
ATI Ex. 2002
IPR2023-00922

Page 1 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

LG ELECTRONICS, INC.,
Petitioner

Vv.

ATI TECHNOLOGIES ULC,
Patent Owner

Case IPR2015-00325

Patent 7,742,053

DECLARATION OF ANDREW WOLFE

REGARDING ACTUAL REDUCTION TO PRACTICE OF

U.S. PATENT NO. 7,742,053

Mail Stop “Patent Board”
Patent Trial and Appeal Board
U.S. Patent and Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

ATI 2106

LGv. ATI

IPR2015-00325

AMD1044_0010434

ATI Ex. 2002

IPR2023-00922

Page 1 of 181

ATI Ex. 2002
IPR2023-00922

Page 2 of 181

I.

I.

IV.

<

Case IPR2015-00325 of

USS. Patent No. 7,742,053

Table of Contents

INTRODUCTION oooooooccccccccccc ccc cece cece teceesececssesisetecaesenstsesterstecniterteeeeteees 1

BACKGROUND 0oooooooocccccccccc cece cece cece cesses tecesetesesesaetessitesittetsteentteseeensees 1

EXHIBITSocccccccccccccsecesetecseccvseeeceuseeesseecsseceseeecseesesesessseessteesseeesseesteees 6

REDUCTION TO PRACTICE oo..cccccccccccceccccccccecececneeeesesesseeessssensesesseesneeey 8

A.—Actual Reduction to Practice 0.0000... ccccccccccccccetececcseeseessseeettatscenseees 8

B. Constructive Reduction to Practice 2.000000... coc ccecceeccc cece ceetteeeeeeees 9

U.S. PATENT NO. 7,742,053 ooccccccccccccccccccseeessececssecnsseessesessesessesenseesues 10

BACKGROUND ON CHIP DESIGN AND ATI’S CHIP DESIGN........... 11

THE CODE FOR ATI’S R400 CHIPooo. ccccceccsecessesessesesseeenseenues 13

A. The R400 RTL code corresponding to claims 1, 2, 5,6, and 7 15

1. Chain Loiccece cece ccc c cee eseeee cece ceases secesessenesteeeteeesentseeeees 17

a The Preamble ..0.....00.cc cc ccccccccc ce ceeceenscsesseeesesesseesseeees 17

b The at Least One MemoryDevice...cece19
C. The Arbiter. .0....000ccc ccc cece cece cece ee cet ee ceteeeeneeeees23

d. The Arbiter 1s Operable to Select a Command Thread ..28
2. Cha2 eeeccccccccceceecccssececseecseceseseceessessseesesesseseiteeseesss32

a. The Preamble 00000000000 occcece cece cee cece ee ceteeteceeeee32

b. The Arbiter is Operable to Provide a Command Thread to
the Command Processing Engine000cc cece cece36

3. Chat 5coccece cece ce ee bees tebe nese teceeeesensteentieetentseenes62

4, Chat6occcece cece sees ees eeee este ceases teceseesenssteseiseesentieeeees68

5. Cha7oieccc ccccccnecccssueeecseecssececeaeceeesesesesseeesseereecseeesas69

B. The R400 Emulator Code Describing Claims 1, 2, 5, 6, and 7...........69

1. Chat bocceccc ce cece cece cece cece ee ceteseteesensstesetitesentseenes71

a. The Preamble 0000000000000 cece cece cece ce sce eeceeseteceeeee71

b. The at Least One MemoryDevice...cece75
C. The Arbiter... ccccccccecccccsseceenseessseesceesseeessaeeees78

d. The Arbiter is Operable to Select a Command Thread ..82
2. Chai 2 oie eee cccccccccccecccsssececseeessececeaeceeesesssesesecesseesieeesseeeess96

a. The Preamble ..00.0.000 ccc ccccccccccccceeceenceesseeesseeeteeeseeeens96

-i-

AMD1044_0010435

ATI Ex. 2002

IPR2023-00922

Page2 of 181

ATI Ex. 2002
IPR2023-00922

Page 3 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

b. The Arbiter is Operable to Provide a Command Thread to
the Command Processing Engine00.00.000cccceeeee99

3. 1a 5S oie ccecccccceeccseceseecrsecseeeseeesececseecseesseeeseetsseesseeseenees 101

4. 1a6oo cccccccccccseccseceseccrseecseeeseeesececseecseesseeeseetsteesseeseenees 110

5. Cha7oncecece ect c cece tees ee eee cecececesestesentstetteetteteseess 110

VITT. The Claims of the ?053 Patent Are Supported by the Priority
DOCUMENT... eeeccc cece cee cecetececeecsseereseeeesereeesseecsececsiesesseceiateesseeesireetieess 110

TX. CONCEPTION20.cece ceccsseesecseeeesseesseessecsaeceseecsescseesseesseeeeeeseeees 136

-ii-

AMD1044_0010436

ATI Ex. 2002

IPR2023-00922

Page 3 of 181

ATI Ex. 2002
IPR2023-00922

Page 4 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

I, Andrew Wolfe, declare as follows:

I. INTRODUCTION

1. I have been retained by Advanced Micro Devices (“AMD”) as an

expert to evaluate source code related to the development of the “R400”projectat

its state of development on August 5, 2002, and to provide my opinion regarding

whether the functionality of this source code for the R400 chip andthe structureit

describes corresponds to each and every element as set forth in claims1, 2, 5, 6,

and 7 of the U.S. Patent No. 7,742,053 (‘Lefebvre °053 patent’).

2. I have also been retained by AMD to reviewU.S. Patent Application

No. 10/673,761 (“the ’761 Application”), filed September 29, 2003, to which the

°053 patent claims priority, and to provide my opinion regarding whether claims1,

2, 5,6, and 7 are supported by the ’761 Application.

3, And, I have been retained by AMD to review ATI Technologies

ULC.’s “ATY’) R400 chip internal documents from August 24, 2001 to April 19,

2002, and to provide my opinion regarding whether the inventors of the ’053

patent conceived claims 1, 2, 5, 6, and 7.

I. BACKGROUND

4. I have more than 30 years of experience as a computerarchitect,

computer system designer, personal computer graphics designer, educator, and

-[-

AMD1044_0010437

ATI Ex. 2002

IPR2023-00922

Page 4 of 181

ATI Ex. 2002
IPR2023-00922

Page 5 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

executive in the electronics industry. A curriculum vitae is attached as Exhibit

2136 to this report and is summarized below.

5. In 1985, | earned a B.S.E.E. in Electrical Engineering and Computer

Science from The Johns Hopkins University. In 1987, I received an M.S. degree in

Electrical and Computer Engineering from Carnegie Mellon University. In 1992,I

received a Ph.D. in Computer Engineering from Carnegie Mellon University. My

doctoral dissertation pertained to a newapproach for the architecture of a computer

processor.

6. In 1983, I began designing touch sensors, microprocessor-based

computer systems, and I/O (input/output) cards for personal computers as a senior

design engineer for Touch Technology, Inc. During the course of mydesign

projects with Touch Technology, I designed I/O cards for PC-compatible computer

systems, including the IBM PC-AT,to interface with interactive touch-based

computer terminals that I designed for use in public information systems. I

continued designing and developing related technology as a consultant to the

Carroll Touch division of AMP,Inc., where in 1986, I designed one ofthefirst

custom touch screen integrated circuits.

7. While I studied at Carnegie Mellon University for my master’s

degree, from 1986 and through 1987, I designed and built a high-performance

AMD1044_0010438

ATI Ex. 2002

IPR2023-00922

Page 5 of 181

ATI Ex. 2002
IPR2023-00922

Page 6 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

computer system. From 1986 through early 1988, I also developed the curriculum,

and supervised the teaching laboratory, for processor design courses.

8. In the latter part of 1989, | worked as a senior design engineer for

ESL-TRW Advanced Technology Division. While at ESL-TRW,I designed and

built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.

9, At the end of 1989, I (along with my partners) reacquired the rights to

the technology I had developed at Touch Technology and at AMP, and founded

The Graphics Technology Company. Over the next seven years, as an officer and

a consultant for The Graphics Technology Company, I managed the company’s

engineering developmentactivities and personally developed dozens of touch

screen sensors, controllers, and interactive touch-based computer systems.

10. Ihave consulted, formally and informally, for a number of fabless

semiconductor companies. In particular, | have served on the technical advisory

boards for two processor design companies: BOPS, Inc., where I chaired the board,

and Siroyan Ltd., where I served in a similar role for three networking chip

companies—Intellon, Inc., Comsilica, Inc., and Entridia, Inc—and one 3D game

accelerator company, Ageia, Inc.

AMD1044_0010439

ATI Ex. 2002

IPR2023-00922

Page6 of 181

ATI Ex. 2002
IPR2023-00922

Page 7 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

11. Thavealso served as a technology advisor to Motorola and to several

venture capital funds in the United States and Europe. Currently, I am a director of

Turtle Beach Corporation, providing guidance in its development of premium

audio peripheral devices for a variety of commercial electronic products.

12. From 1991 through 1997, I served on the Faculty of Princeton

University as an Assistant Professor of Electrical Engineering. At Princeton,I

taught undergraduate and graduate-level courses in Computer Architecture,

Advanced Computer Architecture, Display Technology, and Microprocessor

Systems, and conducted sponsored research in the area of computer systems and

related topics. I was also a principal investigator for Department of Defense

(“DOD”) research in video technologyanda principal investigator for the New

Jersey Center for Multimedia Research. From 1999 through 2002, I taught the

Computer Architecture course to both undergraduate and graduate students at

Stanford University multiple times as a Consulting Professor. At Princeton,I

received several teaching awards, both from students and from the School of

Engineering. I have also taught advanced microprocessor architecture to industry

professionals in IEEE and ACM sponsored seminars. I am currently a lecturer at

Santa Clara University teaching graduate courses on Computer Organization and

Architecture and undergraduate courses on electronics and embedded computing.

AMD1044_0010440

ATI Ex. 2002

IPR2023-00922

Page 7 of 181

ATI Ex. 2002
IPR2023-00922

Page 8 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053

13. From 1997 through 2002, I held a variety of executive positionsat a

publicly-held fabless semiconductor company originally called S3, Inc. and later

called SonicBlue Inc. I held the positions of Chief TechnologyOfficer, Vice

President of Systems Integration Products, Senior Vice President of Business

Development, and Director of Technology, among others. At the time I joined S3,

the company supplied graphics accelerators for more than 50%of the PCs sold in

the United States.

14. While at S3/SonicBlue I developed technology for and participated in

the development of products for digital music and digital video including HDTVs,

DVD players and recorders, DVRs, portable video devices, PDAs, andtablets. [

also supervised the video research and developmentteam.

15. Thave published more than 50 peer-reviewed papers in computer

architecture and computer systems and IC design.

16. also have chaired [EEE and ACM conferences in microarchitecture

and integrated circuit design and served as an associate editor for IEEE and ACM

journals.

17. Iam anamed inventor on at least 43 U.S. patents and 27 foreign

patents.

AMD1044_0010441

ATI Ex. 2002

IPR2023-00922

Page 8 of 181

ATI Ex. 2002
IPR2023-00922

Page 9 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

18. In 2002, I was the invited keynote speaker at the ACM/TEEE

International Symposium on Microarchitecture and at the International Conference

on Multimedia. From 1990 through 2005, I was also an invited speaker on various

aspects of technology and the PC industry at numerous industry events including

the Intel Developer’s Forum, Microsoft Windows Hardware Engineering

Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and

Consumer Electronics Show, as well as at the Harvard Business School and the

University of Illinois LawSchool. I have been interviewed on subjects related to

computer graphics and video technology and the electronics industry by

publications such as the Wall Street Journal, New York Times, Los Angeles

Times, Time, Newsweek, Forbes, and Fortune as well as CNN, NPR, and the

BBC. I have also spoken at dozens of universities including MIT, Stanford,

University of Texas, Carnegie Mellon, UCLA, University of Michigan, Rice, and

Duke.

19. Tam being compensated for my time working onthis case at my

customary rate of $450 per hour for work performed on the case. My compensation

is not in any wayrelated to the outcomeof the case.

Tl. EXHIBITS

20. In this Declaration, I cite to the following Exhibits.

AMD1044_0010442

ATI Ex. 2002

IPR2023-00922

Page 9 of 181

ATI Ex. 2002
IPR2023-00922
Page 10 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

United States Patent No. 7,742,053 to Lefebvreet al.

2010 R400 Sequencer Specification (Version 0.4)

oe2028 R400Sequencer Specification (Version2.0)
2041 R400 Top Level Specification (Version 0.2)

2042 R400 Shader Processor (Version 0.1)

2072 RTL Code File: sq.v

2073 RTL CodeFile: sq_thread_buff.v

2074 RTL CodeFile: sqthreadarb.v

2075 RTL CodeFile: sq_ctl_flow_seq.v

2076 RTL CodeFile: sq_instruction_store.v

2077 RTL CodeFile: sqtargetinstrfetch.v

2078 RTL CodeFile: sq_tex_instr_queue.v

2079 RTL CodeFile: sq_tex_instr_seq.v

2080 RTL CodeFile: sqaisoutput.v

2081 RTL Code File: sq_alu_instr_queue.v

2082 RTL CodeFile: sq_alu_instrseq.v

2083 RTL CodeFile: sp.v

2084 RTL Code File: vector.v

2085 RTL Code File: mace_gpr.v

2086s| RTL CodeFile: mace.v

2087 RTL Code File: tp.v

2088 Emulator Code File: sq_block_model.cpp

2089 Emulator Code File: user_block_model.h

2090 Emulator Code File: arbiter.cpp

2091 Emulator Code File: arbiter.h

AMD1044_0010443

ATI Ex. 2002

IPR2023-00922

Page 10 of 181

ATI Ex. 2002
IPR2023-00922
Page 11 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

ee2092 EmulatorCodeFile:sqalucpp
2093 Emulator Code File: sq_alu.h

2094 Emulator Code File: gpr_manager.cpp

——2095EmulatorCodeFile:gpr_manager.h_
2096 Emulator Code File: instruction_store.cpp

2097 Emulator Code File: instruction_store.h

2098 Emulator Code File: reg_file.cpp

2099 Emulator Code File: reg_file.h

2100 Emulator Code File: tp.cpp

2101 Emulator Code File: tp.h

2102 Emulator Code File: sq_tp-h

2103 Emulator Code File: tp_block model.cpp

2104 Emulator Code File: user_block_model.h(tp)

2108 RTL CodeFile: tp_input.v

2119 United States Patent Application No. 10/673,761 to Lefebvre et
al.

2136 Curriculum Vitae of Dr. Andrew Wolfe

IV. REDUCTION TO PRACTICE

21. JT understand there are two types of reduction to practice — actual

reduction to practice and constructive reduction to practice. My understanding of

each, I describe below.

A, Actual Reduction to Practice

AMD1044_0010444

ATI Ex. 2002

IPR2023-00922

Page 11 of 181

ATI Ex. 2002
IPR2023-00922
Page 12 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

22. lunderstand that actual reduction to practice requires proofofeither

(i) an embodiment of a claimed invention or (i1) performanceof a processthat

includesall limitations of the claimed invention.

23. Here, I have examined twotypes of source code: the R400 RTL code

for an early version of the R400 written in Verilog and the corresponding Emulator

Code written in C++. Verilog RTL codeis a structural and functional embodiment

of a design that in the development of 3D graphics chips is generally used to

model, define, and instantiate a hardware design. The C++ Emulator codeis

generally used in the development of 3D graphics chips to model, validate, and test

the functionality and certain structural features of a hardware design. Below,I will

identify the specific files, objects, input/output interfaces, and functions that

describe each element of claims 1, 2, 5, 6, and 7 of the ’053 patent.

B. Constructive Reduction to Practice

24. [understand that constructive reduction to practice occurs when the

patent application discussing the subject matter of the claimsis filed. In this case,

the constructive reduction to practice occurred on September9, 2003, with the

filing of the °761 Application. I understand that the °053 patent claimspriority to

the °761 Application, because, U.S. Patent Application No. 11/764,453 from which

the ’053 patent issued, is a continuation of the °761 Application. Below, I include a

AMD1044_0010445

ATI Ex. 2002

IPR2023-00922

Page 12 of 181

ATI Ex. 2002
IPR2023-00922
Page 13 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

claim chart where I identify support for each element of claims 1, 2, 5, 6, and 7 of

the °053 Patent in the °761 Application.

Vv. U.S. PATENT NO.7,742,053

25. The ’053 patent is directed to a graphics-processing system having a

unified shader. The unified shader can perform both pixel and vertex calculations.

To do this, the °053 patent includes at least one memory device designed to store a

plurality of pixel commandthreads and a plurality of vertex command threads.

(053 patent, Abstract.)

26. Thefirst reservation station 302 and the second reservationstation

304 ofthe °053 patent represent the “at least one memory device” of independent

claims 1 and 5. (053 patent, 3:63-64.) The first reservation station 302 is a pixel

reservation station and stores pixel commandthreads (including 312, 314, and

316), while the second reservation station is a vertex reservation station and stores

vertex command threads (including 318, 320, and 322). Ud., 3:66-4:4.)

27. The pixel commandthreads 312, 314, and 316 and the vertex

commandthreads 318, 320, and 322, exemplify the commandthreads of the

claimed inventions.

28. The claims of the °053 patent also include an arbiter. The arbiter in a

preferred embodimentis operable to select a command thread from the vertex and

-10-

AMD1044_0010446

ATI Ex. 2002

IPR2023-00922

Page 13 of 181

ATI Ex. 2002
IPR2023-00922
Page 14 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

pixel reservation stations by picking the first commandthread ready to execute.

(/d., 3:49-51.) The arbiter’s selection is based on a priority scheme, which may

depend on which commands have alreadybeen or are to be executed within a

commandthread and/or the age of the commandthread in the reservation station.

(1d., 3:31-36.)

29. The arbiter provides the selected command thread to a command

processing engine. (/d., 3:8-11.)

30. The ’053 patent specification recites two types of exemplary

command processing engines: the ALU processing engine referred to as ALU 308

and a texture processing engine, such as a graphics-processing engine 310. (/d.,

4:30-33.)

VI. BACKGROUND ON CHIP DESIGN AND AT?S CHIP DESIGN

31. Inmy experience, modern graphics chip production is a two-step

process. First, the integrated-circuit designers design a chip almostentirely on a

computer using computer-aided—design (“CAD”) tools. The integrated-circuit

designers depend on software-based design, simulation, verification, and layout

tools. These tools ensure that production integrated circuits function and work as

intended. This process can take several months or years. These CAD tools are used

to create a chip specification, generally at multiple levels of abstraction, that serve

-1ll-

AMD1044_0010447

ATI Ex. 2002

IPR2023-00922

Page 14 of 181

ATI Ex. 2002
IPR2023-00922
Page 15 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

as both a detailed specification of the chip and as a modelofits structure and

function. This has been the predominant design methodology for graphics chips

since at least 1990.

32. The CAD tools are used to model and validate the chip design. While

the design representation at this stage may resemble software, its primary purpose

is to be an accurate representation of a hardware chip design. In the case of

hardware description languages like Very High Speed Integrated Circuit Hardware

 Description Language (“VHDL”) or Verilog, the design languageis generally the

most accurate formal specification of the structure and function of the chip that the

design engineer will prepare. It is used to directly create the manufacturing

tooling. Only after the integrated-circuit designers are confident that the design

will function properly, and the chip design passes commercial specifications, the

layoutfile created by the CAD tools from the design languageis sent to a chip-

manufacturing facility for fabrication. Since layout files were historically provided

on a magnetic tape, this is often called a “tape-out.” At this point the design

process has been completed and the manufacturing step is intended to simply

reproduce an exact copy of what is described in the layout file. The layoutfile

represents the manufacturing tooling for the chip-manufacturing facility. The chip-

manufacturing facility uses this tooling to fabricate a physical integrated circuit,

commonly referred to as a “chip.”

-12-

AMD1044_0010448

ATI Ex. 2002

IPR2023-00922

Page 15 of 181

ATI Ex. 2002
IPR2023-00922
Page 16 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

33. Inmy experience, although both circuit design and circuit fabrication

are both necessary components of chip production, in reality they are separate and

distinct activities. Typically, chip design and chip fabrication are performed by

different entities, particularly with respect to graphics chips. Ordinarily, circuit

designers do not fabricate chips, and chip fabricators do not design circuits.

34. Itis my understandingthat, the patent owner here, ATLis a chip-

design company. This means that ATI designs integrated circuits, such as chips.

ATI does not fabricate chips. Instead, ATI uses software-based CAD tools to

design and reduce to practice the chip components claimed in the 7053 patent. Only

after the components claimed in the °053 patent (along with other chip

components) worked for their intended purpose, would ATI generate the tooling

and send it for fabrication. Because the ’053 patent pertains to the chip-circuit

design, the actual reduction to practice of the claims of the 053 patent would have

occurred when the RTL code or the Emulator Code performedall limitations of the

claims.

VIL THE CODE FOR ATI’S R400 CHIP

35. [have been asked to reviewthe source code for ATI’s R400 chip. I

will cite to the source code using the following format: (sq.v, 1:1-10). This

example citation points to exhibit sq.v, at page 1, lines 1-10.

AMD1044_0010449

ATI Ex. 2002

IPR2023-00922

Page 16 of 181

ATI Ex. 2002
IPR2023-00922
Page 17 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

36. There are two corresponding design databases that comprise the

source code: R400 RTL code and Emulator Code. The R400 RTL codeis

implemented in a hardware-description language (HDL), called Verilog. Verilog is

used to design and verify digital circuits at register-transfer level of abstraction

which can include both structure and function. For example, in the R400 program,

Verilog was used to validate the integrated-circuit version of the graphics-

processing system recited in claims 1, 2, 5, 6, and 7.

37. The R400 Emulator Codeis written in a well-known C++

programming language. The R400 Emulator Code includes source code that, when

executed, emulates the behavior of the graphics-processing system recited in

claims 1, 2, 5, 6, and 7 using software that executes on a computer. C++ is

commonly used to specify the function of a software system, but chip designers

often also use it to specify and emulate structural aspects of hardware systems,

such as, chips.

38. In my experience having both RTL code and C++ code

implementation is commonin the chip design industry. The C++ codeis faster to

write and easier to debug by the chip designers. It runs faster, so larger examples of

user input can be tested. The chip designers often first write and test the chip

design in C++ or another software language. The test results from the chip code in

-14-

AMD1044_0010450

ATI Ex. 2002

IPR2023-00922

Page 17 of 181

ATI Ex. 2002
IPR2023-00922
Page 18 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

C++ are saved. Next the RTL codeis written in Verilog or another hardware-

description language and is compared against the test results generated using the

C++ code. By comparing two different descriptions of the hardware

implementation, it is more likely that errors can be found and removed.

39. [have compared each element of claims 1, 2,5, 6, and 7 to the R400

R400 RTL code and the Emulator Code. Below, I will discuss each element of

claims 1, 2, 5, 6, and 7, and the correspondingfiles, functions, and interfaces along

with the pages and line numbers in the RTL and/or Emulator Code that disclose the

same element. In my opinion, both the R400 RTL code and the R400 Emulator

Code each disclose all elements of claims 1, 2, 5, 6, and 7.

40. Atleast one version of the R400 RTL code whichdiscloses all

elements of claims 1, 2,5, 6, and 7 includesthe files generated before or on August

5, 2002, and are attached as Exhibits 2072-2087.

41. Atleast one version of the R400 Emulator Code which disclosesall

elements of claims 1, 2, 5, 6, and 7 includes the files generated before or on August

5, 2002, and are attached as Exhibits 2088-2104.

A, The R400 RTL code corresponding to claims I, 2, 5, 6, and 7

42. AsIT mentioned above, the R400 RTL Code is written in Verilog

language. Verilog is a hardware-description language used to design and specify

-15-

AMD1044_0010451

ATI Ex. 2002

IPR2023-00922

Page 18 of 181

ATI Ex. 2002
IPR2023-00922
Page 19 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053

hardware systems. That 1s, Verilog describes behavior of a hardware circuit in

terms of inputs, outputs, state machines, logic equations, and modules. When a

module is declared in Verilog, the declaration is definitional. This serves as a

specification of function and structure. Copies of that module can then be

instantiated by specifying the inputs and outputs that carry information to and from

a particular copy of the module. This instructs the CAD tools to create a copy of

the specified circuits in each final product. It is possible to have multiple copies of

a module, with the inputs and outputs of each copy separately specified in the

design. The logic equations for the module, which describe howthe module

operates based on different inputs, are also specified. This logic can be

combinational, representing a set of basic logic gates, or sequential, which can

include a state machine that controls the operation over time. There are many

different ways to write these logic equations, but each is converted to a set of basic

logic gates by the CAD tools. From the files produced by the R400 RTL code, a

chip manufacturer is able to manufacture a hardware circuit that includes structure

and behavior described in the R400 RTL code. This is a standard practice in any

modern graphics integrated circuit design.

43. The R400 RTL code includes the sq.v, sp.v, tp.vfiles and their

corresponding sub-files and referenced modules that specify and generate a

hardware circuit which is a graphics-processing system as recited in claims1, 2,5,

- 16 -

AMD1044_0010452

ATI Ex. 2002

IPR2023-00922

Page 19 of 181

ATI Ex. 2002
IPR2023-00922
Page 20 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

6, and 7. In particular, the sq.v file specifies and generates a sequencer which

includes an arbiter and the at least one memory recited in the claims. The sp.v and

tp.v files each specify and generate a command processing engine — the ALU

processing engine (sp.v) and a texture processing engine(tp.v). I will discuss each

of these components below.

I. Claim I

a. ‘The Preamble

44. The preamble of claim | recites “4 graphics processing system.” The

R400 RTLcode included in the files attached as Exhibits 2072-2087 generates

components of the graphics-processing system of claim 1. The file, sq.v, defines

the hardware blocks of the graphics-processing system componentcalled a

sequencer. In particular, sq.v instantiates a texture thread arbiter

u_sqtexthread_arb (sq.v, 43:3-44-21), an ALU thread arbiter

u_sqalu_thread_arb (sq.v, 47:6-48-24), a memory buffer that stores pixel

commandthreads usqpixthreadbuff(sq.v, 38:27-42:29), and a memory buffer

that stores vertex command threads u_sq_vtx_thread_buff(sq.v, 34:22-38:24). The

memory buffers are what the ’053 patent refers to as the pixel reservation station

and the vertex reservation station.

-17-

AMD1044_0010453

ATI Ex. 2002

IPR2023-00922

Page 20 of 181

ATI Ex. 2002
IPR2023-00922
Page 21 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

45. Thave generated a visual representation of these components, as I

understand them, based on the R400 RTL code, in a figure below. The figure

includes the names of the components as they are instantiated in sq.v.

Pixel Reservation Station | | Vertex Reservation Station. |

/u_sq_vtx_thread_buff|| u_sqpixthread_buff|
(sq.v)(sq.v)

ALU Thread Arbiter Texture Thread Arbiter

| u_sqalu_threadarb | u_sqtexthread_arb |
(sq.¥)

AAACOAAAAAOEOOAAAROMRRNRRR
sq.v

46. The texture thread arbiter (u_sq_texthreadarb) and the ALU thread

arbiter (uw_sq_alu_thread_arb) are arbiterof the °053 patent that I described above,

and that is recited in claim 1.

- 18 -

AMD1044_0010454

ATI Ex. 2002

IPR2023-00922

Page 21 of 181

ATI Ex. 2002
IPR2023-00922
Page 22 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

A7. Also, the u_sq_pix_thread_buffis amemorybufferfor a pixel

reservation station, while the usq_vix_thread_buffis a memory buffer for a vertex

reservation station, which I also described above. The u_sq_pix_thread_buffand

the wusq_vixthread_buffstructures are componentsofthe at least one memory

device recited in claim 1.

b. The at Least One Memory Device

48. Thefirst element of claim | recites “ut /eust one memorydevice

comprising afirst portion operative to store a plurality ofpixel commandthreads

and a secondportion operative to store aplurality ofvertex command threads.”

49. As I discussed above, the sq.vfile instantiates a memory buffer for

pixel commandthreads called u_sq_pix_thread_buffmodule (sq.v, 38:27- 42-29)

and a memorybuffer for vertex command threads called au_sq_vix_threadbuff

module (sq.v, 34:22-38-24). The sqthreadbuffmodule defined in

sq_thread_buff.v generates usqpixthreadbuffandu_sq_vtx_thread_buff.

Module uwsqpixthreadbuffis the pixel reservationstation and

u_sqvtxthreadbuffis the vertex reservation station of the °053 patent. I have

generated a visual representation of the pixel reservation station and the vertex

reservation station, as I understandit, based on the R400 RTL cade,in a figure

-19-

AMD1044_0010455

ATI Ex. 2002

IPR2023-00922

Page 22 of 181

ATI Ex. 2002
IPR2023-00922
Page 23 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

below. The figure includes the names of the components as they are instantiated in

files that describe the structure and behavior of the components.

 Vertex Reservation StationPixel Reservation Station

u_sqvtx_thread_buft

(sq.v) u_egpixthread:butt
(eq)

 aqthread.butt. eq.threadbuftt.v

50. With respect to the pixel command threads and vertex command

threads, each of sq_pix_thread_buffand sq_vix_thread_buffincludes 16 registers,

referred to as u0_sq_statusregtoul5sqstatus_reg. (sq_thread_buff.v, 37:16-

54:16.) Each register stores a command thread, including the command thread’s

state and status information. The hardware code that generates a second register

that stores a commandthread1s replicated below:

sqstatusreg #e TIDWIDTH, STATUSWIDTH)
uisqstatusreg (

.tChread_typestrap (thread_type_strap),
-ismload(ism_status_selfi]), .ism_ thread_id(statetailptrgq),
.ism_resource (ismresource),

-ism_first_thread(ism_firstthread),
.cfsupdate(cfsupdate),

fsthread_id(cfsthread_id),
.cfsalu_instr_pending(cfs_alu_instr_pending),
.cfspulsesx(cfspulsesx),
.cf£slastinstr(cfslast_instr),
.cf&sposailocated(cfsposaliocated),
.cfsalice_type(cfsalloctype),
.cfsaliocsize(cfsalioc_size),

‘fstexreadpending(cfs_ tex_read_pending),
-C£s_seriai(cfsserial),
.cfsresource(cfsresource),

Q

-~20-

AMD1044_0010456

ATI Ex. 2002

IPR2023-00922

Page 23 of 181

ATI Ex. 2002
IPR2023-00922
Page 24 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

.cfsthreadvalid(cfs_ threadvalid),
-SXposavail (posavaii_q), .sx_buf_avail(buf_avail_gq),

-baram cache wptrq(paramcache wptrq),
-winnersel (winnerstatus_selfl]),
.tp_done(quai_tpdone), .tpthread_id(tpthread_id_q),
-aisdone (qualaisdone), .ais_ threadid(aisthreadid),

-popthread (popthread),
-texreqg(tex_reqqgfij), .alu_reg_qg(alu_req_g/iJ}),
. statusinq(status_data2) , -Statusout_q(statusdata_i),
Clk (cik), .reset (reset)

(sq_thread_buff.v, 40:5-41:7)

51. There are 16 command thread registers in sq_pix_thread_buffand

sixteen commandthread registers in sqg_vixthreadbuff.

52. Additionally, each of the vertex command threads and the pixel

commandthreads also stores its constituent instructions in an instruction store.

These instructions are accessed using the command thread’s state and status

information once an arbiter selects the commandthread for processing, as will be

described below. The instruction store is instantiated as sq_instruction_store using

the sq_instruction_store module in sq.v at 87:21-88:25. The instruction store

module is defined in the sq_instruction_store.vfile. It consists of 4096 instruction

words whichare each 96-bits wide. I have generated a visual representation of a

reservation station (which can be either vertex or pixel reservation station)

operable to store command threads and of the instruction store operable to store

instruction(s) of the command thread. The visual representation of the figure below

is based on my understanding of the R400 RTL code.

-~?1-

AMD1044_0010457

ATI Ex. 2002

IPR2023-00922

Page 24 of 181

ATI Ex. 2002
IPR2023-00922
Page 25 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053
i is kit eh: ee is‘, ss

Reservation Station

u0_sq_statusreg 4

ul5sqstatus_reg~"

sqthreadbuff.v

sq_instruction store.v

53. The sq_pix_thread_buffmemory buffer (the pixel reservation station)

and the sq_vix_thread_buffmemory buffer (the vertex reservation station)

generated using sqthreadbuffmodule along with the instruction store form the at

least one memory device recited in claim 1. The sq_pixthreadbuffbuffer and the

instruction store form afirst portion of the at least onememory operative to store a

plurality of prxel command threads. The sq_vix_threadbuffand the instruction

store form the second portion of the at least one memory operative to store a

plurality of vertex command threads.

54. In this way, the sq.v, the sq_thread_buff.v and the

sq_instruction_store.v files include the R400 RTL code that defines the at least one

memory device comprising a first portion operative to store a plurality of pixel

~22.

AMD1044_0010458

ATI Ex. 2002

IPR2023-00922

Page 25 of 181

ATI Ex. 2002
IPR2023-00922
Page 26 of 181

Case IPR2015-00325 of

USS. Patent No. 7,742,053

command threads and a second portion operative to store a plurality of vertex

commandthreads.

c. The Arbiter

55. The second element of claim | recites “an arbiter, coupledtothe at

least one memory device.”In the sq.v, the sequencer instantiates two instances of

the arbiter. The uwsq_alu_thread_arb arbiter and the u_sq_tex_thread_arb arbiter

are two instances of an arbiter that collectively correspondto the arbiter described

in the ’053 patent, and that is recited in claims | and 5.

56. The wusqalu_thread_arb arbiter performs vertex and pixel command

thread arbitration for an ALU processing engine (sq.v, 47:6-48:24), and the

u_sqtexthreadarb arbiter performs vertex and pixel commandthread arbitration

for a texture processing engine (sq.v, 43:3-44:21). I have generated a block

diagram representation ofthe two arbiters, based on my understanding ofthe R400

RTL code, the u_sq_alu_thread_arb andu_sq_tex_thread_arb, below. The figure

includes the names of the components as they are instantiated and files that

describe the behavior of the components.

~23.-

AMD1044_0010459

ATI Ex. 2002

IPR2023-00922

Page 26 of 181

ATI Ex. 2002
IPR2023-00922
Page 27 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053is: se 8

Sequencer

Pixel Reservation Station Vertex. Reservation Station

u_sqpix_thread_buff u_sq_vtx_threadbuff
isqev) | (sqev)

Texture Thread ArbiterALU Thread Arbiter

u_sqaluthreadarb |
(sq.v)

u_sqtexthreadarb
(sq.v)

sq.v

57. The R400 RTL code defining each instance ofthe arbiter is included

in the sq_thread_arb.v file. The definition of the arbiter and the inputs and outputs

associated with the arbiter are replicated below:

module sq thread arb

arb type strap, // tex = 1, alu = 0
state read phase, // share read access between tex and alu arbs

// vertex and pixel thread buffer interface

vtxreqqd, // 16 vtxthreadbuff requests

vtxwinnergq, // winning vertex thread_id sent back to Vertex Thread
Buffer

vtxwinnerack, // request acknowledge - indicates to TB that the
winner is valid

vtxstate, f/f
vtxstatus, f/f

~ 24 -

AMD1044_0010460

ATI Ex. 2002

IPR2023-00922

Page 27 of 181

ATI Ex. 2002
IPR2023-00922
Page 28 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

pix_regq, // i6 pixthreadbuff requests

pixwinner_g,// winning pixel thread_id sent back to Pixel Thread
Buffer

pixwinnerack, ff

pixstate, Jf
pixstatus, fi/

// control flow sequencer interface

arbrts0, // ready to send the winner to CFSO
arbrtsi, // ready to send the winner to CFSi
arbstate, f/f the state sent to the CFS
arbstatus, // the status sent to the CFS
arbthread_type, {// VEX or pix

cfs rtro, // CESO can accept a thread
cfsrtri, // CFS1 can accept a thread (for alu cfs's)

cfsi_enable, // enable sending packets to CFS1 (this a local
register setting: SQFLOWCTL.ONEALU)

(sq_thread_arb.v, 2:8-4:1.)

58. AsI showin the block diagram above, the usqaluthreadarb and

u_sq_texthread_arb arbiters are each coupled to the at least one memory whichis

operable to store the plurality of the pixel command threads andthe plurality of the

vertex command threads. For example, each arbiter receives the 16 pixel thread

requests and 16 vertex commandthread requests including the command threads’

state and status information from the sq_pix_thread_buff(the pixel memorybuffer)

andthe sq vix thread buff(the vertex memory buffer), using the inputs below:

input [15:6] pixreqgq;
input [*‘SO PIXSTATEWIDTH-1i:0] pixstate;
input [SQPIXSTATUSWIDTH-1:0] pixstatus;

~25.

AMD1044_0010461

ATI Ex. 2002

IPR2023-00922

Page 28 of 181

ATI Ex. 2002
IPR2023-00922
Page 29 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

(sq_thread_arb.v, 5:4-6; see also sq.v, 43:25-44:5 and 48:2-7.)

input [15:0] vtxreqq-
input [-* SQVIXSTATEWIDTH-1:0] vtx_state;
input [°SOQVIXSTATUS WIDTH-1:0] vtx_status;

(sq_thread_arb.v, 4:20-22; see also sq.v, 43:18-23 and 47:21-26.)

59. Each pixreqg input receives 16 pixel commandthread requests, and

each pixstate and pixstatus input receives the state and status information for

each of the 16 pixel command thread requests. Similarly, each vtx_reqg signal

receives 16 vertex command thread requests, and each vix_state and vix_status

input receives the state and status information for each of the 16 vertex command

threads.

60. The corresponding output from each of the pixel and vertex memory

buffers that is connected to these inputs is described in sq_thread_buff.v andis

replicated below:

output [TBDEPTH-1:0] texreqgd;
output {STATEWIDTH-1:0] texstategq;
output [STATUSWIDTH-1:0] texstatusq;

(sq_thread_buff.v, 9:12-14; see also sq.v, 36:16-22.)

output [TBDEPTH-1:0] alureqgq
output {STATEWIDTH-1:0] alustateg;
output [STATUS_WIDTH-1:0] alu_statusq;

(sq_thread_buff.v, 9:23-10:2; see also sq.v, 37:4-9.)

-~26-

AMD1044_0010462

ATI Ex. 2002

IPR2023-00922

Page 29 of 181

ATI Ex. 2002
IPR2023-00922
Page 30 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

61. Whenthe uwsq_alu_thread_arb or u_sqtexthread_arb arbiter

selects a pixel command thread or a vertex commandthread, the arbiter

communicates the thread id of the selected pixel commandthread and the vertex

commandthread to the pixel memory buffer and the vertex memory buffer, using

the interface below:

output [3:0] vexwinnergq;
output [0:0] vtx_winnerack;

(sq_thread_arb.v, 5:1-2; see also sq.v, 43:19-21 and 47:21-24.)

output [3:0] pixwinnergq;
output [O:0] pixwinnerack;

(sqthread arb.v, 5:8-9; see also sq.v, 44:1-3 and 48:3-5.)

and

input [TBADDRWIDTH-1:0] texwinnergq;
input [0:0] texwinnerack;

(sq_thread_buff.v, 9:16-17; see also sq.v, 36:18-19.)

input [TBADDRWIDTH-1:0j alu_winnerq;
input [0:0] alu_winnerack;

(sqthreadbuff.v, 10:4-5; see also sq.v, 37:6-7.)

oN bo The interfaces described above couple each of the

u_sqalu_thread_arb arbiter and the u_sq_tex_thread_arb arbiter to the pixel

thread memory buffer and the vertex thread memory buffer which are the at least

one memory device.

-~2?7-

AMD1044_0010463

ATI Ex. 2002

IPR2023-00922

Page 30 of 181

ATI Ex. 2002
IPR2023-00922
Page 31 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

d. The Arbiter is Operable to Select a Command Thread

63. The arbiter of claim | is “operable to select a commandthreadfrom

either ofthe plurality ofpixel commandthreads andthe plurality ofvertex

command threads based on relative priorities ofthe plurality ofpixel command

threads and the plurality ofvertex command threads.”

64. As already discussed above, the usqaluthreadarb arbiter and

u_sqtexthreadarb arbiterretrieve the pixel thread requests (called pixreg_q) as

inputs from the pixel thread memory buffer (sq_pixthreadbuff) and the vertex

thread requests (called vix_reg_q) as inputs from the vertex thread memory buffer

(sq_vixthreadbuff).

65. Each arbiter then selects a winning pixel commandthread from the

pixel thread requests and a winning vertex commandthread from the vertex thread

requests. The structure and functionality that selects the winning vertex command

thread and the winning pixel commandthreadis specified in sq_thread_arb.v. For

example, these arbiters select the winning pixel command thread using a priority

encoder, which prioritizes the pixel commandthreads as replicated below:

{f/f - pixel request priority encoder

reg Pixwinnervid;
reg [3:0] pixwinner;

always @(pixreq_q)
begin

~28 -

AMD1044_0010464

ATI Ex. 2002

IPR2023-00922

Page 31 of 181

ATI Ex. 2002
IPR2023-00922
Page 32 of 181

Casez

ff1

pixwinner

(p2 Xredq)
6'b0000_0000_0000_ 0000:
4'*hf; end

L6'B100G 0000 _0000 O0C00:

pixwinner = 4'hf; end
16'b?1i00_ 00000000_00c0:

pixwinner = 4'he; end
i6'b??i0 0000_0000_0000:

pixwinner = 4'hd; end
ié'bP??l 00000000_0000:

pixwinner = 4'he; endL6'breerr 1000_Co0eOCC:

pixwinner = 4'hb; end
16'b???? 2100_0000_ 0000:

pix_winner = 4'ha; end
iG'be??? ??10 0000_0000:

pixwinner = 4'n9; end
i6'berere ?pei00000000:

pixwinner = 4'h8;end
16'beere Pepe?10000000:

pix winner = 4'h7; end
7 1L6'b???? 22??? 2100 0000:

pixwinner = 4'h6; end
L6é'brer?e peer prio occod:

pixwinner = 4'h5; end — —
LE'bPe?ePPre? PPPl OOd00:

pixwinner = 4'h4; end
TE6' bere POP? PPP?-1000

pixwinner = 4'h3;end
L6'DPPPPPPP? PPPPPLCC:

pixwinner = 4'h2; end
LE’ber? Pre? PPP? PPide:

pix_winner = 4'hi; end
L6E' bP??? PPPP PPPP PPPI:

pixwinner = 4°hOsend ~ ~
//default:

pixwinner = 4'DXxxx; end
default:

pixwinner = 4'DxXxxx; end
endcase

end

66.

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

begin pixwinnervid = Lo;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HI;

begin pixwinnervid = HI;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HI;

begin pixwinner vid = HI;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HI;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HT;

begin pixwinnervid = HI;

begin pixwinnervid = X;

begin pixwinnervid = LO;

(sqthreadarb.v, 12:15-13:20.)

Each arbiter also selects the winning vertex command thread using a

priority encoder, which prioritizes the vertex command threadsas replicated

below:

~29.

AMD1044_0010465

ATI Ex. 2002

IPR2023-00922

Page 32 of 181

ATI Ex. 2002
IPR2023-00922
Page 33 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

// ~ vertex request priority encoder

reg vtxwinnervid;
reg [3:0] vtx_ winner;

always @(vtxreqq)
begin

casez (vtx_reqq)
L6'HOIQOC_O000_0000_ 0000: begin

vtxwinner = 4'hf; and
16'b1000_C00000000000: begin

vtx_winner = 4'hf; “and
i€'b?100_0000_0000_0000: begin

vtxX_winner = 4'he; end
16'b??100000_ 00000000: begin

vtxwinner = 4'hd; end
L6'breri OCO0COCO O0CO0: begin

vtxwinner = 4'hc; end
L16'b???? 100000000000: begin

vtx_winner = 4'hb; end
ié'be??? 21000000 _0000: begin

vtex_winner = 4'ha; and
ié'beere ?Pi00000 0000: begin

vtxwinner = 4'h9; end
L6'brere PeeiCOCC OCO0: begin

vtxwinner = 4'h8; end
Le'bhrere peer10000000: begin

vtx_winner = 4'h7; end
Lé'b????Pre? 21000000: begin

vtx_winner = 4'hé; end
ié'beeere eee? period0000: begin

vtxwinner = 4'h5; end
L6'bPeePrPPP? PPP0000: begin

vtxwinner = 4'h4; end
L6'b?Pee? PPPP PPP? 1000 begin

vtx_winner = 4'h3;end ~
L6'bD??P? PPP? PPP? P1100: begin

vtx_winner = 4'h2;end —
L6'bPer?r PPP? PPrPeP P?P10: begin

VtxX_winner = 4'h1-end ~ ~
L6'breerr Peer pepe Peri: begin

vtxwinner = 4°hO;end | 7
default: begin

vtxwinner = 4'Dxxxx; end
endcase

end

-~30-

vexwinnervid LO;

vtxwinnervid=HI;

vtx_winnervid HI;

vtxwinnervid = HI;

vtxwinnervid HI;

vtxwinnervld=HT;

vtx_winnervid HI;

vtx_winnervid AI;

vtxwinnervid HI;

vexwinnervid HI;

vtxwinnervid HI;

vtx_winnervid HI;

vtxwinnervid = HI;

vexwinnervid HI;

vtxwinnervid=HI;

vtx_winnervid HI;

vtxwinnervid = HI;

vtxwinnervid xX;

(sqthreadarb.v, 11:8-12:12.)

AMD1044_0010466

ATI Ex. 2002

IPR2023-00922

Page 33 of 181

ATI Ex. 2002
IPR2023-00922
Page 34 of 181

67.

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

Once eacharbiter selects a winning pixel command thread and a

winning vertex commandthread, the arbiter chooses the command thread from the

winning pixel command thread or the winning vertex command thread. This

correspondsto the selected command thread recited in claim |. To select the

commandthread, each arbiter uses the R400 RTL code below, such that the

winning vertex command thread, if any, has priority over the winning pixel

commandthread:

Case

have to

if fid winner}

begin

end

t

vtx_winnervid_q <= vtx_winnervid;
pix_winnergq <= pix_winner;
pixwinnervid_gq <= pixwinnervid;

vtx winner ¢g <= vtx winner;

(tta current state)
TTAO:

begin
// - ack is connected to TB State Mem read enabie, so

// wait until the correct phase to ack

>readphase == arb_type_strap)
vtxwinnervid_q
// simply give verts the priority

if (state
(

begin

vtx_winnerack = HI;
tta_next_state = TTAi;

end

eise if (pixwinnervild_g)
begin

pixwinnerack = HI;
tta_next_state = TTA2;

end

end

AMD1044_0010467

ATI Ex. 2002

IPR2023-00922

Page 34 of 181

ATI Ex. 2002
IPR2023-00922
Page 35 of 181

Case IPR2015-00325 of

USS. Patent No. 7,742,053

(sqthreadarb.v, 16:23-17:6, 20:19-21:16.)

68. Wheneacharbiter selects the winning command thread, the arbiter

also outputs the attributes of the commandthread using the arb_state, arb_status,

and arbthreadtype signals. (sq_thread_arb.v, 5:14-16 .)

69. As such, each arbiter is operable to select the command thread, as

recited in claim 1.

2. Claim 2

a. The Preamble

70. Claim 2 recites the graphics-processing system of claim 1, further

comprising “a commandprocessing engine, coupled to the arbiter.” The R400

RTL code specifies two command processing engines: the ALU processing engine

and the texture processing engine. The R400 RTL code for the ALU processing

engine is included in sp.v and the corresponding sub-files and modules. The R400

RTL code for the texture processing engine is includedin tp.v and the

corresponding sub-files and modules. Either the ALU processing engine or the

texture processing engine corresponds to the commandprocessing engine recited

in claim 2.

AMD1044_0010468

ATI Ex. 2002

IPR2023-00922

Page 35 of 181

ATI Ex. 2002
IPR2023-00922
Page 36 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

71. Below I generated a block diagram based on my understanding of the

R400 RTL code, describing howthe ALU processing engine and a texture

processing engine are coupledto the arbiter.

= 7

Sequencer

Texture Thread Arbiter

u_sq_tex_thread_arb |
(sq.v)

ALU Thread Arbiter

u_sq_alu_thread_arb |
(sq.v) ; oY

ALU Processing Engine Texture Processing Engine
72. The commandprocessing engine is coupled to the arbiter through the

hardware circuitry, including an sq_ct/flowseg module (also referred to as a CFS

AMD1044_0010469

ATI Ex. 2002

IPR2023-00922

Page 36 of 181

ATI Ex. 2002
IPR2023-00922
Page 37 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

module and defined in sq_ctl_flow_seq.v) and an sqtargetinstrfetch module

(also referred to as a TIF module and defined in sq_target_instr_fetch.v).

73. Inthe case of the first command processing engine, the ALU

processing engine, the TIF module is coupled to the sq_aisqueue module (also

referred to as an AIQ module) whichis specified in sq_alu_inst_queue.v. The AIQ

module provides the command thread’s instructions to the sq_ais_oulput module

(also referred to as an AIO module) which is specified in sq_ais_output.v. The AIO

module provides the command thread’s instruction to the ALU command

processor. BelowI also generated a detailed diagram, based on my understanding

of the R400 RTL code, describing howthe ALU processing engine is coupled to

the arbiter.

AMD1044_0010470

ATI Ex. 2002

IPR2023-00922

Page 37 of 181

ATI Ex. 2002
IPR2023-00922
Page 38 of 181

Case IPR2015-00325 of

tlsgainetiflow,seg; isyaleinstrfete "| alsqalkinstrqueue

SgCtl. flowneque sgvtarget_inste feteh.v | egaluisetquewe or

U.S. Patent No. 7,742,05
ocen ee nee ce ne nee ce ene se erSaeteetett et hhAn

] Sequenceri eg preeminenttntncennnCitnmeeCtettnetneReicttettCiy,puntsnncteciunnratontnintet
I ;
i CPS Module-0 AI Module ii a

i “4 1 ge abe el lee seer 6 wl eg alu instr fete om ad 4g ale inet aoei Arbiter cileiiesiiie ™ aie = EEE cconeuenageonunnnsnennt
i (for ALLL ag ctl Slow seq. aq target inete fetch.v aq ale inet. queoe.y

i} Processing|Lo_ __f AiO Module
;| Engine)Feepomnsccinase }

Instruction Store : i
i I .
I aqinstractionstore.v i Wegais_outpet

0sq-ale —— |i threadarb rennet et womengathreadark or
aq.threadarb. CFS Modine 1 TIF Module.1 AIG Module 7 pmo

)
i
i
i
i
i
i
i

Sp ov

74. The details of how a commandthread’s instruction(s) are provided to

the ALU processing engine are described below with the reference to the figure

above.

75. Inthe case of the second command processing engine, the texture

processing engine, the TIF module is coupled to the sqg_tisqueue module (also

referred to as a TIQ module) whichis specified in sq_tex_inst_queue.v . The TIQ

module connects to the sqg_lex_instr_segq module (also referred to as a TIS

module), which is specified in sq_tex_inst_seq.v. The TIS module provides the

commandthread’s instructions to the texture processing engine. I generated a

3

AMD1044_0010471

ATI Ex. 2002

IPR2023-00922

Page 38 of 181

ATI Ex. 2002
IPR2023-00922
Page 39 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053

detailed diagram below, based on myunderstanding of R400 RTL code,

illustrating how the texture processing engine is coupled to the arbiter.

er se we aeseei“thsneseeetelya

1 senting Sequencer
i | 3 Arbiter sani sities
|| {for Texture CFS Module TIE Module TIO Module
|| PROCESSING |
1 Engine) i L- _
Hy ; ulagteeotifiow. | | alsgtexdnetefetch aagtexinetqueue
uy Dl a bem

I eqchiflowseq. : (sqtargetinateTetch.w aqhexLnetquien. v | EnohEBey
i | giaq tee: eamatneseisnnnonaisivicinicsaiproiiiinaition!—anssanenisniinco seisnnssnrainininninnasiinociinsincathread-arh ae eq tee dnete
i Instruction Store gee

| eqvthresdarb. :: Sy anebrection store.v
pe (nnn
i i

i sq.v |
<sournnanennssiisoansnnuinacsninsssiiy

Texture Processing
Ergin

to.
76. Details describing how a commandthread’s instructions are provided

to the texture processing engine are described belowwith respectto this figure

above.

77. As such, the commandprocessing engine, whether the ALU command

processing engine or the texture processing engine, is coupled to the arbiter.

b. The Arbiter is Operable to Provide a Command
Thread to the Command Processing Engine

78. Claim 2 also recites “wherein the arbiterisfurther operable to

provide the command thread to the commandprocessing engine.”

AMD1044_0010472

ATI Ex. 2002

IPR2023-00922

Page 39 of 181

ATI Ex. 2002
IPR2023-00922
Page 40 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

79. The arbiter in the R400 RTL code provides the selected command

thread to the ALU processing engine and the texture processing engine. I have

included detailed block diagrams of the components that pass the selected

commandthread to the ALU processing engine and the texture processing engine

described in detail below.

80. Each of the two arbiters selects a command thread. The arbiter outputs

the selected command thread using the arb_state, arb_status, and arb_thread_type

signals. (sq_thread_arb.v, 5:14-16.) The arbiter then passes the selected command

thread by way of these signals to the CFS module called sqctlflowseq.

81. The CFS module receives the command thread by wayof the

arbstate, arb_status, and arb_thread_type signals and uses these values to

calculate a pointer to the commandthread's first instruction in the instruction store

and the number of command thread instructions that require processing.

82. The CFS moduleis specified in the sq_ctrl_flow_seq.vfile. There are

three instances of the CFS module instantiated in sq.v. The

uOsqalu_ctlflow_seq module (sq.v, 51:9-53:21) is instantiated for the first ALU

command processing engine, and the u/_sq_alu_ctlflow_seq module for the

second ALU commandprocessing engine (sq.v, 53:24-56:8). Also, a third CFS

AMD1044_0010473

ATI Ex. 2002

IPR2023-00922

Page 40 of 181

ATI Ex. 2002
IPR2023-00922
Page 41 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

module is instantiated as the uwsqtexctlflow_seq module for the texture

command processing engine. (sq.v, 44:24-47:23.)

83. The code which specifies the CFS module is replicated below.

module sq ctl fiow seq
(

cfstypestrap, // CO:alu0, Ol:tex, 10:alui

isphase, (f/f OO:CFE, Ol:Tex, 10:ALU, i11:CP
is_subphase, f/f OOraluO, Ol:tex, 10:alui, il:tex
cfsphase, // OO:alu@, Ol:tex, 10:alui, ii:tex

// locai registers
// ~ per chip
instbase_vtx, // vertex base
instbasepix, // pixel base

/f/ - per context

vsprogrambaseset, // connected to SQVS_PROGRAM.BASE (12
bits)

psprogrambaseset, // connected to SOQPSPROGRAM.BASE (12
bits)

// thread arbiter input
arbrts, f/f
arbstate, if
arbstatus, ff
arbthread_type, // vertex or pixel
cfsrtrq, // CFS can take a new packet

pe_base_g, // parameter cache base write pointer

// instruction store interface

is_read_addrgq, // instruction store read address
isreaddataq, // instruction store read data

// output to the thread buffer (for thread updates)
cfsupdateq,// load updated status info from CFS
cfs_state, ff
cfsstatus, //

// outputs to the target instruction fetcher
cfsrtsgq, // Ctl packet and ptr are valid
cfscti_pkt_q, // the control packet (lod_correct, valid_bits,

gpr_base, context_id)
//Cispebaseq, // param cache base - part of cfsstate...

~38-

AMD1044_0010474

ATI Ex. 2002

IPR2023-00922

Page 41 of 181

ATI Ex. 2002
IPR2023-00922
Page 42 of 181

cfstgt_instrptrqd,
target instruction

cfs tgt_instr_cnt_q,
fetched

cfsthreadtypeg, //
tifrtr, if

globalexportid, //
//cfsexportid, Af
cfstifxfc, Sf

busy,
CLK,
reset

dy

84.

Case IPR2015-00325 of

U.S. Patent No. 7,742,053
// the instr store address of the first

// the number of target instructions to be

vertex or pixel
TIF can take a new packet

From sq_exp_alioc
to sqexp_ailoc (part of
to sqexpalloc

(sq_ctlflow_seq.v, 2:6-4:5.)

The CFS module includes an arbiter interface, as replicated below:

// - thread arbiter input
arbrts, ff
arbstate, Sf
arbstatus, aa
arbthread_type, ff

85.

vertex or pixel

(sq_ctl_flow_seq.v, 2:23-3:1.)

The signals in the CFS-arbiter interface showthe arbiter providing the

selected command thread’s state (arb_state), status (arbstate) and type

(arbthreadtype) information to the CFS module. For example, arb_rts

communicates information which indicates that the arbiter is ready to provide the

selected command thread to the CFS module. (sq_ctl_flow_seq.v, 2:24), arb_state

communicates the commandthread’s state information (sq_ctlflow_seq.v, 2:25),

arb_status communicates the command thread’s status information

(sq_ctl_flow_seq.v, 2:26), and arbthreadtype communicates information which

AMD1044_0010475

ATI Ex. 2002

IPR2023-00922

Page 42 of 181

ATI Ex. 2002
IPR2023-00922
Page 43 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

identifies the command thread as a vertex commandthread or a pixel command

thread (sq_ctl_flow_seq.v, 3:1.)

86. The CFS module uses the arb_state, arb_status, and arb_thread_type

inputs that it receives from the arbiter to calculate the address of the command

thread’s first instruction in the instruction store and the number of command thread

instructions that require processing. For example, the CFS module determines the

commandthread’sfirst instruction using the circuit described by the source code

below:

always @(posedge cik}
begin

if (arbxfe)
cfsexec_cnt_ gq <= arostate/[’SQCFSSTATEWiDTH-

14:°SQCFSSTATE WIDTH-17];
elise if (incexec_cnt)

cfsexec_cnt_q <= cfs_exec_cnt_g + i;
elise if (cir exec cnt)

cfsexeccntq <= 4'RO;

else

cfsexeccntq <= cfsexeccntgq;
end

fifo wore eee nnnneno ===

// -- Target Instruction String --
[fo ~2 2222nn 22a 222 2222-2 2-2-5 === === --

// ~ string of 9 {serial, resource} pairs from CF EXEC instr read
out of ppb

Af - the CF instr count says how many of these pairs are valid
// - the exec_cnt status says how many have already been executed

(sent to TIF)

J/ - the exec ent status is used to align TI string data out of
the PPB when initially loaded
always @(posedge cik}

begin

if (idtip)

-~40-

AMD1044_0010476

ATI Ex. 2002

IPR2023-00922

Page 43 of 181

ATI Ex. 2002
IPR2023-00922
Page 44 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

case (cfs_ exec_cnt_q)
4'hoO: tgt_instr_ostr_q <= { @'bC, ppb_read_data/[33:16/};
4'hi: tgt_instrstr_q <= { 2'bO, ppbreaddata[33:18/};
4'h2: tgt_instrostr_q <= { 4'bC, ppb_read_data/[33:20!/};
4'h3: tgt_instr_str_q <= { 6'b0, ppbreaddata[33:22]};
4'h4: tgt_instr_strgq <= { 8'DC, ppbreaddata/[33:24]};
4'hs: tgt_instr_ostr_q <= {10'b0O, ppb_read_data[33:26]/};
4'hé: tgt_instr_str_q <= {12'b0O, ppbread_data[33:28]};
4A: tgt_instr_str_q <= {[14'bC, ppbreaddata[33:30]};
4'h@: tgt_instr_str_q <= {16'b0O, ppbread_data/[33:32]};
default: tgt_instrstrgq <= {18{X}};

endcase

elise if (shift ti str)

begin 7
tgt_instr_str_q <= {2'bO, tgt_instr_str_g/17:2]};

end
else

begin
tgt_instrstr_q <= tgt_instrstr q;

end

end

always @(posedge cik)
begin

if (idtip)
begin

efstgt_instrptr_q <= ppb_read_dataf[ii:00] +
programbase + cfsexec_cnt_q;

ppbinstrcntminusone q <= ppbread_data/fi5:i2] - 1;
ppb_instr_op_q <= ppb_instr_op;

end
end

(sq_ctlflow_seq.v, 15:18-16:1, 24:22-26:1, and 26:17-25.)

87. The CFS module determines the number of command thread

instruction(s) that require processing using the logic below:

/focwrtccccc _ - _ ~ ae ee ee _ _

 / -~ Target Instruction Counter (TIC) --
fowee eeeo2-2-2 oe=e

// ~ increment for every seqential target instruction being sent to
the TIF for the current thread

// - Clear TIC when clearing the exec_cnt (for now will not try to
continue TIC from one exec instr

-~4] -

AMD1044_0010477

ATI Ex. 2002

IPR2023-00922

Page 44 of 181

ATI Ex. 2002
IPR2023-00922
Page 45 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

// to the next)

always @(posedge cik}
begin
if (reset | cl

else if (inct
else

end

~ tic) ticag O
ic } tic gq <= tic g + 1;

g ti

hy

Ma.|

wire [11:0] cfs_tgt_instr_cnt_q tic_q;

(sq_ctl_flow_seq.v, 27:20-28:7.)

88. The CFS module determines whether the commandthread is a vertex

command thread or a pixel commandthread using the logic below:

cfsthread_type_q <= arb_thread_type;

(sq_ctl_flow_seq.v, 18:4.)

89. The CFS module then transmits the command thread which includes

the commandthread’sfirst instruction’s address, the numberof instructions, and

the command thread’s type to the TIF module, using the interface replicated below:

// outputs to the target instruction fetcher

// the instr store address of the firstcfstgt_instr_ptr_g,
target instruction

cfstgt_instr_cnt_q, // the number of target instructions to be
fetched

cfsthreadtypegq, // vertex or pixel

(sq_ctl_flow_seq.v, 3:15-21.)

~4?.

AMD1044_0010478

ATI Ex. 2002

IPR2023-00922

Page 45 of 181

ATI Ex. 2002
IPR2023-00922
Page 46 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

90. The signal cfsthreadtvpe_q identifies the commandthread type

(vertex or pixel); cfstetinstrptrq identifies the starting address of the command

thread’s first instruction; and cfs tet instr cnt g identifies the numberof

instructions that require processing.

91. Additionally, the CFS module also passes the command thread’s

identifier as arbstatus[21-16] to the TIF module. (See sq.v, 58:24, 67:14, and

73:23.)

9? The TIF module receives a commandthread from the CFS module.

 The TIF module uses the pointer to the command thread’s first instruction

(cfstetinstr_ptr_q) and the numberofinstructions that require processing

(c/stetinstrcnt_q) to fetch the commandthread’s instruction(s) from the

instruction store. The R400 RTL code defines the TIF module as

sq_targetinstrfetch module in sq_target_instr_fetch.v.

93. The sq.vfile instantiates three instances of the sgtargetinstrfetch

module, one instance per command processing engine. The sq.v file instantiates an

instance of the sqtargetinstrfetch module for each of the ALU processing

engines, u0sqaluinstrfetch for the first ALU processing engine and

ulsqalu_instrfetch for the second ALU processing engine. (sq.v, 66:13-68:23,

72:17-74-26.) Additionally, the sq.vfile also instantiates an instance of

AMD1044_0010479

ATI Ex. 2002

IPR2023-00922

Page 46 of 181

ATI Ex. 2002
IPR2023-00922
Page 47 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

sqtargetinstrfetch called u_sq_tex_instr_fetch module for the texture

processing engine. (sq.v, 57:22-59:25.)

94. The TIF module uses the output from the CFS module to retrieve the

command thread’s instruction(s) from the instruction store. For example, the TIF

module receives the output from the CFS module, using the source code below:

// cfs interface

cfsinstrptr, // the Instruction Store address of the first
target instruction

cfsinstr_cnt, // the number of instructions to be fetched

cfsthreadtype, // vertex or pixel
cfsthread_id, ff

(sq_target_instr_fetch.v, 2:19-3:1.)

95. The TIF module uses the inputs received from the CFS module to

fetch the command thread’s instruction from the instruction memory. Each of the

uO_sqalu_instrfetch,ulsqaluinstrfetch, and u_sq_texinstrfetch modules

fetches the commandthread’s instruction from the instruction memory forthe first

and second ALU processing engine and the texture processing engine respectively.

96. The TIF module also includes an interface with the

sqinstructionstore module defined in sq_instruction_store.v. As | discussed

44.

AMD1044_0010480

ATI Ex. 2002

IPR2023-00922

Page 47 of 181

ATI Ex. 2002
IPR2023-00922
Page 48 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

above, the instruction store module stores the command thread’s instruction(s).

The TIF module’s interface with the instruction store 1s replicated below:

// instruction store interface

isreadaddr, // instruction store read address
isreaddata, // instruction store read data
is phase, // instruction store phase

// alu phase (aluO and aluil share the alu
I ci| .g. fe 19} @ ~

(sq_target_instr_fetch.v, 3:5-9.)

97. The TIF module uses the isread_addr interface to send the command

thread’s instruction pointer that communicates the address of the command

thread’s instruction to the interface store module, using the R400 RTL code below:

output [11:06] isread_adar;

(sq_target_instr_fetch.v, 5:10.)
assign isread_addr = tip_q;

(sq_target_instr_fetch.v, 8:2.)

always @(posedge cik}

begin

if (ldtip) tipgq <= cfsinstrptr;
else if (inc_tip)

if (vtx_wrap) tipq <= instbasevtx;
else if (pixwrap) tip_q <= instbasepix;
else tip gq <= tip q+ 1;

else tipg <= tipgq;
end

(sqtargetinstrfetch.v, 8:22-9:4.)

98. As I discussed above, the instruction store module defined in

sq_instruction_store.v stores the command thread’s instruction(s). The instruction

store module is capable of receiving three is_read_addr requests, one from each of

~45.

AMD1044_0010481

ATI Ex. 2002

IPR2023-00922

Page 48 of 181

ATI Ex. 2002
IPR2023-00922
Page 49 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

the TIF modules (u0_sq_alu_instrfetch,ulsqaluinstrfetch, and

u_sqtexinstrfetch), using the interface below:

// SO

input [11:0] i_tex_addr;
input [11:0] ialu0_addr;
input [11:0] i_alul_addr;

(sq_instruction_store.v, 2:17-20.)

99. In response to the isreadaddr request, the instruction store module

retrieves the commandthread’s instruction(s) and outputs them as the oisdata

signal, using the R400 RTL code below:

output [95:0] c_isdata;

(sq_instruction_store.v, 2:26.)

wire [95:0] ois data = read data;

(sq_instruction_store.v, 3:17.)

assign memreaddata = d_addr/fii] ? memi_rd_data
memOrddata;

(sq_instruction_store.v, 7:19.)

// vegister instantiation
always @(posedge iclk)

begin

if (i_reset)
begin
we <= 1'pO;

Jf addr <= 12'd0;

readdata <= 96'dO0;
ortr <= i'bO;
wrtdata <= 96'dO;
gqrbi_addr_in <= i2'dod;
end

else

begin
we <= dwe;

if addr <= d_addr;
readdata <= memreaddata;
ortr <= d_rtr;
wrtdata <= dwrtdata;

-~ 46 -

AMD1044_0010482

ATI Ex. 2002

IPR2023-00922

Page 49 of 181

ATI Ex. 2002
IPR2023-00922
Page 50 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

gqrbi_addrin <= d_rbi_addrin;
end

end

(sq_instruction_store.v, 15:11-16:6.)

100. The TIF module receives the command thread’s instruction(s) from

the instruction store module using the R400 RTL code below:

input [95:0] isreaddata;

(sq_targetinstrfetch.v, 5:11.)

101. The instructions are then loaded into the TIF module’s tifinstrq

register, as shown using the R400 RTL code below:

Af —-- eee _ _ _ ~ Hee ee _

/ -~ Target Instruction Register (TIR) --
/ —~e ee _ _ _ _ H-eeee eL _ _

f/f - loaded with data read from instruction store

// ~ the TTR is output to the target instruction queue (which does
some decode in front of the queue)

always @(posedge cik}

begin

if (ld_tir) tif_instr_q <= is_read_data;
else tifinstr_gq <= tif_instr_gq;

end

(sq_target_instr_fetch.v, 12:7-17.)

102. The TIF module also provides the thread type and the thread identifier

inputs from the CFS module using the TIF modules output signals, described

below:

isr_thread_type_q <= cfsthreadtype;
sr thread _id_q <= cfs_thread_id;

-~47-

AMD1044_0010483

ATI Ex. 2002

IPR2023-00922

Page 50 of 181

ATI Ex. 2002
IPR2023-00922
Page 51 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

tif threadtypegq <= i ead ty
tif threadidgq <= isr thread id q;

(sqtargetinstrfetch.v, 10:10-11, 11:18-19.)

103. Once the TIF module provides the command thread’s instruction and

the CFS module’s inputs using the TIF module’s output signals, the TIF module

transmits the commandthread to an AIQ module or TIQ module (depending on

whether the TIF module is associated with one of the ALU processing engines or a

texture processing engine) using the interface below:

// outputs to the target instruction decoder (in the TIO module)

tifthreadtypeq, // vert:1, pix:0
tifthread_id_q, // the target thread id
tifinstrq, // the target instruction register (TIR)

(sq_target_instr_fetch.v, 3:17-19.)

104. With respect to the ALU processing engine, the TIF module passes

the command thread’s instruction(s) to the AIQ module called sqaluinstrqueue

module. The AIQ module calculates the gpr address (the address where the data is

located that requires execution). The R400 RTL code for the sq_alu_insir_queue

module is included in sq_alu_instr_queue.v. The sq.vfile instantiates two AIQ

modules called uOsq_alu_instr_queue (sq.v, 68:26-70:17) and

ulsq_alu_insir_queue (sq.v, 75:2-76:16), one for each ALU processing engine.

-~ 48 .

AMD1044_0010484

ATI Ex. 2002

IPR2023-00922

Page 51 of 181

ATI Ex. 2002
IPR2023-00922
Page 52 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

105. The AIQ module receives the command thread’s instruction from the

TIF module, using the interface below:

// inputs from ATF (ALU Instruction Fetch)

aif thread_type_g, // vector type (0: pixel, i: vertex)
aif threadidq, // thread id

aif instr g, // instruction register (registered read from IS

(sq_alu_instr_queue.v, 2:14-2:22.)

106. The AIQ modules pass the command thread’s instruction to the AIO

module. The R400 RTL code for the ATO module is included in sq_aisoutput.v.

The sq.v instantiates a single instance of the AIO module called u_sqaisoutput.

(sq.v, 78:16-82:2.)

107. The AIO module receives the commandthread’s instruction(s) from

the two AIQ modules (u0_sq_alu_instr_queue and ulsq_alu_instr_queue) using

the interface below:

// inputs from the ATOQs

aigOinstr, // instruction

aigiinstr, // instruction

(sq_aisoutput.v, 2:8, 2:13, 2:20.)

~49.

AMD1044_0010485

ATI Ex. 2002

IPR2023-00922

Page 52 of 181

ATI Ex. 2002
IPR2023-00922
Page 53 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

108. The AIO module acts as a multiplexer between the two instances of

A1Q modules and formats the command thread’s instruction(s) from the AlQ

modules into the output signals that the AIO module transmits to the ALU

command processing engine. In particular, the R400 RTL code below shows how

the aig0_instr from the u0_sq_alu_insir_queue and aiq/instr from the

ulsqaluinstrqueue are provided to the SQSP interface. The ALU processing

engine uses the SQ_SP interface to receive and process the command thread’s

instructions(s):

jf fo woe er enn een nnn nn en eeee = 5 === = == == ==

// ~~ vegisters --f
jf ~-~---

jf fo ------------------------------ === ++

// -~ Instruction Input Staging Register --
(focectcr- - - - - ~~ - -

// ~ holds the instruction data from the ATO for use by GPR and PC
writes (is reloaded by other thread

Af before GPR and PC writes occur, so relavent info must be kept
here)

// -~ need to save stali to know whether to assert WE to gprs or PC
also

// -~ must reload after every instruction even if ATS is idie to get
the stall info saved

// ~ actually need two stages here since the ATQ must be popped for
the next constant access

always @(posedge cik}

begin
if (reset)

begin
// Stall forces a NOP to the shader pipe

// - all instruction bits are don't care when stall == 1, so

they don't need to be reset
// ~ Stall forces WE to GPR and PC to be deasserted

//isr_scalardest_q <= 0;

-~50-

AMD1044_0010486

ATI Ex. 2002

IPR2023-00922

Page 53 of 181

ATI Ex. 2002
IPR2023-00922
Page 54 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

//isrscalarmask_gq<= O;
/fisr_vector_dest_q <= 0;
//isrvectormask gq <= 0;
//isr pred_sel_g <= 0;
//isrpcbaseg <= 0;

isr_instrstallgq <= HI;
end

else if ((gpr phase == 2'b & (aluphase == LO) })
//(aisOld_isr)

begin

isr_scaiardest_q <= aiqO instr/15:8];
isr vector dest g <= aig0Q instr/ 7:0];

isrscalarmaskq <= aigoinstr[23:20]
isrvectormask gq <= aigOinstr[19:16];
isrpredselq <= aigO instr[60:59];
isr pe base gq <= aigO pe base;
isrinstr stall gq <= aisO instr stall;

end 7 7 7 7

else if ¢ (gprphase == 2'bii) &€ (alu_phase =~ HT))
//(aisi_ldisr)

begin

isrscalardestgq <= aigiinstr/15:8];
isr_vectordest_q <= aiqilinstr[7:0];
isrscalarmaskq <= aiglinstr[23:20];
isr vectormask_q <= aiglinstr[19:16];
isrpred_selq <= aig]instr/[60:59];
isr pc base g <= aiglpc_base;
isrinstr stall q <= aisil instr stall;

end 7 7 7 7 7

else

begin
isrscalardest_gq <= isr_scalardest_q;

isrvectordest_g <= isr_vectordest_q;
isr scalarmaskg <= isr scalarmask gq;

isrvectormask_q <= isr_vectormask gq;
isrpredselq <= isr_pred_selq
isrpcbase_q <= isr_pc_base_g;
isr_instr_stall_g <= isr_instr_stailgq;

end
end

// TSR1I - need to pipe ITSRO to keep it around for the GPR/PC write

always @(posedge cik}
begin
//if (reset)

//pegin

//isrscalardest_q <= 0;

-~ 5] -

AMD1044_0010487

ATI Ex. 2002

IPR2023-00922

Page 54 of 181

ATI Ex. 2002
IPR2023-00922
Page 55 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

//isr_scalarmask_q <= 0;
/fisrvectordest_q <= 0;

(iervectormaskq <= 0;
/isrpred_selgq <= 0;

//isrpcbaseg <= 0;
/f/isr instrstallgq <= HT;

//end

if ((gpr_phase == 2'bil))
begin

isr scalar destgi <= isr scalardestq;
isr_vector.destgi <= isrvectordest_q;

isr_scalarmaskql <= 1
r vector.maskql <= isr vector _mask_q;
isrpred_selql <= isrpred_selgq;
isr pc base gi <= isr pc base gq;
isrinstr stall qi <= isrinstr stall Or

end

else

begin

isrscalardest_qi <= isr—Scatardestqty
isrvectordest_gqi <= isr_ vectordest gi;

isr-pred_selSt <= isrpred_seiql;
isrpce_base_qgi <= isrpc_base_qli;
isrinstrstali gi <= isr_instr_stallqi;

end
end

[fo wenn ----------------------------

// -~ SP instruction, writemask --
/f — ee _ _ _ _ a a

// - valid with instruction start

always @(posedge cik}

begin

case (gpr_phase)
‘SQSRCB PHASE: begin

case (alu_phase)
LO: begin

SQSP_instr <= {3'b000, aigO_instr[06:00],
aigOQinstr/[55:48], aigOinstr/[58], aiqO_instr[101:99]};

vO SQSP_write|mask <= aigo_valid.bits [3:0];
msulSQSP_write_mask <== aiqd_valid.bits [7: ayy

uZSQSP_write_mask <= argovalidbbits [11:8];u3 SQSP_writemask <= aigd_validbits 5:12];

HI: begin

~ 5? -

AMD1044_0010488

ATI Ex. 2002

PR2023-00922

Page 55 of 181

ATI Ex. 2002
IPR2023-00922
Page 56 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

uO SQ SP writemask <= aiqgi validbits [3:0];
ulSQSP_writemask <= aigivalid bits [7:4]¢

uéSQSPwritemask <= aigivalid_bits fii:8];
u3SQSPwritemask <= aiqivalidbits [i5:1i2];

end

endcase
end

“SQSRCCPHASE: begin
case (aluphase)

LO: begin

SQSP_instr <= faigOinstr[i5:08}], aiqO_instr[47:40],
aigOinstr/[57j, aigO_instr[98:96]};

u0_8QSP_write_mask <= aiqOvalid_bits [19:16];
ulSQSP_writemask <= aiqgOvalidbits [23:20];

uZ_8QSP_write_mask <= aiqO0valid_bits [27:24];
u3SQSPwriteemask <= aiqOvalidbits [31:28];

end

HT: begin

SQSP_instr <= faiqi_instr[i5:08], aiqi_instr/47:40
aigi instr/[57j, aiql_instr[98:96]};

-

u0O_SQSPwritemask <= aigivalidbits [19:16];
uiSQSPwritemask <= aigivalidbits [23:20];

u2_ SQSP_write_mask <= aiqi_valid_bits [27:24];
u3SQSP_write_mask <= aiqgivalid_bits [31:28];

n

endcase

end

‘SQFAPHASE: begin
case (alu_phase)

LO: begin

SQSP_instr <= {aigO i
aig? instr/[56j, aigO instr[95:93]};

~ vO Ss)SP_writemask <= a7
ulSQSPwritemask <= aiqgOvalidbits

uZ SQSPwritemask <= al
t

0D Q,a

q

u3_SQ SPwritemask <= aig@Ovalid_b

we
SQSP_instr <= faiglinstr[23:16/], aigi_instr[39:32/,

aigi instr[56j, aigi_instr[95:93]};
uQ_SQSP_write_mask <= aigqivalid_bits [35:32];

ulSQSP_writemask <= aigivalidbits [39:36];
u2SQSPwritemask <= aiqivalidbits [43:40];

u3_SQ SPwritemask <= aigivalidbits [47:44];
end

endcase

end

“SQSRCAPHASE: begin
case (alu_phase)

LO: begin

AMD1044_0010489

ATI Ex. 2002

IPR2023-00922

Page 56 of 181

ATI Ex. 2002
IPR2023-00922
Page 57 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

SQ SP instr <= faigO instr[23:16], aigqo instr[25:24],
ai instr/[92:88]};aigOinstr[3i:26])i

u0QSQSPwritemask <= aiq0 valid bits [51:48];
ulSQSP_writemask <= aigo_valid_bits 155: 5213

uzSQSP_write.mask <= aes"eee [59:56];u3SQSP_ write.mask <= aigo-validbits [63:60]
end

HT: begin

SQ SP_instr <= faiglinstr/j23:16], aiqi_instr[25:24],
strfo2:8&8};

t : ins

uO SQSPwritemask <= aiglvalid pits [51:48];
ulSQSP_writemask <= aigivvalid_bits [55:52];

u2 SQ SP_write mask <= aigil valid bits [59:56];
u3_SQSPwritemask <<= aiqivalidbits T63:60)¢

end

endcase
end

endcase

end

Jf — _ _ _ _ ~ ee ee _ _

// -- SP gpr read address, read enable --
Jf —e- _ _ _ _ ee _ _

/f/ - the read address comes directly from the ALU or Texture
Instruction Queue (TQ)

// - the read address was calculated prior to being loaded into the
IQ

// - the read enable is just the RTS out of the To
/*

reg [0:0] aig9pr_rd_en;

always @(alu phase or aigQ gpr rd en or aigl opr rd en)
begin 7 7 7 a

case (alu_phase)

LO: aiggprrd_en = aig?Q gpr_rd_en;
HI: aiqgpr_rd_en = aig]gpr_rd_en;
endcase

end

*/

always @(posedge cik}

begin

case (gprphase)
“SQSRCAPHASE: begin

case (~aluphase) // have to invert this
get the srcA addr in a cycle early

Lo: 8QSP_gpr_rd_addr <= aigO_instr/[86:80];
HI: SQSPgprrdaddr <= aigiinstr/[&6:80];

endcase

CO

~ 54 «

AMD1044_0010490

ATI Ex. 2002

IPR2023-00922

Page 57 of 181

ATI Ex. 2002
IPR2023-00922
Page 58 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

case (~alu_phase) // have to invert this to
get the srcA addr in a cycle early

LO: SQSPgpr_rd_en <= aigQgprrd_en;
AT: SQSPgpr_rden< igi _gpr_rd_en;

endcase

end

‘SQSRCB PHASE: begin
case (alu_phase)

LO: SQSPgpr_rd_addr <= aiqO_instr[78:72];
HT: SQSPgpr_rd_addr <= aigiinstr[78:72];

endcase

case (alu_phase)
LO: SQSPgpr_rd_en <= aigOopr_rd_en;
HI: SQSP_gpr_rd_en <= aiglgprrd_en;

endcase

end

‘SQ SRCC_PHASE: begin
case (alu_phase)

LO: SQSPopr_rd_addr <= aigOinstr[70:64];
HI: 8QS8P_gpr_rd_addr <= aigiinstr/[70:64];

endcase

case (alu_phase)
LO: SQSPgpr_rd_en <= aigOgprrd_en;
HI: SQSPgpr_rd_en <= aigigprrd_en;

endcase

end

“SQ FAPHASE: begin
S@SPgpr_rd_addr <= tis gpr rd_addr;

= 24

SQS8P_gpr_rd_en <= tisgpr_rd_en;
end

endcase

end

(sq_aisoutput.v, 11:21-23:2.)

109. The output interface which includes the command thread’s

instruction(s) that the AIO module passes to the ALU commandprocessing engine

is replicated below:

/{/ outputs to SP
SQSP_gpr_wr_addr,
SQSPgpr_ wren,
SQSP_gpr_rd_addr,
SQSP_gpr_rd_en,
SQSPgprphase,
S@SP_gpr_input_sel,
SQSPgpr_ channelmask,

~55-

AMD1044_0010491

ATI Ex. 2002

IPR2023-00922

Page 58 of 181

ATI Ex. 2002
IPR2023-00922
Page 59 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

SQSPinstr,
SQSP_const,

if

SQSPexporting,
SOSP_expid,
u0Q_SQ SP_writemask,4

ulSQ SP_writemask,
u2 SQSPwritemask,oy
u3 SQ SP write mask,

(sq_ais_output.v, 4:1-4:21.)

110. In particular, the interface includes the SOSPinstruct signal which

provides the command thread’s instruction(s).

111. As such, the arbiter 1s operable to provide the commandthread to a

command processing engine whichis, for example, an ALU processing engine.

112. With respect to the texture processing engine, the TIF module passes

the commandthread’s instruction(s) to the TIQ module called sqtexinstrqueue.

This TIQ module calculates the gpr address (the address where the data is located

that requires execution) and passes the command thread’s instruction(s) to the TIS

module. The R400 RTL code for the sq_tex_instr_queue module1s in

sq_tex_instr_queue.v. The sq.v file instantiates a texture instruction queue module

called u sg tex instr queue (sq.v, 60:1-61:13).

113. The TIQ module receives the command thread’s instruction(s) from

the TIF module, using the interface below:

- 56 -

AMD1044_0010492

ATI Ex. 2002

IPR2023-00922

Page 59 of 181

ATI Ex. 2002
IPR2023-00922
Page 60 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

// inputs from TIF

tifthread_type_q, // vector type (0: pixel, i: vertex)

(sq_tex_instr_queue.v, 2:14-19.)

114. The TIQ module passes the command thread’s instruction(s) to the

TIS module called sq_tex_instr_segq module, as replicated below:

// outputs to TIs

tiqlastinstr, Af
tigthreadtype, Af
tiqcontextid, // context_id (from ctl packet)
tiqvalidbits, // Valid bits (from ctl packet)
tiglod_correct, // dod_correct bits (from ctl packet)
tiqthread_id, // thread id
tiqinstr, // instruction

(sq_tex_instr_queue.v, 2:25-3:6.)

115. The TIS module receives commandthread instruction(s) from the TIQ

module and formats the command thread’s instruction(s) to the SO_7'’P interface.

As I discussed above, the TIS module provides the command thread’s

instruction(s) to the texture processing engine. The SO7?Pinterface is used to

transmit the command thread instruction(s) to the texture processing engine. The

R400 RTL code for the TIS module is included in sq_tex_instr_seq.v. The sq.v file

instantiates a TIS module called u_sq_tex_imstr_seq. (sq.v, 61:16-63:18.)

.57-

AMD1044_0010493

ATI Ex. 2002

IPR2023-00922

Page 60 of 181

ATI Ex. 2002
IPR2023-00922
Page 61 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

116. The TIS module receives command thread’s instruction from the TIQ

module using the input interface below:

// TIQ interface

tiqthread_id, fé
tiginstr, // instruction

Zh.

(sq_tex_instr_seq.v, 2:8-16.)

117. The TIS module propagates the command thread’s instruction(s)

received from the TIQ module to the texture processing engine. The instruction(s)

are propagated using the SO_7'’P interface as shown in the R400 RTL code below:

Jf ae eee ~ ~ ~ ~ eae _ _ _ _ eeeee _ _

// ~~ registers --[fo eeee44

fo 2 _ _ _ _ eee4

/ -~ Input Staging Register --
fo woo -- o-oo oo ----- === === ++

// - holds the instruction data from the TTO while it is sent to
the TP

ba// - a€liows the TIQ read SM to work on the next line in the TIO

while current data is being sent

always @(posedge cik}
begin
if (id isr)

begin
isr_last_instr_q <= tiqlast_instr;
isr_thread_type_q <= tigthread_type;
isr_context_id_q <= tigcontext_id;
isr_vaiid_bitsq <= tigvalidbits;
isr_lod_correct_q <= tiqlodcorrect;
isr_thread_idgq <= tigthread_id;
isrinstrgq <= tiginstr;

end

elise

begin

~ 58 -

AMD1044_0010494

ATI Ex. 2002

IPR2023-00922

Page 61 of 181

ATI Ex. 2002
IPR2023-00922
Page 62 of 181

isr_last_instr_q <= isr_
isr_thread_type_g <= isr
isrcontext idq < isr-
isr_validbits q <= isr
isr_lod_correct_q <= isr
isr thread id @ <= isr.

isr instr g 7 <= isr_
end 7

end

// TP instruction data output mux a

always @(posedge cik}
begin

case (tiscurrentstate)
TISO: begin

SQTPinstr <= {isSrinstr
isrinstrgf19], isr_instr_@[4: O}};

uOSQ TP pix mask <= i
ul SQTP pix mask <= 1
u2 SQTPpixmask <= i
u3_SQTPpixmask <= 7
u€_SQTPlod_correct <= i
ui SQTPiodcorrect <= i
u2SQTPiod_correct <= 1
u3_ SQTPlod_correct <= i
SQTPgprwr_addr <= {

isr_thread_typegq}; ff {oprwraddr[
SQTPthread_id <= i

// threadid[1:0]
end

TISi: begin
SQTPinstr <= isr_instr

uC_SQ TPpix mask <= i
ul_ SQTP>pixommask <= 7
u2_ SQTPpixmask <= i
u3_ SQTPpixmask <= i
u@_SQTPlodcorrect <= i

ulSQ TP_lod_correct <= i
u2SQTPlod_correct <= i
u3_SQ TPlod_correct <= i
SQ TP_gpr_wr_addr <= i

// gerwraddr[2:1]
SQ TP thread id <= i

// threadid[3:2]
end

TIS2: begin

SQTPinstr <= {isr_instr
u0_SQTPpixmask <= 4

ulSQTPpixmask <= i
u2SQTPpixmask <= 1
u3_ SQTPpixmask <= i

~ 59.

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

1ast_instrGe
thread] type_qs
ontext_ idg;valid.bitsos
encorrectOFhread_idgq;on stxr_q;

nd register

—gf4i:32], isr_instr_g/26:25],

sr validbitsq [3:0];
sxr_validbitsq [7:4];
sxvalidbitsgq [11:8];
srvalidbitsq [15:12];
sxr_iced_correct_q [5:0];
sr iedcorrectg[11:6];
sr_tlod_correct_q[1i7:12/;
sr_ilod_correct_q/[23:18];
isrinstr gfi2],
0], type}

sx thread_idq/[i:0];

Ql59:42];

sr valid bits q [19:16];
srvalidbitsq [23:20];
sxr_validbitsgq [27:24];
sxvalidbits gq [31:28];
sr_tod_correct_q[29:24];
sr_lod_correct_q[35:30];
sr_tod_correct_qg[4i:36];
sr_lod_correct_q/47:42];
srinstr_qg[i4:i3];

srChread_id1g[3:2];7

-gl78:64], isr_instr_q[62:60]},;
sxr_vaiid_bitsq [35:32];
sxvalid bitsgq [39:36];
sxr_validbitsq [43:40];
sxvalidbitsgq [47:44];

AMD1044_0010495

ATI Ex. 2002

IPR2023-00922

Page 62 of 181

ATI Ex. 2002
IPR2023-00922
Page 63 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

uO_ SQTPlod_correct <= isrjiodcorrect_q[53:48];
ulSQTPicd_correct <= isr_lod_correct_q/[59:54];
u2SQTPiodcorrect <= isrlodcorrectqg/[65:60];
u3s_ SQTPiod_correct <= isr_lod_correct_q[71i:66/;
SQTP_gpr_wr_addr <= isr_instr_q[i6é:i5];

// gerwraddr[4:3]
SQ@TPthread_id <= isr_ thread_id_g/5:4];

// thread id/5:4]
and

TIS3: begin

SQTPinstr <= {2'bO, isrinstrg/[94:79]};
u@_SQTPpixmask <= isr_valid_bitsq [51:48];
ui_SQTPpixmask <= isrvalidbitsgq [55:52];
uZSQTPpixmask <= isr_validbitsq [59:56];
u3_ SQTPpixmask <= isr_validbitsq [63:60];
u0_SQTPlod_correct <= isr ied_correct_q[77:72/;
ulSQTPiod_correct < isr_lod_correct_q[83:78];
u2SQ TPlod_correct <= isr_lod_correct_q[89:84];
u3SQTPiodcorrect <= isrlod correct qg[95:90];
SQTPgpr_wr_addr <= isr_instr_g/18:17];

// gerwraddr[6:5]
SQTPthreadid <= {L0O, isr_last_instr_q};

// end of group
end

endcase

end

assign tis_gprrdaddr = tiginstr[11i:5]; // send this right
out of the FIFO

assign texconst_rd_addr = tiginstr[24:20]; // send this right
out of the FIFO (should it even go in this module?)

fo -oo--------------------------------

/ -~ Constant Data Staging Registers --
fo ceo oo ooo ----==----==----- == -------

// -~ holds the constant data from the TCS while it is sent to the
TP

// -~ ist eycle, low 4&8 bits from const store go right to output
reg, so const0O gq is oniy 48 bits (to store

/ the upper half of the first read)
/f/o- i6 16 16 16 16 16 16 16 16 16 16 16

Af C0 CG 6
cf i i of

f 2 2 2
/ 3 3 3

// - 48 bits

always @(posedge cik}
begin

if (id_cO) const0_q <= texconst_rd_data[95:48];

- 60 -

AMD1044_0010496

ATI Ex. 2002

IPR2023-00922

Page 63 of 181

ATI Ex. 2002
IPR2023-00922
Page 64 of 181

Case IPR2015-00325 of

USS.

const0O_q <= const0O_qs

// -~ 96 bits

always @(posedge cik}
begin

if (id_cl) constl_q <= texconst_rd_data;
else constiq <= consti_g;
end

// TP constant data output mux and registez
ky

always @(posedge cik}

Patent No. 7,742,053

begin

case (tiscurrentstate)
TISO: SQ TPconst <= texconst_rd_dataj47:0];
TISi: SQTPconst <= constdgq;
TIS2: SQ TP const <= {consti_qg/[47:32], consti_q/[62],

constiqgf30:0]};
TIS3: SQTPconst <= {consti_g/[95:63], consti_g/3il,

constiq/6i:4&!]};
endcase

end

// misc interface registers

always @(posedge cik}
begin

tp_fetch_stal
SQTPgpr_pha

SQTPvid

i
oO

SM

end

// stall input
// Gpr phase output
// this comes from the TIS

(sq_tex_instr_seq.v, 8:21-14:10.)

118. The final output interface which includes the command thread’s

instruction(s) that the texture instruction sequencer module passesto the texture

commandprocessing engine is replicated below:

output

output

output

output

[0:0]

f17:6]

[47:6]
fi:0o0]

my
tH

wy

wh [Ofe\e

- 6] -

AMD1044_0010497

ATI Ex. 2002

IPR2023-00922

Page 64 of 181

ATI Ex. 2002
IPR2023-00922
Page 65 of 181

output [21:0] SQTPopr_wr_addr;
output [1:0] SQ TPthread _id;

output [5:0] u0_SQTPlod_correct;
output [3:0] u0SQTPpixmask;
output (5:0) wul_SQTPlod_correct;
output [3:0] wui_SQ TP_pix_mask;
output f5:0] uzSQ TPlod_correct;
output (3:0) u2SQ TPpix_mask;

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

output [5:0]
output [3:0] we

u3 SQTPlodcorrect;
\°C wY © TP pix mask;

(sq_tex_instr_seq.v, 5:7-25.)

119. In particular, the interface includes the SO7Pinstruct signal which

provides the command thread’s instruction(s).

120. As such, the arbiter is operable to provide the commandthreadto the

command processing engine, whichis a texture processing engine.

3. Claim 5

121. The preamble of claim 5 recites “4 graphics-processing system,”

whichI already discussed in myanalysis of claim 1. This is present in the R400

RTL code for the same reasons as explained in Section VILA.1.

122. Thefirst limitation of claim 5 recites “at least one memorydevice

comprising afirst portion operative to store a plurality ofpixel command threads

and a secondportion operative to store a plurality ofvertex command threads,”

whichI already discussed in myanalysis of claim |. This is present in the R400

RTL code for the same reasons as explained previously in Section VILA.1.

-62-

AMD1044_0010498

ATI Ex. 2002

IPR2023-00922

Page 65 of 181

ATI Ex. 2002
IPR2023-00922
Page 66 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

123. The second limitation of claim 5 recites “an arbiter, coupledtotheat

least one memory device,” which I already discussed in my analysis of claim 1.

This is present in the R400 RTL code for the same reasons as explained previously

in Section VILA.1.

124. The arbiter of claim 5 is “operable to select a command threadfrom

eitherofthe plurality ofpixel commandthreads andthe pluralityofvertex

command threads.”| have already discussed myanalysis of howthe arbiter selects

a command thread in claim |. This is present in the R400 RTL code for the same

reasons as explained previously in Section VH.A.1.

125. The third limitation of claim 5 recites “a plurality ofcommand

processing engines, coupled to the arbiter, each operable to receive and process

the command thread.” As 1 discussed in myanalysis for claims 1 and 2 in Sections

VILA.1 and VILA.2, the R400 RTL code includes multiple command processing

engines — at least an ALUprocessing engine and a texture processing engine.

126. The ALU processing engine is specified in the file sp.v andits

referenced modules. As I described in my analysis of claim 2 in Section VIL.A.2,

the AIO module formats the command thread’s instruction(s) into an SO_SP

interface. The ALU processing engine also includes an SO_SP interface, replicated

below:

AMD1044_0010499

ATI Ex. 2002

IPR2023-00922

Page 66of 181

ATI Ex. 2002
IPR2023-00922
Page 67 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053

SQSPinstructstart, SQ SPinstruct, SQSP_stali,
S@SP_exppvalid, 8QSPexporting, SQ_SP_exp_id, SQSPconst,

SQSP_gpr_wren , SQSPgprphasemux, SQSPchannelmask,
SQ SP pix mask, SQ SP_gpr input_mux, SQSP_auto_count, SC_S&Pdata,
SCSPvalid, SCSPtype, SCSPlastquad, SQSPvsrdata,
SQSP_vsr_double, SQSP_vsr_valid, SQSPvsr_read,
SQ SP_interp prim_type, SO SP_interpijline, SQSP_interpmode,
SQ_SP_interpvalid, SQSP_interpbuffswap, SQ@SP_interpgen_i0,

(sp.v, 2:2-10.)

127. The SOSP interface of the ALU processing engine receives

command thread’s instruction(s) from the command thread selected bythe arbiter.

128. The ALU processing engine processes the instruction(s). For example,

the ALU processing engine includes four vector modules called uvector0,

uvector!, uvector2, and uvector3. (sp.v, 14:18-18:2.)

129. The RTL code for the vector module 1s included in vector.v. Each of

the vector modules uvector0, uvector!, uvector2, and uvector3 receives the

command thread’s instruction(s). Below, the RTL shows howuvectord receives

the command thread’s instruction(s):

vector uvector0 (//outputs

.Sp_sx_dataf(ospsx_datad),

.Sp_sx_exporting(sp_exporting),

.Spsxexpdst (spexpdst),

- 64 -

AMD1044_0010500

ATI Ex. 2002

IPR2023-00922

Page 67of 181

ATI Ex. 2002
IPR2023-00922
Page 68 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

-Sp SX exp aiu idf(sp exp alu id),

.Sp_sxexppvalid(sp_exppvalid),

.Sptpdata(spfetchaddroO),

//inputs
.Sqspinstructstart(qsqinstructstart),
-Sqspinstruct (qsqinstruct}),.sq_sp_stall(q_sq_stall),
.Sclk(scik), .srst(srst),

-SqQspwr_addr(qsq_gpr_wr_addr),
-Sq_Sp gprrd_addr(q_sqgpr_rd_addr),

 -Sq¢ sp mem rd ena(q sg gpr rd en),.sq sp mem wr ena(g¢ sq gpr wr en),.s

Gq sp wr ena(g sq gpr wr en),

SQ sp gpr phase mux(q sq gpr phase mux),

@gspchannelmask (q_sqchannelmask),
.SQsppixelmask (qsqpixmask),

sp gpr input mux(q sq gpr input mux),
.iinterpolated (Interpolated0),// iAutoCount,
.iVertexIndices (VertexIndexo),

-Sq_spconstant (qsqconst),
.tp_spdata(qtpdata0),.tp_ sp gpr_dst(q_tp_gpr_dst),

ta

& Q es

.tp_sp_gpr_cmask(qtp_gpr_cmask),.lpspdata_valid(q_tpdatavalid),
-Sq Spexppvalid(qsqexppvalid),
.Sq_spexporting(q_sqexporting),

-sq_sp_exp_alu id(q_ sq exp alu id)
° (sp.v,14:22-15:23.)

130. The vector module receives the command thread instruction(s) over

four cycles and passes the commandthread instruction(s) to one of the four MACC

GPR units, instantiated as macc_gpr0, macc_gprl, macc_gpr2, or macc_gpr3.

(vector.v, 13:15-16:7.) Thefirst unit, macc_gpr0, is replicated in the RTL code

replicated below:

input [20:0] sqspinstruct; //four cycle transaction

(vector.v, 2:6.)

//instantiation of all four MACC units that create a Vector Unit

- 65 -

AMD1044_0010501

ATI Ex. 2002

IPR2023-00922

Page 68 of 181

ATI Ex. 2002
IPR2023-00922
Page 69 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053

Maccgpr

umaccgpr0(.oVectorOutput (VectorResult0),.cScalarinput (Scalarinputd),.
oScalarOpcode (ScalarOpcoded?),.oRegData (RegData0),.oexport_dst(sq_sp_ex
p_dst),.sqspinstruct(sq_spinstruct),.sqspinstruct_start(sqspins
truct_start),.sqsp_gprrd_addr(sq_sp_gpr_rd_addr),
-Sqspgprwr_addr(sq_sp_wr_addr),.sq_ spwr_enaf(sq_sp_wWr_ena),.sq_spm
emrd_ena(sqsp_mem_rd_ena),.sq_sp_mem_wr_ena(sq_spmemwr_ena),.sq_sp
_gprcinask(sq_spchannel_mask),.sq_sp_gprphase_mux(sq_spgpr_phase_mu
x),.iinterpolated (InputData0),.sq_ spconstant(sqspconstant),.iScalar
Data (ScalarData),.tp_sp_data(tpspdata),.tp_sp_gpr_dst(tp_sp_gpr_dst)
,.tp_spgpr_cmask(tp_spgpr_cmask),.tp_spdata_valid(tp_spdata_valid)
,- SClk(sclk), .srst(srst));

(vector.v, 13:15-14:11.)

131. The R400 RTL code which defines the MACC GPR moduleis

included in macc_gpr.v. The MACC GPR module passes the command thread’s

instruction(s) to the MACC module, as shown below:

jfrr ae ~ ~ _ ~ ae ~ ~ _ ~ ee ~

//tinstantiation of the macc unit which does the argument selection
and input modification (swizzling ...etc)

//1. input for the scalar unit comes as an output from this unit
and goes ail the way up to vector.v module where the instance of
scalar unit

Af can be found.

//2. VectorResult output is only used as an input into GPRs
the Previous Vector Result is not exposed at this level but stays
internal

Af to macc.v module

jfweno nnee+

/

/fregister the output from GPRs
reg [127:0] qRegData;

macc

umacc (.oResult (VectorResuit),.oScalarOpcode (oScalarOpcode),.oScaliarinp

ut (oScalariInput),.oExportDst (oexport_dst),.iRegData(qRegData),.iConst
antData(sq_sp_constant),.iScaiarData (iScalarData),.iInstruction(sq_sp_
instruct), .iinstStart(sq_sp_instruct_start), .scik(sclik),
-srst(srst));

(macc_gpr.v, 3:1-3:20.)

- 66 -

AMD1044_0010502

ATI Ex. 2002

IPR2023-00922

Page 69 of 181

ATI Ex. 2002
IPR2023-00922
Page 70 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

132. The R400 RTL code which defines the MACC module ts included in

macc.v. The MACC module receives the command thread’s instruction(s) as signal

instruction (macc.v, 2:24), and processes the instruction as described in macc.v,

2:24-28:6.

133. The texture processing engine is defined as a tp module in sp.v. As I

described in my analysis of claim | in Section VI.A.1, the TIS module provides

the command thread’s instructions to the texture processing engine. For example,

the 77S module formats the command thread’s instruction(s) into the SO_7P

interface. The SO_7P interface is an interface that transmits commandthread’s

instructions between the sequencer and the texture processing engine. The texture

processing engine also includes an SO_7?P interface which receives the command

thread’s instruction(s), as replicated below:

SQTPsend,
SQ TP_instr, SQ TPconst, SQ TPgpr_phase, SQTP_gpr_wr_addr,
SQTPthread_id, u0_SQ TPlod_correct, u0_SQTPpix_mask,
ulSQ TPlod_correct, ui_SOTP_pix_mask, u2SQ TPjod_correct,
u2_SQ TPpixmask, u3 SQTPlod_correct, u3SQ TPpixmask,

(sq.v,2:7-11.)

134. In particular, the input SO7P_instr receives the command thread’s

instruction(s).

135. The texture processing engine also processes the command thread’s

instruction(s). For example, the texture processing engine includes a ipinput

- 67 -

AMD1044_0010503

ATI Ex. 2002

IPR2023-00922

Page 70 of 181

ATI Ex. 2002
IPR2023-00922
Page 71 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

module called utpinput. (tp.v, 22:16-24:4.) The tpinput module receives the

SO_TP_instr, as shown below:

tpinput utpinput

(

®»Ssclk(sclkglobal),
rst(srst),

-SP_TPfetch_addr3(SP_TPfetch_addr3),
-SP_TPfetch_addr2(SP_ TPfetch_addrz),
-SP_TPfetch_addri(SP_TPfetch_addrl),
-SPTPfetchaddrO(SPTPfetchaddr0),
-SQTPlod_correct (SQ TPlod_correct),
.S@_TPpixmask(SQ TPpixmask),
-SQTPconst (SQTPconst),
.SQ TPinstr(SQ TP_instr),
-SQ TPgprwr_addr(SQ TPgprwr_addr),

J: f/f utpinput

(tp.v, 22:16-24:4.)

136. The R400 RTL code which defines the tpinput module is included in

tp_input.v. The tp imput receives the command thread’s instruction as signal

SO_1P_instr (tp_input.v, 3:5) and processes the command thread’s instruction as

described in tp_input.v, 5:13-19:6.

4. Claim 6

137. Claim 6 recites the “graphics-processing system ofclaim 5, wherein

the plurality ofcommandprocessing engines comprises at least one arithmetic

logic unit.” In my analysis of claim 5 in Section VII.A.3, I have already discussed

that the ALU processing engine includes at least one ALU logic unit. The ALU

- 68 -

AMD1044_0010504

ATI Ex. 2002

IPR2023-00922

Page 71 of 181

ATI Ex. 2002
IPR2023-00922
Page 72 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

logic unit is capable of performing vector and scalar operations. The R400 RTL

code that performs the vector and scalar operations is included in sp.v, vector.v,

and scalar_lut.mc (and their referenced modules).

138. As such, the R400 RTL code embodiesa plurality of command

processing engines that comprises at least one arithmetic logic unit.

5. Claim 7

139. Claim 7 recites the “graphics processing system ofclaim 5, wherein

the plurality ofcommandprocessing engines comprises at least one texture

processing engine.”

140. In myanalysis of claim 5 in Section VIILA.3, I have already discussed

that the command processing engine can be a texture processing engine. The R400

RTL code includes a texture processing engine as a tp module in tp.v.

141. As such, the R400 RTL code embodiesa plurality of command

processing engines that comprises at least one texture processing engine.

B. The R400 Emulator Code Describing Claims I, 2, 5, 6, and 7

142. Talso examined the R400 Emulator Code. Chip designers would

ordinarily use the emulator code such as this to design the integrated circuits as

part of their design process. The evidence I have reviewed indicates that this is

what ATI did at the time this R400 Emulator Code wascreated.

-69-

AMD1044_0010505

ATI Ex. 2002

IPR2023-00922

Page 72 of 181

ATI Ex. 2002
IPR2023-00922
Page 73 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

143. The R400 Emulator Codeis written in the C++ programming

language. The C++ language supports object-oriented programming where objects

can be user-defined data types. An object is defined in terms of a class, which

serves as a template for a type of data. A class can define variables, interfaces, and

functions (called methods in C++) for an object. These variables and functions can

be public or private. The public variables or functions of an object can be accessed

by other objects, while the private variables and functions can be accessed only

within the object itself. For example, public variables and functions may transmit

data or provide data access between objects, while private variables and functions

may manipulate data inside the object.

144. When the C++ code is compiled the static objects that are defined by

the classes are instantiated in memory. When the C++ codeis executed, the

dynamic objects are instantiated in memory andall objects operate and interact as

described in the corresponding C++ source code.

145. The R400 Emulator Codeis distributed among numerousfiles

including sq_block_model.cpp, arbiter.cpp, sq_alu.cpp, gpr_manager.cpp,

instructionstore.cpp and regfile.cpp, tp.cpp and corresponding “include”files

(generally with names ofthe form that end with a .-h). The source code in these

files, when compiled, realizes the graphics-processing system recited in claims1,

-7O-

AMD1044_0010506

ATI Ex. 2002

IPR2023-00922

Page 73 of 181

ATI Ex. 2002
IPR2023-00922
Page 74 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

2,5, 6, and 7. These files define a set of objects that act as components of the

claimed graphics-processing system. In C++, the “.cpp”files generally describe

the behavior of the functions of the classes, while the “.h”files generally define the

classes, including the public and private variables ofthe classes, and may also

include functions that act on the public and private variables.

146. Below, I describe relevant classes and the corresponding objects that

iunplement the elements of claims 1, 2, 5, 6, and 7.

I, Claim I

a. The Preamble

147. The preamble of claim 1 recites “A graphics processing system.” All

of the C++ files identified above are components ofthe graphics-processing

system.

148. The sqblockmodel.cpp and the userblockmode.h define a

cUSERBLOCKSQclass which is the sequencer. When compiled, the sequencer

creates acUSERBLOCK_SO object that serves as an entry point into the graphics-

processing system andalso initializes other objects in the system. For example, the

constructor function “cUSERBLOCKSQ::cUSERBLOCKSOQ”ofthe

cUSERBLOCKSQ object, when executed, creates an arbiter object with a call

-7]-

AMD1044_0010507

ATI Ex. 2002

IPR2023-00922

Page 74 of 181

ATI Ex. 2002
IPR2023-00922
Page 75 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

“arbiter = newArbiter(this,m_dumpSQ).” (sq_block_model.cpp, 7:11.) So, here,

the sequencercreates an instance of the arbiter for the graphics-processing system.

149. The cUSERBLOCKSO object also includes a main function called

cUSERBLOCKSQ::Main(). The cUSERBLOCKSQ::Main() function includes

three functions Fetch(), Process(), and Output() and causes the graphic processing

system to process command threads. (sq_block_model.cpp, 12:6-11.) The

cUSERBLOCKSO::Fetch(function gets the vertex and pixel instructions from

different components in the system and stores the vertex and pixel instructions in

the registers. (sq_block_model.cpp,12:12-16:19.) The

cUSERBLOCKSQ::Process() function processes the vertex and pixel command

threads that manipulate the vertex and pixel data using an Arbiter

(sq_blockmodel.cpp, 38:6-38:16), and the cUSERBLOCKSQ::Outpul()

function outputs the processed vertex and pixel data. (sq_block_model.cpp, 38:18-

43:6.)

150. The cUSERBLOCKSO::Process() function processes vertex and

pixel command threads. The cUSERBLOCKSO::Process() function does so by

calling three functions: Process Verts(), ProcessPixels(), and arbiter-

>Execute().(sq_block_model.cpp, 38:6-38:16.) The

cUSERBLOCKSQ::ProcessVerts) and CUSER_BLOCK_SO::ProcessPixels()

72 -

AMD1044_0010508

ATI Ex. 2002

IPR2023-00922

Page 75 of 181

ATI Ex. 2002
IPR2023-00922
Page 76 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

functions belong to the cUSERBLOCKSO class and each receive respective

vertex and pixel data as inputs and store the vertex and pixel data in registers.

151. The cUSERBLOCKSQO::ProcessVerts() function also generates a

command thread that 1s associated with a particular vertex data and inserts the

command thread into the portion of the memory associated with the vertex

commandthreads.

arbiter->

AddVector (0, VERTEX,eventid,valids,true,interp[0].lod_correct)

(sq_block_model.cpp, 34:23.)

arbiter-> AddVector (base_ptr,VERTEX,
vState, valids,faise,interp[0].lod_ correct)

(sq_block_model.cpp, 35:24-25.)

152. The VERTEX variable in the code indicates that the command thread

will be added to the portion of the memory associated with the vertex command

threads. The cUSER_BLOCKSO::ProcessPixels() function also generates a

commandthreadthat is associated with pixel data and inserts the commandthread

into a portion of the memory associated with the pixel commandthreads.

arbiter->

AdcdVector (0,PIXEL,event,interp/bufread].pixmask,true,interp/bufread
].lod_correct)

(sq_block_model.cpp, 20:26.)

AMD1044_0010509

ATI Ex. 2002

IPR2023-00922

Page 76 of 181

ATI Ex. 2002
IPR2023-00922
Page 77 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

arbiter-> AddVector(baseptr,PIXEL,
interp/bufread].stateid,interp/bufread].pixmask,false,
interp [bufread].lod_correct);

(sq_block_model.cpp, 24:5.)

153. The PLXEL variable in the code indicates that the command thread

will be added to the portion of the memory associated with the pixel command

threads.

154. The portion of the memory that stores the vertex command threadsis

called a vertexStation and the portion of the memory that stores the pixel command

threadsis called a pixelStation. Additionally, an instruction store which is defined

in the instruction_store.h defines the [Store object which stores the command

thread’s instructions andis also part of the portion of the memory. I will address

each of these memory structures below.

155. The arbiter->Execute() function selects a command thread from

among the command threads stored in either a pixelStation or the vertexStation and

passes the selected command thread to an ALU processing engine or a texture

processing engine. (sq_block_model.cpp, 38:14-15.) I address the arbiter-

>Execute() function below.

156. As such the R400 Emulator Code describes the graphics-processing

system of claim 1.

- 74 -

AMD1044_0010510

ATI Ex. 2002

IPR2023-00922

Page 77 of 181

ATI Ex. 2002
IPR2023-00922
Page 78 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

b. The at Least One Memory Device

157. The first limitation of claim | recites “at least one memorydevice

comprising afirst portion operative to store a plurality ofpixel commandthreads

and a second portion operative to store a plurality ofvertex command threads,”

158. The arbiter.h file defines a structure called a ReservationStation. The

ReservationStation stores command threads and 1s replicated below:

struct ReservationStation

ReservationStationdata data;
ReservationStationstatus status;

(arbiter.h, 3:13-17.)

159. The ReservationStation structure includes two components —

ReservationStation data and ReservationStation status. Both

ReservationStationdata and ReservationStationstatus are structures defined in

arbiter.h, 2:7-3:13. ReservationStationdata stores instruction information related

to the command thread, including pointers to the memory space where the

instructions are located as shown below:

struct ReservaltionStation_data
{

unsigned int cfPtr;
unsigned int execCount;
intlé loopiter/[4];
intié loopCount/4];
intié callReturn/[4];

bool predicates[64/ [4];
bool exportid;

unsigned int pcBasePtr;

~75-

AMD1044_0010511

ATI Ex. 2002

IPR2023-00922

Page 78 of 181

ATI Ex. 2002
IPR2023-00922
Page 79 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

unsigned int gprBase;
unsigned int state;
int LodCorrect [4] [4];

unsigned int valids/[4] [4];
int vCount;

MF

(arbiter.h, 2:7-22.)

160. ReservationStationstatus stores status information related to the

command thread, including whether the instruction is a first or last instruction im

the command thread as shown below:

struct ReservationStation_status
t

bool valid;

Ressourcetype ressourceNeeded;
bool texReadsOutstanding;
bool Serial;

Ailocationtype allocation;
unsigned int allocationSize;
bool posAllocated;
bool first;
bool event;

bool iast;

bool pulseSx;
df

(arbiter.h, 2:24-3-11.)

161. The Arbiter class defined in arbiter.h defines two arrays of type

ReservationStation. An array stores multiple instances of data having the same

type. Here, an array of type ReservationStation stores multiple instances of

ReservationStation structures and thus this array of type ReservationStation stores

a plurality of commandthreads, as recited in claim 1.

162. Thefirst such array is called pixe/Station, and is definedas:

-76-

AMD1044_0010512

ATI Ex. 2002

IPR2023-00922

Page 79 of 181

ATI Ex. 2002
IPR2023-00922
Page 80 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

ReservationStation pixelStation [MAXPIXRESERVATIONSIZE];

(arbiter.h, 4:7.)

163. The MAXPLXRESERVATIONSIZE indicates that the pixe/Station

array stores 48 commandthreads, as shown by the following statement:

#define MAXPIXRESERVATIONSIZE 48

(arbiter.h, 2:4.)

164. The pixe/Station array is invoked to allocate memory when the arbiter

is created using the new Arbiler() functions call described above. This meansthat

the pixe/Station atray is a memory portion that is operative to store a plurality of

pixel commandthreads.

165. The second arrayis called a vertexStation, and is defined as:

ReservationStation vertexStation/MAXVTXRESERVATIONSIZE];

(arbiter.h, 4:6.)

166. TheMAXVIXRESERVATIONSIZEindicates that the vertexSiation

atray stores 16 command threads, as shown by the following statement in arbiter.h:

#define MAXVTXRESERVATIONSIZE 16

(arbiter.h, 2:5.)

-77-

AMD1044_0010513

ATI Ex. 2002

IPR2023-00922

Page 80 of 181

ATI Ex. 2002
IPR2023-00922
Page 81 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

167. The vertexStation array is also invoked to allocated memory when the

newArbiter() function call occurs. This meansthat the vertexStation array is a

memory portion that 1s operative to store a plurality of vertex command threads.

168. Below, I have generated a figure, based on my understanding of the

R400 Emulator Code, that represents the pixel reservation station and the vertex

reservation station that includes these components as they are instantiated in the

R400 Emulator Code, along with the structures and/or classes that define the

components:

Pieel Reservation Station - - Verlex Reservation Staton
PixelStation (NANPIMRESERVATIONSIZE] werteaStation (MaxWis,RESERVATIONSISE]

larbiter.h) farbiter i)

ateuct Reserwatlonitation ebrack Heeervalilonstation
(arbiter. 1) larbiter.&)

c. The Arbiter

169. The second limitation of claim | recites “an arbiter, coupledto the at

least one memory device.”

170. As explained above, the arbiter.cpp and arbiter.h files define an

Arbiter class which is used to generate an arbiter object. For example, the Arbiter

object is created in the constructor of the CUSER_BLOCKSO class

cUSERBLOCKSO::cUSERBLOCKSO bythe below code:

- 78 -

AMD1044_0010514

ATI Ex. 2002

IPR2023-00922

Page 81 of 181

ATI Ex. 2002
IPR2023-00922
Page 82 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

arbiter = new Arbiter (this,m_dumpSQ);

(sq_model_block.cpp, 7:11.)

171. The keyword “new”is a C++ keyword that creates a dynamic object,

in this case an arbiter, when the R400 Emulator code executes. As part of the

object creation, the “new”call also invokesthe arbiter’s constructor called

Arbiter: :Arbiter() which creates and initializes the arbiter recited in claim 1.

(arbiter.cpp, 2:3-9:16). The arbiter’s constructor initializes the pixe/Station array

whichis a pixel portion of the memory and the vertexStation array which is a

vertex portion of the memory (arbiter.cpp, 3:2-4:14 and 4:16-5:21) as replicated

below:

// initialize all the fiels of the RS

for (i=0;i<MAXPIXRESERVATIONSIZE;it++)
{

pixelStationfi].status.valid = false;
pixelStation[i].status.event = false;
pixelStation/ij.status.first = false;
pixelStationfi].status.last = false;
pixelStation[i].status.texReadsOutstanding = false;
pixelStationfi].status.pulseSx = false;

bixelStation/ij].status.allocation = SQNOALLOC;

pixelStationfi].data.callReturn/[0] = -1;
pixelStation[i].data.callReturn[1] = -I1;
pixelStation/[ij.data.caliReturn/2] = -1;
pixelStationfi].data.caliReturn[3] = -1;

pixelStationfi].data.ioopiter/O] = -1;
pixeiStation[i].data.jioopiter/ij = -i;
pixelStation/j/ij.data.looptter/2] = -I;
pixelStationfi].data.jioopiter/3] = -i;

pixelStationf[i].data.ioopCount/O] = 0;
pixelStationf[i].data.loopCount/1] = 0;
pixelStaticn[i].data.ioopCount/2] = 0;

-~79.

AMD1044_0010515

ATI Ex. 2002

IPR2023-00922

Page 82 of 181

ATI Ex. 2002
IPR2023-00922
Page 83 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

pixelStationf[i].data.jioopCount/[3] = 0;

pixeiStationf[i].data.pcBasePtr = 0;
pixelStation/ij.data.exportId =0;
pixelStationfi].data.vCount =0;

for (j=0;7<64;7++)
{

pixelStation[i].data.predicates[j/][0]J=
pixelStation/[i].data.predicates/[j][i]J=
pixelStation[i].data.predicates[j][2]=
pixeiStation/fil.data.predicates[j/][3]=

For (i=0;1<MAXVIXRESERVATIONSIZE;i++)
{

vertexStation/ij.status.valid = false;

vertexStationfij.status.event = false;

vertexStation/ij.status.first = false;

vertexStationfij.status.jJast = false;

vertexStation/ij.status.texReadsOutstanding = false;
vertexStation/ij.status.pulseSx = false;

vertexStation/ij.status.allocation = SQNO_ALLOC;

ivertexStation/fij.data.c

vertexStationfij].data.c

vertexStationfij].data.c

vertexStation/i].data.

ReturnfO] = -1;

Return/ij] = -i;
Returnf[2] = -1;

Return/3/ = -i;

05)

Jes% ferKaa Im%
Qq % KS ~

vertexStation/ij.data.loopiter/o] =
vertexStation/i].data.loopiter/i]
vertexStation/ij.data.loopiter/2]
vertexStation/ij.data.loopiter/[3] =

ol
NeNe| heaFAFAF-4
Ne

Ne

vertexStation/ij.data.pcBasePtr = 0;
vertexStation/ij.data.exportId =0;
vertexStation/ij].data.vCount =0;

or (j=0;7<64;75++)aby
vertexStation/i].data.predicates/[7]/[OJ/= false;
vertexStation/ij].data.predicates/j][ijJ= false;
vertexStation/i].data.predicates[/j][2J= false;
vertexStation/i].data.predicates/7]/[3/= false;

(arbiter.cpp, 3:2-5:21.)

-§80-

AMD1044_0010516

ATI Ex. 2002

IPR2023-00922

Page 83 of 181

ATI Ex. 2002
IPR2023-00922
Page 84 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

172. Another example ofinitialization occurs at arbiter.cpp, 3:4-6:6 where

the arbiter’s Arbiter: :init(function clears and re-initializes the pive/Station and

vertexStation arrays. Initialization of the memory that stores pixel/Sfation and

vertexStation by the arbiter object demonstrates that claimed arbiter is coupled to

the claimed portion of the memoryas recited in claim 1.

173. Ihave generated below a figure, based on my understanding of the

R400 Emulator Code, that represents howthe arbiter is coupled to the pixel

reservation station and the vertex reservation station. The figure includes the

componentsas they are instantiated in the graphics-processing system and also

includes the structures and/or classes that define the components:

Pixel Reservation Station Vertex Reservation Station

| pixelStation[MANPIXRESERVATIONSIZE] |
lerbdber oh)

| vertexStation {MAYVINRESERVATIONSIZE]
: fagbiter hb)

struct ReservationStation
laxbi-ber hn)

etevet Reeorrationstake On
lacbdter.)

Arbiter

 arbi ber

(eqmodelblock .h)

Lace Ach ber
(arbiter. nh)

-~ 8] -

AMD1044_0010517

ATI Ex. 2002

IPR2023-00922

Page 84 of 181

ATI Ex. 2002
IPR2023-00922
Page 85 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

d. The Arbiter is Operable to Select a Command Thread

174. The arbiter of claim 1 is “operable to select a commandthreadfrom

either ofthe plurality ofpixel commandthreads andthe plurality ofvertex

command threads based on relative priorities ofthe plurality ofpixel command

threads and the plurality ofvertex command threads.”

175. The arbiter.cpp file describes an arbiter operable to select a thread.

For example, The Arbiler::Execuie() function allowsthe arbiter object to select a

command thread. (arbiter.cpp, 9:18-16:18.) The Execute() function chooses a

command thread that is processed on a texture processing engine or an ALU

processing engine.

176. To choose a commandthread for processing using a texture

processing engine, the Arbiter::xecutef) function calls an

Arbiter: :chooseTexStation(...) function, using the call below:

found=chooseTexStation (texLineNumber,texType) ;

(arbiter.cpp, 10:16.)

177. The function Arbiter: :chooseTexStation(...) selects a command thread

from either a pixelStation or vertexStation. (arbiter.cpp, 51:7-53:22.)

- 82.

AMD1044_0010518

ATI Ex. 2002

IPR2023-00922

Page 85 of 181

ATI Ex. 2002
IPR2023-00922
Page 86 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

178. For example, Arbiter: :chooseTexStation(...) includes two “for” loops

that traverse the pixe/Station entries and then the vertexStation entries. Thefirst

“for” loop iterates through the pixelStation array, beginning at the top of the array,

and selects a candidate pixel commandthread (if any such entry is present) from a

location in the pixe/Station. The selection is based on the variety of statustests.

The code for selecting the pixel command thread is replicated below:

// do pixels first
JineCheck = pixelHead;
for (1=0;i<pixelRsCount;itt)
{

if (pixelStation/lineCheck].status.valid &&
pixelStation/[iineCheck].status.ressourceNeeded == TEXTURE

&& IpixelStation/lineCheck].status.event)
{

pixelPick=lineCheck;
i

// enforce restrictions based on the status

if (pixelPick != -1}
{

{// no texture ops while texture reads are outstanding
if

(pixel Station[pixelPick].status.texReadsOutstanding)
pixeliPick = -I;

else

break;

}

ilineCheck = (lineCheck+1) MAXPIXRESERVATIONSIZE;

(arbiter.cpp, 51:14-52:9.)

179. By evaluating the pixe/Station array entries and by selecting a

candidate pixel command thread based on status conditions (arbiter.cpp, 51:14-

52:9), the R400 Emulator Code describes an arbiter operable to select a pixel

AMD1044_0010519

ATI Ex. 2002

IPR2023-00922

Page 86of 181

ATI Ex. 2002
IPR2023-00922
Page 87 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

command thread from the plurality of pixel commandthreads based on the relative

priorities of the plurality of pixel commandthreads.

180. The second “for” loop in the Arbiter: :chooselexStation() function

iterates through the vertexSration entries, beginning at the top of the vertexStation

array, and selects a candidate vertex command thread (if any such entry is present)

from a location in the vertexStation. The selection is based on the variety of status

tests. The code for selecting the vertex commandthread is replicated below:

jJineCheck = vertexHead;

for (i1=O0;i<vertexRsCount;itt)
{

if (vertexStation/lineCheck].status.valid &&

vertexStation/lineCheck].status.ressourceNeeded == TEXTURE

&& IivertexStation/lineCheck].status.event)
{

vertexPick=lineCheck;

}

// enforce restrictions based on the status

if (vertexPick != -1)

{

// no texture ops while texture reads are cutstanding
if

(vertexStation/!/vertexPick
r

. status. texReadsOutstanding)
verte

]

texPick = -I1;

break;

lineCheck = (lineCheck+1) MAX VIXRESERVATIONSIZE;

(arbiter.cpp, 52:11-53:6.)

181. By traversing the vertexStation after the pixe/Station, and selecting a

candidate vertex commandthread based on different status conditions, the R400

Emulator Code includes an arbiter operable to select a vertex command thread

~ 84.

AMD1044_0010520

ATI Ex. 2002

IPR2023-00922

Page 87 of 181

ATI Ex. 2002
IPR2023-00922
Page 88 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

from the plurality of vertex command threads based on the relative priorities ofthe

plurality of prxel command threads and the plurality of vertex command threads.

182. Once the Arbiter: :chooselexStation(...) function selects a pixel

command thread from the pixe/Station and a vertex command thread from the

vertexStation, the Arbiter:: chooseTexStation(...) function selects a command

thread from the selected pixel command thread and the selected vertex command

thread, where the vertex commandthread, if it exists, has priority over the pixel

commandthread. That is, if a candidate vertex commandthread exists, the vertex

commandthreadis selected and becomes the selected commandthreadof claim 1.

Otherwise, the pixel command thread becomesthe selected command thread of

claim 1. The code that demonstrates this is replicated below:

if (vertexPick != -1)
{

ineNumber ~ vertexPick;s
= VERTEX;

urn true;

£

Wobe ORKtheos 3®

}

if (pixelPick != -1)
{

JineNumber = pixelPick;
sfype = PIXEL;
return true;

}

(arbiter.cpp, 53:8-19.)

183. Once the Arbiter: :chooseTexStation(...) function selects a command

thread, the Arbiter: :chooseTexStation(...) function returns a boolean(true or false)

variable which indicates whether a command thread was selected. Also,

-~§5-

AMD1044_0010521

ATI Ex. 2002

IPR2023-00922

Page 88 of 181

ATI Ex. 2002
IPR2023-00922
Page 89 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

Arbiter: :chooseTexStation(...) returns 1) a type of the selected command thread, a

vertex command thread or a pixel command thread, whichis stored in variable

slype, and 2) a location of the selected command thread in the vertexStation or

pixelStation stored in the variable lineNumber. (arbiter.cpp, 51:7.)

184. Ifthe Arbiter: :chooseTexStation(...) function indicates that the

command thread was selected, the Arbiter uses the Arbiler::popStationVector(...)

function to remove the selected command thread from either the vertexStation or

pixelStation arrays and stores the removed command thread in texStationData, as

shownby the code below:

ReservationStation* texStationData;

int texLineNumber;

ShaderType texType;

// pick a program to run on the texture pipe
found=chooseTexStation (texLineNumber,texType);
if (found)
t

texRunning = true;
// pop the content of the chosen clause and place the results in

the object's texture state
// variables

popStationVector (texStationbata,texlhineNumber,texType) ;

(arbiter.cpp, 10:8-11:10.)

185. The Arbiter: :popStationVector(...) function passes a single

ReservationStation structure called texStationData, the line number location of the

selected commandthread in the vertexStation or pixe/Station array called

-~ 86 -

AMD1044_0010522

ATI Ex. 2002

IPR2023-00922

Page 89 of 181

ATI Ex. 2002
IPR2023-00922
Page 90 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

texLineNumber, and the type (vertex or pixel) of the command thread called

tex]ype. The texStationData variable is of type ReservationStation and stores the

memory address location of the selected commandthread. The codethat is

operable to select a commandthread is replicated below:

void Arbiter: :popStationVector (ReservationStation*é stationData, int
jineNumber,

ShaderType sType)
{

int i,j;
switch (sType)
{
case PIXEL:

stationData = &pixelStation/lineNumber];
pixelStation[lineNumber].status.valid = false;
break;

case VERTEX:

stationData = &vertexStation/lineNumber/]

vertexStation/flineNumber].sttatus Valid == false;
// vefresh the vertex mask using vCount
for (1=0;i1<4;itt)

for (jJ=O75<4; I++)
t

Switch (vertexStation/[vertexTail].data.vCount-

(i*1645*4))

case (0:

vertexStation/[vertexTail].data.valids/i] [7]
= Ox00;

break;
case I:

vertexStation/vertexTail].data.valids/fi] [fj]
= 0x01;

break;
case 2:

vertexStation/vertexfail].data.validsfi] [7]
= 0x03;

break;
case 3:

vertexStation/vertexTail].data.valids/i] [7]
= 0x07;

break;
case 4:

vertexStation/vertexTail].data.validsfij [7]
= Ox0Of;

-§7-

AMD1044_0010523

ATI Ex. 2002

IPR2023-00922

Page 90 of 181

ATI Ex. 2002
IPR2023-00922
Page 91 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053
break;

default:

break;

he

}
break;

(arbiter.cpp, 49:17-51:5.)

186. In this way, the arbiter is operable to select a command thread from

either of the plurality of pixel commandthreadsorthe plurality of vertex command

threads based onrelative priorities of the plurality of pixel command threads and

the plurality of vertex commandthreads.

187. In another example, Arbiter::Execute() function also selects a

commandthread from a verfexS/ation or a pixe/Station for one of the two ALU

processing engines. The two ALU processing engines run on different clock

parities, one on the even clock and one on the odd clock. The code which invokes

selecting a commandthread for an ALU processing engineis replicated below:

/é pick one alu clause to execute
// depending on the clock parity, run either the even alu state

machine or the odd one

if (ALU_turn)
{

runALU(aluORunning,
alu@CFMachine,aluiCFMachine,aluiRunning,aluPhase) ;

}
else

{

runALU(alulRunning,
aluiCFMachine,alu0CFMachine,aluQRunning,aluPhase) ;

(arbiter.cpp, 14:21-15:6.)

- §8 -

AMD1044_0010524

ATI Ex. 2002

IPR2023-00922

Page 91 of 181

ATI Ex. 2002
IPR2023-00922
Page 92 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

188. The Arbiter: :runALU(...) function (arbiter.cpp, 16:20-24-20) selects a

command thread from either a vertexStation or a pixelStation using the

Arbiter: :chooseAluStation(...) function, as replicated below:

found=chooseAluStation (lineNumber,stype,otherAiuRunning,
otherCFMachine, predToggle);

(arbiter.cpp, 17:10-11.)

189. The function Arbiter: :chooseAluStation(...) selects a commandthread

from either a pixelStation or vertexStation. For example,

Arbiter: :chooseAluStation(...) 1ncludes two “for” loops. Thefirst “for” loop

iterates through the pixelSiation entries, beginning at the top of the array, and

selects a candidate pixel command thread (if any such thread is present) from a

location in the pixe/Station. The selection is based on the variety of status tests that

check that the pixel command threads do not block older pixel command thread.

The code for selecting the pixel commandthreadis replicated below:

// do pixels first
lineCheck = pixeiHead;
for (i=0;i<pixelRsCount;i+t)
{

if (pixelStation/{lineCheck].status.valid != 0 &&
pixelStation/fiineCheck].status.ressourceNeeded == ALU

&& IpixelStation/lineCheck].status.event)
{

// no allocation needed

if (pixelStation/lineCheck].status.allocation ==

SQ_NO_ALLOC)
{

pixeiPick = lineCheck;
}

-~§9.

AMD1044_0010525

ATI Ex. 2002

IPR2023-00922

Page 92 of 181

ATI Ex. 2002
IPR2023-00922
Page 93 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

// we need to make sure there is space in the
appropriate buffer

else if

(pixelStation/lineCheck].status.allocationSizet1l <= sq->pSX_SQ-
>GetExportBuffer()/4)

{

pixeiPick = lineCheck;
}

// make sure the status says we can pick this vertex
if (pixelPick [= -1)
{

// Check for serial with texture pending
if (pixeiStation/[pixelPick].status.serial &&

pixeiStation/!pixelPick].status.texReadsOutstanding)
pixelPick = -i;

// if last is set we can only pick the two

élse if (pixelStation[pixelPick].status.last &6&
! (pixel Pick==pixelHead | |

pixel Pick==((pixelHead-1) #MAX_PIXRESERVATIONSIZE)))
pixelPick = -I;

// cannot pick last if texture reads are
outstanding

else if (pixeiStation[pixeiPick].status.last &&

pixeliStation[pixelPick].status. texReadsOutstanding)
pixelPick = -I1;

// can only pick the second to old if the first
is already running

else if (pixelStation[pixelPick].status.last &&
lpixeiStation/pixelHead].status.vaiid)

{

if (pixelStationfpixeiPick].status.first)
pixelPick = -I;

else

{

predOn = false;
break;

}

}
else

break;

}

i// endif pixels

tlineCheck = (lineCheck+i) 8MAXPIXRESERVATIONSIZE;
}// end For loop

(arbiter.cpp, 54:8-56:9.)

-~90 -

AMD1044_0010526

ATI Ex. 2002

IPR2023-00922

Page 93 of 181

ATI Ex. 2002
IPR2023-00922
Page 94 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

190. By traversing the pixe/Sration and selecting a candidate pixel

command thread based on status conditions, the R400 Emulator Code describes an

arbiter operable to select a candidate pixel command thread from the plurality of

pixel commandthreads based on the relative priorities of the plurality ofpixel

command threads and the plurality of vertex commandthreads.

191. The second “for” loop in the Arbiter: :chooseTexStation() function

iterates through the vertexSration entries, beginning at the top of the array, and

selects a candidate vertex commandthread (if any such thread is present) from a

location in the veriexSiation. The selection is based on the variety of status tests.

The code for selecting the vertex command thread is replicated below:

jJineCheck = vertexHead;

for (i1=O0;i<vertexRsCount;itt+)
{

if (vertexStationflineCheck].status.valid != 0 &&

vertexStation/lineCheck].status.ressourceNeeded == ALU

&&!l vyertexStation/lineCheck].status.event)
'

// no allocation needed

if (vertexStationfilineCheck].status.allocation ==

SQNO_ALLOC)
{

vertexPick = lineCheck;

}

// we need to make sure there is space in the
appropriate buffer

else

{

if (vertexStation/flineCheck/].status.allocation ==

SQMEMORY)
{

onSize+i <= sq->pSX SQ-

if

((vertexStation/[lineCheck].status.alilocat

>GetExportBuffer()/4)

&& SQ->pSX_SQ->GetValid())

-~9] -

AMD1044_0010527

ATI Ex. 2002

IPR2023-00922

Page 94 of 181

ATI Ex. 2002
IPR2023-00922
Page 95 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

vertexPick = lineCheck;

.Status.alliocation == SQPARAMETERPIXEL)

4

(vertexStation/lineChec

{

// determine if there is space in the PCs
or an eventual PC exportIh

pcSpace =
checkPC ((vertexStation/f/lineCheck].status.allocationSizeti)*4);

if (pcSpace)
{

ineCheck;
+

a4vertexPick =

}
else if

(vertexStation/[lineCheck].status.allocation == SQPOSITION
&& SQ->pSXSQ->GetPositionReady() && sq-

>pSX_S8Q->GetValid())

// make sure every older threads have their
position ailocated

bool allocdone = tr
int alloc line = ver

i
while (lineCheck !=

(vertexStationfailoc linej.status.posAllocated == false)

aiioc done = false;

break;

(alloc lineti) 3MAXVTXRESERVATIONSIZE;
}

if failocdone)
{

vertexPick = lineCheck;

}

}
}

// make sure the status says we can pick this vertex
(vertexPick != -1}

oebY
// Check for serial with texture pending
if (vertexStation/[vertexPick].status.ser

vertexStation/vertexPick].status.texReadsOutstanding)
vertexPick = -I;

// if last is set we can only pick the two
idests threads

-~ 92.

AMD1044_0010528

ATI Ex. 2002

IPR2023-00922

Page 95 of 181

ATI Ex. 2002
IPR2023-00922
Page 96 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

elise if (vertexStation/[vertexPick].status.jiast &&
! (vertexPick==vertexHead||

vertexPick==((vertexHead-1) @MAXVIXRESERVATIONSIZE)))
vertexPick = -1;

// cannot pick last if texture reads are
outstanding

else if (vertexStation/vertexPick/].status.

vertexStation/vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// can only pick the second to old if the first

else if (vertexStation/vertexPick].status.iast &&

fvertexStation/vertexHead].status.valid)

[

if (vertexStation/vertexPick].status.first)
vertexPick = -1;

eise

{

predon = false;
break;

Q~~ bh 0) ®

break;

}

}// endif vertex

lineCheck = (lineCheck+1) 8MAXVTXRESERVATIONSIZE;
}//f end for loop

(arbiter.cpp, 56:11-60:1.)

192. By traversing the vertexStation entries after the pixe/Station entries

andselecting a candidate vertex commandthread based on different status

conditions, the R400 Emulator Code describes an arbiter operable to select a vertex

command thread from the plurality of vertex command threads based on the

relative priorities of the plurality of prxel commandthreads and the plurality of

vertex command threads.

AMD1044_0010529

ATI Ex. 2002

IPR2023-00922

Page 96of 181

ATI Ex. 2002
IPR2023-00922
Page 97 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

193. Once the Arbiter: :chooseAluStation(...) function chooses the pixel

command thread from the pixe/Station and the vertex command thread from the

vertexStation, the Arbiter: :chooseAluStation(...) fanction selects a command

thread from the selected pixel command thread and the selected vertex command

thread, with the vertex commandthread having priority over the pixel command

thread. That is, if a vertex commandthread exists, the vertex command thread is

selected and becomesthe claimed commandthread. Otherwise, the pixel command

thread is selected and becomes the claimed commandthread. (arbiter.cpp, 60:3-

65:25.) The excerpts of code that demonstrate this are replicated belowat

arbiter.cpp, 60:3-60-8 and 63:12-15, and the code in its entirety can be found in

arbiter.cpp, 60:3-65:25:

// vight now vertices have priority over pixels always,
// will have to change this when the registers are there.

if (vertexPick != -1)
{

lineNumber = vertexPick;

sfype = VERTEX;

if (pixelPick != -1}
{

lineNumber = pixelPick;
sfype = PIXEL;

}

194. Once Arbiter: :chooseAluStation(...) selects a commandthread, the

Arbiter: :chooseAluStation(...) function returns a boolean variable which indicates

- 94.

AMD1044_0010530

ATI Ex. 2002

IPR2023-00922

Page 97 of 181

ATI Ex. 2002
IPR2023-00922
Page 98 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

whether the command thread was selected. The Arbiter: :chooseAluStation¢...)

function also returns 1) a type of the selected command thread — a vertex command

thread or a pixel command thread, which is stored in variable s7ype, and 2) a

location of the commandthread in the vertexStation or pixelStation arrays stored in

the variable /ineNumber.(arbiter.cpp, 53:24-25.)

195. Ifthe Arbiter: :chooseAluStation(...) function indicates that a

command thread was found, the Arbiter: :runAlu(...) function uses the

Arbiter: :popStationVector(...) function to select the command thread from either

vertexStation or pixelStation, as shown below:

int lineNumber;

ShaderType stype;
ReservationStation* aluStationData;

found=chooseAluStation (lineNumber,stype,otherAluRunning,otherCFMachine
,predToggie);
if (found)
{

aluRunning = true;
popStationVector (aluStationData,lineNumber,stype);

(arbiter.cpp, 17:7-18-2.)

196. AsT explain above, the Arbiter: :popStationVector(...) function passes

a single ReservationStation structure (called a/uStationData), the line number

location of the selected commandthread in the vertexStation or pixelStation array

called texLineNumber, and the type (vertex or pixel) of the commandthread called

~95.

AMD1044_0010531

ATI Ex. 2002

IPR2023-00922

Page 98 of 181

ATI Ex. 2002
IPR2023-00922
Page 99 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

stype. The aluStationData variable is of type ReservationStation and stores the

memory address location of the selected commandthread.

197. The Arbiter::popStationVector() function removes the selected

commandthread from either a vertexStation or a pixelStation entry (based on the

stype variable) and stores the removed commandthread in the ReservationStation

structure called aluStationData.

198. In this way, the R400 Emulator Code describes another arbiter

operable to select a commandthread from either of the plurality of pixel command

threads and the plurality of vertex command threads based on relative priorities of

the plurality of pixel command threads and the plurality of vertex command

threads.

2. Claim 2

a. The Preamble

199. Claim 2 recites the graphics-processing system of claim 1, further

comprising “a commandprocessing engine, coupledto the arbiter.”

200. The sq_alu.h and sq_alu.cpp files define an ALU processing engine

and create an object of type SOALU. The ALU processing engine is a command

processing engine.

- 96 -

AMD1044_0010532

ATI Ex. 2002

IPR2023-00922

Page 99 of 181

ATI Ex. 2002
IPR2023-00922

Page 100 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

201. This ALU processing engine object is a componentofthe

CUSERBLOCK_SO class identified above as the sequencer class. For example, in

the user_block_mode.hfile, the cCUSER BLOCK SO class defines an ALU

processing engine using a static sgA/u object definition, as shown in the code

below:

// the ALU

SQALU sqAlu;

(userblockmodel.h, Exhibit 2089,11:6-7.)

202. This means that when an object in the cCUSERBLOCKSO classis

created, the SOALU object, such as, sgA/u is also created.

203. The sgAlu object defined in the cUSERBLOCKSOclass is a public

variable, which means that other objects, such as an arbiter, can access the ALU

processing engine. The arbiter in the Arbiter: :runAlu(...) fanction, for example,

accesses the ALU processing engine defined in the cUSERBLOCKSO object

with a call to the sgA/u. Execute...) function, as illustrated below:

sq->sqAlu. Execute (sq->regFilefaluPhase}],sq->outBuffer, sq-
>constantStore/currentCFMachine. stationData->data. state],

srcAAddr,srcBAddr, srcoCAddr,srcCRegPtr,dstAddr,scalarDstAddr, inst,
currentCFMachine. stationData->data.validsfaluPhasej, aluPhase,sq-

>pSQSP, currentCFMachine.sType, &(currentCFMachine.stationData-
>data.predicatesfaluPhase*i6]), sq,AluID);

(arbiter.cpp, 21:26-23:9.)

-~97 -

AMD1044_0010533

ATI Ex. 2002

IPR2023-00922

Page 100 of 181

ATI Ex. 2002
IPR2023-00922

Page 101 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

204. Since the ALU processing engine maybe invoked bya function

defined in the Arbiter class, the R400 Emulator Code showsthat the ALU

processing engine (which is a commandprocessing engine) is coupled to the

arbiter.

205. Below, I have provided a figure that represents how the command

processing engine is coupled to the arbiter. The figure includes components as they

are instantiated in the C++source code and with the structures and/or classes that

define the components:

Sequencer

clase. cUSERBLOCK.$0.
(userblockmodel.h}

arbiter egaLu
(userblockmodel -h) (userblockmodel. h)

elase Arbiter class 3¢ALU
(arbiter hi} (sqalu h)

~ 98 .

AMD1044_0010534

ATI Ex. 2002

IPR2023-00922

Page 101 of 181

ATI Ex. 2002
IPR2023-00922

Page 102 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

b. The Arbiter is Operable to Provide a Command
Thread to the Command Processing Engine

206. Claim 2 also recites “wherein the arbiterisfurther operable to

provide the command thread to the commandprocessing engine.”

207. When the arbiter uses the Arbiter: :popStationVector() function to

select a command thread that is accessed via a/uStationData, the arbiter stores the

commandthread in a control flow machine object called currentCFMachine, as

shown using the R400 Emulator Code below:

currentCrMachine.init(sq,aluStationData,stype,lineNumber,position,NULi
d?

(arbiter.cpp, 17:18.)

208. The arbiter then sets the instruction address of the command thread

from the command thread’s context in a/uStationData using the statement below:

stop = currentCFMachine. getNextInstruction(aluiInstruction,nop,last);Pp c <

(arbiter.cpp, 18:19.)

209. When the commandprocessing engine is ready to execute the

command thread’s instruction, the arbiter retrieves the instruction from the

instruction memory, using the statement below:

sq->instructionStore.GetInst (inst,alutInstruction);

(arbiter.cpp, 18:19.)

~99.

AMD1044_0010535

ATI Ex. 2002

IPR2023-00922

Page 102 of 181

ATI Ex. 2002
IPR2023-00922

Page 103 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

210. Next, the arbiter uses the GPRAddressCompute function to calculate

the addresses in memory required for the command processing engine to process

the command thread, using the statement below:

GPRAddressCompute (currentCFMachine.stationData-
>data.gprBase,inst,currentCFMachine,srcAAddr,
srcBAddr,srcCAddr,dstAddr,scaiarDstAddr)

(arbiter.cpp, 21:22-24.)

211. Next, the arbiter invokes the ALU processing engine to process the

commandthread’s instruction, using the statement below:

sq->sqAlu. Execute (sq->regFilefaluPhase],sq->outBuffer, Sgq-
>constantStore/currentCFMachine. stationData-Sdata. state],
srcAAddr,srcBAddr, srcCAddr,dstAddr, scalarDstAddr, inst,

currentCFMachine. stationData->data.validsfaiuPhase], aluPhase,sq-

opSQSP, currentCFMachine. sType, & (currentCFMachine.stationData-
>data.predicates/[aluPhase*16]/0Q]}), sq);

(arbiter.cpp, 21:26-22:9.)

212. The SOALU::Execute(...) function is included in the SO_ALUclass

and, when invoked by the sgA/u object by way of the arbiter, processes the

command thread’s instruction. (sq_alu.cpp, 2:9-7:24.) In particular, the

SO_ALU:Execute(...) invokes the SO_ALU-:ExecuteAlulnstruction(...) function at

page 7, line 20 (7:20) which executes the command thread’s instruction.

213. As such, the R400 Emulator Code recites an arbiter operable to

provide the command thread to the commandprocessing engine.

~ 100 -

AMD1044_0010536

ATI Ex. 2002

IPR2023-00922

Page 103 of 181

ATI Ex. 2002
IPR2023-00922

Page 104 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

3. Claim 5

214. The preamble of claim 5 recites “4 graphics processing system,”

discussed above in myanalysis of claim 1 in Section VII.B. 1. This is present in

the R400 Emulation Code for the same reasons as explained previously.

215. Thefirst limitation of claim 5 recites “at least one memorydevice

comprising afirst portion operative to store aplurality ofpixel command threads

and a second portion operative to store a plurality ofvertex command threads,”

discussed above in myanalysis of claim 1 in Section VU.B.1. Thisis present in the

R400 Emulation Code for the same reasons as explained previously.

216. The second limitation of claim 5 recites “an arbiter, coupledto theat

least one memory device,” which | discussed above in my analysis of claim 1| in

Section VIIB.1. This is present in the R400 Emulation Code for the same reasons

as explained previously.

217. The arbiter of claim 5 is “operable to select a command threadfrom

either ofthe plurality ofpixel commandthreadsandthe pluralityofvertex

commandthreads.” The prior discussion explains myanalysis of howthe arbiter

selects a commandthread in claim 1 in Section VII.B.1. This is present in the R400

Emulation Code for the same reasons as explained previously.

- 10l-

AMD1044_0010537

ATI Ex. 2002

IPR2023-00922

Page 104 of 181

ATI Ex. 2002
IPR2023-00922

Page 105 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

218. The third limitation of claim 5 recites “a piurality ofcommand

processing engines, coupled to the arbiter, each operable to receive andprocess

the command thread.” As discussed in myanalysis for claim 2 in Section VILB.2,

the R400 Emulator Code describes the ALUprocessing engine whichis a

command processing engine. The ALUprocessing engine exists in the sgAlu

object which receives the command thread’s instruction(s). Also, the R400

Emulator Code describes a texture processing engine which is a command

processing engine.

219. Thave also provided a figure that represents the coupling between the

arbiter and the ALU processing engine and the texture processing engine. The

figure includes components as they are instantiated in the R400 Emulator Code and

also the structures and/or classes that define the components:

~ 102 -

AMD1044_0010538

ATI Ex. 2002

IPR2023-00922

Page 105 of 181

ATI Ex. 2002
IPR2023-00922

Page 106 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

SOTP Interface
sequencer

| pSQ_TP
po(sexblock.model ch)

| class oUSERBLOCKSQ|
| (userblockmodel sh) | class SyTE

Texture Processing Engine

mie

Arbiter ALU- Processing Engine (userblockmodel .h)

axbiter egaLy clase TexturePine
(userblockmodel .h)} (ugexblockmodel .h) (ip.h)

class Arbites class SOALG class cUSER BLOCK 92>
jarbiter.h) (sq_alu.h) (user blockmodel.h)

220. With respect to the ALU processing engine, the sgd/u object is of type

SO_ALU. The sqgAlu object receives and processes the command thread’s

instruction(s) using two functions, the SO_ALU::Execute(...) function (sq_alu.cpp,

2:9-7:24) and the SO_ALU:: ExecuteAlulnstruction(...) function (sq_alu.cpp, 8:1-

36:1.) Each ofthe functions process the command thread’s instruction. The

SQ_ALU::Execute(...) calls the SQ_ALU::ExecuteAlulnstruction(...) fanction as

replicated below:

switch (VectorIndex)
{
case O:

SPData. Instruction = Instruction.SrcASel +

(Instruction. SourceANegate << 2) +
(Instruction. SourceASwizzle <<

4) +

AMD1044_0010539

ATI Ex. 2002

IPR2023-00922

Page 106 of 181

ATI Ex. 2002
IPR2023-00922

Page 107 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

((Instruction.VectorResultPointeré0x3sF)<<i12);
break;

case i:

SPData. Instruction

on. SourceBNegate <<

Instruction. SrcBsSel +
+i 2)(Instruct

(Instruction. SourceBSwizzle <<
4) +

((Instruction. ScalarResultPointeré0x3F)<<12);>
break;

case 2:

SPPata. Instruction = Instruction.SrcCSel +

(instruction. SourceCNegate << 2) +
.SourceCSwizzie <<

4);
break;

case 3:

SPData.Instruction = Instruction. VectorOpcode +
(Tnstruction. ScaiarOpcode << 5)+t

(Instruction. VectorClamp << if)
+ (instruction. ScalarClamp << i2)+

Instruction. VectorWriteMask <<

13) + (Instruction. ScalarWriteMask << 17);
break;

// do ali the static

if (Instruction. S8rcASe

Constants.GetConstValue (constant /Vectorindex],SrcAAddr);

~ next turn

else if (Instruction. SrcBSel)

Constants.GetConstValue (constant /VectoriIndex],SrcBAddr);

@ise if (Instruction. $rceCsel)

Constants.GetConstValue (constant /Vectorindex],SrcCAddr);

for (1=0;1<4;it+)

PMasks [VectoriIndex] fi]

witch (VectorIndex)

case O: // interpolator and SRC A
CMask [Vectorindex] 127-SrcAAddr;

RAddr /Vectorindex/] = SrcAAddr;

WAddr [Vectorindex] = 126-SrcAAddr;

Rn [Vectorindex] = true;

Win /Vectorindex/] = faise;
break;

case i: //TX and SRC B

CMask [Vectorindex / 125-SrcBAddr;

RAddr [/Vectorindex] = SrcBAddr;

WAddr /[Vectorindex] = 124-SrcBAddr;

REn [Vectorindex] = true;

- 104 -

AMD1044_0010540

ATI Ex. 2002

IPR2023-00922

Page 107 of 181

ATI Ex. 2002
IPR2023-00922

Page 108 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053
Win [Vectorindex] = faise;
break;

case 2: // Vector and SRC C

CMask {[Vectorindex

RAddr [/Vectorindex

REn [VectoriIndexj

// if exporting
if (((Instruction.VectorResuitPointer & 0x80) != 0) &&

(Instruction. PredicateSelect < 2)) {

WAddr [VectorIndex] = Instruction. VectorResultPointer & OxX3F;
Wen [VectoriIndex] = fai

lpt=

Se;

}

elise {

WAddr [Vectorindex] = DestAddr;

WEn[/VectoriIndex/ = true;

}
break;

case 3: // Scalar and TX

CMask [Vectorindex] = Instruction. ScalarwriteMask;3°
a

i

RAddr [Vectorindex] = 122-ScalarDestAddr;
REn[VectorIndex] = faise;

// if exporting
if (((Instruction.ScalarResuitPointer & Ox80) != 0) &&

(Instruction. PredicateSelect < 2)) {

WAddr [VectorIndex] = Instruction.ScalarResultPointer & Ox3F;
WEn/|/Vectorindex]/ = faise;

}

é *

elise {

WAddr /[Vectorindex/ = ScalarDestAddr;
Wen /VectoriIndex/ = true;

}*/ // No scalar ops for now...
break;

PSOSP->SetAll (&SPData) ;
PSQSP->SetValid(true);

// Real Emulator code

CurrentRegFile = Reg;
OutputBurffer = &ExportBurffer;
CurrentAluinstruction = Instruction;
AiuPhase = VectoriIndex;

AiuType = currentAluType;

Predicates = &(pred/[0]);
validBits= &(valids[0!);

ExecuteAluInstruction (SrcAdAddr,SrcBAddr, SrcCAddr,DestAddr,ScalarD
estAddr,Vectorindex,Constants) ;

(sq_alu.cpp,4:2-6:21.)

~ 105 -

AMD1044_0010541

ATI Ex. 2002

IPR2023-00922

Page 108 of 181

ATI Ex. 2002
IPR2023-00922

Page 109 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

221. The Emulator Code also includes a texture processing engine defined

in the class called TexturePipe. (tp.h, tp.cpp.) The TexturePipe generates a

TexturePipe object called m7/P, which is a texture processing engine.

(user_block_model.h, Exhibit 2104, 3:12.) The class which instantiates an m7?P

object is called cCUSERBLOCKTP, and is defined in user_block_model.h. The

CUSER BLOCK TP also instantiates an interface betweenthe arbiter (described

above) and the m7 P, the texture processing engine, called mSO_7P of type SO_7P.

(user_block_model.h, Exhibit 2104, 3:11.) The SO_7P class is defined in sq_tp.h.

222. As deseribed above for claims | and 2 in Sections VILB.1 and

VU.B.2, whenthe arbiter selects a command thread for the texture processing

engine in the Arbiter::Execute() function, the arbiter stores the address of the

selected commandthread in fexSiationData. (arbiter.cpp, 11:15.) The arbiter then

stores the commandthread in a control flow machine object called

textureC}l'Machine, as shown below:

textureCFrMachine. init (sq,texStationData,texType, texLineNumber,NULL) ;

(arbiter.cpp, 11:18.)

223. When the commandprocessing engine is ready to execute the

command thread’s instruction(s), the arbiter retrieves the instruction(s) from the

instruction memory andstores the location of the texture instruction in

textureInstruction, using the statement below:

~ 106 -

AMD1044_0010542

ATI Ex. 2002

IPR2023-00922

Page 109 of 181

ATI Ex. 2002
IPR2023-00922

Page 110 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

stop =

textureCFMachine. getNextInstruction (textureiInstruction,nop,iast);

(arbiter.cpp, 11:16.)

224. Next, the arbiter invokes an Arbiter::fillTextureInterface(...) function

using the statement below:

filifextureinterface (textureiInstruction,texturePhase,stop);

(arbiter.cpp, 13:22.)

225. The Arbiter: :fillTexturelnterface(...) function retrieves the command

thread’s instruction(s) from the instruction store using texturelnstruction and stores

the command thread’s instruction(s) in the 77nstrPacked object called instr, in the

statement below:

sq->instructionStore. GetInst (inst, textureInstAddr);

(arbiter.cpp, 41:5.)

226. Next, Arbiter: :fillTexturelnterface(...) provides the instruction to the

arbiter-texture pipeline interface object pSO_7P, using the statement below:

sq->pSQTP->SetSQTP_instr(inst);

(arbiter.cpp, 45:1.)

- 107 -

AMD1044_0010543

ATI Ex. 2002

IPR2023-00922

Page 110 of 181

ATI Ex. 2002
IPR2023-00922

Page 111 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

227. Here, pSQTP is an interface that transfers the instruction(s) between

the sequencer and the texture processing engine. The object pSQ_7Pis defined in

sq_tp.h

228. On the texture processing engine side, when the cUSERBLOCKTP

object executes the cCUSER_BLOCK_TP::Main() function, the

CUSERBLOCKTP::Main() fetches, processes and outputs the command thread’s

instruction set with the Arbiter: :fillTexturelnterface() function. For example,

cUSERBLOCK_TP::Main(includes three functions: Fetch(), Process(), and

Output). TheCUSERBLOCKTP::Feich() function retrieves the instruction,

using the statement below:

void CUSERBLOCK _TP:: Fetch (void)

/f/Copy the interface data
mSQ TP->GetAll(&mSQ TPdata };

(tp_block_model.cpp, 2:23-3:6.)

229. Once the cUSER_BLOCK_TP object retrieves the command thread’s

instruction(s) as mSQ_7TP_data, the cCUSER_BLOCK_TP::Process() function

causes the texture processing engine, called m7P, to process the command thread’s

instruction(s) using the statement below:

void cUSERBLOCK TP:: Process (void)
{

mT'P->process(mSQTPdata, mTP_SQdata);

~ 108 -

AMD1044_0010544

ATI Ex. 2002

IPR2023-00922

Page 111 of 181

ATI Ex. 2002
IPR2023-00922

Page 112 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

(tpblockmodel.cpp, 3:8-3:26.)

230. The texture processing engine then processes the commandthread’s

instruction(s) using the 7exturePipe::process(...) function. (tp.cpp, 6:3-8:11.) In

particular, the 7exturePipe::process(...) function stores the command thread’s

instruction using 7exturePipe::init(...) function (tp.cpp, 6:7) and invokesthe

TexturePipe:Run() function which processes the command thread’s instruction(s),

as replicated below:

void

TexturePipe::run
(void)

{

switch(minstrPacked->getOPCODE())
t

case Tinstr::Opcode_FetchVertex:
VEDoSubVector();
break;

case Tinstr::Opcode_FetchTextureMap:
TEDoSupvector(};
break;

default:

cerr << "Unsupported OPCODE: " << minstrPacked->qetOPCODE() <<
endl;

break;

te

(tp.cpp, 11:2-11:18.)

231. The ALU processing engine and the texture processing engine

included in the R400 Emulator Code are a plurality of command processing

engines coupled to the arbiter. As described above, each of the ALU processing

~ 109 -

AMD1044_0010545

ATI Ex. 2002

IPR2023-00922

Page 112 of 181

ATI Ex. 2002
IPR2023-00922

Page 113 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

engine and the texture processing engine is operable to receive and process the

commandthread.

4. Claim6

232. Claim6 recites the “graphics processing system ofclaim 5, wherein

the plurality ofcommandprocessing engines comprises at least one arithmetic

logic unit.” In my analysis of claim 5 in Section VII.B.3, [have explained that the

processing engine comprises at least one ALU unit.

5. Claim 7

233. Claim 7 recites the “graphics processing system ofclaim 5, wherein

the plurality ofcommandprocessing engines comprises at least one texture

processing engine.” In my analysis of claim 5 in Section VI.B.3, I have explained

that the processing engine comprises at least one texture processing engine.

VIL The Claims of the ’053 Patent Are Supported bythe Priority Document

234. T understand that a specification must contain a written description of

the invention. I also understand that the purpose ofthis requirementis to satisfy the

inventor’s obligation to disclose to the public the technologic knowledge upon

which the patent is based, and also to demonstrate that the inventor was in

possession ofthe claimed invention.

~ 110-

AMD1044_0010546

ATI Ex. 2002

IPR2023-00922

Page 113 of 181

ATI Ex. 2002
IPR2023-00922

Page 114 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

235. LTunderstand that a priority document to which a patent claims

priority, can be used to satisfy the written description requirement.

236. Ihave examined the specification and figures of the °761 Application

—the priority document. The °761 Application was filed on September 29, 2003. I

understand the °053 patent claims priority to the °761 Application, because, U.S.

Patent Application No. 11/764,453 from which the ’053 patent issued,is a

continuation of the °761 Application.

237. Based on my examination of the °761 Application, I have generated a

claim chart which demonstrates that claims 1, 2, 5, 6, and 7 are supported by the

°761 Application.

_ Support for the 053Patent Claimsiin U.s.PatentaiNo. 10/673,761

 7053Patent Claim.3 | =

‘1.Agraphics “The present| invention “relates “generally tographics

processing system processing.” (Ex. 2008, ¢ 1.)

comprising a a
Generally, the present invention includes a multi-thread

graphics processing system.” (/d. at { 14.)

“{T|he present invention allows for multi-thread command

processing effectively using designated reservation station,

~lil-

AMD1044_0010547

ATI Ex. 2002

IPR2023-00922

Page 114 of 181

ATI Ex. 2002
IPR2023-00922

Page 115 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

in conjunction with the arbiter, for the improved|

processing of multiple command threads. The present

invention further provides for the effective utilization of

the ALU and the graphics processing engine, such as the

texture engine, for performing operations for both pixel

command threads and vertex command threads, thereby

improving graphics rendering and improving command

thread processing flexibility.” Ud. at J 38.)

“The present invention includes a multi-thread graphics

processing system.” (/d. at Abstract.)

 la. at least one

memory device

comprising a first

portion operative to

store a plurality of

pixel command

threads and a second

portion operative to

store a plurality of

“Generally, the present invention includes a multi-thread

graphics processing system and method thereof including a

reservation station having a plurality of command threads

stored therein. A reservation station may be any type of

memory device capable of reserving and storing command

threads. Furthermore, a commandthread is a sequence of

commands applicable to the corresponding element, such

as pixel command thread relative to processing of pixel

elements and a vertex command thread relative to vertex

~112-

AMD1044_0010548

ATI Ex. 2002

IPR2023-00922

Page 115 of 181

ATI Ex. 2002
IPR2023-00922

Page 116 of 181

vertex command

threads; and

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

processing commands.”(/d.at§ 14.)

“FIG. 2 illustrates a schematic block diagram of a multi-

thread processing system, in accordance with one

embodiment of the present invention.” (/d. at { 8.)

(id. at FIG. 2.)

“The system 200 includes a reservation station 202.” (Ud.

at 416.) “The reservation station includes a plurality of

command threads 208, 210 and 212.” Ud) “In one

embodiment, the command threads 208-212 are graphic

command threads” (/d.)

“FIG. 4 illustrates a schematic block diagram of a multi-

thread command processing system in accordance with

one embodiment.” (/d. at { 10.)

AMD1044_0010549

ATI Ex. 2002

IPR2023-00922

Page 116 of 181

ATI Ex. 2002
IPR2023-00922

Page 117 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

ianTe

SECONG
| fESeRvaTION

STATION
(VERTEX)

| FineT 1
STATION

GRAPHICS
PROCESSING

ENGINE
CTESTUREY

FIG. 4 Ud. at FIG. 4.)

LGGIe: LAT
AL

“FIG. 4 illustrates another embodiment of a multi-thread

command processing system 300 having a first reservation

station 304 [and] a second reservation station 304.” (/d. at

{ 21.) “In this embodiment, 302 is a pixel reservation

station such that the command threads 312, 314 and 316

contain pixel-based commands therein. Furthermore, in

this embodiment the second reservation 304 a vertex

reservation station is directed towards vertex command

threads illustrated as commandthreads 318, 320 and 322.”

(id. at § 21.)

“One embodiment, each command thread within the

reservation station 302 and 304 may be stored across two

-114-

AMD1044_0010550

ATI Ex. 2002

IPR2023-00922

Page 117 of 181

ATI Ex. 2002
IPR2023-00922

Page 118 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

physical pieces of memory.” (/d. at { 26.)

“FIG. 6 illustrates a flow chart for a method of multi-

thread command processing in accordance with one

embodiment.” (/d. at { 31.) “The method begins, step 400,

by retrieving a selected command thread from a plurality

of first command threads and a plurality of second

command threads, step 402.” (/d.)

 Reldeving a selected command
thread from @ gluralay of first

command threads and a plurality af|
second command threads i

| aoe

 Providing ihe selected command | 46
threed to a graphics processing |

sngune

 Perdarning a command in response |
to the delected command thread |

Wirling the selected command |
thread io 6 firel meervation stationif

the selected command thread is

oneofthe pluraity of first command | 405
ibreads and the selected carmmmend -
io a second regervalion station if the,

selected command thread is one of)
| the pluralityof second commend |

threads i

FIG. 6 (Id. at FIG. 6.)

~115-

AMD1044_0010551

ATI Ex. 2002

IPR2023-00922

Page 118 of 181

ATI Ex. 2002
IPR2023-00922

Page 119 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

“FIG.7 illustratesaflowchartof analternative methodfor|

multi-thread processing. “The second selected command

thread may be retrieved from either a first reservation

station, such as reservation station 302 of FIG. 4 or a

second reservation station, such as reservation station 304

of FIG. 4.”(Id. at § 34.)

~ 116-

AMD1044_0010552

ATI Ex. 2002

IPR2023-00922

Page 119 of 181

ATI Ex. 2002
IPR2023-00922

Page 120 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

a

Prowdng the second commend ewed whe

| Prior towing ie selected commendteed |
| iedthe tee reaserition waton er the 4

Reederred Mate, neoihe &
| suected commend tread and ite second

nlecked eanmaee thre

ft ranervationstalin Hf tra eelgctaed
Somme awedaye |

| onekenane! threade and the seeand aelmcted iecommandthread tna second seservaian |

conta) (had 8 Great he loriOT arecorrecIhreads ond Geselected cammmand

tread te‘ive second feamreaticnalation # the
(Id. at FIG. 7.)

“The present invention includes . . . a reservation station

having a plurality of command threads stored therein.” /d.

at Abstract.)

1b. an arbiter, “To improve the operating efficiency of a graphics

-~117-

AMD1044_0010553

ATI Ex. 2002

IPR2023-00922

Page 120 of 181

ATI Ex. 2002
IPR2023-00922

Page 121 of 181

coupledtotheatleast|

one memory device,

operable to select a

commandthread from

either of the plurality

of pixel command

threads and the

plurality of vertex

commandthreads

based onrelative

priorities of the

plurality of pixel

commandthreads and

the plurality of vertex

command threads.

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

command threads is preferred.” Ud. at { 2.)

“The system and method further includes an arbiter

operably coupled to the reservation station such that the

arbiter retrieves a first commandthread of the plurality of

command threads stored therein. The arbiter may be any

implementation of hardware, software or combination

thereof such that the arbiter receives the commandthread.”

Ud. at § 14.)

“FIG. 2 illustrates a schematic block diagram of a multi-

thread processing system, im accordance with one

embodiment of the present invention.” (/d. at { 8.)

“

; OMIARED

PROCESSING
i ENGINE

FIG.2 | GRAPHICS) (Id. at FIG.2.)

“The system 200 includes ... an arbiter 204.” Ud. at 16.)

~ 118 -

AMD1044_0010554

ATI Ex. 2002

IPR2023-00922

Page 121 of 181

ATI Ex. 2002
IPR2023-00922

Page 122 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

connection 214.” (/d.)

“In one embodiment, the arbiter 204 retrieves the

command threads 208-212 based on a priority scheme. For

example, the priority may be based on specific commands

that have been executed within a commandthread or

specific commands whichare to be executed within a

commandfor the effective utilization of the arbiter 204

and the commandprocessing engine 206. In an alternative

embodiment, the arbiter 204 mayalwaysretrieve the

oldest available thread.” (/d. at 4 18.) “[I]n one

embodiment the reservation station 202 operates similarto

a first in first out (FIFO) memory device.” Ud. at § 16.)

“The ALUarbitration logic chooses one of the pending

ALUclauses to be executed. The arbiter selects the

command thread by looking at the reservation stations,

herein vertex and pixel reservation stations, and picking

the first command thread readyto execute.” (/d. at { 20.)

~ 119-

AMD1044_0010555

ATI Ex. 2002

IPR2023-00922

Page 122 of 181

ATI Ex. 2002
IPR2023-00922

Page 123 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

“FIG.4 illustrates a schematic block diagram of a multi-

thread command processing system in accordance with

one embodiment.” (/d. at10.)

se tania cna BE | 1B snuputamuimntmannaney
COMMANDTHREAD Ff | CoRaMAnETHREAD}

| FIRST SECOND |
| RESERVATION | RESERVATION

i STATIOW | STATION
| (PIXEL) (EATER) ||| i
| 4 BO . |
(nnn 2 crane

ARBITER

Ri Koon nmnzsmnsmnsonensinen a,

GRAPHICS [3%
reocessng foENGINE

TEXTURE)

| amerimenic Lye— LOGIC UNIT

a)
wa

FIG. 4 (id. at FIG. 4.)

“FIG.4 illustrates another embodimentofa multi-thread

commandprocessing system 300 having . . . an arbiter

306.” Ud. at { 21.) “In this embodiment, the arbiter 306

selectively retrieves either a pixel command thread, such

as command thread 316, or a vertex commandthread, such

as command thread 322.” (Ud. at { 22.) “[T]he arbiter 306,

which may be implemented as arbitration logic executed

on a processing device, selects one thread for the graphics

~ 120-

AMD1044_0010556

ATI Ex. 2002

IPR2023-00922

Page 123 of 181

ATI Ex. 2002
IPR2023-00922

Page 124 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

(Id. at § 23.)

“With respect to FIG. 4, a pixel commandthread 324 may

be retrieved bythe arbiter 306 and a vertex command

thread 326 may also be retrieved.” (/d. at 24.)

“{Tlhe arbiter 306 selects the proper allocation of which

command thread goes to the graphics processing agent 310

in [sic] which commandthread goes to the ALU 308.” Ud.

at { 29.)

“FIG. 6 illustrates a flow chart for a method of multi-

thread command processing in accordance with one

embodiment.” (/d. at § 31.) “The method begins, step 400,

by retrieving a selected commandthread from a plurality

of first command threads and a plurality of second

commandthreads, step 402. For example, as discussed

above with regard to FIG.4, the selected command thread

maybe retrieved by the arbiter 306.” (/d.)

-~ 121-

AMD1044_0010557

ATI Ex. 2002

IPR2023-00922

Page 124 of 181

ATI Ex. 2002
IPR2023-00922

Page 125 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

Retrieving @ selected command
thread from a plurality affiret

| carnmand threads and 6 plurality of |
aeoone command (iad

thread to 8 graphica processing
engine

Performing a command in responsa|
io the selected command ihread

Viiting the selected command |
thread to afirst reservation station it

ihe selected command thread

| one of the pluralityof first command | 408
ihreads acd the selected commend |

lie 2 second reservation slation i tw)

| selectec command threadis oneof |
the plurality of second commend |

threads.

FIG. 6 (id. at FIG.6.)

“FIG. 7 illustrates a flowchart of an alternative method for

multi-thread processing. The method begins, step 420, by

retrieving a selected command thread from a plurality of

command threads, step 422.” Ud. at § 33.) “[S]tep 428, is

retrieving a second command thread from the plurality of

command threads.” Ud. at 4 34.) “The second selected

~ 122-

AMD1044_0010558

ATI Ex. 2002

IPR2023-00922

Page 125 of 181

ATI Ex. 2002
IPR2023-00922

Page 126 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

command thread may be retrieved from either a first

reservation station, such as reservation station 302 of FIG.

4 or a second reservation station, such as reservation

station 304 of FIG. 4.”ad.)

 | Praia Wwe wacndsamwand oadee

| Brier lo wring ime mencied commetrend |
| eeeertheiainmlehe|a
| Sead anerwen stole, mhelemngite
| winced cored (ous ond rewom

| lee-wmrroed Inmet

a tacoed command fi reaparae ToL™

| eatenandtheeads and oesecond enineted (438
| command tvead lee secon] memredion 7

tudon Pike geceselected eoomand
enGwe a airy wont

scnsencmnsnsssEINE

Vining he wolecied comme threwd Yo tine

acouneed thiwed ie one: of the ploreley of re |

lbrund bedhe second peenremton eaten i ie
ween mnnee jie om ol ie

crelbonamniny, ahcho

FG. ? Ud. at FIG. 7.)

AMD1044_0010559

ATI Ex. 2002

IPR2023-00922

Page 126 of 181

ATI Ex. 2002
IPR2023-00922

Page 127 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

the reservation station, such that the arbiter retrieves a first

command thread.” (/d. at Abstract.)

2. The graphics

processing system of

claim 1, further

comprising: a

command processing

engine, coupled to the

arbiter, wherein the

arbiter is further

operable to provide

the commandthread

to the command

processing engine.

“{T]he arbiter receives the command thread and thereupon

provides the command thread to a command processing

engine. The system and method further includes the

command processing engine coupled to receive the first

command thread from the arbiter such that the command

processor may perform at least one processing command

from the command thread. Whereupon, a command

processing engine provides the first command thread back

to the associated reservation station.” (/d. at § 14.)

“The command processing engine may be any suitable

engine as recognized byone having ordinaryskill in the art

for processing commands, such as a texture engine, an

arithmetic logic unit, or any other suitable processing

engine.” (/d. at { 15.)

“FIG. 2 illustrates a schematic block diagram of a multi-

~- 124-

AMD1044_0010560

ATI Ex. 2002

IPR2023-00922

Page 127 of 181

ATI Ex. 2002
IPR2023-00922

Page 128 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

thread processing system, in accordance with one

embodiment of the present invention.” (/d. at { 8.)

RESERVATION
SLA.

GRAPHIC Glin 41 _

GRAPHIC CMD 2
.

 |_GRAPHIC CMON §

ARGITER

| COMMAND:
| PROCESSING
i ENGINE i
| (GRAPHICS)

PIG, 2
 (Id. at FIG. 2.)

“The system 200 includes . .. a commandprocessing

engine 206.” (Ud. at § 16.) “The arbiter 204 . . . provides

the retrieved command thread to the commandprocessing

engine 206, such as a graphics processing engine via

connection 216.” (/d.)

“FIG.4 illustrates a schematic block diagram of a multi-

thread command processing system in accordance with

one embodiment.” (/d. at { 10.)

~ 125 -

AMD1044_0010561

ATI Ex. 2002

IPR2023-00922

Page 128 of 181

ATI Ex. 2002
IPR2023-00922

Page 129 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

| COMMANDTHe

lua |

FIRST SECOND
| RESERVATION | RESERVATIONSTATION aTation |

(POEL ae (WERTEX, |

: a Bak :
EnnsBE 898 wont

Apesrtatit

ce oS
i Tr ath
| ARITHMETHY [ae GRAPHICS

Loneir L PNeINe
sense acy maTERTURE) I

is ce s Y

FIG.4 (Ud. at FIG. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread

commandprocessing system 300 having... an ALU 308

and a graphics processing engine 310.” (/d. at § 21.)

“Once a thread is selected by the arbiter 306, the thread is.

.. submitted to the appropriate execution unit 308 or 312.”

(Id. at § 23.)

“The arbiter 306 then provides one thread 326, which may

be either 324 or 326 to the graphics processing engine 310,

such as a texture engine, and provides the other thread 330

to the ALU308.”(Id. at § 24.)

“FIG. 6 illustrates a flow chart for a method of multi-

- 126-

AMD1044_0010562

ATI Ex. 2002

IPR2023-00922

Page 129 of 181

ATI Ex. 2002
IPR2023-00922

Page 130 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

thread command processing in accordance with one

embodiment.” (/d. at 31.) “[S]tep 404, is providing the

selected command thread to a graphics command

processing engine. As discussed aboveregarding FIG.4,

the arbiter 306 provides the selected commandthread to

the graphics processing engine 310, which, in one

embodiment may be a texture engine.In another

embodiment, the arbiter 306 mayprovide the selected

commandthread to the ALU 308.” (/d.)

ay, SE
START

 Retrieving 4 selavied camimand
thread trom a plurality of feat

cammand threads and a plurality of
eecord Harnimand reads

Providing the selected command|4
tweed lo a graphics processing

engine

Portorning a command in response
lo the selected command tread

 \Aniting the selected cwnmand
tite) to afirel pepervelion stationi

the selected command Ihreadia |
eneof tee plurality of Heat command|262
ibreada and the selected command

to a secendreservation station if the;selected command thread is one of|

the pluraltyof gecend command |
threads.

FIG. 6 (Id. at FIG. 6.)

- 127-

AMD1044_0010563

ATI Ex. 2002

IPR2023-00922

Page 130 of 181

ATI Ex. 2002
IPR2023-00922

Page 131 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

FIG.7illustratesaflowchartof an alternative method for

multi-thread processing.” Vd. at § 33.) “[S]tep 424, is

providing the selected command thread to a graphics

processing engine.” (/d.) “The method further includes

providing the second command thread to the graphics

processing engine, step 430.” (Ud. at § 35.)

_ plurality ofsceertand threats
: ape

| ProvingUe walaciedcnmienaend Wiad to @ LF
_praphice pmaneeing angina

|| Peilormin A command a reanarig be te.

| Briaripering ie aeloched f a
| teoelitenr than fica! eeaervatinn oar a
| second wnenvatios auten, ieteauig the
1 aakected commend thesed ged the-waoond

 penanctan somned comenand Tema

/vlingthe secondcouciedceemand fined|| tia SATeeivition Wilbon iEtheteleciead

| Sones Nivea and Pe eeoo Gee | ekinedeed be eeeee |
sities ine enone sabeomar |
freed Uo one-ot a poreiy wf sacerd

critiand Wenn

Ming ihe peered command Menmd ioe |

trv rewervalion aigiien Othe welded ;
eeee
convnandthreads and the avlacied command>

| teenud levine gacondremerention wimion dl Gen |sehecbedt coeonuancd thormaxd ex cal Ue

phaaiiiy ef ancunie command termes

FIG. T (Ud. at FIG. 7.)

~ 128 -

AMD1044_0010564

ATI Ex. 2002

IPR2023-00922

Page 131 of 181

ATI Ex. 2002
IPR2023-00922

Page 132 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

/“{T]he arbiterretrieves the commandthreadand thereupon|

provides the command thread to a commandprocessing

engine.” (/d. at Abstract.)

“The system ... includes the command processing engine

coupled to receive the first command thread from the

arbiter.” (/d. at Abstract.)

5a. at least one

memorydevice

comprising a first

portion operative to

store a plurality of

pixel command

threads and a second

portion operative to

store a plurality of

vertex command

threads;

See Claim

language).

la (showing support for the same claim|

5b. an arbiter,

See Claim tb (showing support for the same claim

- 129-

AMD1044_0010565

ATI Ex. 2002

IPR2023-00922

Page 132 of 181

ATI Ex. 2002
IPR2023-00922

Page 133 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘coupledtothe atleast| language).

one memory device,

operable to select a

command thread from

either of the plurality

of pixel command

threads and the

plurality of vertex

command threads;

and

 5c. a plurality of “The system and method further includes the command

command processing|processing engine coupled to receive the first command

engines, coupled to thread from the arbiter such that the command processor

the arbiter, each may perform at least one processing command from the

operable to receive command thread. Whereupon, a command processing

and process the engine provides the first command thread back to the

command thread. associated reservation station.” (/d. at { 14.)

“The command processing engine may be any suitable

engine as recognized by one having ordinary skill in the art

AMD1044_0010566

ATI Ex. 2002

IPR2023-00922

Page 133 of 181

ATI Ex. 2002
IPR2023-00922

Page 134 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

for processing commands, such as a texture engine, an

arithmetic logic unit, or any other suitable processing

engine.” (/d. at § 15.)

“TIn the FIG. 2 embodiment,] the command thread may be

provided to a further processing element (not illustrated)

within a graphics processing pipeline.” (/d. at 4 17.)

“FIG, 4 illustrates a schematic block diagram of a multi-

thread command processing system in accordance with

one embodiment.” (/d. at { 10.)

Loe

FIRST | SECOND
| RESERATION LO | RESERVATION

STATION - = STATION
(PEL 4) VERTEX)

ARBITER

ARITHMETIC PROCESSING
; ENGINE ;

(TESTUREY

FIG. 4 (Ud. at FIG. 4.)

“FIG. 4 illustrates another embodiment of a multi-thread

AMD1044_0010567

ATI Ex. 2002

IPR2023-00922

Page 134 of 181

ATI Ex. 2002
IPR2023-00922

Page 135 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘command processing system300having...anALU 308

and a graphics processing engine 310.” Ud. at { 21.)

“Once a thread is selected by the arbiter 306, the threadis .

.. submitted to the appropriate execution unit 308 or 312.”

(id. at § 23.) “Upon the execution of the associated

command of the command thread, the thread 1s thereupon

returned to the station 302 or 304 at the same storage

location with its status updated, once all possible

sequential instructions have been executed.” (/d.)

“Upon execution of the command, the ALU 308 then

returns the commandthread.” (/d. at 4 25.)

“[T|he graphics processing engine 310 performs the

commands.” (/d. at] 24.)

“FIG. 6 illustrates a flow chart for a method of multi-

thread command processing in accordance with one

embodiment of the present invention.” Vd. at 7 31.) “The

method . . . includes performing a command in response to

the selected command thread, step 406.” “In this

AMD1044_0010568

ATI Ex. 2002

IPR2023-00922

Page 135 of 181

ATI Ex. 2002
IPR2023-00922

Page 136 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

processing engine 310.” Ud. at { 32.)

(start

Retrieving a selected command |...
thread from a plurality offset oy

command leads and a plurality of |
second command threads

| Prewdiny the selected command ! AG
ihread joe graphics processing |

engine

Performing a command in response |)
| tothe selected command thread |

Viriting the selacted command |
thread io 8 frei fepervation station if

the selected command threadia |

[oneof thepluralityof firat command | 406
| threads and the selected command
to a second reservation station if the

| selected command thread m ongof |

ihe pluraliy of second command |
threads

(id. at FIG. 6.)

“FIG. 7 illustrates a flowchart of an alternative method for

multi-thread processing.” (/d. at { 33.) “[T]he method...

includes performing a command in responseto the selected

AMD1044_0010569

ATI Ex. 2002

IPR2023-00922

Page 136 of 181

ATI Ex. 2002
IPR2023-00922

Page 137 of 181

Case IPR2015-00325 of

US. Patent No. 7,742,053
command thread, step 426.” (/d. at {34.) “[T]he method

further includes performing a second command in

response to the selected command thread, step 434.” (/d. at

q 35.)

—thes salute scrnmeanel thew te
|Poaiewing a senorsohecled caruiendt ih

trom the‘Paurlity of poerumarn! thrmads

rga he‘sacend=a aoeeaeie i
[Prior is wrking thegtecied comenand thvesd |
| tether teeing reservation vietion othe | aon

aeeond nonerwetion sialon, infedeaving he |

| tected cect iewad ‘ner sncond |

sy L se ay 38
Perornng a moond Comreand 4 napones 1p)

avleckn| second commendivwad

Viring Ibe BREOrtseiacted command IVGEd |io @ fitet renenamlion soylige 7ihe eolected
command(eed @ one of a phwally of tral
wormand tueads andthe qeaondaelecied
olen thread © a etccrd femnreation
stotionit ihe encand eolected morenamnd

ned iateraaaae aces

 Winingthe selecied sormnand threadto the|
Breanegarwallen stalin ihe selected

 | thewaedie the necandasenereaiian stations if the

| téheched command themedacneof teow

Hureity af seconed comanaedl neads

FIG. 7 (id. at FIG. 7.)

“The system ... includes the command processing engine

AMD1044_0010570

ATI Ex. 2002

IPR2023-00922

Page 137 of 181

ATI Ex. 2002
IPR2023-00922

Page 138 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘coupled toreceive the first command thread fromthe

arbiter such that the command processor may perform at

least one processing command from the command thread.”

(/d. at Abstract.)

6. The graphics

processing system of

claim 5, wherein the

plurality of command

processing engines

comprises at least one

arithmetic logic unit.

See Claim 5c (showing that the command processing

engines can comprise an arithmetic logic unit (“ALU”).

 7. The graphics

processing system of

claim 5, wherein the

plurality of command

processing engines

comprises at least one

texture processing

See Claim 5c (showing that the command processing

engines can comprise a texture engine).

AMD1044_0010571

ATI Ex. 2002

IPR2023-00922

Page 138 of 181

ATI Ex. 2002
IPR2023-00922

Page 139 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

 engine|
IX. CONCEPTION

238. Itis my understanding that conception is a mental formulation and

disclosure by the inventor or inventors of a complete idea for a product or process.

I also understand that conception turns on the inventor’s ability to describe his or

her invention with particularity, and conception must be sufficiently complete so as

to enable the POSA to reduce the concept to practice.

239. [have reviewed a documenttitled “R400 Top Level specification”

(Ex. 2041) and a documenttitled “Shader Processor” (Ex. 2042). I have also

reviewed both an August 24, 2001 revision and an April 19, 2002 revision of a

documenttitled “R400 Sequencer Specification” (Exs. 2010, 2042). Both revisions

of the R400 Sequencer Specification, especially when read in viewof the R400

Top Level Specification and the Shader Processor specification, showpossession

of a complete embodimentof the claimed subject matter. Although the R400 Top

Level Specification and the Shader Processor specification provide context, each

and every claim element are shown in the R400 Sequencer Specifications. Further,

the specification documents provide sufficient detail to enable the POSA to reduce

AMD1044_0010572

ATI Ex. 2002

IPR2023-00922

Page 139 of 181

ATI Ex. 2002
IPR2023-00922

Page 140 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

the concept to practice. Reducing the concept to practice could require substantial

work, but would not require undue experimentation.

240. The following claim charts showthat the inventors conceived of the

claimed subject matter at least by both revisions of the R400 Sequencer

Specification.

"R490 SEQUENCERSPEC VERSIONO.4——

a=rcrrrrr
“1.A graphics “The R400 Sequencer Specification is an architectural
processing system specification for the R400’s sequencer block. Ex. 2010, p. 1.

comprising The R400 was a graphics-chip product, which was designed

to include a unified-processing pipe (Ge, a_ single

programmable pipeline for 2D video, 3D vertex, and 3D pixel

| operations). See Ex. 2041, pp. 6, 7.

 la. at least one | At Least One Memory Device

memory device | The R400 Sequencer Specification describes reservation

comprisingafirst | stations and an instruction store, which collectively are the

portion operative | claimed “at least one memorydevice.”

or luralit |to store a plurality Twosets of the sequencer control flow, reproduced below,

AMD1044_0010573

ATI Ex. 2002

IPR2023-00922

Page 140 of 181

ATI Ex. 2002
IPR2023-00922

Page 141 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

threads and a reservation stations for vertices and sixteen reservation

second portion stations for pixels. See Ex. 2010, p. 5 (showing afigure and

operative to store a stating that “[t]here are two sets of the . . . figure, one for

plurality of vertex vertices and one for pixels’). Each set of reservation stations

command threads; store eight ALU clauses and eight texture clauses. See id., p. 4

and (“The sequencer looks at all eight alu reservation stations to

choose an alu clause to execute and all eight texture stations

_to choose a texture clause to execute.”), 5 (reservation stations

| include clauses).

_ Pixel Reservation Stations Vertex Reservation Stations

grextore clause 0eservation cation

LLUclause tt
eservation Staticds

reservation station:
fexture arbitrater

 ‘exiure: clave
eservation ststion

jexchure asbitrator

ALU clause 2
eservation station

ALU clause 3
eeervation station

AEclue 4
esti vadinestition

ALE claume 5
eeervationstation

ALU chase 6
teel vativn station

EL clause 7Peeervationstation

AMD1044_0010574

ATI Ex. 2002

IPR2023-00922

Page 141 of 181

ATI Ex. 2002
IPR2023-00922

Page 142 of 181

 Another memory device disclosed in the R400 Sequencer

Specification is an instruction store. See, e.g., Ex. 2010, pp.

11, 12. On the figures shown below, the instruction store is

outlined in red. This imstruction store is loaded with

instructions. See id., pp. 12 (‘[the instruction store] may

contain up to 2000 instructions of 96 bits each”), 17 (1), 18

(dd) (loading pixel and vertex programs into the instruction

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

 exture clause Gceservation station

LU clause
eservationstation

|exmire clase f |
peservation staticn:

bexture: arbitratorLIS clause 1cantrvation station

exture clause 2emerVAR On: SESTiCeextere arbitrator

eservationstation

‘enture clause 3reservation sehen

ALL clause 4
reservation stator

Ls exture clause 4

exervation sinion
a L__.. enture clause 5

eSELALOR MATCH

ALUclause 5
eaervaton statics:

exture clause 6
eservabosk state

LU clause 6eservationSialion

enture clause. 7eservation states

evervanon statien:

store).

AMD1044_0010575

ATI Ex. 2002

IPR2023-00922

Page 142 of 181

ATI Ex. 2002
IPR2023-00922

Page 143 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

“See id.,p. 11.

Chnae i + Rely

Wicdde ieiohat

PeckPAB
C Ghat

Frame on aei wens ER
Baer

| See id., p. 12.

| Accordingly, the combination of the reservation stations and

~ 140 -

AMD1044_0010576

ATI Ex. 2002

IPR2023-00922

Page 143 of 181

ATI Ex. 2002
IPR2023-00922

Page 144 of 181

Case IPR2015-00325 of

instruction store is the claimed “at least one memory device.”

A First_ Portion Operative _to Store Pixel Command
| Threads and a Second Portion Operative to Store Vertex
| Command Threads

The instruction store includes storage for vertex instructions

and pixel instructions. See Ex. 2010, p. 4, 12 ([t]here is going

to be only one instruction store for the whole chip”), 17-19

(using the term “global instruction store”). Since the

instruction store is used to store both pixel and vertex

command threads, the “first portion” of the claimed “at least

one memory device” is the combination of the pixel

reservation stations and the portion of the instruction store

where pixel instructions reside. The “second portion” of the

claimed “at least one memory device” is the combination of

the vertex reservation stations and the portion of the

_ instruction store where vertex instructionsreside.

| The first portion—the pixel reservation stations and the

| corresponding portion of the instruction store—is operative to

| store a plurality of prxel commandthreads as recited in the

| °053 patent. According to the ’053 patent’s specification, “a

~ 141 -

AMD1044_0010577

ATI Ex. 2002

IPR2023-00922

Page 144 of 181

ATI Ex. 2002
IPR2023-00922

Page 145 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

| command thread is a sequence of commands applicable to the

corresponding element, such as [a] pixel command thread

relative to processing of pixel elements and a_ vertex

command thread relative to vertex processing commands.”

Ex. 1001, 2:41-45. A clause stored in a pixel reservation

station and its corresponding shader program stored in the

instruction store are a command thread as described in the

°053 patent’s specification because the clause and the

corresponding shader program are a sequence of commands.

See Ex. 2010, p. 4 (“[The Sequencer] chooses two ALU

clauses and a texture clause to execute, and executesall of the

instructions in a clause.”); Ex. 2042, p. 8 (‘instructions in a

clause will be executed sequentially”); Ex. 2010, p. 19 (9)

(*TSMO accepts the control packet and fetches the

instructions for texture clause 0 from the instruction store’),

19 (12) (“ASMO accepts the control packet .. . and gets the

instructions for ALU clause 0 from the global instruction

store’). Further, the clauses are applicable for the

corresponding element because the clauses and_ the

| corresponding shader instructions stored in the first portion

~ 142-

AMD1044_0010578

ATI Ex. 2002

IPR2023-00922

Page 145 of 181

ATI Ex. 2002
IPR2023-00922

Page 146 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

| 19 (disclosing an example of program executions for pixels).

The second portion—the vertex reservation stations and the

corresponding portion of the instruction store—is operative to

store a plurality of vertex commandthreads as recited in the

°053 patent. A clause stored in a vertex reservation station and

its corresponding shader program stored in the instruction

store are a commandthread as described in the °053 patent’s

specification because the clause and the corresponding shader

program are a sequence of commands. See Ex. 2010, p. 4

(“[The Sequencer] chooses two ALU clauses and a texture

clause to execute, and executes all of the instructions in a

clause.”); Ex. 2042, p. 8 (“instructions in a clause will be

executed sequentially”); Ex. 2010, p. 17 (6) (‘TSMOaccepts

the control packet and fetches the instructions for texture

clause 0 from the global instruction store), 17 (9) (-ASMO

accepts the control packet . . . and gets the instructions for

| ALU clause 0 from the global instruction store”). Further, the

| clauses are applicable for the corresponding element because

AMD1044_0010579

ATI Ex. 2002

IPR2023-00922

Page 146 of 181

ATI Ex. 2002
IPR2023-00922

Page 147 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘the second portion are applicable for processing vertex

“elements. See id., pp. 17-18 (disclosing an example of

| program executionsforvertices).

 1b. an arbiter,

coupled to the at

least one memory

device, operableto |

select a command

thread from either

of the plurality of

pixel command

threads and the

plurality of vertex

command threads

based on relative

priorities of the

plurality of pixel

commandthreads

_combination

| An Arbiter Coupled to the At Least One MemoryDevice

“The R400 Sequencer Specification discloses an arbiter.

According to the °053 patent’s specification, “[t]he arbiter

may be any implementation of hardware, software, or

thereof.” Ex. 1001, 2:48-52. The arbiter

| disclosed in the R400 Sequencer Specification is coupled to

| both sets of vertex reservation stations and pixel reservation

| stations. This arbiter comprises multiple levels of arbitration,

| collectively shown in red on the figure below.

- 144 -

AMD1044_0010580

ATI Ex. 2002

IPR2023-00922

Page 147 of 181

ATI Ex. 2002
IPR2023-00922

Page 148 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

and the plurality of | Vertex Clauses Pixel Clauses

vertex command _

threads.
‘The first level of arbitration is between ALU clauses and

| texture clauses, respectively, of a single type. See Ex. 2010, p.

| 4 (“[The Sequencer] chooses two ALU clauses and a texture

| clause to execute The sequencer looks at all eight alu

| reservation stations to choose an alu clause to execute andall

| eight texture stations to choose a texture clause to execute.”),

| 17 (6, 9), 19 (9, 12). Thisfirst arbitration is represented by the

| ALUarbitrators and the texture arbitrators, each of which are

| outlined in red in the figure above. '

' The left texture arbitrator is mislabeled in the original specification because

this arbitrator corresponds to the ALU reservation stations. See Ex. 2010, p. 5.

~ 145 -

AMD1044_0010581

ATI Ex. 2002

IPR2023-00922

Page 148 of 181

ATI Ex. 2002
IPR2023-00922

Page 149 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

thread and the candidate vertex thread. See Ex. 2010, pp. 17

(2), 18 (4) (SEQ arbitrates between the Pixel FIFO and the

Vertex FIFO”). So, the arbiter not only selects which

ALU/texture clauses to execute, the arbiter selects which

order to execute pixels and vertices. See id., p. 4 (“There are

two separate sets of reservation stations... . This way a pixel

can pass a vertex and a vertex can pass a pixel.”) Along with

the first arbitration, the second arbitration forms the arbiter

disclosed in the °053 patent.

Operable to Selecta Command Thread From Either of

“the Pixel Command Threads and the Vertex Command
| Threads

The arbiter is operable to select a command thread from either

of the pixel command threads and the vertex command

threads. As was previously discussed, the arbitration logic has

two levels of arbitration. The first level is selecting ALU

clauses and texture clauses for both the vertex and the pixel

‘threads. See, e.g., Ex. 2010, pp. 4, 5. The second level is

| between the vertex and the pixel threads. See id., pp. 17 (2),

~ 146 -

AMD1044_0010582

ATI Ex. 2002

IPR2023-00922

Page 149 of 181

ATI Ex. 2002
IPR2023-00922

Page 150 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

18 (4) (SEQ arbitrates between the Pixel FIFO and the

Vertex FIFO”). Collectively these two levels of arbitration

make the arbiter operable to select a command thread from

either of the pixel commandthreads and the vertex command

threads.

 | Based on Relative Priorities
The arbiter is operable to select clauses based on relative

priorities of the pixel clauses and the vertex clauses.

According to the R400 Sequencer Specification, “[t]he

arbitrator will give priority to clauses/reservation stations

closer to the bottom of the pipeline.” Ex. 2010, p. 4. When

arbitrating between the pixel and the vertex, the vertex has

priority. /d., p. 17 (2) (“SEQ arbitrates between the Pixel

FIFO and the Vertex FIFO —- basically the Vertex FIFO

always has priority [T]he arbiter is not going to select a

vector to be transformed if the parameter cache is full unless

the pipe has nothing else to do.”). When there are no vertices

_pending or there is no space left in the register files for

vertices, the arbiter selects the pixel. /d, p. 18 (4) (SEQ

- 147-

AMD1044_0010583

ATI Ex. 2002

IPR2023-00922

Page 150 of 181

ATI Ex. 2002
IPR2023-00922

Page 151 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

| arbitrates between Pixel FIFO and Vertex FIFO — wherethere

are no vertices pending OR there is no space left in the

| register files for vertices, the Pixel FIFO is selected.”).

2. The graphics

processing system —

of claim 1, further |

comprising: a

command

processing engine, —

coupled to the

arbiter, wherein

the arbiter is

_CommandProcessing Engines

| As shown in the figures reproduced below, the R400

Sequencer Specification shows ALUsanda texture unit, each

of which is a command processing engine. According to the

°053 patent’s specification, “[a] command processing engine

| may be any suitable engine as recognized by one having

ordinary skill in the art for processing commands, such as a

texture engine, an arithmetic logic unit, or any suitable

| processing engine.” Ex. 1001, 2:59-62 (emphasis added).

further operable to :

provide the

command thread

to the command

processing engine. —

~ 148 -

AMD1044_0010584

ATI Ex. 2002

IPR2023-00922

Page 151 of 181

ATI Ex. 2002
IPR2023-00922

Page 152 of 181

Case IPR2015-00325 of

 Ex. 2010, p. U.

Clause # + Ry

U.S. Patent No. 7,742,053

| Wradde | iS SEQ CST Wander
oo ~ RdAddsPAIRB

; GST

! Phase PMD | H | | ‘|
| EMD ost cats A BC Wrvee

RelAddr | WeScal wradcr

TX SP a OF
“Wracidr

Id., p. 12.

- 149.

AMD1044_0010585

ATI Ex. 2002

IPR2023-00922

Page 152 of 181

ATI Ex. 2002
IPR2023-00922

Page 153 of 181

Case IPR2015-00325 of

command processing engines according to the °053 patent’s

specification. See Ex. 1001, 2:59-62. Further, each ALU is a

commandprocessing engine because each ALU “can do

simple math, conditional moves, and permutations.” See Ex.

2041, p. 10.

| The texture unit is also a command processing engine because

‘the texture unit processes commands. See Ex. 2010, pp. 17

| (8), 19 (11) (the texture unit completes requests).

| Coupled to the Arbiter
As shown in the figures reproduced in this section, the

command processing engines are coupled to the arbiter. The

ALUs are part of the shader pipe, and the shader pipe is

coupled to the sequencer. See Ex. 2010, pp. 11, 12. See also

id., pp. 17 (4) (SEQ sends the vector to the SP register file

over the RE_SP interface”), 18 (7) (“SEQ controls the transfer

of interpolated data to the SP register file over the RESP

interface”). Further, the arbiter is part of the sequencer. See

| id., pp. 5, 17 (2), 18 (4); supra Claim 1b (showing support for

U.S. Patent No. 7,742,053

~ 150 -

AMD1044_0010586

ATI Ex. 2002

IPR2023-00922

Page 153 of 181

ATI Ex. 2002
IPR2023-00922

Page 154 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

The texture unit is also connected to the sequencer. As shown

in the figures reproducedin this section, the texture unitis

coupled to the sequencer. See id., pp. 11, 12. See also id., pp.

11, 16 (for the shader engine to texture unit bus andthe

sequencer to texture unit bus). The arbiter is part of the

sequencer. See id., pp. 5, 17 (2), 18 (4); supra Claim 1b

(showing support for the arbiter). So the texture unit is

| coupled to the arbiter.

 | Operable to Provide the Command Threadto the
! Command Processing Engine

The arbiter is operable to provide the command thread to the

ALUsbecause after the arbiter selects a command thread, the

arbiter sends the commandthread to the shader pipe using a

sequencer to shader engine bus. See Ex. 2010, p. 15 (“This is

a bus that sends the instruction . . . to all 4 Sub-Enginesof the

Shader.”). This bus is shown in red on the annotated figure

| below.

- IST-

AMD1044_0010587

ATI Ex. 2002

IPR2023-00922

Page 154 of 181

ATI Ex. 2002
IPR2023-00922

Page 155 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053oe

InterpolateddataVarian: indexes

INSTRUCTION CONSTANT |STOREREGISTER FILE STORESCACHE

OPERAND MA

TEATURE f#———

“See Ex. 2010, p. 1.

“The R400 Sequencer Specification also shows sending the

| “CMD”to the shader pipe in the annotated figure below. See

“id., p. 12. See also id., pp. 17 (10), 19 (13).

~ 152 -

AMD1044_0010588

ATI Ex. 2002

IPR2023-00922

Page 155 of 181

ATI Ex. 2002
IPR2023-00922

Page 156 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

Clause # + Rady

wie Wraddr

ow AdAdde: : PAIR

| Tid.
EMD CSTI asto A Bt Wrvee

| | | I" WeAddr* ~
|

WrAddr
See id., p. 12.

| The arbiter is also operable to provide the command thread to

| the texture unit because after the arbiter selects a command

| thread, the arbiter sends the command thread to the texture

| unit using a sequencer to texture unit bus. See id., p. 16 (“The

sequencer also provides the instruction . . . for the texture

-fetch.”) The bus is shown in red on the annotated figure

| below.

AMD1044_0010589

ATI Ex. 2002

IPR2023-00922

Page 156 of 181

ATI Ex. 2002
IPR2023-00922

Page 157 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

“See Ex. 2010, p. 1.

|The R400 Sequencer Specification also shows sending the

| “CMD”to the texture unit in the annotated figure below. See

“id., p. 12. See also id., pp. 17 (7), 19 (10).

 interpolated |dete (Vertes indexes a}i

SESTRACTION, CONSTANT
STORENGAGHE STGREREGISTER FILE heey

ioii J

’ 8 ' - mmm ne

- 154 -

AMD1044_0010590

ATI Ex. 2002

IPR2023-00922

Page 157 of 181

ATI Ex. 2002
IPR2023-00922

Page 158 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

 Clause # + Roy

5 Werder

cmp RdAddr
PAIRB

cst

Phe a Do a
ase OME EST dots AR OC Wrver |

RaAddr a | WSeal weaggr
: / je i

jae law

i
i

TX SP Pewee OF
Wraddr

“See Ex. 2010, p. 12.

 5a. at least one

memory device

comprising a first

portion operative

to store a plurality

of pixel command

threads anda

second portion

operative to store a

plurality of vertex

“See supra Claim la (showing support for the same claim |

| language).

~ 155 -

AMD1044_0010591

ATI Ex. 2002

IPR2023-00922

Page 158 of 181

ATI Ex. 2002
IPR2023-00922

Page 159 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘commandthreads;

5b. an arbiter,

coupled to the at

least one memory

device, operable to |

select a command

thread from either

of the plurality of

pixel command

threads and the

plurality of vertex

command threads; |

and

5c.a pluralityof

command

processing

engines, coupled

to the arbiter, each

operable to receive

See supra Claim |b (showing support for the same claim

| language).

| command processing engines, coupled to the arbiter” and “the

| arbiter . . . operable to provide the command thread to the

commandprocessing engine”).

Operable to Receive and Process the Command Thread

The ALUs are each operable to receive and process the

~ 156 -

AMD1044_0010592

ATI Ex. 2002

IPR2023-00922

Page 159 of 181

ATI Ex. 2002
IPR2023-00922

Page 160 of 181

commandthread.

Case IPR2015-00325 of

US. Patent No. 7,742,053

command thread from the sequencer via the sequencer to

shader engine bus. See Ex. 2010, p. 15. Each ALU is operable

to process the command thread because each ALU “can do

simple math, conditional moves, and permutations on the

| registers.” See Ex. 2041, p. 10.

The texture unit is also operable to receive and process the

command thread. The texture unit is operable to receive the

command thread from the sequencer via the sequencer to

texture unit bus. See Ex. 2010, p. 16. The texture unit is

operable to process the command thread because the texture

unit executes the instructions. See id. (“The sequencer .. .

| provides the instruction . . . for the texture fetch to execute.”).

6. The graphics

processing system

of claim 5,

wherein the

plurality of

command

| See supra Claims 2 and 5c (showing support for the claim

| language).

~ 157 -

AMD1044_0010593

ATI Ex. 2002

IPR2023-00922

Page 160 of 181

ATI Ex. 2002
IPR2023-00922

Page 161 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

processing engines|

comprisesat least

one arithmetic

logic unit.

 7. The graphics See supra Claims 2 and 5c (showing support for the claim

processing system language).

of claim 5,

wherein the

plurality of

command

processing engines

comprisesat least

one texture

processing engine.

~ 158 -

AMD1044_0010594

ATI Ex. 2002

IPR2023-00922

Page 161 of 181

ATI Ex. 2002
IPR2023-00922

Page 162 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

R400SEQUENCERSPEC VERSION2.000
Can
LA graphics

processing system

comprising

The | R400 ‘Sequencer | Specification is : an | architectural
specification for the R400’s sequencer block. Ex. 2028, p. 1.

The R400 was a graphics-chip product, and the R400 was

designed to include a unified pipe (1.c., a single programmable

pipeline for 2D video, 3D vertex, and 3D pixel operations).

See Ex. 2041, pp. 6, 7.

 la. at least one

memorydevice

comprising a first

portion operative

to store a plurality

of pixel command

threads and a

second portion

operative to store

a plurality of

vertex command

threads; and

 At Least One Memory Device

The R400 Sequencer Specification describes reservation

stations and an instruction store, which collectively are the

claimed “at least one memory device.”

The R400 Sequencer Specification includes at least one

memory device. The sequencer’s control flow diagram,

reproduced below for reference, shows a vertex reservation

station (VTX RS) and a pixel reservation station (PIX RS).

See Ex. 2028, pp. 6 ([t]here are two separate reservation

stations, one for pixel vectors and one for vertices vectors”),

10. The reservation stations are also called buffers. See id., p.

25 (“[T]wo buffers are maintained — one for Vertices and one|

~ 159 -

AMD1044_0010595

ATI Ex. 2002

IPR2023-00922

Page 162 of 181

ATI Ex. 2002
IPR2023-00922

Page 163 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

thread lives in a given location in the buffer during its entire

life.”). The buffers are even called “pixel or vertex memory.”

id., p. 23. The R400 Sequencer Specification further states,

“Each entry in the buffer will be stored across two physical

pieces of memory.”id., p. 26.

 [| Irget Arbiter]

| VIX RS PIX RS —

 ——+ Exec Arbiter=-~-—

 ALU -—_—__t—_—_ Testure

id., p. 10.

Another memory device disclosed in the R400 Sequencer

Specification is an instruction store. See, ¢.g., id., pp. 7, 14,

17. On the figures shown below,the instruction store is

outlined in red. This instruction store is loaded with

~ 160 -

AMD1044_0010596

ATI Ex. 2002

IPR2023-00922

Page 163 of 181

ATI Ex. 2002
IPR2023-00922

Page 164 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘instructions.id.,p.17 (“{the instructionstore] willcontain

4096 instructions of 96 bits each’). Also, the instruction store

is called a memory. See id. (“[the instruction store] is likely to

be a | port memory”).

CF
CONSTANTS

tes,{alaeeen,essere,

| INST STORE |

;
pe

FETCH STATE («/ CSTORE ri

seen ~ f "

«| PCIOB |--+| POOR)~ |
See id., p. 7.

- 161 -

AMD1044_0010597

ATI Ex. 2002

IPR2023-00922

Page 164 of 181

ATI Ex. 2002
IPR2023-00922

Page 165 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

1|}

comesfi
cwradar 7 IS SEQ cst —

owe | |i j ; iicesT
|: i

i bog
Phase Lt Lowrise |

ot cme C8Tosticgtinx A&C Wrvee | |
Roadde | WiSeal yraddr
id oy :

t ii
|:i

i
FETCH SP oF

Wraddr
See id., p. 14.

A_First Portion Operative to Store Pixel Command
Threads and _a Second Portion Operative to Store Vertex

Command Threads

The instruction store includes storage for vertex instructions

and pixel instructions. See Ex. 2028, p. 17 (‘There is going to

be only one instruction store for the whole chip.”). Since the

instruction store is used to store both pixel and vertex

commandthreads, the “first portion” of the claimed “at least

one memory device” is the combination of the pixel

reservation station and the portion of the instruction store

where pixel instructions reside. The “second portion” of the

claimed “at least one memory device” is the combination of

~ 162 -

AMD1044_0010598

ATI Ex. 2002

IPR2023-00922

Page 165 of 181

ATI Ex. 2002
IPR2023-00922

Page 166 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘thevertexreservationstationandtheportionoftheinstruction|

store where vertex instructionsreside.

The first portion—the pixel reservation station and the

corresponding portion of the instruction store—is operative to

store a plurality of pixel command threads as recited in the

°053 patent. According to the °053 patent’s specification, “a

commandthread is a sequence of commands applicable to the

corresponding element, such as [a] pixel command thread

relative to processing of pixel elements and a vertex command

thread relative to vertex processing commands.” Ex. 1001,

2:41-45. A thread stored in the pixel reservation station andits

corresponding shader instructions stored in the instruction

store are a command thread as described in the 053 patent’s

specification because the thread and the corresponding shader

instruction are a sequence of commands. See Ex. 2028, p. 26

(“[the thread] is returned to the buffer . . . once all possible

sequential instructions have been executed”). Regarding the

sequence, each entry in the buffer has a “state” and a “status.”

See id, p. 26. The “state” includes a “Control Flow

Instruction Pointer.” See id, p. 26. The pointer is to the |

AMD1044_0010599

ATI Ex. 2002

IPR2023-00922

Page 166 of 181

ATI Ex. 2002
IPR2023-00922

Page 167 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘instruction store. Seeid, p. 41 (INST_BASE_PIXand|

PS_BASE). And the corresponding instructions are a

sequence of an ALU instruction, a fetch instruction, and

control flow instructions. See id., p. 17. Further, the threads

are applicable for the corresponding element because the

threads and the corresponding instructions stored in the first

portion are applicable for processing pixel elements. See id.,

pp. 10 (showing separate pixel and vertex reservation

stations), 12 (‘the sequencer (SQ) will only use one global

state management machine per vector type (pixel, vertex) that

we call the reservation station (RS), 25 (“A thread lives in a

given location in the buffer during its entire life.”).

The second portion—the vertex reservation stations and the

corresponding portion of the instruction store—is operative to

store a plurality of vertex command threads as recited in the

°053 patent. A thread stored in the vertex reservation station

and its corresponding shader instructions stored in the

instruction store are a command thread as described in the

°053 patent’s specification because the thread and the

corresponding shader program are a sequence of commands.|

- 164 -

AMD1044_0010600

ATI Ex. 2002

IPR2023-00922

Page 167 of 181

ATI Ex. 2002
IPR2023-00922

Page 168 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘Seeid., p. 26 (“[the thread] isreturned tothe buffer...once.

all possible sequential instructions have been executed”).

Regarding the sequence, each entry in the buffer has a “state”

and a “status.” See id., pp. 26. The “state” includes a “Control

FlowInstruction Pointer.” See id., p. 26. The pointer is to a

location in the instruction store. See id, p. 41

(INSTBaseVTX and VTX_BASE). And the corresponding

instructions are a sequence of commands that make up an

ALU instruction, a fetch instruction, and control flow

instructions. See Ex. 2028, p. 17. Further, the threads are

applicable for the corresponding element because the threads

and the corresponding instructions stored in the second

portion are applicable for processing vertex elements. See id.,

pp. 10 (showing separate pixel and vertex reservation

stations), 12 (“the sequencer (SQ) will only use one global

state management machine per vector type (pixel, vertex) that

we call the reservation station (RS), 25 (A thread lives in a

given location in the buffer during its entire hfe.”).

1b. an arbiter,

An Arbiter Coupled to the At Least One MemoryDevice

~ 165 -

AMD1044_0010601

ATI Ex. 2002

IPR2023-00922

Page 168 of 181

ATI Ex. 2002
IPR2023-00922

Page 169 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

coupledtothe at

least one memory

device, operable to

select a command

thread from either

of the plurality of

pixel command

threads and the

plurality of vertex

command threads

based onrelative

priorities of the

plurality of pixel

command threads

and the plurality

of vertex

commandthreads.

‘The R400SequencerSpecificationdisclosesanarbiter.|

According to the °053 patent’s specification, “[t]he arbiter

may be any implementation of hardware, software, or

combination thereof.” Ex. 1001, 2:48-52. The sequencer’s

control flow diagram, reproduced belowfor reference, shows

an Exec Arbiter coupled to the reservation stations.

Irget Arbiter pL |

VIX RS PIX RS

 Exec Arbiter

 ALU Testure

Ex, 2028, p. 10.

Operable to Select a Command Thread From Eitherof the
Pixel Command Threads and the Vertex Command

Threads

The arbiter is operable to select a pixel thread or a vertex

thread. For both vertices and pixels, the arbitration circuit

~ 166 -

AMD1044_0010602

ATI Ex. 2002

IPR2023-00922

Page 169 of 181

ATI Ex. 2002
IPR2023-00922

Page 170 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘selectsawinner for both the texture engine and the ALU

engine. See Ex. 2028, p. 26 (“The arbitration circuitry will

select a winner for both the Texture Engine and for the ALU

engine. There are actually two sets of arbitration — one for

pixels and one for vertices.”) This is the first level of

arbitration. The arbiter then selects between the pixel and the

vertex. See id., p. 26 (“A final selection is then done between

the two.”). This is the second level of arbitration. Collectively

this arbitration make the arbiter operable to select a command

thread from either of the pixel command threads and the

vertex commandthreads.

Based on Relative Priorities

The arbiter is operable to select threads based on

relative priorities of the pixel threads and the vertex threads.

According to the R400 Sequencer Specification, priority is

given to older threads. See Ex. 2028, pp. 6 (“The arbitrator

will give priority to older threads.”), 25 (‘the buffer has FIFO

qualities in that threads leave in the order that they enter”);

26-27 (“Texture arbitration requires no allocation or ordering

~ 167 -

AMD1044_0010603

ATI Ex. 2002

IPR2023-00922

Page 170 of 181

ATI Ex. 2002
IPR2023-00922

Page 171 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

so it is purely based on selectingthe ‘oldest’ threadthat

requires the Texture Engine. ALU arbitration is a little more

complicated. First, only threads where either of

TextureReadsoutstanding or WaitingonTextureRead_

toComplete are '0' are considered. Then if Allocation_Wait

is active, these threads are further filtered based on whether

space is available. If the allocation is position allocation, then

the thread is only consideredif all 'older’ threads have already

done their position allocation (position allocated bits set). If

the allocation is parameter or pixel allocation, then the thread

is only considered if it is the oldest thread. Also a thread is not

considered if it is a parameter or pixel or position allocation,

has its First_threadof_anewcontext bit set and would

cause ALU interleaving with another thread performing the

same parameter or pixel or position allocation. Finally the

‘oldest’ of the threads that pass through the abovefilters is

selected. If the thread needed to allocate, then at this time the

allocation is done, based on AllocationSize. If a thread has

its ‘last’ bit set, then it is also removed from the buffer, never

~ 168 -

AMD1044_0010604

ATI Ex. 2002

IPR2023-00922

Page 171 of 181

ATI Ex. 2002
IPR2023-00922

Page 172 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

‘o retum.*)

2. The graphics

processing system

of claim 1, further

comprising: a

command

processing engine,

coupled to the

arbiter, wherein

the arbiteris

further operable to

provide the

command thread

to the command

processing engine.
Command Processing Engines

As shown in the figure reproduced below, the R400

Sequencer Specification shows an ALU andatexture engine,

each of which is a command processing engine. See Ex. 2028,

pp. 10, 26 (using the terms “ALU engine” and “Texture

engine”). According to the °053 patent’s specification, “[a]

command processing engine may be any suitable engine as

recognized by one having ordinary skill in the art for

processing commands, such as a texture engine, an

arithmetic logic unit, or any suitable processing engine.” Ex.

1001, 2:59-62 (emphasis added).

Irpet Arbiter -

VIX RS PIX RS

 xen Arbiter

 ALU Testure

~ 169 -

AMD1044_0010605

ATI Ex. 2002

IPR2023-00922

Page 172 of 181

ATI Ex. 2002
IPR2023-00922

Page 173 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

Ex. 2028, p. 10.

The ALU and the texture engine are command processing

engines according to the °053 patent’s specification. See Ex.

1001, 2:59-62. Further, each is a command processing engine

because each engine processes commands. See Ex. 2028, p.

26 (“Once a thread is selected it is read out of the buffer .. .

and submitted to [the] appropriate execution unit. It is

returned to the buffer . . . once all possible sequential

instruction shave been executed.”).

Coupled to the Arbiter

As shown in the figure reproduced in this section, the

command processing engines are coupled to the arbiter. See

Ex. 2028, p. 10 (showing ALUand texture engines coupled to

the Exec Arbiter).

Operable to Provide the Command Thread to the

Command Processing Engine

The arbiter is operable to provide the commandthread to both

the ALU engine and the texture engine because after the

arbiter selects a command thread, the arbiter submits the

command thread to the appropriate execution unit. See Ex.

- 170 -

AMD1044_0010606

ATI Ex. 2002

IPR2023-00922

Page 173 of 181

ATI Ex. 2002
IPR2023-00922

Page 174 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

| 2028, p. 26(“Onceathreadisselecteditisreadout ofthe

buffer, marked as invalid, and submitted to [sic] appropriate

execution unit. It is returned to the buffer... once all possible

sequential instructions have been executed.”).

The figures in the R400 Sequencer Specification, reproduced

belowwith annotations, also showthat the arbiter is operable

to provide the command thread to the command processing

engines. The first figure shows the ALU instruction (“ALU

INST”) from the sequencer (“SQ”) to the shader pipe (“SP”).

The second figure shows the command (“CMD”) from the SQ

to the SP. The third figure shows the texture instruction

(“TEX INST”) from the SQ to the texture pipe (“TP”). The

fourth figure shows the CMD from the SQ to the TP Fetch.

-171-

AMD1044_0010607

ATI Ex. 2002

IPR2023-00922

Page 174 of 181

ATI Ex. 2002
IPR2023-00922

Page 175 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053
g Bog
i oo
i i | i

 begSey~» INST STORE

ow FETCH STATE

>i| >cI08 | | :4 f ' E
i . YOR Pci08| 0) RCIOB od BCCI

a ifyD errreroron
 y

Ll PB
\ ri

Res

See Ex. 2028, p. 7.

Clause & + Ady
2 varaelse Wager

Chan

G

esr

Phase i eeomg COM Ceticg

Raber WrGeel wocmdde

FETCH SP toe OF
Wedd ce,an

See id., p. 14.

- 172 -

AMD1044_0010608

ATI Ex. 2002

IPR2023-00922

Page 175 of 181

ATI Ex. 2002
IPR2023-00922

Page 176 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

ae CFCONSTANTS

.y

|i5

|
asos hal

ro Sv Os :

“ecion : PCOB “pene eos)aan} a,oT
RB ob) RB ob RB & ro|bi }

wrager

Cun

egr
_}

: :

Phase a : :
oma CST ceticg S :i i : :

Roaddr / WrScal yueadde :sang | : :i :

* 4 % fc BonaaaR. Finan os Byi i i

Fd Ir |wy :
| i : |
i i ; j

FETCH | SP | OF
|orale at i

| |

See id., p. 14.

AMD1044_0010609

ATI Ex. 2002

IPR2023-00922

Page 176 of 181

ATI Ex. 2002
IPR2023-00922

Page 177 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

5a. at leastone

memorydevice

comprising a first

portion operative

to store a plurality

of pixel command

threads and a

second portion

operative to store

a plurality of

vertex command

threads;

language).

SeesupraClaimla(showing support for thesame claim|

 5b. an arbiter,

coupled to the at

least one memory

device, operable to

select a command

thread from either

of the plurality of

 See supra Claim 1b (showing support for the same claim |

language).

-174-

AMD1044_0010510

ATI Ex. 2002

IPR2023-00922

Page 177 of 181

ATI Ex. 2002
IPR2023-00922

Page 178 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

pixel command

threads and the

plurality of vertex

command threads;

and

command

processing

engines, coupled

to the arbiter, each

operable to receive

and process the

commandthread. ‘Seesupra Claim 2 (showing support for “apluralityof|

commandprocessing engines, coupled to the arbiter” and “the

arbiter . . . operable to provide the command thread to the

command processing engine”).

Operable to Receive and Process the Command Thread

The figure showing the ALU engine and the texture engine is

reproduced below. Both are operable to receive and process

the command thread because, after the command thread is

submitted to the appropriate execution unit, the receiving

engine executes the istructions. See Ex. 2028, p. 26 (“Once a

thread is selected it is read out of the buffer, marked as

invalid, and submitted to [sic] appropriate execution unit. It is

returned to the buffer ... once all possible sequential

- 175 -

AMD1044_0010611

ATI Ex. 2002

IPR2023-00922

Page 178 of 181

ATI Ex. 2002
IPR2023-00922

Page 179 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

instructions have been executed.”).

 [| Irgut Arbiter]

el VIX RS PIX RS |

 ——+ Exec Arler ~#—

 ALU ec——___—_—_— Texture

Id.,p. 10.

 6. The graphics (See supra Claims 2 and 5c (showing support for the claim |

processing system|language).)

of claim 5,

wherein the

plurality of

command

processing engines

comprisesat least

one arithmetic

- 176 -

AMD1044_0010612

ATI Ex. 2002

IPR2023-00922

Page 179 of 181

ATI Ex. 2002
IPR2023-00922

Page 180 of 181

Case IPR2015-00325 of

U.S. Patent No. 7,742,053

logicunit.

7. The graphics

processing system

of claim 5,

wherein the

plurality of

command

processing engines

comprisesat least

one texture

processing engine.

(See supra Claims 2 and 5c (showing support for the claim

language).)

-177-

AMD1044_0010613

ATI Ex. 2002

IPR2023-00922

Page 180 of 181

ATI Ex. 2002
IPR2023-00922

Page 181 of 181

NE0015-00525 of
| U.S. Patent No. 7,742,053

i hereby declare that all statements made herein ofmy own knowledgeare true and

that all statements made on information and beliefare believed to be true. The
statements in this declaration were made with the knowledgethat willful false
statoqnents and the like are made punishable by fine or imprisonment under Section |
1001 of Title 18 of the United States Code:and that willful false statements may

- jeopardize the validity ofthe’053 patent,
Executed this 8th day of September in Los Gatos, CA

_ RespectfullyZi,
Andrew Wolfe

~ 178 -

AMD1044_0010614

ATI Ex. 2002

IPR2023-00922

Page 181 of 181

