	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	1 of 58
Author:	Laurent Lefebvre	L		1
Issue To:		Copy No:		
	R400 S	equencer Spe	ecification	
		8 8		
		SQ		
		Version 1.11 2.0		
			e	
			cer block (SEQ). It provides an over lso describes the block interfaces,	
	ocks, and provides internal st		iso describes the block interfaces,	intenial sub-
AUTOMATIC Document L	ALLY UPDATED FIELDS:	arfarca\r400\dag_lib\dagian\b	Nocks/sa/P400_Sogueneer.doe	
		Control Sequencer Specification	olocks\sq\R400_Sequencer.doc	
	Name/Dept	APPROVALS	Signature/Date	
		20.000000000000000000000000000000000000	olghatalo, Sato	
Remarks:				
. comanto.				
THIS DO	CUMENT CONTAIN	S	NFORMATION THAT CO	ULD BE
SUBSTA	ANTIALLY DETRIME	NTAL TO THE INTE	REST OF ATI TECHNOL	OGIES
	INC. THROUGH L	JNAUTHORIZED US	SE OR DISCLOSURE.	
*O		1		
work created i	n 2001. The use of this cop	pyright notice is intended to	rial in this document constitutes an provide notice that ATI owns a cor	yright in this
pr	roprietary information and tra	ade secrets of ATI. No part	publication has occurred. This w of this document may be used, re	
transmitted in a	any form or by any means wit	thout the prior written permis	sion of ATI Technologies Inc."	
Exhibit 2028.do	©R400_Sequencer.doc 73201 Bytes*** @	ATI	nce Copyright Notice on Cover Pa	ge © ***
				-

ATI 2028 LG v. ATI IPR2015-00325

AMD1044_0017308

ATI Ex. 2011 IPR2023-00922 Page 1 of 58

	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE
	24 September, 2001	<u>4 September, 2015</u> 19		2 of 58
 1.1 Top Lo 1.2 Data F 1.3 Contro 2. INTEF 3. INSTF 	VIEW evel Block Diagram Flow graph (SP) Graph RPOLATED DATA BU RUCTION STORE	JS		<u>98</u> <u>13</u> 10 <u>14</u> 11 <u>14</u> 11 <u>17</u> 14
5. CONS 5.1 Memo 5.2 Manag 5.3 Manag	TANT STORES ry organizations gement of the Control gement of the re-map	Flow Constants ping tables		
			 t	
5.3.3 (Dirty bits		t	<u>20</u> 17
5.4 Const. 5.5 Real T 5.6 Const. 6. LOOP 6.1 The const. 6.2 The C 6.3 Data const. 6.4 HW D 6.5 Regist 6.6 Predict 6.7 Debug 6.7.1 1	ant Store Indexing Time Commands ant Waterfalling ING AND BRANCHE pontrolling state ontrol Flow Program. dependant predicate in etection of PV,PS ter file indexing ated Instruction supp gging the Shaders Method 1: Debugging	S Instructions ort for Texture clauses registers	ss. (12)	2118 2219 2219 2320 2320 2320 2922 2923 2923 2923 3023 30
7. PIXEL 8. MULT 9. REGIS 10. FETC 11. ALU # 12. HAND 13. CONT 14. THE C 15. IJ FOI 15.1 Inter 16. STAG 17. THE F	KILL MASK IPASS VERTEX SHA STER FILE ALLOCAT H ARBITRATION ARBITRATION ING STALLS ENT OF THE RESER DUTPUT FILE POLATION OF CONSTANT A ING REGISTERS PARAMETER CACHE	ADERS (HOS) FION. RVATION STATION F	IFOS	<u>3124</u> <u>3124</u> <u>3124</u> <u>3226</u> <u>3226</u> <u>3327</u> <u>3327</u> <u>3327</u> <u>3327</u> <u>3327</u> <u>3327</u> <u>3428</u> <u>3428</u> <u>3428</u> <u>3630</u>

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017309

ATI Ex. 2011 IPR2023-00922 Page 2 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	3 of 58
				SWARADOW
				serverseers
				and the second se
				SANDADORA
2.1 Rea	I time commands	****		<u>39</u> 31
22.3.1				
22.3.2				
				BOLING BOLING
	,		*****	ARRONAL ARRONAL
			****	boutowitable
				BOUNDARY .
				accounts.

27.2.1				
27.2.2	SC_SQ			<u>43</u> 36
27.2.3	SQ to SX: Interpolato	r bus		<u>45</u> 37
27.2.4	SQ to SP: Staging Re	gister Data		
27.2.5	VGT to SQ : Vertex in	terface		<u>45</u> 38
27.2.6	SQ to SX: Control bus	\$		<u>49</u> 41
27.2.7	SX to SQ : Output file	control		<u>49</u> 41
27.2.8	SQ to TP: Control bus	\$		5041
27.2.9				
27.2.10				
27.2.11				*******
27.2.12				
27.2.12			Set	
27.2.13			Jet	
27.2.14				********
27.2.16	SQ TO CP: RBBM bus			

ATI Ex. 2011 IPR2023-00922 Page 3 of 58

	ORIGINATE DATE 24 September, 2001	EDIT DATE 4 September, 201519	R400 Sequencer Specification	PAGE 4 of 58		
	24 September, 2001	4 September, 2015+8 April 2002		4 01 06		
27.2.17 CP to SQ: RBBM bus						
27.2.18 SQ to CP: State report						
		* * * * * * * * * * * * * * * * * * * *		<u>58</u> 44		

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017311

ATI Ex. 2011 IPR2023-00922 Page 4 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
	24 September, 2001	<u>4 September, 2015</u> 19	GEN-CXXXXX-REVA	5 of 58	
Revision	Changes:	April 2002		1	
Rev 0.1 (Laur	ent Lefebvre)	First dra	ıft.		
Date: May 7, 2					
Rev 0.2 (Laure			d the interfaces to reflect the change		
Date : July 9, 2			led some details in the arbitration see		
Rev 0.3 (Laure			ed the Sequencer spec after the me	eting on	
Date : August Rev 0.4 (Laure		August :	the dynamic allocation method for	rogistor	
Date : August			an example (written in part by Vic		
	,		ixels/vertices in the sequencer.	,	
Rev 0.5 (Laure	ent Lefebvre)		iming diagrams (Vic)		
Date : Septem			· /		
Rev 0.6 (Laure			d the spec to reflect the new	/ R400	
Date : Septem			ture. Added interfaces.		
Rev 0.7 (Laure			constant store management, ins		
Date : October	5, 2001		anagement, control flow management	ent and	
Rev 0.8 (Laure	ont Lefebyre)		pendant predication. d the control flow method to be	e more	
Date : October			Also updated the external interfaces		
Rev 0.9 (Laure			rated changes made in the 10/18/01		
Date : October			eting. Added a NOP instruction, r		
		the co	nditional_execute_or_jump. Added		
		register			
Rev 1.0 (Laure		Refined	interfaces to RB. Added state register	ers.	
Date : October		A		- خامله ا	
Rev 1.1 (Laure		Added SEQ→SP0 interfaces. Changed delta precision. Changed VGT→SP0 interface. Debug			
Date : October	20, 2001	Methods added.			
Rev 1.2 (Laure	ent Lefebvre)	Interfaces greatly refined. Cleaned up the spec.			
Date : Novemb					
Rev 1.3 (Laure		Added t	he different interpolation modes.		
Date : Novemb					
Rev 1.4 (Laure			the auto incrementing counters. C		
Date : Decemb	per 6, 2001		→SQ interface. Added content on o	constant	
Day 1 E (Laure	ant Lofobura)		ment. Updated GPRs.	worosit	
Rev 1.5 (Laure Date : Decemb			ed from the spec all interfaces that tied to the SQ. Added explanati		
Date . Decenni	501 11, 2001	constan		PA→SQ	
			nization fields and explanation.		
Rev 1.6 (Laure	ent Lefebvre)		nore details on the staging register	Added	
Date : January			bout the parameter caches. Chang		
-			truction to a Conditionnal_call inst		
			details on constant manageme	nt and	
D 4 7 4			the diagram.		
Rev 1.7 (Laure	,		Real Time parameter control in	the SX	
Date : Februar Rev 1.8 (Laure			e. Updated the control flow section. erfaces to the SX block. Added the	ond of	
Rev 1.8 (Laure Date : March 4			modifier, removed the end of		
Date . March 4	T, 2002	instructi		Jiause	
Rev 1.9 (Laure	ent Lefebvre)		gement of the CF instruction bits in	order to	
Date : March 1			byte alignement.		
Rev 1.10 (Lau			I the interfaces and added a sec	tion on	
Date : March 2	25, 2002	exportin	g rules.		
Rev 1.11 (Lau	,		CP state report interface. Last versio	n of the	
Date : April 19			h the old control flow scheme		
Rev 2.0 (Laure		New cor	ntrol flow scheme		
Date : April 19	, 2002				

Reference Copyright Notice on Cover Page © ***

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** © ATI

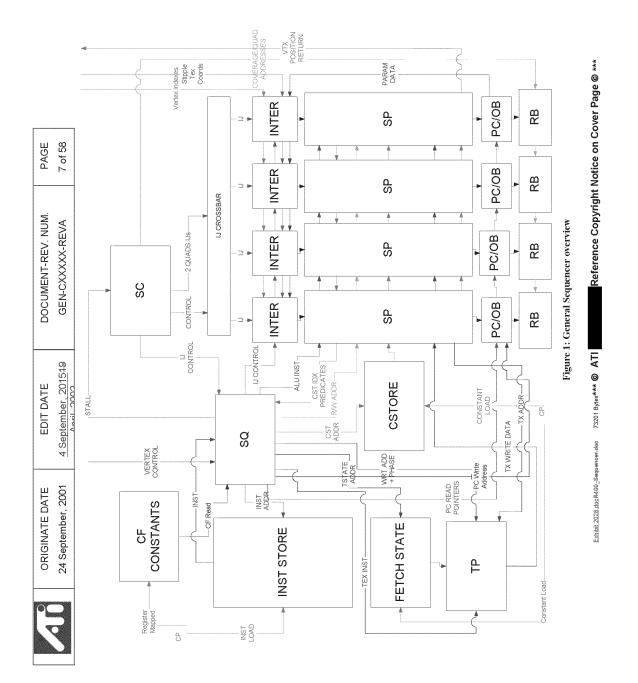
AMD1044_0017312

ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE
24 September, 2001	4 September, 201519		6 of 58

1. Overview

The sequencer is based on the R300 design. It The sequencer chooses two ALU clauses threads and a fetch clause hread to execute, and executes all of the instructions in a clause-block before looking for a new clause of the same type. Two ALU clauses, threads are executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors until the vector currently occupying a reservation stations has left. A vector at a reservation station can be chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations closer to the bottom of the pipelineolder threads. It will not execute an alu clause until the fetch fetches initiated by the previous fetch clause have completed. There are two separate sets of reservations stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow constants and texture state. The four shader pipes also execute the same instruction thus there is only one sequencer for the whole chip.


The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next vector until the needed space is available in the GPRs.

Reference Copyright Notice on Cover Page © ***

AMD1044_0017313

ATI Ex. 2011 IPR2023-00922 Page 6 of 58

ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE	
24 September, 2001	4 September, 201519		8 of 58	

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017315

ATI Ex. 2011 IPR2023-00922 Page 8 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
	24 September, 2001	4 September, 201549	GEN-CXXXXX-REVA	9 of 58	
1.1 Top l	_evel Block Diagr	am			

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

AMD1044_0017316

ATI Ex. 2011 IPR2023-00922 Page 9 of 58

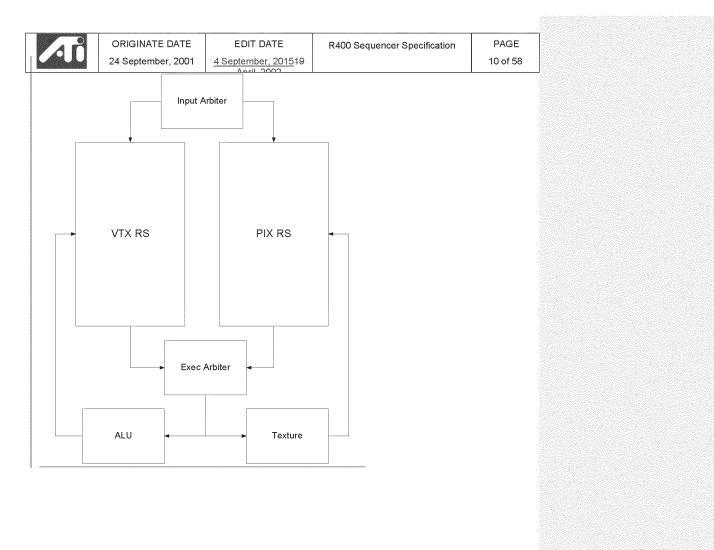
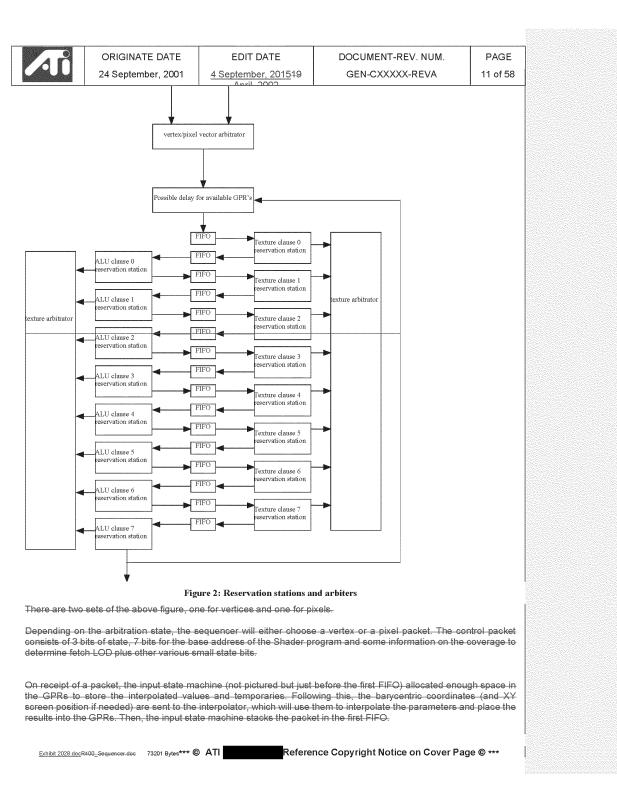



Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017317

ATI Ex. 2011 IPR2023-00922 Page 10 of 58

ATI Ex. 2011 IPR2023-00922 Page 11 of 58

ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE
24 September, 2001	<u>4 September, 2015</u> 19		12 of 58

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR address for the fetch address (ta). A small command (tomd) is passed to the fetch system identifying the current level number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put into FIFO 2.

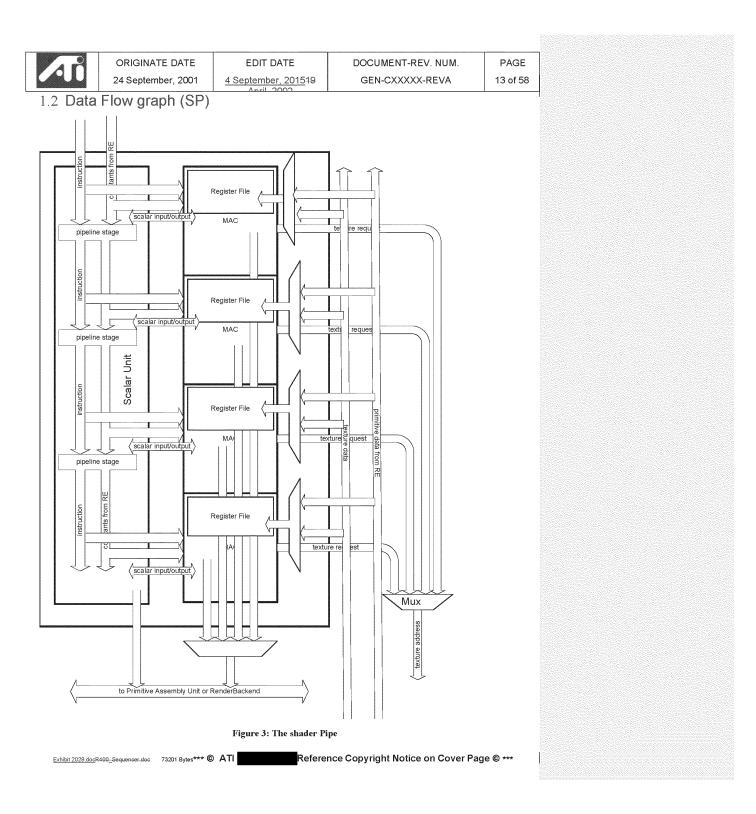
There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4 clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can't be accessed). Along with the positional data, if needed the sprite size and/or edge flags can also be sent.

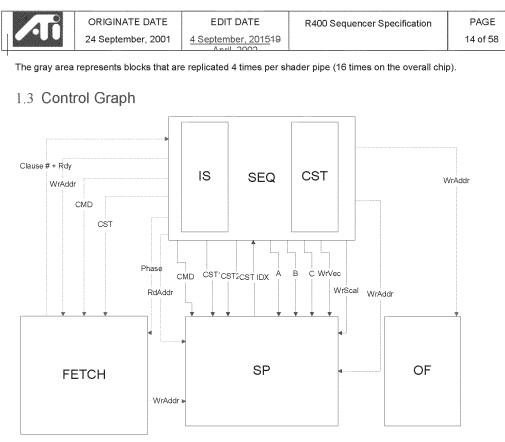
A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output buffer. If the output buffer is full or doesn't have enough space the sequencer will prevent such a vertex group to enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).


Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up the register files.

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type (pixel, vertex) that we call the reservation station (RS).


Reference Copyright Notice on Cover Page © ***

AMD1044_0017319

ATI Ex. 2011 IPR2023-00922 Page 12 of 58

ATI Ex. 2011 IPR2023-00922 Page 13 of 58

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** ⓒ ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017321

ATI Ex. 2011 IPR2023-00922 Page 14 of 58

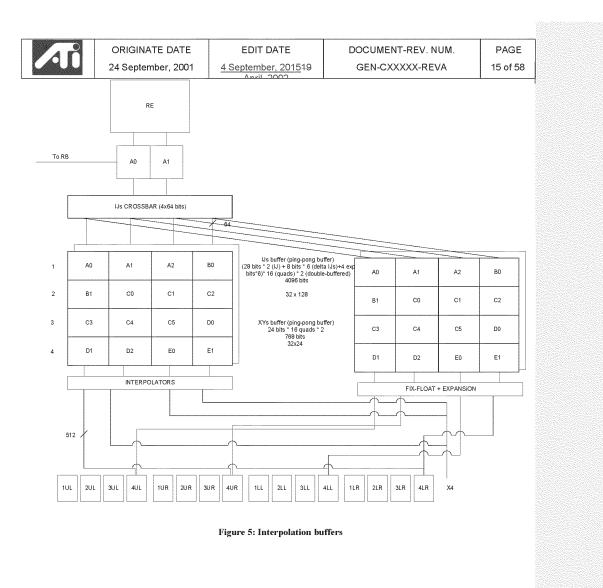


Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017322

ATI Ex. 2011 IPR2023-00922 Page 15 of 58

	23	I				1 > % 7	245	<u>_</u> 69		
	22 L					V V 32-48- 35 51	V V 36-52- 39 55	V V 40-56- 43 59	<pre>< V < V 44-60- 47 63</pre>	\times
	21 T					> 4 6 0 0	53 c <	24- 4 27- 4	33 ² % <	L
	1	_				> ° <	> 4	⇒ ⇔ ⊊	→ ¹ 2 <	
	T19							о Ш	μ	
	T18 T19 T20 T21 T22 T23								8	
თ				× ₪	×Ξ		8	5	S	
PAGE 16 of 58	T16			В	Ш				BO	\sim
	T15			БO	Ш	5	D2			Р2
ation	T12 T13 T14 T15 T16 T17	₹Σ	5×8		≿ß	с С	5 2	C5		
ecifica	T13	Б	5		8	8				
R400 Sequencer Specification	T12	Б	8		8	AO	A1	A2		
equen	T11	8 <u>1</u> 1	≿2	×ΰ				Ш	Ш	*********
400 S	T10	¥	2	C5	0	<u> </u>			8	
œ	ရာ		2	C5			8	5	8	
: 1549	8 18	≿ ວິ	≳ 3	אַ ז	×S				BO	
EDIT DATE otember, 20'	4	ß	8	5	ß	5	D2			D
EDIT DATE 4 September, 201549	T6	ß	8	5	8	ប៊	5	C5		
4 S	T5	×ã	5		×8	B				
ATE 2001	T4	12			BO	Ao	A1	A2		
GINATE DATE eptember, 2001	13	8			BO	51 2 2	55 55	ale and a second s	≳ ° 23	
ORIGINATE DATE 24 September, 2001	12		₹×₹	ΧX		XY XY 32- 48- 35 51	% % %	XY 40-56- 5359	× 44 44	\succ
0R 24 §	Ę	1	A1	A2		19 1 6 ×			33 28 ≾	×
00	1	AO	A1	A2		9.3 2	× 7-4	≍ ∾ ≿	15 ¹ 2 ×	
$\mathbf{\nabla}$		dS c	р С С	dy v	ы С	d S O	с С –	S ∽	ы С Р	

Figure 6: Interpolation timing diagram

Reference Copyright Notice on Cover Page @ ***

Exhibit 2028.docR400__Sequencer.doc 73201 Bytes*** © ATI

AMD1044_0017323

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	17 of 58

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared subroutines) uses the same path as real time.

4. Sequencer Instructions

All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4 constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory (this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8 copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode and physically register mapped for RT operation.

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017324

ATI Ex. 2011 IPR2023-00922 Page 17 of 58

	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE				
	24 September, 2001	4 September, 201519		18 of 58				

5.2 Management of the Control Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

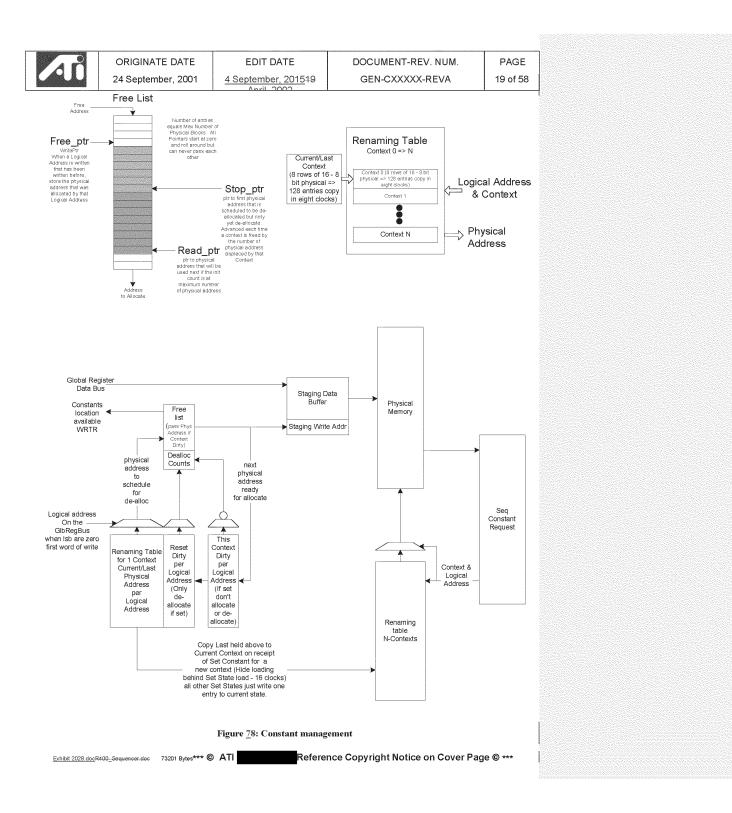
5.3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a new one. We have 8 different re-mapping tables we can use concurrently.

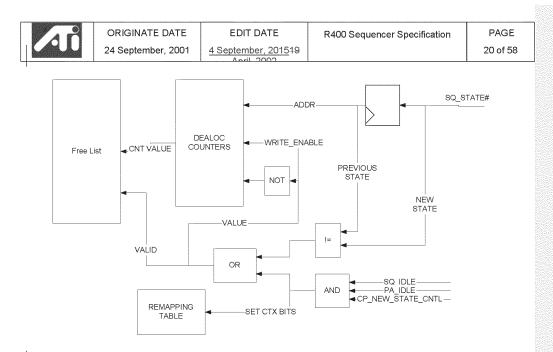
The constant memory update will be incremental, the driver only need to update the constants that actually changed between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as large as the logical address space + the space allocated for Real Time. In our case, since the logical address space is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management


To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with the new state (this is depicted in Figure 8: De-allocation mechanismFigure 9: De-allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to reuse these physical addresses if needed).


Reference Copyright Notice on Cover Page © ***

AMD1044_0017325

ATI Ex. 2011 IPR2023-00922 Page 18 of 58

ATI Ex. 2011 IPR2023-00922 Page 19 of 58

Figure 89: De-allocation mechanism for R400LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when the logical address is addressed. The second one will be set to zero whenever a new context is written and set for each address written while in this context. The reset dirty is not set, then writing to that logical address will not require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then the physical address is necessary to store the incoming data. If they are both set, then the data will be written into the physical address held in the renaming for the current logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and incremented every time a chunk of physical memory is used until they have all been used once. This counter would be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else check the free list for an available physical block address. The count is the physical address for when getting a chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017327

ATI Ex. 2011 IPR2023-00922 Page 20 of 58

AP	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	24 September, 2001	4 September, 201549	GEN-CXXXXX-REVA	21 of 58

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be reset upon reset or when this context is active on the back and different than the previous context. It is actually a count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr pointer to make available the set of physical blocks freed when the previous context was done. This allows the discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list counter because its not at the max value. The data will be written into physical address zero. Both the additional copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that was written by set start with physical address of 0. This process will be repeated for any logical address that are not dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty bits would be set, so the new data will be over-written to the last physical address assigned for this logical address. When the first draw command of the context is detected, the previous context location. Then the set constant logical address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as set states come in for this context one of the following will happen:

- 1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or the free list at read_ptr pointer if read_ptr != to stop_ptr .
- Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for the last context.
- 3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It also allows the second context to be represented as the first set plus some new additional data by just storing the delta's. It allows memory to be efficiently used and when the constants updates are small it can store multiple context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded. Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017328

ATI Ex. 2011 IPR2023-00922 Page 21 of 58

		ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE			
		24 September, 2001	4 September, 201519		22 of 58			
1	between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look							

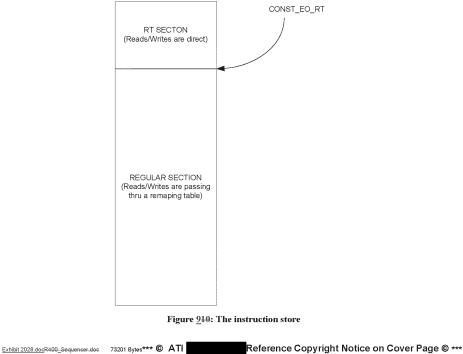
like this

 MOVA
 R1.X,R2.X
 // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X

 NOP
 // latency of the float to fixed conversion

 ADD
 R3,R4,C0[R2.X]// Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction. R2.X is just written again for the sake of simplicity and coherency.


The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly, for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory and clears the bit whenever a state is freed.

AMD1044_0017329

ATI Ex. 2011 IPR2023-00922 Page 22 of 58

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
24 September, 2001	<u>4 September, 2015</u> 19	GEN-CXXXXX-REVA	23 of 58

6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0] Loop_count[7:0][31:0] Loop_Start[7:0][31:0] Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

We'd like to be able to code up a program of the form:

1:	Loop	
2:	Exec	TexFetch
3:		TexFetch
4:		ALU
5:		ALU
6:		TexFetch
7:	End Lo	ор
8:	ALU E	xport

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing, these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction: a) ALU or Texture

b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position, parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already completed. The implementation would also assure that execution of instruction(s) following the serialization due to the Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

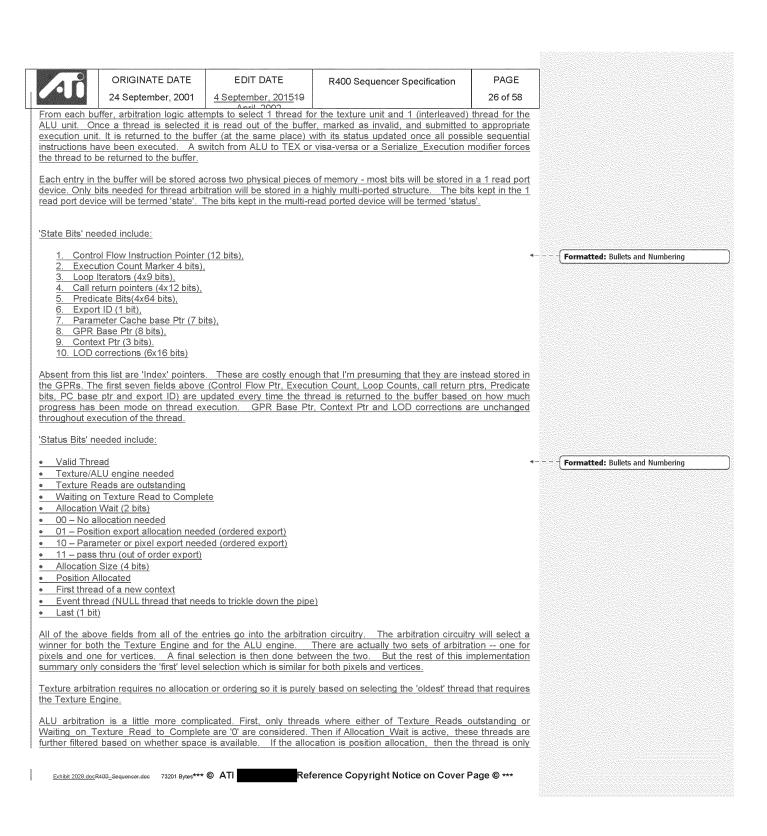
Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017330

ATI Ex. 2011 IPR2023-00922 Page 23 of 58

	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE	
	24 September, 2001	4 September, 201519		24 of 58	
			r pixels, parameters and positions,		
a single alloc allocs' may b		ex exports to memory do r	ot require ordering during allocatio	n and so multiple	
6.2.1 Coi	ntrol flow instructio	ns table			Formatted: Bullets and Numbering
	vised control flow instruction				
Note that wh	onovor a field is marked	as PESERVED it is ass	umed that all the bits of the field	are cleared (0)	
Note that wit	lenever a neiu is markeu			are cleared (0).	
47	46 43 40 3	4 <u>Execute</u> 33	.16 1512	11 0	
Addressing	0001 RESERV	ED Instructions typ	e + serialize (9 Count E	xec Address	
		instruc	in i		
			ruction memory. The Instruction to and whether to serialize or not the		
	, 0 = Non-Serialized).			_	
		NOP]	
47 Addressing	<u>46 43</u> 0010		<u>42 0</u> RESERVED		
	And an Andrew				
This is a regu	liar NOP.				
		Conditional Exe			
47 Addressing	Contraction and the second	1 34 33 oolean Instructions typ	And an and a second sec	110 Exec Address	
		ddress instruc			
			s the specified condition then exec		
instructions (L	up to 9 instructions). If the	condition is not met, we go	on to the next control flow instruct	<u>ion.</u>	
47	46 43 42	Conditional Execute 41 36 35 34		11 0	
Addressing	<u>40 43</u> <u>42</u> 0010 <u>Condition</u>	41 36 35 34 RESERVED Predicate	Instructions Count	Exec Address	
		vector	type + serialize (9 instructions)		
Cheale the Ab		acto hito. If AND/OD mot	ches the condition execute the spe	a aified number of	
instructions. \	We need to AND/OR this	with the kill mask in orde	er not to consider the pixels that a		
condition is no	ot met, we go on to the ne	t control flow instruction.			
47	46 42	Loop Start	16 40	11 0	
47 Addressing	<u>46 43</u> <u>0101</u>	<u>42 17</u> <u>RESERVED</u>	<u>16 12</u> loop ID	<u>11 0</u> Jump address	
jump only. Als		ue. The loop id must matc	op condition not met jump to the a h between the start to end, and als		


Exhibit 2028.doc.R409_Sequencer.doc 73201 Bytes*** © ATI Reference Copyright Notice on Cover Page © ***

AMD1044_0017331

ATI Ex. 2011 IPR2023-00922 Page 24 of 58

22	ORIGI	NATE DATE		EDIT DA	ΓE	DOCU	MENT-REV.	NUM	I.	PAGE
	24 Sep	tember, 2001	<u>4 S</u>	eptember,		GEN	-CXXXXX-RI	EVA	2	5 of 58
					End					
47	46 43		2017			9 17	16			0
\ddressing	0011	REG	SERVED		Predi	cate break	loop		start a	ddress
	e, jump BA	CK to the s	start of the	e loop. If j	predicate I	break != 0,	end value. then compar			
The way this	is described	l does not pro	event nest			usion of the	oop id make	this e	easy to do.	
47	46 43	42	A1	Conditio	nnal_Call 35	3/	33 12		11	0
Addressing	0111	Condition		ERVED	Predicat		RESERVED		Jump ad	
f the conditio	in is met, jur	mps to the sp	ecified ad	dress and p	oushes the	control flow	program cou	nter c	on the stac	<u>k.</u>
4-7	40 40			Re	turn	10 0				
47 Addressing	<u>46 43</u> <u>1000</u>					<u>42 0</u> SERVED				
Jone the ten	maat addras	n fram tha a	taalcand i	unana ta ta	at addraaa	. If mathing i	s on the stac	ار ا		مىنال ئىرە
continue to the			lach anu j	umps to the	at autress	. If Houning i	s on the stac	K, IIIC	: program	wiii jusi
				Condition	met lumm					
47	46 43	42	41 34	33	inal_Jump 32	2 12		11	1 0	
Addressing	1001	Condition	41							
47	46 43		address 1241	Allo	<u>cate</u> 40 4			30		
Debug	1010	~ ~ ~	fer Select	F	ESERVE	<u>D</u>	Alloca	*******	size	
Buffer Select 01 – position 10 – paramet 11 – pass thr If debug is se	export (orde er cache or u (out of ord	ered export) pixel export ler exports).	(ordered e	************	l register is	s set to off).				
				End Of	Program					
<u>47</u>	46 43					<u>420</u>				
RESERVED	1011				RI	ESERVED				
Varks the en	d of the prog	gram.								
6.3 Impl	ementa	tion								
location in the	e buffer duri ually two bu	ng its entire	life, but th	e buffer ha	s FIFO qu	alities in that	hread. A t threads leav ixels. The in	e in t	he order th	nat they
16 entries for 48 entries for										
Exhibit 2028.doc	R400_Sequencer.d	lec 73201 Bytes*	** © ATI		Refere	nce Copyrig	ht Notice on	Cov	er Page ©	***

ATI Ex. 2011 IPR2023-00922 Page 25 of 58

ATI Ex. 2011 IPR2023-00922 Page 26 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
	24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	27 of 58

considered if all 'older' threads have already done their position allocation (position allocated bits set). If the allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is not considered if it is a parameter or pixel or position allocation, has its First thread of a new context bit set and would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation. Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then at this time the allocation is done, based on Allocation_Size. If a thread has its "last" bit set, then it is also removed from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause (presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses, even if it involved texture fetching.

The Texture Reads Outstanding bit must be updated by the sequencer, based on keeping track of how many Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that clears the bit.

Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:

Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located Pixel_

A pointer value of FF means that the clause doesn't contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the exception of the pick two nature of the alu execution). The control program is the only program aware of the clause boundaries.

The control program has nine basic instructions:

Execute Conditional_execute Conditional_Execute_Predicates Conditional_jump Conditionnal_Call Return Loop_start Loop_end NOP

Execute, causes the specified number of instructions in instruction store to be executed. Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction store to be executed.

Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end condition and if met jumps over to a specified address.

Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions. Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return instruction, the IP is popped from the stack.

Exhibit 2028.doc R400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017334

ATI Ex. 2011 IPR2023-00922 Page 27 of 58

				DACE
AŇ	ORIGINATE DATE 24 September, 2001	EDIT DATE 4 September, 201519	R400 Sequencer Specification	PAGE 28 of 58
	I	es a block of instructions	f all bits in the predicate vectors meet	
			SES since there are two control flow ir to align the jumps on even CFP addre	
set the debug		conditional_execute is lo	nader_cntl_size) we break the progran wer than cntl_size or bigger than size-	()
We have to fi store.	t instructions into 48 bits i	n order to be able to put I	wo control flow instruction per line in	the instruction
field) is an Al		addressing field is cleared	I in the Exec Address field (or in the I (should be the default) then the addr	
Note that wh	enever a field is marked	as RESERVED, it is ass	umed that all the bits of the field are	cleared (0).
Execute up to instructions o		cified address in the instr	uction memory. If Last is set, this is the	e last group of
This is a regu	lar NOP. If Last is set, this	is the last instruction of th	e clause.	
instructions (I	up to 4k instructions). If La	st is set, then if the condi	s the specified condition then execute ion is met, this is the last group of insi next control flow instruction.	
instructions. \ set, then if the	Ve need to AND/OR this v	with the kill mask in order ne last group of instruction	ches the condition execute the specif not to consider the pixels that aren't s to be executed in the clause. If the c	alid. If Last is
jump only. Ale		ie. The loop id must mate	op-condition-not-met-jump-to-the-add h between the start to end, and also ir	
	crements_the_counter_by , jump_BACK to the start o		o count with the end value. If loop	condition met,
The way this	is described does not prev	ent nested loops, and the	inclusion of the loop id make this easy	to do.
If the conditio	n is met, jumps to the spec	ified address and pushes	the control flow program counter on th	ne stack.
	nost address from the sta e next instruction.	ck and jumps to that add	ress. If nothing is on the stack, the pro	ogram will just
	et, jumps to the address. F should NOT be exposed to		wed if bit 31 set. Bit 31 is only an optim	ization for the
Exhibit 2028.doc	R400_Sequencer.doc 73201 Bytes***	© ATI	erence Copyright Notice on Cover F	age © ***

ATI Ex. 2011 IPR2023-00922 Page 28 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
	24 September, 2001	4 September, 201549	GEN-CXXXXX-REVA	29 of 58	
			of 8 (we are only able to loop 256 struction is going to break the loop		
6-364 De	ata dependant p	redicate instruction	S		Formatted: Bullets and Numbering
Data dependa		pported in the R400. The only	/ way we plan to support those is t	by supporting	
	PRED_SETNE_# - sim PRED_SETGT_# - sim	nilar to SETNE except that the ilar to SETGT except that the	ult is 'exported' to the sequencer. result is 'exported' to the sequence result is 'exported' to the sequencer he result is 'exported' to the sequen	r	
For the scalar	operations only we will al PRED_SETE0_# – SE ⁻ PRED_SETE1_# – SE ⁻		istructions:		
maintain 4 sets exposed) and	s of 64 bit predicate vect use it to control the write	ors (in fact 8 sets because we	h as the MOVA instruction. The se interleave two programs but only 4 maintained across clause boundar	will be	
	two conditional execute I 1 1 or 0. For example, the		al execute "on" bit and the second b	bit tells us if	
P0_A[DD_# R0,R1,R2				
only write the r		e predicate bit is set. The use	edicate bit is 0. Alternatively, P1_AI of the P0 or P1 without precharging		
{Issue: do we I	have to have a NOP betw	een PRED and the first instru	ction that uses a predicate?}		
6.46.5 HN	W Detection of F	V,PS		*-	
masked writes comparing the	s and subsequent reads	the sequencer will insert us ite address of consecutive ins	Ily dependant instructions. In the es of PV,PS as needed. This will tructions. For masked writes, the s	l be done by	
The sequence	er will also have to insert N	IOPs between PRED_SET an	d MOVA instructions and their uses	s.	
6.56.6 Re	egister file index	ing			Formatted: Bullets and Numbering
Because we ca data created in	an have loops in fetch cl	ause, we need to be able to i d use it into an ALU clause. T	ndex into the register file in order to The instruction will include the base		
	Bit7 Bit 6 0 0 0 1 1 0 1 1	'absolute register' 'relative register' 'previous vector' 'previous scalar'			
			the case of a relative register reac ew address that we give to the sha		
		© ATI	nce Copyright Notice on Cover Pa		

ATI Ex. 2011 IPR2023-00922 Page 29 of 58

	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE			
	24 September, 2001	<u>4 September, 2015</u> 19		30 of 58			
The sequencer is going to keep a loop index computed as such:							

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10 bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of range value to the "indexing logic" so that it knows when the provided index is out of range and thus can make the necessary arrangements.

Predicated Instruction support for Texture clauses

For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors) per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the vector have a value of ne (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the vector have his predicate bit set and we can thus skip-over the texture fetch. We have to make sure the invalid pixels aren't considered with this optimization.

6.66.7 Debugging the Shaders

In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.6.16.7.1 Method 1: Debugging registers

- Current plans are to expose 2 debugging, or error notification, registers: 1. address register where the first error occurred
- 2. count of the number of errors
- The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:

- jump errors relative jump address > size of the control flow program
- call stack
 - call with stack full return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.6.26.7.2 Method 2: Exporting the values in the GPRs (12)

The sequencer will have a <u>debug active</u>, count register and an address register for this mode and 3 bits per clause specifying the execution mode for each clause. The modes can be : Normal

2)Debug-Kill 2)<u>1)</u>Debug Addr + Count

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017337

Formatted: Bullets and Numbering

ATI Ex. 2011 IPR2023-00922 Page 30 of 58

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	31 of 58

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach an address specified by the address register and instruction count (useful for loops) specified by the count register. After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that the programelause 7 is always exporting 42-<u>n</u> debug vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE MASK_SETNE MASK_SETGT MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation

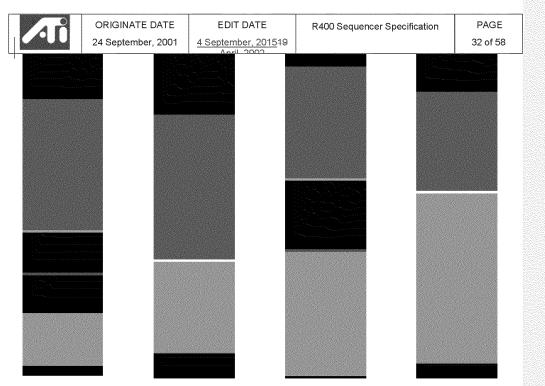

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and PIXEL_REG_SIZE for pixels.

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017338

ATI Ex. 2011 IPR2023-00922 Page 31 of 58

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the boundary is static until both vertices and pixels share the same "unallocated bubble". Then the boundary is allowed to move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking the first one ready to execute. There are two ALU arbitres, one for the even clocks and one for the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0... Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across clause boundaries.

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017339

ATI Ex. 2011 IPR2023-00922 Page 32 of 58

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	33 of 58	11000

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ's (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel's parameters are always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2 and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1 (interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

- $\Delta 01I = I(1) I(0)$ $\Delta 01J = J(1) - J(0)$
- $\begin{array}{l} \Delta 02I = I(2) I(0) \\ \Delta 02J = J(2) J(0) \\ \Delta 03I = I(3) I(0) \\ \Delta 03J = J(3) J(0) \end{array}$

PO	P1
P2	P3

$$\begin{split} P0 &= C + I(0)*(A-C) + J(0)*(B-C) \\ P1 &= P0 + \Delta 01I*(A-C) + \Delta 01J*(B-C) \\ P2 &= P0 + \Delta 02I*(A-C) + \Delta 02J*(B-C) \\ P3 &= P0 + \Delta 03I*(A-C) + \Delta 03J*(B-C) \end{split}$$

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2 Multiplies (Reduced precision): 6 Subtracts 19x24 (Parameters): 2

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017340

	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE
	24 September, 2001	4 September, 201519		34 of 58
Adds: 8				

FORMAT OF P0's IJ : Mantissa 20 Exp 4 for I + Sign Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3):Mantissa 8 Exp 4 for I + Sign Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms may be zero, so we extend this to:

```
if (A=B and B=C and C=A)
  P0,1,2,3 = A;
else if ((I = 0) \text{ or } (J = 0)) and
       ((J = 0) \text{ or } (1-I-J = 0)) and
       ((1-J-I = 0) or (I = 0))) {
           if(1 != 0) {
              PO = A:
           } else if(J != 0) {
              P0 = B;
           } else {
              P0 = C
         //rest of the quad interpolated normally
}
else
{
         normal interpolation
}
```

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent by the VGT to the SQ **BUT** will not be processed by the SP and thus should be considered invalid (by the SU and VGT).

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017341

ATI Ex. 2011 IPR2023-00922 Page 34 of 58

			2
ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
24 September, 2001	<u>4 September, 2015</u> 19	GEN-CXXXXX-REVA	35 of 58

The most straightforward, *non-compressed* interface method would be to convert, in the VGT, the data to 32-bit floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT. Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in Figure 11Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 11.

Basis for 8-deep Latch Memory (fror	n R300)		
8x24-bit	11631	μ^2	$60.57813\mu^2\text{per}$ bit
Area of 96x8-deep Latch Memory	46524	$\cdot \mu^2$	
Area of 24-bit Fix-to-float Converter	r 4712 μ^2 per converter		erter
Method 1	Block	Quantity	Area
	F2F	3	14136
	8x96 Latch	16	744384
			758520 u ²

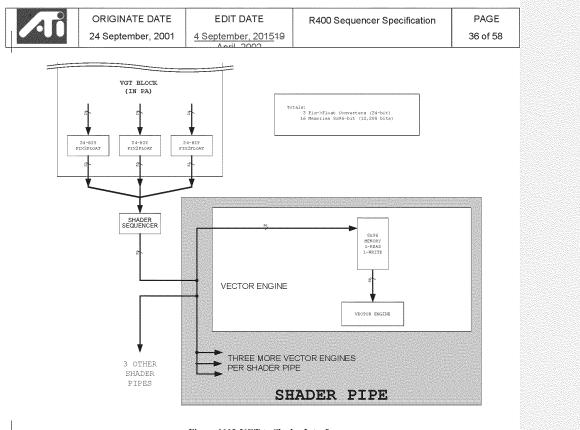

Figure 1011:Area Estimate for VGT to Shader Interface

Exhibit 2028.doc R400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017342

ATI Ex. 2011 IPR2023-00922 Page 35 of 58

Figure 1112:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W). The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way: 4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER	ADDRESS
4 bits	7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8 parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address 00000000000 the second one 00010000000, third one 0010000000 and so on up to 11110000000. Then the next position received (the 17th) is going to have the address 0000001000, the 18th 00010001000, the 19th 0010001000 and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT_7_7_7 to Current_Location and reset the memory count to 0 before the next vector begins).

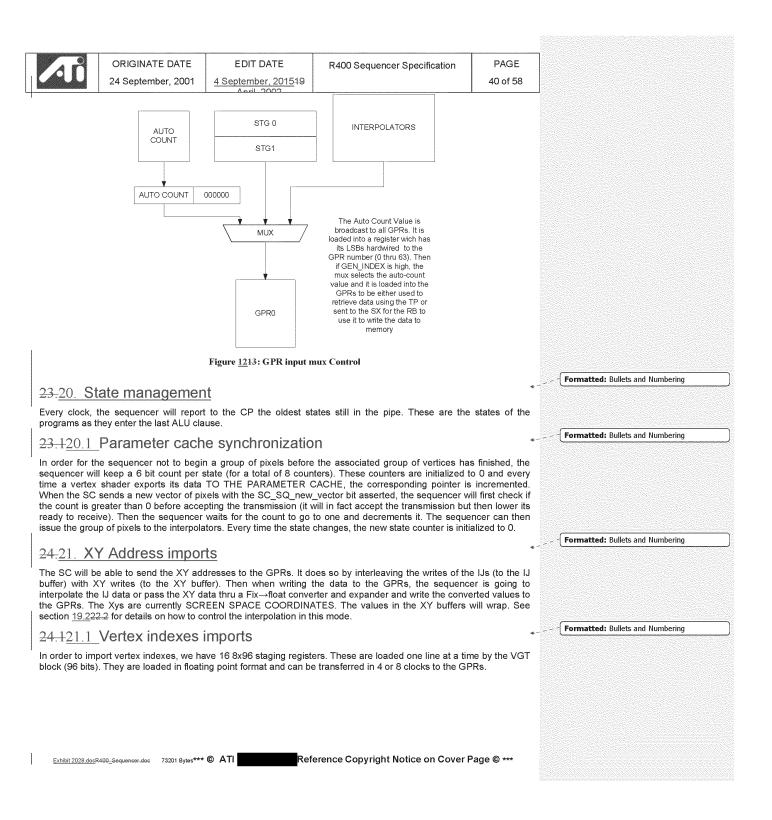
Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** ⓒ ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017343

ATI Ex. 2011 IPR2023-00922 Page 36 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE				
CAU	24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	37 of 58				
17.1 Exp	ort restrictions				Formatted: Bullets and Numbering			
1711 05	cal assautas							
	<u>kel exports:</u>		to will be done to order The DOFT	ODTINIZE				
	be turned of if the exports		ts will be done in order. The PRED predicated instructions. The export					
17.1.2 Ve	ertex exports:			4-	Formatted: Bullets and Numbering			
Position or pa	irameter caches can be e		shader program. It is always bett					
placed betwee The PRED_O	en the exports). Parameter of PTIMIZE function has to be	cache exports can be done i turned of if the exports are	gle export block (no texture instructions n any order with texture instructions done using interleaved predicated in orts will always be allocated in order	interleaved. structions to				
17.1.3 Pa	ss thru exports:			+	Formatted: Bullets and Numbering			
	orts have to be done in grou	ips of the form:						
Alloc 4 (8 Execute ALU	or 12) J(ADDR) ALU(DATA) ALU	(DATA) ALU(DATA)						
They cannot I ordered.	have texture instructions ir	terleaved in the export blo	ock. These exports are not guara	nteed to be				
			FER all pass thru exports. This posit hader to regular shader and vice ve					
17.2 Arbi	tration restriction	S		4-	Formatted: Bullets and Numbering			
Here are the S	equencer arbitration restric	tions:						
2) Canno 3) If last <u>thread</u> <u>a.</u> <u>b.</u> 4) Canno	ot allocate position if any old thread is marked as not va also marked last then: Both threads must be fror	n the same context (cannot e optimization for the secon f texture reads are pending	position d we are about to execute the secc allow a first thread)	end to oldest	Formatted: Bullets and Numbering			
19 Vorte	v position ovporti	na		*	Formatted: Bullets and Numbering			
18. <u>Vertex position exporting</u> On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks. The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.								
19. Expo	rting Arbitration	4	Formatted: Bullets and Numbering					
	ules for co-issuing exporting	ALU-clauses.						
1)Position exports and position exports cannot be co-issued.								
All other types	of exports can be co-issue	d as long as there is place ir	the receiving buffer.					
Exhibit 2028.docR	400_Sequencer.doc 73201 Bytes*** ⓒ	ATI Referen	nce Copyright Notice on Cover Pa	ge © ***				


ATI Ex. 2011 IPR2023-00922 Page 37 of 58

	r					
	ORIGINATE	E DATE	EDIT DATE	R400 Sequencer Specification	PAGE	
	24 Septemb	er, 2001	4 September, 201519		38 of 58	Formatted: Bullets and Numbering
20. Expo	rting Rule	<u>)S</u>			*	
20.1 Par	ameter ca	ches e	vnorts			
			8	iches. So one can export multiple time	s to the same	
	different masks					
20.2 Mer	nory expo	orts			•-	(Formatted: bullets and Numbering
Memory expo	rts don't suppor	t-masking.	However, you can export	out of order to memory locations.		
20.3 Pos	ition expo	orts			+	
Position export	ts have to be d	one IN OR	DER and don't support m	asking.		Francista de Dullada and Numbering
21-18. E)	cport Type	es			*~	Formatted: Bullets and Numbering
			the data should be put) is	specified using the destination addre	ess field in the	
ALU instructio	n. Here is a list	of all poss	ible export modes:			
21-118-1	Vertex Sh	nading			*-	- (Formatted: Bullets and Numbering
	•	parameter	cache			
	16:31 - Em	pty (Reser	ved?)			
	33:40 - 8 ve		ts to the frame buffer and	index		
	41:47 - Em 48:55 - 8 de		t (interpret as normal vert	ex export)		
	60 - exp	ort addres				
	61 - Em 62 - pos					
			ort that goes with positior w,edgeflag,misc)	export		
I	, , , , , , , , , , , , , , , , , , ,					
<u>21-218.2</u>	Pixel Sha	ading			*	(Formatted, bullets and Numbering
I		or for buffe	r 0 (primary)			
	2 - Col	or for buffe				
	3 - Col 4:7 - Em	lor for buffe	r 3			
	8 - Buf	fer 0 Color	/Fog (primary)			
		ifer 1 Color. ifer 2 Color.				
	11 - Buf 12:15 - Em	fer 3 Color.	/Fog			
	16:31 - Em	pty (Reser				
		port Addres	ss nultipass pixel shaders.			
	41:47 - Em	pty		-1		
		ebug expor ort addres:	ts (interpret as normal pix sing mode	ei export)		
	61:62 - Em 63 - Z fo		ouffer (Z exported to 'alpha	a' component)		
	JJ - 210	n princi y r	and a coported to alpha			
Exhibit 2028.docF	1400_Sequencer.doc	73201 Bytes***	© ATI	erence Copyright Notice on Cover F	age © ***	
				., .	-	

ATI Ex. 2011 IPR2023-00922 Page 38 of 58

	ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE				
~ <u>~</u> UU	24 September, 2001	4 September, 201519	GEN-CXXXXX-REVA	39 of 58	Formatted: Bullets and Numbering			
<u>22.19. Sp</u>	pecial Interpolatio	*						
22,119,1	Real time comma	ands						
	•		or a command stream to write into it.	Instead we				
register bus an be able to add should be able	nd written by type 0 packets lress the reatime parameter e able to view them as two	s, and output to the the para memory as well as the reg banks of 16 and do doubl	16 interpolants). These will be mapp meter busses (the sequencer and/or ular parameter store. For higher perfor e buffering allowing one to be loade r coordinates, one option might be to	PA need to ormance we d, while the				
view support f stream), then parameters in	or 16 vector-4 interpolants i the PA/sequencer need to stead of 16. This mode is tri . The parameter data memo	mportant (true only if we m support a realtime-specific ggered by the primitive type	er cycle, the only problem I see with I ap Microsoft's high priority stream to mode where we need to address 3 e: REAL TIME. The actual memories BM bus and are loaded by the CP us	the realtime 2 vectors of are in the in				
	Sprites/ XY scree	en coordinates/ FI	3 information	-				
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back special operations) to the shader using the same control register. Here is a list of all the modes and how they interact together:								
	ve are dealing with Point AA		This is the MSB of the primitive type his case the vertex values are going to					
Param_Gen_I Param_Gen_I Param_Gen_I Param_Gen_I Param_Gen_I Param_Gen_I Param_Gen_I	0 disable, snd_xy disable, r 0 disable, snd_xy disable, g 0 disable, snd_xy enable, n 0 disable, snd_xy enable, g 0 enable, snd_xy disable, n 0 enable, snd_xy enable, n 0 enable, snd_xy enable, go	len_st - I0 = No modificatio o gen_st - I0 = No modificat en_st - I0 = No modificatior o gen_st - I0 = garbage, ga en_st - I0 = garbage, garba o gen_st - I0 = screen x, sc	n tion 1 rbage, garbage, faceness ige, s, t reen y, garbage, faceness					
<u>22.319.3</u>	Auto generated c	ounters		4-	Formatted: Bullets and Numbering			
both use this The count is a the shader typ keep two cou GPRs the cou	count to write the 1 st pass of lways generated in the sam e (pixel or vertex). This is to nters, one for pixels and or inter is incremented. Every ne count broadcast to the G	lata to memory and then us ne way but it is passed to th oggled on and off using the ne for vertices. Every time a time a state change is det	is going to generate a vector count to se the count to retrieve the data on the e shader in a slightly different way de GEN_INDEX register. The sequence a full vector of vertices or pixels is w ected, the corresponding counter is i d to specific values making the index	ne 2 nd pass. epending on r is going to ritten to the reset. While				
<u>22.3.119.</u>	3.1_Vertex shaders	4	Formatted: Bullets and Numbering					
	vertex shaders, if GEN_IN ler must allocate 3 GPRs in	er (it means						
<u>22.3.2</u> 19.1	3.2_Pixel shaders	*-	Formatted: Bullets and Numbering					
			IO is enabled, the data will be put in t nto the x field of the 1 st register (R0.x					
Exhibit 2028.docF	400_Sequencer.doc 73201 Bytes*** ⓒ	ATI Refere	nce Copyright Notice on Cover Pag	ge © ***				

ATI Ex. 2011 IPR2023-00922 Page 39 of 58

ATI Ex. 2011 IPR2023-00922 Page 40 of 58

	ORIGINAT	E DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE	
	24 Septem	ber, 2001	4 September, 201519	GEN-CXXXXX-REVA	41 of 58	Formatted: Bullets and Numbering
<u>25.22.</u> R€	egisters				4	·
25 122 1	Control					
25.122.1		Dumonaia	allagation (nivel/vertex) of th	na vanjatav filo on av off		
REG_DYN REG_SIZE			allocation (pixel/vertex) of the register file's pixel portion	(minimal size when dynamic allocati	on turned	
REG_SIZE	E_VTX	Size of th on)	e register file's vertex portio	n (minimal size when dynamic alloca	tion turned	
ARBITRA INST_BAS	TION_POLICY SE_VTX	policy of t		exes and pixels ore (RT always ends at vertex_base	and	
INST_BAS ONE_THR ONE_ALU	READ	start poin debug sta	t for the pixel shader instruc ate register. Only allows one	tion store program at a time into the GPRs ALU program at a time to be execu	ed (instead	
INSTRUC	TION	of 2) This is w	here the CP puts the base	address of the instruction writes and	type (auto-	
CONSTAN	NTS NTS_RT	incremen 512*4 AL 256*4 AL	ted on reads/writes) Registe U constants + 32*6 Texture U constants + 32*6 texture		ped)	
TSTATE_I	NT_EO_RT EO_RT	CONSTA This is th	NT_EO_RT). The re-mappi e size of the space reserve			
EXPORT_LAT	EControls wh		_EO_RT). The re-mapping t we are exporting position			
clause 7.						
25.2 22.2	Context				4	(Formatted: Bullets and Numbering
VS_FETC				ere each clauses control program is		
VS_ALU_ PS_FETC	H_{07}	eight 8 bi	t pointers to the location wh	ere each clauses control program is l ere each clauses control program is	ocated	
PS_ALU_ PS_BASE			t pointers to the location wh nter for the pixel shader in th	ere each clauses control program is l le instruction store	ocated	
VS_BASE VS_CF_S			nter for the vertex shader in e vertex shader (# of instruc			
PS_CF_S			e pixel shader (# of instructi			
PS_SIZE VS_SIZE			e pixel shader (cntl+instruct e vertex shader (cntl+instruc			
PS_NUM_	REG		of GPRs to allocate for pixel			
VS_NUM_ PARAM_S			of GPRs to allocate for verte it register specifying which (
_		= gourau	d)	-	a (o nat, i	
PROVO_\ PARAM_V				East vertex of the primitive annels (xyzw)) do we do the cyl wrap	opina	
		(0=linear,	1=cylindrical).		56113	
PS_EXPC	ORT_MODE		ormal mode Iultipass mode			
		lf normal,	, bbbz where bbb is how ma	ny colors (0-4) and z is export z or no	ot	
VS_EXPC VS_EXPC	ORT_MODE		ss 1-12 exports for color. n (1 vector), 1: position (2 ve	ectors), 3:multipass		
_				d by the VS (and thus number of intention nters representing the # of interpolate		
				ated in VS_EXPORT_COUNT_6) OF		
PARAM_C	GEN_IO			clause in multipass mode (per clause r 0 with XY data and generated T and		
Eyhikit 2020	1400_Sequencer.doc	73201 Bytes*** ©	ATI	nce Copyright Notice on Cover Pac	1e © ***	
LANDAL 2020.000Pt					,- •	

ATI Ex. 2011 IPR2023-00922 Page 41 of 58

ORIGINAT	E DATE	EDIT DATE	R400 Sequencer Specification	PAGE	
24 Septemb	er, 2001	4 September, 201519	·····	42 of 58	
GEN_INDEX CONST_BASE_VTX (9 I CONST_BASE_PIX (9 bi CONST_SIZE_PIX (9 bi CONST_SIZE_VTX (8 bi INST_PRED_OPTIMIZE CF_BOOLEANS CF_LOOP_COUNT CF_LOOP_START CF_LOOP_STEP C23. DEBUG Re C123.1 Context DB_PROB_ADDR DB_PROB_COUNT DB_PROB_BREAK	Auto ge and R2 bits) Logical its) Logical s) Size of Turns o always 256 boc 32x8 bit 32x8 bit 32x8 bit 32x8 bit 32x8 bit 2gisters	And 2002 Inerates an address for mini- for vertex shaders Base address for the con- Base address for the con- the logical constant store the logical constant store in the predicate bit optimiz executed). Islean bits t counters (number of time t counters (init value used t counters (step value use ion address where the firs of problems encountered the clause if an error is four	for pixel shaders for vertex shaders ation (if of, conditional_execute_predi es we traverse the loop) in index computation) d in index computation) t problem occurred during the execution of the program	I pixel shaders	- Formatted: Bullets and Numbering
DB_CLAUSE _MODE_FETCH_{0	instructi break a } clause i				- Formatted: Bullets and Numbering
DB_ALUCST_MEMS DB_ALUCST_MEMS DB_TSTATE_MEMS		Size of the physical ALU Size of the physical textu			(<u></u>
<u>-24. Interfaces</u>				*	Formatted: Bullets and Numbering
			I units of the same name. For exam	n le if a hue ie	
			information to all SP instances.	pio, ii u 200 10	
<u>-224.2</u> SC to SP	P Interfa	ices		*	- < Formatted: Bullets and Numbering
	P#			4	Formatted: Bullets and Numbering
I,J data for pixel interpola	ation. For the one half of sferred per loating Poin loating Poin 4.8 Floating 4.8 Floating bits which	ne entire system, two quad a quad per clock. The i quad is it I value nt J value Point Delta I value point Delta J value transferred over 2 clocks	o stage pixel interpolators). This inter ds per clock are transferred to the 4 S nterface below describes a half of a	Ps, so each of	

ATI Ex. 2011 IPR2023-00922 Page 42 of 58

ORIGINATE DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE
24 September, 2001	4 September 201549	GEN-CXXXXX-REVA	43 of 58
	April 2002		

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb. Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the SC has sent a pixel vector's worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free. Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of packet and multiple new vector signals should cause a partial vector and that this would not really be significant performance hit.)

Name	Bits	Description			
SC_SP#_data	64	IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit) Type 0 or 1, First clock I, second clk J Field ULC URC LLC LRC Bits [63:39] [38:26] [25:13] [12:0] Format SE4M80 SE4M8 SE4M8 Type 2 Field Face X Y Bits [63] [23:12] [11:0] Format Bit Unsigned Unsigned			
SC_SP#_valid	1	Valid			
SC_SP#_last_quad_data	1	This bit will be set on the last transfer of data per quad.			
SC_SP#_type	2	 0 -> Indicates centroids 1 -> Indicates centers 2 -> Indicates X,Y Data and faceness on data bus The SC shall look at state data to determine how many types to send for the interpolation process. 			

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for the SC and the SP block will have neither because the instantiation will insert the prefix.

27.2.224.2.2 SC_SQ

This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name	Bits	Description			
SC SQ data	46	Control Data sent to the SQ			
		1 clk transfers			
		Event – valid data consist of event_id and			
		state id. Instruct SQ to post an			
		event vector to send state id and			
		event_id through request fifo			
		and onto the reservation stations			
		making sure state id and/or event id			
		gets back to the CP. Events only			
		follow end of packets so no pixel			
		vectors will be in progress.			

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

Formatted: Bullets and Numbering

AMD1044_0017350

ATI Ex. 2011 IPR2023-00922 Page 43 of 58

24 September, 2001 4 September, 201519 44 of 58 April 2002 Empty Quad Mask – Transfer Control data consisting of pc_dealloc or new_vector. Receipt of this is to transfer pc_dealloc or new_vector without any valid quad data. New vector will always be posted to request fifo and pc_dealloc cwill be attached to any pixel vector outstanding or posted in request fifo if no valid quad outstanding. 2 clk transfers Quad Data Valid – Sending quad data with or without new_vector will be posted to request fifo with or without new_vector or pc_dealloc. New vector will be posted to request fifo with or without new levet or and pc_dealloc will be posted to request fifo with or without a pixel vector and pc_dealloc will be posted with a pixel vector unless none is in progress. In this case the pc_dealloc will be posted with The Quad mask set but the pixel corresponding pixel mask set to zero.	ORIGINATE DATE	EDIT DATE	R400 Sequencer Specification	PAGE
 consisting of pc_dealloc or new_vector. Receipt of this is to transfer pc_dealloc or new_vector without any valid quad data. New vector will always be posted to request fifo and pc_dealloc will be attached to any pixel vector outstanding or posted in request fifo if no valid quad outstanding. 2 clk transfers Quad Data Valid – Sending quad data with or without new_vector or pc_dealloc. New vector will be posted to request fifo with or without a pixel vector and pc_dealloc will be posted with a pixel vector unless none is in progress. In this case the pc_dealloc will be posted in the request queue. Filler quads will be transferred with The Quad mask set to 	24 September, 2001			44 of 58
		consis or new transfe withou vector reques attache outstar if no va 2 clk transfers Quad Data Valid – S withou New ve fifo with pc_dea vector this ca posted Filler q The Qu	ting of pc_dealloc _vector. Receipt of this is to r pc_dealloc or new_vector t any valid quad data. New will always be posted to t fifo and pc_dealloc will be ed to any pixel vector nding or posted in request fifo alid quad outstanding. ending quad data with or t new_vector or pc_dealloc. ector will be posted to request n or without a pixel vector and alloc will be posted with a pixel unless none is in progress. In se the pc_dealloc will be in the request queue. uads will be transferred with uad mask set but the pixel	

 $\ensuremath{\mathsf{SC}_\mathsf{SQ}_\mathsf{data}}\xspace$ – first clock and second clock transfers are shown in the table below.

Name	BitField	Bits	Description	
1 st Clock Transfer				
SC_SQ_event	0	1	This transfer is a 1 clock event vector	
			Force quad_mask = new_vector=pc_dealloc=0	
SC_SQ_event_id	[2:1]	2	This field identifies the event	
			0 => denotes an End Of State Event	
			1 => TBD	
SC_SQ_pc_dealloc	[5:3]	3	Deallocation token for the Parameter Cache	
SC_SQ_new_vector	6	1	The SQ must wait for Vertex shader done count > 0 and after	
			dispatching the Pixel Vector the SQ will decrement the count.	
SC_SQ_quad_mask	[10:7]	4	Quad Write mask left to right SP0 => SP3	
SC_SQ_end_of_prim	11	1	End Of the primitive	
SC_SQ_state_id	[14:12]	3	State/constant pointer (6*3+3)	
SC_SQ_pix_mask	[30:15]	16	Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)	
SC_SQ_prim_type	[33:31]	3	Stippled line and Real time command need to load tex cords from	
			alternate buffer	
			000: Normal	
			010: Realtime	
			101: Line AA	
			110: Point AA (Sprite)	
SC_SQ_provok_vtx	[35:34]	2	Provoking vertex for flat shading	
SC_SQ_pc_ptr0	[46:36]	11	Parameter Cache pointer for vertex 0	
2nd Clock Transfer				
SC_SQ_pc_ptr1	[10:0]	11	Parameter Cache pointer for vertex 1	
SC_SQ_pc_ptr2	[21:11]	11	Parameter Cache pointer for vertex 2	
SC_SQ_lod_correct	[45:22]	24	LOD correction per quad (6 bits per quad)	
Name	Bits D	escript	ion	
rading		eachpt		

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017351

ATI Ex. 2011 IPR2023-00922 Page 44 of 58

	ORIGINATE	DATE	EDIT DATE	DOCUMENT-REV. NUM.	PAGE		
	24 September, 2001		4 September, 201519	GEN-CXXXXX-REVA	45 of 58		
SQ_SC_free_buff 1			Pipelined bit that instructs SC to decrement count of buffers in use.				
SQ_SC_dec_cntr_cnt 1			Pipelined bit that instructs SC to decrement count of new vector and/or event				
			sent to prevent SC from over	flowing SQ interpolator/Reservation	request fifo.		

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.

2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector marker/primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then the new would wait for another vertex vector to be processed, but the one being waited for could never export until the pc_dealloc signal made it through and thus the hang.)

27.2.324.2.3 SQ to SX: Interpolator bus

	-		
Name	Direction	Bits	Description
SQ_SXx_interp_flat_vtx	SQ→SPx	2	Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud	SQ→SPx	1	Flat or gouraud shading
SQ_SXx_interp_cyl_wrap	SQ→SPx	4	Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0	SQ→SXx	11	Parameter Cache Pointer
SQ_SXx_pc_ptr1	SQ→SXx	11	Parameter Cache Pointer
SQ_SXx_pc_ptr2	SQ→SXx	11	Parameter Cache Pointer
SQ_SXx_rt_sel	SQ→SXx	1	Selects between RT and Normal data
SQ_SXx_pc_wr_en	SQ→SXx	1	Write enable for the PC memories
SQ_SXx_pc_wr_addr	SQ→SXx	7	Write address for the PCs
SQ_SXx_pc_channel_mask	SQ→SXx	4	Channel mask

27.2.424.2.4 SQ to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name	Direction	Bits	Description
SQ_SPx_vsr_data	SQ→SPx	96	Pointers of indexes or HOS surface information
SQ_SPx_vsr_double	SQ→SPx	1	0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_vsr_valid	SQ→SP0	1	Data is valid
SQ_SP1_vsr_valid	SQ→SP1	1	Data is valid
SQ_SP2_vsr_valid	SQ→SP2	1	Data is valid
SQ_SP3_vsr_valid	SQ→SP3	1	Data is valid
SQ SPx vsr read	SQ→SPx	1	Increment the read pointers

27.2.524.2.5 VGT to SQ : Vertex interface

27.2.5.124.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state requirements of the VSISRs. <u>Therefore, the POR for this interface is that the VGT will transmit the data to the VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format.</u> The VGT can transmit up to six 32-bit floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96 bits wide.

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** C ATI

Reference Copyright Notice on Cover Page © ***

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

AMD1044_0017352

ATI Ex. 2011 IPR2023-00922 Page 45 of 58

	ORIGINATE	DATE	EDIT DATE	R400 Sequencer Specification	PAGE
	24 Septembe	er, 2001	4 September, 201519		46 of 58
Name		Bits	Description		
VGT_SQ_vsi	sr_data	96	Pointers of indexes or HOS	surface information	
VGT_SQ_vsi	sr_double	1	0: Normal 96 bits per vert 1	: double 192 bits per vert	
VGT_SQ_end	d_of_vector	1	Indicates the last VSISR da data, "end of vector" is set	ta set for the current process vector (fo on the first vector)	r double vector
VGT_SQ_ind	x_valid	1	Vsisr data is valid		
VGT_SQ_sta	te	3	Render State (6*3+3 for co "VGT_SQ_vgt_end_of_vect	nstants). This signal is guaranteed to b tor" is high.	e correct when
VGT_SQ_ser	nd	1	Data on the VGT_SQ is val interface handshaking)	lid receive (see write-up for standard R4	100 SEND/RTR
SQ_VGT_rtr		1	Ready to receive (see handshaking)	write-up for standard R400 SEND/	RTR interface

27.2.5.224.2.5.2 Interface Diagrams

---- (Formatted: Bullets and Numbering

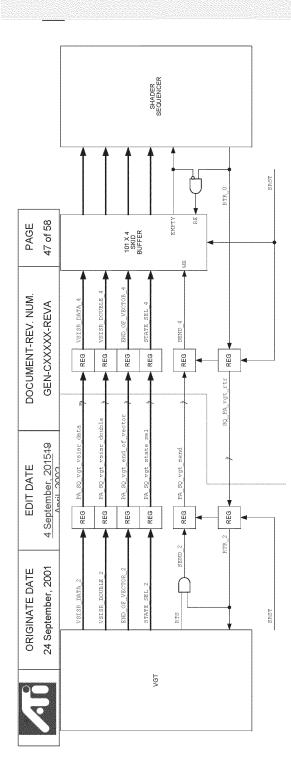
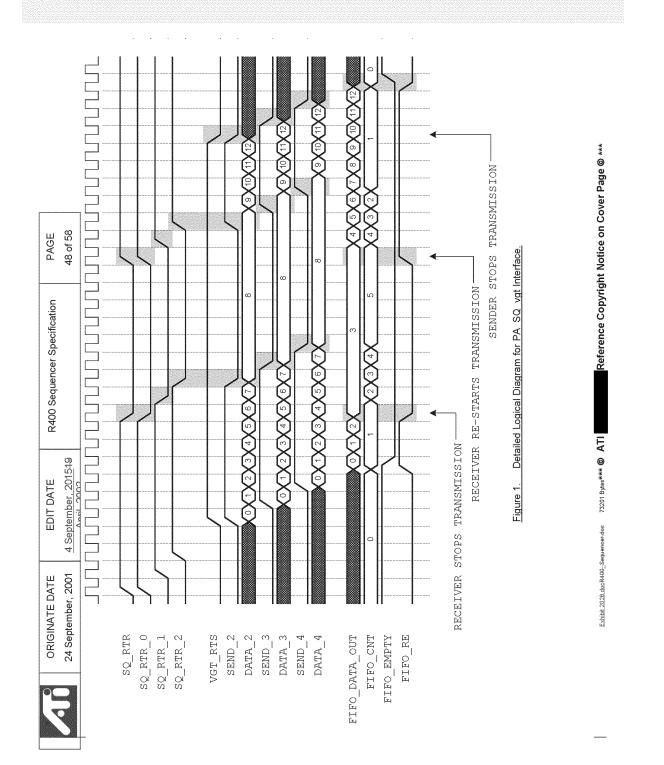

4--

Exhibit 2028.docR400_Sequencer.dec 73201 Bytes*** O ATI

Reference Copyright Notice on Cover Page © ***


AMD1044_0017353

ATI Ex. 2011 IPR2023-00922 Page 46 of 58

ATI Ex. 2011 IPR2023-00922 Page 47 of 58

	ORIGINATE DATE	EDF	r date	DOCUMENT-REV. NUM.	PAGE	
2 2	4 September, 2001	4 Septerr	ber, 20	1519 GEN-CXXXXX-REVA 49	of 58	
7060406	SO to SV: Cor	trol huo	1 2002		*	- Formatted: Bullets and Numbering
7.2.024.2.0	_SQ to SX: Con	uoi bus				
ame	Directio	on	Bits	Description		
Q_SXx_exp_type	<u>sQ→S</u>	<u>Xx</u>	2	00: Pixel without z (1 to 4 buffers) 01: Pixel with z (1 to 4 buffers)		Formatted
				<u>10: Position (1 or 2 results)</u> 11: Pass thru (4,8 or 12 results aligned)		
Q SXx exp num	<u>iber</u> <u>SQ→S</u>	<u> </u>	2	Number of locations needed in the export (encoding depends on the type see bellow).	buffer	Formatted
Q SXx exp alu		<u>Xx</u>	1	ALU ID		- Formatted
SXx exp valid			1	Valid bit		Formatted
Q SXx exp state Q SXx free don			3	State Context Pulse to indicate that the previous export is fi	nichod	Formatted
2 OAA IIee doll	£	<u>×</u>		(this can be sent with or without the other fields		Formatted
	id SQ→S	×	4	interface)		
Q SXx free alu	<u>IQ</u> <u>3Q</u> 3	<u>^X</u>		<u>ALU ID</u>		Formatted
	ype the number of ex	port location of	changes	<u></u>		(
	Pixels without Z = 1 buffer					Formatted: Bullets and Numbering
<u> </u>	= 2 buffers					
	= 3 buffers = 4 buffer					
 Type 01: P 						
<u> </u>	= 2 Buffers (color + 2					
	= 3 buffers (2 color + = 4 buffers (3 color +					
	= 5 buffers (4 color +					
	Position export					
<u> </u>	= 1 position = 2 positions					
	= Undefined					
 Type 11: P 	ass Thru					
~~~						
	= 4 buffers					
<u>01</u> 01	= 4 buffers = 8 buffers = 12 buffers					
<u> </u>	= 4 buffers = 8 buffers					
○ 01 ○ 10 ○ 11 elow the thick bla	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of			tells the SX that a given export is finished. The		
o 01 o 10 o 11 elow the thick bla acket will always	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of arrive either before	or at the sar	ne time	than the next export to the same ALU id. These		
o 01 o 10 o 11 elow the thick bla acket will always	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of	or at the sar	ne time	than the next export to the same ALU id. These		
○ 01 ○ 10 ○ 11 elow the thick bla acket will always re sent every time	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of arrive either before	or at the sar an exporting	ne time clause l	than the next export to the same ALU id. These		• Formatted: Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always re sent every time 7.2.724.2.7 ame	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of arrive either before the sequencer picks _SX to SQ : Out Direction	or at the sar an exporting tput file co on	ne time clause f ontrol Bits	than the next export to the same ALU id. These or execution.	→ fields ↓	- • Formatted: Bullets and Numbering
<ul> <li>○ 01</li> <li>○ 10</li> <li>○ 11</li> <li>elow the thick bla acket will always</li> <li>re sent every time</li> <li>7.2.724.2.7</li> </ul>	= 4 buffers = 8 buffers = 12 buffers = Undefined ack line is the end of arrive either before the sequencer picks _SX to SQ : Out Direction	or at the sar an exporting tput file co on	ne time clause i ontrol	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f	→ fields ↓	- Formatted: Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi	elds	<b>Formatted:</b> Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always re sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers	elds	- • Formatted: Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers 0: buffers are full	elds	<b>Formatted:</b> Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers	elds	- • <b>Formatted:</b> Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers 0: buffers are full 1: 2K-bits available (32-bits for each of the 64 pixels in a clause) 	ields on. 3.	<b>Formatted:</b> Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers 0: buffers are full 1: 2K-bits available (32-bits for each of the 64 pixels in a clause)  64: 128K-bits available (16 128-bit entries for each 64 pixels)	ields on. 3.	Formatted: Bullets and Numbering
<u>○ 01</u> <u>○ 10</u> <u>○ 11</u> elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers 0: buffers are full 1: 2K-bits available (32-bits for each of the 64 pixels in a clause)  64: 128K-bits available (16 128-bit entries for each	ields on. 3.	- Formatted: Bullets and Numbering
○ 01 ○ 10 ○ 11 elow the thick bla acket will always e sent every time 7.2.724.2.7 ame Xx_SQ_exp_cour Xx_SQ_exp_pos	= 4 buffers         = 8 buffers         = 12 buffers         = 12 buffers         = Undefined         ack line is the end of         arrive either before         the sequencer picks         _SX to SQ : Out	or at the sar an exporting tput file cc on iQ	ne time clause 1 ontrol Bits 1 1	than the next export to the same ALU id. These or execution. Description Raised by SX0 to indicate that the following two f reflect the result of the most recent export Specifies whether there is room for another positi Specifies the space available in the output buffers 0: buffers are full 1: 2K-bits available (32-bits for each of the 64 pixels in a clause)  64: 128K-bits available (16 128-bit entries for each 64 pixels)	ields on. 3.	- Formatted: Bullets and Numbering

ATI Ex. 2011 IPR2023-00922 Page 49 of 58

An	ORIGINATE DATE	EDIT DATE	R400 Sequer	ncer Specification	PAGE		
	24 September, 2001	4 September, 201519			50 of 58	J	
2 <del>7.2.8</del> 24.	.2.8 SQ to TP: Cor	ntrol bus			-4-	<b>Formatted:</b> Bullets	and Numbering
Once every c	clock, the fetch unit sends	to the sequencer on whi					
	ready or not. This way the The sequencer also provid						
	le where to write the fetch						
	Name Name	Direction	Direction BitsBit	B Description	Description		
TPx_SQ_dat	a_rdyTPx_SQ_data_rdy		$\underline{SQ}TPX \rightarrow \underline{1}1$	Data readyData			
TPx SQ rs	line_numTPx_SQ_clause_	num <u>TPx→</u> SQ	<u>SQTPx→ 63</u>	Line number Reservation number	r in the stationClause	Formatted	
TPx_SQ_type	eTPx_SQ_type	TPx→ SQ	<u>SQ</u> TPx→ <u>1</u> 1	Type of data s <u>1:VERTEX</u> Type (0:PIXEL, 1:VER	of data sent		
	ndSQ_TPx_send	<u>SQ→TPx</u> §	Q→TPx <u>1</u> 1	Sending valid valid data			
SQ_TPx_con	nstSQ_TPx_const	<u>SQ→TPx</u> S	Q→TPx <u>48</u> 48	Fetch state sent (192 bits total)Fe over 4 clocks (19	etch state sent		
SQ_TPx_inst	trSQ_TPx_instr	<u>SQ</u> →TPxS	G→TPx <u>24</u> 24	Fetch instruction clocksFetch int over 4 clocks	n sent over 4		
SQ TPx enc	d_of_groupSQ_TPx_end_c	of_clause SQ→TPxS	Q→TPx <u>11</u>	Last instructio groupLast instruction		(Formatted	
SQ_TPx_Typ	beSQ_TPx_Type	<u>SQ→TPx</u> €	Q→TPx 11	Type of data s <u>1:VERTEX)</u> Type (0:PIXEL, 1:VER	of data sent		
SQ TPx gpr	_phaseSQ_TPx_gpr_phas	se <u>SQ→TPx</u> S	Q→TPx <u>2</u> 2	Write phase sigr signal	nalWrite phase		
SQ_TP0_lod	<u>_correct</u> SQ_TP0_lod_corr	ect <u>SQ→TP0</u> 5	Q→TP0 <u>6</u> 6	LOD correct 3 b components per correct 3 bits components per	er quad LOD per comp 2		
SQ TPO pix	_maskSQ_TP0_pix_mask	<u>SQ→TP0</u> §	Q→TP0 <u>4</u> 4	Pixel mask 1 bit mask 1 bit per pi	t per pixelPixel		
SQ_TP1_lod	_correctSQ_TP1_lod_corr	ect <u>SQ→TP1</u> S	3Q→TP1 <u>6</u> 6	LOD correct 3 b components pe correct 3 bits	its per comp 2 er quad LOD per comp 2		
SQ_TP1_pix	_maskSQ_TP1_pix_mask	<u>SQ→TP1</u>	Q→TP1 <u>4</u> 4	Pixel mask 1 bit mask 1 bit per pi	t per pixelPixel		
SQ TP2 lod	_correctSQ_TP2_lod_corr	ect <u>SQ→TP2</u> S	Q→TP2 <u>6</u> 6	LOD correct 3 b components pe correct 3 bits	its per comp 2 er quad LOD per comp 2		
SQ_TP2_pix	maskSQ_TP2_pix_mask	<u>SQ→TP2</u>	Q→TP2 <u>4</u> 4	Components per Pixel mask 1 bit mask 1 bit per pi	t per pixelPixel		
SQ_TP3_lod	_correctSQ_TP3_lod_corr	ect <u>SQ→TP3</u> 5	3Q→TP3 <u>6</u> 6	LOD correct 3 b components per correct 3 bits components per	its per comp 2 er quad LOD per comp 2		
SQ TP3 pix		<u>SQ→TP3</u>	Q→TP3 <u>4</u> 4	Pixel mask 1 bit mask 1 bit per pi	t per pixelPixel		

AMD1044_0017357

ATI Ex. 2011 IPR2023-00922 Page 50 of 58

	TE DATE	EDH	Γ DATE		OCUMENT-R	EV. NUM.	PAGE	
24 Septem	iber, 2001		ber, 20154		GEN-CXXXX	X-REVA	51 of 58	
Q_TPx_rs_line_numSQ_T	Px_clause_num		$SQ \rightarrow TPxS($	Q→TPx 6	3 <u>Line</u>	number	in the	Formatted
					Res	0000005003-000003-00000-0000000000-00000000	ationClause	
			00.70.5		num		P3	
<u>TPx_write_gpr_index</u> SC	<del>2_+Px_write_gr</del>	x_inde	<u>SQ-&gt;TPx</u> SG	⊋->TPx   <u>7</u> 7		ex into Register t		
						returned Fetch Register file f		
						rned Fetch Data		
000400 704	00. T						4	Formatted: Bullets and Numbering
<u>-2.9</u> 24.2.9_TP to	SQ: Textur	e stall						
TP sends this signal to t	the SQ and the	SPs when	its input bu	ffer is full.				
-								
TP_SP_fetch_Stall								
*								
Q_SP_wr_addr								
► SU0		*						
		SU1						
	L							
			SU2	2	1			
				г				
					0110			
					SU3			
					SU3			
				•	SU3			
Name	Direction			scription				]
Name TP_SQ_fetch_stall	Direction TP→ SQ					uest if asserted		]
						uest if asserted		
TP_SQ_fetch_stall	TP→ SQ	ture sta	1 Do			Jest if asserted		<b>Formatted:</b> Bullets and Numbering
TP_SQ_fetch_stall	$TP \rightarrow SQ$ to SP: Tex	ture sta	1 Do	not send moi		uest if asserted		Formatted: Bullets and Numbering
TP_SQ_fetch_stall .2.1024.2.10_SQ Name	$TP \rightarrow SQ$ to SP: Tex Direction	ture sta	1 Do	not send mor	ore texture requ			Formatted: Bullets and Numbering
TP_SQ_fetch_stall - <u>2.10</u> 24.2.10_SQ	$TP \rightarrow SQ$ to SP: Tex	ture sta	1 Do	not send mor	ore texture requ	uest if asserted		Formatted: Bullets and Numbering
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall	$TP \rightarrow SQ$ <i>to SP: Tex</i> Direction $SQ \rightarrow SPx$		1 Do // Bits Des 1 Do	not send mor scription not send mor	ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall	$TP \rightarrow SQ$ <i>to SP: Tex</i> Direction $SQ \rightarrow SPx$		1 Do // Bits Des 1 Do	not send mor scription not send mor	ore texture requ			Formatted: Bullets and Numbering
TP_SQ_fetch_stall <u>.2.1024.2.10</u> SQ Name SQ_SPx_fetch_stall <u>.2.1124.2.11</u> SQ	to SP: Tex Direction SQ→SPx to SP: GPf		1 Do II Bits Des 1 Do uto cour	not send mor scription not send mor nter	ore texture requ			]
TP_SQ_fetch_stall <u>.2.1024.2.10</u> SQ Name SQ_SPx_fetch_stall <u>.2.1124.2.11</u> SQ Name	to SP: Tex Direction SQ $\rightarrow$ SPx to SP: GPH Direction		1 Do H Bits Des 1 Do Uto cour Bits De	not send more comption not send more after scription	ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr	to SP: Tex Direction SQ $\rightarrow$ SPx to SP: GPf Direction SQ $\rightarrow$ SPx		1 Do III Bits Des 1 Do uto cour Bits De 7 Wr	not send more scription not send more atter scription ite address	ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_addr	to SP: Tex Direction SQ $\rightarrow$ SPx to SP: GPH Direction		1 Do H Bits Des 1 Do Uto Cour Bits Des 7 Wr 7 Re	not send more contraction not send more after scription	ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_en	to SP: Tex Direction SQ $\rightarrow$ SPx to SP: GPH Direction SQ $\rightarrow$ SPx SQ $\rightarrow$ SPx		1 Do III Bits Des 1 Do Uto Cour Bits De 7 Wr 7 Re 1 Re	not send more cription not send more nter scription ite address ad address	ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_addr	to SP: Tex Direction SQ $\rightarrow$ SPx to SP: GPA Direction SQ $\rightarrow$ SPx SQ $\rightarrow$ SPx SQ $\rightarrow$ SPx		1     Do       Bits     Des       1     Do       uto cour       Bits     De       7     Wr       7     Re       1     Re       1     Wr	not send more cription not send more at cription ite address ad address ad address ad Enable ite Enable fo	ore texture requ ore texture requ ore texture requ			]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_addr SQ_SPx_gpr_rd_en SQ_SPx_gpr_rd_en SQ_SPx_gpr_phase	$\begin{array}{c c} TP \rightarrow SQ \\ \hline to SP: Tex \\ \hline Direction \\ SQ \rightarrow SPx \\ \hline to SP: GPl \\ \hline Direction \\ SQ \rightarrow SPx \\ \end{array}$		1     Do       Bits     Des       1     Do       uto     court       Bits     De       7     Wr       7     Re       1     Re       1     Wr       2     Th       read     read	not send more accription not send more ater scription ite address ad ad address ad ad address ad ad address ad ad address ad address ad address ad address ad address ad address ad ad address ad address ad ad a	ore texture requ ore texture requ ore texture requ or the GPRs ux (arbitrates us)	Jest if asserted	, ALU SRC	]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_en SQ_SPx_gpr_rd_en SQ_SPx_gpr_phase SQ_SPx_channel_mask	to SP: Tex Direction SQ→SPx to SP: GPł Direction SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx		1     Do       Bits     Des       1     Do       uto     Court       Bits     De       7     Re       1     Re       1     Wr       2     Th       4     Th	not send more cription not send more ater scription ite address ad address ad address ad address ad Enable ite Enable for e phase mu ds and write e channel ma	ore texture requ ore texture requ or the GPRs ux (arbitrates us) ask	Jest if asserted	- 	]
TP_SQ_fetch_stall           7.2.1024.2.10         SQ           Name         SQ_SPx_fetch_stall           7.2.1124.2.11         SQ           Name         SQ_SPx_gpr_wr_addr           SQ_SPx_gpr_wr_addr         SQ_SPx_gpr_rd_addr           SQ_SPx_gpr_rd_en         SQ_SPx_gpr_rd_en           SQ_SPx_gpr_phase         SQ_SPx_gpr_phase	$\begin{array}{c c} TP \rightarrow SQ \\ \hline to SP: Tex \\ \hline Direction \\ SQ \rightarrow SPx \\ \hline to SP: GPl \\ \hline Direction \\ SQ \rightarrow SPx \\ \end{array}$		1     Do       Bits     Des       1     Do       uto     Courr       Bits     De       7     Wr       7     Re       1     Re       1     Wr       2     Th       read     Th       4     Th       2     Wr	not send more accription not send more accription ite address ad address ad address ad address ad Enable ite Enable for e phase mu ids and write e channel ma een the phase	ore texture requ ore texture requ or the GPRs ux (arbitrates ask se mux selec	uest if asserted between inputs,	is tells from	]
TP_SQ_fetch_stall .2.1024.2.10_SQ Name SQ_SPx_fetch_stall .2.1124.2.11_SQ Name SQ_SPx_gpr_wr_addr SQ_SPx_gpr_rd_addr SQ_SPx_gpr_rd_en SQ_SPx_gpr_den SQ_SPx_gpr_phase SQ_SPx_channel_mask	to SP: Tex Direction SQ→SPx to SP: GPł Direction SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx SQ→SPx		1     Do       Bits     Des       1     Do       uto     Court       Bits     De       7     Wr       7     Re       1     Re       1     Re       1     Re       1     Re       1     Re       1     With       2     Th       4     Th       2     With	not send more accription not send more accription ite address ad address ad address ad address ad Enable ite Enable for e phase mu ids and write e channel ma een the phase	ore texture requ ore texture requ or the GPRs ux (arbitrates us) ask se mux selec to read from	Jest if asserted	is tells from	]

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

 $\mathsf{SQ}{\rightarrow}\mathsf{SPx}$ 

SQ_SPx_auto_count

R

12?

pipes

Reference Copyright Notice on Cover Page © ***

Auto count generated by the SQ, common for all shader

AMD1044_0017358

	ORIGINATE	DATE	EDIT I	DATE	R400 Sequencer Specification	PAGE	
	24 Septembe	er, 2001	4 September		9	52 of 58	
2	7 <del>.2.12</del> 24.2.12 SQ t	o SPx	Instructio			4-	(Formatted: Bullets and Numbering
	Name		ction	Bits	Description		
	SQ_SPx_instr_start		→SPx	1	Instruction start		
	SQ_SP_instr		→SPx	21	Transferred over 4 cycles		
					0: SRC A Select 2:0 SRC A Argument Modifier 3:3 SRC A swizzle 11:4 VectorDst 17:12 Unused 20:18		
					- 1: SRC B Select 2:0 SRC B Argument Modifier 3:3 SRC B swizzle 11:4 ScalarDst 17:12 Unused 20:18		
					- 2: SRC C Select 2:0 SRC C Argument Modifier 3:3 SRC C swizzle 11:4 Unused 20:12		
					- 3: Vector Opcode Scalar Opcode Vector Clamp 11:11 Scalar Clamp 12:12 Vector Write Mask Scalar Write Mask 20:17		
	SQ_SPx_exp_alu_id		→SPx	1	ALU ID		
	SQ_SPx_exporting	SQ-	→SPx	2	0: Not Exporting 1: Vector Exporting 2: Scalar Exporting		
	SQ SPx stall	SQ-	→SPx	1	Stall signal		
	SQ_SP0_write_mask		→SP0	4	Result of pixel kill in the shader pipe, whi output for all pixel exports (depth an buffers). 4x4 because 16 pixels are con clock	d all color	
	SQ_SP1_ write_mask	SQ-	→SP1	4	Result of pixel kill in the shader pipe, whi output for all pixel exports (depth an buffers). 4x4 because 16 pixels are con clock	d all color	
	SQ_SP2_ write_mask	SQ-	→SP2	4	Result of pixel kill in the shader pipe, whi output for all pixel exports (depth an buffers). 4x4 because 16 pixels are con clock	d all color	
	SQ_SP3_ write_mask	SQ-	→SP3	4	Result of pixel kill in the shader pipe, whi output for all pixel exports (depth an buffers). 4x4 because 16 pixels are con clock	d all color	
2	7 <u>.2.13</u> 24.2.13_SP t	o SQ: C	Constant a	ddres	s load/ Predicate Set	4-	
	Name	Directi	on	Bits	Description		
	SP0_SQ_const_addr	SP0→S	SQ	36	Constant address load / predicate vector load to the sequencer	(4 bits only)	
	SP0_SQ_valid	SP0→S		1	Data valid	(A hite amb)	
	SP1_SQ_const_addr	SP1→S	20	36	Constant address load / predicate vector load to the sequencer	(4 DIIS ONIY)	

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

Constant address load / predicate vector load (4 bits only) to the sequencer

AMD1044_0017359

ATI Ex. 2011 IPR2023-00922 Page 52 of 58

	ORIGINAT	E DATE	EDI	T DATE	E	DOCUMENT-REV. NUM.	PAGE	
au	24 Septemb		4 Septen		01519	GEN-CXXXXX-REVA	53 of 58	
SP1_SQ_va	•	SP1→SC	Λ	1	Data va			
SP2_SQ_cc		SP2→S0		36	Consta	nt address load / predicate vector load	d (4 bits only)	
SP2_SQ_va SP3_SQ_cc		SP2→SC SP3→SC		1 36		lid nt address load / predicate vector load equencer	d (4 bits only)	
SP3_SQ_va	ılid	SP3→S0	2	1	Data va	lid		
. <u>2.1424.</u>	<u>2.14_</u> SQ t	o SPx: c	onstant	broad	lcast		*-	Formatted: Bullets and Numbering
Name		Directio	n	Bits	Descrip	otion	]	
SQ_SPx_co	nst	SQ→SP:	K	128	Consta	nt broadcast		
<u>.2.1524.</u>	2.15_SP0	to SQ: F	(ill vector	r load	1		*-	Formatted: Bullets and Numbering
Name		Directio		Bits	Descrip			
SP0_SQ_kil		SP0→S0		4	Kill vect			
SP1_SQ_kil SP2_SQ_kil		SP1→SC		4	Kill vect			
SP2_SQ_kil SP3 SQ kil		SP2→SC SP3→SC		4	Kill vect			
						or load		
Annesson	2.16_SQ t				T		-	
Name	~	Direction SQ→CP	1	Bits 1	Descrip Read S			
SQ_RBB_r SQ_RBB_r		SQ→CP		32	Read C			
SQ_RBBM		SQ→CP		1	Optiona			
SQ RBBM		SQ→CP		1		me (Optional)		
	<u>2.17_</u> CP t	o SQ: RI			Deserie	tion	*-	Formatted: Bullets and Numbering
Name rbbm_we		CP→SQ		Bits 1	Descrip Write E			
rbbm_a		CP→SQ		15	1	s Upper Extent is TBD (16:2)		
rbbm_wd		CP→SQ		32	Data			
rbbm_be		CP→SQ		4	Byte Er	ables		
rbbm_re		CP→SQ		1	Read E			
rbb_rs0		CP→SQ		1		leturn Strobe 0		
rbb_rs1		CP→SQ		1		leturn Strobe 1		
rbb_rd0 rbb_rd1		CP→SQ CP→SQ		32 32	Read C			
RBBM_SQ	soft reset	CP→SQ CP→SQ		1	Soft Re			
	2.18_SQ t		ate repo	1			*-	Formatted: Bullets and Numbering
Name		Directio	n <u> </u>	Bits	Descrip	ation		
SQ_CP_vs	event	SQ→CF		1		Shader Event		
SQ_CP_vs		SQ-→CF		2		Shader Event ID		
SQ_CP_ps		SQ→CF		1		hader Event		
SQ_CP_ps	eventid	SQ→CF		2	Pixel S	hader Event ID	]	
eventid the CP will	= 0 => *sEnd( = 1 => *sDon assume the Vs o_vs_eventid =	e (i s is done wit	.e. VsDone)		it gets a	pulse on the SQ_CP_vs_event		
	00_Sequencer.doc	73201 Bytes*** ©			Refere	nce Copyright Notice on Cover Pa	ıge © ***	

ATI Ex. 2011 IPR2023-00922 Page 53 of 58

An	ORIG	NATE DATE		EDIT DATE	F	R400 Seque	ncer Specifi	cation	PAGE	
	24 Sep	tember, 2001	<u>4 Ser</u>	otember, 20154	9				54 of 58	(
24.3 Exa	ample o	of control	flow _l	orogram e	xecu	tion				Formatted: Bullets and Numberin
We now prov	ide some e	examples of ex	ecution t	o better illustrate	e the ne	w design.				
Given the pro	uram.									
	gram.									
<u>Alu 0</u> Alu 1										
Tex 0										
Tex 1 Alu 3 Serial										
Alu 4										
Tex 2 Alu 5										
Alu 6 Serial										
Tex 3 Alu 7										
Alloc Position	n 1 buffer									
Alu 8 Export Tex 4										
Alloc Parame		rs								
Alu 9 Export 1 Tex 5	0									
Alu 10 Serial										
Alu 11 Export	t 1 End									
Would be cor	nverted into	the following	CF instru	ictions:						
Execute Al	11 0 Alu	0 Tex 0 Te	x O Alı	1 Alu 0 Te:	c ∩ A1	и О А]и '	l Tex O			
Execute Al	.u 0			i she it hade bet be" in ber'r						
Alloc Posi Execute Al		0								
Alloc Para			0 Em.	1						
Execute Al	u o rex	0 Alu 1 Al	u o Enc							
And the exec	ution of thi	s program wou	ıld look li	ke this:						
Put thread in	Vertex RS	;								
		-		~ ~~~						
		<u>tion Pointer (1</u> arker (3 or 4 bi								
Loop Iter	ators (4x9	bits), (LI)								
		(4x12 bits), (C bits), (PB)	<u>RP)</u>							
Export ID	) (1 bit), (E	XID)								
	se Ptr (8 bit ase Ptr (7 t	<u>is), (GPR)</u> pite) (EB)								
Context F	^o tr (3 bits).	(CPTR)								
LOD corr	rection bits	(16x6 bits) (L0	DD)							
State Bits										
and an	ECM		<u>RP</u>		<u>XID</u>	GPR	EB	CPTR	LOD	
<u>0</u> <u>C</u>	)	0 0		0 0		0	0	0	0	
Valid Thr	ead (VALII	<u>)</u>								
Texture/A	ALU engine	e needed (TYP		, ,						
Waiting c	on Texture	outstanding (P Read to Comp	lete (SEF	<u>z</u> RIAL)						
		its) (ALLOC)								
						-				
Exhibit 2028.doc	2R400_Sequence	-doc 73201 Bytes*	r∗© Ati	F	Referen	ce Copyrig	ht Notice o	n Cover Pa	ge © ***	

ATI Ex. 2011 IPR2023-00922 Page 54 of 58

AR	ORIGI	NATE DATE	EDIT	T DATE	DOCI	JMENT-RE	V. NUM.	PAGE
40	24 Sep	tember, 2001		ber, 201519	GEN	1-CXXXXX	-REVA	55 of 58
$     \begin{array}{r} 01 - 1 \\             10 - 1 \\             11 - 1 \\             $	Parameter o pass thru (o Size (4 bits Allocated (P	port allocation ne pr pixel export ne out of order expor	eded (ordere					
atus Bits								
LID	TYPE ALU	PENDING 0	<u>SERIAL</u>		SIZE POS	ALLOC	FIRST 1	LAST 0
Execute	Alu O Al	cked up for the e lu 0 Tex 0 Te two ALU instruct RS:	x O Alu 1	Alu O Tex	0 Alu 0 A	lu 1 Tex		e. Here is the
te Bits								
2830000000		_I <u>CRP</u>	PB	EXID	GPR	EB	CPTR	LOD
2	<u> </u>	0	0	0	0	0	0	0
atus Bits								
<u>_ID</u>	TYPE TEX	PENDING 0	SERIAL 0		SIZE POS	ALLOC	FIRST 1	LAST 0
k in this st te Bits	com	re pipe frees up.	<u>PB</u> 0	EXID 0	<u>GPR</u> 0	<u>EB</u> 0		LOD 0
atus Bits	TYPE	PENDING	SERIAL	ALLOC	SIZE POS	ALLOC	FIRST	LAST
	ALU	<u>1</u>	<u>1</u>		$\frac{1}{2} \qquad \frac{1}{2}$	ALLOU	1	0
ck the threa is state: tate Bits	id up. Lets :	I bit the arbiter r say that the textu						
<u>CFP E</u> 0 6			<u>PB</u>		<u>0</u>	0	0	0
atus Bits \LID	TYPE TEX	PENDING 0	SERIAL Q		SIZE POS	ALLOC	FIRST	LAST Q
Again the	TP frees u	p, the arbiter pick	is up the thre	ead and execul	ies. It returns	in this stat	e:	

Exhibit 2028.doc R400_Sequencer.doc 73201 Bytes*** © ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017362

State Bits		TE DATE nber, 2001	EDIT I 4 Septembe	er, 201519	R400 Seq	Jencer Spe	cification	PAGE 56 of 58
<u>CFP E</u> 0 7	CM LI 0		<u>PB</u> 0	EXID 0	<u>GPR</u> 0	<u>EB</u> 0	CPTR 0	
					the thread for			LAST 0 the serial bit the serial bit
State BitsCFPE08	CM LI 0		<u>PB</u>		<u>GPR</u> 0	<u>EB</u> 0	CPTR 0	
Status Bits	ТҮРЕ	PENDING	SERIAL	ALLOC	SIZE POS	S ALLOC	FIRST	LAST
State Bits	ALU as the TP clea	1 ars the pendin		0 ad is picked EXID	000	<u>EB</u>	1 CPTR	
0 9 Status Bits		0	0	Q	<u>0</u>	0	0	0
VALID 1 Picked up Execute	TYPE TEX by the TP ar Alu 0	PENDING 0 nd returns:	<u>SERIAL</u> 0	ALLOC 0	<u>SIZE POS</u> 0 0	<u>ALLOC</u>	FIRST 1	LAST 0
State Bits       CFP     E       1     0	<u>CM LI</u> 0		<u>PB</u>	EXID 0	<u>GPR</u> 0	<u>EB</u> 0	CPTR 0	<u>LOD</u> 0
	TYPE ALU by the ALU a osition 1	PENDING 1 and returns (le	SERIAL 0 ets say the TF	ALLOC 0 Phas not ret	0 0	<u>ALLOC</u>	FIRST 1	LAST 0
State BitsCFP20	<u>CM LI</u> 0		<u>PB</u>	<u>EXID</u>	<u>GPR</u> 0	<u>EB</u> 0	CPTR 0	

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** ⓒ ATI

Reference Copyright Notice on Cover Page © ***

AMD1044_0017363

ATI Ex. 2011 IPR2023-00922 Page 56 of 58

AU Status Bits		GINATE [ eptember,		4 Septen	T DATE 1ber, 2015 11 2002			MENT-RE -CXXXXX		PAGE 57 of 58
/ALID	TYPE		IDING	SERIAL	ALLOC	SIZE		ALLOC	FIRST	LAST
	ALU	1		0	01	1	0		1	0
If the SX ne RS in this xecute Al tate Bits	state:		ie export,	the SQ is g	oing to alloca	te and r	bick up tl	ne thread	for executio	n. It returns to
	ECM		CRP	PB	EXID		SPR	EB	CPTR	LOD
1		0	0	0	0	C	and the second	0	0	0
tatus Bits										
ALID	TYPE	000000000000000000000000000000000000000	IDING	SERIAL	ALLOC	SIZE		ALLOC	FIRST	LAST
	<u>TEX</u>	1		0	<u>0</u>	0	1		1	0
Alloc E ate Bits	ECM		CRP	PB	EXID		GPR	EB	CPTR	LOD
	destant and a state of a			1 200	Son / S Sont				<u></u>	
tatus Bits	/	0	0	0	1	<u> </u>	)	0	0	0
ALID Once ag iread.	TYPE ALU ain the S	PEN 1 Q makes	IDING sure the	SERIAL 0 SX has en	ALLOC 10	SIZE 3	POS /	ALLOC	FIRST 1	0 LAST 0 n pick up this
nread.	TYPE ALU ain the S	PEN 1 Q makes	IDING sure the	SERIAL 0	ALLOC 10	SIZE 3	POS /	ALLOC	FIRST 1	LAST 0
ALID Once ag read. Execute tate Bits FP <u></u>	TYPE ALU ain the S e Alu 0 ECM	PEN 1 Q makes Tex 0 A	IDING sure the	SERIAL 0 SX has en u 0 End PB	ALLOC 10 hough room i	SIZE 3 n the P	POS . 1 Paramete	ALLOC er cache	FIRST 1 before it car	LAST 0 n pick up this
ALID Once ag read. Execute tate Bits	TYPE ALU ain the S e Alu 0 ECM	PEN 1 Q makes Tex 0 A	IDING sure the	SERIAL O SX has en	ALLOC 10 Iough room i	SIZE 3 n the P	POS . 1 Paramete	ALLOC er cache	FIRST 1 before it ca	LAST 0 n pick up this
ALID Once ag read. Execute tate Bits FP E	TYPE ALU ain the S e Alu 0 ECM	PEN 1 Q makes Tex 0 A	IDING sure the	SERIAL 0 SX has en u 0 End PB	ALLOC 10 hough room i	SIZE 3 n the P	POS . 1 Paramete	ALLOC er cache	FIRST 1 before it car	LAST 0 n pick up this
ALID Once ag iread. Execute tate Bits FP [ 1 tatus Bits	TYPE ALU ain the S Alu 0	PEN           1           Q makes           Tex 0 A           LL           Q	IDING sure the .lu 1 Al	SERIAL 0 SX has en u 0 End PB 0	ALLOC 10 iough room i <u>EXID</u> 1	SIZE 3 n the P	POS , 1 Paramete	ALLOC er cache	FIRST 1 before it can CPTR 0	LAST 0 n pick up this LOD 0
ALID Once ag read. Execute tate Bits FP [ 1 tatus Bits	TYPE ALU ain the S e Alu 0 ECM	PEN           1           Q makes           Tex 0 A           LL           Q	IDING sure the	SERIAL 0 SX has en u 0 End PB	ALLOC 10 hough room i	SIZE 3 n the P	POS , 1 Paramete	ALLOC er cache	FIRST 1 before it car	LAST 0 n pick up this
ALID Once ag iread. Execute tate Bits FP [] tatus Bits ALID	TYPE ALU ain the S e Alu 0 ECM TYPE TEX	PEN 1 Q makes Tex 0 A LL 0 PEN	IDING	SERIAL O SX has en U O End PB O SERIAL O	ALLOC 10 10 10 10 10 10 10 10 10 10	SIZE 3 n the P C SIZE	POS , 1 Paramete	ALLOC er cache	FIRST 1 before it can <u>CPTR</u> 0 FIRST	<u>LAST</u> 0 n pick up this   <u>LOD</u> 0   <u>LAST</u>
ALID Once ag rread. Execute itate Bits FP E itatus Bits (ALID This execute itate Bits	TYPE ALU ain the S e Alu 0 ECM <u>TYPE</u> TEX cutes on t	PEN           1           Q makes           Tex 0 A           LL           Q           PEN           1	IDING	SERIAL O SX has en U O End PB O SERIAL Q Urns:	ALLOC 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	SIZE 3 n the P C SIZE 0	POS , 1 Parameter POS , 1	ALLOC Er cache	FIRST 1 before it can <u>CPTR</u> 0 <u>FIRST</u> 1	LAST 0 n pick up this LOD 0 LAST 0
ALID Once ag irread. Execute tate Bits FP E tatus Bits ALID This exec tate Bits FP E	TYPE ALU ain the S Alu 0 CM <u>TYPE</u> TEX cutes on t	PEN           1           Q makes           Tex         0           LL           Q           PEN           1	IDING Sure the Llu 1 Al CRP 0 IDING Ithen ret CRP	SERIAL O SX has end U O End PB O SERIAL O UURNS: PB	ALLOC 10 iough room i EXID 1 ALLOC 0 EXID	SIZE 3 n the P C SIZE 0	POS , 1 Paramete PR POS , 1 POS , 1 PR	ALLOC er cache EB 100 ALLOC	FIRST 1 before it can <u>CPTR</u> 0 <u>FIRST</u> 1 <u>CPTR</u>	LAST Q n pick up this LOD Q LOD
ALID Once ag irread. Execute tate Bits FP E tatus Bits ALID This exec tate Bits	TYPE ALU ain the S Alu 0 CM <u>TYPE</u> TEX cutes on t	PEN           1           Q makes           Tex 0 A           LL           0           PEN           1           he TP and	IDING	SERIAL O SX has en U O End PB O SERIAL Q Urns:	ALLOC 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	SIZE 3 n the P C SIZE 0	POS , 1 Paramete PR POS , 1 POS , 1 PR	ALLOC Er cache	FIRST 1 before it can <u>CPTR</u> 0 <u>FIRST</u> 1	LAST 0 n pick up this LOD 0 LAST 0
ALID Once ag read. Execute tate Bits FP E tatus Bits ALID This exec tate Bits FP E 2	TYPE ALU ain the S Alu 0 CM <u>TYPE</u> TEX cutes on t	PEN           1           Q makes           Tex         0           LL           Q           PEN           1	IDING Sure the Llu 1 Al CRP 0 IDING Ithen ret CRP	SERIAL O SX has end U O End PB O SERIAL O UURNS: PB	ALLOC 10 iough room i EXID 1 ALLOC 0 EXID	SIZE 3 n the P C SIZE 0	POS , 1 Paramete PR POS , 1 POS , 1 PR	ALLOC er cache EB 100 ALLOC	FIRST 1 before it can <u>CPTR</u> 0 <u>FIRST</u> 1 <u>CPTR</u>	LAST Q n pick up this LOD Q LOD
ALID Once ag read. Execute tate Bits FP E tatus Bits ALID This exec tate Bits FP E	TYPE ALU ain the S Alu 0 CM <u>TYPE</u> TEX cutes on t	PEN           1           Q makes           Tex         0           LL           Q           PEN           1	IDING Sure the Llu 1 Al CRP 0 IDING Ithen ret CRP	SERIAL O SX has end U O End PB O SERIAL O UURNS: PB	ALLOC 10 iough room i EXID 1 ALLOC 0 EXID	SIZE 3 n the P C SIZE 0	POS , 1 Paramete PR POS , 1 POS , 1 PR	ALLOC er cache EB 100 ALLOC	FIRST 1 before it can <u>CPTR</u> 0 <u>FIRST</u> 1 <u>CPTR</u>	LAST Q n pick up this LOD Q LOD

ATI Ex. 2011 IPR2023-00922 Page 57 of 58

<b>A</b> î		TE DATE	EDIT D	<u>r, 2015</u> 19	R400	) Sequencer Spec	tification	PAGE 58 of 58
VALID	TYPE	PENDING	SERIAL	ALLOC	SIZE	POS ALLOC	FIRST	LAST
1	ALU	1	1	Q	0	1	1	1
Waits for	the TP to ret	urn because	s reads are	(and SERIAL in I	this case). 7	Then executes		
and does not	return to the	RS because i	he LAST bit is	s set. This is	the end	of this thread and	d before dro	pping it on the
floor, the SQ	notifies the S	X of export co	mpletion.					

# 28-25. Open issues

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS static).

Saving power?

Exhibit 2028.docR400_Sequencer.doc 73201 Bytes*** ⓒ ATI

Reference Copyright Notice on Cover Page © ***

Formatted: Bullets and Numbering

AMD1044_0017365

ATI Ex. 2011 IPR2023-00922 Page 58 of 58