
ATI Ex. 2011
IPR2023-00922

Page 1 of 58

ORIGINATE DATE EDIT DATE DOC UMENT-REV. NUM. PAGE

24 September, 2001 4 Septernber, 201519 GEN-CXXXXX-REVA 1 of 58— - Sani ny
Author: Laurent Lefebvre

 Issue To: | Copy No:

R400 Sequencer Specification

SQ

Version 4442.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overviewof the
required capabilities and expected uses of the block, It also describes the block interfaces, internal sub-
blocks, and provides internal stete diagrams.

AUTOMATICALLY UPDATED FIELDS:
Decument Location: perforcer400\doc_libwesigniblocksiegiR400Sequencer.dec
Current intranet Search Title: R400 Sequencer Specification

we _ APPROVALS oe
~Name/Dept | Signature/Date

 Remarks:

THIS DOCUMENTCONTAINS [RRNFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |.

npublished work. The copyright notice is not an admission that publication has occurred. This work contains |
u

EEEroprictary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

dS

Exhibit 2028.docR400-Sequencerdes 79201 Bytes*** @ ATIHRcference Copyright Notice on Cover Page © +

ATT 2028

LGv. ATI

IPR2015-00325

AMD1044_0017308

ATI Ex. 2011

IPR2023-00922

Page 1 of 58

ATI Ex. 2011
IPR2023-00922

Page 2 of 58

 ORIGINATE DATE

24 September, 2001

 EDIT DATE
R400 SequencerSpecification PAGE :

2 of 58 4 September, 201519aE

Table Of Contents

1. OVERVIEW ..cetccccceecetrec tee eente ceedcn E RE RRREREEndeden es nannenn een 6

1.1 Top Level Block Diagram ooocececece ett teeeec trees esetraeeestrtsieeeetiteeseesteeeesnneees 98
1.2 Data Flow graph (SP)tceeet ett bb teen tttttteettttieseteesttrenne 4340 Soe
1.3 CONMTO) GIDirte nn D ttn ee tec freee ebobbitetetrtiieeeesiteeneeeteeeennea TAM
2. INTERPOLATED DATA BUS.
3. INSTRUCTION STOREQe 4744
4. SEQUENCER INSTRUCTIONS.. 4744
§. CONSTANT STORESocccceccensaneceaeannnaaecncanennanaesnsanannanensisaneaaanedsasnnnaensesonnananensas 144
S.1 MEMOry OFQaANIZAtlONSoocccce cc eee eetebeeeeeeeeeseeeeeseeesccstiseeeeesttstteeettsaeeeenttasass 4744
5.2 Management of the Control Flow Constanis...... a (BAS :
$3 Management of the re-mapping tablesooccccetee tees teeter etttseteeetneenaee 1840 0

5.3.1 R400 Constant managementett4845
5.3.2 Proposal for R400LE constant management... 4845
S303 Dirtybitsttecities2047 |

S.3.4 Free List Blockccces ceee estes es isernsrissotnesternensrntnieenennaennnsiniteeeen204%
§.3.5 De-allocate BlOCkcccteeter tenet tie ettitter tintinete21498
5.3.6 Operation of Incremental modelett2148

$4 Gonstant Store INdexingeeeeeee tee ebb tttee ett eteeeeetneesas 2148 2)
$5 Real TIME COMMANIS. cecececeeeteeeeteeescenecneteeccbbteeteetecititetettntiteeetttaiass 2210 @ 2
$3.6 Constant Waterfalling cccceceteeeebeteebesseeeteetesessetesetetsistettesetstetttesenias 2210
6& LOOPING AND BRANCHEScecececeeescreeneaneneenoienaencece nennenenees2320
6.1 The controlling state. cececccceceeeeeceeeeenseseteeeeeeerseversstevceetneeeeseenuteeteernees 2320
6.2 The Gomtral Flow Program ooo.c cece ceceeecteeec eee cuseeeceeuuieeeseccuuieeseeeorsa 2320
6.3 Data dependant predicate INStructionscecects ete eeteeeeessettetteeesctttteerersies 29ee 28
64 HW Detection of PVPSccccreer ceevvv eevee vs seereeevevtuseveseoeesueeeeyeyenas2923
6.5 Register file indexing.resereevee nev neerorvsesensiioisissresstrsinsessriavsniseens 2923 :
6.6 Predicated Instruction support for Texture clauses 00000... 3023
6.7 Debugging the SNadersceeccc eect terre tenet tees cteebteteeecstttittessscttteeetrrcies 3023

6.7.1 Method 4: Debugging registers oooeeec cec i tettteeetetetstetrertetnttietes 3028 -—

6.7.2 Method 2: Exporting the values in the GPRs (12).cccceteetee3024
7 POEL KILL MASKociniCninecieseecaneanenences3124
8 MULTIPASS VERTEX SHADERS (HOS)... ceceeecesesnnneersenesnencestenenanecesenenneneeees siz4
9. REGISTER FILE ALLOCATIONoo eccccccccc cne ec ennee reas cena na nna ennaaan neces sunanenneasaanaanences3124
10. FETCH ARBITRATION.oocccccccccccccncececneccecee cece cenceeeceeeee niesecaeeceteesaeceeaneeecnceeeecteneeaneeecees 3226
11. ALU ARBITRATIONoccseenteencen ERRRnERnnneecaneenna3226
12. HANDLING STALLS osstercieenne stern teen eeeeene encnnennna ne Senneeceanneaeeteene ees sd2Fo
13. CONTENT OF THE RESERVATION STATION FIFOSLo. cecccseccccsseccsneecssenenstncessnenenneess 332% 5
14. THE OUTPUT FILE cececccccee eeeennEEEEnnneencane Boee |
18. 1D FORMATocccentre ceee nner cnae nn nae eee na nena ee saa nana ae cae nae cannes cnaaannn nets naaaaeee 332%
15.1 Interpolation of constant attributesooeecttert tite treetteteerrttteeeerrciea 3428
16. STAGING REGISTERSweccccsseccessscsencenerenseeecesenesneneesseneaneeceseueuneueesesaueunaneessnanennaeees 2428
17. THE PARAMETER CACHE. ..ucccccn 36.
18. VERTEX POSITION EXPORTING. cecccccccseccssencecssencunencenanansonescssancusancessceneuaneesanaunnneeses 3730 |

Exhibit 2028,doch409_Sequencercdac 79201 Bytes™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017309

ATI Ex. 2011

IPR2023-00922

Page2 of 58

ATI Ex. 2011
IPR2023-00922

Page 3 of 58

Vat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE© " ¢ 24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 3 of 58
19. EXPORTING ARBITRATION .o..ccccccccceccerccseceaneenceceanmeneanteeesenesanceeseneanseesenmataaeceemeanaaesens 3730
20. EXPORTING RULES ooo eeccccccccccccceseneanenecsenaeeanceeeaaeennenecesseaueennessnaneanerscemeanaerccaneaneaesees 3830
20.1 Parameter caches ExportsottertittteeterSES
20.2 M@EMOry OXDOMSeneee tt eee tb bt te ecb etbttteetidttteeeetne 3838
20.3 Position exporis........ 3830
21. EXPORT TYPES......... 3830
21.1 Vertex SHAGceceeee reece eee i tr Gree enn EEG Ste Dt tEttEeDdtttitteeitctteeetnnries 3834
21.2 Pixel SACIeeece ee ceeeeeeeebbeeeeeessesseaeeeeeeesseeeeeeenestiettvntretsseraeeeeeees 3834+
22. SPECIAL INTERPOLATION MODES..... 3934
22.1 Real time COMMANS ooo.ccccece cece ceetttr ees . 3934+
22.2 Sprites/ XY screen coordinates/ FB information........... .. $834
22.3 Auto generated COUNPETS0.ccece cc rrteeeeetties 3932

22.3.19Vertex SRaderSccceer eee ee tee etttttttrcitititet tttttttttittnnern 3932
223.2 Pixel shaders.ett 3922

23. STATE MANAGEMENT....... 40233
23.1 Parameter cache synchronization 4033
24. XY ADDRESS IMPORTS...ccc 4033
24.19Varlex Indexes IMPOIScececcs teeee ttt treteeetriseeeetttsseteeettseeeccstteteeeccra 4033
28, REGISTERS ..0....cccccceccceccesceeeeeeceneeeeceeeeue nee ceneeu tens cee sae nusic ese dune sees qudceneessnusneneesecentenmeesess 4133
251 COMPOLceete e ttt teen ttttteetttteenees ve 4133
25.2 CONTEXEeectrte teteet cette teeeeebtbetttnnnrrea 4133
26. DEBUG REGISTERS...... « AZBA
26.1 Context... wn 4234
ZO 2 COMOEEEEEE EEE eet E eee DERE Dec e bene Ee eebbebteeeeeebcttteeeetnenies 4234.

27. INTERFACESccccccccsessssensenessesserenserssseesssnessessseentensstessenseteassneateneeneess 4235
27.4 External Interfacescccccececevevsvsesvseressrevavevevevevseveavseevevevevevevieas 4235
27.2 SC to SP INM|SMACESocccece cect e cent teeter dee eet bbbbbbbbbbbtbtttteaaaatesaateeeeeecceee 4235

QT2 SCSPBcececette eettecrteeteetiitteittietiiteitittersitesi4235

QT SOSoccece cece tates tent reteset testis ttititietiittititiesttitttiterttettettttteticees 4336

27.2.3 SQ to SX interpolator DUS ooccceee ttte ete ettrtetre titttsttrtetitteennees 4532

27.2.4 SQto SP: Staging Register Datacecette treet tetttttettretticees 4537

27.2.5 VGT to SQ. Vertex interface.eeretree titties rrsesnsernes 4538

272.6 SQ to SX: Control BUScecetree vititetitie etitrertetietititittircititteenenees 4944

27.2.7 SX to SQ: Output file COMPOcccece tet eettre ttttttsttrtintntetee 4944

27.2.8 SQ to TP: Control USoccccc cece crete tetteetttsutterettitinettttettresicees 5044

27.2.9 TP to SQ: TextureStalleretter att errinrsnsserrssrrneris 5142

27.210 SQ to SP: Texture staleeerternnt err rnierssrrnees 5142

272.11 SQ to SP: GPR and auto counteroeersten rrssnnerns 5142

27.212 SQ to SPic Instructionsoeseve seri enet sini niserrrmsrsers 5243

27.2.13 SP to SQ: Constant address load/ Predicate Set... 5243

27.214 SQ to SPx: constant broadcast.cccce etttttteetttettttttttetttterres 5344

27.215 SPO to SQ: Kill vector loadceeterre never riserernst 5344

272AG SQ to CP: RBEBM DUS.ccccece tees tenets titeetiitttettetscreseetitetitnteenees 5344

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017310

ATI Ex. 2011

IPR2023-00922

Page 3 of 58

ATI Ex. 2011
IPR2023-00922

Page 4 of 58

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
 Lot 24 September, 2001 4 September, 201519 4 of 58

27217 CP to SQ: RBBM DUS.ccccc cece tteetreteetittesititititertititttettittttteeres o344

27.218 SG to CP: State reportoocectee tttette se tittettitsetitititttrtttetteennes 584400
2B. OPEN ISSUES... escssecccssssescsssescssnscssssseesssnsesssnseessssssassnssessssssssanscssneesesnsecssnuecessnsessaneeessoes5844

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017311

ATI Ex. 2011

IPR2023-00922

Page 4 of 58

ATI Ex. 2011
IPR2023-00922

Page 5 of 58

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |
24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 5 of 58 | :rts oes i

Revision Changes:

Rev 0.1 (Laurent Lefebvre}
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2007
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rey 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rey 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.17 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 contro!
flow meeting. Added a NOPinstruction, removed
the conditional_execute_or_jump. Added cebug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-»SPO interfaces. Changed delta
precision. Changed VGT—SP90interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Addedthe different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-»SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PASO
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the 3X
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangementof the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
New control flow scheme

Exhibit 2028.doch400-Sequenverdec 79201 Bytes*** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017312

ATI Ex. 2011

IPR2023-00922

Page 5 of 58

ATI Ex. 2011
IPR2023-00922

Page 6 of 58

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201549 6 of 58i SE oes

1. Overview

se ark : : jgntiThe sequencer chooses two ALU slauses-threads and a fetch slause
hreadto execute, and executesail of the instructions in a clause-block before looking for a newclause of the same

type. Two ALU clauses threads are@ executed interleaved to hide the ALU latency. Each vector all haveie eis fateh

acute. The arbitrator will give
older threads, L-will-net-execuie-an-aly
npleted.-There are two separate sets-of

reservation stations, one, for pixel vectors and cone5 for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, contro! flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017313

ATI Ex. 2011

IPR2023-00922

Page 6 of 58

ATI Ex. 2011
IPR2023-00922

Page 7 of 58

we@@HEd18409UOSTONJUBUAdODsous.0joyBBLy@8Ms0rczcopssoennespopyoopazaznapsMOIAIIAOJg0uenbeg[eleuey3]any

gopee
~~oe|»Gal|~Gel»el|eeaeme

FT
‘tARLNTEXp-—~kt,LOSLISMXL__|PO/OdgO/oddO/dd«-)GO/dana|!Yi/8MYre||euauniod|

awsaDed_
paispe /:_||pur}SLWLSHOLSfs|dSdsdsdsSHOISS|

x|WLPommnmmnrnnnneLNTCELL°l"PPeiSadw5
|a

LeLNUTSOT—oeiCdLogLNefLe;>|AYOLSLSNIaanaSlNi--)YSaiNov|*|JSNI_ ||avonNnyrlLSM|eyeVESSOHS71|Be|RoyADhooomeplSINDByTOSLNODaa
-doToRINCSSLNVLSNODpaddler49Li49shay|

YTRLGeeeSeereeeemmseeeceaimmemaumiemiae|8GJO2WABE-XXXXXO-NADBtGLOdVequiejdespyL00ZJequisidespz|3ovdWAN(ASMLNSINDO0aLlvdLidadivdalyNnigio

AMD1044_0017314

ATI Ex. 2011

IPR2023-00922

Page 7 of 58

ATI Ex. 2011
IPR2023-00922

Page 8 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 8 of 58ry

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017315

ATI Ex. 2011

IPR2023-00922

Page 8 of 58

ATI Ex. 2011
IPR2023-00922

Page 9 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201549 GEN-CoOOOG-REVA | 9 of 58L fy L

1 Top Level Block Diagram

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017316

ATI Ex. 2011

IPR2023-00922

Page 9 of 58

ATI Ex. 2011
IPR2023-00922

Page 10 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201519 10 of 58By i oe

|
|
| Input Arbiter ||| | |
I | |

' ; |

|

—>| VIX RS PIX RS —_

miLa *©°

1> i5
oS =@ =

Texture

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017317

ATI Ex. 2011

IPR2023-00922

Page 10 of 58

ATI Ex. 2011
IPR2023-00922

Page 11 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 11 of 53A r AP

vertex/pixel vector arbitrator

Possible delay for available GPR's G

| FIFO+ |oxture clause OQ |
eservationstation |FIFO i

ATA clanse 0 < [Eo] <reservation statior
la@——peservation station FIFO >been Texture clause 1

eV HES eservationstation |\ 6 !
Lag—ATT clanse 1 < [FIFOa |

eservation station IK :
oxture arbitrator [PPO] er.eservationstation

extire arbitrator

ALU clause 2
‘eservation station ——————“—,

plPFO] Bes(onl Texture clanse 3 |
AES eservationstation |

begAT clanseos Lo - jeservation station rerFIFO L
Lo iPexture clause 4

eservation station |
4 FIFO -t——|@j—Aliletanse 4 PEeservation station

 TH clanse 5
eservation station

< [RRS}jw@gALU clause 6 [FROTreservation station eecencey _

|FIFO LpiPexture clause 7
4 eservation station
Lg] FIFOLg___

reservation station. |

g@——ALU clause 7eservation station

Figure 2: Reservation stations and arbiters

Thereare twe-sets-of the above figure,one for-vertices andonetor-sixels.

ore—the—in

screen cositionineeded) are senitc the interpolator whichwilluseihemiic interpolate theparametersandclace-the

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017318

ATI Ex. 2011

IPR2023-00922

Page 11 of 58

ATI Ex. 2011
IPR2023-00922

Page 12 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 12 of 58ii

 buffor. Hike outout puter ie fullerdosen't have enough&space the sequencer wil prevent such.a ‘vertex group. to
enterar-exporting clause.

decode bus-al-onetime,Similaryonkione> fetch state.machine may.haveaaocees-_itotheregisier file addrese-buc.at
one-time.‘Arbitration.iserformed.by three:arbiter-blocke(hwoforthe- ALA state.Machines and’eOFe-for the fetchstale
Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector t

ixel, vertex) that we call the reservation station (RS).

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017319

ATI Ex. 2011

IPR2023-00922

Page 12 of 58

ATI Ex. 2011
IPR2023-00922

Page 13 of 58

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201549 GEN-CoOOOG-REVA | 43 of 58{ : fy {

1.2 Data Flow graph (SP)

possess

e Be ee

- ——~ go Register File 1

at | , &
pipeline stage | re requ —~\

instruction

pipeline

instruction

pipeline

 requeg

texture}

quest

BpepSiraXxer

Lua

5) 8oe a i
= 2 i

ae a
S texture re} est

so

I

j Ite , an

\ to Primitive Assembly Unit or RenderBackend , |r I

Figure 3: The shader Pipe

= cS*

textureaddress

(

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017320

ATI Ex. 2011

IPR2023-00922

Page 13 of 58

ATI Ex. 2011
IPR2023-00922

Page 14 of 58

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| | 24 Septernber, 2001 4 September, 201819 44 of 58| Agadir

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Clause # + Rdy iS SEQ CST
|

| |
: i |

WrAddr

|

WrAddr |
CMD ||

cst |

*

Phase | P|
emp CSTcst:estipx 4 c Wivec

Rance | Co | WrSeal wrAddr

= } sey vow le

FETCH SP OF

WrAder

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017321

ATI Ex. 2011

IPR2023-00922

Page 14 of 58

ATI Ex. 2011
IPR2023-00922

Page 15 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201349 GEN-CXXXXX-REVA 15 of 53— oy

=wile
||

lds CROSSBAR(4x64 bits}

iJs buffer (ping-pong Suffer)
Aa Al Aa Ba (28 bits * 2 (10) + bits * 6 (delta Ws)+4 © . ibits*6)* 16 (quads) * 2 (doubie-butffered) AD At Ag Bo i4096 bits :

2 Bt co ct 2 32x 128 Bt co c c2

3 c3 | C4 cS be XY¥s buffer (ping-pong buffer) i: 24 bits * 16 quads *2 c3 C4 cs Do i
+ 768 its I3ox24 !4 Bt b2 Eo EA i

| mt bz EG a |

INTERPOLATORS | ! ! |
a | FIX-FLOAT + EXPANSION |

Figure 5: Interpolation buffers

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017322

ATI Ex. 2011

IPR2023-00922

Page 15 of 58

ATI Ex. 2011
IPR2023-00922

Page 16 of 58

we@@BUdJ8A0DUODTIIONJUBUAdODeoUe10;ouBMLy@8%9s0zezsoosovenes"pspyoorazazats
AMD1044_0017323

ATI Ex. 2011

IPR2023-00922

Page 16 of 58

WILIStIpSUNUYUOpEod.ajUy79sansLy]

eelicelOLL

aFea 8GJOOLSral0eGUSMSSF|loozJequerdespz3OWduoleoyloedsseousnbes0O7YaLydLidaFLVSLYNIOUO

ATI Ex. 2011
IPR2023-00922

Page 17 of 58

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 Septernber, 2001 4 September, 201549 GEN-CXXXXX-REVA 17 of 58a a

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have te come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 71 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions and moveinstructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table te for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).
The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of contral flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017324

ATI Ex. 2011

IPR2023-00922

Page 17 of 58

ATI Ex. 2011
IPR2023-00922

Page 18 of 58

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 Seplember, 2015418 18 of 58iy

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
S8Q decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A registerQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, If the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents ofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrenily.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacketof state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replaceit with
the newstate (this is depicted in Figure 8: De-allocation mechanismPigure-G:-De-alloeztion-meckaniem). Note that in
the case a state is cleared a value of 0 is written to the corresponding de-allocation counter location so that when the
8Q is going to report a state change, nothing will be de-allocated upon thefirst report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the newstate to
reuse these physical addressesif needed).

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017325

ATI Ex. 2011

IPR2023-00922

Page 18 of 58

ATI Ex. 2011
IPR2023-00922

Page 19 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 19 of 58aE Ee

Free List

Renaming TableContext 0 => N

Currenv/Last

Context
(8 rows of 16-8
bit physical =>

,Logical Address

|

||
i'

128 entries copy||| a
Logical Actress in eight clocks)||| Sonrext | & Context& |

S !
@ I= .

| Context N | -—s, Physical
‘| Address

(3 — Read_ptr &: |
———_— ‘al

Address ci piysical address:to Allocate

Global Register ol
Data Bus Staging Data

Constants Buffer Physical
location |
avalableloapneaaa
WRIR +Staging Write Addr||r

|7 »!
physical
address next

to physical
schedule adcress

for ready
de-alloc i for allocate

| | Sei \ q
Logicaleres * | Constant

GibRegBus x - x - Request
when Isb are zero |first word of write . | Reset | |

Renaming Table) ‘5.4 | i
for 1 Context id | | |CurrentfLast Logical | Logical | | | Context &Physical nae ! Le | 1 Logical

Address Address ja | Address K Addresser (Only | (if set | |pe de | don't | ILogical 4 :allocate allocate
Address |e -

| if set} or de-| | allocate)| Renamingtable
N-Contexts

Copy Last held above to
Current Context on receipt

of Set Constant for a |
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry te current state.

Figure 78: Constant management

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017326

ATI Ex. 2011

IPR2023-00922

Page 19 of 58

ATI Ex. 2011
IPR2023-00922

Page 20 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 2015419 20 of 584 ey

SQ_STATE#ADDR

|
| DEALOC ,pe—WRITE_ENABLE

Free List CNT VALUE COUNTERS - ||
| PREVIOUS! STATE

| NEW
| STATE| !

rc VALUE -—__ | |r+ |
———| Is |

VALID F | “| | « ——
—_—_— OR || |<

_____ 89 IDLE——, AND | PA_IDLE-——se CP_NEW_STATE_CNTL—
REMAPPING ae te

TABLE “<@—_SET CTX BITS

Figure 89: De-allucation mechanism for R400LE

5.3.3. Dirty bits
Two sets ofdirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. Ifit is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk frorn the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. Thefirst one we will call write_ptr. This pointerwill
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointerwill be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The siop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and wrile_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will paint to the next address that can be used for
allocation as long as the read_ptr coes not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017327

ATI Ex. 2011

IPR2023-00922

Page 20 of 58

ATI Ex. 2011
IPR2023-00922

Page 21 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201512 GEN-CXXXXX-REVA | 21 of 58

5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. Vhile in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be sei, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the freelist at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == reacd_pir). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clauseit will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
deita’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as weil as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017328

ATI Ex. 2011

IPR2023-00922

Page 21 of 58

ATI Ex. 2011
IPR2023-00922

Page 22 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 22 of 58UY . . Amst INO.

' betweenthe time the sequenceris loaded and the time one can index into the constant store. The assemblywill looklike this

MOVA R1X.R2.X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X% into R1.%
NOP #/ latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT.It
works is the sarne way than when dealing with regular constant loads BUTin this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
frorn the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary betweenthe two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can ailow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last renderstate is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON
(Reads/Wrrites are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)
Figure 918: The instruction store

| Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017329

ATI Ex. 2011

IPR2023-00922

Page 22 of 58

ATI Ex. 2011
IPR2023-00922

Page 23 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 23 of 58i re i

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count{[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][(31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like io be able to code up @ program of the foun.

1 Loop
2. Exec TexFetch
2 TexFetch
& ALU
&: ALU
& TexFetch
7: End Loop
8:ALUExport

But realize that 3 may be dependent_on 2: and <is almost ceriainly dependent on 2: and 3 Without clausing,
these dependencies need io be expressed in the Contre! Flow instructions, Additionally, without separate ‘texture
clauses’ and ‘ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This inforrnation will be encapsulated in ine Tow control instructions.

Each contro! flow instruction will contain 2 bits of inforrnation for each (nen-conirol flow) instruction:

b) Serialize Execution

(o) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched._Given _the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions, Wore than this were needed, a second Exec (with the
game conditions) would be issued

vertices are exported in the correct order (even if not all execution Is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc «buffer select -- position parameter, pixelor vertex memory. And the size required>.

would be created to mark where such allocation needs fo be done. To assure allocation is done in order, the actual
allocation fora given thread can not be performed unless the equivalent allocation for all previous threads is already
complete. Theimplementation would alsoassure that execution of instruction(s)followingtheserialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. Jn most cases this will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017330

ATI Ex. 2011

IPR2023-00922

Page 23 of 58

ATI Ex. 2011
IPR2023-00922

Page 24 of 58

 Q ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September. 201519 24 of 58

uaranteed io be ordered. Because strict ordering is ‘Tec ulred for pixels, parameters and positions, this implies onl

a single alloc for these structures, Vertex exports fo memory do not require ordering during allocation and so multiple
allocs’ may be done.

6.2.1 Control flow instructions table
Here is the revised contro! flow instruction set,

an ae 4 Formatted: Bullets and Numbering :

Note that whenevera field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

 Execute

47 | 46...43 | 4034 | 32.16 15..12 10
Addressing | 0001 | RESERVED r Insiructions lype + seralize ©|Count Exec Address

| | instructions

This is a reqular NOP.

Conditional Execute
 47. —s«| 46 43 42 41.34 | 33.16 16 ~ 41..0

Addressing oot Condition Boolean | instructions type + serialize 9 Count Exec Address
address | instructions

ifthe specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). lf the condition is not met,we go on to the next centro! flow instruction.

Conditional Execute Predicates

A? | 46... 43 | 42 44. 36 35... 34 | 33...16 | 15...12 11.0
Addressing G010 Gondition RESERVED Predicate Instructions Count Exec Address vector € + serialize

| | @instructions) |

Check the AND/OR of all current predicate bits. |i AND/OR matches the condition execute the specified number of

condition is not met. we go on to the next control flowinstruction.

Loop Start

Loop Start. Compares the loop fterator with the end value. If loop condition not met jump to the address. Forward
jump only, Also computes the index value. The loop id must match between the start lo end, and also indicates which
control flow constants should be used with the loop,

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017331

ATI Ex. 2011

IPR2023-00922

Page 24 of 58

ATI Ex. 2011
IPR2023-00922

Page 25 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 Septernber, 2001 4 September, 201519 GEN-CXXXXX-REVA 25 of 58 | a
7 Loop End —

_ 719... 17 | 162 11.8
Predicatebreak | leopID | startaddress

Loop end. Increments the counter by one, compares the loop count with the end value. If Joop condition met
continue, else, jump BACK tothe start of the loop.If predicate break!=0,thencomparespredicatevector4
specified by predicate break number). lf all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easyto do.

Conditionnal Call

lithe condition is met, jumps to the specified address and pushes the control flow program counter on the stack

Return

continue to the next instruction

4 146,,8/ #2 a3 Cd; 2212 T 110

Addressing {904 | Condition FVonly RESERVED dump address
_— Allocate

47 46... 43 L 42 AI 404 3...Debug {O10 | Buffer Select RESERVED Allocation size
Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export)

1 pase thru (oul of order exporis),

lf debug is set this is a debug alloc (ignore if debug DB_ON register js set to off).

EndOf Pregrarm
47 | 46 43 |

RESERVED | 1011 |
Macks the end of ine program.

6.3 Implementation

The envisioned imelementation has a buffer that maintains the stale of each thread. A_thread lives in a given
location Inthe buffer during its entire life, but the buffer has FIFO qualities in thal threads leave in tne order thal they
enter, Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

ee { Formatted: Bullets and Numbering4

AMD1044_0017332

ATI Ex. 2011

IPR2023-00922

Page 25 of 58

ATI Ex. 2011
IPR2023-00922

Page 26 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 26 of 58

From each buffer, arbitration logic allernpis to select_1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Onee a thread is selected it ig read out of the buffer, marked _as invalid, and submitted to appropriate

instructions have been executed. A switch from ALU to TEX or visa-versa ora Serialize Execution modifier forces
the thread to be returned to the buffer,

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored ina 1 read port
device. Only bits needed for thread arbitration will be stored in @ highly multi-ported structure. The bits keptin the 1

read port device will be termed ‘state’, The bits kept in the multivead ported device will be termed ‘status’,

‘State Bits’ needed include:

1. Control Flow Instruction Pointer (12 bite) «- =<cl Formatted: Bullets and Numbering
2. Execution Count Marker 4 bits)
3. Loop iterators (4x8 bits
4, Call return pointers (4x12 bits)
5. Predicate Bits(4x64. bits)
6. Export!Cb,
7. Parameter Cache base Ptr (7 bits)
&. GPR Base Pir (8 bits),
9. Gontext Pir (3 bits).
10. LOD corrections (6x16 bits)

Absent fromthis list are ‘Index’ pointers, These are costly enough thal I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return pirs, Predicate
bits, PCbase pir and expert ID) are updated every me thethread is returned to the buffer based on how much
progress has been mode on thread execution, GPR Base Pir, Context Pir and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits' needed include:

o _Texture/ALU engine needed
e Valid Thread ae Formatted: Bullets and Numbering :

* Texture Reads are oulsianding
» Walting on Texture Read foComplete
e Allocation Wait (2 bits)
« 00~ No allocation needed

e 01 ~— Position export allocation needed (ordered export)
» 10 ~ Parameter or pixel export needed (ordered export)
1 - pass thru (oul of order export)
» Allocation Size (4 bits)
e Position Allocated
» _Firstthread of a new context

» Event thread (NULL thread that needs to trickie down the pipe)
» Last C1 bit)

All of the above fields from_all_of the entries go into the arbitration circultry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine, There are actually two sets of arbitration -- one for
pixels and one for vertices, A final selection is then done between the twe. But the rest of this implementation
summary only considers the ‘first’ Jevel selection whictis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it ie purely based on selecting the ‘oldest thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where sither of Texture Reads outstandin
Waiting on Texture Read to Cornplete are '0' are considered. Then if Allocation Waitis active, these threads are
further filtered based on whether space is available. lf the allocation is position allocation, then the thread is onl

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017333

ATI Ex. 2011

IPR2023-00922

Page 26 of 58

ATI Ex. 2011
IPR2023-00922

Page 27 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 27 of 58ci As

considered if all ‘older’ threads have already done their position allocation (position allocated bits set), [f the
allocation is parameter or pixel allocation, then the thread is only consideredIf itis the oldest thread, Also a thread is
not consicersdif it ls a parameteror pixel or position allocation, has ite Firet_thread_of_anew_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the above filters is selected. If the thread needed to allocate, then
al inie ime the allocation is done, based on Allocation Sige. fe thread has ite “last” bit set, hen it is also removed
frarn the buffer, never to return.

if | now redefine ‘clauses’ to mean “how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’. then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically haltsafter an ‘Alloc’ instruction) (out deeen't performsthe actual
allocation) and one for the actual ALU/expert instructions. As the ‘Alloc' instruction could be part of a texture clause

resumabiy the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses

even if it invelved texture feiching.

The Texture Reads Outstanding bit must be updated by the sequencer, based on keeping track of how_many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses fora
given thread may notbe outstanding at anytime(that would be mypreferencefor simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the fexture unit to return a pointer to the thread buffer on completion that

The-render state defined iheclause boundaries:
Vertex_chaderfetchLOU701Height&b# pointersto the locationwhere eachclausesconirelprogramslocated

Ss pointer-value-of FFmeansthat-ihe-clausedoesnt-cantain-anyinstructions.

The control program for a given clause is executec to completion before moving to another clause, (with the
exception-ofthe-pick-bye-nature-of-the-ah-execution)_he-conire_program-_is—the-onbhypregram-awere-ofine-clause
boundaries:

The-contrelprogram-has-nine-basic-instructions:

Execuie
Condiionat_execute
ConditionalExecutePredicates
Gonditienal—iump
Gondiiennal_-Gall
Raheny
Loop.start
Leop-end
NOP

Execute, causes ihespecified numberolnsiructionsininsiruciion-siereie-be-exesuted.
Gondiional_execute-checks-e-cenditiontiret-and-—firus,causes_the_specifiednumberof instructions in-_instructien
store-to-be-execuied.
Loopstart-rasets-the-corresponding loop-coeurter-te—the-start-value-on-thefiretpass-after_it-checks —for-the-end
conditien-andii-meljumps-overtoaspeciiedaddress.
Loop-end increments idecremenis?)the loop-counterandjumpsback ibe -specified-rumberofinsiructions.
Conditiennal..Calljumpsio-an-address-and-pushes-the-iP-counteron-ihe-stack-iftheconditionis-metOr-theretur
instruction, the IP is popped from the stack.

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017334

ATI Ex. 2011

IPR2023-00922

Page 27 of 58

ATI Ex. 2011
IPR2023-00922

Page 28 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 28 of 58AAD

Q

Note that whenever a field ie marked as RESERVED,it is assumed that all the bits of the fleki are cleared (0).

Execuie-up-toicinstruictions-at-the-specified-address-inthe instructionmemory-tf-Lastis-set,thisisthelastgroup-of
inetructions-ef theclause

This-ls-arequiarNOP,Lastieset,thisisthelastinstruction oftheclause.

Hthe-epecified-Boclean-(¢-bits-can-address256-Becleans}-mecis-the-specified-conditiontnen-execule-the-seecified
inetructions-(up-to-4-insiructions)tf-Lastis-set,than-ifthe-candition-is-met,thisis-_thelast-group-ofinsituctions-to-be
executed-inihe-clause-Hhe-cenditionis-net-met,wege-on-to-the nextcontro!flaw instruction.

Check-the ANDVOR-ofall current_oredicate_bits. | AND/OR-maiches theconditionexecute thespecifiednumberof
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, thenitihe-conditienis-met-thisisthelast-gqreup-ofinsinictions-te-be-execuiedintheclausethe-cenditienis-net
met-we-ge-oniotheneed-cenirelfewinsirucion.

L.oop-Star.CGompares-the-loep-leraior-with-the-end-value.tHooep-condition-nat-met-jump-tothe-address.Farwvard
jurap-only. Also-cormputes theindex-value.Theloop-id-mustmatchbeltween-the-siartio-end,and-alse-indicates-which
controlflow-constanis- should-be-used-with-theloop.

Loop-end—ineremenis the-courter_by-one,-compares_the_loop-sount-with-the-endyalie._Fioop-—cenditen—met
sentinueelse,jump-BAGK-to-the-star-efihe-loep.

The-waythisis-described-does-sot-preventnesiediseps, and-the inclusionefthe-loop-id-makethis-casy-to-de.

Hithe condition is met, jumps to the specified address and pushes the contro! owprogram counter on the stack.

Pops-the-topmost-address-from-the- stack and-jumps-to-that-address.f-nothingis-on-the-stack,the-program-willjust
continuetothe-nextinstruction-

iLeendition-mel, jumpsiotheaddress.FORV/ARDjump-onlyallowed-if-bit31-selBit31 is-enly.an-ostimizationforthe
compiler and should NOT be exposed to the APi.

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017335

ATI Ex. 2011

IPR2023-00922

Page 28 of 58

ATI Ex. 2011
IPR2023-00922

Page 29 of 58

| ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 29 of 58i re i

ot & BLO:

netruction ie-going-to- break the loop andsel thegoes higher than-255 then-the loos—eand_orthe loop_etart i

6-364Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way weplan to support those is by supporting
three vector/scalar predicate operations of the form:

* 2-4) Formatted: Bullets and Numbering

PRED_SETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PREDSETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_#-similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only wewill also suppart the two following instructions:
PRED_SETEO_# ~ SETEO
PRED_SETE1_#-—SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicate bit is 0. Alternatively, Pi_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{issue: do we have to have a NOP between PRED andthefirst instruction that uses a predicate?} ee a rr—™—C -
- . . [29 Fermatted: Bullets and Numbering

6.46.5 HW Detection of PV.PS ee
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non- : - Boe :
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to insert NOPs between PRED_SET and MOVAinstructions and their uses.

6-56.6 Registerfile indexing .
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

eS 4 Formatted: Bullets and Numbering

Bit? Bité
0 0 ‘absolute register
QO 1 ‘relative register’
4 0 ‘previous vector’
4 1 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our new address that we give to the shaderpipe.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017336

ATI Ex. 2011

IPR2023-00922

Page 29 of 58

ATI Ex. 2011
IPR2023-00922

Page 30 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2019 419 30 of 58
The sequenceris going to keep a loop index computed as$such:

Index = Loop_Herator’Loop_step + Loop_start.

Weloop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

yector-have-his-predicale-bit-set-and-we-car- thus. skip <-everthe. texture.ethWe.fave-tomake-surethe-invalid
pixels-aren‘t-considerad-with-thisoptimization.

6-66.7Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6-6-16.7 | Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only breakif
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6-6-26.7.2Method 2: Exporting the values in the GPRs (42)
The sequencerwill have a debug active, count register and an address register for this mode-and-3-bils-per-clause
epeciying theexecutionmodeforeachclauseThemodes car-be-+
Normal

 DebugAddr+Gount

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

@Gebug-il <- ===) Formatted: Bullets and Numbering

AMD1044_0017337

ATI Ex. 2011

IPR2023-00922

Page 30 of 58

ATI Ex. 2011
IPR2023-00922

Page 31 of 58

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE

24 Seplember, 2001 4 September 21318 GEN-CXXXXX-REVA | 31 of 58

Under the debug mode-idebug—-Kl-OR-debug-Addr-+scount}, it is assumed that the _programelause-7 is always
exporting 42-n_debug vectors and that all other exports to the SX block (position, color, z, ect) will been turned off
(changed into NOPs) by the sequencer(evenif they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group ofpixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but fo memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017338

ATI Ex. 2011

IPR2023-00922

Page 31 of 58

ATI Ex. 2011
IPR2023-00922

Page 32 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201519 32 of 58 si

Aboveis an example of how the algorithm works. Vertices comein from top to bottom: pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to (7?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

Ll. ALU Arbitration

ALU arbitration proceeds in alrnost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
& potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinst1 Einst2 Oinst2 EinstO Oinst3 Einsti Oinst4 Einst2 Oinsi0...
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017339

ATI Ex. 2011

IPR2023-00922

Page 32 of 58

ATI Ex. 2011
IPR2023-00922

Page 33 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 2015419 GEN-CXXXXX-REVA | 33 of 58i re i

12. Handling Stalls
Whenthe output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (37). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have twe sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage maskinformation in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The outputfile is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BWV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x 128 (and there are 16 of those on the whole chip).

15. lJ Format

The IJ information sent by the PAis ofthis format on a per quad basis:

We have a vector of lU’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upperleft pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the differencein lJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming POis the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(O) and so on for P1,P2
and P3. Aiso assuming that A is the parameter value at VO (interpolated with J, B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

AOU = I0)-1@)

AOL = J) -F(0)

AO2 =1(2)- 10) PA
AO2S = J(2)~ JO)

AO3I = 13) - 1X0)

AOBT = J(3)- JO) P2 P3

PO=C +1(0)*(4-C)+J(0)*(B-C)

Pl=P0+A01*(A-C)+A01L *(B-C)

P2 = PO+A02/ *(4-C)+ AO2T *(B-C)

P3 = PO+A0BI*(A-C)+ A038 *(B-€)

PO is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017340

ATI Ex. 2011

IPR2023-00922

Page 33 of 58

ATI Ex. 2011
IPR2023-00922

Page 34 of 58

| ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 2015419 34 of 58Tanya!

FORMAT OF PO's |J: Mantissa 20 Exp 4 for! + Sign
Mantissa 20 Exp 4 for J + Sign

FORMATof Deltas (x3):Mantissa 8 Exp 4 for | + Sign
Mantissa 8 Exp 4 for J + Sign

Total numberof bits : 20*2 + 8°6 + 4°8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the lJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constantattributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

Westart with the premise that ifA= Band B=C and C =A, then P0,1,2,.3=A. Since one or more of the lJ terms
may be zero, so we extendthis to:

if (A=B and B=C and C=A)
PO,1,2,3 = A;

else if (| = 0) or (J = 0)) and
((J = 0) or (1-I-J = 0)) and
((1-J-1 = 0) or (= 0))) £

if |= 0) {
PO=A;

} else if(J '= 0) {
PO = B;

helse {
PO=C;

/irest of the quad interpolated normally
}
else
{

normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER bythe
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 1213 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 G1 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 571 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 891011 24 25 26 27
40 41 42 43 56 57 58 59 | 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

 The || markers show the SP divisions. In the event a shader pipe is broken, the VGTwill send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017341

ATI Ex. 2011

IPR2023-00922

Page 34 of 58

ATI Ex. 2011
IPR2023-00922

Page 35 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA 35 of 58ab

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. in this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure-+2. The area of the fixed-to-float converters and the VSISRsfor this method is roughly estimated as
0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure-44.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11634 60.57813 :perbit

Area of 96x8-deep Latch Memary 46524 1?
Area of 24-bit Fix-to-float Converter 4712, per converter

Method 1 Block Quantity Area
FOF 3 14136
&x96 Latch 16 744384

Figure 1041:Area Estimate for VGT te Shader Interface

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017342

ATI Ex. 2011

IPR2023-00922

Page 35 of 58

ATI Ex. 2011
IPR2023-00922

Page 36 of 58

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
| 24 September, 2001 4 September, 201519 36 of 58i i rk
t

a

VGT BLOCK
(IN PA)

SHADER
SEQUENCER|

VECTOR ENGINE

VECTOR ENGINE

Figure 1142:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

| MEMORY NUMBER
4 bits ADDRESS |7 bits |

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_# (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT--4 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17") is going to have the address 00000001000, the 48" 00010001000,the 19°" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT
~?#to Current_Location and reset the memory count te 0 before the next vector begins).

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017343

ATI Ex. 2011

IPR2023-00922

Page 36 of 58

ATI Ex. 2011
IPR2023-00922

Page 37 of 58

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2004 4 September, 2015419 GEN-CXXXXX-REVA | 37 of 58i ah fe t

171 Export restrictions

17 1 Pixel exports:
Pixels can export 1.2.3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED OPTIMIZE
function has to be turned_of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX,

17.1.2 Vertex exports:
Position or parameter cachescan beexported in anyorderin the shader program.It is alwaysbefter toexport
osistion as soon as possible. Position has fo be exported in a single export block (no texture instructions can be
laced between the exports). Parameter cache exports can be done in any order with texture instructions interleaved,

The PRED OPTIMIZE function has lo be turned of ithe exporis are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the 8X,

17,13 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Theycannothavetextureinstructions interleavedintheexportblock.Theseexportsarenotguaranteedtobe
ordered,

Also, when doing a pass thru export, Position MUST be exported AFTERall pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions “

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texiure pending bitis set
2). Gannot allocate position if any older thread has not allocated position
2) last thread js marked as not valid AND marked as last and we are aboul lo execute the second to oldest

thread also marked last then:
a, Both threads must be from the same context (cannot allow a first thread)

b, Must tumoff ihe predicate optimization lor Ihe second lhread
4) Cannot execuie a texture clause if texture reads are pending
5) Carnot execute last if texture pending (even if not serial)

IgV a: ; -
On-elause-3-the-vertex-shadercan-exporitothe-PA_both the -verex postion-and the-soint-sorte.t-can-alse-de-se-at
glause-7-4i- neldone-at-clause-3.The-slorage-_-needed-ie-performthe-sesition-export-is-al least64.428 memoriesfor
the-pesition- and-64xa2-memores-for-thesprite-size.ltis-going-te-betaken-in-the-pixeloutpul-fife- fromthe3x-blocke.
The-clause-where-ths- position-expor-occurs-is-specified-bythe- EXPORTLATE register.¥-tumed-on, itmeans-that
the-export-is-going-to-cceurat ALL -clause7i/-unsel-_pesitien-exper-eccurs-al-clause-3,

Aj-other typesofexportecan-be-co-issued-astong-asthere isplace inihereceivingbuffer.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

: Formatted: Bullets and Numbering

+ “Formatted: Bullets and Numbering

a Formatted: Bullets and Numbering

“| Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

4 Formatted: Bullets and Numbering

4 Formatted: Bullets and Numbering

AMD1044_0017344

ATI Ex. 2011

IPR2023-00922

Page 37 of 58

ATI Ex. 2011
IPR2023-00922

Page 38 of 58

 | ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001|4 September, 201549 3a0fs8 |, — - oe =

20.-Exporting-Rules CS

20-1-Parameter-caches-expers
\le-support-masking-and-out-oforder-exporis-to-the-parametercaches.So-one-can-expor-multipletimestothe same
PCine-using-different-masks.

 + C a) i j t a oe Formatted: Bullets and Numbering
MemorcexportedontsupportmaskingHowever,-you- canexportout of orderto memorylocations.

ane <c| Formatted: Bullets and Numbering

Se 4 Formatted: Bullets and Numberingae

24-18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Hereisalist of all possible export modes:

* o> Formatted: Bullets and Numberin
21418.1 Vertex Shading <-={formate—3

0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 vertex exports to the frame buffer and index
41:47 - Empty
48:55 - 8 debug export (interpret as normal vertex export)
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(point_h,point_w,edgeflag misc)

21.2182 Pixel Shading 2 Aromasents
QO - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
47 - Empty
8 - Buffer 0 Color/Fog (primary)
9g - Buffer 1 Color/Fog
10 - Buffer 2 Color/Fog
11 - Buffer 3 Color/Fog
12:15 - Empty
16:31 - Empty (Reserved?)
32 - Export Address
33:40 - 8 exports for multipass pixel shaders.
41:47 - Empty
48:55 -8debug exports (interpret as normal pixel export)
60 - export addressing mode
61:62 - Empty
63 -Z for primary buffer (Z exported to ‘alpha’ component)

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017345

ATI Ex. 2011

IPR2023-00922

Page 38 of 58

ATI Ex. 2011
IPR2023-00922

Page 39 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2001 4 September, 201549 GEN-CXXXXX-REVA | 39 of 58! re ! a

22.19. Special Interpolation modes

22-419.] Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type O packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory lo 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolanis important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual mernories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

22.219.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter O with SC generated data. Also, XY screen
coordinates may be needed in the shader pragram. This functionality is controlled by the gen_|O register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL fronV/back
special operations) to the shader using the same control register. Hereis a list of all the modes and how theyinteract
together:

Gen_stis a bit taken from the interface between the SC and the SQ. This is the MSB ofthe primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_l0 disable, snd_xy disable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy disable, gen_st ~ 10 = No modification
Param_Gen_]l0 disable, snd_xy enable, no gen_st — 10 = No modification
Param_Gen_l0 disable, snd_xy enable, gen_st — 10 = No modification
Param_Gen_!0 enable, snd_xy disable, no gen_st — 10 = garbage, garbage, garbage, faceness
Param_Gen_|0 enable, snd_xy disable, gen_st — 10 = garbage, garbage,s, t
Param_Gen_|0 enable, snd_xy enable, no gen_si — 10 = screen x, screen y, garbage, faceness
Param_Gen_l0 enable, snd_xy enable, gen_st — 10 = screen x, screen y, 8, t

22.319.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2 pass.
The count is always generated in the same way but it is passed to the shader in a slighily different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_!INDEX register. The sequenceris going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRsthe counter is incremented. Every time a state change is detected, the corresponding counteris reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

22:3-119.3.1 Vertex shaders “

In the case of vertex shaders, if GEN_INDEX Is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

22-3-219.3.2 Pixel shaders 7
In the case of pixel shaders, if GEN_INDEX is set and Pararn_Gen_l0 is enabled, the data will be put in the x field of
the 2™ register (R1.x), else if GEN_INDEXis set the data will be putinto the x field of the 1* register (RO.x).

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

“cocc] Formatted: Bullets and Numbering

el “| Formatted: Bullets and Numbering

ated Formatted: Bullets and Numbering :

_~ Formatted: Bullets andNumbering

 "| Formatted: Bullets and Numbering

AMD1044_0017346

ATI Ex. 2011

IPR2023-00922

Page 39 of 58

ATI Ex. 2011
IPR2023-00922

Page 40 of 58

EDIT DATE PAGE

40 of 58
| ORIGINATE DATE R400 Sequencer Specification
| 24 Septernber, 2001 4 September, 201519ih BEY

 INTERPOLATORSAUTO
COUNT

AUTOCOUNT | goooco |i |
The Auto Count Value is

broadcast to all GPRs. [tis
loaded into a register wich has

its LSBs hardwired to the
GPR number (6 thru 63). Then

! if GEN_INDEXis high, themux selects the auto-count
value andit is loaded inte the

GPRsto be either used to
retrieve data using the TP or

| sent to the SX forthe RB touse it to write the data to

| memory

GPRO

Figure 1243: GPR input mux Control

23.20, State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

23-420.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters areinitialized to O and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

24.21. AY Address imports
The SC will be able to send the XY addresses to the GPRs.lt does so by interleaving the writes of the Is (to the [J
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.222.2 for details on nowto control the interpolation in this mode.

24-421.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline al a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

8

oe

«

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

{ Formatted: Bullets and Numbering

AMD1044_0017347

ATI Ex. 2011

IPR2023-00922

Page 40 of 58

ATI Ex. 2011
IPR2023-00922

Page 41 of 58

 | ORIGINATE DATE
| 24 Septernber, 2001

 EDIT DATE PAGE

41 of 58

DOCUMENT-REV. NUM.

4 September, 201549 GEN-CoOOOG-REVA |se i

23-22. Registers

25-1221 Control

REG_DYNAMIC
REG_SIZE_PIX

REG_SIZE_VTX

ARBITRATION_POLICY
INST_BASE_VTX

INST_BASE_PIX
ONE_THREAD
ONE_ALU

INSTRUCTION

CONSTANTS
CONSTANTS_RT
CONSTANT_EO_RT

TSTATE_EO_RT

a -S.oc| Formatted: Bullets and Numbering

Dynamic allocation (pixel/vertex) of the register file on or off.
Size of the register file's pixel portion (minimal size when dynamic allocation tumed
on)
Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)
policy of the arbitration between vertexes and pixels
start point for the vertex instruction store (RT always ends al vertex_base and
Begins at 0)
start point for the pixel shader instruction store
debug state register. Only allows one program at a time into the GPRs
debugstate register. Only allows one ALU program at a time to be executed (instead
of 2)
This is where the CP puts the base address of the insiruction writes and type (auto-
incremented on reads/writes) Register mapped
512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
256*4 ALU constants + 32*6 texture states? (physically mapped)
This is the size of the space reserved for real time in the constant store (from O to
CONSTANT_EC_RT). The re-mapping table operates on the rest of the memory
This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

EXPORT_LATECcontrols whether-or-notweareexportingpositionfromclause3.fget, postionexserte-occur-at
clause-Z.

25.2292 Context

VS.-FETCH.10...7b-
VSAllLOne F4
PSFETCH_10...73

PS_ALU10...7}
PS_BASE
VS_BASE
VS_CF_SIZE
PSCFSIZE
PS_SIZE
VS_SIZE
PSNUM_REG
VS_NUM_REG
PARAM_SHADE

PROVG.VERT.
PARAM_WRAP

PS_EXPORT_MODE

VS_EXPORT_MODE
VS_EXPORT

_COUNT

PARAM_GEN_I0

ade = 4 Formatted: Bullets and Numbering

eight.3-bit-pointers-to-thetocaltion-where-each-clauses-controlprogramslocated.
-eight-3-bit-pointere-to-the-location-where-each-clauses-control program-is-locaied.

sight 8 bit pointers to the location where each clauses control program Is located
eight 2b pointers tothe location where cachclauses contre!programisiecated
base pointer for the pixel shader in the instruction store
base pointer for the vertex shader in the instruction store
size of the vertex shader(# of instructions in control program/2)
size of the pixel shader(# of instructions in control program/2)
size of the pixel shader (cntit+instructions)
size of the vertex shader (cntl+instructions)
number of GPRsto allocate for pixel shader programs
number of GPRsto allocate for vertex shader programs
One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1
= gouraud)

—(.-vertex-O,-1:veriex-1,2:vertex-2,3:Lastvertex-ofthe-pimitive
64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(O=linear, 1=cylindrical).
Oxxxx : Normal mode
tooo: Multipass mode
lf normal, bobbz where bbb is how many colors (0-4) and z is export z or not
If multipass 1-12 exports for color.
0: position (1 vector), 1: position (2 vectors), 3:multipass

Nurnber of locations exported by the V3 (and thus nurnberofinterpolated

parameters) (0...6})— 3b4bi counters representingthe#of interpolated
parameters-exporied-in-clause-7-(locatedin-VS_EXPORT.COUNT.6)OR
of exported vectors to memory per clause in mullipass mode (per clause)
Do we overwrite or not the parameter 0 with XY data and generated T and S values

Exhibit 2023 docR400-Sequerverdoe 73201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © = | os

AMD1044_0017348

ATI Ex. 2011

IPR2023-00922

Page 41 of 58

ATI Ex. 2011
IPR2023-00922

Page 42 of 58

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

/ 24 September, 2001 4 September, 201319 42 of 58_ a

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into RO-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (@bits)Logical Base addressfor the consiants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).

CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (numberof times wetraverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

a"

26.23, DEBUG Registers

26-423.1 Context

DB_PROB_ADDR instruction address wherethefirst problem occurred
DB_PROB_COUNT numberof problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on anoff debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

26-2232 Control

DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

27.24. Interfaces ~

27.124,1 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

27.2242 SC to SP Interfaces —

There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data whichis transferred per quad is

Ref Pix | => $4.20 Floating Point | value
Ref Pix J => $4.20 Floating Point J value
Delta Pix | (x3) => $4.8 Floating Point Delta | value
Delta Pix J (x3) => $4.8 Floating Point Delta J value

This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

: Se : Formatted: Bullets and Numbering

ne 2 | Formatted: Bullets and Numbering

i Formatted: Bullets and Numbering

 -:-) Fermatted: Bullets and Numbering

27-2424.2.1 SC_SP# me {Comat uliin___)

AMD1044_0017349

ATI Ex. 2011

IPR2023-00922

Page 42 of 58

ATI Ex. 2011
IPR2023-00922

Page 43 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201519 GEN-CXXXXX-REVA 43 of 58i o

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only lJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of |.J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name | Bits|Description
SC_SP#_data 64 \J information sent over 2 clocks (or X,Y in 24 LSBs with facenessin upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
Bits [63:39] [38:28]«=(25:13) [12:0]
Format SE4M20. SE4M8 SE4M8 SE4M3

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus

' The SC shall lock at state data to determine how many types to send for the
| interpolation process.

 Type 2
Field Face xX Y
Bits (63) [23:12] (11:9)

| Format Bit Unsigned Unsigned

_SC_SP#_valid oe A[valid oe
SC_SP#_last_ quad data 4 This bit will he set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the veriiog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

2A-222422 SC_SQ “To = ST
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks pertransfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name | Bits | Description /
SC_SQ_data 46 Contro! Data sent to the SQ

1 clk transfers
Event ~ valid data consist of event_id and

state_id. Instruct SQ to post an
event vector to send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only

' follow end of packets so no pixel
vectors will be in progress.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017350

ATI Ex. 2011

IPR2023-00922

Page 43 of 58

ATI Ex. 2011
IPR2023-00922

Page 44 of 58

ORIGINATE DATE

24 September, 2001
EDIT DATE

4 September, 201519ell Ee)

PAGE

44 of 58
R400 Sequencer Specification

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pc_dealioc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_dealicc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid — Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless none is in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

SC_SQ_ valid 1 SC sending valid data, 2" clk could be all zeroes

8C_SQ_data ~ first clock and second clock transfers are shownin the table below.

 | Name | BitField | Bits |Description fees

SC_5Q_event | 0 1 | This transfer is a 1 clock event vector
| |Force quad_mask = new_vector=pc_dealloc=0 '

8C_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1 => TBD

| SC_SQ_pe_dealloc 15:3] 3 | Deallocation token for the Parameter Cache |
SC_SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_S3Q_ quad_mask | [10:7] 4 |Quad Write mask left to right SPO => SP3 |
SC_SQ_end_of_prim ti i End Ofthe primitive

|SCSQ_stateid [14:12]|3 State/constant pointer (6°3+3)
8C_3Q _pix_mask _ [80:15] | 16 | Valid bits for all pixels SPO=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_type (33:31)|3 Stippied line and Real time cornmand need to load tex cords from

alternate buffer
900: Normal
010: Realtime
101: Line AA
110: Point AA (Sprite)

8C_3Q_provok_vix | [85:34] | 2 | Provoking vertex for flat shading &S
SC_SQ_pe_ptrO | [46:36]|11 Parameter Cache pointer for vertex 0 a ee

| SC_SQ_pc_ptrt | (10:0) | 11 | Parameter Cache pointer for vertex 1 |:
|SC_SQpepte[24:11] [41| Parameter Cache pointerfor vertex2
$C_SQ_lod_correct [45:22]|24 LOD correction per quad (6 bits per quad)

| Name | Bits Description

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017351

ATI Ex. 2011

IPR2023-00922

Page 44 of 58

ATI Ex. 2011
IPR2023-00922

Page 45 of 58

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 Septernber, 2001 4 September, 201549 GEN-CXXXXX-REVA 45 of 58 iL UY . ~ l
Pipelined bit that instructs SC to decrement count of buffers in use.
Pipelined bit that instructs SC to decrement count of new vector and/or event |sent to prevent SC from overflowing SQ interpolator/Reservation request fifo. |

SQ_SC_free_buff [
S8Q_SC_dec_cntr_ent |

The scan converterwill submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vecior (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pec_dealloc (vertices maximum size). In this case two
new_vectors are submitted and pracessed, but then one valid quad with the pc_cealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

27.2.324.2.3 SQ to SX: interpolator bus <|-> (Formatted: Bulets and Numbering
Name | Direction [Bits | Description
80_5Xx_interp_flat_vix SQ—SPx 2 | Provoking vertex for flat shading
8Q_S%_interp_flat_gouraud | SQ—SPx 14 | Flat or gouraud shading
$Q_S%_interp_cyl_wrap SQ>SPx 4 | Wich channel needsto be cylindrical wrapped
$Q_SXx_pe_ptro | SQ >SXx L114 _ Parameter Cache Painter
$Q_SXx_pe_ptri SQ >SXx 11 | Parameter Cache Pointer |

[SQSXxpeptre[|SQ-SXx[11Parameter Cache Pointer ;
SQ_SXx_rt_sel _ SQ5SXx u1 | Selects between RT and Normal data
5SQ_SXx_pe_wr_en SQ—SXx 1 _ Write enable for the PC memories
SQSXx_pe_wr_addr | $Q-+SXx |7| WriteaddressforthePCs : oe
SQ_SXx_pe_channel_mask | SQ-»SXx L4 _ Channel mask HSioecs| Formatted: Bullets and Numberin

242-424.24 SQ to SP: Staging Register Data - —
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name _ | Direction | Bits | Description _ _
SQ_SPx_vsr_data | SQ—SPx [96 _ Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ—SPx 1 _0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid | SQ-»SP0 4 | Data is valid
5Q_SP1_ vsr_ valid SQ—SP1 i | Datais valid
SQ_SP2_vsr__ valid | SQSP2 4 | Data is valid
SQ_SP3_vsr__ valid | SQ—SP3 i _ Data is valid
50_SPx_vsr_read | S0>SPx i4 | Increment the read pointers : Bee SSeu Seee

27.2-524.2.5 VGTto SQ:Vertex interface + emaes

27-23124,2,.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017352

ATI Ex. 2011

IPR2023-00922

Page 45 of 58

ATI Ex. 2011
IPR2023-00922

Page 46 of 58

ORIGINATE DATE

24 September, 2001
EDIT DATE R400 Sequencer Specification PAGE

4 September, 201519 46 of 58ohh WU)

tteSet24,2.5.2Interface Diagrams

Bits Description

VGT_S@_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 Q: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector"is set on thefirst vector)
VGT_SQ_indx_valicd i Vsisr data is valid
VGT_SQ_state 3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when

‘VGT_SQ_vgt_end_of_vector"is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR
cnn __nfifterfacehandshaking) inne
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

«-iooo") Formatted: Bullets and Numbering

AMD1044_0017353

ATI Ex. 2011

IPR2023-00922

Page 46 of 58

ATI Ex. 2011
IPR2023-00922

Page 47 of 58

HEONSNDSS:YEQVHS

we@@Hld18409UOSTONJUBUAdODsous.0joyLy@82Ms0cz soesoenbasnopyoonazazaps wadinganseXLOL

8S10JPdovd

&WOLQEA#0CNG

&TIANOTUSTSA

pWLHSLSA

WAREXXXXXO-NADWAAN(ASLNSWNOO”d
aoycsa20pusWaos

eTer.opaetsa15aosva

 TESSUNS

ZFOMOIAFDGN

ZWIMIAOWSIGA

STD[AlmereyepusisayaOSWdéawdUSISA

LOA

aCRT6tgLOeVequiaidespydivdLids

AMD1044_0017354

ATI Ex. 2011

IPR2023-00922

Page 47 of 58

ATI Ex. 2011
IPR2023-00922

Page 48 of 58

we@@BUdJ8A0DUODTIIONJUBUAdODeoUe10;ouBMLy@8%9s0zezsoosovenes"pspyoorazazats|
AMD1044_0017355

 “SOBSjU]IBAHSWeJo)Weibeiq(esibo7payejeq~~“SsinBig
NOISSINSNVALsdOLsGadNnds

NOISSINSNVALSLYWLS-ddYHATHOY
[NOISSINSNVALsdOLsGHATHOdd

WaOdaALANGOdIaIND081dLQOWEWdOAT ywWovdydanas€wowaZulyosTuguosQOdlosdiaSs

—

—Annan

 —

PerrymeLUT

 1nnpnnnnepeeCAPERTRee-is8G10BpSral0eGUSMSSF|loozJequerdespz3OWduoleoyloedsseousnbes0O7YaLydLidaFLVSLYNIOUO

ATI Ex. 2011

IPR2023-00922

Page 48 of 58

ATI Ex. 2011
IPR2023-00922

Page 49 of 58

 | ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
| 24 September, 2004 4 September, 2015419 GEN-CXXXXX-REVA | 49 of 58i a |

27.2,624.2.6 SQ to SX: Control bus : | : - (Formatted: Gulesadumierng +)

Name | Direction i Bits | Description : S SEs :
SQ_SXx exp_tvpe SQ—>SXK 2. 00: Pixel withoute(ite4buflers)_ |{Formatted
Be po | / buffers) oO nl Te ss a.

| | (Lor 2results) : BREE ee oe coer
| ! L4 t Pass thru (48 or 121resultsaligned) 5 ee EEE ao

SQ_ SX exp number SQ SAX a _Number of locations needed in the export buffer |i -
[_ (encoding depends on the type see bellow), : :QO SX exp aluid 8O-3She 4 ALUID i 4 Formatted

SQ SX expstate §Q->5Xx 3 | State Context
: ane : oe annie | =[Formatted

SQ. S% free done LSQ-SXe LL__ | Pulss to indicate that the previous export is finished|| enema| this can be sent with or without the other flelds of the ~ {Fe
_. a L | interface)
soSOx!free.‘alu._id $O->3Xx 1 LALUIO

Depending on the type the number of expert location changes: : Ses ay : :
» Type 00: Pixels without Z eS él Formatted: Bullets and Numberingo_O = 1 buffer . Teeee ee

©, O1 = 2 buffers
10 = 3 buffers

oi =4 buffer

s Type 01: Peels wilh 2
g_ 00 = 2 Buffers (color + Z)

O1 = 3 buflers (@ color + 2)

19 = 4 buffers (G color + 2)2 1=5buffers(4 color+Z)
Type 10: Position export

©. 00 = 1 position
o_01 = 2 pasitions

S 1X== Undefined

 buffers
©. O1= 8 buffers

10 = 12 buffers
© 11 = Undefined

Below the thick black line is the end of transfer packet thal tells the SX that_a given export is finished. The report

packet will always arrive either before or at the same time than the next export to the same ALU id TheseHelds
are-gent everytimethesequencernicksanexportingclauseforexecution.

24-2-724.2.7SX to SQ: Output file control == oo

Name _ Direction | Bits | Description
SxXx_SQ_exp_couni_rdy SXx8Q, 1 | Raised by SXOto indicate that the following twofields

| reflect the result of the most recent export
SXx_SQ_exp_pos_avail | SXx--5Q_ 4 | Specifies whetherthere is room for anotherposition.
SXx_SQ_exp_buf_avail SAX5Q 7 | Specifies the space available in the output buffers.

| O: buffers are full
| 1: 2K-bits available (32-bits for each of the 64
| pixels in a clause)

| 64: 128k-bits available (16 128-bit entries for each of
| 64 pixels)

66-127: RESERVED

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017356

ATI Ex. 2011

IPR2023-00922

Page 49 of 58

ATI Ex. 2011
IPR2023-00922

Page 50 of 58

| ORIGINATE DATE
| 24 September, 2001

EDIT DATE

4 September, 2015419iE Ee

R400 Sequencer Specification PAGE

50 of 58

27-2-824.28 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause RS line it is now working and if the data in
the GPRsis ready or not. This way the sequencer can update the fetch valid bits sounters-flags for the reservation
station-Hies. The sequencer also provides the instruction and constants for the fete
the register file where to write the fetch return data.

h te execute and the address in

Name Name
T| 2 . . .
| DirectionBirection BitsBits DescriptionDeseription

Tex SQ data ryTPx80dalaroy TFx-> SQTPx>
| $0

14 Data readyDate ready

Px SQ rs line numTPxSG-claise—Aum

Tex SQiBxS
| 3Q

63 Line nurnber in ine |
Reservation stationClause
ALseree

TPx SOQ tyoeTPx8Gtype TPxo__S0?Px=
3a

44 Type of data sent (O:PIXEL
UVERTES)Tyoe-of dala sent

{ORIXEL, “AVERTES)

valid-data

8GQ@_TPx consi8G.TPxconst |SQTEXSQ--TPx
J

Fetch state sent over 4 clocks
(182 bits lolel)Feich-state- sent
over.4-clocks-(192 bits total)

SQ. TPs insSo-Texegie SQ--TPx8SQ--TPxFetch instruction sent_over 4
clocksFeich_inetructioncant
ever-clocks

SO _TPx sno of groupSG.7c-end—of-clause SQ2TPXSQ—TPx Last instruction of é
groupLast-insiructionof—the
clause

ine Loo

5Q_TPx TypeSO_TRType| SOQ—>TPxSG—TExType of data sent (O:PIXEL
LVERTEOType—of-date—sant
CUPISEL, VERTED

SQ_TPx ger phaseSQ--TPx--gpr-phase
|
| SQUTPKSQ—>TPx Write phase signalAie-ohase

signal

SQ. TPO led correct@GTPG_led-carrect | SO—TPOSG—TROLOD correct 3 bits per comp 2
components per quad Lop
correct._3-—bile-—_per—_comp—2
components-per-quad

SQ_ TPO pix maskSQ--TPO—pie_mask
|
' SQ=TPOSG—TFO Pixel mask 7 bit per pixelFixel

mask-i-bit per-pixel

BOQ TP led corect@aTe1led-carrect | S0—TPisG—TE4 LOD correct 3 bits per comp 2
components per quad Lob

componenis-per-quad

SQ _TP1 pix maskSQTP4—phe_ask| SQ>1TPISQ—TRt Pel mask 7 bit per pixePixel
rask-1bit-per-pixel

SOQ TP? lod correctSQ.7TP2_lod_correct | SQ—TPISQTPS LOD correct 3 bits per comp 2
components per quad LOD
correct-3.—bits —per—comp..2
components per quad

SQ TP2 pix maskeQ.Te2-pie_mask SQ—TP28G—TR2 Pel mask 1 bil per olxelPixel

SQ TP3 led correct8QTPS_lod_corract “SQ2TP3SQ—TRS
raask-Lbit-perpixel
LOD correct 3 bits per comp 2
components per quad LOD
correct.3._bils —per—comp-—2
components per quad

SGQ_TPS pix maskSG-TP3--pi_mask |SQ5TP3s6—783

Pel mask 1 bit per pixelPixel

mackLbit-perpixel

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

Sending valid dataSending|.

AMD1044_0017357

ATI Ex. 2011

IPR2023-00922

Page 50 of 58

ATI Ex. 2011
IPR2023-00922

Page 51 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

: 24 Septernber, 20014 4 September, 201519 GEN-CoGOOO-REVA 51 of 58 ee_ oo SSRe

SQ TPx rs line numSQ.TPxclause—sum SQ-TPxSQ—TPx | 63 ine number in the | >| Formatted)
| Reservation _stationClause ||. oe =< =

L | number
8Q_TPx_ write gor indexSQ.TRx.wtte-gor-inde|SQ->TPxSQ-eTRx|77 index into Register file for write
% of returned Fetch Datalndex

reburned Batch Data : SERS SG

<-|-~(Formatted: Bullets and Numbering
2AE224.2.9 TP to SQ: Texture stail

The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Stali

—__

SQ_SP_wr_addr | suo
||

Name - | Direction | Bits | Description a
TP_SQ_fetch_stall | TP= Sa 4 _ Do not send more texture requestif asserted ce ee BpeS ee :

272AOZ42.10 SQ to SP: Texture stall * | 0 Se Ee
Name |[Directionsd[Bits|Description _ rs = o
8Q_SPx_fetch_stall | SQ-»SPx 4 | Da not send mare texture requestif asserted SO SS Se oo

> 7 a4 Formatted: Bullets and Numbering
27214124211 SQto SP: GPR and auto counter a ae

Name “Direction Bits Description
SQ_SPx_gprwraddr SQ-SPX 7 _| Write address
SQ_SPx_gpr_rd_addr _SQ—SPx 7 | Read address
SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable
5Q_SPx_oprwren | 8O-SPx i Write Enable for the GPRs —_ ;
SQ_SPx_gpr_phase SQ@—SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask | SQ-»SPx 4 | The channel mask
SQ_SPx_gpr_input_sel | SQ>SPx 2 When the phase mux selects the inputs this tells from

| which source to read from: Interpolated data, VTXQ,
Le _VTX1, autogen counter. ;

SQ_SPx_auto_count | 8Q>SPx 12? Auto count generated by the SQ, commonforall shader
_ pipes

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017358

ATI Ex. 2011

IPR2023-00922

Page 51 of 58

ATI Ex. 2011
IPR2023-00922

Page 52 of 58

ORIGINATE DATE

24 September, 2001

E DIT DATE

4 September, 201519

| 27-2:4224212 SQ to SPx: Instructions

PAGE

52 of 58
R400 Sequencer Specification

Name | Direction | Bits | Description
$Q_SPx_instr_start SQ—SPx 1 | Instruction start
SQ_SP_instr SQ—SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
SRC A Argument Modifier 3:3
SRC A swizzie 11:4
VectorDst 17412
Unused 20:18

1: SRC B Select 2:0
SRC B Argument Modifier 3:3
SRC B swizzle 11:4

ScalarDst 1712
Unused 20:18

2: SRC © Select 2:0
SRC C Argument Modifier 3:3
SRC C swizzle 41:4
Unused 20:12

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 41:41
Scalar Clamp 12:12

| Vector Write Mask 16:13
; 7 fo | Scalar Write Mask 20:17

SQ_SPx_exp_alu_id | BQ>5Px i | ALU ID
SQ_SPx_exporting SQ—SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

8Q_SPx_stall |§Q->SPx 1 _| Stall signal
SQ_SP0_write_mask SQ—SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and ail color
| buffers). 4x4 because 16 pixels are computed per
| clock

SQ_SP1_ write_mask SQ >SP1 4 Result of pixel kill in the shader pipe, which must be
cutout for all pixel exports (depth and all color

| | buffers). 4x4 because 16 pixels are computed per| clock
$Q_SP2_ write_mask SQ—-SP2 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are computed per_ clock

$Q_SP3_ write_mask SQ—SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| | clock

27-2-1324.2 13 SP te SQ: Constant address load/ Predicate Set

aos 2 Formatted: Bullets and Numbering

wns | Formatted: Bullets and Numbering

| SP1—>S0

| to the sequencer

Name | Direction | Bits | Description
SPO_SQ_const_addr SPO0—SQ | 36 | Constant address load / predicate vector load (4 bits only)

| | to the sequencer
SP0_SQ_valid | SP0--SQ 4 | Data valid . |
SP1_SQ_const_addr | 36 | Constant address load / predicate vector load (4 bits only)

| Exhibit 2028 docR405_Sequencer.dee 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017359

ATI Ex. 2011

IPR2023-00922

Page 52 of 58

ATI Ex. 2011
IPR2023-00922

Page 53 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 Septernber, 2001 4 September 201518 GEN-CXXXXX-REVA 53 of 58
SP1_SQ_valid SP1>S8Q / | Data valid :
SP2_SQ_const_addr SP2—-SQ [36 | Constant address load / predicate vector load (4 bits only)
ee [tothesequencer _
$P2_SQ_valid | SP2--$Q 1 _ Data valid
SP3_SQ_const_addr SP3—SQ 36 Constant address load / predicate vector load (4 bits only)

| | to the sequencer a :
SP3_SQ valid _SP3--$Q 4 | Data valid ee oe ee oe es :

27-24424214SQ to SPx: constant broadcast “| Scr =

Name Direction | Bits | Description Ce Ss Be OeSQ_SPx_const | SO—SPx 1128 | Constant broadcast Hs SS Se :

27324215SPO to SQ: Kill vector load i ——— oe
Name | Direction | Bits | Description aS ee ee
SP0_SQKill vect SPO—SQ 4 _ Kill vector load

SP1_SQ_kill vect | SP1—-8Q 14 | Kill vector load : :
SP2_SQ_kill_vect SP2-SQ 4 _Kill vector load es ese : :
SP3_SQ_kill_vect LSP3—5Q 4 _Kill vector load ee ee : : ee

27.216242.16SQ to CP: RBBM bus “| See
Name | Direction [Bits | Description ee ee oe
SQ _RBB rs SQ—CP | i _ Read Strobe
SQ_RBB_rd $Q->CP | 32 | Read Data
S5Q_RBBN_nrtrtr SQ—CP | 1 | Optional
SQ_RBBM_rr . | 8Q--CP wi [Real-Time(Optional) SOEsOUSSSESS

ade | Formatteds Bullets and Numbering
etatiZ42 17 CP to SQ: RBBM bus et =

Name Direction ‘Bits | Description
robm_we | CP--SQ rt _ Write Enable :
rbbm_a CP—5Q 15 Address -- Upper Extent is TBD (16:2)
rbbrn_wd | GP->SQ 132 | Data /
rbbm_be CP—SQ 4 | Byte Enables
rbbm_re TCP-»SQ 17 | Read Enable
rbb_rsO CP—SQ 1 | Read Return Strobe 0
rbb_rst |CP-»SQ 4 | Read Return Strobe 1rbb_rdO CP50Q 32__| Read DataO

robordd| CP-5Q 32.ReadDatagO : ee : ee ae
RBBM_SQ_softreset | CP--5Q 1 |Soft Reset te a es

2724824218 SQ to CP: State report ee
Name I Direction Bits | Description
SQ_CP_vs_event SQ>CP 1 | Vertex Shader Event
8Q_CP_vs_eventid | SQ->CP 2 Vertex Shader Event ID
8Q_CP_ps_event SQ-—CP 4 | Pixel Shader Event -
SQ_CP_ps_eventid | SQ—>CP i2 | Pixel Shader Event ID

eventid = 0 => *sEndOfState (i.e. VsEndOfState)
eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assure the Vs is done with a state wheneverit gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Exhibit 2028 dock400_Sequerverdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017360

ATI Ex. 2011

IPR2023-00922

Page 53 of 58

ATI Ex. 2011
IPR2023-00922

Page 54 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 September, 201549 54 of 58L 4 fury

24.3 Example of control flow program execution
We now provide some examples of execulion to better lusirate the new design.

Given the program:

Ao
Au
Tex 0
Tex 1
Alu 3 Serial
Alu4
Tex 2
Alu
Alu 6 Serial
Tex3
Aue
Alloc Position 1 buffer
Au & Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu10 Serial Export 2
Alu 11 Export 1 End

Weule be converied into tne following CF Instructions:

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP
Execution Count Marker (or 4 bits), (ECM)

Call return pointers (4x12 bits), (CRP
Predicate Bits(/4x64 bits), (PB)
exoort ID Cl bib, (EXD
GPR Base Pir (8 bits), (GPR
Export Base Ptr (7 bits), (EB)
Context Pir (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are oulstanding (PENDING)

Allocation Wail (2 bits) (ALLOC

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

qu | Fermatted: Bullets and Numbering

AMD1044_0017361

ATI Ex. 2011

IPR2023-00922

Page 54 of 58

ATI Ex. 2011
IPR2023-00922

Page 55 of 58

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXKKK-REVA 55 of 58_ Sir
00 ~— No allocation needed
01 ~ Position export allocation needed (ordered export
10 — Parameter or pixel export needed(ordered export)
it pass thru (oul of order export

Allocation Size (4 bite) (SIZE)
Position Allocated (POS ALLOC)
First thread of a new context (FIRST)
Last (1 bid, (LAST)

Status Bits

VALID TYPE PENDING | SERIAL | ALLOC SIZE|POS ALLOC FIRST LAST ae
i ALU 9 [6 le Q 9 4 Q I

iLexecules ihe first wo ALU insiructons and goes back lo the RS for a resource request change. Here is the
state returned to the RS:

‘StateBits

CFP | ECM [id CREO LPB EXID GPR | EB CPTR | LOD
g 2OE AB Q oO 10 jofe

Status Bits

VALID TYPE PENDING SERIAL | ALLOC SEE|POS ALLOC FIRST LAST
4 [TEX Q ro (8 a [8 1 Q |

Thenwhenthetexturepipefreesup,thearbiterpicks upthethreadtoissuethetexturereads.The thread comes
back in this state:

State Bits

| CFP | ECM Il | CRP | PB i EXID _GP EB CPTR LOD
Q 4 [o Q [o [0 Q Q o a

1 3

[ALLOC|SIZE|POS_ALLOC “| LAST
og i Q

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns iLin

State Bits

CEP[ECM im | GRP PB | EX! GP EB [SPTR | LOD
Q LS LQ [9 Q [9 Q Q Lg Q

Status Bits |

VALID TYPE PENDING SERIAL | ALLOC SIZE|POS ALLOC FIRST
1 TEX Q Lo 0 9 0

Again the TP frees up, the arbiter picks up the thread and executes. If returns in this state:

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017362

ATI Ex. 2011

IPR2023-00922

Page 55 of 58

ATI Ex. 2011
IPR2023-00922

Page 56 of 58

 V0) ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
ee 24 Septernber, 2001 4 September, 201549 56 of 58iL ma
State Bits

[CFP [ECM JL PB GPR EB |CPTR [LOD
Q 7 9 9 Q 9 Q

VALID TYPE PENDING | | ALLOC SIZE [POS ALLOC FIRST LAST |
4 ALU 1 lo i Q 1 Q |

Now, evenif the texture has not returned we can still pick ue the thread for ALU execution because the serial bit
isnot_set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CEP [ECM Ll [GRE PB EXD GPR EB CPTR | LOD
Lo 8 9 9 19 9 0 a 1 Lo

Status Bits

VALID TYPE PENDING| SERIAL | ALLOC| SIZE SL EAST
1 ALU i Lt 0 9 9 A 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Gils

CFP | ECM Lk
Q 12 19

2

on ie

[4 ro o. 18 Q ro 0 “| ro “|
CEP | ECM x [CRP PB [EXID GPR = CPTR | LOD =

 Status Bits

VALIDTYPE POSALLOCFIRST
Ct ALU 0

Picked up by the ALU and returns (lets say the TP has not returned yet):

Exhibit 2028.,doch409_Sequencerdoc 79201 Byies™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017363

ATI Ex. 2011

IPR2023-00922

Page 56of 58

ATI Ex. 2011
IPR2023-00922

Page 57 of 58

DOCUMENT-REV. NUM. PAGEORIGINATE DATE :

GEN-CXXXXX-REVA 57 of 58 | :24 September, 2001

EDIT DATE

4 September, 201519i ae

 TYPE ee |

the RS in this state:

ifthe SX has the place for the export, the 5Q is going te allocate and pick up the thread for execution. It returns to

Siate Bits | _ _ ee _ _ ; _ _

Crp ECM [CRP | PB | EXID GPR LEB [cPTR [LOD
3 4 1o 19 [a ie 8 ce ie io

Status Bits :

VALID | TYPE PENDING | SERIAL | ALLOC SIZE [POS ALLOC FIRST LAST ye
1 | TEX 1 [9 Ie Q 4 1 Q |

requests.TheTPreturns, clears the PENDING bit and we proceed:
Now, since the TP has not returned vet, we must walt for it to return because we cannot issue multiple texture

State Bits

CFP ECM [LL[CRP
4 Lg 9 Q

‘StatusBits __

VALID TYPE PENDING |SERIAL | ALLOC|SIZE1 ALU i Lo L410 3 4 i o

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

‘StateBitsailiTaiScieiia

CFP ECM ul CRE PB ExID Gee ES [cPTR [LOD
5 [4 19 1O 0 it o 100 iG ig

Status Bits pg . _. — a es :

VALID | TYPE PENDING | SERIAL | ALLO SIZE | POS ALLOC FIRST | LAST Jo1 | TEX 1 ro rood i ro |
This executes on the TP and then returns:

State Bits

GEP

ose

| Status Bits

Exhibit 2028.,docR409_Sequencerdac 79201 Bytes*™** © ATIHEcference Copyright Notice on Cover Page © **

AMD1044_0017364

ATI Ex. 2011

IPR2023-00922

Page 57 of 58

ATI Ex. 2011
IPR2023-00922

Page 58 of 58

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 2015419 58 of 58

7 [iss ~ 4

 i jee soe
and SERIAL in this case), Then execules

iLisset,Thisistheendofthisthreacandbeforedroppingifonthe

floor, the SQ notifies the SX of export completion,

*

28.25, Open issues Ce r——_.
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2028 dock400_Sequercerdes 73201 Bytes*** © ATIHEcference Copyright Notice on Cover Page ©

AMD1044_0017365

ATI Ex. 2011

IPR2023-00922

Page 58 of 58

