IO
Under the normal mode execution follows the normal course. Undert i —al trol-fow-instructions-are
& teel b 1 5o shader instructions-of the-cla lac v NOPs. On instuch o
will- be-executed-under the-debug kil setting. rthe-other-mode, iorit kil
& d p o oy, h ded W iy 41, <3 s esfs 7y p 3 el o h i W
Aff r 3 ; e irymd et tm /n‘M 4 %} 7 i : ke YR by 5 Vvl .

Under the debug mode-{debug-kill-OR g--Addr-+count); it is assumed that the programelause-7 is always
exporting 42-n_debug vectors and that all other exports to the SX block (position, color, z, ect) will been turned off
(changed into NOPs) by the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017338

ATI Ex. 2011
IPR2023-00922
Page 31 of 58

ORIGINATE DATE EDIT DATE

R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 32 of 58

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017339

ATI Ex. 2011
IPR2023-00922
Page 32 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 33 of 58
A H T alal

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses te proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. 1J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of lJ's (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in 1J
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming PO is the interpolated parameter at Pixel O having the barycentric coordinates 1(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at VO (interpolated with 1), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-1-J).

AU =I(H)-I(0)
AOLS =J(D)-J(0)
AO2I =1(2)-1(0) PO P1
AO2J =J(2)~J(0)
AO3I =1(3)-1{(0)
AO3J =J(3)-J(0) P2 P3

PO=C+I(0)*(A-C)+JO)*(B-C)

P1=P0+A01T*(A=C)+A0LT *(B=C)
P2 = PO+A02I *(4-C)+A02J *(B—-C)
P3 =P0+A03I *(A-C)+A03J *(B-C)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2

Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017340

ATI Ex. 2011
IPR2023-00922
Page 33 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 34 of 58
TRYaYat

" Adds: 8

FORMAT OF PO's IJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A= B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
P0,1,23=A;
else if (I = 0) or (4 = 0)) and
((J = 0) or (1-I-J = 0)) and
((1-4-1=0)or (1=0)) {

if(1 1= 0) {
PO = A;
}else if(d !=0) {
PO =B;
}else {
PO=C;
/Irest of the quad interpolated normally
}
else
{
normal interpolation
}

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415]/1617 181920 21 22 23 24 2526 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 4142 43 44 45 46 47 || 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(/4567202122233637383952535455(/89101124252627
404142435657 5859 || 1213 14 1528 29 30 31 44 45 46 47 6061 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 wiill still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017341

ATI Ex. 2011
IPR2023-00922
Page 34 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 350f58 | o
A pnaril TIOY

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure-1:2. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as
0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure-14.

Basis for 8-deep Latch Memory (from R300)
8x24-bit 116312 60.57813 u” per bit

Area of 96x8-deep Latch Memory 46524 7
Area of 24-bit Fix-to-float Converter 4712 % per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 103t:Area Estimate for VGT to Shader Interface

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017342

ATI Ex. 2011
IPR2023-00922
Page 35 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
t 24 September, 2001 4 September, 201519 36 of 58
TEYaYat

e S e et —————]

VGT BLOCK
{IN PA)

SHADER
SEQUENCER

VECTOR ENGINE

/

VECTOR ENGINE

Figure 1112:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER | ADDRESS }
4 bits | 7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT-% (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT-Z = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17" is going to have the address 00000001000, the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT
—7to Current_Location and reset the memory count to O before the next vector begins).

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017343

ATI Ex. 2011
IPR2023-00922
Page 36 of 58

'

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXAXX-REVA 37 of 58
A H I TaTaY
17.1 Export restrictions “

17.1.1 Pixel exports:

Pixels can export 1.2.3 or 4 color buffers to the SX(+2). The exports will be done in order. The PRED OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the §X.

17.1.2 Vertex exports: *

Position _or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED OPTIMIZE function has to be turned of if the exporis are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order o the 8X0

i * Formatted: Bullets and Numbering B

17.1.3 Pass thru exports:

Pass thru exports have to be done in groups of the form:

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered,

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader fo regular shader and vice versa.

17.2 Arbitration restrictions)
Here are the Sequencer arbitration restrictions:
1) _Cannot execute a serialized thread if the corresponding texture pending bit is set -
23 Cannot allocate position if any older thread has not allocated position
3y M last thread is marked as not valid AND marked as last and we are about 1o execule the second o pldest
thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b, Must turn off the predicate optimization for the second thread
4} Cannot execule a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

13\ i ,

Cws-olausa o-yvarte haderos Mot A hihe . sition-and - the-poi anrite.} so-do-ao-a
e x-shader-ca por : i he-poipt-sprite: a
cla i not-do! t clause 3. The-storage-n gt form-th sition ort-is-at least-84x128 memories-fo
7-if d 2 —Fh ge-f rform-th } £ en
the ition-and 2 memories o sprite Itis-aoing eta the-pixel-output fifo-f the-SX block
noH 1e-8p ing = :

The clause where the position-export-occurs-is specified by the EXPORT_LATE register. }f turned it-reans-tha
th le-golng-to-oseur-at-AlkU-elat Houn i A-occure-at-claus
He he-rules-forco-EsUin ring-ALL-clat

Bosition-exsots-an ition-export co-issued -
Al by Hy axnorh by RN o 4 ¥ ity ‘ buffor
Hoaharty B 4 b

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

B :,‘ » /[Form;Red:

Bullets and Numbering }

" ‘[Formatted:

Bullets and Numbering

; / ;{fo;m;&ed:

Bullets and Numbering

x »*{ Formatted:

Bullets and Numbering

= * {Fo;maued:

Bullets and Numbering

AMD1044_0017344

ATI Ex. 2011
IPR2023-00922
Page 37 of 58

S {Formaued: Bullets and Numbering

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201518 38 of 58
- 11 Talal e
20-1-Parametercaches-exporis
We-support ki out rd orts-to-th amete So.one-can-export-multiple times to-the-sa
e g g
BC sing-different K

re-hay b

one-IN-ORDER and-don’

Fhmasking

21-18. Export Types

L ;[Formatted: Bullets and Numbering J

-

- 5 - ’[Formatted: Bullets and Numbering }

o {Formatted: Bullets and Numbering

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

2+-118.1 Vertex Shading

15 - 16 parameter cache

16:31 - Empty (Reserved?)

32 - Export Address

33:40 - 8 vertex exports to the frame buffer and index
41:47 - Empty

48:55 - 8 debug export (interpret as normal vertex export)
60 - export addressing mode

61 - Empty

62 - position

63 - sprite size export that goes with position export

(point_h,point_w,edgeflag,misc)

212182 Pixel Shading

9} - Color for buffer O (primary)

1 - Color for buffer 1

2 - Color for buffer 2

3 - Color for buffer 3

4:7 - Empty

8 - Buffer 0 Color/Fog (primary)

9 - Buffer 1 Color/Fog

10 - Buffer 2 Color/Fog

11 - Buffer 3 Color/Fog

12:15 - Emply

16:31 - Emply (Reserved?)

32 - Export Address

33:40 - 8 exports for multipass pixel shaders.

41:47 - Empty

48:55 - 8 debug exports (interpret as normal pixel export)
60 - export addressing mode

61:62 - Empty

63 - Z for primary buffer (Z exported to ‘alpha’ component)

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

- ’[Formatted: Bullets and Numbering j

= f[Formatted: Bullets and Numbering

AMD1044_0017345

ATI Ex. 2011
IPR2023-00922
Page 38 of 58

3

” ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
o S
. 24 September, 2001 4 September, 201519 GEN-CXOOO-REVA 390f58 |
Aweeil DO i ;'{Formatted: Bullets and Numbering

22.19. Special Interpolation modes

22.119.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

22-219.2 Sprites/ XY screen coordinates/ FB information “

When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlied by the gen_lO register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

B , {f[Formatted: Bullets and Numbering }

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between O and 1.

Param_Gen_lO disable, snd_xy disable, no gen_st - 10 = No modification

Param_Gen_IO disable, snd_xy disable, gen_st ~ 10 = No modification

Param_Gen_lO disable, snd_xy enable, no gen_st ~ 10 = No modification

Param_Gen_|0 disable, snd_xy enable, gen_st — 10 = No modification

Param_Gen_l0 enable, snd_xy disable, no gen_st - 10 = garbage, garbage, garbage, faceness
Param_Gen_l0 enable, snd_xy disable, gen_st — 10 = garbage, garbage, s, t

Param_Gen_l0 enable, snd_xy enable, no gen_st — |0 = screen x, screen vy, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screeny, s,

22-319.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2™ pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a fuil vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

22.3.119.3.1 Vertex shaders ﬁ -

o ’[Formatted: Bullets and Numbering }

*[Formatted: Bullets and Numbering }

In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

223219 3.2 Pixel shaders

o _—« '[Formatted: Bullets and Numbering

In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_|0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1% register (R0.x).

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017346

ATI Ex. 2011
IPR2023-00922
Page 39 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 40 of 58
A il _DINO0
STG 0
AUTO ’ INTERPOLATORS
COUNT |
| STG1

¥
T
’ AUTO COUNT 000000

[] The Auto Count Value is

MUX broadcast to all GPRs. Itis
loaded into a register wich has
its LSBs hardwired to the
GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to
retrieve data using the TP or
GPRO ‘ sent to the SX for the RB to
|

use it to write the data to
memory

Figure 1213: GPR input mux Control

{ Formatted: Bujle‘m énd ‘Numberir‘lg b—}
23.20. State management e Sunewas

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

23-120.1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than O before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

2421, XY Address imports

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.222-2 for details on how to control the interpolation in this mode.

P R R — , ,—[Formatted: Bullets a‘nd Nﬁmbering
24-121.1 Vertex indexes imports L e
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT e - . :
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

— /;‘{ Formatted: Bullets and Numbering

=~ Formatted: Bullets and Numbering }

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017347

ATI Ex. 2011
IPR2023-00922
Page 40 of 58

R

ﬁ‘ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
! . 24 September, 2001 4 September, 201519 GEN-CXOOO-REVA 41 of 58 :
Avoil OOy B ([Formatted: Bullets and Numbering

2522 Registers
25.122 1 Control

REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and
Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead
of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-
incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from O to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPO T‘! A o Is-whet rievk s a portin asition-from-¢l 8E-Bs S t, oaition el i A
clause-7-
2+ Formatted: Bullets and Numberin
252222 Context +| [Fomatted: Buets and tumberng_
VS_FETCH {0... ight 8.bit-pointers to-th atio e h-clau ontrol-program-is located :
h¥4 ...AI '..{ A gight-8.-bit-poi ra-t locat Jher lat ontrolorogram-is.| ted
PS._FETCH. {0... gkt 8.bi inters-to-the location-whe h-clau trol-orogram-is-located
PS_ ALY {0..7 ight-8 bit peinters-to-th ationwher chclause: |-program-is-} ted
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cnti+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)
PROVO_VER O vertex-0-1-vertex 12 verex-2,3: rertex-of the primitiv
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
PS_EXPORT_MODE Oxxxx : Normal mode

xxxx : Multipass mode
If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.

VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
_COUNT___Number of locations exported by the VS (and thus number of interpolated
parameters) {0...6} i ; nlers. o nting the # of interpolated
oara sded-in-clause - 7-docated In VS EXRORT.COUN OR
of exported-voctors ry-per.clause-in-multipass mode-(per cla
PARAM_GEN_IO Do we overwrite or not the parameter 0 with XY data and generated T and S values

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © #= | = o i

AMD1044_0017348

ATI Ex. 2011
IPR2023-00922
Page 41 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 42 of 58
iy il Tas
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits)Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is
always executed).

CF_BOOLEANS 256 boolean bits

CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

: e { Formatted: Bullets and Numbering]
g h ™ T o o = <

26.23. DEBUG Registers

26-123 1 Context

DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.

DB ON turns on an off debug method 2

DB_INST_COUNT instruction counter for debug method 2

DB_BREAK_ADDR break address for method number 2

BB CLALSE

uwﬁ(‘\ﬂﬁvﬂi “{ Hv? =3 ray d hdg !r\ sl : 3 v'l:orld -2 ‘u}

DB-CLAUSE

_—l\q?\ - EETCH-{0- slavse-mode-fordebug-met 2 (0:pormal-t-addr-2- kil

L 3 '{ Férma&ed: Bullets and Numbering‘

26-223 2 Control oo RMEER SRR

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory

DB_TSTATE_MEMSIZE Size of the physical texture state memory

S {formatted: Bullets and Numbering

#

2724 Interfaces
27124 1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—8Px it means that SQ is going to broadcast the same information to all SP instances.

27224 2 SC to SP Interfaces

o 5 = ([Formatted: Bullets and Numbering

=7 Formatted: Bullets and Numberin

27:2:124.2.1 SC_SP# s T T TN
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the |,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value

Ref Pix J => 84.20 Floating Point J value

Delta Pix | (x3) => 54.8 Floating Point Delta | value

Delta Pix J (x3) => 84.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017349

ATI Ex. 2011
IPR2023-00922
Page 42 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 43 of 58
ril e aTale]

Additionally, X|Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The XY data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a [J_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector's worth of data to the SPs, he will increment the 1J_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ retuns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |,J data and two buffers of XY data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits | Description

SC_SP#_data 64 lJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)
Type 0 or 1, First clock |, second clk J
Field uLc URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8

Type 2

Field Face X Y

Bits [63] [23:12) [11:0]

Format Bit Unsigned Unsigned
SC_SP# valid 1 Valid
SC_SP# last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

2 -> Indicates X,Y Data and faceness on data bus

The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

272224272 SC_SQ

This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

. - = '{ Formatted: Bullets and Numbering]

Name Bits | Description
SC_SQ_data 46 Control Data sent to the SQ
1 clk transfers
Event - valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo

and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017350

ATI Ex. 2011
IPR2023-00922
Page 43 of 58

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201518
ri% il T

R400 Sequencer Specification PAGE
44 of 58

Empty Quad Mask - Transfer Control data

consisting of pc_dealloc

or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
request fifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers

Quad Data Valid — Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless none is in progress. In
this case the pc_dealloc will be
posted in the request queue.

Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

SC_8Q_valid 1

SC sending valid data, 2™ clk could be all zeroes

SC_8Q_data — first clock and second clock transfers are shown in the table below.

Name BitField | Bits | Description
1% Clock Transfer
SC_8Q_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0
SC_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1=>TBD
SC_8Q_pc_dealloc [5:3] 3 Deallocation token for the Parameter Cache
SC_S8SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > O and after
dispatching the Pixel Vector the SQ will decrement the count.
8C_8Q_quad_mask [10:7] 4 Quad Write mask left to right SPO => SP3
SC_8Q_end_of prim 11 1 End Of the primitive
SC_SQ_state_id [14:12] | 3 State/constant pointer (6*3+3)
SC_S5Q_pix_mask [30:15] | 16 Valid bits for all pixels SP0O=>SP3 (UL URLL,LR)
SC_SQ_prim_type [33:31] |3 Stippled line and Real time command need to load tex cords from
alternate buffer
000: Normal
010: Realtime
101: Line AA
110: Point AA (Sprite)
SC_8SQ_provok_vix [35:34] | 2 Provoking vertex for flat shading
SC_38Q _pc ptr0 [46:36] | 11 Parameter Cache pointer for vertex O
2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] | 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] | 24 LOD correction per quad (6 bits per quad)
[Name [Bits | Description

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017351

ATI Ex. 2011
IPR2023-00922
Page 44 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXOOO(-REVA 45 of 58
A AR Ta e
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event
sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.

2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been
marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled

except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two

new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

27.2.324.23 SQ to SX: Interpolator bus <~ (Formatted: bulets ond Numberg

Name Direction Bits | Description

SQ_SXx_interp_flat_vix SQ—SPx 2 Provoking vertex for flat shading

SQ_8SXx_interp_flat_gouraud | SQ--»SPx 1 Flat or gouraud shading

SQ_SXx_interp_cyl_wrap SQ—-SPx 4 Wich channel needs to be cylindrical wrapped

SQ_8Xx_pc_ptrQ SQ--8Xx 1 Parameter Cache Pointer

SQ_SXx_pc_ptr1 SQ—-SXx 11 Parameter Cache Pointer

SQ_SXx_pc_ptr2 SQ-—-SXx 11 Parameter Cache Pointer

SQ_SXx_rt_sel SQ—-8Xx 1 Selects between RT and Normal data

SQ_SXx_pc_wr_en SQ—-SXx 1 Write enable for the PC memories

SQ_SXx_pc_wr_addr SQ—-8SXx 7 Write address for the PCs

5Q_S8Xx_pc_channel_mask | SQ->SXx 4 Channel mask G . =
~:= Formatted: Bullets and Numberin

272424 2 4 SQ to SP: Staging Register Data 7 { IR T

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits | Description

SQ_SPx_vsr_data SQ-->8SPx 96 Pointers of indexes or HOS surface information

SQ_S8Px_vsr_double SQ—-SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert

SQ_SPO_ vsr_valid SQ--SPO 1 Data is valid

SQ_SP1_ vsr_ valid SQ—-SP1 1 Data is valid

SQ_SP2_vsr_ valid SQ--8SP2 1 Data is valid

SQ_SP3_vsr_ valid SQ—-SP3 1 Data is valid

SQ_8Px_vsr_read SQ--8Px 1 Increment the read pointers

Formatted: Bullets and Numbering

2725242 5 VGT to SQ : Vertex interface .
27.2.5.124.2.5.1 Interface Signal Table ‘

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017352

ATI Ex. 2011
IPR2023-00922
Page 45 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 SBeptember, 201519 46 of 58
HEReTalale]

Name Bits Description

VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information

VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert

VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_8Q_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of _vector” is high.

VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

2725224 2 52 Interface Diagrams

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

P ‘[Formatted: Bullets and Numbering]

AMD1044_0017353

ATI Ex. 2011
IPR2023-00922
Page 46 of 58

= @ 9Bed 19009 uo soy0N JybuAdos souass I 1Ly © oo e

sk}

HIONINDIS
HIAVHS

WX

s | O3

AMD1044_0017354

puss 364 0§ w4 , o z anas
e o . 19OA
h b TES HLVLS o3 & * Tes 8323s 3Ha Og Wd L Z TS BIWLE
O = s e ey = e
¥ X 1o < T voloEh o ama | o8 < A do3oea 30 Pus 264 05 wa | D20 * 7 HOLDEA 20 QNI
(o Ee N = % ST <t =
S TTanod detsa | D20 N oqamop aSisA 3ba oS wa | D0 7 TTE00T ASISA
. p G T m———————— Ty
< T uiwd wstsn | Do - e Taep astea 1A G5 v | D00 * 7 WLWI ¥SISA
N B
8540 Ly YAZH-XXKXXXONID 81GL0T 1equieldeg ¢ 100Z ‘1equieideg ¢ ' .
JOVd NNN AZL-LNIWND0A 31va L1a3 JLvQA JLYNIDIHO :

ATI Ex. 2011
IPR2023-00922

Page 47 of 58

= @ 9Bed 1909 uo aouoN 3ybuAdog sousRH I 1Ly © oo cormeseniesTonssrar s 7

"BOB[ISJU| IBA DS vd 10} WeIbelq [eoibo] palielaq | einbig

NOISSIWSNYdL Sd0LS dHANHES
NOISSTIWNSNYIL SLIYLS-Hd

i i
i i
i i
| |
i
i
|

3

HHATHDOHY

AMD1044_0017355

NOISSIWNSNYdL SdOLS dHATIHDHY

T OATd
ALAWH OAId

IND OAId

LNO YIVA OAId

v YIYd

v ANES
¢ YIVd

¢ anNgs
7 YIvd

7 aNgs

SIM IOA

2 d1d 0s
T 419 08
0 dI1d 08

uId 08

i tahal'A

85 10 8y 61510¢ JeqUBIdas ¥ | 100z Jequisides vz
Jovd uoljesyioadsg ssousnbag 00y 31va Lias 31va ILYNIDINO

ATI Ex. 2011
IPR2023-00922
Page 48 of 58

ﬂ; ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
gy . 24 September, 2001 4 September, 201519 GEN-CXOOOCK-REVA 49 of 58 :
Awwil MUY & : ST
=~ Formatted: Bullets and Numberin
272624 2.6 SQ to SX: Control bus * { T
Name Direction Bits | Description i
5Q 8Xx exp type SQo8Xx 2 00: Pixel without z (1 to 4 buffers) Formatted]
01: Pixel with z {1 to 4 buffers LTI :
10: Position (1 or 2 results) ;
11: Pass thru (4.8 or 12 resulls aligned) SaRas :
SQ_8Xx_exp _number S8 Xx 2 Number of locations needed in the export buffer || {I;ormatted
(encoding depends on the type see bellow). L ;
SQ SXx_exp_alu_id SQ-8Xx 1 ALU ID | {/E{Formatted }
SQ SXx_exp valid SQ->5Xx 1 Valid bit - { Formatted
SQ SXx _exp state SQ->8Xx 3 State Context
o e R S 777 Formatted
B0 S¥x free done Pulse to indicale that the previous export is finished ||
______ this can be sent with or without the ofher fields of the || - \Formatted
interface oy
50 8Xx _free alu id SQ-8Xx 1 ALY ID _f:;T{Formaued

Depending on the type the number of export location changes;

e Type 00 : Pixels without Z

o 00 = 1 buffer
o 01=2 buffers
¢ 10 =3 buffers
o 11 = 4 buffer
o Type 01: Pixels with Z

00 = 2 Buffers (color +2)

el *x‘{ Formatted: Bullets and Numbering

01 = 3 buffers (2 color+ 2

10 = 4 buffers (3color+2)

11 = 5 buffers (4 color + Z)

e Type 10 : Position export

o B0 =1 position

o 01 =2 positions

o 11X = Undefined
s Type 11: Pass Thru

o 00 = 4 buffers
01 = 8 buffers
10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the 8X that a given export is finished. The report

packet will always arrive either before or at the same time than the next export to the same ALU id These-fields

E f-avery-tme-t 4

e

fea s

forg

P

Name Direction Bits | Description

SXx_SQ_exp_count_rdy SXx—8Q 1 Raised by SXO0 to indicate that the following two fields
reflect the result of the most recent export

SXx_SQ_exp_pos_avail SXx-»8Q 1 Specifies whether there is room for another position.

SXx_SQ_exp_buf_avail SXx—8Q 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

. ‘/ { Formatted: Bullets and Numbering E

AMD1044_0017356

ATI Ex. 2011
IPR2023-00922
Page 49 of 58

ORIGINATE DATE

&

EDIT DATE

24 September, 2001 4 September, 201518
Talal

R400 Sequencer Specification

PAGE
50 of 58

272824 2 8 SQ to TP: Control bus

the register file where to write the fetch return data.

P

Once every clock, the fetch unit sends to the sequencer on which clause-RS line it is now working and if the data in
the GPRs is ready or not. This way the sequencer can update the fetch valid bits counters-flags for the reservation
station-ffes. The sequencer also provides the instruction and constants for the fetch to execute and the address in

Pixel mask 1 bit per pixelPixel
; :

Name MName DirectionBirection | BitsBils DescriptionDescription
TPx _8Q data rdyTPx 80 data rdy TP SQTPx— | 11 Dala readyData ready
TPx_8Q rs_line numTPx-8Q--clausenum TPt 8QTPx%— | 83 Line number in the | = "“[Formatted
B0 Reservation stationClause | 77
Aurber
TPx 80 typeThPx S0 type TPx— SQTEy— | 11 Type of data sent (OPIXEL
8Q TVERTEX) Type-of dals sent
(GRPIXEL-LVERTEX)
8Q TPx _send8Q-TRx-send SQ-TPx8G—TRx | 14 Sending valid dataSending
valid-data
SQ TPx_ constS8Q-TPx-—const 8Q—-TPx8Q--TPx | 4848 Fetch staie sent over 4 clocks
{192 bits total)Fetch state sent
over4d-clocks (1892 bits total)
SQ TP instr3G-ThRx-instr SQ--TPx8C—TPx | 2424 Fetch instruction sent over 4
clocksEe: i Hor r s
overd-clocks ;:HZ &
SQ _TPx_end of groupSQ-TPx-end.-of-clau | 8Q—-TPx8Q—TPx | 14 | Last instruction of the | ,}%LF‘ormatted
groupkast—instruction—of—the | B
clavse e e
8Q TPx TypeSQ- TR Type SQ-TPxBQ--TRx | 14 Tvpe of data sent (OPIXEL
TVERTEX) Fype—of-data-sent
80 TPx_apr phaseSQ-ThPx-gpr-phase SQ-TPxBO—TRx | 22 Write phase signalWrite phase
signal
80 TPO lod correctSQ-TRO-Jod--correct 8Q-TPOSQ--TRO | 66 LOD correct 3 bits per comp 2
components per guad LOD
& e oo 2
8 TP pix_maskSQ-TRO-pix-rmask SQ—-TPOSQ—-TRO | 44 Pixel mask 1 bit per pixelPixel
mask-1-bit perpixel
80 TP1 lod correctS8G-TR-Jod-correct SQ--TPI18Q--TRY | 68 LOD correct 3 bits per comp 2
components per gquad LOP
e ite cormp—2
compenenis-perquad
B8Q TP1 pix_maskS8G-TP1 ohemask 8Q-—-TP18G—TRL | 44 Pixel mask 1 bit per pixelPixel
rraskct-bitperpixel
80 TP2 lod correct8Q-TP2 lod_correct SQ--TP28Q--TP2 | 66 LOD correct 3 bits per comp 2
components per guad LOD
Lorres i per—Comp 2
components per quad
8Q TP2 pix mask8Q-TR2 phermask SQ-TP28Q--TR2 | 44 Pixel mask 1 bit per pixelRixel
> :
80 TP3 lod correct8Q_TR3 lod_correct SQ--TP38Q--TP3 | 66 LOD correct 3 bits per comp 2
components per quad LOD
o bits fo B 2
components perquad
80 TP3 pix maskS8Q-TR3-pix-mask BQ--TP38G-TR3 | 44

| Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017357

ATI Ex. 2011
IPR2023-00922
Page 50 of 58

ﬁ‘ ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE :
.‘ “i
. 24 September, 2001 4 September, 201519 GEN-CXCOCK-REVA 51 of 58 S : ‘
Asmeil IO SEEREEE 3 S B
S5Q TPx _rs line numSQ-TPx.-clausenum SQ-TPxSQ—TPx | 63 Line number in the V;,:{ Formatted j
Reservation stationClause R SR
number
SQ_TPx_write gpr indexSG- rite g ori SQ->TPxBG-=Thx | 77 Index into Register file for write
¥* of retumed Feich Dalalndex
ind; Raoist £il # pites
i /’ Formatted: Bullets and Numbering
22924 2.9 TP to SQ: Texture stall T { T == J
The TP sends this signal to the SQ and the SPs when its input buffer is full.
TP_SP_fetch_Stall
SQ_SP_wr_addr
R m— SuUo
L su1 1—
| ¥
su2
[Name | Direction | Bits | Description E
| TP_SQ_fetch_stall | TP— 8Q 1 | Do not send more texture request if asserted -
. i Formatted: Bullets and Numbering
240242 10 SQ to SP: Texture stall * S e
[Name [Direction [Bits | Description F
| SQ_SPx_fetch_stall | 5Q-SPx 1 | Do not send more texture request if asserted F . -
. . ;1» ‘[Formatted: Bullets and Numbering
2721H242.11 SQ to SP: GPR and auto counter *I SSeaaaaas s
Name Direction Bits | Description . .-
SQ_SPx_gpr_wr_addr SQ-->SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ—>SPx 7 Read address
SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable
SQ_SPx_gpr_wr_en SQ--8Px 1 Write Enable for the GPRs
SQ_SPx_gpr_phase SQ—-SPx 2 The phase mux (arbitrates between inputs, ALU SRC
reads and writes)
SQ_8Px_channel_mask SQ--8Px 4 The channel mask
SQ_SPx_gpr_input_sel SQ—-SPx 2 When the phase mux selects the inputs this tells from
which source to read from: Interpolated data, VTXO,
VTX1, autogen counter.
SQ_SPx_auto_count SQ-SPx 127 | Auto count generated by the SQ, common for all shader
pipes

Exhibit 2028 docR400-Sequencerdoe

73201 Bytes*** © ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017358

ATI Ex. 2011
IPR2023-00922
Page 51 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l ‘ 24 September, 2001 4 September, 201519 52 of 58 S i : S
t 2721274212 SQ to SPx. Instructions. <~ {Formatted: buesavd Numbering____)
Name Direction Bits | Description :
SQ_SPx_instr_start SQ—-SPx 1 Instruction start
SQ_SP_instr SQ—>SPx 21 Transferred over 4 cycles
0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzle 11:4
VectorDst 17:12
Unused 20:18
1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 114
ScalarDst 17:12
Unused 20:18
2: SRC C Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 11:4
Unused 20:12
3: Vector Opcode 4.0
Scalar Opcode 10:5
Vector Clamp 111
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
SQ_SPx_exp_alu_id SQ—-SPx 1 ALUID
SQ_SPx_exporting SQ—->SPx 2 0: Not Exporting
1: Vector Exporting
2: Scalar Exporting
SQ_SPx_stall SQ--8Px 1 Stall signal
SQ_SP0O_write_mask 85Q—-8P0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP1_ write_mask SQ—-SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP2_ write_mask 8Q—-»SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock
SQ_SP3_ write_mask SQ—-8P3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per | 0
clock W L -
. R ~ 2| Formatted: Bullets and Numberin
2243242 13 SP to SQ: Constant address load/ Predicate Set e { - = T = T
Name Direction Bits | Description = = o
SPO_SQ_const_addr SP0—-S8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SPO_SQ_valid SP0-8Q 1 Data valid
SP1_SQ_const_addr SP1-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer

| Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017359

ATI Ex. 2011
IPR2023-00922
Page 52 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXOO(-REVA 53 of 58
Al DO
SP1_SQ_valid SP1-5Q 1 Data valid
SP2_SQ_const_addr SP2-3Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP2_SQ_valid SP2--8Q 1 Data valid
SP3_SQ_const_addr SP3-8Q 36 Constant address load / predicate vector load (4 bits only)
to the sequencer
SP3_5Q_valid SP3--8Q 1 Data valid
| Formatted: Bullets and Numberin
2724424 2 14 SQ to SPx: constant broadcast “1 { T e
[Name | Direction [Bits | Description y
| SQ_SPx_const | SQ—-SPx | 128 | Constant broadcast . :
27.21524.2.15 SPO to SQ: Kill vector load 1 - Formattd: ket nd Nurberg
Name Direction Bits | Description e
SPO_SQ_Kkill_vect SP0—-SQ 4 Kill vector load
SP1_SQ_kill_vect SP1--3Q 4 Kill vector load
SP2_SQ_kill_vect SP2-8Q 4 Kill vector load
SP3_SQ_kill_vect SP3-8Q 4 Kill vector load o :
. . s ‘{ Formatted: Bullets and Numbering ;
27.2.1624.2 16 SQ to CP: RBBM bus - l SIS IR TR I)
Name Direction Bits | Description ;
SQ _RBB_rs SQ—-CP 1 Read Strobe
SQ_RBB_rd SQ--CP 32 Read Data
SQ_RBBM_nrtrtr SQ—-CP 1 Optional
SQ_RBBM_rir $Q--CP 1 Real-Time (Optional) i : ; S
{ Formatted: Bullets and Numbering }
2724724 2 17 CP to SQ: RBBM bus T ST
Name Direction Bits | Description
rbbm_we CP--»8Q 1 Write Enable
rbbm_a CP—-8Q 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—-8Q 32 Data
rbbm_be CP—-8Q 4 Byte Enables
rbbm_re CP-»8Q 1 Read Enable
rbb_rs0 CP—8Q 1 Read Return Strobe 0
rbb_rs1 CP-8Q 1 Read Return Strobe 1
rbb_rd0 CP—SQ 32 Read Data O
rbb_rd1 CP--8Q 32 Read Data O
RBBM_SQ_soft_reset CP-8Q 1 Soft Reset G : B
. ;;« {Format‘ted: Bullets and Numbering
224824218 SQ to CP: State report * S s S
Name Direction Bits | Description
SQ_CP_vs_event SQ—-CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ—-CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ—CP 1 Pixel Shader Event
8Q_CP_ps_eventid SQ—-CP 2 Pixel Shader Event ID

eventid = 0 => *sEndOfState (i.e. VsEndOfState)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Exhibit 2028.docR400-Sequencerdec 73201 Bytes®* @ ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017360

ATI Ex. 2011
IPR2023-00922
Page 53 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 54 of 58 SEeaas o =
ALDOn e af{ Formatted: Bullets and Numbering

24 3 Example of control flow program execution

We now provide some examples of execulion o betler llustrale the new design,

Given the program:

AluC

Alut

Tex O

Tex 1

Alu 3 Serial

Alud

Tex 2

Alus

Alu 6 Serial

Tex 3

Alu7

Alloc Position 1 buffer
Alu 8 Export

Tex 4

Alloc Parameter 3 buffers
Alu 8 Export O

Tex 5

Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

ENaG

And the execution of this program would look like this:

Pul thread in Vertex RS

Control Flow Instruction Pointer (12 bits), (CFP
Execution Count Marker (3 or 4 bits), (ECM)
Loop lterators (4x9 bits), (LD

Call return pointers (4x12 bits), (CRF

Predicate Bits(4x64 bits), (PB

Export 1D (1 bit), (EXID)

GPR Base Plr (8 bits), (GFR)

Export Base Pir (7 bits), (EB

Context Ptr (3 bits) (CPFTR)

LOD correction bits (16x6 bits) (LOD

State Bits
CFP ECM LI CRP I PB EXID GPR EB CPTR | LOD
Lo g ‘0 o ‘0) ‘o ‘o o]

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)

Texture Reads are outstanding (PENDING
Waiting on Texture Read to Complete (SERIAL)
Allocation Wall (2 bits) (ALLOC)

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017361

ATI Ex. 2011
IPR2023-00922
Page 54 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 55 of 58
A 11 Tatal

00 ~ No allocation needed
01 - Position export allocation needed (ordered export)
10 — Parameter or pixel export needed (ordered export)
11 — pass thru (out of order export

Allocation Size (4 bits) (SIZE

Position Allocated (POS ALLOC)

First thread of a new context (FIRST)

Last (1 bit), (LAST

Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
[1 [ALU [0 o lo lo o [[0

Then the thread xs pig:ked up fort’hewexecution of the first coy?tro! ﬂ’ow instruction:)

It executes the first two ALU instructions and goes back io the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID | GPR ERB CPTR CLOD
Is] 12 10 [0 0 IS} [0 iG]] |0
Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE | POS _ALLOC FIRST LAST
1 [TEX o o |0 o |o 11 5]

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texiure reads. The thread comes
back in this state:

State Bits

Status Bits
VALID TYPE | PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
1 [ALU 1 i1 0 to 1o L1 o

Because of the serial bit the arbiter must wait for the texture o return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and retumns it in
this state:

State Bits

Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
L1 [TEX o o 10 to 1o L1 [0

Again the TP frees up, the arbiter picks up the thread and executes, It returns in this state;

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »*

AMD1044_0017362

ATI Ex. 2011
IPR2023-00922
Page 55 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 56 of 58
i onnn

Status Bits o

VALID TYPE PENDING | SERIAL | ALLOC |SIZE | POS ALLOC | FIRST | LAST o
K [ALY 1 0 0 o Jo 1 |0 E

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

Status Bits |
VALID TYPE | PENDING SERIAL ALLOC SIZE | POS _ALLOC FIRST LAST
L ALY i1] 0 to 1o 1 [0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

Status Bits
VALID TYPE PENDING SERIAL ALLOC SIZE | POS ALLOC FIRST LAST
L1 | TEX o o 0 to 1o i1 o

Picked up by the’ TP and retums:

State Bits

Status Bits E

[VALID TYPE [PENDING | SERIAL | ALLOC | SIZE | POS ALLOC | FIRST | LAST
L [ALY i1 Y 10 Lo Lo i1 [0

Picked up by the ALU and returns (lets say the TP has not returned vet):

State Bits

Exhibit 2028 docR406-Sequencerdoe 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »=

AMD1044_0017363

ATI Ex. 2011
IPR2023-00922
Page 56 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201518 GEN-CXXXXX-REVA 57 of 58
A il T

VALID TYPE PENDING SERIAL ALLOC SIZE | POS _ALLOC FIRST LAST

[ALU 1 o o1 1 Jo 1 [0 I

fthe 8X has the place for the export, the 8Q is going to allocate and pick up the thread for execulion i refurms to

the RS inthis state:

CFP ECM Ll CRP PB EXID GPR EB [CPTR [LOD

[3 1 o 0 o |0 0 o 10 10 |
Status Bits
VALID TYPE PENDING SERIAL ALLCC SIZE | POS _ALLOC FIRST LAST

[1 [TEX 11 o] o 141 [1 5] |

Now, since the TP has not returned vet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

State Bits

Status Bits .
VALID TYPE | PENDING | SERIAL | ALLOC | SIZE | POS ALLOC | FIRST | LAST .
L1 | ALY 1 e 10 13 11 i1 |0

Cnee again the 8Q makes sure the SX has enough room in the Parameter cache before It can pick up this
thread.

State Bits -
CFP ECM Ll CRP PB EXID GPR EB CPTR LOD | .

[5 1 [0 10 o 11] [100 1o] =
Status Bits P
VALID TYPE PENDING SERIAL ALLOC IZE | POS_ALLOC FIRST LAST [:

[1 | TEX 1 o o lo 11 [o 1

This executes on the TP and then returns:

State Bits

L5 2

Status Bits e

Exhibit 2028 docR400-_Sequenserdoc 73201 Bytes™* © ATI -eference Copyright Notice on Cover Page © »= | ﬁf :

AMD1044_0017364

ATI Ex. 2011
IPR2023-00922
Page 57 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 58 of 58

@
™
m
5
o}
A
e
=
o}
¢}
o
0
Lea}
...f
5
.....!

TYPE | PENDING | SERIAL ALLOC : :
L1 [ALU 11 11 10 lo 11 11 L1 F
Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the

floor, the 8Q notifies the SX of export completion.

S {Formatted: Bullets and Numbering

-+

2825 Open issues

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Exhibit 2028.docR400-Sequenserdoc 73201 Bytes®** & ATI _Reference Copyright Notice on Cover Page © *+

AMD1044_0017365

ATI Ex. 2011
IPR2023-00922
Page 58 of 58

