Case IPR2015-00325 of
U.S. Patent No. 7,742,053

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

LG ELECTRONICS, INC.,
Petitioner

V.

ATI TECHNOLOGIES ULC,
Patent Owner

Case [PR2015-00325
Patent 7,742,053

DECLARATION OF ANDREW WOLFE
REGARDING ACTUAL REDUCTION TO PRACTICE OF
U.S. PATENT NO. 7,742,053

Mail Stop “Patent Board”

Patent Trial and Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

ATI 2106
LGv. ATI
IPR2015-00325

AMD1044_0010434

ATI Ex. 2002
IPR2023-00922
Page 1 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Table of Contents
L INTRODUCTION ..o 1
. BACKGROUNDoooiiiiiooeeeee e 1
I EXHIBITS e, 6
IV. REDUCTION TO PRACTICE ..., 8
A. Actual Reduction to Practice....................cooiiii 8
B. Constructive Reduction to Practice ... 9
V. US.PATENT NO. 7,742,053 ..o 10
VI. BACKGROUND ON CHIP DESIGN AND ATI’S CHIP DESIGN 11
VII. THE CODE FOR ATI’SR400 CHIP.........ccooiiiiiii e, 13
A. The R400 RTL code corresponding to claims 1,2, 5,6, and 7 15
1. Claim T ..o, 17
a. The Preamble ..., 17
b. The at Least One Memory Device................c...ocooee 19
C. The Arbiter........... 23
d. The Arbiter is Operable to Select a Command Thread .28
2. Claim 2 ..o 32
a. The Preamble ... 32
b. The Arbiter is Operable to Provide a Command Thread to
the Command Processing Engine................................... 36
3. Claim 5 62
4. Claim 6 ... 68
5. Clalm 7 oo 69
B The R400 Emulator Code Describing Claims 1,2, 5,6, and 7........... 69
1. Clamm 1. 71
a. The Preamble ..., 71
b. The at Least One Memory Device................cccoooeeeennn, 75
C. The Arbiter...........o 78
d. The Arbiter is Operable to Select a Command Thread ..82
2. Claim 2 ..o, 96
a. The Preamble ... 96

_i-

AMD1044_0010435

ATI Ex. 2002
IPR2023-00922
Page 2 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

b. The Arbiter 1s Operable to Provide a Command Thread to

the Command Processing Engine 99
3. CLalm 5 ..o 101
4. CLalm 6 ..o 110
5. CLaim 7 ..o 110
VIII. The Claims of the 053 Patent Are Supported by the Priority
DOCUMENT. ... e 110
IX, CONCEPTIONoooiiiii oo 136
- ii-
AMD1044_0010436

ATI Ex. 2002
IPR2023-00922
Page 3 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

I, Andrew Wolfe, declare as follows:

L INTRODUCTION

1. I have been retained by Advanced Micro Devices (“AMD?) as an
expert to evaluate source code related to the development of the “R400” project at
its state of development on August 5, 2002, and to provide my opinion regarding
whether the functionality of this source code for the R400 chip and the structure it

describes corresponds to each and every element as set forth in claims 1, 2, 5, 6,

and 7 of the U.S. Patent No. 7,742,053 (“Lefebvre 053 patent™).

2. I have also been retained by AMD to review U.S. Patent Application
No. 10/673,761 (“the 761 Application™), filed September 29, 2003, to which the
"053 patent claims priority, and to provide my opinion regarding whether claims 1,

2,5, 6, and 7 are supported by the 761 Application.

3. And, I have been retained by AMD to review ATI Technologies
ULC.’s (“ATI’) R400 chip internal documents from August 24, 2001 to April 19,
2002, and to provide my opinion regarding whether the inventors of the *053

patent conceived claims 1,2, 5,6, and 7.

II. BACKGROUND

4. I have more than 30 years of experience as a computer architect,

computer system designer, personal computer graphics designer, educator, and

-1-

AMD1044_0010437

ATI Ex. 2002
IPR2023-00922
Page 4 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

executive in the electronics industry. A curriculum vitae 1s attached as Exhibit

2136 to this report and is summarized below.

5. In 1985, I earned a B.S.E.E. in Electrical Engineering and Computer
Science from The Johns Hopkins University. In 1987, I received an M.S. degree in
Electrical and Computer Engineering from Carnegie Mellon University. In 1992, 1
received a Ph.D. in Computer Engineering from Carnegie Mellon University. My
doctoral dissertation pertained to a new approach for the architecture of a computer

Processor.

6. In 1983, I began designing touch sensors, microprocessor-based
computer systems, and I/O (input/output) cards for personal computers as a senior
design engineer for Touch Technology, Inc. During the course of my design
projects with Touch Technology, I designed I/O cards for PC-compatible computer
systems, including the IBM PC-AT, to interface with interactive touch-based
computer terminals that I designed for use in public information systems. I
continued designing and developing related technology as a consultant to the
Carroll Touch division of AMP, Inc., where in 1986, I designed one of the first

custom touch screen integrated circuits.

7. While I studied at Carnegie Mellon University for my master’s

degree, from 1986 and through 1987, I designed and built a high-performance

AMD1044_0010438

ATI Ex. 2002
IPR2023-00922
Page 5 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

computer system. From 1986 through early 1988, I also developed the curriculum,

and supervised the teaching laboratory, for processor design courses.

8. In the latter part of 1989, I worked as a senior design engineer for
ESL-TRW Advanced Technology Division. While at ESL-TRW, I designed and
built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.

9. At the end of 1989, I (along with my partners) reacquired the rights to
the technology I had developed at Touch Technology and at AMP, and founded
The Graphics Technology Company. Over the next seven years, as an officer and
a consultant for The Graphics Technology Company, I managed the company's
engineering development activities and personally developed dozens of touch

screen sensors, controllers, and interactive touch-based computer systems.

10. I have consulted, formally and informally, for a number of fabless
semiconductor companies. In particular, I have served on the technical advisory
boards for two processor design companies: BOPS, Inc., where I chaired the board,
and Siroyan Ltd., where I served in a similar role for three networking chip
companies—Intellon, Inc., Comsilica, Inc., and Entridia, Inc.—and one 3D game

accelerator company, Ageia, Inc.

AMD1044_0010439

ATI Ex. 2002
IPR2023-00922
Page 6 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

11. Thave also served as a technology advisor to Motorola and to several
venture capital funds in the United States and Europe. Currently, I am a director of
Turtle Beach Corporation, providing guidance in its development of premium

audio peripheral devices for a variety of commercial electronic products.

12. From 1991 through 1997, I served on the Faculty of Princeton
University as an Assistant Professor of Electrical Engineering. At Princeton, I
taught undergraduate and graduate-level courses in Computer Architecture,
Advanced Computer Architecture, Display Technology, and Microprocessor
Systems, and conducted sponsored research in the area of computer systems and
related topics. I was also a principal investigator for Department of Defense
(“DOD”) research in video technology and a principal investigator for the New
Jersey Center for Multimedia Research. From 1999 through 2002, I taught the
Computer Architecture course to both undergraduate and graduate students at
Stanford University multiple times as a Consulting Professor. At Princeton, I
received several teaching awards, both from students and from the School of
Engineering. I have also taught advanced microprocessor architecture to industry
professionals in IEEE and ACM sponsored seminars. [am currently a lecturer at
Santa Clara University teaching graduate courses on Computer Organization and

Architecture and undergraduate courses on electronics and embedded computing.

AMD1044_0010440

ATI Ex. 2002
IPR2023-00922
Page 7 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

13. From 1997 through 2002, I held a variety of executive positions at a
publicly-held fabless semiconductor company originally called S3, Inc. and later
called SonicBlue Inc. I held the positions of Chief Technology Officer, Vice
President of Systems Integration Products, Senior Vice President of Business
Development, and Director of Technology, among others. At the time I joined S3,
the company supplied graphics accelerators for more than 50% of the PCs sold in

the United States.

14. While at S3/SonicBlue I developed technology for and participated in
the development of products for digital music and digital video including HDT Vs,
DVD players and recorders, DVRs, portable video devices, PDAs, and tablets. I

also supervised the video research and development team.

15. Thave published more than 50 peer-reviewed papers in computer

architecture and computer systems and IC design.

16. 1 also have chaired IEEE and ACM conferences in microarchitecture
and integrated circuit design and served as an associate editor for IEEE and ACM

journals.

17. Tam anamed inventor on at least 43 U.S. patents and 27 foreign

patents.

AMD1044_0010441

ATI Ex. 2002
IPR2023-00922
Page 8 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

18. In 2002, I was the invited keynote speaker at the ACM/IEEE
International Symposium on Microarchitecture and at the International Conference
on Multimedia. From 1990 through 2005, I was also an invited speaker on various
aspects of technology and the PC industry at numerous industry events including
the Intel Developer’s Forum, Microsoft Windows Hardware Engineering
Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and
Consumer Electronics Show, as well as at the Harvard Business School and the
University of Illinois Law School. I have been interviewed on subjects related to
computer graphics and video technology and the electronics industry by
publications such as the Wall Street Journal, New York Times, Los Angeles
Times, Time, Newsweek, Forbes, and Fortune as well as CNN, NPR, and the
BBC. I have also spoken at dozens of universities including MIT, Stanford,
University of Texas, Carnegie Mellon, UCLA, University of Michigan, Rice, and

Duke.

19. I am being compensated for my time working on this case at my
customary rate of $450 per hour for work performed on the case. My compensation

is not in any way related to the outcome of the case.

III. EXHIBITS

20. In this Declaration, I cite to the following Exhibits.

AMD1044_0010442

ATI Ex. 2002
IPR2023-00922
Page 9 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

United States Patent No. 7,742,053 to Lefebvre et al.

2010 R400 Sequencer Specification (Version 0.4)
2028 R400 Sequencer Specification (Version 2.0)
2041 R400 Top Level Specification (Version 0.2)
2042 R400 Shader Processor (Version 0.1)

2072 RTL Code File: sq.v

2073 RTL Code File: sq_thread buff.v

2074 RTL Code File: sq thread arb.v

2075 RTL Code File: sq_ctl flow seq.v

2076 RTL Code File: sq_instruction store.v
2077 RTL Code File: sq target instr_fetch.v
2078 RTL Code File: sq_tex_instr _queue.v

2079 RTL Code File: sq _tex instr seq.v

2080 RTL Code File: sq_ais_output.v

2081 RTL Code File: sq_alu_instr_queue.v

2082 RTL Code File: sq alu instr_seq.v

2083 RTL Code File: sp.v

2084 RTL Code File: vector.v

2085 RTL Code File: macc gpr.v

2086 RTL Code File: macc.v

2087 RTL Code File: tp.v

2088 Emulator Code File: sq block model.cpp
2089 Emulator Code File: user _block model.h
2090 Emulator Code File: arbiter.cpp

2091 Emulator Code File: arbiter.h

AMD1044_0010443

ATI Ex. 2002

IPR2023-00922
Page 10 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

2092 Emulator Code File: sq_alu.cpp

2093 Emulator Code File: sq_alu.h

2094 Emulator Code File: gpr manager.cpp

2095 Emulator Code File: gpr_manager.h

2096 Emulator Code File: instruction store.cpp

2097 Emulator Code File: instruction_store.h

2098 Emulator Code File: reg_file.cpp

2099 Emulator Code File: reg_file.h

2100 Emulator Code File: tp.cpp

2101 Emulator Code File: tp.h

2102 Emulator Code File: sq_tp.h

2103 Emulator Code File: tp_block model.cpp

2104 Emulator Code File: user_block _model.h (tp)

2108 RTL Code File: tp_input.v

2119 United States Patent Application No. 10/673,761 to Lefebvre et
al.

2136 Curriculum Vitae of Dr. Andrew Wolfe

IV. REDUCTION TO PRACTICE

21. Tunderstand there are two types of reduction to practice — actual
reduction to practice and constructive reduction to practice. My understanding of

each, I describe below.

A Actual Reduction to Practice

AMD1044_0010444

ATI Ex. 2002
IPR2023-00922
Page 11 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

22. T understand that actual reduction to practice requires proof of either
(1) an embodiment of a claimed invention or (i1) performance of a process that

includes all limitations of the claimed invention.

23. Here, I have examined two types of source code: the R400 RTL code
for an early version of the R400 written in Verilog and the corresponding Emulator
Code written in C++. Verilog RTL code is a structural and functional embodiment
of a design that in the development of 3D graphics chips is generally used to
model, define, and instantiate a hardware design. The C++ Emulator code is
generally used in the development of 3D graphics chips to model, validate, and test
the functionality and certain structural features of a hardware design. Below, I will
identify the specific files, objects, input/output interfaces, and functions that

describe each element of claims 1, 2, 5, 6, and 7 of the 053 patent.

B. Constructive Reduction to Practice

24. T understand that constructive reduction to practice occurs when the
patent application discussing the subject matter of the claims is filed. In this case,
the constructive reduction to practice occurred on September 9, 2003, with the
filing of the *761 Application. I understand that the *053 patent claims priority to
the *761 Application, because, U.S. Patent Application No. 11/764,453 from which

the *053 patent issued, 1s a continuation of the *761 Application. Below, I include a

AMD1044_0010445

ATI Ex. 2002
IPR2023-00922
Page 12 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

claim chart where I identify support for each element of claims 1, 2, 5, 6, and 7 of

> > 2

the 053 Patent in the 761 Application.

V. U.S. PATENT NO. 7,742,053

25. The 053 patent is directed to a graphics-processing system having a
unified shader. The unified shader can perform both pixel and vertex calculations.
To do this, the 053 patent includes at least one memory device designed to store a
plurality of pixel command threads and a plurality of vertex command threads.

(’053 patent, Abstract.)

26. The first reservation station 302 and the second reservation station
304 of the *053 patent represent the “at least one memory device” of independent
claims 1 and 5. (C053 patent, 3:63-64.) The first reservation station 302 is a pixel
reservation station and stores pixel command threads (including 312, 314, and
316), while the second reservation station is a vertex reservation station and stores

vertex command threads (including 318, 320, and 322). (/d., 3:66-4:4.)

27. The pixel command threads 312, 314, and 316 and the vertex
command threads 318, 320, and 322, exemplify the command threads of the

claimed inventions.

28. The claims of the 053 patent also include an arbiter. The arbiter in a

preferred embodiment is operable to select a command thread from the vertex and

-10-

AMD1044_0010446

ATI Ex. 2002
IPR2023-00922
Page 13 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

pixel reservation stations by picking the first command thread ready to execute.
(Id., 3:49-51.) The arbiter’s selection is based on a priority scheme, which may
depend on which commands have already been or are to be executed within a
command thread and/or the age of the command thread in the reservation station.

(Id., 3:31-36.)

29. The arbiter provides the selected command thread to a command

processing engine. (/d., 3:8-11.)

30. The 053 patent specification recites two types of exemplary
command processing engines: the ALU processing engine referred to as ALU 308
and a texture processing engine, such as a graphics-processing engine 310. (/d.,

4:30-33)

VI. BACKGROUND ON CHIP DESIGN AND ATI’S CHIP DESIGN

31. In my experience, modern graphics chip production is a two-step
process. First, the integrated-circuit designers design a chip almost entirely on a
computer using computer-aided—design (“CAD”) tools. The integrated-circuit
designers depend on software-based design, simulation, verification, and layout
tools. These tools ensure that production integrated circuits function and work as
intended. This process can take several months or years. These CAD tools are used

to create a chip specification, generally at multiple levels of abstraction, that serve
=11 -

AMD1044_0010447

ATI Ex. 2002
IPR2023-00922
Page 14 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

as both a detailed specification of the chip and as a model of its structure and
function. This has been the predominant design methodology for graphics chips

since at least 1990.

32. The CAD tools are used to model and validate the chip design. While
the design representation at this stage may resemble software, its primary purpose
1s to be an accurate representation of a hardware chip design. In the case of
hardware description languages like Very High Speed Integrated Circuit Hardware
Description Language (“VHDL”) or Verilog, the design language is generally the
most accurate formal specification of the structure and function of the chip that the
design engineer will prepare. It is used to directly create the manufacturing
tooling. Only after the integrated-circuit designers are confident that the design
will function properly, and the chip design passes commercial specifications, the
layout file created by the CAD tools from the design language is sent to a chip-
manufacturing facility for fabrication. Since layout files were historically provided
on a magnetic tape, this is often called a “tape-out.” At this point the design
process has been completed and the manufacturing step is intended to simply
reproduce an exact copy of what is described in the layout file. The layout file
represents the manufacturing tooling for the chip-manufacturing facility. The chip-
manufacturing facility uses this tooling to fabricate a physical integrated circuit,

commonly referred to as a “chip.”

-12-

AMD1044_0010448

ATI Ex. 2002
IPR2023-00922
Page 15 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

33. In my experience, although both circuit design and circuit fabrication
are both necessary components of chip production, in reality they are separate and
distinct activities. Typically, chip design and chip fabrication are performed by
different entities, particularly with respect to graphics chips. Ordinarily, circuit

designers do not fabricate chips, and chip fabricators do not design circuits.

34. It is my understanding that, the patent owner here, ATI, is a chip-
design company. This means that ATI designs integrated circuits, such as chips.
ATI does not fabricate chips. Instead, ATI uses software-based CAD tools to
design and reduce to practice the chip components claimed in the 053 patent. Only
after the components claimed in the 053 patent (along with other chip
components) worked for their intended purpose, would ATI generate the tooling
and send it for fabrication. Because the 053 patent pertains to the chip-circuit
design, the actual reduction to practice of the claims of the *053 patent would have
occurred when the RTL code or the Emulator Code performed all limitations of the

claims.

VII. THE CODE FOR ATT’S R400 CHIP

35. Thave been asked to review the source code for ATI’s R400 chip. I
will cite to the source code using the following format: (sq.v, 1:1-10). This

example citation points to exhibit sq.v, at page 1, lines 1-10.

AMD1044_0010449

ATI Ex. 2002
IPR2023-00922
Page 16 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

36. There are two corresponding design databases that comprise the
source code: R400 RTL code and Emulator Code. The R400 RTL code is
implemented in a hardware-description language (HDL), called Verilog. Verilog is
used to design and verify digital circuits at register-transfer level of abstraction
which can include both structure and function. For example, in the R400 program,
Verilog was used to validate the integrated-circuit version of the graphics-

processing system recited in claims 1,2, 5, 6, and 7.

37. The R400 Emulator Code is written in a well-known C++
programming language. The R400 Emulator Code includes source code that, when
executed, emulates the behavior of the graphics-processing system recited in
claims 1, 2, 5, 6, and 7 using software that executes on a computer. C++ is
commonly used to specify the function of a software system, but chip designers
often also use it to specify and emulate structural aspects of hardware systems,

such as, chips.

38. In my experience having both RTL code and C++ code
implementation is common in the chip design industry. The C++ code is faster to
write and easier to debug by the chip designers. It runs faster, so larger examples of
user input can be tested. The chip designers often first write and test the chip

design in C++ or another software language. The test results from the chip code in

-14 -

AMD1044_0010450

ATI Ex. 2002
IPR2023-00922
Page 17 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

C++ are saved. Next the RTL code 1s written in Verilog or another hardware-
description language and is compared against the test results generated using the
C++ code. By comparing two different descriptions of the hardware

implementation, it 1s more likely that errors can be found and removed.

39. TIhave compared each element of claims 1, 2, 5, 6, and 7 to the R400
R400 RTL code and the Emulator Code. Below, I will discuss each element of
claims 1,2, 5, 6, and 7, and the corresponding files, functions, and interfaces along
with the pages and line numbers in the RTL and/or Emulator Code that disclose the
same element. In my opinion, both the R400 RTL code and the R400 Emulator

Code each disclose all elements of claims 1, 2,5, 6, and 7.

40. At least one version of the R400 RTL code which discloses all
elements of claims 1, 2, 5, 6, and 7 includes the files generated before or on August

5,2002, and are attached as Exhibits 2072-2087.

41. Atleast one version of the R400 Emulator Code which discloses all

elements of claims 1, 2, 5, 6, and 7 includes the files generated before or on August

5,2002, and are attached as Exhibits 2088-2104.

A. The R400 RTL code corresponding to claims 1, 2, 5, 6, and 7

42. AsImentioned above, the R400 RTL Code is written in Verilog

language. Verilog is a hardware-description language used to design and specify

-15-

AMD1044_0010451

ATI Ex. 2002
IPR2023-00922
Page 18 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

hardware systems. That 1s, Verilog describes behavior of a hardware circuit in
terms of inputs, outputs, state machines, logic equations, and modules. When a
module is declared in Verilog, the declaration is definitional. This serves as a
specification of function and structure. Copies of that module can then be
instantiated by specifying the inputs and outputs that carry information to and from
a particular copy of the module. This instructs the CAD tools to create a copy of
the specified circuits in each final product. It is possible to have multiple copies of
a module, with the inputs and outputs of each copy separately specified in the
design. The logic equations for the module, which describe how the module
operates based on different inputs, are also specified. This logic can be
combinational, representing a set of basic logic gates, or sequential, which can
include a state machine that controls the operation over time. There are many
different ways to write these logic equations, but each is converted to a set of basic
logic gates by the CAD tools. From the files produced by the R400 RTL code, a
chip manufacturer is able to manufacture a hardware circuit that includes structure
and behavior described in the R400 RTL code. This is a standard practice in any

modern graphics integrated circuit design.

43. The R400 RTL code includes the sq.v, sp.v, tp.v files and their
corresponding sub-files and referenced modules that specify and generate a

hardware circuit which is a graphics-processing system as recited in claims 1, 2, 5,
- 16 -

AMD1044_0010452

ATI Ex. 2002
IPR2023-00922
Page 19 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

6, and 7. In particular, the sq.v file specifies and generates a sequencer which
includes an arbiter and the at least one memory recited in the claims. The sp.v and
tp.v files each specify and generate a command processing engine — the ALU
processing engine (sp.v) and a texture processing engine (tp.v). I will discuss each

of these components below.

1 Claim 1

a. The Preamble

44. The preamble of claim 1 recites “A graphics processing system.” The
R400 RTL code included in the files attached as Exhibits 2072-2087 generates
components of the graphics-processing system of claim 1. The file, sq.v, defines
the hardware blocks of the graphics-processing system component called a
sequencer. In particular, sq.v instantiates a texture thread arbiter
u sq tex thread arb (sq.v, 43:3-44-21), an ALU thread arbiter
u sq alu thread arb (sq.v, 47:6-48-24), a memory buffer that stores pixel
command threads u sq pix thread buff(sq.v,38:27-42:29), and a memory buffer
that stores vertex command threads u sq vix thread buff (sq.v, 34:22-38:24). The
memory buffers are what the *053 patent refers to as the pixel reservation station

and the vertex reservation station.

-17 -

AMD1044_0010453

ATI Ex. 2002
IPR2023-00922
Page 20 of 181

45.

Case [PR2015-00

325 of

U.S. Patent No. 7,742,053
I have generated a visual representation of these components, as I

understand them, based on the R400 RTL code, in a figure below. The figure

includes the names of the components as they are instantiated in sq.v.

W D W g—_—e, OO - WO SO, W OO, Ao NS, O, WO | OO, OGS, SO, | OO o SO O GO WA (S AT OO O W Wi 1

Sequencer

Pixel Reservation Station

u sq pix thread buff
(sq.Vv)

Vertex Reservation Station

u_sq vtx thread buff
(sg.v)

ALU Thread Arbiter

u_sq alu thread arb
{(sq.v)

Texture Thread Arbiter

u _sq tex thread arb
(sq.v)

46.

The texture thread arbiter (# sq tex thread arb) and the ALU thread

arbiter (u_sq alu thread arb) are arbiter of the 053 patent that I described above,

and that is recited in claim 1.

- 18 -

AMD1044_0010454

ATI Ex. 2002
IPR2023-00922
Page 21 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

47. Also, the u sq pix thread buffis a memory buffer for a pixel
reservation station, while the u sq vix thread buffis a memory buffer for a vertex
reservation station, which I also described above. The u sq pix thread buff and
the u sq vix thread buff structures are components of the at least one memory

device recited in claim 1.

b. The at Least One Memory Device
48. The first element of claim 1 recites “at least one memory device
comprising a first portion operative to store a plurality of pixel command threads

and a second portion operative to store a plurality of vertex command threads.”

49. As I discussed above, the sq.v file instantiates a memory buffer for
pixel command threads called #_sq pix thread buff module (sq.v, 38:27- 42-29)
and a memory buffer for vertex command threads called a u sq vix thread buff
module (sq.v, 34:22-38-24). The sq thread buff module defined in
sq thread buff.v generates u sq pix thread buffand u sq vix thread buff.
Module u# sq pix thread buffis the pixel reservation station and
u sq vix thread buff1s the vertex reservation station of the 053 patent. I have
generated a visual representation of the pixel reservation station and the vertex

reservation station, as I understand it, based on the R400 RTL code, in a figure

-19 .-

AMD1044_0010455

ATI Ex. 2002
IPR2023-00922
Page 22 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

below. The figure includes the names of the components as they are instantiated in

files that describe the structure and behavior of the components.

Pixel R&S&W&ﬁ@nk Station Vertex Reﬁewatim Station
u_sg pix thread buff u_sq vtx thread buff
{sg.w) {seg. v}
sq thread buff.v sq_thread bufi.wv

50. With respect to the pixel command threads and vertex command
threads, each of sq pix thread buffand sq vix thread buffincludes 16 registers,
referred to as u0 sq status regtoul5 sq status reg. (sq_thread buffv, 37:16-
54:16.) Each register stores a command thread, including the command thread’s
state and status information. The hardware code that generates a second register

that stores a command thread is replicated below:

sq status reg #(TID WIDTH, STATUS WIDTH)
ul sqg status reg (

.thread type strap(thread type strap),
.ism load(ism status sel[1]), .ism thread id(state tail ptr q),
.ism resource(ism resource),

.ism first thread(ism first thread),
.cfs update(cfs update),
.cfs thread id(cfs thread id),
.cfs _alu instr pending(cfs alu instr pending),
.cfs pulse sx(cfs pulse sx),
.cfs last instr(cfs last instr),
.cfs pos allocated(cfs pos allocated),
.cfs alloc type(cfs alloc type),
.cfs alloc size(cfs alloc size),
.cfs tex read pending(cfs tex read pending),
.cfs serial(cfs serial),
.cfs resource(cfs resource),

-20 -

AMD1044_0010456

ATI Ex. 2002
IPR2023-00922
Page 23 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

.cfs thread valid(cfs thread valid),

.8xX _pos _avail (pos avail g), .sx buf avail(buf avail g),
.param cache wptr g(param cache wptr qg),

.winner sel (winner status sel(l]),

.tp done(qual tp done), .tp thread id(tp thread id q),

.ais done(qual ais done), .ais thread id(ais thread id),
.pop thread(pop thread),

.tex req g(tex req qfl1]), .alu req g(alu req gl[l]),

. status_in_q(status_data_2) , .Status out g(status data 1),

.clk(clk), .reset (reset)

)z
(sq _thread buff.v, 40:5-41:7)

51. There are 16 command thread registers in sq pix thread buff and

sixteen command thread registers in sq vix thread buff.

52. Additionally, each of the vertex command threads and the pixel
command threads also stores its constituent instructions in an instruction store.
These instructions are accessed using the command thread’s state and status
information once an arbiter selects the command thread for processing, as will be
described below. The instruction store is instantiated as sq instruction store using
the sq instruction_store module in sq.v at 87:21-88:25. The instruction store
module is defined in the sq_instruction_store.v file. It consists of 4096 instruction
words which are each 96-bits wide. I have generated a visual representation of a
reservation station (which can be either vertex or pixel reservation station)
operable to store command threads and of the instruction store operable to store
instruction(s) of the command thread. The visual representation of the figure below

1s based on my understanding of the R400 RTL code.

-21 -

AMD1044_0010457

ATI Ex. 2002
IPR2023-00922
Page 24 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

. o — S— S T — " ", " W o s W

Reservation Station

ul_sq status reg |

uls_sq status reg~

sq thread buff.v

5@__;1‘113 txuatianmstare v

53. The sq pix thread buff memory buffer (the pixel reservation station)
and the sq vix thread buff memory buffer (the vertex reservation station)
generated using sq thread buff module along with the instruction store form the at
least one memory device recited in claim 1. The sq pix thread buffbuffer and the
istruction store form a first portion of the at least one memory operative to store a
plurality of pixel command threads. The sq vix thread buff and the instruction
store form the second portion of the at least one memory operative to store a

plurality of vertex command threads.

54. In this way, the sq.v, the sq thread buff.v and the
sq_instruction_store.v files include the R400 RTL code that defines the at least one

memory device comprising a first portion operative to store a plurality of pixel

22 -

AMD1044_0010458

ATI Ex. 2002
IPR2023-00922
Page 25 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command threads and a second portion operative to store a plurality of vertex

command threads.

c. The Arbiter

55. The second element of claim 1 recites “an arbiter, coupled to the at
least one memory device.” In the sq.v, the sequencer instantiates two instances of
the arbiter. The u sq alu thread arb arbiter and the u_sq tex thread arb arbiter
are two instances of an arbiter that collectively correspond to the arbiter described

in the “053 patent, and that is recited in claims 1 and 5.

56. Theu sq alu thread arb arbiter performs vertex and pixel command
thread arbitration for an ALU processing engine (sq.v, 47:6-48:24), and the
u sq tex thread arb arbiter performs vertex and pixel command thread arbitration
for a texture processing engine (sq.v, 43:3-44:21). I have generated a block
diagram representation of the two arbiters, based on my understanding of the R400
RTL code, the u sq alu thread arb and u sq tex thread arb,below. The figure
includes the names of the components as they are instantiated and files that

describe the behavior of the components.

-23 .

AMD1044_0010459

ATI Ex. 2002
IPR2023-00922
Page 26 of 181

57.

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

g - —-—- o, Vo " o— —" -, -, . - AN o " - — -, jo--" o—], ., o, -, """

Pixel Reservation Station

u_sq pix thread buff
{sq.v)

Sequencer

Yertex Reservation Station

u sq vtx thread buff
{sq.v)

|

ALU Thread Arbiter

u_sq_al u_thread arb
{(sqg.v)

Texture Thread Arbiter

u_sq tex thread arb
{sq.v)

The R400 RTL code defining each instance of the arbiter 1s included

in the sq_thread arb.v file. The definition of the arbiter and the inputs and outputs

associated with the arbiter are replicated below:

module sq thread arb

(

arb type strap,
state read phase,

// tex = 1, alu = 0
// share read access between tex and alu arbs

// wvertex and pixel thread buffer interface

vVtx req g,

// 16 vtx thread buff requests

vtx winner g, // winning vertex thread id sent back to Vertex Thread

Buffer

vtx winner ack,

winner is valid

vtx state, //
vtx status, //

24 .

// request acknowledge - indicates to TB that the

AMD1044_0010460

ATI Ex. 2002
IPR2023-00922
Page 27 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

pix req g, // 16 pix thread buff requests

pix winner g, // winning pixel thread id sent back to Pixel Thread
Buffer

pix winner ack, s
pix state, //
pix status, s

// control flow sequencer interface

arb rtso, // ready to send the winner to CFSO
arb rtsl, // ready to send the winner to CFSI
arb state, // the state sent to the CFS

arb status, // the status sent to the CFS

arb thread type, // vitx or pix

cfs rtro, // CFSO can accept a thread
cfs rtril, // CFS1 can accept a thread (for alu cfs's)
cfsl enable, // enable sending packets to CFS1 (this a local

register setting: SQ FLOW CTL.ONE ALU)

clk,
reset

(sq_thread arb.v, 2:8-4:1.)
58. AsIshow in the block diagram above, the u sq alu thread arb and
u_sq tex thread arb arbiters are each coupled to the at least one memory which is
operable to store the plurality of the pixel command threads and the plurality of the
vertex command threads. For example, each arbiter receives the 16 pixel thread
requests and 16 vertex command thread requests including the command threads’
state and status information from the sq pix thread buff (the pixel memory buffer)

and the sq vix thread buff (the vertex memory buffer), using the inputs below:

input [15:0] pix _req g;
input ['SQ PIX STATE WIDTH-1:0] pix state;
input [SQ PIX STATUS WIDTH-1:0] pix_status;

-25.-

AMD1044_0010461

ATI Ex. 2002
IPR2023-00922
Page 28 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

(sq_thread arb.v, 5:4-6; see also sq.v, 43:25-44:5 and 48:2-7.)

input [15:0] vtx reqg q;
input [° SQ VIX STATE WIDTH-1:0] vtx state;
input ['SQ VIX STATUS WIDTH-1:0] vtx status;

(sq_thread arb.v, 4:20-22; see also sq.v, 43:18-23 and 47:21-26.)
59. Each pix req g input receives 16 pixel command thread requests, and
each pix state and pix status input receives the state and status information for
each of the 16 pixel command thread requests. Similarly, each vix req g signal
receives 16 vertex command thread requests, and each vix state and vix status
input receives the state and status information for each of the 16 vertex command

threads.

60. The corresponding output from each of the pixel and vertex memory
buffers that is connected to these inputs is described in sq thread buff.v and is

replicated below:

output [TB DEPTH-1:0] tex req gy
output [STATE WIDTH-1:0] tex state gy
output [STATUS WIDTH-1:0] tex status gy

(sq_thread buff.v, 9:12-14; see also sq.v, 36:16-22.)

output [TB DEPTH-1:0] alu req gy
output [STATE WIDTH-1:0] alu state g;
output [STATUS WIDTH-1:0] alu status g;

(sq_thread buff.v, 9:23-10:2; see also sq.v, 37:4-9.)

-26 -

AMD1044_0010462

ATI Ex. 2002
IPR2023-00922
Page 29 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

61. Whentheu sq alu thread arb oru sq tex thread arb arbiter
selects a pixel command thread or a vertex command thread, the arbiter
communicates the thread id of the selected pixel command thread and the vertex
command thread to the pixel memory buffer and the vertex memory buffer, using

the interface below:

output [3:0] Vtxiwinneriq;
output [0:0] vtx winner ack;

(sq_thread_arb.v, 5:1-2; see also sq.v, 43:19-21 and 47:21-24.)

output [3:0] pix winner g;
output [0:0] pix winner ack;

(sq_thread arb.v, 5:8-9; see also sq.v, 44:1-3 and 48:3-5.)

and
input [TB ADDR WIDTH-1:0] tex winner g;
input [0:0] tex winner ack;
(sq_thread buff.v, 9:16-17; see also sq.v, 36:18-19.)
input [TB _ADDR WIDTH-1:0] alu winner qg;
input [0:0] alu winner ack;

(sq_thread buff.v, 10:4-5; see also sq.v, 37:6-7.)
62. The interfaces described above couple each of the
u sq alu thread arb arbiter and the u_sq tex thread arb arbiter to the pixel
thread memory buffer and the vertex thread memory buffer which are the at least

one memory device.

-27 -

AMD1044_0010463

ATI Ex. 2002
IPR2023-00922
Page 30 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

d. The Arbiter is Operable to Select a Command Thread
63. The arbiter of claim 1 is “operable to select a command thread from
either of the plurality of pixel command threads and the plurality of vertex
command threads based on relative priorities of the plurality of pixel command

threads and the plurality of vertex command threads.”

64. As already discussed above, the u sq alu thread arb arbiter and
u sq tex thread arb arbiter retrieve the pixel thread requests (called pix req g) as
inputs from the pixel thread memory buffer (sq pix thread buff) and the vertex
thread requests (called vix req g) as inputs from the vertex thread memory buffer

(sq vix thread buff).

65. Each arbiter then selects a winning pixel command thread from the
pixel thread requests and a winning vertex command thread from the vertex thread
requests. The structure and functionality that selects the winning vertex command
thread and the winning pixel command thread is specified in sq_thread arb.v. For
example, these arbiters select the winning pixel command thread using a priority
encoder, which prioritizes the pixel command threads as replicated below:

// - pixel request priority encoder

reg pix winner vlid;
reg [3:0] pix winner;

always @(pix req qg)
begin

-28 -

AMD1044_0010464

ATI Ex. 2002
IPR2023-00922
Page 31 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053
casez (pix req q)
//16'b0000 0000 0000 0000: begin pix winner vid = LO;
pix winner = 4'hf; end
16'p1000 0000 0000 0000: begin pix winner vild = HI;

pix winner = 4'hf; end

16'b?100 0000 0000 0000: begin pix winner vld = HI;
pix winner = 4'he; end

16'b??210 0000 0000 0000: begin pix winner vld = HI;
pix winner = 4'hd; end

16'b??71 0000 0000 0000: begin pix winner vid = HI;
pix winner = 4'hc; end
Ie'pr??? 1000 0000 0000: begin pix winner vild = HI;

pix winner = 4'hb; end

16'br??? 2100 0000 0000: begin pix winner vld = HI;
pix winner = 4'ha; end

16'br2?? 27210 0000 0000: begin pix winner vld = HI;
pix winner = 4'h9; end

16'br?rr? 72?221 0000 0000: begin pix winner vid = HI;
pix winner = 4'h8; end

le'prrer? ?77? 1000 0000: begin pix winner vid = HI;
pix winner = 4'h7; - end

le6'brrr? ?2727? 2100 0000: begin pix winner vld = HI;
pix winner = 4'hé6; end

16'brrr? 2727 2?2710 0000: begin pix winner vld = HI;
pixXx winner = 4'h5; end

16'brrr? 222? 2?2771 0000: begin pix winner vld = HI;
pix winner = 4' h4; end

16'brrr? 227? 272? 1000: begin pix winner vid = HI;
pix winner = 4' h3; end

le'prer? ?Pr? ?PP? ?100: begin pix winner vild = HI;
pix winner = 4' h2; end

16'brrry 22p? 27?? P?10: begin pix winner vld = HI;
pix winner = 4'hl; end

B 16'brrz? 2?p? ?2P2? ?P??1: begin pix winner vlid = HI;

pix winner = 4' hO; end o o

//default: begin pix winner vid = X;
pix winner = 4'bxxxx; end

default: begin pix winner vid = LO;
pix winner = 4'bxxxx; end

endcase
end

(sq_thread arb.v, 12:15-13:20))
66. Each arbiter also selects the winning vertex command thread using a
priority encoder, which prioritizes the vertex command threads as replicated

below:

-290 .

AMD1044_0010465

ATI Ex. 2002
IPR2023-00922
Page 32 of 181

// - vertex request priori

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

vtx winner vid;

vtx winner;

always @(vix req g)

begin

casez (vtx req q)

ty encoder

begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin

begin

16'b0000 0000 0000 0000:
vtx winner = 4'hf; end

16'b1000 0000 0000 0000:
vtx winner = 4'hf; end

16'b?100 0000 0000 0000:
vtx winner = 4'he; end

16'b??210 0000 0000 0000:
vtx winner = 4'hd; end

16'b??21 0000 0000 0000:
vtx winner = 4'hc; end

16'b??2? 1000 0000 0000:
vtx winner = 4'hb; end

16'b?22? 2100 0000 0000:
vtx winner = 4'ha; end

16'brrz? 2210 0000 0000:
vtx winner = 4'h9; end

16'b?2r? 22?21 0000 0000:
vtx winner = 4'h8; end

l1e'pr?2? 2722 1000 0000:
vtx winner = 4'h7; end

16'brrr? 2727 2100 0000:
vtx winner = 4'hé; end

16 b’?'?'?'? 'P’P?"? 9'?10 0000:
vtx winner = 4'h5; end

16 b’?'?'?'? '?'?‘?‘? ?'?'P_’L’ OOOO:
vtx winner = 4'h4; end

l6 b')')‘?? 999"? '?'?'P‘? _LOOO:
vtx winner = 4'h3; end

16 b’?’?q? '?'?'?'? '7‘?‘?'? '? OO:
vtx winner = 4'h2; end

16 b‘?‘?'?‘? '?‘P‘?'? 9'?'?'? '?’? O:
vtx winner = 4'hl; end

16'b?22? 2277? 272?27 ??71:
vtxX winner = 4’h0;_end N N

default:
vtx_winner = 4"bhbxxxx; end

endcase
end

vtx winner vld
vtx winner vid
vtx winner vid
vtx winner vid
vitx winner vlid
vtx winner vld
vtx winner vid
vtx winner vid
vix winner vlid
vtx winner vld
vtx winner vid
vtx winner vid
vtx winner vlid
vtx winner vlid
vtx winner vid
vtx winner vid
vEx

winner vlid

vitx winner vlid

(sq_thread arb.v, 11:8-12:12)

AMD1044_0010466

ATI Ex. 2002

IPR2023-00922

Page 33 of 181

67.

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Once each arbiter selects a winning pixel command thread and a

winning vertex command thread, the arbiter chooses the command thread from the

winning pixel command thread or the winning vertex command thread. This
corresponds to the selected command thread recited in claim 1. To select the
command thread, each arbiter uses the R400 RTL code below, such that the

winning vertex command thread, if any, has priority over the winning pixel

command thread:

else

case

have to

if (1d winner)

begin

end

vix winner g <= vtx winner;
vtx winner vid q <= vtx winner vld;
pix winner g <= pix winner;
pix winner vld g <= pix winner vid;

(tta current state)

TTAO:

begin

// — ack is connected to TB State Mem read enable, so

// wait until the correct phase to ack

if (state read phase == arb type strap)

if (vtx winner vid g

//_simply give verts the priority

begin
VEx winner ack HI;
tta next state = TTAI;

i

end
else if (pix winner vid g)
begin
pix winner ack = HI;
tta next state = TTAZ;
end

end

AMD1044_0010467

ATI Ex. 2002
IPR2023-00922
Page 34 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

(sq_thread arb.v, 16:23-17:6, 20:19-21:16.)

68. When each arbiter selects the winning command thread, the arbiter
also outputs the attributes of the command thread using the arb_state, arb_status,

and arb thread type signals. (sq_thread arb.v, 5:14-16)

69. As such, each arbiter is operable to select the command thread, as

recited in claim 1.

2. Claim 2

a. The Preamble

70. Claim 2 recites the graphics-processing system of claim 1, further
comprising “a command processing engine, coupled to the arbiter.” The R400
RTL code specifies two command processing engines: the ALU processing engine
and the texture processing engine. The R400 RTL code for the ALU processing
engine is included in sp.v and the corresponding sub-files and modules. The R400
RTL code for the texture processing engine is included in tp.v and the
corresponding sub-files and modules. Either the ALU processing engine or the
texture processing engine corresponds to the command processing engine recited

in claim 2.

AMD1044_0010468

ATI Ex. 2002
IPR2023-00922
Page 35 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

71. Below I generated a block diagram based on my understanding of the
R400 RTL code, describing how the ALU processing engine and a texture

processing engine are coupled to the arbiter.

Sequencer

Texture Thread Arbiter

u_sq tex thread arb
(sq.v)

ALU Thread Arbiter

u;_sq__al u__thzead__axb
(sq.v)

——— - —— - ——_{— - -~ So__— - Mo . W o b o - - s ol

ALU Processing Engine Texture Processing Engine

Sp.v tp.v

72. The command processing engine is coupled to the arbiter through the

hardware circuitry, including an sq ct/ flow seq module (also referred to as a CFS

AMD1044_0010469

ATI Ex. 2002
IPR2023-00922
Page 36 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

module and defined in sq_ctl flow seq.v) and an sq target instr fetch module

(also referred to as a TIF module and defined in sq_target_instr_fetch.v).

73. In the case of the first command processing engine, the ALU
processing engine, the TIF module is coupled to the sqg ais queue module (also
referred to as an AIQ module) which is specified in sq_alu_inst_queue.v. The AIQ
module provides the command thread’s instructions to the sq ais output module
(also referred to as an AIO module) which is specified in sq_ais_output.v. The AIO
module provides the command thread’s instruction to the ALU command
processor. Below I also generated a detailed diagram, based on my understanding
of the R400 RTL code, describing how the ALU processing engine is coupled to

the arbiter.

AMD1044_0010470

ATI Ex. 2002

IPR2023-00922
Page 37 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

T ;
i Seqlencer
I
I . ,
i CFS Module) TIF Module O AIQ Module 11
1
! ~ gl g alon okl flow sedq wll sy aly insty fetch) ol sg aly instr gquens
I Arbiter - - ~FLA - -t -
! (for ALU s : A
i ol flow seqw #q target instr fetch.v aq alu_inst quevs.v
|| Processing AIO Module
| Engine) |
; Instruction Store
i
i sy instruction store.v u_sg-ais outpot
z ol sq aly i
i thread arb B 6 arb.w
z sq thread arb. CFS Modile 1 TIF Madule 1 AIQ Module 1 u
i v .
g - nlwsqwﬁlﬂmetzﬂf10wm5aq T nlmsq;aluminztrwfetc;h ~ ul sq alp- insty goene
I
1 s ctl flow seq.w s target insty febch.v sg alu inst oguene.y
1
i
i sq.v
ALY Processing Engine
sp.v

74. The details of how a command thread’s instruction(s) are provided to
the ALU processing engine are described below with the reference to the figure

above.

75. In the case of the second command processing engine, the texture
processing engine, the TIF module is coupled to the sq tis queue module (also
referred to as a TIQ module) which is specified in sq_tex_inst queue.v . The TIQ
module connects to the sq tex instr seq module (also referred to as a TIS

module), which is specified in sq_tex inst seq.v. The TIS module provides the

command thread’s instructions to the texture processing engine. I generated a

%
[
|
I
[
!
I
|
I
t
[
I
i
[
|
f
[
b
!
I
I
i
I
{
I
I
f
i
[

AMD1044_0010471

ATI Ex. 2002
PR2023-00922
Page 38 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

detailed diagram below, based on my understanding of R400 RTL code,

illustrating how the texture processing engine is coupled to the arbiter.

-

! } Sequencer

b Arbiter

|| (for Texture CFS Module TIF Module TIO Module TIS Module
| Processing

! u sq tex ctl flow - sq tex insty fetch wo sy e insty quene

] : nosg Tex
! 8g cbl flow sedq.v sg_target instr fetch.v sq tex inst gqueve.v instr_seq
; uosg tex é

i thread axb - sq tex instr
] Instruction Store seg.y

' sq thread arh.

: v sy instruction store.v

i

I

{

aqv

Texture Processing
Engine

tp.w

76. Details describing how a command thread’s instructions are provided
to the texture processing engine are described below with respect to this figure

above.

77.

processing engine or the texture processing engine, is coupled to the arbiter.

b.
Thread to the Command Processing Engine
78. Claim 2 also recites “wherein the arbiter is further operable to

provide the command thread to the command processing engine.”

As such, the command processing engine, whether the ALU command

The Arbiter is Operable to Provide a Command

AMD1044_0010472

ATI Ex. 2002

IPR2023-00922

Page 39 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

79. The arbiter in the R400 RTL code provides the selected command
thread to the ALU processing engine and the texture processing engine. I have
included detailed block diagrams of the components that pass the selected
command thread to the ALU processing engine and the texture processing engine

described in detail below.

80. Each of the two arbiters selects a command thread. The arbiter outputs
the selected command thread using the arb_state, arb_status, and arb_thread type
signals. (sq_thread arb.v, 5:14-16.) The arbiter then passes the selected command

thread by way of these signals to the CFS module called sq ctl flow seq.

81. The CFS module receives the command thread by way of the
arb_state, arb status, and arb thread type signals and uses these values to
calculate a pointer to the command thread’s first instruction in the instruction store

and the number of command thread instructions that require processing.

82. The CFS module is specified in the sq ctrl flow seq.v file. There are
three instances of the CFS module instantiated in sq.v. The
u0 sq alu ctl flow seq module (sq.v, 51:9-53:21) is instantiated for the first ALU
command processing engine, and the u/ sq alu ctl flow seq module for the

second ALU command processing engine (sq.v, 53:24-56:8). Also, a third CFS

AMD1044_0010473

ATI Ex. 2002
IPR2023-00922
Page 40 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

module 1s instantiated as the u sq tex ct/ flow seq module for the texture

command processing engine. (sq.v, 44:24-47:23.)

83.

The code which specifies the CFS module is replicated below.

module sq ctl flow seq

(
cfs type strap,
is phase,
is subphase,
cfs phase,

// local registers
// - per chip
inst base vtx,
inst base pix,

// - per context

vs_program base set,

bits)

ps_program base set,

bits)

// 00:alu0, Ol:tex, 10:alul

// 00:CF, 0l:Tex, 10:ALU, 11:
// 00:alu0, 0Ol:tex, 10:alul,
// 00:alu0, Ol:tex, 10:alul,

I11:tex
I1:tex

// vertex base
// pixel base

// connected to SO VS PROGRAM.BASE (12

// connected to SQ PS PROGRAM.BASE (12

// thread arbiter input

arb rts,

arb state,

arb status,

arb thread type,
cfs rtr q,

pc_base g,

//

/7

//

// vertex or pixel

// CFS can take a new packet

// parameter cache base write pointer

// instruction store interface
is read addr g, // instruction store
is read data g, // instruction store

read address
read data

// output to the thread buffer (for thread updates)
cfs update g, // load updated status info from CFS

cfs state,
cfs status,

//

/7

// outputs to the target instruction fetcher

cfs rts g,
cfs ctl pkt q,

gpr base, context id)
//cfs pc base g,

// ctl packet and ptr are valid
// the control packet (lod correct, valid bits,

// param cache base - part of cfs state...

-38 -

AMD1044_0010474

ATI Ex. 2002
IPR2023-00922
Page 41 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

cfs tgt instr ptr q, // the instr store address of the first
target instruction

cfs tgt instr cnt g, // the number of target instructions to be
fetched

cfs thread type q, // vertex or pixel

tif rtr, // TIF can take a new packet

global export id, // from sq exp alloc

//cfs export id, // to sq exp alloc (part of cfs state)
cfs tif xfc, // to sq exp alloc

busy,

clk,
reset

(sq_ctl flow seq.v, 2:6-4:5.)

84. The CFS module includes an arbiter interface, as replicated below:

// - thread arbiter input

arb rts, //
arb state, //
arb _status, //

arb thread type, // vertex or pixel

(sq_ctl flow seq.v, 2:23-3:1))

85. The signals in the CFS-arbiter interface show the arbiter providing the
selected command thread’s state (arb state), status (arb state) and type
(arb thread type) information to the CFS module. For example, arb rts
communicates information which indicates that the arbiter is ready to provide the
selected command thread to the CFS module. (sq_ctl_flow_seq.v, 2:24), arb state
communicates the command thread’s state information (sq_ctl flow _seq.v, 2:25),
arb_status communicates the command thread’s status information

(sq_ctl_flow_seq.v, 2:26), and arb thread type communicates information which

AMD1044_0010475

ATI Ex. 2002
IPR2023-00922
Page 42 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

identifies the command thread as a vertex command thread or a pixel command

thread (sq_ctl_flow_seq.v, 3:1.)

86. The CFS module uses the arb _state, arb status, and arb _thread type
inputs that it receives from the arbiter to calculate the address of the command
thread’s first instruction in the instruction store and the number of command thread
instructions that require processing. For example, the CFS module determines the
command thread’s first instruction using the circuit described by the source code

below:

always @ (posedge clk)
begin
if (arb xfc)
cfs exec cnt g <= arb state['SQ CFS STATE WIDTH-
14:°SQ CFS STATE WIDTH-17];
else if (inc exec cnt)
cfs exec cnt g <= cfs exec cnt g + I;
else 1f (clr exec cnt)
cfs~exeq_cﬁ£_q <= 4'h0;

else
cfs exec cnt g <= cfs exec cnt gy
end
/e
// -- Target Instruction String --
/)
// - string of 9 ({serial, resource} pairs from CF EXEC instr read
out of ppb
// - the CF instr count says how many of these pairs are valid
// - the exec cnt status says how many have already been executed
(sent to TIF)
// - the exec cnt status is used to align TI string data out of

the PPB when initially loaded
always @ (posedge clk)

begin

if (1d tip)

- 40 -

AMD1044_0010476

ATI Ex. 2002
IPR2023-00922
Page 43 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

case (cfs exec cnt g)
4'h0: tgt instr str g <=
4'hl: tgt instr str g <=

0'b0, ppb read data[33:16]};
2'b0, ppb read data[33:18]};
4'h2: tgt instr str g <= 4'b0, ppb read data[33:20]};
4'h3: tgt instr str g <= 6'b0, ppb read data[33:22]};
4'h4: tgt instr str g <= { 8'b0, ppb read data[33:24]};
4'h5: tgt instr str g <= {10'b0, ppb read data[33:26]};
4'hé: tgt_inst:_st;_q <= {(12'b0, ppb read data[33:28]};
4'h7: tgt_instr_st:_q <= {14'b0, ppb read data[33:30]};
4'h8: tgt instr str g <= {16'b0, ppb read data[33:32]};
default: tgt instr str q <= {18{X}};
endcase
else if (shift ti str)
begin
tgt instr str g <= {2'b0, tgt instr str g[17:2]};
end
else
begin
tgt instr str g <= tgt instr str g;
end
end

e

always @(posedge clk)
begin
if (1d tip)
begin
cfs tgt instr ptr g <= ppb read data[11:00] +
program base + cfs exec cnt g;
ppb _instr cnt minus one q <= ppb read data(15:12] - 1;
ppb _instr op g <= ppb instr op;
end
end

(sq_ctl flow _seq.v, 15:18-16:1, 24:22-26:1, and 26:17-25.)

87. The CFS module determines the number of command thread

instruction(s) that require processing using the logic below:

/e
// —-- Target Instruction Counter (TIC) -~
e
// - increment for every segential target instruction being sent to

the TIF for the current thread
// - clear TIC when clearing the exec cnt (for now will not try to

continue TIC from one exec instr

-41 -

AMD1044_0010477

ATI Ex. 2002
IPR2023-00922
Page 44 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053
/7 to the next)

always @ (posedge clk)

begin

if (reset | clr tic) tic g <= 0;

else if (inc tic) tic g <= tic g + I1;
else tic g <= tic gy

end

wire [11:0] cfs tgt instr cnt g = tic g;

(sq_ctl_flow_seq.v, 27:20-28:7.)

88. The CFS module determines whether the command thread is a vertex

command thread or a pixel command thread using the logic below:

cfs thread type g <= arb thread type;
(sq_ctl _flow seq.v, 18:4.)

89. The CFS module then transmits the command thread which includes
the command thread’s first instruction’s address, the number of instructions, and

the command thread’s type to the TIF module, using the interface replicated below:

// outputs to the target instruction fetcher

cfs tgt instr ptr g, // the instr store address of the first
target instruction

cfs tgt instr cnt q, // the number of target instructions to be
fetched

cfs thread type q, // vertex or pixel

(sq_ctl flow seq.v, 3:15-21.)

-42 .

AMD1044_0010478

ATI Ex. 2002
IPR2023-00922
Page 45 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

90. The signal c¢fs thread type qidentifies the command thread type
(vertex or pixel); ¢fs tgt instr ptr g identifies the starting address of the command
thread’s first instruction; and cfs tgt instr cnt q identifies the number of

instructions that require processing.

91. Additionally, the CFS module also passes the command thread’s
identifier as arb status[21-16] to the TIF module. (See sq.v, 58:24, 67:14, and

73:23))

92. The TIF module receives a command thread from the CFS module.
The TIF module uses the pointer to the command thread’s first instruction
(cfs tgt instr ptrr_q) and the number of instructions that require processing
(cfs tgt instr cnt q)to fetch the command thread’s instruction(s) from the
instruction store. The R400 RTL code defines the TIF module as

sq target instr fetch module in sq target instr fetch.v.

93. The sq.v file instantiates three instances of the sq target instr feich
module, one instance per command processing engine. The sq.v file instantiates an
instance of the sq target instr fetch module for each of the ALU processing
engines, u0 sq alu instr fetch for the first ALU processing engine and
ul sq alu instr fetch for the second ALU processing engine. (sq.v, 66:13-68:23,

72:17-74-26.) Additionally, the sq.v file also instantiates an instance of

AMD1044_0010479

ATI Ex. 2002
IPR2023-00922
Page 46 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

sq target instr fetch called u sq tex instr fetch module for the texture

processing engine. (sq.v, 57:22-59:25))

94. The TIF module uses the output from the CFS module to retrieve the
command thread’s instruction(s) from the instruction store. For example, the TIF

module receives the output from the CFS module, using the source code below:

// cfs interface

cfs instr ptr, // the Instruction Store address of the first
target instruction
cfs instr cnt, // the number of instructions to be fetched

cfs thread type, // vertex or pixel
cfs thread id, //

(sq_target instr_fetch.v, 2:19-3:1))
95. The TIF module uses the inputs received from the CFS module to
fetch the command thread’s instruction from the instruction memory. Each of the
u0 sq alu instr fetch,ul sq alu instr fetch,and u sq tex instr fetch modules
fetches the command thread’s instruction from the instruction memory for the first

and second ALU processing engine and the texture processing engine respectively.

96. The TIF module also includes an interface with the

sq_instruction_store module defined in sq_instruction_store.v. As I discussed

-44 -

AMD1044_0010480

ATI Ex. 2002
IPR2023-00922
Page 47 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

above, the instruction store module stores the command thread’s instruction(s).

The TIF module’s interface with the instruction store is replicated below:

// instruction store interface
is read addr, // instruction store read address
is read data, // instruction store read data

is phase, // instruction store phase
alu phase, // alu phase (alu0 and alul share the alu
is phase)

(sq_target instr_fetch.v, 3:5-9.)
97. The TIF module uses the is read addr interface to send the command
thread’s instruction pointer that communicates the address of the command

thread’s instruction to the interface store module, using the R400 RTL code below:

output [11:0] is read addry;
(sq_target instr_fetch.v, 5:10.)

assign is read addr = tip g;

(sq_target_instr_fetch.v, 8:2.)

always @(posedge clk)

begin
if (1d tip) tip g <= cfs instr ptr;
else if (inc tip)
if (vtx wrap) tip g <= inst base vtx;
else if (pix wrap) tip g <= inst base pix;
else tip g <= tip g + 1;
else tip g <= tip gy
end

(sq_target instr fetch.v, 8:22-9:4))

98. As|I discussed above, the instruction store module defined in
sq_instruction_store.v stores the command thread’s instruction(s). The instruction

store module 1s capable of receiving three is read addr requests, one from each of

- 45 .

AMD1044_0010481

ATI Ex. 2002
IPR2023-00922
Page 48 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

the TIF modules (0 sq alu instr fetch,ul sq alu instr fetch, and

u sq tex instr fetch), using the interface below:

// SO

input [11:0] i tex addr;
input [11:0] i alu0 addr;
input [11:0] i alul addr;

(sq_instruction_store.v, 2:17-20.)
99. Inresponse to the is read addr request, the instruction store module
retrieves the command thread’s instruction(s) and outputs them as the o is data

signal, using the R400 RTL code below:

output [95:0] o is datay
(sq_instruction_store.v, 2:26.)

wire [95:0] o is data = read data;
(sq_1nstruction_store.v, 3:17.)

assign mem read data = d addr([11] ? meml rd data
mem0 rd data;

(sq_instruction_store.v, 7:19.)

// register instantiation
always (@(posedge i _clk)

begin
if (i reset)
begin
we <= 1'b0;
// addr <= 12'd0;
read data <= 96'd0;
o rtr <= 1'b0;
wrt data <= 96'd0;
q rbi addr in <= 12'd0y;
end
else
begin
we <= d we;
S/ addr <= d_addr;
read data <= mem read data;
o rtr <= d rtry;
wrt data <= d wrt data;

- 46 -

AMD1044_0010482

ATI Ex. 2002

IPR2023-00922
Page 49 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

q rbi addr in <= d rbi addr in;
end
end

(sq_instruction_store.v, 15:11-16:6.)
100. The TIF module receives the command thread’s instruction(s) from

the instruction store module using the R400 RTL code below:

input [95:0] is read data;
(sq_target instr _fetch.v, 5:11.)

101. The instructions are then loaded into the TIF module’s tif instr g

register, as shown using the R400 RTL code below:

S e e e e
// —-- Target Instruction Register (TIR) --
S/ e e
// - loaded with data read from instruction store

// - the TIR is output to the target instruction gueue (which does
some decode in front of the queue)

always @ (posedge clk)

begin

if (1d tir) tif instr g <= is read data;
else tif instr g <= tif instr gy
end

(sq_target instr_fetch.v, 12:7-17.)

102. The TIF module also provides the thread type and the thread identifier
inputs from the CFS module using the TIF modules output signals, described

below:

isr thread type g <= cfs thread type;
sr thread id g <= cfs thread id;

-47 -

AMD1044_0010483

ATI Ex. 2002
IPR2023-00922
Page 50 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

tif thread type g <= isr thread type g;
tif thread id g <= isr thread id gy

(sq_target instr fetch.v, 10:10-11, 11:18-19.)

103. Once the TIF module provides the command thread’s instruction and
the CFS module’s inputs using the TIF module’s output signals, the TIF module
transmits the command thread to an AIQ module or TIQ module (depending on
whether the TIF module is associated with one of the ALU processing engines or a
texture processing engine) using the interface below:

// outputs to the target instruction decoder (in the TIQ module)

tif thread type g, // vert:1, pix:0
tif thread id g, // the target thread id
tif instr q, // the target instruction register (TIR)

(sq_target instr fetch.v, 3:17-19.)
104. With respect to the ALU processing engine, the TIF module passes
the command thread’s instruction(s) to the AIQ module called sq alu instr queue
module. The AIQ module calculates the gpr address (the address where the data is
located that requires execution). The R400 RTL code for the sq alu instr queue
module is included in sq_alu_instr queue.v. The sq.v file instantiates two AIQ
modules called u0 sq alu instr queue (sq.v, 68:26-70:17) and

ul sq alu instr queue (sq.v,75:2-76:16), one for each ALU processing engine.

- 48 -

AMD1044_0010484

ATI Ex. 2002
IPR2023-00922
Page 51 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

105. The AIQ module receives the command thread’s instruction from the

TIF module, using the interface below:

// inputs from AIF (ALU Instruction Fetch)

aif thread type g, // vector type (0: pixel, 1: vertex)
aif thread id q, // thread id

aif instr g, // instruction register (registered read from IS
- 96 bits)
(sq_alu_instr_queue.v, 2:14-2:22))

106. The AIQ modules pass the command thread’s instruction to the AIO
module. The R400 RTL code for the AIO module is included in sq_ais_output.v.
The sq.v instantiates a single instance of the AIO module called u_sq ais output.

(sq.v, 78:16-82:2.)

107. The AIO module receives the command thread’s instruction(s) from
the two AIQ modules (10 sq alu instr queue and ul sq alu instr queue) using

the interface below:

// inputs from the AIQs

aiqC instr, // instruction
aigl instr, // instruction
(sq_ais_output.v, 2:8, 2:13, 2:20.)
- 49 -

AMD1044_0010485

ATI Ex. 2002
IPR2023-00922
Page 52 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

108. The AIO module acts as a multiplexer between the two instances of
AIQ modules and formats the command thread’s instruction(s) from the AIQ
modules into the output signals that the AIO module transmits to the ALU
command processing engine. In particular, the R400 RTL code below shows how
the aiq0 instr from the u0 sq alu instr queue and aiql instr from the
ul sq alu instr _queue are provided to the SQ SP interface. The ALU processing
engine uses the SQ_SP interface to receive and process the command thread’s

instructions(s):

/e

J)

// —-- Instruction Input Staging Register --

J)

// = holds the instruction data from the AIQ for use by GPR and PC
writes (is reloaded by other thread

// before GPR and PC writes occur, so relavent info must be kept
here)

// - need to save stall to know whether to assert WE to gprs or PC
also

// - must relocad after every instruction even if AIS is idle to get
the stall info saved

// - actually need two stages here since the AIQ must be popped for
the next constant access

always @ (posedge clk)
begin
if (reset)
begin
// stall forces a NOP to the shader pipe
// - all instruction bits are don't care when stall == 1, so
they don't need to be reset
// - stall forces WE to GPR and PC to be deasserted
//isr scalar dest g <= 0;

- 50 -

AMD1044_0010486

ATI Ex. 2002
IPR2023-00922
Page 53 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

//isr scalar mask g <= 0;
//isr vector dest g <= 0;
//isr vector mask g <= 0;
//isr pred sel g <= 0;
//isr pc base g <= 0;
isr instr stall q <= HI;
end
else 1if ((gpr phase == 2'pbll) & (alu phase == LO))
//(ais0_1d isr)
begin
isr scalar dest g <= aiq0 instr[15:8];
isr vector dest g <= aiq0 instr|[7:0];
isr scalar mask g <= aiq0 instr[23:20];
isr vector mask g <= aiq0 instr[19:16];
isr pred sel g <= aiq0 instr[60:59];
isr pc base g <= aiq0 pc base;
isr instr stall g <= ais0 instr stall;
end
else 1f ((gpr phase == 2'bl11) & (alu phase == HI))
//(aisl 1d isr)
begin
isr scalar dest g <= aigl instr[15:8];
isr vector dest g <= aiqgl instr[7:0];
isr scalar mask g <= aiqgl instr[23:20];
isr vector mask g <= aiqgl instr[19:16];
isr pred sel g <= aiql instr[60:59];
isr pc base g <= aiqgl pc base;
isr instr stall g <= aisl instr stall;
end
else
begin

isr scalar dest g <= isr scalar dest q;
isr vector dest g <= isr vector dest g;

isr scalar mask g <= isr scalar mask q;
r vector mask g <= isr vector mask g;

is

isr pred sel g <= isr pred sel qg;
isr pc base q <= isr pc base q;
isr instr stall g <= isr instr stall g;
end
end

// ISR1 - need to pipe ISRO to keep it around for the GPR/PC write

always @ (posedge clk)
begin
//1f (reset)
//begin
//isr scalar dest g <= 0y

-51 -

AMD1044_0010487

ATI Ex. 2002
IPR2023-00922
Page 54 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

//isr scalar mask g <
//isr vector dest g <
//isr vector mask g <
//isr pred sel g <
//isr pc base g =
//isr instr stall g <= HI;
//end

o
SO O OO
N Y. N,

if ((gpr phase == 2'bll))
begin
isr scalar dest gl <= isr scalar dest gy
isr vector dest gl <= iSﬁ_vecto;_dest_q,
isr 5ca7ar mask gl <= isr scalar mask g;
r_ ector;mask_ql <= isr vector mask g;

isr pred sel gl <= isr pred sel q;
isr pc base gl <= isr pc base q;
isr instr stall gl <= isr instr tall_q;
end
else
begin
isr scalar dest gl <= isr scalar dest qgl;
ls:_vecto;_dest_ql <= isr vector dest gl;
isr scalar mask gl <= isr_ scalar - mask gli;
is SI_V ectcr mask - gl <= 7Sﬁ_vector mask gl;
isr pred sel gl <= isr pred sel ql;
isr pc base gl <= 1isr pc base gl;
isr instr stall gl <= isr instr stall qgl;
end
end
[/ e
// -- SP instruction, write mask --
A

// — valid with instruction start

always @ (posedge clk)
begin
case (gpr phase)
'SQ SRCB PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {3'b000, aiq0 instr[06:00],
aigq0 instr[55:48], aiq0 instr[58], aiqO0 instr[101:99]};
ul _SQ SP_ wr7te mask <= dlqO Vd77d bits [3:0];
uL_SQLSB_erte_mask <= alqO_vaild_blts [7: 4],
u2 SQ SP write mask <= aiqO valid bits [11:8];
u3 SQ SP write mask <= aiq0 valid bits [15:12];
end
HI: begin

-52 -

AMD1044_0010488

ATI Ex. 2002
IPR2023-00922
Page 55 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

SQ SP instr <= {aiqgl instr[07:00], aigl instr[55:48],
igl instr[58], aigl instr[101:99]};
u0 SQ SP write mask <= aiqgl valid bits [3:0];
ul 50 SP write mask <= aiql valid bits [7:4];
uZ SO SP write mask <= aiqgl valid bits [11:8];
u3 SQ SP write mask <= aiqgl valid bits [15:12];
end
endcase
end
'SOQ SRCC_PHASE: begin
case (alu phase)
LO: begin
S50 SP instr <= {aiq0 instr([15:08], aiqO instr[47:40],
aigq0 instr[57], aiq0 instr[98:96]};
u0 SQ SP write mask <= aiqO valid bits [19:16];
ul SO SP write mask <= aiq0 valid bits [23:20];
u2 SQ SP write mask <= aiq0 valid bits [27:24];
u3 S0 SP write mask <= aiq0 valid bits [31:28];
end
HT: begin
50 SP instr <= {aiql instr(15:08], aiqgl instr[47:40],
aigl instr[57], aigl instr[98:96]};
u0 SQ SP write mask <= aiqgl valid bits [19:16];
ul SO SP write mask <= aiqgl valid bits [23:20];
u2 SQ SP write mask <= aiql valid bits [27:24];
u3 S0 SP write mask <= aigl valid bits [31:28];
end
endcase
end
‘SO FA PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {aiq0 instr[23:16], aiq0 instr[39:32],
aig0 instr[56], aig0 instr[95:93]};
o uQ_SQ_Sé:write_mask <= aiq0 valid bits [35:32];
ul SQ SP write mask <= aiq0 valid bits [39:36];
uZz S0 S§P write mask <= aiq0 valid bits [43:40];
u3 50 SP write mask <= aiq0 valid bits [47:44];
end
HT: begin
S50 SP instr <= {aiql instr([23:16], aigl instr[39:32],
aigl instr[56], aigl instr[95:93]};
u0 SQ SP write mask <= aiql valid bits [35:32];
ul SQ SP write mask <= aiql valid bits [39:36];
uZ SQ SP write mask <= aiql valid bits [43:40];
u3 50 SP write mask <= aiql valid bits [47:44];
end
endcase
end
'SQ SRCA PHASE: begin
case (alu phase)
LO: begin

Q

AMD1044_0010489

ATI Ex. 2002
IPR2023-00922
Page 56 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

SQ SP instr <= {aiq0 instr[23:16], aiqO0 instr[25:24],
aig0 instr[31:26], aiq0 instr[92:88]};

u0 S0 SP write mask <= aiq0 valid bits [51:48];
ul 50 SP write mask <= aiq0 valid bits [55:52];

uZz S0 SP write mask <= aiq0 valid bits [59:56];
u3 S0 SP write mask <= aiq0 valid bits [63:60];

end
HTI: begin

SQ SP instr <= {aiql instr[23:16], aiqgl instr[25:24],
aigl instr[31:26], aiqgl instr[92:88]};

u0 SQ SP write mask <= aiqgl valid bits [51:48];
ul 50 SP write mask <= aiql valid bits [55:52];

u2 S0 SP write mask <= aiqgl valid bits [59:56];
u3 S0 SP write mask <= aiql valid bits [63:60];

end
endcase
end
endcase
end
S e e
// —-- SP gpr read address, read enable --
S/ e

// - the read address comes directly from the ALU or Texture
Instruction Queue (IQ)

// - the read address was calculated prior to being loaded into the
10

// - the read enable is just the RTS out of the IQ
J*

reg [0:0] aiqg gpr rd en;

always @(alu phase or aiq0 gpr rd en or aigl gpr rd en)
begin N N - N -
case (alu phase)
LO: aiq gpr rd en = aiq0 gpr rd en;
HI: aiq gpr rd en = aigl gpr rd en;
endcase
end

*/

always @ (posedge clk)
begin
case (gpr phase)
‘SO SRCA PHASE: begin
case (~alu phase) // have to invert this to
get the srcA addr in a cycle early
LO: $Q SP gpr rd addr <= aiq0 instr(86:80];
HI: SQ SP gpr rd addr <= aigl instr(86:80];
endcase

-54 -

AMD1044_0010490

ATI Ex. 2002
IPR2023-00922
Page 57 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

case (~alu phase) // have to invert this to
get the srcA addr in a cycle early
LO: $Q SP gpr rd en <= aiq0 gpr rd en;
HI: SQ SP gpr rd en <= aigl gpr rd en;
endcase
end
'SQ SRCB_PHASE: begin
case (alu phase)
LO: SQ 8P gpr rd addr <= aiqg0 instr[78:72];
HI: $Q SP gpr rd addr <= aigl instr([78:72];
endcase
case (alu phase)
LO: SO SP gpr rd en <= aiq0 gpr rd en;
HI: SQ SP gpr rd en <= aigl gpr rd en;
endcase
end
'SQ SRCC PHASE: begin
case (alu phase)
LO: 80O SP gpr rd addr <= aiq0 instr[70:64];
HI: SO SP gpr rd addr <= aigl instr[70:64];
endcase
case (alu phase)
LO: SQ SP gpr rd en <= aiq0 gpr rd en;
HI: S0 SP gpr rd en <= aiqgl gpr rd en;
endcase
end
‘SQ FA PHASE: begin
50 SP gpr rd addr <= tis gpr rd addr;
SQ SP gpr rd en <= tis gpr rd en;
end
endcase
end

(sq_ais_output.v, 11:21-23:2))
109. The output interface which includes the command thread’s
instruction(s) that the AIO module passes to the ALU command processing engine

is replicated below:

// outputs to SP

SQ SP gpr wr addr,

SO SP gpr wr en,

SQ SP gpr rd addr,

SQ SP gpr rd en,

SQ SP gpr phase,

SQ SP gpr input sel,

SQ SP gpr channel mask,

-55.

AMD1044_0010491

ATI Ex. 2002

IPR2023-00922
Page 58 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

5Q SP instr,
SQ SP const,

/S
S0 SP exporting,
50 SP exp id,
u0 S0 SP write mask,
ul SQ SP write mask,
uZz SO SP write mask,
u3 50 SP write mask,
(sq_ais_output.v, 4:1-4:21))
110. In particular, the interface includes the SO SP instruct signal which

provides the command thread’s instruction(s).

111. As such, the arbiter is operable to provide the command thread to a

command processing engine which is, for example, an ALU processing engine.

112. With respect to the texture processing engine, the TIF module passes
the command thread’s instruction(s) to the TIQ module called sq tex instr queue.
This TIQ module calculates the gpr address (the address where the data is located
that requires execution) and passes the command thread’s instruction(s) to the TIS
module. The R400 RTL code for the sq tex instr queue module is in
sq_tex instr_queue.v. The sq.v file instantiates a texture instruction queue module

called u sq tex instr queue (sq.v, 60:1-61:13).

113. The TIQ module receives the command thread’s instruction(s) from

the TIF module, using the interface below:

- 56 -

AMD1044_0010492

ATI Ex. 2002
IPR2023-00922
Page 59 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

// inputs from TIF

tif thread id g, //
tir g, // instruction register (TIR)

tif thread type q, // vector type (0: pixel, 1: vertex)
(sq_tex_instr_queue.v, 2:14-19.)
114. The TIQ module passes the command thread’s instruction(s) to the

TIS module called sq tex instr seq module, as replicated below:

// outputs to TIS

tig last instr, //

tig thread type, //

tig context id, // context id (from ctl packet)

tig valid bits, // valid bits (from ctl packet)

tig lod correct, // lod correct bits (from ctl packet)
tig thread id, // thread id

tiq:instr, // instruction

(sq_tex_instr_queue.v, 2:25-3:6.)
115. The TIS module receives command thread instruction(s) from the TIQ
module and formats the command thread’s instruction(s) to the SO 7P interface.
As I discussed above, the TIS module provides the command thread’s
instruction(s) to the texture processing engine. The SO TP interface is used to
transmit the command thread instruction(s) to the texture processing engine. The
R400 RTL code for the TIS module is included in sq _tex_instr seq.v. The sq.v file

instantiates a TIS module called u sq tex instr seq.(sq.v, 61:16-63:18.)

-57 -

AMD1044_0010493

ATI Ex. 2002
IPR2023-00922
Page 60 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

116. The TIS module receives command thread’s instruction from the TIQ

module using the input interface below:

// TIQ interface

tig thread id, //
tiq instr, // instruction

(sq_tex_instr_seq.v, 2:8-16.)
117. The TIS module propagates the command thread’s instruction(s)
recetved from the TIQ module to the texture processing engine. The instruction(s)

are propagated using the SO TP interface as shown in the R400 RTL code below:

A ,—,btO-iiiiowip,
// -- registers --
e L S ..
A
// —-- Input Staging Register --

J) e

// - holds the instruction data from the TIQ while it is sent to
the TP

// - allows the TIQ read SM to work on the next line in the TIQ
while current data is being sent

always @ (posedge clk)

begin
if (id isr)
begig
isr last instr g <= tiq last instr;
isr thread type g <= tiqg thread type;
isr context id g <= tiqg context id;
isr valid bits g <= tiqg valid bits;
isr lod correct g <= tiqg lod correct;
isr thread id g <= tig thread id;
isr instr g <= tig instr;
end
else
begin
- 58 -

AMD1044_0010494

ATI Ex. 2002

IPR2023-00922
Page 61 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

isr last instr g <= isr last instr g;
isr thread type g <= isr thread type g;
isr context id g <= isr context id q;
isr valid bits q <= isr valid bits g;
isr lod correct g <= isr lod correct gq;
isr thread id g <= isr thread id q;
isr:inst;;& N <= isﬁ:inst;;&;47
end
end

// TP instruction data output mux and register

always @ (posedge clk)
begin
case (tis current state)
TISO: begin
SQ TP instr <= {isr instr g[41:32], isr instr g[26:25],
isr instr g[l19], isr instr qg[4:0]};

u0 SQ TP pix mask <= isr valid bits g [3:0];
ul SQ TP pix mask <= isr valid bits g [7:4];
u2 SQ TP pix mask <= isr valid bits g [11:8];
u3 SQ TP pix mask <= isr valid bits g [15:12];

u0 _SQ TP lod correct <= is;_lod_correct_q [5:0];
ul SQ TP lod correct <= isr_lod_correct_q[ll:6];
u2 SQ TP lod correct <= is;_lod_correct_q[l7:12];
u3 SQ TP lod correct <= is;_lod_correct_q[23:18];

SQ TP gpr wr addr <= {isr instr gl[l2],
isr thread type g}; // {gpr wr addr[0], type}
SQ TP thread id <= isr thread id g[1:0];
// thread id[1:0]
end

TIS1: begin
SQ TP instr <= isr instr g[59:42];

u0 SQ TP pix mask <= isr valid bits g [19:16];
ui:SQ:Té:pix:mask <= isj:valid:bité:q [23:20] ;
u2 SQ TP pix mask <= isr valid bits g [27:24];
u3 SQ TP pix mask <= isr valid bits g [31:28];

u0 SQ TP lod correct <= is;_lod_correct_q[29:24];
ul SQ TP lod correct <= is:_lod_correct_q[35:30];
uz2 SQ TP lod correct <= isr;lod_correct_q[4l:36];
u3 SQ TP lod correct <= isr_lod_correct_q[47:42];

SQ TP gpr wr addr <= isr instr g[14:13];
// gpr wr addr[2:1]

SQ TP thread id <= isr thread id g[3:2];
// thread id[3:2]

end

TISZ: begin
SQ TP instr <= {isr instr g[78:64], isr instr g[62:60]};
u0 SQ TP pix mask <= isr valid bits g [35:32];

ul SQ TP pix mask <= isr valid bits g [39:36];

u2 SQ TP pix mask <= isr valid bits g [43:40];

u3 S0 TP pix mask <= isr valid bits g [47:44];
-59.

AMD1044_0010495

ATI Ex. 2002
IPR2023-00922
Page 62 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

u0 SQ TP lod correct <= isr_lod_correct_q[53:48];
ul SQ TP lod correct <= is:_lod_correct_q[59:54];
uZ SQ TP lod correct <= is:_lod_correct_q[65:60];
u3 SQ TP lod correct <= isp_lodwcorrecﬁ_q[7l:66];

SQ TP gpr wr addr <= isr instr g[16:15];
// gpr wr addr[4:3]

SQ TP thread id <= isr thread id g[5:4];

// thread id[5:4]
end
TIS3: begin
SO TP instr <= {2'b0, isr instr g[94:79]};

uQ_SQ:TB_pixwmask <= isr valid bits g [51:48];
ul SQ TP pix mask <= isr valid bits g [55:52];
u2 SQ TP pix mask <= isr valid bits g [59:56];
u3 SQ TP pix mask <= isr valid bits g [63:60];

u0 SQ TP lod correct <= is;_lod_correct_q[77:72];
ul SQ TP lod correct <= is;mlod_correct_q[SS:78];
u2 SQ TP lod correct <= isr;lod_correct_q[89:84];
u3 SQ TP lod correct <= is:ﬁlod}correct_q[95:90];

SQ TP gpr wr addr <= isr instr g[18:17];
// gpr wr addr[6:5]

SQ TP thread id <= {LO, isr last instr
// end of group

end
endcase
end
assign tis gpr rd addr = tiqg instr[11:5]; // send

out of the FIFO
assign texconst rd addr = tiq instr[24:20]; // send
out of the FIFO (should it even go in this module?)

/) e
// —-- Constant Data Staging Registers --
// - holds the constant data from the TCS while it is
// = 1lst cycle, low 48 bits from const store go right

reg, so constO g is only 48 bits (to store
// the upper half of the first read)

/) - 16 16 16 16 16 16 16 16 16 16 16 16
// o 0 0

// 1 1 1

// 2 2 2
// 3 3 3

// - 48 bits
always @ (posedge clk)
begin
if (1d c0) const0 g <= texconst rd data[95:48];

- 60 -

qlr

this right

this right

sent to the

to output

AMD1044_0010496

ATI Ex. 2002
IPR2023-00922
Page 63 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

else const0 g <= const0 gy
end

// - 96 bits
always @ (posedge clk)

begin

if (1d cl) constl g <= texconst rd data;
else constl g <= constl gy

end

// TP constant data output mux and register

always @ (posedge clk)
begin
case (tis current state)
TIS0: SQ TP const <= texconst rd datal[47:0];
TIS1: SQ TP const <= constl qg;
T182: SQ TP const <= {constl gf47:32}, constl gl[62],
constl g[30:0]};
TIS3: SQ TP const <= {constl g[95:63], constl g[31],
constl g[61:48]};
endcase
end

// misc interface registers

always @ (posedge clk)

begin
tp fetch stall <= TP SQ fetch stall; // stall input
SQ TP gpr phase <= gpr phase; // gpr phase output
S0 TP vid <= instr vid; // this comes from the TIS
SM
end

(sq_tex_instr_seq.v, 8:21-14:10.)
118. The final output interface which includes the command thread’s
instruction(s) that the texture instruction sequencer module passes to the texture

command processing engine is replicated below:

output [0:0] SQ TP vid;
output [17:0] SQ TP instry;
output [47:0] SO TP const;
output [1:0] SQ TP gpr phase;

-61 -

AMD1044_0010497

ATI Ex. 2002

IPR2023-00922
Page 64 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

output [1:0] SO TP gpr wr addr;
output [1:0] SQ TP thread id;

output [5:0] u0 _SQ TP lod correct;
output [3:0] u0 S0 TP pix mask;
output [5:0] wul SQ TP lod correct;
output [3:0] ul SQ TP pix mask;
output [5:0] u2 SQ TP lod correct;
output [3:0] u2 SQ TP pix mask;
output [5:0] u3 SQ TP lod correct;
output [3:0] u3 SQ TP pix mask;

(sq_tex_instr_seq.v, 5:7-25.)
119. In particular, the interface includes the SO TP instruct signal which

provides the command thread’s instruction(s).

120. As such, the arbiter is operable to provide the command thread to the

command processing engine, which is a texture processing engine.

3. Claim 5

121. The preamble of claim 5 recites “A graphics-processing system,”
which I already discussed in my analysis of claim 1. This is present in the R400

RTL code for the same reasons as explained in Section VIL.A.1.

122. The first limitation of claim 5 recites “at least one memory device
comprising a first portion operative to store a plurality of pixel command threads
and a second portion operative to store a plurality of vertex command threads,”
which I already discussed in my analysis of claim 1. This is present in the R400

RTL code for the same reasons as explained previously in Section VILA.1.

-62 -

AMD1044_0010498

ATI Ex. 2002
IPR2023-00922
Page 65 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

123. The second limitation of claim 5 recites “an arbiter, coupled to the at

o

least one memory device,” which I already discussed in my analysis of claim 1.
This is present in the R400 RTL code for the same reasons as explained previously

in Section VILA.1.

124. The arbiter of claim 5 is “operable to select a command thread from
either of the plurality of pixel command threads and the plurality of vertex
command threads.” 1 have already discussed my analysis of how the arbiter selects
a command thread in claim 1. This is present in the R400 RTL code for the same

reasons as explained previously in Section VII.A.1.

125. The third limitation of claim 5 recites “a plurality of command
processing engines, coupled to the arbiter, each operable to receive and process
the command thread.” As 1 discussed in my analysis for claims 1 and 2 in Sections
VILA.1 and VIL.A.2, the R400 RTL code includes multiple command processing

engines — at least an ALU processing engine and a texture processing engine.

126. The ALU processing engine is specified in the file sp.v and its
referenced modules. As I described in my analysis of claim 2 in Section VILA.2,
the AIO module formats the command thread’s instruction(s) into an SO SP
interface. The ALU processing engine also includes an SO SP interface, replicated

below:

AMD1044_0010499

ATI Ex. 2002
IPR2023-00922
Page 66 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

SQ SP instruct start, $Q SP instruct, $Q SP stall,

S5Q SP exp pvalid, SQ SP exporting, SQ SP exp id, SQ SP const,

SQ SP gpr wr addr, SQ SP gpr rd addr, SQ SP gpr rd en,

SQ SP gpr wr en, SQ SP gpr phase mux, SQ SP channel mask,

S5Q SP pix mask, SQ SP gpr input mux, SQ SP auto count, SC SP data,

SC SP valid, SC SP type, SC SP last quad, SQ SP vsr data,

SQ SP vsr double, SQ~SP_Vsr_valid, SQ SP vsr read,

SQ SP interp prim type, SQ SP interp ijline, SQ SP interp mode,

SQ SP interp valid, SQ SP interp buff swap, SQ SP interp gen 10,

(sp.v, 2:2-10.)

127. The SO SP interface of the ALU processing engine receives

command thread’s instruction(s) from the command thread selected by the arbiter.

128. The ALU processing engine processes the instruction(s). For example,
the ALU processing engine includes four vector modules called uvector0,

uvectorl, uvector2, and uvector3. (sp.v, 14:18-18:2.)

129. The RTL code for the vector module is included in vector.v. Each of
the vector modules uvector0, uvectorl, uvector2, and uvector3 receives the
command thread’s instruction(s). Below, the RTL shows how uvector0 receives

the command thread’s instruction(s):

input [20:0] S0 SP instruct;
(sp.v, 6:8.)

ati dff in #(21) sq instruct(sclk,SQ SP instruct,q sg instruct);

(sp.v, 6:24.)

vector uvector0O(//outputs
.Sp_sx data(osp sx data0l),
.8p_sX _exporting(sp exporting),
.8p 8X _exp dst(sp exp dst),

- 64 -

AMD1044_0010500

ATI Ex. 2002
IPR2023-00922
Page 67 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

.8p sX exp alu id(sp exp alu id),
.8p_sX _exp pvalid(sp exp pvalid),
.Sp tp data(sp fetch addr0),

//inputs
.8g _sp instruct start(q sq instruct start),
.sq_sp_instruct(q sqg instruct),.sq sp stall(q sqg stall),
.sclk(sclk), .srst(srst),
.8q sp wr addr (g sq gpr wr addr),

.8q sp gpr rd addr(q sg gpr rd addr),

.8q sp mem rd ena(qg sq gpr rd en),.sq sp mem wr ena(q sg gpr wr en),.s
q sp wr ena(q sq gpr wr _en),
.8q _sp gpr phase mux(q sq gpr phase mux),
.8q sp channel mask (g sq channel mask),
.s5q sp pixel mask(q sq pix mask),
.8q_sp _gpr input mux(g sqg gpr input mux),
.iInterpolated (Interpolated0) ,// iAutoCount,
.iVertexIndices (VertexIndex0),
.8q sp constant (g sg const),
.tp sp data(q tp datal),.tp sp gpr dst(qg tp gpr dst),

.tp sp gpr cmask (g tp gpr cmask),.tp sp data valid(qg tp data valid),
.s8q _sp _exp pvalid(q sq exp pvalid),
.sqg_sp exporting (g sq exporting),
.5q sp exp alu id(q sq exp alu id)
)7
(sp.v,14:22-15:23.)

130. The vector module receives the command thread instruction(s) over
four cycles and passes the command thread instruction(s) to one of the four MACC
GPR units, instantiated as macc gpr0, macc gprl, macc gpr2, or macc gpr3.
(vector.v, 13:15-16:7.) The first unit, macc gpr0, is replicated in the RTL code

replicated below:

input [20:0] sq sp instruct; //four cycle transaction

(vector.v, 2:6.)

//Instantiation of all four MACC units that create a Vector Unit

- 65 -

AMD1044_0010501

ATI Ex. 2002
IPR2023-00922
Page 68 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

macc _gpr

umacc _gpro0(.oVectorOutput (VectorResult0) ,.oScalarInput (ScalarInputl), .
oScalarOpcode (ScalarOpcodel) ,.oRegData (RegDatal) ,.oexport dst(sq sp ex
p dst),.sq sp instruct(sqg sp instruct),.sq sp instruct start(sg sp ins
truct start),.sq sp gpr rd addr(sqg sp gpr rd addr),

.8q sp gpr wr addr(sq sp wr addr),.sq sp wr ena(sq sp wr ena),.sq sp m
em rd ena(sq sp mem rd ena),.sq sp mem wWr ena(sq sp mem wr ena),.sq sp
_gpr cmask(sq sp channel mask),.sq sp gpr phase mux(sq sp gpr phase mu
x),.iInterpolated (InputDatal),.sq sp constant(sq sp constant),.iScalar
Data (ScalarData),.tp sp data(tp sp data),.tp sp gpr dst(tp sp gpr dst)
,-tp _sp gpr cmask (tp sp gpr cmask),.tp sp data valid(tp sp data valid)
,.8clk(sclk), .srst(srst));

(vector.v, 13:15-14:11.)
131. The R400 RTL code which defines the MACC GPR module is
included in macc_gpr.v. The MACC GPR module passes the command thread’s

instruction(s) to the MACC module, as shown below:

//Instantiation of the macc unit which does the argument selection
and input modification (swizzling ...etc)

//1. input for the scalar unit comes as an output from this unit
and goes all the way up to vector.v module where the instance of
scalar unit

// can be found.

//2. VectorResult output is only used as an input into GPRs
the Previous Vector Result is not exposed at this level but stays
internal

// to macc.v module

e
/

//register the output from GPRs

reg [127:0] g RegData;

macc

umacc (.oResult (VectorResult) ,.oScalarOpcode (oScalarOpcode) ,.oScalarinp
ut(oScalarInput),.oExportDst(oexport_dst),.iRegData(q_RegData),.iConst
antData (sq sp constant),.iScalarData(iScalarData),.iInstruction(sq sp_
instruct), .ilInstStart(sq sp instruct start), .sclk(sclk),
.srst(srst));

(macc_gpr.v, 3:1-3:20.)

- 66 -

AMD1044_0010502

ATI Ex. 2002
IPR2023-00922
Page 69 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

132. The R400 RTL code which defines the MACC module is included in
macc.v. The MACC module receives the command thread’s instruction(s) as signal

ilnstruction (macc.v, 2:24), and processes the instruction as described in macc.v,

2:24-28:6.

133. The texture processing engine is defined as a tp module in sp.v. As |
described in my analysis of claim 1 in Section VII.A.1, the TIS module provides
the command thread’s instructions to the texture processing engine. For example,
the 778 module formats the command thread’s instruction(s) into the SO 7P
interface. The SO TP interface is an interface that transmits command thread’s
instructions between the sequencer and the texture processing engine. The texture
processing engine also includes an SO 7P interface which receives the command

thread’s instruction(s), as replicated below:

SQ TP send,

SQ TP instr, SQ TP const, SQ TP gpr phase, SQ TP gpr wr addr,
SQ:TP:thread_id, u0 SQ TP lod correct, ul0 _S$Q TP pix mask,

ul SQ TP lod correct, ul SQ TP pix mask, uZ SQ TP lod correct,
u2 SO TP pix mask, u3 SO TP lod correct, u3 SO TP pix mask,

(sq.v,2:7-11.)
134. In particular, the input SO 7P instrreceives the command thread’s

instruction(s).

135. The texture processing engine also processes the command thread’s

instruction(s). For example, the texture processing engine includes a tp input

-67 -

AMD1044_0010503

ATI Ex. 2002
IPR2023-00922
Page 70 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

module called utp input. (tp.v, 22:16-24:4.) The tp input module receives the

SO TP instr, as shown below:

tp input utp input
(
.sclk(sclk global),
srst(srst),

.SP TP fetch addr3(SP_TP fetch addr3),
.SP TP fetch addrz(SP_TP fetch addrz),
.SP TP fetch addrl(SP TP fetch addrl),
.SP TP fetch addr0(SP TP fetch addro),
.80 TP lod correct(SQ TP lod correct),
.50 TP pix mask(SQ TP pix mask),

.SQ TP const(SQ TP const),

.8Q TP instr($Q TP instr),

.SQ TP gpr wr addr(SQ TP gpr wr addr),

); // utp input

(tp.v, 22:16-24:4))
136. The R400 RTL code which defines the tp input module is included in
tp_input.v. The tp input receives the command thread’s instruction as signal
SO TP instr (tp_input.v, 3:5) and processes the command thread’s instruction as

described in tp_input.v, 5:13-19:6.

4. Claim 6

137. Claim 6 recites the “graphics-processing system of claim 5, wherein
the plurality of command processing engines comprises at least one arithmetic
logic unit.” In my analysis of claim 5 in Section VII.A.3, I have already discussed

that the ALU processing engine includes at least one ALU logic unit. The ALU

- 68 -

AMD1044_0010504

ATI Ex. 2002
IPR2023-00922
Page 71 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

logic unit is capable of performing vector and scalar operations. The R400 RTL
code that performs the vector and scalar operations is included in sp.v, vector.v,

and scalar_lut.mc (and their referenced modules).

138. As such, the R400 RTL code embodies a plurality of command

processing engines that comprises at least one arithmetic logic unit.

5. Claim 7

139, Claim 7 recites the “graphics processing system of claim 5, wherein
the plurality of command processing engines comprises at least one texture

processing engine.”

140. In my analysis of claim 5 in Section VIL.A .3, I have already discussed
that the command processing engine can be a texture processing engine. The R400

RTL code includes a texture processing engine as a tp module in tp.v.

141. As such, the R400 RTL code embodies a plurality of command

processing engines that comprises at least one texture processing engine.

B. The R400 Emulator Code Describing Claims 1, 2, 5, 6, and 7

142. T also examined the R400 Emulator Code. Chip designers would
ordinarily use the emulator code such as this to design the integrated circuits as
part of their design process. The evidence I have reviewed indicates that this is

what ATI did at the time this R400 Emulator Code was created.

- 69 -

AMD1044_0010505

ATI Ex. 2002
IPR2023-00922
Page 72 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

143, The R400 Emulator Code is written in the C++ programming
language. The C++ language supports object-oriented programming where objects
can be user-defined data types. An object is defined in terms of a class, which
serves as a template for a type of data. A class can define variables, interfaces, and
functions (called methods in C++) for an object. These variables and functions can
be public or private. The public variables or functions of an object can be accessed
by other objects, while the private variables and functions can be accessed only
within the object itself. For example, public variables and functions may transmit
data or provide data access between objects, while private variables and functions

may manipulate data inside the object.

144. When the C++ code 1s compiled the static objects that are defined by
the classes are instantiated in memory. When the C++ code is executed, the
dynamic objects are instantiated in memory and all objects operate and interact as

described in the corresponding C++ source code.

145. The R400 Emulator Code 1s distributed among numerous files
including sq_block model.cpp, arbiter.cpp, sq_alu.cpp, gpr_manager.cpp,
instruction_store.cpp and reg_file.cpp, tp.cpp and corresponding “include” files
(generally with names of the form that end with a .h). The source code in these

files, when compiled, realizes the graphics-processing system recited in claims 1,

- 70 -

AMD1044_0010506

ATI Ex. 2002
IPR2023-00922
Page 73 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

2,5, 6, and 7. These files define a set of objects that act as components of the
claimed graphics-processing system. In C++, the “.cpp” files generally describe
the behavior of the functions of the classes, while the “h™ files generally define the
classes, including the public and private variables of the classes, and may also

include functions that act on the public and private variables.

146. Below, I describe relevant classes and the corresponding objects that

implement the elements of claims 1,2, 5, 6, and 7.

1. Claim 1

a. The Preamble
147. The preamble of claim 1 recites “A graphics processing system.” All
of the C++ files identified above are components of the graphics-processing

system.

148. The sq block model.cpp and the user block mode.h define a
cUSER BLOCK SQ class which is the sequencer. When compiled, the sequencer
creates a cUSER BLOCK SQ object that serves as an entry point into the graphics-
processing system and also initializes other objects in the system. For example, the
constructor function “cUSER BLOCK SQ::cUSER BLOCK SQ” of the

cUSER BLOCK SQ object, when executed, creates an arbiter object with a call

71 -

AMD1044_0010507

ATI Ex. 2002
IPR2023-00922
Page 74 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“arbiter = new Arbiter(this,m dumpSQ).” (sq_block model.cpp, 7:11.) So, here,

the sequencer creates an instance of the arbiter for the graphics-processing system.

149. The cUSER BLOCK SQ object also includes a main function called
cUSER BLOCK SQ::Main(). The cUSER BLOCK SQ::Main() function includes
three functions Fetch(), Process(), and Output() and causes the graphic processing
system to process command threads. (sq_block model.cpp, 12:6-11.) The
cUSER BLOCK SQ::Fetch() function gets the vertex and pixel instructions from
different components in the system and stores the vertex and pixel instructions in
the registers. (sq_block model.cpp,12:12-16:19.) The
cUSER BLOCK SQ::Process() function processes the vertex and pixel command
threads that manipulate the vertex and pixel data using an Arbiter
(sq_block model.cpp, 38:6-38:16), and the cUSER BLOCK SQ::OQutput()
function outputs the processed vertex and pixel data. (sq_block model.cpp, 38:18-

43:6.)

150. The cUSER BLOCK SQ::Process() function processes vertex and
pixel command threads. The cUSER BLOCK SQ::Process() function does so by
calling three functions: ProcessVerts(), ProcessPixels(), and arbiter-
>FExecute().(sq_block model.cpp, 38:6-38:16.) The

cUSER BLOCK SQ::ProcessVerts() and cUSER BLOCK SQ::ProcessPixels()

72 -

AMD1044_0010508

ATI Ex. 2002
IPR2023-00922
Page 75 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

functions belong to the cUSER BLOCK SQ class and each receive respective

vertex and pixel data as inputs and store the vertex and pixel data in registers.

151. The cUSER BLOCK SQ::ProcessVerts() function also generates a
command thread that is associated with a particular vertex data and inserts the
command thread into the portion of the memory associated with the vertex

command threads.

arbiter->
AddVector (0,VERTEX,eventId,valids,true,interp[0].1lod correct)

(sq_block model.cpp, 34:23.)

arbiter-> AddVector (base ptr,VERTEX,
vState,valids,false,interp[0].lod correct)

(sq_block model.cpp, 35:24-25.)

152. The VERTEX variable in the code indicates that the command thread
will be added to the portion of the memory associated with the vertex command
threads. The cUSER BLOCK SQ::ProcessPixels() function also generates a
command thread that is associated with pixel data and inserts the command thread

into a portion of the memory associated with the pixel command threads.

arbiter->
AddVector (0,PIXEL,event ,interp[buf read].pix mask,true,interp[buf read
].1lod correct)

(sq_block _model.cpp, 20:26.)

AMD1044_0010509

ATI Ex. 2002
IPR2023-00922
Page 76 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

arbiter-> AddVector (base ptr,PIXEL,
interp[buf read].state id,interp[buf read].pix mask,false,
interp [buf read].lod correct);

(sq_block model.cpp, 24:5.)

153. The PIXEL variable in the code indicates that the command thread
will be added to the portion of the memory associated with the pixel command

threads.

154. The portion of the memory that stores the vertex command threads is
called a vertexStation and the portion of the memory that stores the pixel command
threads is called a pixelStation. Additionally, an instruction store which is defined
in the instruction_store.h defines the [Store object which stores the command
thread’s instructions and is also part of the portion of the memory. I will address

each of these memory structures below.

155. The arbiter->Execute() function selects a command thread from
among the command threads stored in either a pixelStation or the vertexStation and
passes the selected command thread to an ALU processing engine or a texture
processing engine. (sq_block model.cpp, 38:14-15.) I address the arbiter-

>Execute() function below.

156. As such the R400 Emulator Code describes the graphics-processing

system of claim 1.

-74 -

AMD1044_0010510

ATI Ex. 2002
IPR2023-00922
Page 77 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

b. The at Least One Memory Device
157. The first limitation of claim 1 recites “at least one memory device
comprising a first portion operative to store a plurality of pixel command threads

and a second portion operative to store a plurality of vertex command threads;”

158. The arbiter.h file defines a structure called a ReservationStation. The

ReservationStation stores command threads and is replicated below:

struct ReservationStation
{
ReservationStation data data;
ReservationStation status status;
b
(arbiter.h, 3:13-17.)

159. The ReservationStation structure includes two components —
ReservationStation data and ReservationStation_status. Both
ReservationStation data and ReservationStation status are structures defined in
arbiter.h, 2:7-3:13. ReservationStation data stores instruction information related
to the command thread, including pointers to the memory space where the

instructions are located as shown below:

struct ReservationStation data

{
unsigned int cfPtr;
unsigned int execCount;

intle loopIter[4];
intlé loopCount(4];
intié callReturnf4];
bool predicates[64][4];
bool exportId;

unsigned int pcBasePtr;

=75 -

AMD1044_0010511

ATI Ex. 2002

IPR2023-00922
Page 78 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

unsigned int gprBase;
unsigned int state;

int LodCorrect[4][4];
unsigned int valids[4][4];
int vCount;

};
(arbiter.h, 2:7-22.)

160. ReservationStation_status stores status information related to the
command thread, including whether the instruction is a first or last instruction in

the command thread as shown below:

struct ReservationStation status

{

bool valid;
Ressource type ressourceNeeded;
bool texReadsOutstanding;,
bool serial;
Allocation type allocation;
unsigned int allocationSize;
bool posAllocated;
bool first;
bool event;
bool last;
bool pulseSx;

(arbiter.h, 2:24-3-11.)
161. The Arbiter class defined in arbiter.h defines two arrays of type
ReservationStation. An array stores multiple instances of data having the same
type. Here, an array of type ReservationStation stores multiple instances of
ReservationStation structures and thus this array of type ReservationStation stores

a plurality of command threads, as recited in claim 1.
162. The first such array is called pixe/Station, and is defined as:

-76 -

AMD1044_0010512

ATI Ex. 2002

IPR2023-00922
Page 79 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

ReservationStation pixelStation[MAX PIX RESERVATION SIZE];

(arbiter.h, 4:7.)

163. The MAX PIX RESERVATION SIZE indicates that the pixelStation
array stores 48 command threads, as shown by the following statement:

#define MAX PIX RESERVATION SIZE 48

(arbiter.h, 2:4.)

164. The pixelStation array is invoked to allocate memory when the arbiter
1s created using the new Arbiter() functions call described above. This means that
the pixelStation array is a memory portion that is operative to store a plurality of

pixel command threads.

165. The second array 1s called a vertexStation, and is defined as:

ReservationStation vertexStation[MAX VIX RESERVATION SIZE];

(arbiter.h, 4:6.)

166. The MAX VIX RESERVATION SIZE indicates that the verfexStation

array stores 16 command threads, as shown by the following statement in arbiter.h:

#define MAX VTX RESERVATION SIZE 16

(arbiter.h, 2:5.)

-77 -

AMD1044_0010513

ATI Ex. 2002
IPR2023-00922
Page 80 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

167. The vertexStation array is also invoked to allocated memory when the
newArbiter() function call occurs. This means that the vertexStation array is a

memory portion that is operative to store a plurality of vertex command threads.

168. Below, I have generated a figure, based on my understanding of the
R400 Emulator Code, that represents the pixel reservation station and the vertex
reservation station that includes these components as they are instantiated in the
R400 Emulator Code, along with the structures and/or classes that define the

components:

Pixel Reservation Station Vertex Reservation Station

pixzelStation[MAY PIX RESERVATION SIZE] vertexStation[MAX VIX RESERVATION SIEE]

farbiter ki larbiter k)
etract ReservationStation etroct BeservationStation
{arbiter.h} {arbiter.b)

C. The Arbiter
169. The second limitation of claim 1 recites “an arbiter, coupled to the at

least one memory device.”

170. As explained above, the arbiter.cpp and arbiter.h files define an
Arbaiter class which is used to generate an arbiter object. For example, the Arbiter
object 1s created in the constructor of the cUSER BLOCK SQ class

cUSER BLOCK SQ::cUSER BLOCK SQ by the below code:

- 78 -

AMD1044_0010514

ATI Ex. 2002
IPR2023-00922
Page 81 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

arbiter = new Arbiter(this,m dumpSQ);

171.

(sq_model block.cpp, 7:11.)

The keyword “new” is a C++ keyword that creates a dynamic object,

in this case an arbiter, when the R400 Emulator code executes. As part of the

object creation, the “new’” call also invokes the arbiter’s constructor called

Arbiter:: Arbiter() which creates and initializes the arbiter recited in claim 1.

(arbiter.cpp, 2:3-9:16). The arbiter’s constructor initializes the pixe/Station array

which is a pixel portion of the memory and the vertexStation array which is a

vertex portion of the memory (arbiter.cpp, 3:2-4:14 and 4:16-5:21) as replicated

below:

// initialize all the fiels of the RS
for (i:O;i<MAX;PIX;RESERVATIONLSIZE;i++)

{
pixelStation[i].
pixelStation[i].
pixelStation[i].
pixelStation[i].
pixelStation[i].
pixelStation[i].
pixelStation[i].

pixelStation[i]
pixelStation[i]
pixelStation[i]
pixelStation[i]

pixelStation[i].
pixelStation[i]
pixelStation[i]
pixelStation([i]

pixelStation[i]
pixelStation[i]
pixelStation[i]

status.valid = false;
status.event = false;
status.first = false;
status.last = false;

status. texReadsOutstanding = false;
status.pulseSx = false;
status.allocation = S0 NO ALLOC;
.data.callReturnf[0] = -1;
.data.callReturnf1] = -1;
.data.callReturnf[2] = -1;
.data.callReturn[3] = -1;
data.looplter[0] = -1;
.data.loopIlter[l] = -1;
.data.looplter(2] = -1;
.data.loopIter[3] = -1;
.data.loopCount/[0] o;
.data.loopCount[1] = 0;
.data.loopCount/[Z2] 0;

-79 .

AMD1044_0010515

ATI Ex. 2002

IPR2023-00922
Page 82 of 181

pixelStation[i].data.predicates[j][0]= false;
pixelStation[i].data.predicates[j][1]= false;
pixelStation(i].data.predicates[j][2]= false;
pixelStation[i].data.predicates[}j][3]= false;
}
}
for (iZO;i<MAX_VTX_RESERVATION_SIZE;i++)
{
vertexStation[i].status.valid = false;
vertexStation[i].status.event = false;
vertexStation[i].status.first = false;
vertexStation[i].status.last = false;
vertexStation[i].status.texReadsOutstanding = false;
vertexStation[i].status.pulseSx = false;
vertexStation[i].status.allocation = 50 NO ALLOC;
vertexStation[i].data.callReturn[0] = -1;
vertexStationf[i].data.callReturn{l] = -1;
vertexStationfi].data.callReturn[2] = -1;
vertexStationfi].data.callReturn{3] = -1;
vertexStation[i].data.loopIter[0] = -1;
vertexStation[i].data.loopIter[1l] = -1;
vertexStation[i].data.looplter[2] = -1;
vertexStation[i].data.loopIlter[3] = -1;
vertexStation[i].data.pcBasePtr = 0;
vertexStation[i].data.exportid =0;
vertexStation[i].data.vCount =0;
for (3=0;7<64;j++)
/
vertexStation[i].data.predicates[j][0]= false;
vertexStation[i].data.predicates[j][1]= false;
vertexStation[i].data.predicates[j][2]= false;
vertexStation[i].data.predicates[}][3]= false;
}
}

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

pixelStation[i].data.
pixelStation[i].data.
pixelStation[i].data.
pixelStation[i].data.

for (j=0;7<64;7j++)
{

loopCount[3] = 0;

pcBasePtr = 0;
exportId =0;
vCount =0;

- 80 -

(arbiter.cpp, 3:2-5:21.)

AMD1044_0010516

ATI Ex. 2002
IPR2023-00922
Page 83 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

172. Another example of initialization occurs at arbiter.cpp, 3:4-6:6 where
the arbiter’s Arbiter: :init() function clears and re-initializes the pixe/Station and
vertexStation arrays. Initialization of the memory that stores pixe/Station and
vertexStation by the arbiter object demonstrates that claimed arbiter 1s coupled to

the claimed portion of the memory as recited in claim 1.

173. Thave generated below a figure, based on my understanding of the
R400 Emulator Code, that represents how the arbiter is coupled to the pixel
reservation station and the vertex reservation station. The figure includes the
components as they are instantiated in the graphics-processing system and also

includes the structures and/or classes that define the components:

Pixel Reservation Station Vertex Reservation Station

pixelStation[MAX PIX RESERVATION SIZE] | | vertexStation[MAX VTX RESERVATION SIZE]

{arbiter . h)} tarbiter h)
struct Rﬂm&ﬂalﬁi onStation stroot Fessrvations tation
farbiter . h) {arbiter b
Arbiter
arbiter

{aq model block.h)

clase Arbiter
farbiter k)

- 81 -

AMD1044_0010517

ATI Ex. 2002
IPR2023-00922
Page 84 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

d. The Arbiter is Operable to Select a Command Thread
174. The arbiter of claim 1 is “operable to select a command thread from
either of the plurality of pixel command threads and the plurality of vertex
command threads based on relative priorities of the plurality of pixel command

threads and the plurality of vertex command threads.”

175. The arbiter.cpp file describes an arbiter operable to select a thread.
For example, The Arbiter:: Execute() function allows the arbiter object to select a
command thread. (arbiter.cpp, 9:18-16:18.) The Execute() function chooses a
command thread that is processed on a texture processing engine or an ALU

processing engine.

176. To choose a command thread for processing using a texture
processing engine, the Arbiter:: Execute() function calls an

Arbiter::chooselexStation(...) function, using the call below:

found=chooseTexStation (texLineNumber, texType) ;

(arbiter.cpp, 10:16.)

177. The function Arbiter::chooseTexStation(...) selects a command thread

from either a pixelStation or vertexStation. (arbiter.cpp, 51:7-53:22.)

-82 -

AMD1044_0010518

ATI Ex. 2002
IPR2023-00922
Page 85 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

178. For example, Arbiter::chooselexStation(...) includes two “for” loops
that traverse the pixelStation entries and then the vertexStation entries. The first
“for” loop iterates through the pixelStation array, beginning at the top of the array,
and selects a candidate pixel command thread (if any such entry is present) from a
location in the pixelStation. The selection is based on the variety of status tests.

The code for selecting the pixel command thread is replicated below:

// do pixels first
lineCheck = pixelHead;
for (i=0;i<pixelRsCount;i++)
{
if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE
&& l!pixelStation[lineCheck].status.event)
f
pixelPick=1ineCheck;
}
// enforce restrictions based on the status
if (pixelPick = -1)
/
// no texture ops while texture reads are outstanding

if
(pixelStation[pixelPick].status. texReadsOutstanding)
pixelPick = -1;
else
break;

}

lineCheck = (lineCheck+1)$MAX PIX RESERVATION SIZE;
(arbiter.cpp, 51:14-52:9))

179. By evaluating the pixelStation array entries and by selecting a
candidate pixel command thread based on status conditions (arbiter.cpp, 51:14-

52:9), the R400 Emulator Code describes an arbiter operable to select a pixel

-83 -

AMD1044_0010519

ATI Ex. 2002
IPR2023-00922
Page 86 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command thread from the plurality of pixel command threads based on the relative

priorities of the plurality of pixel command threads.

180. The second “for” loop in the Arbiter::chooseTexStation() function
iterates through the vertexStation entries, beginning at the top of the vertexStation
array, and selects a candidate vertex command thread (if any such entry is present)
from a location in the vertexStation. The selection is based on the variety of status

tests. The code for selecting the vertex command thread is replicated below:

lineCheck = vertexHead;
for (i=0;i<vertexRsCount;i++)
{
if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status. ressourceNeeded == TEXTURE
&& !vertexStation[lineCheck].status.event)
{
vertexPick=1ineCheck;

}

// enforce restrictions based on the status
if (vertexPick != -1)

{

// no texture ops while texture reads are outstanding

if
(vertexStation[vertexPick].status. texReadsOutstanding)
vertexPick = -1;
else
break;

}

lineCheck = (lineCheck+1)3$MAX VTX RESERVATION SIZE;
(arbiter.cpp, 52:11-53:6.)
181. By traversing the vertexStation after the pixelStation, and selecting a

candidate vertex command thread based on different status conditions, the R400

Emulator Code includes an arbiter operable to select a vertex command thread

-84 .-

AMD1044_0010520

ATI Ex. 2002
IPR2023-00922
Page 87 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

from the plurality of vertex command threads based on the relative priorities of the

plurality of pixel command threads and the plurality of vertex command threads.

182. Once the Arbiter::chooseTexStation(...) function selects a pixel
command thread from the pixelStation and a vertex command thread from the
vertexStation, the Arbiter::chooselexStation(...) function selects a command
thread from the selected pixel command thread and the selected vertex command
thread, where the vertex command thread, if it exists, has priority over the pixel
command thread. That 1s, if a candidate vertex command thread exists, the vertex
command thread is selected and becomes the selected command thread of claim 1.
Otherwise, the pixel command thread becomes the selected command thread of

claim 1. The code that demonstrates this 1s replicated below:

if (vertexPick = -1)

{
lineNumber = vertexPick;
sType = VERTEX;
return true;

if (pixelPick != -1)

{
lineNumber = pixelPick;
sType = PIXEL;
return true;

(arbiter.cpp, 53:8-19.)

183. Once the Arbiter::chooseTexStation(..) function selects a command
thread, the Arbiter::chooselexStation(...) function returns a boolean (true or false)

variable which indicates whether a command thread was selected. Also,
-85-

AMD1044_0010521

ATI Ex. 2002
IPR2023-00922
Page 88 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Arbiter::chooseTexStation(...) returns 1) a type of the selected command thread, a
vertex command thread or a pixel command thread, which is stored in variable
sType, and 2) a location of the selected command thread in the vertexStation or

pixelStation stored in the variable lineNumber. (arbiter.cpp, 51:7.)

184. If the Arbiter::chooseTexStation(...) function indicates that the
command thread was selected, the Arbiter uses the Arbiter::popStationVector(...)
function to remove the selected command thread from either the vertexStation or

pixelStation arrays and stores the removed command thread in texStationData, as

shown by the code below:

ReservationStation* texStationData;
int texLineNumber;
Shader Type texType;

// pick a program to run on the texture pipe
found=chooseTexStation (texLineNumber, texType) ;
if (found)
{
texRunning = true;
// pop the content of the chosen clause and place the results in
the object's texture state
// variables
popStationVector (texStationData,texLineNumber,texType) ;

(arbiter.cpp, 10:8-11:10.)

185. The Arbiter::popStationVector(...) function passes a single
ReservationStation structure called texStationData, the line number location of the

selected command thread in the vertexStation or pixelStation array called
- 86 -

AMD1044_0010522

ATI Ex. 2002
IPR2023-00922
Page 89 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

texLineNumber, and the type (vertex or pixel) of the command thread called

texType. The texStationData variable is of type ReservationStation and stores the

memory address location of the selected command thread. The code that is

operable to select a command thread is replicated below:

void Arbiter::popStationVector (ReservationStation*& stationData, int
lineNumber,

{

Shader Type sType)

int i,7;
switch (sType)
{
case PIXEL:
stationData = §¢pixelStation[lineNumber];

pixelStation[lineNumber].status.valid = false;
break;

case VERTEX:
stationData = &vertexStation/[lineNumber];
vertexStation[lineNumber].status.valid = false;

// refresh the vertex mask using vCount
for (i=0;i<4;i++)

for (3=0;7<4;G++)

{

switch (vertexStation[vertexTail].data.vCount-

(i%16+7%4))

{

case O0:
vertexStation[vertexTail].data.valids[i][7F]

0x00;

break;
case 1:
vertexStation[vertexTail].data.va

s

ids[i] [F]

0x01;

break;
case 2:
vertexStation[vertexTail].data.valids[i][7]

0x03;

break;
case 3:
vertexStation[vertexTail].data.valids[i][7]

0x07;

break;
case 4:
vertexStation[vertexTail].data.valids[i][7]

O0x0f;

-87-

AMD1044_0010523

ATI Ex. 2002
IPR2023-00922
Page 90 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

break;
default:
break;

}r

break;

(arbiter.cpp, 49:17-51:5.)

186. In this way, the arbiter is operable to select a command thread from
either of the plurality of pixel command threads or the plurality of vertex command
threads based on relative priorities of the plurality of pixel command threads and

the plurality of vertex command threads.

187. In another example, Arbiter::Execute() function also selects a
command thread from a vertexStation or a pixelStation for one of the two ALU
processing engines. The two ALU processing engines run on different clock
parities, one on the even clock and one on the odd clock. The code which invokes

selecting a command thread for an AL U processing engine is replicated below:

// pick one alu clause to execute
// depending on the clock parity, run either the even alu state
machine or the odd one
if (ALU turn)
{
runALU (aluORunning,
aluOCFMachine,alulCFMachine,alulRunning,aluPhase);

~ (D e
[
]
@

runALU(alulRunning,
alulCFMachine,alu0CFMachine,aluORunning,aluPhase);

(arbiter.cpp, 14:21-15:6.)

- 88 -

AMD1044_0010524

ATI Ex. 2002
IPR2023-00922
Page 91 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

188. The Arbiter::runALUY...) function (arbiter.cpp, 16:20-24-20) selects a
command thread from either a vertexStation or a pixelStation using the

Arbiter: :chooseAluStation(...) function, as replicated below:

found=chooseAluStation (lineNumber,stype,otherAluRunning,
otherCFMachine, predToggle) ;

(arbiter.cpp, 17:10-11.)

189. The function Arbiter::chooseAluStation(...) selects a command thread
from either a pixelStation or vertexStation. For example,
Arbiter::chooseAluStation(...) includes two “for” loops. The first “for” loop
iterates through the pixelStation entries, beginning at the top of the array, and
selects a candidate pixel command thread (if any such thread is present) from a
location in the pixelStation. The selection is based on the variety of status tests that
check that the pixel command threads do not block older pixel command thread.

The code for selecting the pixel command thread is replicated below:

// do pixels first
lineCheck = pixelHead;
for (i=0;i<pixelRsCount;i++)
{
if (pixelStation[lineCheck].status.valid != 0 &&
pixelStation[lineCheck].status.ressourceNeeded == ALU
&& !pixelStation[lineCheck].status.event)
{
// no allocation needed
if (pixelStation[lineCheck].status.allocation ==
SQ NO ALLOC)
{
pixelPick = lineCheck;
}

-89 .

AMD1044_0010525

ATI Ex. 2002
IPR2023-00922
Page 92 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

// we need to make sure there is space in the
appropriate buffer

else if
(pixelStation[lineCheck].status.allocationSize+l <= sg->pSX S0O-
>GetExportBuffer()/4)

{
pixelPick = lineCheck;
}
// make sure the status says we can pick this vertex
if (pixelPick != -1)
{

// check for serial with texture pending
1f (pixelStation[pixelPick].status.serial &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;
// if last is set we can only pick the two
oldests threads
else if (pixelStation[pixelPick].status.last &&
!'(pixelPick==pixelHead ||
pixelPick==((pixelHead-1)$MAX PIX RESERVATION SIZE)))
pixelPick = -1;
// cannot pick last 1f texture reads are
outstanding
else if (pixelStation[pixelPick].status.last &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;
// can only pick the second to old if the first
is already running
else if (pixelStation[pixelPick].status.last &&
IpixelStation[pixelHead].status.valid)

{
if (pixelStation[pixelPick].status.first)
pixelPick = -1;
else
f
predon = false;
break;
}
}
else
break;

}// endif pixels

lineCheck = (lineCheck+1)$MAX PIX RESERVATION SIZE;
}// end for loop
(arbiter.cpp, 54:8-56:9.)

-90 -

AMD1044_0010526

ATI Ex. 2002
IPR2023-00922
Page 93 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

190. By traversing the pixelStation and selecting a candidate pixel
command thread based on status conditions, the R400 Emulator Code describes an
arbiter operable to select a candidate pixel command thread from the plurality of
pixel command threads based on the relative priorities of the plurality of pixel

command threads and the plurality of vertex command threads.

191. The second “for” loop in the Arbiter::chooseTexStation() function
iterates through the vertexStation entries, beginning at the top of the array, and
selects a candidate vertex command thread (if any such thread is present) from a
location in the vertexStation. The selection is based on the variety of status tests.

The code for selecting the vertex command thread is replicated below:

lineCheck = vertexHead;
for (i=0;i<vertexRsCount;i++)
{
if (vertexStation[lineCheck].status.valid !I= 0 &&
vertexStation[lineCheck].status. ressourceNeeded == ALU
&&lvertexStation[lineCheck].status.event)
{
// no allocation needed
if (vertexStation[lineCheck].status.allocation ==
SQ NO ALLOC)
{
vertexPick = IlineCheck;
}
// we need to make sure there is space in the
appropriate buffer
else
{
if (vertexStation[lineCheck].status.allocation ==
SO MEMORY)
{
if
((vertexStation[lineCheck].status.allocationSize+l <= sqg->pSX SO-
>GetExportBuffer()/4)
&& sg->pSX S0->GetValid())

-91 -

AMD1044_0010527

ATI Ex. 2002
IPR2023-00922
Page 94 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

{
vertexPick = lineCheck;
}
}
else 1f
(vertexStation[lineCheck].status.allocation == S$Q PARAMETER PIXEL)
{

// determine if there is space in the PCs
for an eventual PC export

pcSpace =
checkPC ((vertexStation[lineCheck].status.allocationSize+1)*4) ;
if (pcSpace)

{
vertexPick = lineCheck;
}
}
else if
(vertexStation[lineCheck].status.allocation == SQ POSITION
&& sqg->pSX SQ->GetPositionReady() && sg-
>pSX S0->GetValid())
{
// make sure every older threads have their
position allocated
bool alloc done = true;
int alloc line = vertexHead;
while (lineCheck != alloc line)
{
if
(vertexStationfalloc line].status.posAllocated == false)
{
alloc done = falsey;
break;
}

alloc line =
(alloc line+1)$MAX VTX RESERVATION SIZE;

/

if (alloc done)

{

vertexPick = lineCheck;
}
/

}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation/[vertexPick].status.serial &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// if last is set we can only pick the two
oldests threads

-92 .

AMD1044_0010528

ATI Ex. 2002
IPR2023-00922
Page 95 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

else 1f (vertexStation/[vertexPick].status.last &&
I (vertexPick==vertexHead ||
vertexPick==((Vertexﬂead—l)%MAX_VTX_RESERVATION;SIZE)))
vertexPick = -1;
// cannot pick last if texture reads are

outstanding
else 1f (vertexStation/[vertexPick].status.last &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;
// can only pick the second to old if the

I
|t
[»]
[0}
o

is already running
else 1f (vertexStation/[vertexPick].status.last &&

!vertexStation[vertexHead].status.valid)

{
if (vertexStation/[vertexPick].status.first)
vertexPick = -1;
else
{
predon = false;
break;
}
}
else
break;

}
}// endif vertex

lineCheck = (lineCheck+l)%MAX_VTX;RESERVATION_SIZE;
}// end for loop

(arbiter.cpp, 56:11-60:1.)

192. By traversing the vertexStation entries after the pixelStation entries
and selecting a candidate vertex command thread based on different status
conditions, the R400 Emulator Code describes an arbiter operable to select a vertex
command thread from the plurality of vertex command threads based on the
relative priorities of the plurality of pixel command threads and the plurality of

vertex command threads.

AMD1044_0010529

ATI Ex. 2002

IPR2023-00922
Page 96 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

193. Once the Arbiter::chooseAluStation(...) function chooses the pixel
command thread from the pixelStation and the vertex command thread from the
vertexStation, the Arbiter::chooseAluStation(...) function selects a command
thread from the selected pixel command thread and the selected vertex command
thread, with the vertex command thread having priority over the pixel command
thread. That is, if a vertex command thread exists, the vertex command thread is
selected and becomes the claimed command thread. Otherwise, the pixel command
thread is selected and becomes the claimed command thread. (arbiter.cpp, 60:3-
65:25.) The excerpts of code that demonstrate this are replicated below at
arbiter.cpp, 60:3-60-8 and 63:12-15, and the code 1n its entirety can be found in

arbiter.cpp, 60:3-65:25:

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick != -1)

{
lineNumber = vertexPick;
sType = VERTEX;

if (pixelPick != -1)
{

lineNumber = pixelPick;
sType = PIXEL;

}

194. Once Arbiter::chooseAluStation(...) selects a command thread, the

Arbiter::chooseAluStation(..) function returns a boolean variable which indicates
94 -

AMD1044_0010530

ATI Ex. 2002
IPR2023-00922
Page 97 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

whether the command thread was selected. The Arbiter::chooseAluStation(...)
function also returns 1) a type of the selected command thread — a vertex command
thread or a pixel command thread, which is stored in variable s7ype, and 2) a
location of the command thread in the vertexStation or pixelStation arrays stored in

the variable /ineNumber. (arbiter.cpp, 53:24-25.)

195. If the Arbiter::chooseAluStation(...) function indicates that a
command thread was found, the Arbiter: :runAlu(...) function uses the
Arbiter::popStationVector(...) function to select the command thread from either

vertexStation or pixelStation, as shown below:

int lineNumber;
Shader Type stype;
ReservationStation* aluStationData;
found=chooseAluStation (1ineNumber,stype,otherAluRunning,otherCFMachine
,predToggle) ;
if (found)
{
aluRunning = true;
popStationVector (aluStationData,lineNumber,stype)

(arbiter.cpp, 17:7-18-2.)
196. As 1 explain above, the Arbiter::popStationVector(...) function passes
a single ReservationStation structure (called a/uStationData), the line number
location of the selected command thread in the vertexStation or pixelStation array

called texLineNumber, and the type (vertex or pixel) of the command thread called

-95.

AMD1044_0010531

ATI Ex. 2002
IPR2023-00922
Page 98 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

stype. The aluStationData variable is of type ReservationStation and stores the

memory address location of the selected command thread.

197. The Arbiter::popStationVector() function removes the selected
command thread from either a vertexStation or a pixelStation entry (based on the
stype variable) and stores the removed command thread in the ReservationStation

structure called aluStationData.

198. In this way, the R400 Emulator Code describes another arbiter
operable to select a command thread from either of the plurality of pixel command
threads and the plurality of vertex command threads based on relative priorities of
the plurality of pixel command threads and the plurality of vertex command

threads.

2. Claim 2
a. The Preamble

199. Claim 2 recites the graphics-processing system of claim 1, further

comprising “a command processing engine, coupled to the arbiter.”

200. The sq alu.h and sq alu.cpp files define an ALU processing engine
and create an object of type SO ALU. The ALU processing engine is a command

processing engine.

-96 -

AMD1044_0010532

ATI Ex. 2002
IPR2023-00922
Page 99 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

201. This ALU processing engine object 1s a component of the
cUSER BLOCK SQ class identified above as the sequencer class. For example, in
the user_block mode.h file, the cUSER BLOCK SQ class defines an ALU
processing engine using a static sqA/u object definition, as shown in the code

below:

// the ALU
SQ ALU sqAlu;

(user_block model h, Exhibit 2089,11:6-7.)
202. This means that when an object in the cUSER BLOCK SQ class is

created, the SO ALU object, such as, sqA/u is also created.

203. The sqAlu object defined in the cUSER BLOCK SO class is a public
variable, which means that other objects, such as an arbiter, can access the ALU
processing engine. The arbiter in the Arbiter::runAlu(...) function, for example,
accesses the ALU processing engine defined in the cUSER BLOCK SQ object

with a call to the sqA/u. Execute(...) function, as illustrated below:

sg->sgAlu.Execute (sg->regFile[aluPhase] ,sqg->outBuffer, sg-
>constantStore[currentCFMachine. stationData->data.state],
srcAAddr,srcBAddr, srcCAddr,srcCRegPtr,dstAddr,scalarDstAddr, inst,
currentCFMachine. stationData->data.valids[aluPhase], aluPhase,sqg-
>pSQ SP, currentCFMachine.sType, & (currentCFMachine.stationData-
>data.predicates[aluPhase*16]), sg,AlulD);

(arbiter.cpp, 21:26-23:9.)

-97.

AMD1044_0010533

ATI Ex. 2002
IPR2023-00922
Page 100 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

204. Since the ALU processing engine may be invoked by a function
defined in the Arbiter class, the R400 Emulator Code shows that the ALU
processing engine (which is a command processing engine) is coupled to the

arbiter.

205. Below, I have provided a figure that represents how the command
processing engine is coupled to the arbiter. The figure includes components as they
are instantiated in the C++ source code and with the structures and/or classes that

define the components:

Sequencer

class cUSER BLOCK 5Q
{user block model.h)

/ \

AN
Arbiter ALU Processing Engine
arbiter SgALY
{(user block model.h) {user_block _model.h}
class Arbiter class 5Q ALU
{arbiter. h) (sq_alu.h)

-08 -

AMD1044_0010534

ATI Ex. 2002
IPR2023-00922
Page 101 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

b. The Arbiter is Operable to Provide a Command
Thread to the Command Processing Engine

206. Claim 2 also recites “wherein the arbiter is further operable to

provide the command thread to the command processing engine.”

207. When the arbiter uses the Arbiter::popStationVector() function to
select a command thread that 1s accessed via aluStationData, the arbiter stores the
command thread in a control flow machine object called currentCFMachine, as

shown using the R400 Emulator Code below:

currentCFMachine.init (sq,aluStationData,stype, lineNumber,position, NULL
);
(arbiter.cpp, 17:18.)

208. The arbiter then sets the instruction address of the command thread

from the command thread’s context in aluStationData using the statement below:

stop = currentCFMachine.getNextInstruction(alulnstruction,nop,last);,

(arbiter.cpp, 18:19.)

209. When the command processing engine is ready to execute the
command thread’s instruction, the arbiter retrieves the instruction from the

instruction memory, using the statement below:

sg->instructionStore.GetInst (inst,alulnstruction);

(arbiter.cpp, 18:19.)

-99 .

AMD1044_0010535

ATI Ex. 2002
IPR2023-00922
Page 102 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

210. Next, the arbiter uses the GPRAddressCompute function to calculate
the addresses in memory required for the command processing engine to process

the command thread, using the statement below:

GPRAddressCompute (currentCFMachine. stationData-
>data.gprBase,inst,currentCFMachine, srcAAddr,
srcBAddr ,srcCAddr ,dstAddr ,scalarDstAddr)

(arbiter.cpp, 21:22-24.)

211. Next, the arbiter invokes the ALU processing engine to process the

command thread’s instruction, using the statement below:

sqg->sgAlu.Execute (sq->regFilef[aluPhase] ,sg->outBuffer, sqg-
>constantStore[currentCFMachine. stationData->data. state],
srcAAddr, srcBAddr, srcCAddr,dstAddr, scalarDstAddr, inst,
currentCFMachine. stationData->data.valids[aluPhase], aluPhase,sqg-
>pSQ SP, currentCFMachine.sType,& (currentCFMachine.stationData-
>data .predicates[aluPhase*16][0]), sqg);

(arbiter.cpp, 21:26-22:9.)
212. The SQ ALU::Execute(...) function is included in the SO ALU class

and, when invoked by the sq4/u object by way of the arbiter, processes the
command thread’s instruction. (sq_alu.cpp, 2:9-7:24.) In particular, the
SO ALU::Execute(...) invokes the SO ALU:: ExecuteAlulnstruction(...) function at

page 7, line 20 (7:20) which executes the command thread’s instruction.

213. As such, the R400 Emulator Code recites an arbiter operable to

provide the command thread to the command processing engine.

- 100 -

AMD1044_0010536

ATI Ex. 2002
IPR2023-00922
Page 103 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

3. Claim 5

214. The preamble of claim 5 recites “4 graphics processing system,”
discussed above in my analysis of claim 1 in Section VIL.B. 1. This is present in

the R400 Emulation Code for the same reasons as explained previously.

215. The first limitation of claim 5 recites “at least one memory device
comprising a first portion operative to store a plurality of pixel command threads
and a second portion operative to store a plurality of vertex command threads,”
discussed above in my analysis of claim 1 in Section VII.B.1. This is present in the

R400 Emulation Code for the same reasons as explained previously.

216. The second limitation of claim 5 recites “an arbiter, coupled to the at

a

least one memory device,” which I discussed above in my analysis of claim 1 in
Section VIL.B.1. This is present in the R400 Emulation Code for the same reasons

as explained previously.

217. The arbiter of claim 5 is “operable to select a command thread from
either of the plurality of pixel command threads and the plurality of vertex
command threads.” The prior discussion explains my analysis of how the arbiter
selects a command thread in claim 1 in Section VIL.B.1. This is present in the R400

Emulation Code for the same reasons as explained previously.

- 101 -

AMD1044_0010537

ATI Ex. 2002
IPR2023-00922
Page 104 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

218. The third limitation of claim 5 recites “a plurality of command
processing engines, coupled to the arbiter, each operable to receive and process
the command thread.” As discussed in my analysis for claim 2 in Section VIL.B.2,
the R400 Emulator Code describes the ALU processing engine which 1s a
command processing engine. The ALU processing engine exists in the sqgA/u
object which receives the command thread’s instruction(s). Also, the R400
Emulator Code describes a texture processing engine which is a command

processing engine.

219. TIhave also provided a figure that represents the coupling between the
arbiter and the ALU processing engine and the texture processing engine. The
figure includes components as they are instantiated in the R400 Emulator Code and

also the structures and/or classes that define the components:

-102 -

AMD1044_0010538

ATI Ex. 2002

IPR2023-00922
Page 105 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

SQ_TP Interface
Sequencer
psQ TP
(usexr block model.h)

class eUSER BLOCK 5()

tusexr block model.h) class 80 TP
(sq tp.h)
/ - <
/ h
_ \ N
/ \ | —
/ \\ Texture Pracessing Engine
a‘\
3, mTE
Arbiter ALY Processing Engine {user block model.h)
arvbiter SgALU class TexturePipe
{usexr block model.h} (user block model.h) {tp.hj
alass Arlbiter elass S0 ALD class cUSER BLOCK TP
{arbiter.h) {sg_alw.h) {user blmmkmmmdﬁiih}

220. With respect to the ALU processing engine, the sq4/u object is of type
SO ALU. The sqAlu object receives and processes the command thread’s
instruction(s) using two functions, the SO ALU::Execute(...) function (sq_alu.cpp,
2:9-7:24) and the SO ALU::ExecuteAlulnstruction(...) function (sq_alu.cpp, 8:1-
36:1.) Each of the functions process the command thread’s instruction. The
SO ALU::Execute(...) calls the SO ALU::ExecuteAlulnstruction(...) function as

replicated below:

switch (VectorIndex)

{

case 0:
SPData.Instruction = Instruction.SrcASel +

(Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle <<

4) +

AMD1044_0010539

ATI Ex. 2002
IPR2023-00922
Page 106 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

((Instruction.VectorResultPointer&Ox3F)<<12};
break;
case 1:
SPData.Instruction = Instruction.SrcBSel +
(Instruction. SourceBNegate << 2) +
(Instruction.SourceBSwizzle <<
4) +

((Instruction.ScalarResultPointer&0x3F)<<12);
break;
case 2:
SPData.Instruction = Instruction.SrcCSel +
(Instruction. SourceCNegate << 2) +
(Instruction.SourceCSwizzle <<
4);
break;
case 3:
SPData.Instruction = Instruction.VectorOpcode +
(Instruction.ScalarOpcode << 5)+
(Instruction.VectorClamp << 11
+ (Instruction.ScalarClamp << 12)+
(Instruction.VectorWriteMask <<
13) + (Instruction.ScalarWriteMask << 17);
break;
}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue (constant [VectorIindex] ,SrcAAddr) ;

else 1f (Instruction.SrcBSel)
Constants.GetConstValue (constant [VectorIndex] ,SrcBAddr) ;

else 1f (Instruction.SrcCSel)
Constants.GetConstValue (constant [VectorIndex] ,SrcCAddr) ;

for (i=0;3i<4;i++)
PMasks[VectorIndex] [i] = valids[i];

switch (VectorIndex)

{

case 0: // interpolator and SRC A
CMask [VectorIindex] = 127-SrcAAddr;
RAddr [VectorIndex] SrcAAddr;
WAddr [VectorIndex] = 126-SrcAAddr;
REn[VectorIndex] = true;
WEn [VectorIndex] = false;
break;

case 1: //TX and SRC B

CMask [VectorIndex] = 125-SrcBAddr;

RAdJdr [VectorIindex] = SrcBAddr;

WAddr [VectorIndex] = 124-SrcBAddr;
REn [VectorIndex] = true;
- 104 -

AMD1044_0010540

ATI Ex. 2002

IPR2023-00922
Page 107 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

WEn [Vectorindex] = false;
break;
case 2: // Vector and SRC C
CMask [VectorIndex] = Instruction.VectorWriteMask;
RAddr [VectorIndex] = SrcCAddr;
REn[VectorIndex] = false; // no tree operands for now
// 1f exporting
if (((Instruction.VectorResultPointer & 0x80) != 0) &&
(Instruction. PredicateSelect < 2)) |
WAddr [VectorIndex] = Instruction.VectorResultPointer & Ox3F;
WEn [VectorIndex] = false;
}
else {

WAddr [VectorIndex] = DestAddr;
WEn [VectorIndex] = true;
}
break;
case 3: // Scalar and TX

CMask [VectorIndex] = Instruction.ScalarWriteMask;

RAddr [VectorIndex] = 123-ScalarDestAddr;

REn[VectorIndex] = false;
// 1f exporting

if (((Instruction.ScalarResultPointer & 0x80) != 0) &&

(Instruction. PredicateSelect < 2)) |
WAddr [VectorIndex] =
WEn [VectorIndex] = false;

}
J*
else |
WAddr [VectorIndex] = ScalarDestAddr;
WEn [VectorIndex] = true;
}*/ // No scalar ops for now...
break;

pSQ SP->SetAll (&SPData);
pSQ Sp->Setvalid(true);

// Real Emulator code
CurrentRegFile = Reg;,
OutputBuffer = gExportBuffer;

CurrentAlulInstruction = Instruction;

AluPhase = VectorIndex;
AluType = currentAluType;
Predicates = & (pred[0]);
validBits= &(valids[0]);

Instruction.ScalarResultPointer & Ox3F;

ExecuteAlulnstruction (SrcAAddr,SrcBAddr, SrcCAddr ,DestAddr,ScalarD

estAddr ,VectorIlndex,Constants);

- 105 -

(sq_alu.cpp,4:2-6:21.)

AMD1044_0010541

ATI Ex. 2002
IPR2023-00922
Page 108 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

221. The Emulator Code also includes a texture processing engine defined
in the class called TexturePipe. (tp.h, tp.cpp.) The TexturePipe generates a
TexturePipe object called m7P, which is a texture processing engine.
(user_block model.h, Exhibit 2104, 3:12.) The class which instantiates an m7P
object is called cUSER BLOCK TP, and is defined in user_block model.h. The
cUSER BLOCK TP also instantiates an interface between the arbiter (described
above) and the m7P, the texture processing engine, called mSQ TP of type SO TP.

(user_block model h, Exhibit 2104, 3:11.) The SQ TP class is defined in sq_tp.h.

222. As described above for claims 1 and 2 in Sections VIL.B.1 and
VII.B.2, when the arbiter selects a command thread for the texture processing
engine in the Arbiter:: Execute() function, the arbiter stores the address of the
selected command thread in fexStationData. (arbiter.cpp, 11:15.) The arbiter then
stores the command thread in a control flow machine object called

textureCFMachine, as shown below:

textureCFMachine.init (sq,texStationData, texType, texLineNumber, NULL) ;
(arbiter.cpp, 11:18.)
223. When the command processing engine is ready to execute the
command thread’s instruction(s), the arbiter retrieves the instruction(s) from the
instruction memory and stores the location of the texture instruction in

texturelnstruction, using the statement below:

- 106 -

AMD1044_0010542

ATI Ex. 2002
IPR2023-00922
Page 109 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

stop =
textureCrMachine. getNextInstruction (texturelnstruction,nop,last);

(arbiter.cpp, 11:16.)

224. Next, the arbiter invokes an Arbiter::fillTexturelnterface(...) function

using the statement below:

fillTexturelnterface (texturelnstruction,texturePhase,stop);

(arbiter.cpp, 13:22))

225. The Arbiter: fillTexturelnterface(...) function retrieves the command
thread’s instruction(s) from the instruction store using texturelnstruction and stores
the command thread’s instruction(s) in the 7/nstrPacked object called instr, in the

statement below:

sg->instructionStore.GetInst (inst,texturelInstAddr) ;

(arbiter.cpp, 41:5.)
226. Next, Arbiter::fillTexturelnterface(...) provides the instruction to the

arbiter-texture pipeline interface object pSQO TP, using the statement below:

sg->pSQ TP->SetSQ TP instr(inst);

(arbiter.cpp, 45:1.)

- 107 -

AMD1044_0010543

ATI Ex. 2002
IPR2023-00922
Page 110 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

227. Here, pSQ TP is an interface that transfers the instruction(s) between

the sequencer and the texture processing engine. The object pSQO 7P is defined in

sq_tp.h

228. On the texture processing engine side, when the cUSER BLOCK TP
object executes the cUSER BLOCK TP::Main() function, the
cUSER BLOCK TP::Main() fetches, processes and outputs the command thread’s
instruction set with the Arbiter: :fillTexturelnterface() function. For example,
cUSER BLOCK TP::Main() includes three functions: Fetch(), Process(), and
Output(). The cUSER BLOCK TP::Fetch() function retrieves the instruction,

using the statement below:

void cUSER BLOCK TP::Fetch(void)
{

//Copy the interface data
mSQ TP->GetAll(&mSQ TP data);

(tp_block model.cpp, 2:23-3:6.)
229. Once the cUSER BLOCK TP object retrieves the command thread’s
instruction(s) as mSQ TP data, the cUSER BLOCK TP::Process() function
causes the texture processing engine, called m7P, to process the command thread’s

instruction(s) using the statement below:

void cUSER BLOCK TP:: Process(void)
{

mTP->process (mSQ TP data, mTP SO data);

- 108 -

AMD1044_0010544

ATI Ex. 2002
IPR2023-00922
Page 111 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

(tp_block model.cpp, 3:8-3:26.)

230. The texture processing engine then processes the command thread’s
instruction(s) using the TexturePipe::process(...) function. (tp.cpp, 6:3-8:11.) In
particular, the TexturePipe::process(...) function stores the command thread’s
instruction using TexturePipe::init(...) function (tp.cpp, 6:7) and invokes the
TexturePipe: Run() function which processes the command thread’s instruction(s),

as replicated below:

void
TexturePipe::run
(void)
{
switch(mInstrPacked->getOPCODE ())
{
case TInstr::Opcode FetchVertex:
VF DoSubVector();
break;
case TInstr::Opcode FetchTextureMap:
TF DoSubVector();

break;
default:
cerr << '"Unsupported OPCODE: " << mInstrPacked->getOPCODE () <<
endl;
break;

}

(tp.cpp, 11:2-11:18.)
231. The ALU processing engine and the texture processing engine
included in the R400 Emulator Code are a plurality of command processing

engines coupled to the arbiter. As described above, each of the ALU processing

- 109 -

AMD1044_0010545

ATI Ex. 2002
IPR2023-00922
Page 112 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

engine and the texture processing engine is operable to receive and process the

command thread.

4. Claim 6

232. Claim 6 recites the “graphics processing system of claim 5, wherein
the plurality of command processing engines comprises at least one arithmetic
logic unit.” In my analysis of claim 5 in Section VIL.B.3, I have explained that the

processing engine comprises at least one ALU unit.

5. Claim 7

233. Claim 7 recites the “graphics processing system of claim 5, wherein
the plurality of command processing engines comprises at least one texture
processing engine.” In my analysis of claim 5 in Section VII.B.3, I have explained

that the processing engine comprises at least one texture processing engine.

VIII. The Claims of the 053 Patent Are Supported by the Priority Document

234. T understand that a specification must contain a written description of
the invention. I also understand that the purpose of this requirement is to satisfy the
inventor’s obligation to disclose to the public the technologic knowledge upon
which the patent is based, and also to demonstrate that the inventor was in

possession of the claimed invention.

- 110 -

AMD1044_0010546

ATI Ex. 2002
IPR2023-00922
Page 113 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

235. Tunderstand that a priority document to which a patent claims

priority, can be used to satisfy the written description requirement.

236. 1have examined the specification and figures of the *761 Application
— the priority document. The *761 Application was filed on September 29, 2003. I
understand the 053 patent claims priority to the 761 Application, because, U.S.
Patent Application No. 11/764,453 from which the 053 patent issued, is a

continuation of the 761 Application.

237. Based on my examination of the 761 Application, I have generated a

claim chart which demonstrates that claims 1, 2, 5, 6, and 7 are supported by the

761 Application.

 Support for the 03 Patent Claims in U.S. Patent Application No. 10/673,761

s

1. A“graphics “The kpresent invention relates generally to graphics

processing system processing.” (Ex. 2008, 9 1.)

comprising . . o .
Generally, the present invention includes a multi-thread

graphics processing system.” (/d. at § 14.)

“[TThe present invention allows for multi-thread command

processing effectively using designated reservation station,

- 111 -

AMD1044_0010547

ATI Ex. 2002

IPR2023-00922
Page 114 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

in conjunction with the arbiter, for the improved
processing of multiple command threads. The present
invention further provides for the effective utilization of
the ALU and the graphics processing engine, such as the
texture engine, for performing operations for both pixel
command threads and vertex command threads, thereby
improving graphics rendering and improving command

thread processing flexibility.” (/d. at § 38.)

“The present invention includes a multi-thread graphics

processing system.” (/d. at Abstract.)

la. at least one “Generally, the present invention includes a multi-thread
memory device graphics processing system and method thereof including a
comprising a first reservation station having a plurality of command threads

portion operative to stored therein. A reservation station may be any type of
store a plurality of memory device capable of reserving and storing command
pixel command threads. Furthermore, a command thread is a sequence of
threads and a second | commands applicable to the corresponding element, such
portion operative to as pixel command thread relative to processing of pixel

store a plurality of elements and a vertex command thread relative to vertex

-112 -

AMD1044_0010548

ATI Ex. 2002
IPR2023-00922
Page 115 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

vertex command

threads; and

processing commands.” (/d. at 9 14.)

“FIG. 2 illustrates a schematic block diagram of a multi-
thread processing system, in accordance with one

embodiment of the present invention.” (/d. at § 8.)

RESERVATION 208
CRAPHIE EMD 1 _,Jj:’:;)
GRAPHICCMDZ |f
* 202
L
_}‘2)) 218
SRAPHICEHD N WITH STATUS UPDATE /7

6
[————C——-——¢ ARBITER -
214

R W L0E

‘W CORMANE
PROCESSING
ENGINE

FiG. 2 ierarrics) §(1d. at F1G. 2.)

“The system 200 includes a reservation station 202.” (/d.
at 9416.) “The reservation station includes a plurality of
command threads 208, 210 and 212.” (/d) “In one
embodiment, the command threads 208-212 are graphic

command threads” (/d.)

“FIG. 4 illustrates a schematic block diagram of a multi-
thread command processing system in accordance with

one embodiment.” (/d. at 9 10.)

AMD1044_0010549

ATI Ex. 2002

IPR2023-00922
Page 116 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

iz 311
CLIANMEE THIERL COAMANL, THBESD
b
FIRET SEGOND
RESERATION RESERVATION)
STATION -) STATION M
(POELY W EATER)
114 3
£ m‘{
A
| - 324 3, I
L
a0
4 ARBITER
e) T I JEB,
[) -
JR— GRAPHICE |10
|| o S
i ENBINE
w (TEXTURE)
FiG. 4

(Id. at FIG. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread
command processing system 300 having a first reservation
station 304 [and] a second reservation station 304.” (/d. at
9 21.) “In this embodiment, 302 is a pixel reservation
station such that the command threads 312, 314 and 316
contain pixel-based commands therein. Furthermore, in
this embodiment the second reservation 304 a vertex
reservation station i1s directed towards vertex command
threads illustrated as command threads 318, 320 and 322.”

(Id. at 1 21))

“One embodiment, each command thread within the

reservation station 302 and 304 may be stored across two

-114 -

AMD1044_0010550

ATI Ex. 2002
IPR2023-00922
Page 117 of 181

Case [IPR2015-00325 of
U.S. Patent No. 7,742,053

physical pieces of memory.” (/d. at § 26.)

“FIG. 6 illustrates a flow chart for a method of multi-
thread command processing in accordance with one
embodiment.” (/d. at § 31.) “The method begins, step 400,
by retrieving a selected command thread from a plurality
of first command threads and a plurality of second

command threads, step 402.” (/d.)

Retrigving & selected command

thread from o plurality of firsst |)

command threads and a pluralifty of
second command thraads

!

Froviding the selected command | 404
thresd to 8 graphics processing
ey

:

Parforming a command in responss | J
o the selected command thread

!
WWiriting the selected command

thiread to & first reservation station i

the selected command thread i
onve of the plurality of first command | 408
threads and the selected command
io a second reservalion station if the
selected command thread is one of

e plurality of second command
thraads

A0

FIG. 6 (/d. at FIG. 6.)

-115-

AMD1044_0010551

ATI Ex. 2002

IPR2023-00922
Page 118 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“FIG. 7 illustrates a flowchart of an alternative method for
multi-thread processing. “The second selected command
thread may be retrieved from either a first reservation
station, such as reservation station 302 of FIG. 4 or a
second reservation station, such as reservation station 304

of FIG. 4.” (Id. at § 34.)

- 116 -

AMD1044_0010552

ATI Ex. 2002
IPR2023-00922
Page 119 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Fdruming o selected command e fiom o _fm
frharaliy of comvmand Sraady '

x
Proridiony tha nalpcied comesand e to s | 7
praphice provessing wegie
i * &
Partoering p corarngred i mesesnig Lo e jm
welsrhed commuand Wread
i ,
8 meend sekecind comand Tresd) 428
Heowss Uhhae pluralily of command thieads |
- * = v 434
Providing the second sommand thesd the | 4
graphics prongssing engie
T

Price to wriing e seloched oommed troed
i wlir thoa Tt WWWM mm L e | A%
smeord mearasian station, e b
weiwched comerand Swewd amd %@ m
sadnchal pameed twad

Wiy th sacord selcled commsnd Peeed
o @ lest reservation stetive I T suletied
comamignd thad @ gre of & planslity of Tisl
i thoeads and P second selsced | 418
cormeand thread io & second msemeson. |

statin f he seiond mmmj WM

iriting e welicied commard threed iz the
comtmand e i com ol The phoaisg ol g | 438
comad thoads and e sdacied comenand 1
Hrread b oth second resarelon slabisn @ e
sl eprivand iead Is o of Tha

FIG. 7 ({d. at FIG. 7.)

“The present invention includes . . . a reservation station
having a plurality of command threads stored therein.” /d.

at Abstract.)

1b. an arbiter,

“To improve the operating efficiency of a graphics

- 117 -

AMD1044_0010553

ATI Ex. 2002
IPR2023-00922
Page 120 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

coupled to the at least
one memory device,
operable to select a
command thread from
either of the plurality
of pixel command
threads and the
plurality of vertex
command threads
based on relative
priorities of the
plurality of pixel
command threads and
the plurality of vertex

command threads.

processing system, the control of the flow of the multiple

command threads is preferred.” (/d. at § 2.)

“The system and method further includes an arbiter
operably coupled to the reservation station such that the
arbiter retrieves a first command thread of the plurality of
command threads stored therein. The arbiter may be any
implementation of hardware, software or combination
thereof such that the arbiter receives the command thread.”

(Id. at § 14.)

“FIG. 2 illustrates a schematic block diagram of a multi-

thread processing system, in accordance with one

embodiment of the present invention.” (/d. at § 8.)

RESERWVATION

. 208 m},
GRAPHIC CMEx 1 _}m -
e i
* a0
_j“’* - e 18
SRR B R WTH BTATUS UPDATE 7
216
ARBITER i
4
[T
CORMAND
PROCESEING

EMGIHE

G, 2 (GRARHICS)

(Id. at FIG. 2.)

“The system 200 includes . . . an arbiter 204.” (/d. at 16.)

-118 -

AMD1044_0010554

ATI Ex. 2002

IPR2023-00922
Page 121 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“The arbiter 204 retrieves a command thread via

connection 214.” (/d.)

“In one embodiment, the arbiter 204 retrieves the
command threads 208-212 based on a priority scheme. For
example, the priority may be based on specific commands
that have been executed within a command thread or
specific commands which are to be executed within a
command for the effective utilization of the arbiter 204
and the command processing engine 206. In an alternative
embodiment, the arbiter 204 may always retrieve the
oldest available thread.” (/d. at § 18.) “[I]n one
embodiment the reservation station 202 operates similar to

a first in first out (FIFO) memory device.” (/d. at § 16.)

“The ALU arbitration logic chooses one of the pending
ALU clauses to be executed. The arbiter selects the
command thread by looking at the reservation stations,
herein vertex and pixel reservation stations, and picking

the first command thread ready to execute.” (/d. at 9 20.)

-119 -

AMD1044_0010555

ATI Ex. 2002
IPR2023-00922
Page 122 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“FIG. 4 illustrates a schematic block diagram of a multi-
thread command processing system in accordance with

one embodiment.” (/d. at § 10.)

— 32 EST .
COBARAND THRESD COMMARG, THREND |
o
FIRST SECOND
RESERVATICN RESERVATION
M STATION - STATION *
(PIREL) ot (VERTER)
44 £
(i 5
k it 32
o B4
: 8y]
1L
a0
M SRBITER
Ex 1 a2
i -t |)
FTHME GRAPHICE |3W
ARITHMENIC |a0a
b LG UNT P ngwﬁfgm
(ALY ey e
wt [TEXTURE}
FIG.4 (Id. at F1G. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread
command processing system 300 having . . . an arbiter
306.” (Id. at § 21.) “In this embodiment, the arbiter 306
selectively retrieves either a pixel command thread, such
as command thread 316, or a vertex command thread, such
as command thread 322.” (/d. at § 22.) “[T]he arbiter 306,
which may be implemented as arbitration logic executed

on a processing device, selects one thread for the graphics

- 120 -

AMD1044_0010556

ATI Ex. 2002
IPR2023-00922
Page 123 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

processing engine 310 and one thread for the ALU 308.”

(Id. at §23.)

“With respect to FIG. 4, a pixel command thread 324 may
be retrieved by the arbiter 306 and a vertex command

thread 326 may also be retrieved.” (/d. at 24.)

“[TThe arbiter 306 selects the proper allocation of which
command thread goes to the graphics processing agent 310
in [sic] which command thread goes to the ALU 308.” (/d.

at929)

“FIG. 6 illustrates a flow chart for a method of multi-
thread command processing in accordance with one
embodiment.” (/d. at 9 31.) “The method begins, step 400,
by retrieving a selected command thread from a plurality
of first command threads and a plurality of second
command threads, step 402. For example, as discussed
above with regard to FIG. 4, the selected command thread

may be retrieved by the arbiter 306.” (/d.)

- 121 -

AMD1044_0010557

ATI Ex. 2002
IPR2023-00922
Page 124 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Ratieving a selected cormmand
thread from a plurality of fest

| command threads and a plurality of

‘ segond command threads

| !

- Providing the selected command | 404

| fhread o 8 graphics processing

f BT

L 4

Perorming a command in responss |
fo the selected command thread

!

Wiriting the selected command
fhread to a first reservation station i

the sslscied command thread i
one of the plursiity of first command | 408
threads and the selected command |
o a sacond resereation station if the
selacted command thread is one of

{he plurality of second command
ihraads

FIG. & (/d. at FIG. 6.)

“FIG. 7 illustrates a flowchart of an alternative method for
multi-thread processing. The method begins, step 420, by
retrieving a selected command thread from a plurality of
command threads, step 422.” (/d. at § 33.) “[S]tep 428, is
retrieving a second command thread from the plurality of

command threads.” (/d. at § 34.) “The second selected

-122 -

AMD1044_0010558

ATI Ex. 2002
IPR2023-00922
Page 125 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command thread may be retrieved from either a first
reservation station, such as reservation station 302 of FIG.
4 or a second reservation station, such as reservation

station 304 of FIG. 4.” (Id.)

meummmwm triem @ | 331
ity of essemand Srpaty ’
* -
Fragriidivg thi selicid cormmand ead loa |4
wmmeww
435
M@@mamﬁsnﬂmmﬂmmwﬁ 4
welected command read
2 438
mmnmmmmommmm
mimwmarwmmwwﬁ
L] 430
Mmmmmvmmm‘lmmmu F

graphiss processing ergir

4
Bricr o witing Te sescied command hraad
Yo ekl Ui Tl ropieiprera o el of i :;«w
st s raion glatien, inbarbeiaing e
wikatuy WWM U

nmnmmmmmmmmmm m’

Wmmﬁﬁm«ﬂwmrﬁﬂmu%ﬁﬁm
e Hoiad and e second seleted | o8
| ooeremand Sead o p seoond meseriaiion
 slaiion i s sslesied command
s b oo oF o plarily of mecansl
e
Shivitng T selecied command thresd 1ot
Tl rosimwsitinnt whation i T wiliching)
s hiesd i one ol the plocsiin of doa | 928
 commared thesds nnd fe seiazied somenand |
Hrorsimed o Hhos spzasred viasriaton statien @ tha
| wapbadd s end Uiand i pe of e
ety of sesond sommand hieads

\ $40

ERD

FIG. 7 (Id. at FIG. 7.)

-123 -

AMD1044_0010559

ATI Ex. 2002
IPR2023-00922
Page 126 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“The system . . . includes an arbiter operably coupled to
the reservation station, such that the arbiter retrieves a first

command thread.” (/d. at Abstract.)

2. The graphics
processing system of
claim 1, further
comprising: a
command processing
engine, coupled to the
arbiter, wherein the
arbiter 1s further
operable to provide
the command thread
to the command

processing engine.

“[T]he arbiter receives the command thread and thereupon
provides the command thread to a command processing
engine. The system and method further includes the
command processing engine coupled to receive the first
command thread from the arbiter such that the command
processor may perform at least one processing command
from the command thread. Whereupon, a command
processing engine provides the first command thread back

to the associated reservation station.” (/d. at § 14.)

“The command processing engine may be any suitable
engine as recognized by one having ordinary skill in the art
for processing commands, such as a texture engine, an
arithmetic logic unit, or any other suitable processing

engine.” (Id. at g 15.)

“FIG. 2 illustrates a schematic block diagram of a multi-

-124 -

AMD1044_0010560

ATI Ex. 2002

IPR2023-00922
Page 127 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

embodiment of the present invention.” (/d. at § 8.)

RESERWATION

“The system 200 includes . . . a command processing
engine 206.” (/d. at § 16.) “The arbiter 204 . . . provides
the retrieved command thread to the command processing
engine 206, such as a graphics processing engine via

connection 216.” (/d.)

“FIG. 4 illustrates a schematic block diagram of a multi-
thread command processing system in accordance with

one embodiment.” (/d. at 9 10.)

thread processing system, in accordance with one

- Zﬁﬂ}
GRAPHIC CMD 1 - 15 i
GRAPHIC CWD 2 ,j
* 202
* L
; nz . 28
SRS GO T WITH STATUS UPDATE ¢~
216
ARBITER {f"
214
i““*;’m) .
'&\ CORRRARIDY
PROCESSING
ENGINE
ro.2 ey | (7, at FIG. 2.)

- 125 -

AMD1044_0010561

ATI Ex. 2002
IPR2023-00922

Page 128 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

i &
UGN THRERL} AL THRERD |
e
FIRET SECONE
RESERVATHIN 5 RESERVSTION .
- ETATION . BTATION M
(POLEL) sy (VERTEN)
}}“M
i s
! g2 EE]
1 I
308/
ARBITER
-t] T SHL‘\
: t I
ARITHMETIE |3 GRAPHICE |20
L LOGIC UNIT PROCESING
- e EHGINE
) GINE
: o} (TEXTURE}
F.4 (Id. at FIG. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread
command processing system 300 having . . . an ALU 308

and a graphics processing engine 310.” (/d. at § 21.)

“Once a thread 1s selected by the arbiter 306, the thread is .
.. submitted to the appropriate execution unit 308 or 312.”

(Id. at 23

“The arbiter 306 then provides one thread 326, which may
be either 324 or 326 to the graphics processing engine 310,
such as a texture engine, and provides the other thread 330

to the ALU 308.” (Id. at § 24.)

“FIG. 6 illustrates a flow chart for a method of multi-

- 126 -

AMD1044_0010562

ATI Ex. 2002

IPR2023-00922
Page 129 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

thread command processing in accordance with one
embodiment.” (/d. at 31.) “[S]tep 404, is providing the
selected command thread to a graphics command
processing engine. As discussed above regarding FIG. 4,
the arbiter 306 provides the selected command thread to
the graphics processing engine 310, which, in one
embodiment may be a texture engine. In another
embodiment, the arbiter 306 may provide the selected

command thread to the ALU 308.” (/d.)

40

START

Retdeving a selected command
thead fror & plurality of fiest
cammand threads and & plurality of
sesond command thresds

¥

Providing the selected command | 404
thread o a graphics processing
Engire

'

Paerfarming & command in response j
b the selected comemand thread

t
Writiruy the selscted coemmand

thraad i a firgl reservation station if

the selacted command thread is
cne of the plurality of first command
threads and the selected command
fo @ second reservation station if the
selecied command thread is one of

the plurality of second command

threads

§

FIG. 6 (I/d. at FIG. 6.)

- 127 -

AMD1044_0010563

ATI Ex. 2002
IPR2023-00922
Page 130 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

FIG. 7 illustrates a flowchart of an alternative method for
multi-thread processing.” (Id. at 9§ 33.) “[S]tep 424, is
providing the selected command thread to a graphics
processing engine.” (/d.) “The method further includes
providing the second command thread to the graphics

processing engine, step 430.” (/d. at § 35.)

B iy . welnrsed s froom @ F*?
piuralily vl comvmand ihreads
P, e Balmotng cosmEnd eawlte g | 4
graphie proosesing e
) [T o
ﬂuﬂm E mmmmd i PO Lnr ﬂ'm

skt cormpmand Yeaad

.]]
Mm‘m A 73
Trot ths paraliey o sorsrng Hhrends
s % e 430
- Prowidrg the aecorsd comtind Soaid e P
wwgmmm;e;ﬂmﬁw

Lot the flest spgerention siation o the | 482
sesan sarvation statien, inseaing he 4

" stteting gerond command thigas

iriling he scond sulecind oomsnand hmed
Yo it reemrviatiion alation the welscied

vl v i ol i gl ol i

: il P A

i Wnnd 45 & spesnd meerElnn

tatitey I thwe wicnned seleched phmenand
oo i vrve- gl o plorsdity of sasand

caniitiid Feauii

Wiz W warleched commpng Brned 10 P
Hiryl rewsrvation slatien i th seleded)
ki Wsaadd b ne ol e gavall of feal | 908
m«l‘wlﬁ i i aigiined pimatention wiban i S
wlgeciad coosreand Duesd i ons-of e
elsslity of ewaomd wommaiad thsade

Fi.7 (Id. at FIG. 7.)

- 128 -

AMD1044_0010564

ATI Ex. 2002
IPR2023-00922
Page 131 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

“[TThe arbiter retrieves the command thread and thereupon
provides the command thread to a command processing

engine.” (/d. at Abstract.)

“The system . . . includes the command processing engine
coupled to receive the first command thread from the

arbiter.” (/d. at Abstract.)

5a. at least one
memory device
comprising a first
portion operative to
store a plurality of
pixel command
threads and a second
portion operative to
store a plurality of
vertex command

threads;

See Claim la (showing support for the same claim

language).

5b. an arbiter,

See Claim 1b (showing support for the same claim

- 129 -

AMD1044_0010565

ATI Ex. 2002
IPR2023-00922
Page 132 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

coupled to the at least
one memory device,
operable to select a
command thread from
either of the plurality
of pixel command
threads and the
plurality of vertex
command threads;

and

language).

5c¢. a plurality of
command processing
engines, coupled to
the arbiter, each
operable to receive
and process the

command thread.

“The system and method further includes the command
processing engine coupled to receive the first command
thread from the arbiter such that the command processor
may perform at least one processing command from the
command thread. Whereupon, a command processing
engine provides the first command thread back to the

associated reservation station.” (/d. at § 14.)

“The command processing engine may be any suitable

engine as recognized by one having ordinary skill in the art

AMD1044_0010566

ATI Ex. 2002
IPR2023-00922
Page 133 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

for processing commands, such as a texture engine, an
arithmetic logic unit, or any other suitable processing

engine.” (Id. at§ 15.)

“[In the FIG. 2 embodiment,] the command thread may be
provided to a further processing element (not illustrated)

within a graphics processing pipeline.” (/d. at 9 17.)

“FIG. 4 illustrates a schematic block diagram of a multi-
thread command processing system in accordance with

one embodiment.” (/d. at 9 10.)

312 38
LOBAANED_ THREAL CURMAKD, THREAD
Eirs
FIRST SECOND
RESERVATION | RESERVETION '
ETATION o '/ - ETATION
{ENEL) an [VERTER}
Fi4 E]
1 e
e e
i '
a0
M ARBITER
& T 32&\

) - y S "
. GRAPHICS |1
Pl el FROCESSING

. o ENGINE
(AL Lo
~ wgt (TEXTURE)
FIG.4 (Id. at FIG. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread

AMD1044_0010567

ATI Ex. 2002
IPR2023-00922
Page 134 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command processing system 300 having . . . an ALU 308

and a graphics processing engine 310.” (/d. at § 21.)

“Once a thread is selected by the arbiter 306, the thread is .
.. submitted to the appropriate execution unit 308 or 312.”
(Id. at § 23.) “Upon the execution of the associated
command of the command thread, the thread is thereupon
returned to the station 302 or 304 at the same storage
location with its status updated, once all possible

sequential instructions have been executed.” (/d.)

“Upon execution of the command, the ALU 308 then

returns the command thread.” (/d. at 4 25.)

“[TThe graphics processing engine 310 performs the

commands.” (/d. at 24.)

“FIG. 6 illustrates a flow chart for a method of multi-
thread command processing in accordance with one
embodiment of the present invention.” (/d. at § 31.) “The
method . . . includes performing a command in response to

the selected command thread, step 406.” “In this

AMD1044_0010568

ATI Ex. 2002
IPR2023-00922
Page 135 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

embodiment the command is performed by the graphics

processing engine 310.” (/d. at 9 32.)

Falrieving o selpcted comemand
- thread from s plurality of first
command threads and a plurality of
‘ segpnd command threads

| -
- Providing the selected command | 404
- thread o s graphics processing

i

L 4

Performing a command in responsa |
1o the selected command thread

Witing the selected command
theaad {0 8 first reservation station if
the selected command thread s
o of the plurality of first command | 408
threads and the selected command |
o a second reservation sition if the
selectad command thresd is one of
fhe plurality of second command
thireads

FIG. 6 (Id. at FIG. 6.)

“FIG. 7 illustrates a flowchart of an alternative method for
multi-thread processing.” (/d. at 9 33.) “[T]he method . . .

includes performing a command in response to the selected

AMD1044_0010569

ATI Ex. 2002
IPR2023-00922
Page 136 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

135)

dreum i plunsdity of coenmand Shimads

graphics procedsing engine
]

Firic o wiieng U ssecied command thiesd

slpntod command thisad

+)
PV B WRCER COPMTEANG 5 ERpares 1]
slecisg sueand command Bresd
&

mm s macisrsd seimcted pomemare thresd
e a firsd renaceation skalion e selected
g thrasd & one of 8 plursting of Timl

e thread o @ stoond fesbreation
sk if fha senanid wetecied command
s in. aea oF & plurally of sesand

wwmmmmmwwmwmm
firgd veparvation shtion i he selecied

e iheade. sesd i gelschad conrmnd b
e to e secand ressraalion stition ¥ the
selechad command thepad 5 oo of the

“The system . . .

piuraly of seond command Tisads

FIG.T

command thread, step 426.” (Id. at § 34.) “[T]he method
further includes performing a second command in

response to the selected command thread, step 434.” (/d. at

ﬂmmwwa P pu———y—
plurality of command threoads
i L. .
Prawidieg the selectsd command thesad toa |y
graghing processing sagine
B— a5
Partorming & command in resporacio the | F
sahented vormmiard heasd
+

¥
. L
Premicng thi weccndg sommmanc theasd tha m}m

Vo weituee e Tirw resarvation siebion or the | 432

448

ot Biredds and T sscond gelsied }Z’&

o threed s ove of the phaity of fest ;@

(Id. at FIG. 7.)

includes the command processing engine

AMD1044_0010570

ATI Ex. 2002
IPR2023-00922
Page 137 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

(/d. at Abstract.)

coupled to receive the first command thread from the
arbiter such that the command processor may perform at

least one processing command from the command thread.”

6. The graphics
processing system of
claim 5, wherein the
plurality of command
processing engines
comprises at least one

arithmetic logic unit.

See Claim 5c¢ (showing that the command processing

engines can comprise an arithmetic logic unit (“ALU”)).

7. The graphics
processing system of
claim 5, wherein the
plurality of command
processing engines
comprises at least one

texture processing

See Claim 5c (showing that the command processing

engines can comprise a texture engine).

AMD1044_0010571

ATI Ex. 2002

IPR2023-00922
Page 138 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

engine.

IX. CONCEPTION

238. It is my understanding that conception is a mental formulation and
disclosure by the inventor or inventors of a complete idea for a product or process.
I also understand that conception turns on the inventor’s ability to describe his or
her invention with particularity, and conception must be sufficiently complete so as

to enable the POSA to reduce the concept to practice.

239. Thave reviewed a document titled “R400 Top Level specification”
(Ex. 2041) and a document titled “Shader Processor” (Ex. 2042). I have also
reviewed both an August 24, 2001 revision and an April 19, 2002 revision of a
document titled “R400 Sequencer Specification” (Exs. 2010, 2042). Both revisions
of the R400 Sequencer Specification, especially when read in view of the R400
Top Level Specification and the Shader Processor specification, show possession
of a complete embodiment of the claimed subject matter. Although the R400 Top
Level Specification and the Shader Processor specification provide context, each
and every claim element are shown in the R400 Sequencer Specifications. Further,

the specification documents provide sufficient detail to enable the POSA to reduce

AMD1044_0010572

ATI Ex. 2002
IPR2023-00922
Page 139 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

the concept to practice. Reducing the concept to practice could require substantial

work, but would not require undue experimentation.

240. The following claim charts show that the inventors conceived of the

claimed subject matter at least by both revisions of the R400 Sequencer

Specification.

T R40OSEQUENCERSPECVERSIONOA

I Agaphics | The RA00 Sequencer Specification is an_architectural
processing system | specification for the R400°s sequencer block. Ex. 2010, p. 1.
comprising The R400 was a graphics-chip product, which was designed
to include a unified-processing pipe (i.e., a single
programmable pipeline for 2D video, 3D vertex, and 3D pixel

operations). See Ex. 2041, pp. 6, 7.

la. at least one At Least One Memorv Device

memory device The R400 Sequencer Specification describes reservation
comprising a first | Stations and an instruction store, which collectively are the

. . l . (44 . 2%
portion operative claimed “at least one memory device.

lurali .
o store a plurality Two sets of the sequencer control flow, reproduced below,

AMD1044_0010573

ATI Ex. 2002
IPR2023-00922
Page 140 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

of pixel command
threads and a
second portion
operative to store a
plurality of vertex
command threads;

and

with the reservation stations outlined in red, show sixteen
reservation stations for vertices and sixteen reservation
stations for pixels. See Ex. 2010, p. 5 (showing a figure and
stating that “[t]here are two sets of the . . . figure, one for
vertices and one for pixels”). Each set of reservation stations
store eight ALU clauses and eight texture clauses. See id., p. 4
(“The sequencer looks at all eight alu reservation stations to
choose an alu clause to execute and all eight texture stations

to choose a texture clause to execute.”), 5 (reservation stations

include clauses).

Pixel Reservation Stations Vertex Reservation Stations

[0} 5
[l Texmeeclase 0 | gl
- feservation station
[FIFO i
LU clause 0 <]
| eservation stat
-« ation station T
Texture clavse 1
G reservation staion
g A LU cliwse T fexture arbitrator
Feservation station o
exture arbitrator { Plrexture clause 2 >
eservation station
FIFO
iU ¥ e
reservation station S
T s [
reservation station
| FIFO | |
g ALU clause 3 Il
eservation station ——
»‘ FIFQ e B
| S— Texture clause 4
reservation station
FIFO |og
@ LU Cluse 4 D —
eservaiion sfaiion —
o FIFO | » B
I Texfure clause 5
i eservation station
g MLU clause 5 I
Feservation station
L R FIFO L)
| S Texfure clause 6
reservation station
| FIFO |
g MLU clise 6 e
eservation siation —
B Texfure clause 7
e reservation station
o PiUcmser ¥ [
eservation station

AMD1044_0010574

ATI Ex. 2002

IPR2023-00922
Page 141 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

FTIEC
Rxmﬁt lem.?ﬁnO)
reservation station
-t -FIFO -
ALU clause O -
& S ton station
HIFO g5

(Cexture clause 1

reservaton sanon

»~ -'F(FO -
- LT clause I - exture arbitrator
servation stal
) eservation staiion 7O
exture arbitrator [] Texture clavse 2
reservation sfation
FIFO |.g
LU clause 2 ‘—E
EsErV: i
eservation station 31a)
- [Texfure clavse 3
reservation station
FIFOQ
g FIFQ B B
- Texmure clavse 4
eservation station
FIFG
DI RO e Bkl

eservation staton
" —
Texture clavse

- ALT clause 3

eservation station

reservation station
TIFO
LU cluse 5 {70 |«
eservation station
FIEO Y

Texmure clause &
eservation staticn

- -FIFO o
a— LU clause 6 -

eservation station

FIFO -

Texture clavse. 7
TIFG
LU clause 7 -« 770 |«

reservation station
eservation station

Another memory device disclosed in the R400 Sequencer
Specification 1s an instruction store. See, e.g., Ex. 2010, pp.
11, 12. On the figures shown below, the instruction store is
outlined in red. This instruction store is loaded with
instructions. See id., pp. 12 (“[the instruction store] may
contain up to 2000 instructions of 96 bits each™), 17 (1), 18
(1) (loading pixel and vertex programs into the instruction

store).

AMD1044_0010575

ATI Ex. 2002

IPR2023-00922
Page 142 of 181

Case [PR2015-00325 of
U.S. Patent No. 7,742,053

7
| I |

Seeid.,p. 11.

Chansse # + Ry
wingge [T 1S SEQ CcsT i ieriadds
Loomn At
I PaRE
[oest |
H
M‘W CHD gary] A6 wm«cé
i i ¢ P PR
: ; i H | .
Bt | mez Wb
H £ H
& X H
]
o pod
T s P— OF
Wil o

See id., p. 12.

Accordingly, the combination of the reservation stations and

- 140 -

AMD1044_0010576

ATI Ex. 2002
IPR2023-00922
Page 143 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

instruction store is the claimed “at least one memory device.”

A First Portion Operative to Store Pixel Command
Threads and a Second Portion Operative to Store Vertex
Command Threads

The nstruction store includes storage for vertex instructions
and pixel instructions. See Ex. 2010, p. 4, 12 (“[t]here is going
to be only one instruction store for the whole chip™), 17-19
(using the term “global instruction store”). Since the
instruction store is used to store both pixel and vertex
command threads, the “first portion” of the claimed “at least
one memory device” is the combination of the pixel
reservation stations and the portion of the instruction store
where pixel instructions reside. The “second portion™ of the
claimed ““at least one memory device” is the combination of
the vertex reservation stations and the portion of the

instruction store where vertex instructions reside.

The first portion—the pixel reservation stations and the
corresponding portion of the instruction store—is operative to
store a plurality of pixel command threads as recited in the

’053 patent. According to the *053 patent’s specification, “a

-141 -

AMD1044_0010577

ATI Ex. 2002

IPR2023-00922
Page 144 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command thread is a sequence of commands applicable to the
corresponding element, such as [a] pixel command thread
relative to processing of pixel elements and a vertex
command thread relative to vertex processing commands.”
Ex. 1001, 2:41-45. A clause stored in a pixel reservation
station and its corresponding shader program stored in the
instruction store are a command thread as described in the
053 patent’s specification because the clause and the
corresponding shader program are a sequence of commands.
See Ex. 2010, p. 4 (“[The Sequencer] chooses two ALU
clauses and a texture clause to execute, and executes all of the
instructions in a clause.”); Ex. 2042, p. 8 (“instructions in a
clause will be executed sequentially”); Ex. 2010, p. 19 (9)
(“TSMO accepts the control packet and fetches the
instructions for texture clause 0 from the instruction store™),
19 (12) (“ASMO accepts the control packet . . . and gets the
instructions for ALU clause 0 from the global instruction
store”). Further, the clauses are applicable for the
corresponding element because the clauses and the

corresponding shader instructions stored in the first portion

- 142 -

AMD1044_0010578

ATI Ex. 2002

IPR2023-00922
Page 145 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

are applicable for processing pixel elements. See id., pp. 18-

19 (disclosing an example of program executions for pixels).

The second portion—the vertex reservation stations and the
corresponding portion of the instruction store—is operative to
store a plurality of vertex command threads as recited in the
’053 patent. A clause stored in a vertex reservation station and
its corresponding shader program stored in the instruction
store are a command thread as described in the *053 patent’s
specification because the clause and the corresponding shader
program are a sequence of commands. See Ex. 2010, p. 4
(“IThe Sequencer] chooses two ALU clauses and a texture
clause to execute, and executes all of the instructions in a
clause.”); Ex. 2042, p. 8 (“instructions in a clause will be
executed sequentially”); Ex. 2010, p. 17 (6) (“TSMO accepts
the control packet and fetches the instructions for texture
clause 0 from the global instruction store), 17 (9) (“ASMO
accepts the control packet . . . and gets the instructions for
ALU clause 0 from the global instruction store™). Further, the

clauses are applicable for the corresponding element because

AMD1044_0010579

ATI Ex. 2002

IPR2023-00922
Page 146 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

the clauses and the corresponding shader instructions stored in
the second portion are applicable for processing vertex
elements. See id., pp. 17-18 (disclosing an example of

program executions for vertices).

1b. an arbiter,
coupled to the at
least one memory
device, operable to
select a command
thread from either
of the plurality of
pixel command
threads and the
plurality of vertex
command threads
based on relative
priorities of the
plurality of pixel

command threads

An Arbiter Coupled to the At Least One Memory Device

The R400 Sequencer Specification discloses an arbiter.
According to the 053 patent’s specification, “[t]he arbiter
may be any implementation of hardware, software, or
combination thereof.” Ex. 1001, 2:48-52. The arbiter
disclosed in the R400 Sequencer Specification is coupled to
both sets of vertex reservation stations and pixel reservation
stations. This arbiter comprises multiple levels of arbitration,

collectively shown in red on the figure below.

- 144 -

AMD1044_0010580

ATI Ex. 2002

IPR2023-00922
Page 147 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

and the plurality of
vertex command

threads.

Vertex Clauses Pixel Clauses

AL sbitator

J/ l

“SEQ arbitrates between the Pixel FIFO and the Vertex FIFO”

The first level of arbitration is between ALU clauses and
texture clauses, respectively, of a single type. See Ex. 2010, p.
4 (“|The Sequencer| chooses two ALU clauses and a texture
clause to execute The sequencer looks at all eight alu
reservation stations to choose an alu clause to execute and all
eight texture stations to choose a texture clause to execute.”),
17 (6, 9), 19 (9, 12). This first arbitration is represented by the
ALU arbitrators and the texture arbitrators, each of which are

outlined in red in the figure above.'

! The left texture arbitrator is mislabeled in the original specification because

this arbitrator corresponds to the ALU reservation stations. See Ex. 2010, p. 5.

- 145 -

AMD1044_0010581

ATI Ex. 2002

IPR2023-00922
Page 148 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

The second level of arbitration is between the candidate pixel
thread and the candidate vertex thread. See Ex. 2010, pp. 17
(2), 18 (4) (“SEQ arbitrates between the Pixel FIFO and the
Vertex FIFO™). So, the arbiter not only selects which
ALU/texture clauses to execute, the arbiter selects which
order to execute pixels and vertices. See id., p. 4 (“There are
two separate sets of reservation stations This way a pixel
can pass a vertex and a vertex can pass a pixel.”) Along with
the first arbitration, the second arbitration forms the arbiter

disclosed in the 053 patent.

Operable to Select a Command Thread From Either of
the Pixel Command Threads and the Vertex Command
Threads

The arbiter is operable to select a command thread from either
of the pixel command threads and the vertex command
threads. As was previously discussed, the arbitration logic has
two levels of arbitration. The first level is selecting ALU
clauses and texture clauses for both the vertex and the pixel
threads. See, e.g., Ex. 2010, pp. 4, 5. The second level is

between the vertex and the pixel threads. See id., pp. 17 (2),

- 146 -

AMD1044_0010582

ATI Ex. 2002

IPR2023-00922
Page 149 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

18 (4) (“SEQ arbitrates between the Pixel FIFO and the
Vertex FIFO”). Collectively these two levels of arbitration
make the arbiter operable to select a command thread from
either of the pixel command threads and the vertex command

threads.

Based on Relative Priorities

The arbiter 1s operable to select clauses based on relative
priorities of the pixel clauses and the wvertex clauses.
According to the R400 Sequencer Specification, “[t]he
arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline.” Ex. 2010, p. 4. When
arbitrating between the pixel and the vertex, the vertex has
priority. Id., p. 17 (2) (“SEQ arbitrates between the Pixel
FIFO and the Vertex FIFO — basically the Vertex FIFO
always has priority [T]he arbiter is not going to select a
vector to be transformed if the parameter cache is full unless
the pipe has nothing else to do.”). When there are no vertices
pending or there is no space left in the register files for

vertices, the arbiter selects the pixel. /d., p. 18 (4) (“SEQ

- 147 -

AMD1044_0010583

ATI Ex. 2002

IPR2023-00922
Page 150 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

arbitrates between Pixel FIFO and Vertex FIFO — where there
are no vertices pending OR there is no space left in the

register files for vertices, the Pixel FIFO is selected.”).

2. The graphics
processing system
of claim 1, further
comprising: a
command
processing engine,
coupled to the
arbiter, wherein
the arbiter is
further operable to
provide the
command thread
to the command

processing engine.

Command Processing Engines

As shown in the figures reproduced below, the R400
Sequencer Specification shows ALUs and a texture unit, each
of which is a command processing engine. According to the
’053 patent’s specification, “[a] command processing engine
may be any suitable engine as recognized by one having
ordinary skill in the art for processing commands, such as a
texture engine, an arithmetic logic unit, or any suitable

processing engine.” Ex. 1001, 2:59-62 (emphasis added).

- 148 -

AMD1044_0010584

ATI Ex. 2002

IPR2023-00922
Page 151 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Ex. 2010, p. 11.

Clause:# + R’idy N
Wrﬁ;ckir 1S SEQ CsT WrAddr
oM ' o RedAddr
| PAIRB
i ©sT
Phas? C";"D csT1 o512 A B Cwivec
RdAjddr l J Wr%cal WrAddr
P o
ol
™ sP | OF
“WrAddr
Id,p. 12.
- 149 -

AMD1044_0010585

ATI Ex. 2002
IPR2023-00922
Page 152 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

The ALUs are command processing engines. ALUs are
command processing engines according to the 053 patent’s
specification. See Ex. 1001, 2:59-62. Further, each ALU is a
command processing engine because each ALU “can do
simple math, conditional moves, and permutations.” See Ex.

2041, p. 10.

The texture unit is also a command processing engine because
the texture unit processes commands. See Ex. 2010, pp. 17

(8), 19 (11) (the texture unit completes requests).

Coupled to the Arbiter

As shown in the figures reproduced in this section, the
command processing engines are coupled to the arbiter. The
ALUs are part of the shader pipe, and the shader pipe is
coupled to the sequencer. See Ex. 2010, pp. 11, 12. See also
id., pp. 17 (4) (“SEQ sends the vector to the SP register file
over the RE_SP interface™), 18 (7) (“SEQ controls the transfer
of interpolated data to the SP register file over the RE SP
interface”). Further, the arbiter is part of the sequencer. See

id., pp. 5, 17 (2), 18 (4); supra Claim 1b (showing support for

- 150 -

AMD1044_0010586

ATI Ex. 2002

IPR2023-00922
Page 153 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

the arbiter). So the ALUs are coupled to the arbiter.

The texture unit is also connected to the sequencer. As shown
in the figures reproduced in this section, the texture unit is
coupled to the sequencer. See id., pp. 11, 12. See also id., pp.
11, 16 (for the shader engine to texture unit bus and the
sequencer to texture unit bus). The arbiter 1s part of the
sequencer. See id., pp. 5, 17 (2), 18 (4); supra Claim 1b
(showing support for the arbiter). So the texture unit is

coupled to the arbiter.

Operable to Provide the Command Thread to the
Command Processing Engine

The arbiter is operable to provide the command thread to the
ALUs because after the arbiter selects a command thread, the
arbiter sends the command thread to the shader pipe using a
sequencer to shader engine bus. See Ex. 2010, p. 15 (*This is
a bus that sends the instruction . . . to all 4 Sub-Engines of the
Shader.”). This bus 1s shown in red on the annotated figure

below.

- 151 -

AMD1044_0010587

ATI Ex. 2002

IPR2023-00922
Page 154 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Interpolated
data / Vertax indeves

- 3 INSTRUCTION CONSTANT
REGISTER FILE . STOREICACHE STORE

| R - s U o1 N
I)
2 " (RaaWy - Mo
\%\,
TEXTURE

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

See Ex. 2010, p. 11.

The R400 Sequencer Specification also shows sending the

“CMD” to the shader pipe in the annotated figure below. See

id., p. 12. See also id., pp. 17 (10), 19 (13).

- 152 -

AMD1044_0010588

ATI Ex. 2002
IPR2023-00922
Page 155 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Clause # + Fédy

WrAddr

RdlAddr
PARB

Wr/l}ddw IS SEQ CSsT
cMp
T [555
! CMD csTi osT ;i 8 Cg:WrVec
Rdﬁ;ddr l J | { l
| o L

WrSeal yyraqqr

>

See id., p. 12.

below.

i

WrAddr

SP

OF

sequencer also provides the instruction

The arbiter is also operable to provide the command thread to
the texture unit because after the arbiter selects a command
thread, the arbiter sends the command thread to the texture

unit using a sequencer to texture unit bus. See id., p. 16 (“The

fetch.”) The bus is shown in red on the annotated figure

.. . for the texture

AMD1044_0010589

ATI Ex. 2002
IPR2023-00922
Page 156 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

interpalaied
data (Vertex indewes

IHSTRUCTION COMSTAMT

REGISTER FILE STOREICACHE STORE

See Ex. 2010, p. 11.

The R400 Sequencer Specification also shows sending the
“CMD” to the texture unit in the annotated figure below. See

id., p. 12. See also id., pp. 17 (7), 19 (10).

-154 -

AMD1044_0010590

ATI Ex. 2002
IPR2023-00922
Page 157 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

ol
B
; e IS SEQ CS8T Wraddr
cMD RdAddr
. PARB
csT
T [5555]
Phase CMD csTi gr; A B CWiver |
RaAddr i J ﬁ : g weSeal yyoagge
H
. I
o)
N
T = « OF

“WrAddr »

See Ex. 2010, p. 12.

5a. at least one
memory device
comprising a first
portion operative
to store a plurality
of pixel command
threads and a
second portion
operative to store a

plurality of vertex

See supra Claim la (showing support for the same

language).

claim

- 155 -

AMD1044_0010591

ATI Ex. 2002
IPR2023-00922
Page 158 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

command threads;

5b. an arbiter,
coupled to the at
least one memory
device, operable to
select a command
thread from either
of the plurality of
pixel command
threads and the
plurality of vertex
command threads;

and

See supra Claim 1b (showing support for the same claim

language).

5c. a plurality of
command
processing
engines, coupled
to the arbiter, each

operable to receive

See supra Claim 2 (showing support for “a plurality of
command processing engines, coupled to the arbiter” and “the
arbiter . . . operable to provide the command thread to the

command processing engine”).

Operable to Receive and Process the Command Thread

The ALUs are each operable to receive and process the

- 156 -

AMD1044_0010592

ATI Ex. 2002
IPR2023-00922
Page 159 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

and process the

command thread.

command thread. Each ALU is operable to receive the
command thread from the sequencer via the sequencer to
shader engine bus. See Ex. 2010, p. 15. Each ALU is operable
to process the command thread because each ALU “can do
simple math, conditional moves, and permutations on the

registers.” See Ex. 2041, p. 10.

The texture unit is also operable to receive and process the
command thread. The texture unit is operable to receive the
command thread from the sequencer via the sequencer to
texture unit bus. See Ex. 2010, p. 16. The texture unit is
operable to process the command thread because the texture
unit executes the instructions. See id. (“The sequencer . . .

provides the instruction . . . for the texture fetch to execute.”).

6. The graphics
processing system
of claim 5,
wherein the
plurality of

command

See supra Claims 2 and 5c¢ (showing support for the claim

language).

- 157 -

AMD1044_0010593

ATI Ex. 2002

IPR2023-00922
Page 160 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

processing engines
comprises at least
one arithmetic

logic unit.

7. The graphics
processing system
of claim 5,
wherein the
plurality of
command
processing engines
comprises at least
one texture

processing engine.

See supra Claims 2 and 5c (showing support for the claim

language).

- 158 -

AMD1044_0010594

ATI Ex. 2002
IPR2023-00922
Page 161 of 181

Case [IPR2015-00325 of

U.S. Patent No. 7,742,053

© RAOSEQUENCERSPECVERSION20

LA graphics
processing system

comprising

The R400 Sequencer Speciﬁcétidn is an architectural

specification for the R400°s sequencer block. Ex. 2028, p. 1.
The R400 was a graphics-chip product, and the R400 was
designed to include a unified pipe (i.e., a single programmable
pipeline for 2D video, 3D vertex, and 3D pixel operations).

See Ex. 2041, pp. 6, 7.

la. at least one
memory device
comprising a first
portion operative
to store a plurality
of pixel command
threads and a
second portion
operative to store
a plurality of
vertex command

threads; and

At Least One Memorv Device

The R400 Sequencer Specification describes reservation
stations and an instruction store, which collectively are the

claimed “at least one memory device.”

The R400 Sequencer Specification includes at least one
memory device. The sequencer’s control flow diagram,
reproduced below for reference, shows a vertex reservation
station (VTX RS) and a pixel reservation station (PIX RS).
See Ex. 2028, pp. 6 (“[t]here are two separate reservation
stations, one for pixel vectors and one for vertices vectors”),
10. The reservation stations are also called buffers. See id., p.

25 (“[T]wo buffers are maintained — one for Vertices and one

- 159 -

AMD1044_0010595

ATI Ex. 2002

IPR2023-00922
Page 162 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

for Pixels.”). The buffers store threads. See id., p. 25 (A
thread lives in a given location in the buffer during its entire
life.””). The buffers are even called “pixel or vertex memory.”
id., p. 23. The R400 Sequencer Specification further states,
“Each entry in the buffer will be stored across two physical

pieces of memory.” id., p. 26.

r Input Arbiter —I

— YTX RS PIX RS f—

Exec Arbiter J

— ALU Texture —

id., p. 10.

Another memory device disclosed in the R400 Sequencer
Specification is an instruction store. See, e.g., id., pp. 7, 14,
17. On the figures shown below, the instruction store is

outlined in red. This instruction store 1s loaded with

- 160 -

AMD1044_0010596

ATI Ex. 2002
IPR2023-00922
Page 163 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

instructions. id., p. 17 (“[the instruction store] will contain
4096 instructions of 96 bits each”). Also, the instruction store
1s called a memory. See id. (“[the instruction store] is likely to

be a 1 port memory”™).

. CF ERTER SC
CONSTANTS

R,

INST STORE [|

ALK BT

TEK WG

:' g BP e BP e SR sp o
L FETCH STATE b CSTORE T
x » -
i ™ v — A ﬁ,,‘,V} »»»»»
vy T ﬁ[Pc;rosI»r PCIOB |- »? PCIOB - «{chaz
: :(i ¥ . k1 X %
. REB ‘ RB H RB H RB -

- 161 -

AMD1044_0010597

ATI Ex. 2002
IPR2023-00922
Page 164 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

i
i
i

IS SEQ csT 'wmé.mr

Clause # + Ry

| WrAdgr |

{1 oM
| I T

LL

Phase | | i E L ,!,
i I cMp CSTCSTicsTiDX A B CWY‘[/@M

RoAddr | Wiseal wradas
1

i

!
i it 1 | ! i
¢ . e 4 H

FETCH SP | oF

WrAddr)

See id., p. 14.

A First Portion Operative to Store Pixel Command
Threads and a Second Portion Operative to Store Vertex
Command Threads

The instruction store includes storage for vertex instructions
and pixel instructions. See Ex. 2028, p. 17 (“There 1s going to
be only one instruction store for the whole chip.”). Since the
instruction store is used to store both pixel and vertex
command threads, the “first portion” of the claimed “at least
one memory device” 1s the combination of the pixel
reservation station and the portion of the instruction store
where pixel instructions reside. The “second portion™ of the

claimed “at least one memory device” 1s the combination of

-162 -

AMD1044_0010598

ATI Ex. 2002

IPR2023-00922
Page 165 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

the vertex reservation station and the portion of the instruction

store where vertex instructions reside.

The first portion—the pixel reservation station and the
corresponding portion of the instruction store—is operative to
store a plurality of pixel command threads as recited in the
’053 patent. According to the *053 patent’s specification, “a
command thread is a sequence of commands applicable to the
corresponding element, such as [a] pixel command thread
relative to processing of pixel elements and a vertex command
thread relative to vertex processing commands.” Ex. 1001,
2:41-45. A thread stored in the pixel reservation station and its
corresponding shader instructions stored in the instruction
store are a command thread as described in the 053 patent’s
specification because the thread and the corresponding shader
instruction are a sequence of commands. See Ex. 2028, p. 26
(“[the thread] is returned to the buffer . . . once all possible
sequential instructions have been executed”). Regarding the
sequence, each entry in the buffer has a “state” and a “status.”
See id., p. 26. The “state” includes a “Control Flow

Instruction Pointer.” See id., p. 26. The pointer is to the

AMD1044_0010599

ATI Ex. 2002

IPR2023-00922
Page 166 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

instruction store. See id., p. 41 (INST BASE PIX and
PS BASE). And the -corresponding instructions are a
sequence of an ALU instruction, a fetch instruction, and
control flow instructions. See id., p. 17. Further, the threads
are applicable for the corresponding element because the
threads and the corresponding instructions stored in the first
portion are applicable for processing pixel elements. See id.,
pp. 10 (showing separate pixel and vertex reservation
stations), 12 (“the sequencer (SQ) will only use one global
state management machine per vector type (pixel, vertex) that
we call the reservation station (RS), 25 (“A thread lives in a

given location in the buffer during its entire life.”).

The second portion—the vertex reservation stations and the
corresponding portion of the instruction store—is operative to
store a plurality of vertex command threads as recited in the
’053 patent. A thread stored in the vertex reservation station
and its corresponding shader instructions stored in the
instruction store are a command thread as described in the
053 patent’s specification because the thread and the

corresponding shader program are a sequence of commands.

- 164 -

AMD1044_0010600

ATI Ex. 2002

IPR2023-00922
Page 167 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

See id., p. 26 (“[the thread] is returned to the buffer . . . once
all possible sequential instructions have been executed”).
Regarding the sequence, each entry in the buffer has a “state”
and a “status.” See id., pp. 26. The “state” includes a “Control
Flow Instruction Pointer.” See id., p. 26. The pointer is to a
location 1in the instruction store. See id., p. 41
(INST Base VTX and VIX BASE). And the corresponding
instructions are a sequence of commands that make up an
ALU instruction, a fetch instruction, and control flow
instructions. See Ex. 2028, p. 17. Further, the threads are
applicable for the corresponding element because the threads
and the corresponding instructions stored in the second
portion are applicable for processing vertex elements. See id.,
pp. 10 (showing separate pixel and vertex reservation
stations), 12 (“the sequencer (SQ) will only use one global
state management machine per vector type (pixel, vertex) that
we call the reservation station (RS), 25 (““A thread lives in a

given location in the buffer during its entire life.”).

1b. an arbiter,

An Arbiter Coupled to the At Least One Memory Device

- 165 -

AMD1044_0010601

ATI Ex. 2002

IPR2023-00922
Page 168 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

coupled to the at
least one memory
device, operable to
select a command
thread from either
of the plurality of
pixel command
threads and the
plurality of vertex
command threads
based on relative
priorities of the
plurality of pixel
command threads
and the plurality
of vertex

command threads.

The R400 Sequencer Specification discloses an arbiter.
According to the 053 patent’s specification, “[t]he arbiter
may be any implementation of hardware, software, or
combination thereof.” Ex. 1001, 2:48-52. The sequencer’s
control flow diagram, reproduced below for reference, shows

an Exec Arbiter coupled to the reservation stations.

Input Arbiter

]

YTX RS PIX RS

i

Texture

Exec Arbiter

Ex. 2028, p. 10.

Operable to Select a Command Thread From Either of the
Pixel Command Threads and the Vertex Command
Threads

The arbiter 1s operable to select a pixel thread or a vertex

thread. For both vertices and pixels, the arbitration circuit

- 166 -

AMD1044_0010602

ATI Ex. 2002

IPR2023-00922
Page 169 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

selects a winner for both the texture engine and the ALU
engine. See Ex. 2028, p. 26 (“The arbitration circuitry will
select a winner for both the Texture Engine and for the ALU
engine. There are actually two sets of arbitration — one for
pixels and one for vertices.”) This is the first level of
arbitration. The arbiter then selects between the pixel and the
vertex. See id., p. 26 (“A final selection is then done between
the two.”). This is the second level of arbitration. Collectively
this arbitration make the arbiter operable to select a command
thread from either of the pixel command threads and the

vertex command threads.

Based on Relative Priorities

The arbiter is operable to select threads based on
relative priorities of the pixel threads and the vertex threads.
According to the R400 Sequencer Specification, priority 1s
given to older threads. See Ex. 2028, pp. 6 (“The arbitrator
will give priority to older threads.”), 25 (“the buffer has FIFO
qualities in that threads leave in the order that they enter™);

26-27 (“Texture arbitration requires no allocation or ordering

- 167 -

AMD1044_0010603

ATI Ex. 2002

IPR2023-00922
Page 170 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

so it is purely based on selecting the 'oldest' thread that
requires the Texture Engine. ALU arbitration is a little more
complicated. First, only threads where either of
Texture Reads outstanding or Waiting on Texture Read
to Complete are '0' are considered. Then if Allocation Wait
1s active, these threads are further filtered based on whether
space 1s available. If the allocation is position allocation, then
the thread is only considered if all 'older' threads have already
done their position allocation (position allocated bits set). If
the allocation 1s parameter or pixel allocation, then the thread
is only considered if it is the oldest thread. Also a thread is not
considered if it is a parameter or pixel or position allocation,
has its First thread of a new context bit set and would
cause ALU interleaving with another thread performing the
same parameter or pixel or position allocation. Finally the
'oldest’ of the threads that pass through the above filters is
selected. If the thread needed to allocate, then at this time the
allocation 1s done, based on Allocation Size. If a thread has

its ‘last’ bit set, then 1t 1s also removed from the buffer, never

- 168 -

AMD1044_0010604

ATI Ex. 2002

IPR2023-00922
Page 171 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

to return.”).

2. The graphics
processing system
of claim 1, further
comprising: a
command
processing engine,
coupled to the
arbiter, wherein
the arbiter is
further operable to
provide the
command thread
to the command

processing engine.

Command Processing Engines

As shown in the figure reproduced below, the R400
Sequencer Specification shows an ALU and a texture engine,
each of which is a command processing engine. See Ex. 2028,
pp. 10, 26 (using the terms “ALU engine” and “Texture
engine”). According to the *053 patent’s specification, “[a]
command processing engine may be any suitable engine as
recognized by one having ordinary skill in the art for
processing commands, such as a ftexture engine, an

arithmetic logic unit, or any suitable processing engine.” Ex.

1001, 2:59-62 (emphasis added).

Input Arbiter

-

YTXRS PIX RS

Exec Arbiter

Texture

- 169 -

AMD1044_0010605

ATI Ex. 2002

IPR2023-00922
Page 172 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

Ex. 2028, p. 10.

The ALU and the texture engine are command processing
engines according to the 053 patent’s specification. See Ex.
1001, 2:59-62. Further, each is a command processing engine
because each engine processes commands. See Ex. 2028, p.
26 (“Once a thread is selected 1t 1s read out of the buffer . . .
and submitted to [the] appropriate execution unit. It is
returned to the buffer . . . once all possible sequential

instruction shave been executed.”).

Coupled to the Arbiter

As shown in the figure reproduced in this section, the
command processing engines are coupled to the arbiter. See
Ex. 2028, p. 10 (showing ALU and texture engines coupled to

the Exec Arbiter).

Operable to Provide the Command Thread to the
Command Processing Engine

The arbiter 1s operable to provide the command thread to both
the ALU engine and the texture engine because after the
arbiter selects a command thread, the arbiter submits the

command thread to the appropriate execution unit. See Ex.

- 170 -

AMD1044_0010606

ATI Ex. 2002

IPR2023-00922
Page 173 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

2028, p. 26 (“Once a thread is selected it is read out of the
buffer, marked as invalid, and submitted to [sic] appropriate
execution unit. It is returned to the buffer . . . once all possible

sequential instructions have been executed.”™).

The figures in the R400 Sequencer Specification, reproduced
below with annotations, also show that the arbiter is operable
to provide the command thread to the command processing
engines. The first figure shows the ALU instruction (“ALU
INST”) from the sequencer (“SQ”) to the shader pipe (“SP”).
The second figure shows the command (“CMD”) from the SQ
to the SP. The third figure shows the texture instruction
(“TEX INST”) from the SQ to the texture pipe (“TP”). The

fourth figure shows the CMD from the SQ to the TP Fetch.

- 171 -

AMD1044_0010607

ATI Ex. 2002

IPR2023-00922
Page 174 of 181

Case [PR2015-00325 of

U.S. Patent No. 7,742,053

|
} cF y [' ; sc
CONSTANTS |
B CBOSERM
o i i
.| INST STORE - INTER 1' INTER Li INTER -
i 1 i
TER BGT
sp sp sp | e
= FETCH STATE '
7 " -
e N X Yoy N S
J A—
:2; PCIOB } Pcmrak -{ PCIOB | «{ PCIOB |
' T 5 5 P
RE | I BB *J RB H RE E
See Ex. 2028, p. 7.
Clause # + Rely
Cvuenssr | 18 SEQ CsT Vx'f;%‘ddr
: oMD
csT
. [TLLEL
i i H i g
Fhas: QBi!D éBT CSTicsf;DX ,:\ é {.‘:Wr‘yeci
i 3 | S N B i
RaAddr ; | P [WBeal e
: . | | :
v TR H ¥ i .ot
.
ks
FETCH SP - OF
Pl
See id., p. 14.
-172 -
AMD1044_0010608

ATI Ex. 2002
IPR2023-00922
Page 175 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

. CF
CONSTANTS

i R -

K CHSREAR

MST STORE

L

TERINET

| INTER | —f INTER |-

FETCH STATE GATA
X
pCios] Pt‘ma[-{Pc/uag «{Pum«
k]
l RB H RB H RE gg RE

[S S EQ CST Wriddr
oD
st
(I | |]
| [I I R
Fhase oMo €8T CeTiosTx A B © Wivec | ;
= B = ;
FdAddr ; Lo WBeal yyengar
: . | :
¥ A .
»
.
FETCH SF — oF
| Wrhddr]
See id., p. 14.
9]
-173 -

AMD1044_0010609

ATI Ex. 2002
IPR2023-00922
Page 176 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

5a. at least one
memory device
comprising a first
portion operative
to store a plurality
of pixel command
threads and a
second portion
operative to store
a plurality of
vertex command

threads;

See supra Claim la (showing support for the same claim

language).

5b. an arbiter,
coupled to the at
least one memory
device, operable to
select a command
thread from either

of the plurality of

See supra Claim 1b (showing support for the same claim

language).

-174 -

AMD1044_0010610

ATI Ex. 2002
IPR2023-00922
Page 177 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

pixel command
threads and the
plurality of vertex
command threads;

and

5c¢. a plurality of
command
processing
engines, coupled
to the arbiter, each
operable to receive
and process the

command thread.

See supra Claim 2 (showing support for “a plurality of
command processing engines, coupled to the arbiter” and “the
arbiter . .

. operable to provide the command thread to the

command processing engine”).

Operable to Receive and Process the Command Thread

The figure showing the ALU engine and the texture engine is
reproduced below. Both are operable to receive and process
the command thread because, after the command thread is
submitted to the appropriate execution unit, the receiving
engine executes the instructions. See Ex. 2028, p. 26 (“Once a
thread 1s selected it is read out of the buffer, marked as
mvalid, and submitted to [sic] appropriate execution unit. It 1s

returned to the buffer . . . once all possible sequential

- 175 -

AMD1044_0010611

ATI Ex. 2002

IPR2023-00922
Page 178 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

instructions have been executed.”).

|> Input Arbiter —I

— YTX RS PIX RS 7

Exec Arbiter J

[— ALY Texture —

1d.,p. 10.

6. The graphics (See supra Claims 2 and 5c¢ (showing support for the claim
processing system | language).)

of claim 5,
wherein the
plurality of
command
processing engines
comprises at least

one arithmetic

- 176 -

AMD1044_0010612

ATI Ex. 2002
IPR2023-00922
Page 179 of 181

Case IPR2015-00325 of
U.S. Patent No. 7,742,053

logic unit.

7. The graphics
processing system
of claim 5,
wherein the
plurality of
command
processing engines
comprises at least
one texture

processing engine.

(See supra Claims 2 and 5c¢ (showing support for the claim

language).)

- 177 -

AMD1044_0010613

ATI Ex. 2002
IPR2023-00922
Page 180 of 181

R . +r2015-00325 of
‘ \ - U.S. Patent No. 7,742,053
B! hereby declare that all statements made herem of my own Imowledge are true and

 that all statements made on mfﬂrmauqn and belief are believed to be true. The ‘
statements in this‘ declafation ‘Wei*e niade wiih the knowledge thatwillﬁllk false
stéiements and the like ére made puniéhable by fine or irﬁpriscmmﬁent Lﬁider Secticm
1001 of Title 18 of the Umted Stams Cnde and that wﬂlful false statemmts may |

: Jeopardz.ze the vahdlty of the 053 patent

E}tecuted this 8th day of September in Los Gams, CA

Respectfully submmy :

- Andrew Wolfe o ‘

- 178 -

AMD1044_0010614

ATI Ex. 2002
IPR2023-00922
Page 181 of 181

