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Cover image: Laser scanning confocalimage ofan ocular druse, the hallmark lesion associated
with age-related macular degeneration. The complementsystem protein Sb-9 is shown in orange
andred, and factor H, which inhibits the complement pathway,is shown in green. Theretinal
pigment epithelium is shown in purple. Genetic variation in the factor H gene is a major
contributor to age-related macular degeneration. See the article by Hagemanet al. on pages
7227-7232. Imagecourtesy of Patrick Johnson (Centerfor the Study of Macular Degeneration,
University of California, Santa Barbara).
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HIV-1-specific IFN-y/IL-2-secreting CD8 T cells
support CD4-independentproliferation
of HIV-1-specific CD8 T cells
simone C. Zimmerli, Alexandre Harari, Cristina Cellerai, Florence Vallelian, Pierre-Alexandre Bart,
and Giuseppe Pantaleo*

Departmentof Medicine, Division of ImmunologyandAllergy, Laboratory of AIDS Immunopathogenesis, Centre HospitalUniversity of Lausanne, 1011 Lausanne, Switzerland
ler Universitaire Vaudois,

Communicated by AnthonyS. Fauci, National Institutes of Health, Bethesda, MD, March 23, 2005 (received for review December 18, 2004)
Functional and phenotypic characterization of virus-specific CD8 T
cells against cytomegalovirus, Epstein-Barr virus, influenza(flu),
and HIV-1 were performedonthebasisof the ability of CD8Tcells
to secrete IFN-y andIL-2, to proliferate, and to express CD45RA and
CCR7. Two functional distinct populations of CD8 T cells were
identified: (i) dual IFN-y/IL-2-secreting cells and (ii) single IFN-y-
secreting cells. Virus-specific IFN-y/IL-2-secreting CD8 T cells were
CD45RA~CCR7-, whereas single IFN-y CD8 T cells were either
CD45RA-CCR7— or CD45RA+CCR7-. The proportion of virus-
specific IFN-y/IL-2-secreting CD8 T cells correlated with that of
proliferating CD8T cells, and the loss of HIV-1-specific IL-2-secret-
ing CD8T cells was associated with that of HIV-1-specific CD8Tcell
proliferation. Substantial proliferation of virus-specific CD8Tcells
(including HIV-1-specific CD8 T cells) was also observed in CD4 T
cell-depleted populations or after stimulation with MHC class |
tetramer-peptide complexes. IL-2 was the factor responsible for
the CD4-independent CD8T cell proliferation. These results indi-
cate that IFN-y/IL-2-secreting CD8 T cells may promote antigen-
specific proliferation of CD8 T cells even in the absence of helper
CD4T cells.

C D8 T cells playacritical role in the controlofviral infections(reviewedin ref. 1). Several studies have shown a wide heter-
ogeneity ofmemory CD8 and CD4Tcells with multiple phenotypes
and functions in response to virus infections (2-7). Functionally
distinct populations of CD8T cells can be defined by the expression
of CD45RA and CCR7(8) andare able to proliferate and/or to
secrete cytokines such as IL-2, IFN-y, and TNF-a after antigen
(Ag)-specific stimulation (9-11). The determination of quantitative
and qualitative changes of virus-specific CD8 T cells in rapidly
controlled acute, more slowly controlled or uncontrolled chronic
infections showed that high load of lymphocytic choriomeningitis
virus resulted in the progressive diminution ofthe ability of CD8 T
cells to produce IL-2, TNF-a, and IFN-y (9). Ofinterest, the
capacityto secrete cytokines could berestoredif the viral load was
brought under control(9).

IL-2 production from virus-specific CD8 T cells has been the
object of few studies in humans. Recentstudies have shownthat a
variable percentage of cytomegalovirus (CMV)- and Epstein-Barr
virus (EBV)-specific CD8T cells were able to secrete IL-2 (10, 11),
whereas IL-2 wasnot produced by melanoma-1-specific CD8T cells
obtained from patients with stage 1V melanoma(10). With regard
to HIV-1 infection, no studies have investigated the ability of
HIV-1-specific CD8 T cells to secrete IL-2. However, it has been
shown that HIV-1-specific CD8 T cells of HIV-1-infected subjects
with nonprogressive disease, i.e., long-term nonprogressors
(LTNPs), had greater proliferation capacity as compared with
HIV-1-specific CD8 T cells from progressors (12), and this finding
wasassociatedwith a better ability to control virus replication (12).
A recentstudy has shownthat the loss of HIV-1-specific CD8 T cell
proliferation wasassociated with the loss of HIV-1-specific helper
CD4Tcells and has proposeda critical role of HIV-1-specific

www.pnas.org/cgi/doi/10.1073/pnas.0502393102

helper CD4T cells in sustaining Ag-specific CD8 T cell prolifera-
tion (13). ed

Recentstudies (14-16) investigating antiviral memory CD4 T
cell responses have shownthatthe combinedassessment of IL-2 and
IFN-y is instrumental to distinguish functionally distinct popula-
tions of memory CD4Tcells and patternsofantiviral immune
responsesassociated with different conditionsofvirus persistenceand control.

In the presentstudy, we have performed functional and pheno-
typic characterization of antiviral CD8 T cell responses specific for
HIV-1, CMV,EBVandinfluenza(flu) on thebasis of their ability
to proliferate, to secrete IL-2 and IFN-y, and to express CD45RA
and CCR7. Ourresults indicate:(i) a wide heterogeneity ofantiviral
CD8T cell immuneresponses underdifferent conditions ofvirus
persistence; (i) a combined loss of virus-specific IFN-y/IL-2-
secreting and -proliferating CD8 T cells in progressive HIV-1
infection; (iii) a typical phenotype of effector cells, i.e.,
CD45RA-CCR7-,for the IFN-y/IL-2-secreting CD8T cells; (iv)
a correlation between the proportion of virus-specific IL-2-
secreting and -proliferating CD8 T cells; and (v) the occurrence of
Ag-specific CD8 T cell proliferation also in experimental condi-
tions, excluding the involvementof Ag-specific helper CD4Tcells.
Materials and Methods

Study Groups. The 21 subjects with progressive chronic HIV-1
infection enrolledin this study were naive to antiviral therapy, with
CD4Tcell counts of >250 cells per microliter (mean + SE: 810 +
39) and plasma viremia counts of =5,000 HIV-1 RNAcopies per
ml (mean + SE: 41,854 + 12,339). Five HIV-1-infected patients
with nonprogressive disease,i.c., LTNPs,as defined by documented
HIV-1 infection for >14 years, stable CD4 T cell counts of >500
cells per microliter (mean + SE: 912 + 125) and plasma viremia of
<1,000 HIV-1 RNAcopies per ml (mean + SE: 97 + 38) werealso
included. Patient 1010 has a documented HIV-1 infection since
March 1999. He wastreated with antiviral therapy at the time of
primary infection and remained on antiviral therapy for 18 months.
Heinterrupted therapy spontaneously in December 2000. During
the last 4 years, he constantly had levels of viremia of <50 HIV-1
RNAcopies per ml and CD4Tcell countin the range of1,400 cells
per microliter. In addition, blood from 28 HIV-negative subjects
was obtained from the local blood bank or from laboratory co-
workers. The studies were approved by the Institutional Review
Board of the Centre Hospitalier Universitaire Vaudois.

Freely available online through the PNASopen accessoption.
Abbreviations: EBV, Epstein-Barrvirus; CMV, cytomegalovirus; Ag, antigen; LTNP, long-
term nonprogressor; CFSE, carboxyfluorescein succinimidyl ester; SEB, staphylococcal en-terotoxin B.
*To whom correspondence should be addressedat: Laboratory of AIDS Immunopathogen-
esis, Division of ImmunologyandAllergy, Centre Hospitalier Universitaire Vaudois, Rue
Bugnon, 1011 Lausanne, Switzerland. E-mail: giuseppe.pantaleo@hospvd.ch.
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Synthetic Peptides and Tetramers. The followingindividual peptides
were used: A2-restricted CMV pp65 (aminoacids 495-503: NLVP-
MVATV)peptide (17), B7-restricted CMV pp65 (amino acids
415-429: TPRVTGGGAM)peptide (17), A2-restricted EBV
BMLF1 (amino acids 259-267: GLCTLVAML) peptide (18),
B8-restricted EBV EBNA3A (amino acids 325-333: FLR-
GRAYGL)peptide(18), B8-restricted EBV BZLF1 (amino acids
190-197: RAFKQLL) peptide (18), A2-restricted flu matrix 1
(amino acids 58-66: GILGFVFTL) peptide (19), A2-restricted
HIV-1 pol (amino acids 476-484: ILKEPVHGV) (20), A2-
restricted HIV-1 gag (amino acids 77-85: SLYNTVATL) (21),
B8-restricted HIV-1 gag (amino acids 259-267: GETYKRWII),
(22) or B8-restricted HIV-1 nef (amino acids 89-97: FLKEKGGL)
(23) peptides. Cells were stimulated with HIV-1 (strain [IB)
peptide pools. Each pool consisted of 50-62 15-mers peptides
overlapping by 11 aminoacids (Synpep, Dublin, CA). Pools 1-6
spanned the gag,pol, and nef sequence;pool 1: amino acids 1-230;
pool2: aminoacids 220-432; pool 3: aminoacids 421-655; pool4:
aminoacids 645-879; pool 5: amino acids 871-1103; and pool 6:
aminoacids 1043-1326. CMV-, EBV-,or flu-derived peptides were
usedeitherall in a pool or groupedas virus-specific pools (24).

Fortetramerstimulations, A2- and B7-restricted class I peptide
tetramers were producedas described (25, 26).

Detection of IFN-y andIL-2 Secretion. Cell stimulations were per-
formedas described(14). Forstimulation of CD8T cells, individual
peptides (5 g/ml) or peptide pools (1 g/ml for each peptide)
wereused. Cells were then stained with CD8-PerCP-Cy5.5, CD69-
FITC, IFN-y-APC and IL-2-PE (Becton Dickinson, Franklin, NJ).
Forphenotypic analysis, the following Abs were used in combina-
tion: Rat anti-human CCR7 (Becton Dickinson) followed by goat
anti-rat IgG(H+L)-APC (Caltag, Burlingame, CA), CD8-Pacific
blue (DAKO,Glostrup, Denmark), CD45RA-Biotin followed by
anti-Streptavidin-PercP, anti-CD69-APC-Cy7,anti-IL-2-PE, and
anti-IFN-y-FITC (Becton Dickinson). Data were acquired on a
FACScalibur or an LSR II and analyzed by using CELLQUEST and
DIVAsoftware (Becton Dickinson). The numberofnongated events
ranged between 10° and 10° events.

Ex Vivo Proliferation Assay. After an overnight rest, cells were
washed twice, resuspended at 1 X 106 ml in PBS, and incubated for
7 min at 37°C with 0.25 4M carboxyfluorescein succinimidyl ester
(CFSE; Molecular Probes). The reaction was quenched with 1
volumeof FCS, and cells were washed andcultured in the presence
of anti-CD28 Ab(0.5 g/ml) (Becton Dickinson).Cells wereeither
stimulated with HIV-1 peptide pools (1 g/ml of each peptide),
individual peptides (5 ug/ml), or tetramers (0.31 wg/ml). Staphy-
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lococcal enterotoxin B (SEB)stimulation (200 ng/ml) served as
positive control. Where indicated, 10% exogenous IL-2 (Roche,
Basel) was added 48h after peptide stimulation. For neutralization
experiments, anti-IL-2-neutralizing Ab or isotype control Ab (Bec-
ton Dickinson) were added at 10 pg/ml. At day 5, cells were
harvested and stained with CD4-PE-CyS (Becton Dickinson) and
CD8-APC (Becton Dickinson). Cells were fixed with CellFix
(Becton Dickinson) and acquired (1-8 X 10° nongated events) on
a FACScalibur (Becton Dickinson).

CD4 T Cell Depletion. CFSE-labeled cells were stained with CD4-
APCandsorted by using a FACS Vantage (Becton Dickinson). The
purity of the CD4-depleted cell populations was 99%.

Statistical Analysis. Statistical significance (P values) of the results
was calculated by using a two-tailed Studentf test. A two-tailed P
value of <0.05 was considered significant. The correlations among
variables were tested by simple regression analysis.
Results

Distinct Cytokine Secreting Populations of Virus-Specific CD8 T Cells.
Weuseddifferent models of virus-specific CD8T cell responses,
including HIV-1-, CMV-, EBV-, and flu-specific CD8 T cell
responses. Based on the observation that functionally distinct
Ag-specific CD4 T cell populations are defined by the secretion of
IL-2 and IFN-¥ (14-16), we performedfunctional characterization
of virus-specific CD8 T cell responses by simultaneous assessment
of IFN-y and IL-2 secretion after Ag-specific stimulation. Repre-
sentative examples obtained from the analysis of 21 HIV-1-infected
progressors and 28 HIV-negative blood donors in whom CMV-,
EBV-,or flu-specific CD8 responses were detected are shown in
Fig. 14. The dual IFN-y/IL-2-secreting T cells were absent in
HIV-1-specific CD8T cells, whereas they were found within CMV-,
EBV-, and flu-specific CD8 T cells (Fig. 1A). These observations
were confirmedby the analysis of a larger numberof subjects. A
significant difference was found betweenthe percentage of HIV-
1-specific IFN-y/IL-2-secretingcells in progressive HIV-1 infection
and that found in the virus-specific IFN-y/IL-2-secreting CD8 T -
cells (P < 0.05) of the other virus infections (Fig. 1B). Wealso
evaluated the proportion of IL-2-secreting cells within IFN-y-
secreting CD8T cells. Cumulative data of this analysis are shown
in Fig. 1C. The proportion of CMV-specific (12.7 + 1.8%, n = 11)
and EBV-specific (19.2 + 3.2%, n = 10) IL-2-secreting CD8T cells
wassignificantly higher (P < 0.05) compared with that of HIV-1-
specific IL-2-secreting CD8T cells (2.3 + 0.6%, n = 21) (Fig. 1C).
Theproportion (25.6 + 3.6%, n = 7) of flu-specific IL-2-secreting
CD8T cells wassignificantly higher (P < 0.05) compared with that
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Fig. 1. Analysis of different virus-specific IFN-y- and IL-2-secreting CD8 T cells after stimulation withsingle peptides. (A) Distribution of IFN-y- andIL-2-secreting
virus-specific CD8Tcells. Cells were stimulated withsingle peptides. One representative profile is shownfor HIV-1-, CMV-, EBV-, or flu-specific CD8T cell responses.
Thecluster of events shownin red correspondsto the responder CD8 T cells, i.¢., secreting IFN-y or IL-2, and the blue clusters correspond to the nonresponder
cells. (B) Cumulative data on the percentage (mean = SE)of IFN-y/IL-2-secretingcells within the differentvirus-specific CD8Tcell responses. (C) Cumulative data
on the proportion (mean + SE) ofIL-2-secreting cells within IFN-y-secreting CD8Tcells. +, P< 0.05.
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of HIV-1- and CMV-specific but not with that of EBV-specific
[L-2-secreting CD8 T cells (Fig. 1C). Finally, the proportion of
EBV-specific IL-2-secretingcells was also significantly higher com-
pared with that of CMV-specific IL-2-secreting CD8Tcells (P <
0.05) (Fig. 1C). CMV-, EBV-, and flu-specific CD8T cell responses
were also studied in HIV-1-infected individuals either by using
peptides specific to CMV and EBV (n = 7) and flu (7 = 6) or a pool
of 21 CMV-, EBV-, andflu-derived peptides in 30 HIV-1-infected
subjects. The proportion of CMV-, EBV-, or flu-specific IL-2-
secreting CD8 T cells in HIV-1-infected subjects was notsignifi-
cantly different from that observed in HIV-negative subjects
(P > 0.05).To exclude the possibility that the lack of detection of HIV-1-
specific IFN-y/IL-2-secreting CD8 T cells was specific of the
response to certain peptides, we performedstimulation with pep-
tide pools spanning gag, pol, and nef proteins of HIV-1. A
representative flow cytometry profile ofone (of 21) HIV-1-infected
subjects with progressive disease (progressors) is shownin Fig. 24.
Despite the presence of HIV-1-specific TIFN-y-secreting CD8 T
cells after stimulation with different HIV-1 peptide pools, IL-2-
secreting CD8 T cells were not detected (Fig. 24).

Previous studies (12) have shown that HIV-1-specific CD8T cells
of LTNPs, but not of progressors, proliferated in response to
Ag-specific stimulation (12). The evaluation of the presence of
HIV-1-specific IFN-y/IL-2-secreting CD8 T cells in three offive
representative LTNPs showedvariableintensities of the response to
the different peptide pools (Fig. 2B). HIV-1-specific IFN-y-
secreting CD8 T cells were detected consistently after stimulation
with different peptide pools (Fig. 2B), and a substantial percentage
of dual IFN-y/IL-2-secreting cells was also foundafter stimulation
with peptide pools 1 and 2 (Fig. 2B). The percentage(0.13 + 0.04,
n = 5) of IFN-y/IL-2-secreting cells in LTNPswassignificantly
different (P = 0.0003) compared with progressors (0.01 + 0.002,
n= 21).

Phenotypic Analysis of Cytokine-Secreting Virus-Specific CD8 T Cells.
Previous studies in humans and mice have shown that IL-2-
secreting CD8 T cells were contained within the CCR7* central
memory CD8Tcell population, whereas the IFN-y-secreting CD8
Tcells were contained within the CCR7~ effector CD8Tcells(8,

27). Blood mononuclearcells of LTNPs and HIV-negative donors
with known HIV-1, flu, or CMV CD8Tcell responses were
stimulated with the appropriate virus-derived peptides, and cells
were stained with CD8, CD45RA, CCR7,IL-2, IFN-y, and CD69
Abs. Theresults obtained indicated that the virus-specific IFN--y/
IL-2 CD8 T cells were contained within the CD45RA~CCR7—
effector cell population and the IFN-y-secreting CD8T cells within
the CD45RA-CCR7~ and CD45RA*CCR7~ effector cell popu-
lations (Fig. 3). These results were representative of the analysis of
two LTNPs and seven HIV-negative subjects.

Proliferation Capacity of Virus-Specific CD8 T Cells. Recent studies
(12, 13) have shown theloss of proliferation capacity of HIV-1-
specific CD8 T cells of subjects with progressive disease, whereas
HIV-1-specific CD8T cell proliferation was retained in CD8T cells
of LTNPs. Basedon these observations, it has been proposed that
Ag-specific CD8 T cell proliferation represents a characteristic of
effective and protective immuneresponse(12). Furthermore, it has
been proposed that the loss of HIV-1-specific CD8 T cell prolif-
eration depended onthe loss of HIV-1-specific CD4 helperT cells
(13). In the present study, we decided to investigate (i) the corre-
lation between the ability of virus-specific CD8 T cells to secrete
IL-2 and their proliferation capacity and(ii) the potential mecha-
nism responsible for Ag-specific CD8T cellproliferation. Repre-
sentative examples of the proliferation capacity of CMV-, EBV-,
flu-, and HIV-1-specific CD8T cells after virus-specific stimulation
are shown in Fig. 4.4—C.Cells were labeled with CFSE,stimulated
for 5 days withvirus-derived peptides, andvirus-specific CD8 T cell

Zimmerli et al.
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Fig. 2. Analysis of HIV-1-specific IFN-y- and IL-2-secreting CD8T cells in
progressors and LTNPsafterstimulation with peptide pools. Flow cytometry
profiles of IFN-y- and IL-2-secreting HIV-1-specific CD8T cells of progressor
2113 (A) and three different LTNPs(B) after stimulation of blood mononuclear
cells with different peptide pools spanning gag,pol, and nef proteins.

proliferation was measured bythe loss of CFSEin the dividing CD8
T cells. A substantial proportion of CD8 T cells of subject 248
proliferated after stimulation with CMV-and Flu-derived peptides
(Fig. 4A). Similarly, CD8 T cells of subject 359 proliferated after
stimulation with two different EBV-derived peptides (Fig. 44). We
then determined the proliferation of HIV-1-specific CD8 T cells
after stimulation with HIV-1-derived peptide pools in progressors
(n = 9) and LTNPs(n = 5). HIV-1-specific CD8T cell proliferation
was barely detected or was absent in these two representative
progressors [two ofninepatients each tested with oneto three pools
(16 responsesweretestedin total)] (Fig. 4B). However, CD8T cells
of progressors wereable to proliferate after SEB stimulation (Fig.
4B), thus indicating a selective loss of HIV-1-specific proliferation.
Consistent with results previously shown by Migueles et al. (12),
vigorous HIV-1-specific CD8Tcell proliferation was observed in
two of five representative LTNPs (Fig. 4C). The mean + SE
percentage of HIV-1-specific CD8 T cell proliferation in progres-
sors was 0.45 + 0.16 compared with 6.88 + 1.69 in LTNPs (P <
0.00001).

Wethen determined the correlation between the proportion of
Ag-specific proliferating CD8 T cells and the proportion of IL-2-
secreting CD8T cells within IFN-y-secretingcells. This analysis was
performed by pooling together 32 individual determinations from
21 subjects of Ag-specific CD8 T cell-proliferating and IL-2-
secreting CD8Tcells. We foundasignificant correlation between
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Fig. 3. IFN-y- and IL-2-secreting CD8Tcells in different populations defined by CD45RA and CCR7. Shownis the distribution of IFN-y- and IL-2-secreting CD8&
T cells in different populations defined by CD45RA and CCR7.(A) Cells of LTNP 2073 were stimulated with different peptide pools spanninggag,pol, and nef
proteins. (B) Cells of subjects 205 and 35 were stimulated with CMVorflu peptides, respectively.

the proportion of Ag-specific IL-2-secreting and-proliferating CD8
T cells (Fig. 4D). The correlation was even stronger when only
HIV-1-specific CD8T cell responses were analyzed (R = 0.53, P<
0.01, n = 24).

Having demonstrated a correlation betweentheability to secrete
IL-2 and the proliferation capacity of CD8 T cells, we further
investigated the mechanism responsible for Ag-specific CD8 T cell
proliferation. Firstly, we assessed Ag-specific CD8T cell prolifer-
ation under experimental conditions excluding the involvementof
CD4T cells. For this purpose, Ag-specific CD8Tcell proliferation
was determined by using either MHCclass I tetramer—peptide
complexes as stimuli or CD4 T cell-depleted populations in the
absence of exogenous IL-2. HLA-A2 tetramer complexed with flu-

 

 

 
 
   
  
 

 

 

 

 

 

 

and CMV-derived peptides induced vigorous Ag-specific prolifer-
ation of CD8T cells of subjects 172 and 180 (Fig. 5A).It is important
to underscore that no CD4T cell proliferation was observed (Fig.
5A), thus indicating that Ag-specific CD8Tcell proliferation was
not associated with the stimulation of Ag-specific helper CD4 T
cells, Consistent with the observations previously reported (12, 13),
HIV-1-specific CD8 T cell proliferation was barely detected in
progressors after stimulation with the HLA-A2 tetramer com-
plexed with an HIV-1 pol ILIKEPVHGV-derived peptide (20) (Fig.
5B). Ofinterest, in agreement with the work of Lichterfeld et al.
(13), HIV-1-specific CD8T cell proliferation was recoveredin the
presence of exogenous IL-2 (Fig. 5B). No proliferation was ob-
served in CD4Tcells after MHCclassI tetramer—peptide complex
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Fig. 4. Virus-specific CD8 T cell proliferationafterstimulation with single peptides or peptide pools. (A) CFSE-labeledcells of HIV-negative donors 248 and 359were stimulated with CMV-,flu-, or EBV-derived peptides.Profiles of proliferating cells,i.e., CFSE low cells, are gated on CD8 T cells. (8) HIV-1-specific CD8 T cell
proliferation in HIV-1 progressorsafter stimulation with different HIV-1 peptide poolsorSEB. (C) HIV-1-specific CD8 T cell proliferation in LTNPsafter stimulation
with different HIV-1 peptide pools. (D) Correlation betweenthe propartion ofIL-2-secreting and-proliferating virus-specific CD8 T cells.
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stimulation (Fig. 5B). To further confirm the hypothesis that
HIV-1-specific CD8Tcell proliferation was independent of CD4
helper T cells, we compared the HIV-1-specific CD8T cell prolif-
eration in responseto the p24-derived GPGHKARVL peptide that
has been previously characterized as a CD8 epitope (17)restricted
by HLA-B7. Unfractionated blood mononuclearcells or CD4 T
cell-depleted populations of patient 1010 with chronic HIV-1
infection were stimulated with the peptide GPGHKARVL. As
reported in Materials and Methods, patient 1010 had constantly
controlled viremia since 4 years after interruption of antiviral
therapy. A large percentage (59%) of HIV-1-specific CD8Tcells
proliferated after stimulation of unfractionated cell populations
with the p24 peptide (Fig. 64). Substantial HIV-1-specific CD8 T
cell proliferation (32.7%) occurred also in the CD4Tcell-depleted
populations although it was reduced (45% reduction) compared
with the cell cultures containing CD4 T cells (Fig. 6A). It is
important to underscore the fact that the CD8Tcell proliferation
in the CD4-depleted cell populations was not due to contaminating
CD4T cells because CD4T cells were almost absent (0.676)in the
CD4-depleted cell populations at day 5 (Fig. 6.4). The experiments
shown in Fig. 6A were performedin the absence ofexogenous IL-2.
Secondly, Ag-specific CD8T cell proliferation was assessed in the
presence of anti-IL-2 Ab. The substantial proliferation of CD8 T

A
Patient 1010 Unfractionated cells: gated on CD8* T cells CD4-depleted cells: gated on CD8* T cells 

Gated ontotal
mononuclearcells

Gated ontotal
mononuclearcells Unstimulated

 with an A2-pol tetramerand cultured in the absence or pres-
ence of 10% of exogenousIL-2.

cells from subject 180 observed after stimulation with the CMV
tetramer NLVPMVATV wascompletely abolished (95% inhibition
of proliferation) in the presence of anti-IL-2 Ab (Fig. 6B). There-
fore, virus-specific CD8 T cell proliferation, including HIV-1-
specific proliferation, depends on IL-2 andon the presence ofthe
IFN-y/IL-2 CD8T cells, and may occurin the absence of helper
CD4 T cells. The finding that CD8 T cell proliferation was
independent of CD4T cell help and dependenton the presence of
IFN-y/IL-2-secreting CD8 T cells was also confirmed for CMV-
and EBV-specific CD8 T cell-mediated proliferation in three
HIV-negative subjects (data not shown).
Discussion

In the present study, we have investigated the function and phe-
notype of memory CD8T cells in different modelsofvirus-specific
T cell responses, including HIV-1, CMV, EBV, and flu. HIV-1-
specific CD8 T cell responses were studied in subjects with pro-
gressive and nonprogressive infection who were naive to therapy.
The othervirus-specific CD8 T cell responses were analyzed in
HIV-negative donors. Functional characterization was performed
by the measurementoftheability of CD8T cells to proliferate and
to secrete IFN-y and IL-2 after Ag-specific stimulation.

Subject 180 Gated on CD8*T cells
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Fig, 6. Virus-specific CD8Tcell proliferation in CD4-depletedcells or after neutralization of IL-2. (A) CD8T cell proliferation wasevaluated in CD4T cell-depleted
Populationsstimulated with HIV-1-derived peptide. The purity of the sorted CD4~ T cell populations was 99%. (B) Inhibition of virus-specific CD8T cell proliferation
With anti-IL-2 Ab.Cells of subject 180 were stimulated with an A2-restricted CMV tetramerandcultured in the presence of anti-IL-2 or isotype control Abs.
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Most studies performed on CD8T cells in different models of
antiviral responses in both mice and humans were predominantlyfocused on the characterization of effector functions such as
perforin and granzymeexpressionorsecretion ofIFN-y and TNF-a
(9-11). Recently,a series of studies have shownthe importance of
investigating other functionssuchastheability to proliferate and to
secrete IL-2 (14-16) that have generally beenthe object of extensive
investigation in CD4 T cells. With regard to CD8 T cells, it has been
shown that the preservation of the proliferation capacity and the
ability to secrete IL-2 were generally associated with an apparently
effective immuneresponse becausevirusreplication was controlled
in both mouse and human models ofvirus infection (12, 28). In
addition, a recent study has shown a paralleled loss of HIV-1-
specific helper CD4 T cells and HIV-1-specific CD8Tcell prolif-
eration, and concluded that HIV-1-specific helper CD4Tcells are
critical for the maintenance of HIV-1-specific proliferating CD8 T
cells (13).

This is the first study, to our knowledge, investigating IL-2
secretion in HIV-1-specific CD8T cells.In addition,it compares
the function of HIV-1-specific CD8 T cells with that of CMV-,
EBV, and flu-specific CD8 T cells that are able to keep either
on check (CMV and EBV)or clear(flu) the virus. The rationale
for studying antiviral CD8 T cell responses in different models
of virus persistence resides on recent studies (28) performedin
mice, demonstrating that the function of CD8 T cells was
modulated by different conditions of Aglevels and/or persis-
tence. HIV-1 infection in subjects with progressive disease
corresponded to the model of immunefailure with Agpersis-
tence and high Aglevels. CMV, EBV, and HIV-1 infection in
subjects with nonprogressive disease correspondedto the model
of immune control with protracted virus persistence and low Ag
levels and flu to the model of Ag clearance. Our results
demonstrated the presence of an Ag-specific IFN-y/IL-2-
secreting CD8 T cell population in the models ofvirus infections
associated with resolved virusinfection or with virus control,ie.,
CMV,EBV,and nonprogressive HIV-1 infection or virus clear-
ance, i.e., flu. This cell population was absent in progressive
HIV-1 infection. Therefore, we provided evidencefor(i) a loss
of IFN-y/IL-2-secreting CD8 T cells in progressive HIV-1
infection and(ii) a skewed representationoffunctionallydistinct
memory HIV-1-specific CD8 T cells in progressive HIV-1
infection. The present results showed that the same pathogen,
ive., HIV-1, can be associated with substantially different CD8 T
cell responsesin progressive and nonprogressive infection where
the major difference between these two conditions was indeed
represented by Aglevels. Therefore, along with the observation
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from the lymphocytic choriomeningitis virus model (28), our
results rather supported the hypothesis that also in humansthe
functional heterogeneity of virus-specific CD8 T cell responses
was influenced by Ag persistence and Aglevels. ;

In agreementwith previousstudies (12, 13), HIV-1-specific
CD8T cell proliferation waslost in progressive HIV-1 infection.
Ofinterest, we have provided evidence for the combined loss of
HIV-1-specific IFN-y/IL-2-secreting and -proliferating CD8 T
cells in progressive HIV-1 infection. This association raised the
issue on the role of IFN-y/IL-2-secreting CD8 ae cells in
Ag-specific CD8Tcell proliferation. To address this issue, we
evaluated the virus-specific CD8 T cell proliferation under
experimental conditions excluding any involvement of helper
CD4T cells. These latter have been proposed to be critical for
sustaining HIV-1-specific CD8Tcell proliferation (13). Virus-
specific CD8 T cell proliferation, including HIV-1-specific,occurred in CD4T cell-depleted populationsorafter stimulation
with MHCclass I tetramer-peptide complexes. Under these
experimentalconditions, virus-specific CD8 T cell proliferationwasfound in the HIV-1-, CMV-, EBV-andflu-specific immune
responses,and a significant correlation between the proportion
of IL-2-secreting and -proliferating CD8 T cells was observed.These results demonstrated that the persistence of virus-
specific IFN-y/IL-2-secreting CD8 T cells was associated with
the persistence of CD8 T cell proliferation. Virus-specific CD8T cell proliferation was supported by IL-2 because it was
completely abolished in the presence of the anti-IL-2 Ab.
Therefore, taken together, they indicate that IFN-y/IL-2-
secreting CD8T cells are able to promote CD8T cell prolifer-
ation through the secretion of IL-2 even in the absence Ag-
specific helper CD4 T cells. Despite the demonstrationin vitro
of a CD4-independent CD8T cell proliferation,it is important
to underscore that Ag-specific helper CD4 T cells are crucialin
vivo for the maintenance and for preventing impairment of
optimal CD8 T cell function (29). Of interest, this CD4-
indepndentproliferation capacity was presentin the effector,
ie, CD45RA~CCR7~ cell population. The importancein vivo
of this CD4-independentproliferation capacity of effector CD8
T cells during the expansion phase of the immune responseremains to be determined.

These results represent a further step in the understanding of
the functional characterization of virus-specific CD8 T cell
responsesandin the understandingofthe impairment of CD8 T
cell functions in progressive HIV-1 infection.
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