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Cover image: Laser scanning confocal image of an ocular druse, the hallmark lesion associated
with age-related macular degeneration. The complement system protein 5b-9 is shown in orange
and red, and factor H, which inhibits the complement pathway, is shown in green. The retinal
pigment epithelium is shown in purple. Genetic variation in the factor H gene is a major
contributor to age-related macular degeneration. See the article by Hageman er al. on pages
7227-7232. Image courtesy of Patrick Johnson (Center for the Study of Macular Degeneration,
University of California, Santa Barbara).
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HIV-1-specific IFN-y/IL-2-secreting CD8 T cells
support CD4-independent proliferation

of HIV-1-specific CD8 T cells

simone C. Zimmerli, Alexandre Harari, Cristina Cellerai, Florence Vallelian, Pierre-Alexandre Bart,

and Giuseppe Pantaleo*

pepartment of Medicine, Division of Immunology and Allergy, Laboratory of AIDS Immunopathogenesis, Centre Hospitalier Universitaire Vaudois,

University of Lausanne, 1011 Lausanne, Switzerland

Communicated by Anthony S. Fauci, National Institutes of Health, Bethesda, MD, March 23, 2005 (received for review December 18, 2004)

Functional and phenotypic characterization of virus-specific CD8 T
cells against cytomegalovirus, Epstein-Barr virus, influenza (flu),
and HIV-1 were performed on the basis of the ability of CD8 T cells
to secrete IFN-y and IL-2, to proliferate, and to express CD45RA and
CCR7. Two functional distinct populations of CD8 T cells were
identified: (i) dual IFN-y/IL-2-secreting cells and (i) single IFN-y-
secreting cells. Virus-specific IFN-y/IL-2-secreting CD8 T cells were
CD45RA-CCR7-, whereas single IFN-y CD8 T cells were either
CD45RA-CCR7~ or CD45RA*CCR7-. The proportion of virus-
specific IFN-y/IL-2-secreting CD8 T cells correlated with that of
proliferating CD8 T cells, and the loss of HIV-1-specific IL-2-secret-
ing CD8 T cells was associated with that of HIV-1-specific CD8 T cell
proliferation. Substantial proliferation of virus-specific CD8 T cells
(including HIV-1-specific CD8 T cells) was also observed in CD4 T
cell-depleted populations or after stimulation with MHC class |
tetramer-peptide complexes. IL-2 was the factor responsible for
the CD4-independent CD8 T cell proliferation. These results indi-
cate that IFN-y/IL-2-secreting CD8 T cells may promote antigen-
specific proliferation of CD8 T cells even in the absence of helper
CDA T cells.

C D8 T cells play a critical role in the control of viral infections
(reviewed in ref. 1). Several studies have shown a wide heter-
ogeneity of memory CD8 and CD4 T cells with multiple phenotypes
and functions in response to virus infections (2-7). Functionally
distinct populations of CD8 T cells can be defined by the expression
of CD45RA and CCR7 (8) and are able to proliferate and/or to
secrete cytokines such as IL-2, IFN-y, and TNF-a after antigen
(Ag)-specific stimulation (9-11). The determination of quantitative
and qualitative changes of virus-specific CD8 T cells in rapidly
controlled acute, more slowly controlled or uncontrolled chronic
infections showed that high load of lymphocytic choriomeningitis
virus resulted in the progressive diminution of the ability of CD8 T
cells to produce IL-2, TNF-a, and IFN-y (9). Of interest, the
capacity to secrete cytokines could be restored if the viral load was
brought under control (9).

IL-2 production from virus-specific CD8 T cells has been the
object of few studies in humans. Recent studies have shown that a
variable percentage of cytomegalovirus (CMV)- and Epstein-Barr
virus (EBV)-specific CD8 T cells were able to secrete IL-2 (10, 11),
whereas IL-2 was not produced by melanoma-1-specific CD8 T cells
obtained from patients with stage IV melanoma (10). With regard
to HIV-1 infection, no studies have investigated the ability of
HIV-1-specific CD8 T cells to secrete IL-2. However, it has been
shown that HIV-1-specific CD8 T cells of HIV-1-infected subjects
with nonprogressive disease, i.e., long-term nonprogressors
(LTNPs), had greater proliferation capacity as compared with
HIV-1-specific CD8 T cells from progressors (12), and this finding
was associated with a better ability to control virus replication (12).
A recent study has shown that the loss of HIV-1-specific CD8 T cell
proliferation was associated with the loss of HI'V-1-specific helper
CD4 T cells and has proposed a critical role of HIV-1-specific

www.pnas.org/cgi/doi/10.1073/pnas.0502393102

helper CD4 T cells in sustaining Ag-specific CD8 T cell prolifera-
tion (13). 4

Recent studies (14-16) investigating antiviral memory CD4 T
cell responses have shown that the combined assessment of IL-2and
IFN-y is instrumental to distinguish functionally dlst'mct .popula-
tions of memory CD4 T cells and patterns of antiviral immune
responses associated with different conditions of virus persistence
and control.

In the present study, we have performed functional and Qheno-
typic characterization of antiviral CD8 T cell responses specific for
HIV-1, CMV, EBV and influenza (flu) on the basis of their ability
to proliferate, to secrete IL-2 and IFN-y, and to express CD45}_1A
and CCR7. Our results indicate: ({) a wide heterogeneity of antiviral
CD8 T cell immune responses under different conditions of virus
persistence; (i) a combined loss of virus-specific IFN-v/IL-2-
secreting and -proliferating CD8 T cells in progressive HIV-1
infection; (iii) a typical phenotype of effector cells, i.e.,
CD45RA~CCR7-, for the IFN-y/IL-2-secreting CD8 T cells; (iv)
a correlation between the proportion of virus-specific IL-2-
secreting and -proliferating CD8 T cells; and (v) the occurrence of
Ag-specific CD8 T cell proliferation also in experimental condi-
tions, excluding the involvement of Ag-specific helper CD4 T cells.

Materials and Methods

Study Groups. The 21 subjects with progressive chronic HIV-1
infection enrolled in this study were naive to antiviral therapy, with
CD4 T cell counts of >250 cells per microliter (mean * SE: 810 +
39) and plasma viremia counts of =5,000 HIV-1 RNA copies per
ml (mean * SE: 41,854 + 12,339). Five HIV-1-infected patients
with nonprogressive disease, i.e., LTNPs, as defined by documented
HIV-1 infection for >14 years, stable CD4 T cell counts of >500
cells per microliter (mean + SE: 912 * 125) and plasma viremia of
<1,000 HI'V-1 RNA copies per ml (mean =+ SE: 97 + 38) were also
included. Patient 1010 has a documented HIV-1 infection since
March 1999. He was treated with antiviral therapy at the time of
primary infection and remained on antiviral therapy for 18 months.
He interrupted therapy spontaneously in December 2000. During
the last 4 years, he constantly had levels of viremia of <50 HIV-1
RNA copies per ml and CD4 T cell count in the range of 1,400 cells
per microliter. In addition, blood from 28 HIV-negative subjects
was obtained from the local blood bank or from laboratory co-
workers. The studies were approved by the Institutional Review
Board of the Centre Hospitalier Universitaire Vaudois.

Freely available online through the PNAS open access option.
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term nonprog i CFSE, y ein idyl ester; SEB, hyl | en-
terotoxin B.

*To wh should be at: Laboratory of AIDS Immunopathogen-

esis, Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue
Bugnon, 1011 Lausanne, E-mail: giuseppe. ! ch

© 2005 by The National Academy of Sciences of the USA

PNAS | May 17,2005 | vol. 102 | no.20 | 7239-7244

Miltenyi Ex. 1031 Page 8

IMMUNOLOGY



Synthetic Peptides and Tetramers. The following individual peptides
were used: A2-restricted CMV pp65 (amino acids 495-503: NLVP-
MVATV) peptide (17), B7-restricted CMV pp65 (amino acids
415-429: TPRVTGGGAM) peptide (17), A2-restricted EBV
BMLF1 (amino acids 259-267: GLCTLVAML) peptide (18),
B8-restricted EBV EBNA3A (amino acids 325-333: FLR-
GRAYGL) peptide (18), B8-restricted EBV BZLF1 (amino acids
190-197: RAFKQLL) peptide (18), A2-restricted flu matrix 1
(amino acids 58-66: GILGFVFTL) peptide (19), A2-restricted
HIV-1 pol (amino acids 476-484: ILKEPVHGV) (20), A2-
restricted HIV-1 gag (amino acids 77-85: SLYNTVATL) (21),
B8-restricted HIV-1 gag (amino acids 259-267: GEIYKRWII),
(22) or B8-restricted HIV-1 nef (amino acids 89-97: FLKEKGGL)
(23) peptides. Cells were stimulated with HIV-1 (strain IIIB)
peptide pools. Each pool consisted of 50-62 15-mers peptides
overlapping by 11 amino acids (Synpep, Dublin, CA). Pools 1-6
spanned the gag, pol, and nef sequence; pool 1: amino acids 1-230;
pool 2: amino acids 220-432; pool 3: amino acids 421-655; pool 4:
amino acids 645-879; pool 5: amino acids 871-1103; and pool 6:
amino acids 1043-1326. CMV-, EBV-, or flu-derived peptides were
used either all in a pool or grouped as virus-specific pools (24).

For tetramer stimulations, A2- and B7-restricted class I peptide
tetramers were produced as described (25, 26).

Detection of IFN-y and IL-2 Secretion. Cell stimulations were per-
formed as described (14). For stimulation of CD8 T cells, individual
peptides (5 pg/ml) or peptide pools (1 pg/ml for each peptide)
were used. Cells were then stained with CD8-PerCP-Cy5.5, CD69-
FITC, IFN-y-APC and IL-2-PE (Becton Dickinson, Franklin, NJ).
For phenotypic analysis, the following Abs were used in combina-
tion: Rat anti-human CCR?7 (Becton Dickinson) followed by goat
anti-rat I[gG(H+L)-APC (Caltag, Burlingame, CA), CD8-Pacific
blue (DAKO, Glostrup, Denmark), CD45R A-Biotin followed by
anti-Streptavidin-PercP, anti-CD69-APC-Cy7, anti-IL-2-PE, and
anti-IFN-y-FITC (Becton Dickinson). Data were acquired on a
FACScalibur or an LSR II and analyzed by using CELLQUEST and
DIVA software (Becton Dickinson). The number of nongated events
ranged between 105 and 10° events.

Ex Vivo Proliferation Assay. After an overnight rest, cells were
washed twice, resuspended at 1 X 10% ml in PBS, and incubated for
7 min at 37°C with 0.25 pM carboxyfluorescein succinimidyl ester
(CFSE; Molecular Probes). The reaction was quenched with 1
volume of FCS, and cells were washed and cultured in the presence
of anti-CD28 Ab (0.5 ug/ml) (Becton Dickinson). Cells were either
stimulated with HIV-1 peptide pools (1 pug/ml of each peptide),
individual peptides (5 pg/ml), or tetramers (0.31 ug/ml). Staphy-
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lococcal enterotoxin B (SEB) stimulation (200 ng/ml) served as
positive control. Where indicated, 10% exogenous IL-2 (Roche,
Basel) was added 48 h after peptide stimulation. For neutralization
experiments, anti-IL-2-neutralizing Ab or isotype control Ab (Bec-
ton Dickinson) were added at 10 pg/ml. At day 5, cells were
harvested and stained with CD4-PE-Cy5 (Becton Dickinson) and
CD8-APC (Becton Dickinson). Cells were fixed with CellFix
(Becton Dickinson) and acquired (1-8 X 10° nongated events) on
a FACScalibur (Becton Dickinson).

CD4 T Cell Depletion. CFSE-labeled cells were stained with CD4-
APC and sorted by using a FACS Vantage (Becton Dickinson). The
purity of the CD4-depleted cell populations was 99%.

Statistical Analysis. Statistical significance (P values) of the results
was calculated by using a two-tailed Student ¢ test. A two-tailed P
value of <0.05 was considered significant. The correlations among
variables were tested by simple regression analysis.

Results

Distinct Cytokine Secreting Populations of Virus-Specific CD8 T Cells.
We used different models of virus-specific CD8 T cell responses,
including HIV-1-, CMV-, EBV-, and flu-specific CD8 T cell
responses. Based on the observation that functionally distinct
Ag-specific CD4 T cell populations are defined by the secretion of
IL-2 and IFN-vy (14-16), we performed functional characterization
of virus-specific CD8 T cell responses by simultaneous assessment
of IFN-y and IL-2 secretion after Ag-specific stimulation. Repre-
sentative examples obtained from the analysis of 21 HI'V-1-infected
progressors and 28 HIV-negative blood donors in whom CMV-,
EBV-, or flu-specific CD8 responses were detected are shown in
Fig. 14. The dual IFN-y/IL-2-secreting T cells were absent in
HIV-1-specific CD8 T cells, whereas they were found within CMV-,
EBV-, and flu-specific CD8 T cells (Fig. 14). These observations
were confirmed by the analysis of a larger number of subjects. A
significant difference was found between the percentage of HIV-
1-specific IFN-y/IL-2-secreting cells in progressive HI V-1 infection
and that found in the virus-specific IFN-y/IL-2-secreting CD8 T -
cells (P < 0.05) of the other virus infections (Fig. 1B). We also
evaluated the proportion of IL-2-secreting cells within IFN-y-
secreting CD8 T cells. Cumulative data of this analysis are shown
in Fig. 1C. The proportion of CMV-specific (12.7 + 1.8%, n = 11)
and EBV-specific (19.2 + 3.2%, n = 10) IL-2-secreting CD8 T cells
was significantly higher (P < 0.05) compared with that of HIV-1-
specific IL-2-secreting CD8 T cells (2.3 * 0.6%, n = 21) (Fig. 1C).
The proportion (25.6 + 3.6%, n = 7) of flu-specific IL-2-secreting
CD8'T cells was significantly higher (P < 0.05) compared with that

* *
f e @
28 21 s momunem )
23 40
£
3322
53-
§g§ 10
i 133 I
= £§ sl | i
CMV  EBV  Flu HVA CMV  EBV  Flu
n=21 et n=10 ne7 n=21 nestt  n=10  ne?

Fig.1. Analysis of different virus-specific IFN-y- and IL-2-secreting CD8 T cells after stimulation with single peptides. (A) Distribution of IFN-y- and IL-2-secreting
virus-specific CD8T cells. Cells were stimulated with single peptides. One representative profile is shown for HIV-1-, CMV-, EBV-, or flu-specific CD8 T cell responses.
The cluster of events shown in red corresponds to the responder CD8 T cells, i.e., secreting IFN-y or IL-2, and the blue clusters correspond to the nonresponder
cells. (B) Cumulative data on the percentage (mean * SE) of IFN-y/IL-2-secreting cells within the different virus-specific CD8 T cell responses. (C) Cumulative data
on the proportion (mean * SE) of IL-2-secreting cells within IFN-y-secreting CD8 T cells. *, P < 0.05.
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of HIV-1- and CMV-specific but not with that of EBV-specific
1L-2-secreting CD8 T cells (Fig. 1C). Finally, the proportion of
EBV-specific IL-2-secreting cells was also significantly higher com-

ared with that of CMV-specific IL-2-secreting CD8 T cells (P <
0.05) (Fig. 1C). CMV-, EBV-, and flu-specific CD8 T cell responses
were also studied in HIV-1-infected individuals either by using

ptides specific to CMV and EBV (n = 7) and flu (n = 6) or a pool
of 21 CMV-, EBV-, and flu-derived peptides in 30 HIV-1-infected
subjects. The proportion of CMV-, EBV-, or flu-specific IL-2-
secreting CD8 T cells in HIV-1-infected subjects was not signifi-
cantly different from that observed in HIV-negative subjects
P> 0.05).

To exclude the possibility that the lack of detection of HIV-1-
specific IFN-y/IL-2-secreting CD8 T cells was specific of the
response to certain peptides, we performed stimulation with pep-
tide pools spanning gag, pol, and nef proteins of HIV-1. A
representative flow cytometry profile of one (of 21) HIV-1-infected
subjects with progressive disease (progressors) is shown in Fig. 24.
Despite the presence of HIV-1-specific IFN-y-secreting CD8 T
cells after stimulation with different HIV-1 peptide pools, IL-2-
secreting CD8 T cells were not detected (Fig. 24).

Previous studies (12) have shown that HI V-1-specific CD8 T cells
of LTNPs, but not of progressors, proliferated in response to
Ag-specific stimulation (12). The evaluation of the presence of
HIV-1-specific IFN-y/IL-2-secreting CD8 T cells in three of five
representative LTNPs showed variable intensities of the response to
the different peptide pools (Fig. 2B). HIV-1-specific IFN-y-
secreting CD8 T cells were detected consistently after stimulation
with different peptide pools (Fig. 2B), and a substantial percentage
of dual IFN-y/IL-2-secreting cells was also found after stimulation
with peptide pools 1 and 2 (Fig. 2B). The percentage (0.13 * 0.04,
n = 5) of IFN-y/IL-2-secreting cells in LTNPs was significantly
different (P = 0.0003) compared with progressors (0.01 * 0.002,
n=21).

Phenotypic Analysis of Cytokine-Secreting Virus-Specific CD8 T Cells.
Previous studies in humans and mice have shown that IL-2-
secreting CD8 T cells were contained within the CCR7* central
memory CD8 T cell population, whereas the IFN-y-secreting CD8
T cells were contained within the CCR7~ effector CD8 T cells (8,
27). Blood mononuclear cells of LTNPs and HIV-negative donors
with known HIV-1, flu, or CMV CD8 T cell responses were
stimulated with the appropriate virus-derived peptides, and cells
were stained with CD8, CD45RA, CCR7, IL-2, IFN-v, and CD69
Abs. The results obtained indicated that the virus-specific IFN-y/
IL-2 CD8 T cells were contained within the CD45SRA™CCR7~
effector cell population and the IFN-y-secreting CD8 T cells within
the CD4SRA~CCR7- and CD45RA*CCR7~ effector cell popu-
lations (Fig. 3). These results were representative of the analysis of
two LTNPs and seven HIV-negative subjects.

Proliferation Capacity of Virus-Specific CD8 T Cells. Recent studies
(12, 13) have shown the loss of proliferation capacity of HIV-1-
specific CD8 T cells of subjects with progressive disease, whereas
HIV-1-specific CD8 T cell proliferation was retained in CD8 T cells
of LTNPs. Based on these observations, it has been proposed that
Ag-specific CD8 T cell proliferation represents a characteristic of
effective and protective immune response (12). Furthermore, it has
been proposed that the loss of HIV-1-specific CD8 T cell prolif-
eration depended on the loss of HIV-1-specific CD4 helper T cells
(13). In the present study, we decided to investigate (i) the corre-
lation between the ability of virus-specific CD8 T cells to secrete
IL-2 and their proliferation capacity and (ii) the potential mecha-
nism responsible for Ag-specific CD8 T cell proliferation. Repre-
sentative examples of the proliferation capacity of ‘CMV-, EBV-,
flu-, and HI V-1-specific CD8 T cells after virus-specific stimulation
are shown in Fig. 4 A-C. Cells were labeled with CFSE, stimulated
for 5 days with virus-derived peptides, and virus-specific CD8 T cell
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Fig. 2.  Analysis of HIV-1-specific IFN-y- and IL-2-secreting CD8 T cells in
progressors and LTNPs after stimulation with peptide pools. Flow cytometry
profiles of IFN-y- and IL-2-secreting HIV-1-specific CD8 T cells of progressor
2113 (A) and three diffi LTNPs (B) after stil of blood mononuclear
cells with different peptide pools spanning gag, pol, and nef proteins.

proliferation was measured by the loss of CFSE in the dividing CD8
T cells. A substantial proportion of CD8 T cells of subject 248
proliferated after stimulation with CMV- and Flu-derived peptides
(Fig. 4A). Similarly, CD8 T cells of subject 359 proliferated after
stimulation with two different EBV-derived peptides (Fig. 44). We
then determined the proliferation of HIV-1-specific CD8 T cells
after stimulation with HIV-1-derived peptide pools in progressors
(n =9) and LTNPs (n = 5). HIV-1-specific CD8 T cell proliferation
was barely detected or was absent in these two representative
progressors [two of nine patients each tested with one to three pools
(16 responses were tested in total)] (Fig. 4B). However, CD8 T cells
of progressors were able to proliferate after SEB stimulation (Fig.
4B), thus indicating a selective loss of HIV-1-specific proliferation.
Consistent with results previously shown by Migueles et al. (12),
vigorous HIV-1-specific CD8 T cell proliferation was observed in
two of five representative LTNPs (Fig. 4C). The mean *+ SE
percentage of HIV-1-specific CD8 T cell proliferation in progres-
sors was 0.45 + 0.16 compared with 6.88 * 1.69 in LTNPs (P <
0.00001).

We then determined the correlation between the proportion of
Ag-specific proliferating CD8 T cells and the proportion of IL-2-
secreting CD8 T cells within IFN-y-secreting cells. This analysis was
performed by pooling together 32 individual determinations from
21 subjects of Ag-specific CD8 T cell-proliferating and IL-2-
secreting CD8 T cells. We found a significant correlation between
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Fig.3. IFN-y-and IL-2-secreting CD8 T cells in different populations defined by CD45RA and CCR7. Shown is the distribution of IFN-y- and IL-2-secreting CD8

T cells in different populations defined by CD45RA and CCR7. (A) Cells of LTNP 2073 were stimulated with different peptide pools spanning gag, pol, and nef
proteins. (B) Cells of subjects 205 and 35 were stimulated with CMV or flu peptides, respectively.

the proportion of Ag-specific IL-2-secreting and -proliferating CD8
T cells (Fig. 4D). The correlation was even stronger when only
HIV-1-specific CD8 T cell responses were analyzed (R = 0.53, P <
0.01, n = 24).

Having demonstrated a correlation between the ability to secrete
IL-2 and the proliferation capacity of CD8 T cells, we further
investigated the mechanism responsible for Ag-specific CD8 T cell
proliferation. Firstly, we assessed Ag-specific CD8 T cell prolifer-
ation under experimental conditions excluding the involvement of
CDA4 T cells. For this purpose, Ag-specific CD8 T cell proliferation
was determined by using either MHC class I tetramer—peptide
complexes as stimuli or CD4 T cell-depleted populations in the
absence of exogenous IL-2. HLA-A?2 tetramer complexed with flu-

and CMV-derived peptides induced vigorous Ag-specific prolifer-
ation of CD8 T cells of subjects 172 and 180 (Fig. 54). It is important
to underscore that no CD4 T cell proliferation was observed (Fig.
5A), thus indicating that Ag-specific CD8 T cell proliferation was
not associated with the stimulation of Ag-specific helper CD4 T
cells. Consistent with the observations previously reported (12, 13),
HIV-1-specific CD8 T cell proliferation was barely detected in
progressors after stimulation with the HLA-A2 tetramer com-
plexed with an HIV-1 pol ILKEPVHG V-derived peptide (20) (Fig.
5B). Of interest, in agreement with the work of Lichterfeld et al.
(13), HI'V-1-specific CD8 T cell proliferation was recovered in the
presence of exogenous IL-2 (Fig. 5B). No proliferation was ob-
served in CD4 T cells after MHC class I tetramer—peptide complex
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Fig.4. Virus-specific CD8 T cell proliferation after stimulation with single peptides or peptide pools. (A) CFSE-labeled cells of HIV-negative donors 248 and 359
were stimulated with CMV-, flu-, or EBV-derived peptides. Profiles of proliferating cells, i.e., CFSE low cells, are gated on CD8 T cells. (B) HIV-1-specific CD8 T cell
proliferation in HIV-1 progressors after stimulation with different HIV-1 peptide pools or SEB. (C) HIV-1-specific CD8 T cell proliferation in LTNPs after stimulation
with different HIV-1 peptide pools. (D) Correlation between the proportion of IL-2-secreting and -proliferating virus-specific CD8 T cells.
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Most studies performed on CD8 T cells in different models of
antiviral responses in both mice and humans were predominantly
focused on the characterization of effector functions such as
perforin and granzyme expression or secretion of IFN-yand TNF-a
(9-11). Recently, a series of studies have shown the importance of
investigating other functions such as the ability to proliferate and' to
secrete IL-2 (14-16) that have generally been the object of extensive
investigation in CD4 T cells. With regard to CD8 T cells, it has been
shown that the preservation of the proliferation capacity and the
ability to secrete IL-2 were generally associated with an apparently
effective immune response because virus replication was controlled
in both mouse and human models of virus infection (12, 28). In
addition, a recent study has shown a paralleled loss of HIV-1-
specific helper CD4 T cells and HIV-1-specific CD8 T cell prolif-
eration, and concluded that HIV-1-specific helper CD4 T cells are
critical for the maintenance of HIV-1-specific proliferating CD8 T
cells (13).

This is the first study, to our knowledge, investigating IL-2
secretion in HIV-1-specific CD8 T cells. In addition, it compares
the function of HIV-1-specific CD8 T cells with that of CMV-,
EBV-, and flu-specific CD8 T cells that are able to keep either
on check (CMV and EBV) or clear (flu) the virus. The rationale
for studying antiviral CD8 T cell responses in different models
of virus persistence resides on recent studies (28) performed in
mice, demonstrating that the function of CD8 T cells was
modulated by different conditions of Ag levels and/or persis-
tence. HIV-1 infection in subjects with progressive disease
corresponded to the model of immune failure with Ag persis-
tence and high Ag levels. CMV, EBV, and HIV-1 infection in
subjects with nonprogressive disease corresponded to the model
of immune control with protracted virus persistence and low Ag
levels and flu to the model of Ag clearance. Our results
demonstrated the presence of an Ag-specific IFN-y/IL-2-
secreting CD8 T cell population in the models of virus infections
associated with resolved virus infection or with virus control, i.e.,
CMV, EBV, and nonprogressive HIV-1 infection or virus clear-
ance, i.e., flu. This cell population was absent in progressive
HIV-1 infection. Therefore, we provided evidence for (i) a loss
of IFN-y/IL-2-secreting CD8 T cells in progressive HIV-1
infection and (ii) a skewed representation of functionally distinct
memory HIV-1-specific CD8 T cells in progressive HIV-1
infection. The present results showed that the same pathogen,
i.e., HIV-1, can be associated with substantially different CD8 T
cell responses in progressive and nonprogressive infection where
the major difference between these two conditions was indeed
represented by Ag levels. Therefore, along with the observation
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from the lymphocytic choriomeningitis virus qucl (28), our
results rather supported the hypothesis }hat also in humans the
functional heterogeneity of virus-specific CD8 T cell responses
was influenced by Ag persistence and Ag levels. N

In agreement with previous studies (12, 13), HIV-}-speglflc
CDB8 T cell proliferation was lost in progressive HIV-1 infection.
Of interest, we have provided evidence for the combined loss of
HIV-1-specific IFN-y/IL-2-secreting aqd -prolgfe;atmg. CD8T
cells in progressive HIV-1 infection. This association raised the
issue on the role of IFN-y/IL-2-secreting CD8 T cells in
Ag-specific CD8 T cell proliferation. To address this issue, we
evaluated the virus-specific CD8 T cell proliferation under
experimental conditions excluding any involvement of helper
CD4 T cells. These latter have been proposed to be crmca} for
sustaining HIV-1-specific CD8 T cell proliferation (13). Virus-
specific CD8 T cell proliferation, including HIV-1-specific,
occurred in CD4 T cell-depleted populations or after stimulation
with MHC class 1 tetramer—peptide complexes. Under th;se
experimental conditions, virus-specific CD8 T cell Rrgllferatlon
was found in the HIV-1-, CMV-, EBV- and flu-specific immune
responses, and a significant correlation between the proportion
of IL-2-secreting and -proliferating CD8 T cells was obseryed.

These results demonstrated that the persistence of virus-
specific IFN-y/IL-2-secreting CD8 T cells was associa.ted with
the persistence of CD8 T cell proliferation. Virus-specific CD8
T cell proliferation was supported by IL-2 because it was
completely abolished in the presence of the anti-IL-2 Ab.
Therefore, taken together, they indicate that IFN-y/IL-2-
secreting CD8 T cells are able to promote CD8 T cell prolifer-
ation through the secretion of IL-2 even in the absence Ag-
specific helper CD4 T cells. Despite the demonstration in vitro
of a CD4-independent CD8 T cell proliferation, it is important
to underscore that Ag-specific helper CD4 T cells are crucial in
vivo for the maintenance and for preventing impairment of
optimal CD8 T cell function (29). Of interest, this CD4-
indepndent proliferation capacity was present in the effector,
i.e,, CDASRA~CCR7" cell population. The importance in vivo
of this CD4-independent proliferation capacity of effector CD8
T cells during the expansion phase of the immune response
remains to be determined.

These results represent a further step in the understanding of
the functional characterization of virus-specific CDS T cell
responses and in the understanding of the impairment of CD8 T
cell functions in progressive HIV-1 infection.
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