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Advanced molecular research techniques have transformed hematology in recent years. With im-
proved understanding of hematologic diseases, we now have the opportunity to research and evaluate
new biological therapies, drugs and drug combinations, treatment schedules and novel approaches,
including stem cell transplantation. Further advances in our knowledge regardlng the formation and

function of blood cells and blood-forming
tissues should ensue, and it will be a ma-
jor challenge for hematologists to adopt
these new paradigms and develop integrat-
ed strategies to define the best possible
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Adoptive T-cell therapy for
B-cell malignancies

Expert Rev. Hematol. 2(5), 517-532 (2009)

The success of allogeneic hematopoietic cell transplantation (HCT) for B-cell malignancies is
evidence that these tumors can be eliminated by T lymphocytes. This has encouraged the
development of specific adoptive T-cell therapy, both for augmenting the anti-tumor effect of
HCT and for patients not undergoing HCT. T cells that are capable of recognizing antigens
expressed on malignant B cells may be recruited from the endogenous repertoire or engineered
to express tumor-targeting receptors. Critical insights into the qualities of T cells that enable
their persistence and function in vivo have been derived, and obstacles to effective T-cell-
mediated tumor eradication are being elucidated. These advances provide the tools to translate
adoptive T-cell transfer into reliable clinical therapies.

Kevworns: adoptive T-cell therapy © allogeneic hematopoietic cell transplantation ® central memery T cell
« chimeric antigen receptor * immunoglobulin idiotype ® graft-versus-host disease ® graft-versus-tumor effect
« minor histocompatibility antigen ¢ T-cell receptor # tumor antigen

The potential to use immune-based therapies for
human malignancies is attractive because of the
specificity of antibody and T-cell recognition.
The most profound advances have been made
in the development of antibodies as therapeutics,
and several monoclonal antibodies that recog-
nize molecules on the surface of cancer cells are
being used in human cancer therapy. Antibodies
that target CD20 and CD52 are now routinely
employed in standard therapeutic regimens for
subsets of patients with B-cell malignancies [1-3].
The development of effective T-cell therapy for
human malignancy either through vaccination
or by adoptive T-cell transfer, which refers to the
isolation, expansion and reinfusion of tumor-
reactive T cells, has been substantially more chal-
lenging. The difficulties in developing T-cell-
based immunotherapies are due, in part, to the
inability of current vaccines to reproducibly elicit
effective tumor-reactive T-cell responses, and the
complexity of deriving and expanding tumor-
reactive T cells ex vivo that have the capacity to
persist and function following adoptive transfer.
Despite these obstacles, the exquisite ability of
T cells to distinguish diseased from normal cells
has encouraged the continued investigation of
strategies to employ T cells as therapeutic agents.

There is evidence from allogeneic hematopoi-
etic cell transplantation (HCT) that advanced
B-cell malignancies are susceptible to a T-cell-
mediated graft-versus-tumor (GVT) effect,

although GVT activity cannot yet be reproduc-
ibly separated from graft-versus-host disease
(GVHD) (4-7). The demonstration that B-cell
tumors are recognized by T cells has provided
optimism that donor T cells specific for tumor-
associated antigens might be isolated, expanded
and administered to the patient to augment the
GVT effect; or that autologous T cells might
be elicited or engineered to recognize tumor-
associated antigens, without the need for allo-
geneic HCT. Engineering of tumor reactive
T cells can be accomplished by gene transfer
techniques thac introduce a T-cell recepror
(TCR) with specificity for peptide fragments of
intracellular proteins displayed on class I and
class Il MHC molecules expressed by the tumor,
or a chimeric antigen receptor (CAR) that con-
sists of a single-chain antibody fragment (scFv)
specific for a B-cell surface molecule linked to
the {-chain of the CD3/TCR complex (89]. This
review will discuss the rationale and theoretical
framework for developing adoptive T-cell ther-
apy for B-cell malignancies, the obstacles that
have been encountered, and the directions that
are currently being taken for clinical translation.

GVT effect of allogeneic HCT in

B-cell malignancies

Allogeneic HCT provides a potentially curative
therapy for a variety of hematologic malignan-
cies, including many B-cell tumors. Originally,
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allogeneic HCT was developed as a method of rescuing patients
from the lethal toxicity of high doses of myeloablative chemoradio-
therapy administered to achieve greater tumor-cell killing than
could be achieved with conventional doses of chemotherapy (10),
and was used as a treatment of last resort for patients with refrac-
tory leukemia, including B-lineage acute lymphoblastic leukemia
(B-ALL). Consistent with the prediction from murine models,
that immune recognition of tumor cells could contribute to tumor
eradication, human allogeneic HCT for B-ALL was accompanied
by a T-cell mediated GVT effect (11-13). A GVT effect of allogeneic
HCT has subsequently been confirmed in other B-cell malignan-
cies, including chronic lymphocytic leukemia (B-CLL), multiple
myeloma (MM) and non-Hodgkin lymphoma (NHL) [14-18]. The
myeloablative chemotherapy regimen contributes substantially to
tumor control but it is now realized that the curative potential
of this procedure is a result of the immunologic elimination of
malignant cells. This is evident from the strikingly lower relapse
rate and increased leukemia-free survival rate in patients receiving
an allogeneic HCT compared with syngeneic HCT 12,131, There
are several factors that limit the success of allogeneic HCT and
efforts to improve outcome are focused on reducing toxicity due to
conditioning and GVHD, and augmenting the GVT effect (Tane 1).

Donor lymphocyte infusions for B-cell malignancies

A critical role for donor T cells in the GVT effect was dem-
onstrated by studies by Kolb ez al. who investigated the use of
donor lymphocyte infusions (DLIs) in patients with leukemia
relapse after allogeneic HCT [15]. Durable complete remissions
were achieved in 10-40% of patients with B-ALL, B-CLL, MM
and lymphomas [20-22]. This compares with response rates of up to
70% in patients with relapsed chronic myeloid leukemia (CML)
and it has been hypothesized that the superior ability of CML cells
to differentiate into antigen presenting dendritic cells (DCs) and
prime anti-tumor T-cell responses may be responsible for these
differences in outcome [19,23]. To improve the outcome of patients
with B-cell malignancies receiving DLIs, strategies such as the
administration of pre-DLI chemotherapy or the use of ex vivo-
activated donor lymphocytes are being explored. The induction

Table 1. Factors that limit the success of allogeneic
hematopoietic cell transplantation.

Toxicity due to the Employ reduced-intensity
conditioning conditioning regimens
regimen

Graft-versus-
host disease

improve drug regimens for
immunosuppression

Targeted suppression of alloreactive T-cell
activation or function

Remove alloreactive T cells from the donor
stem cell graft

Tumor relapse Adoptive transfer of tumor-reactive T cells
Vaccination to elicit tumor-reactive T-cell

responses in vivo

of GVHD remains a major complication associated with the use
of donor lymphocytes. Although some patients receiving DLI
achieve complete remissions in the absence of clinically evident
GVHD, most responding patients develop acute and chronic
GVHD suggesting the antigens that are recognized on tumor
cells are often shared with other tissues. The risk of GVHD can
be attenuated in a subset of patients by using gradually escalating
doses of DLI but this strategy is most effectively applied in slowly
progressive malignancies [24-26].

Reduced-intensity conditioning regimens for

allogeneic HCT

Allogeneic HCT employing myeloablative conditioning is
restricted to younger and medically fit patients to avoid exces-
sive mortality from toxicities related to chemoradiotherapy. The
median age at diagnosis for B-CLL and MM is over 60 years and
these patients often have comorbidities due to their age, underly-
ing malignancy or prior chemotherapy. This limitation to the use
of allogeneic HCT was overcome by the development of reduced-
intensity conditioning (RIC) regimens that use low doses of
chemoradiotherapy to immunosuppress the recipient sufficiently
to prevent rejection of the donor stem and T-cell graft, and enable
a GVT effect to mediate tumor eradication [27.28]. RIC-HCT has
been effective in several indolent B-cell malignancies, including
B-CLL, MM and lymphoma, although aggressive lymphoma and
B-ALL are less responsive 5-729]. Similar to the observations made
in patients receiving myeloablative HCT, the anti-tumor effi-
cacy of RIC-HCT is highly correlated with GVHD, which often
requires long-term immunosuppressive therapy and is a major
cause of morbidity and morrality. Therefore, the development
of approaches that could be incorporated with HCT, such as the
adoprive transfer of T cells that can specifically rarget antigens
that are preferentially or selectively expressed on the tumor to
augment the GVT effect without inducing GVHD, is a high
priority of current research efforts.

Minor histocompatibility antigens as targets for the
GVT effect
In the context of an allogeneic HCT from an HLA-identical
donor, T-cell recognition of minor histocompatibility antigens
(minor H antigens) is responsible for GVHD and has been impli-
cated in the GVT effect. Minor H antigens result from genetic
polymorphisms between the HCT recipient and the correspond-
ing HLA-identical stem cell donor 30]. The most common mecha-
nism for generating a minor H antigen is a non-synonymous
single nucleotide polymorphism (SNP) that results in a peptide
presented by HLA-molecules on recipient cells to which the HLA-
identical donor is not tolerant and can be recognized as ‘non-self’
by donor CD8* and CD4" T cells 31]. Other mechanisms for gen-
erating minor H antigens including alternative splicing of peptide
fragments, and differential protein expression as a consequence
of gene deletion have also been identified [32.33].
Reduced-intensity conditioning-HCT relies almost exclusively
on immune elimination of tumor cells and provides an opportu-
nity to dissect the specificity of tumor-reactive T cells that develop
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after HCT, and identify minor H or tumor-associated antigens
that are the targets of the GVT response. In a study at the Fred
Hutchinson Cancer Research Center (FHCRC) we analyzed the
temporal kinetics and specificicy of T cells that develop after non-
myeloablative-HCT for B-CLL because large numbers of tumor
cells could be stored pre-transplant and used to assess recognition
by donor T cells that developed in the recipient post-transplant
(34]. We found that CD8" and CD4* T-cell responses directed
against minor H antigens expressed by B-CLL developed in all
patients that achieved sustained tumor regression and correlated
with the clearance of tumor cells from peripheral blood, bone
marrow and lymph nodes. By contrast, patients with progres-
sive B-CLL after HCT failed to develop T cells that recognized
leukemic cells, even though they often developed GVHD, sug-
gesting the failure to eradicate the tumor in these patients was
because alloreactive T cells only recognized antigens that were
not shared by target tissues of GVHD and the tumor (Ficure 1)
(34]. The kinetics with which tumor-reactive T cells developed in
responding patients after RIC-HCT varied from several weeks to
1 year, however once established, these T cells persisted long-term,
indicating that immunologic memory was established. Analysis of
the specificity of CD8* T cells that recognized B-CLL in patients
that achieved a complete remission dem-
onstrated that multiple minor H antigens
were being targeted, including those that
were broadly expressed on both leukemic
cells and nonhematopoietic tissues [34].

A focus of current work in the field
of allogeneic HCT is the identification
of minor H antigens that are limited in
their expression to normal and malignant
hematopoietic cells, and are absent on
GVHD rarget tissues. Several minor H
antigens that meet this prerequisite have
been discovered, including HA-1, ACC-1
and LRH-1 [31.35.36], which are selectively
expressed on all hematopoietic cells; and
PANE-1, HB-1 and CD19, which are
exclusively expressed on B-lineage cells
and could be used to target B-cell malig-
nancies [(37-39]. However, the utility of an
individual hematopoietic-restricted minor
H antigen as a target for T-cell therapy is
determined by the frequency of the HLA
allele that presents the antigen and the
requirement that the patient and donor be
mismatched for the minor H antigen, in
the appropriate direction. For HA-1, the
most extensively studied minor H anti-
gen, the disparity rate is estimated to be
4.2-8.5% in HLA-A2" sibling pairs and
6.8-12.2% in HLA-A2 matched unrelated
pairs (40]. These data illustrate a problem
for the translation of minor H antigen spe-
cific T-cell therapy into clinical practice

mediate GVHD.

with the panel of minor H antigens that are presently known,
since only a few patients could actually benefit from this strategy.
This obstacle will only be resolved by the discovery of additional
minor H antigens. The HapMap project has identified over 104
SNPs in the human genome that confer amino acid sequence
changes in coding regions and this database has enabled the use of
genome association studies for minor H antigen discovery, which
should rapidly expand the number of minor H antigens at our
disposal [41]. A second obstacle for targeting minor H antigens is
the need to derive and expand minor H antigen-specific T cells
from the donor for adoptive transfer in every case. A potential
solution discussed later in this review is the isolation of TCR genes
from high-avidity minor H antigen-specific T cells, construction
of gene transfer vectors and engineering of primary donor T cells
for transfer in suitable patients.

Adoptive immunotherapy with T cells specific for
nonpolymorphic tumor-associated antigens

Ideally, nonpolymorphic antigens expressed on B-cell tumors could
be targeted using autologous T cells to circumvent the need to finda
suitable donor for allogeneic HCT and the complications associated
with HCT. In our analysis of T-cell responses that developed after

Leukemia/tumor cell

Epithelial cell

DonorT cells

Figure 1. Expression of minor H antigens on tumor cells and epithelium dictate
GVHD and GVT activity mediated by donor T cells. Minor H antigens that are
selectively expressed on tumor cells but not on epithelium can serve as targets for a
selective GVT response in the absence of GVHD. T cells specific for minor H antigens
expressed on both tumor and epithelium can mediate both a GVT effect and GVHD,
those specific for minor H antigens on tumor but not epithelium mediate a selective GVT
response, while those specific for minor H antigens on epithelium but not on tumor only

GVHD: Graft-versus-host disease; GVT: Graft-versus-tumor.
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allogeneic RIC-HCT for B-CLL, we were surprised to find that a
proportion of T-cell clones were specific for nonshared and shared
determinants that are only expressed on the recipient B-CLL,
and not on Epstein—Barr virus (EBV)-transformed B cells [34].
Additional studies are in progress to characterize these putative
tumor-specific antigens that are targeted as part of the anti-B-CLL
response after transplant, and to determine whether they repre-
sent tumor-specific mutations or nonpolymorphic proteins. Several
candidate tumor-specific proteins have already been identified in
distinct subtypes of B-cell malignancies and are being pursued
as targers for T-cell therapy. These include the immunoglobulin
idiotype (Id), the ber—abl protein in Philadelphia chromosome-
positive B-ALL [42), and EBV-associated proteins that are expressed
in EBV-positive Hodgkin disease (HD), Burkitt’s lymphoma (BL),
and EBV-induced lymphoproliferations that develop in severely
immunocompromised patients. In addition to tumor-specific deter-
minants that are restricted in their expression to the B-cell tumor,
many proteins have been found to be overexpressed or aberrantly
expressed in malignant B cells and to be present at much lower
levels in normal tissues (Tasie 2). Tolerance to many of these tumor-
associated self-proteins is not complete and it has been possible
to isolate T cells that selectively lyse tumor cells. Whether such
T cells can be used for adoprive therapy without excessive damage
to normal tissues will require evaluation in pilot clinical trials.

Tumor-specific antigens: targeting the

immunoglobulin idiotype

B-cell malignancies derive from a single B-cell clone that expresses
a unique immunoglobulin (Ig) molecule on the cell surface. The
variable regions of the heavy and light chains of the tumor Ig

Immunoglobulin
idiotype

CDR region of Id

Table 2. Nonpolymorphic antigens in B-cell malignancies.

Individual Id expressed in
each B-cell malignancy

5

contain determinants that are specific for the malignant clone and
are referred to as Id. The Id is a specific target for immunotherapy
and passive immunotherapy with custom-made monoclonal angi-
Id antibodies inducing an anti-tumor effect in up to 66% of
patients, and long-lasting tumor regressions achieved in some
cases [43]. However, this approach failed to completely eradicate
all malignant B cells, and some patients relapsed owing to out-
growth of a mutated tumor Id-variant that had lost the epitope
recognized by the monoclonal antibody [43.44]. T-cell recognition
of Id-derived epitopes has also been demonstrated, and Id-specific
T cells were shown to eradicate B-cell tumors in murine myeloma
models [45].

Based on the partial efficacy of passive antibody therapy in
humans and animal model data demonstrating anti-tumor activ-
ity of Id-specific T cells, it was logical to evaluate vaccination
regimens that might elicit both antibody and T-cell responses.
Clinical trials have focused on patients with follicular lymphoma
(FL), which is sufficiently indolent to provide time to produce
the vaccine and to develop an immune response after vaccina-
tion. Studies by Kwak ez /. showed thar immunization with
autologous Id protein generated Id-specific humoral and cellular
immune responses in patients with FL [46]. In subsequent trials,
adjuvant cytokines and Id-loaded DCs were incorporated into
vaccine regimens in an effort to improve immunogenicity and
efficacy (47.48]. In a Phase I/11 study by Bendandi ez 4., in which
granulocyte macrophage colony-stimularing factor was added to
the vaccine, anti-1d antibody responses were induced in 15 out of
20 patients and CD8*/CD4* T-cell responses were induced in 19
out of 20 patients. A subset of these patients achieved sustained
molecular remissions of their lymphoma, providing evidence for
an anti-tumor effect of vaccination [48]. A
subsequent Phase II study in patients who
had relapsed after initial chemotherapy,
confirmed the immunogenicity of this
approach and suggested a clinical ben-
efit of vaccination based on a prolonged

. [51]

Viral antigens EBV latent proteins EBV-LPD, Hodgkin disease ~ [65.68]  duration of complete response to reinduc-
(e.g., EBNA-1, 3, LMP-1,2) tion chemotherapy [49]. Both humoral
g ; Py
Chromosome Ber/abl Philadelphia chromosome- 421 and cellular immune responses may be
translocation positive B-ALL important in anti-tumor effects following
Bvaremietier B2 B-CLL o anti-Id vaccination, although a fraction of
proteins Blramodilin B-CLL (4  Patients who achieved complete remission
Mdm?2 B-CLL 733  after Id vaccination did so in the absence of
RHAMM/CD168 B-CLL 150]  detectable antibody responses [48]. A recent
Survivin B-CLL [75]  retrospective analysis of FL patients who
DKK1 MM (781 had received Id vaccinations addressed the
HM?1.24 A [77) question whether the superior clinical out-
PRAME MM, B-CLL [150] . . Id i
SPAN-XB MM pg  come associated with an anti-Id immune
WT-1 MM. B-ALL ogn)  Fesponse also resulted in an improved over-
: all survival (OS). The study showed that
Aberrantly expressed Cancer-testes antigens MM (80] . :
orotens (e.g., NY-ESO-1 the generation of an antibody response cor-
LAGE MAGE) | related with an improved OS at 10 years,

B-ALL: B-cell acute lymphoblastic leukemia; B-CLL: B-cell chronic lymphocytic leukemia;
CDR: Complementarity determining region; EBV: Epstein—Barr virus; Id: Idiotype; LPD: Lymphoproliferative

disease; MM: Multiple myeloma.

whereas the generation of an anti-Id T-cell
response was surprisingly nor associated
with improved OS [s0]. This could reflect
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the sensitivity of assays to detect Id-reactive T cells compared
with those to evaluate humoral immunity. Characterization of
anti-Id T-cell reactivity has mapped the immunogenic epitopes
within the hypervariable complementarity determining regions
of the Ig heavy chain [s1]. Of interest, in vitro studies have also
suggested that Ig framework-derived peptides can function as
cytotoxic T-cell epitopes [52], although mapping of the specificity
of responses in vaccinated patients has yet to reveal recognition
of framework regions.

The potential benefit of Id vaccination in FL has now been
investigated in three Phase I1I studies [53]. The results of these tri-
als have not yet been published but preliminary information that
has been released indicates that only one trial showed a significant
benefit in disease-free survival for vaccinated patients [53]. This
study included 177 previously untreated patients with FL who
achieved a complete remission after induction chemotherapy. The
median disease-free survival for patients who received 1d vaccina-
tion was 33.8 months versus 21.1 months in the control arm., This
advantage in disease-free survival has not been observed in the
two other studies [53]. The publication of data from these trials is
awaited with interest, and may provide insight into what factors
contribute to the differences in outcome following Id vaccination.

Compared with the success of Id vaccination in FL, the induc-
tion of anti-Id immunity in MM and aggressive lymphoma
has been more challenging, and clinical responses have only
been observed in a minority of patients [s455]. The neutraliza-
tion of anti-Id-antibodies by circulating myeloma protein and
immune-escape mechanisms, such as the secretion of TGF-p
and IL-10, by myeloma cells may compromise the priming and/
or function of anti-Id T-cell responses (5¢]. Additionally, studies
in murine myeloma models showed that Id-specific T cells are
progressively deleted from the T-cell repertoire with increasing
serum levels of myeloma protein [s¢;57). Even if reactive T cells
can be elicited, the functional phenotype may be critical in
anti-tumor activity, with cytotoxic T lymphocytes and Thl
cells inhibiting tumor growth and Th2 cells promoting tumor
progression [58].

Idiotype-specific T cells can be generated in vitro through
stimulation with peptide-pulsed or Id-transduced autologous
DCs, as well as through genetic introduction of chimeric anti-Id
receptors, but efforts to employ adoptive T-cell transfer to target
Ids have been limited to animal model studies [59.60]. The require-
ment to produce a customized Id product from each patient, to
use as a reagent for antigen presentation, combined with the
complexity of reproducibly deriving a T-cell product for adop-
tive therapy from each patient makes such an effort challenging.
The use of vaccination with Id-protein or Id-loaded DC to elicit
Id-specific T cells that could then be more readily isolated and
expanded ex vivo may provide a solution to the latter problem,
and facilicate studies to determine if vaccination combined with
adoptive T-cell transfer could improve upon the results achieved
with vaccination alone [ss]. Furthermore, vaccination with tumor
lysate-loaded DCs may represent a strategy to induce or reactivate
a T-cell response with reactivity against multiple tumor antigens,

including the Ig-Id [61].

Targeting EBV-associated B-cell malignancies with

T-cell therapy

The lymphotropic EBV was first discovered in cultured lympho-
cytes from BL {e2], and has also been detected in HD. The onco-
genic potential of EBV is evident in severely immunocompromised
HCT and solid-organ transplant patients who develop EBV-driven
B-cell proliferations, termed EBV-associated lymphoproliferative
disease. These tumors develop as a consequence of inadequate
T-cell surveillance, and express the full range of latent cycle EBV
antigens, including Epstein—Barr nuclear antigen (EBNA) -3A,-3B
and -3C proteins, which serve as targets for T cells in immunocom-
petent donors. Indeed, EBV-associated lymphoproliferative disease
tha occurred in recipients of T-cell depleted allogeneic HCT can
be successfully treated by the adoptive transfer of unselected lym-
phocytes from the respective EBV-seropositive donor, although this
approach is complicated by GVHD [63]. To avoid GVHD, Rooney
et al. isolated EBV-specific T cells from the peripheral blood of
HCT donors by repeated in vitro stimulation and demonstrated
that adoptive transfer of only the EBV-reactive T cells promoted
regression of established EBV-driven lymphomas, and prevented
the development of tumors when administered prophylactically [64).
The introduction of a marker gene into a subset of transferred EBV-
specific T cells was used to track infused T cells and demonstrated
that the cells persisted long-term in vivo (64).

Epstein—Barr virus is also associated with BL and HD that
occur in immunocompetent individuals, but these tumors express
a very restricted set of EBV antigens, that presumably facilitates
their escape from host immunity. EBNA-1 is the only EBV protein
expressed in BL but is not recognized efficiently by CD8* T cells
(65.66]. HD also expresses EBNA-1, and the weakly immunogenic
latent membrane proteins (LMP-1) and -2. Although LMP-1 and
-2 are weakly immunogenic, strategies for isolating and expanding
autologous T cells specific for these antigens from patients with
HD have been developed [67.68). Pilot studies in which T cells
targeting these EBV antigens have been expanded and adoptively
transferred to patients with HD have shown that the EBV-reactive
T cells migrate to tumor sites and result in tumor regression ina
subset of patients [69].

Targeting nonmutated tumor-associated antigens derived
from self-proteins

Microarray studies that have compared the gene-expression profile
of malignant B cells to their respective normal counterparts have
uncovered highly expressed genes in the various histologic types of
B-cell tumors [70-72]. Algorithms that predict peptide binding to
MHC have identified potentially immunogenic peptide epitopes
that might serve as targets for T-cell therapy in several overex-
pressed proteins, including MDM2, fibromodulin and survivin
in B-CLL (73-7s); NY-ESO-1, SPAN-XB, DKK1, HM1.24 and
WT-1 in MM [76-80] and WT-1 in B-ALL [81]. Tumor-reactive
CD8" T cells that recognize these and other self-peptides have
been isolated from normal donors using n vitre culture tech-
niques [73-78.82,83]. However, it is often difficult to isolate T cells
with high affinity to these self-antigens from patients who have been
pretreated with cytotoxic chemotherapy that affects T-lymphocyte
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numbers and function. Additionally, it remains to be determined
whether targeting antigens that are also expressed in some normal
tissues with T-cell therapy may lead to undesired toxicity.

Efforts to target self-proteins expressed on B-cell tumors by
adoptive therapy have initially focused on WT-1 and NY-ESO-1,
which are only expressed at low levels in very few normal tissues
but are highly expressed in tumor cells of some patients. WT-1 is
expressed at high levels in myeloid leukemias and B-ALL and at
very low levels on CD34" hematopoietic stem cells. WT-1-specific
T-cell responses have been elicited in normal donors and implicated
in the GVT effect against B-ALL after allogeneic HCT [s3,84]. A
WT-1 peptide vaccine increased the frequency of WT-1-tetramer-
positive T cells and induced an anti-tumor response in a subset of
leukemia patients without adverse events [85]. Techniques for the
isolation of T cells specific for multiple epitopes in WT-1 from
normal donors have been described (s2,83], and clinical trials of
adoptive T-cell therapy targeting WT-1 have been initiated.

NY-ESO-1 is a member of the cancer testis (CT) family of pro-
teins that are normally only present in the testis and the placenta,
but are upregulated in a variety of tumor types, including a sub-
set of patients with MM and melanoma. NY-ESO-1 was found
to be the most immunogenic CT antigen and both spontane-
ous and vaccine-induced immune responses against NY-ESO-1
have been reported in cancer patients [86,$7). A clinical trial of
adoptive T-cell therapy for melanoma with autologous CD4*
NY-ESO-I-specific T-cell clones resulted in a remission in one

Endogenous TCR

Endogenous TCR

Insertion of gene encoding
tumor-targeting TCR or CAR

Figure 2. Gene transfer can retarget primary T cells to recognize tumor cells.
Schematic demonstration of the engineering of bispecific T cells by inserting the a- and
B-genes of a TCR specific for a tumor-associated antigen, or a gene encoding a CAR
constructed of a single-chain antibody fragment fused to TCR signaling domains.

CAR: Chimeric antigen receptor; TCR: T-cell receptor.

3

out of nine patients, illustrating the potential for T cells of this
specificity to mediate anti-tumor acrivity [ss]. These results have
implications for the development of adoptive T-cell therapy for
MM, since many members of the CT antigen family, including
NY-ESO-1, are expressed in myeloma cells and these proteins
have been implicated in tumor progression [s9].

Genetic modification: endowing T cells with receptors
that target tumor antigens

Although polymorphic and tumor-associated antigens have been
identified for B-cell malignancies and mediate anti-tumor activ-
ity zn vitro or in preclinical models, their translation into clinical
trials is hampered in many cases by the failure to reproducibly
isolate high-affinity T cells from patients or healthy donors that
are specific for these antigens. The promise of adoptive T-cell
therapy will only be realized if methods for the reproducible pro-
duction of tumor-reactive T cells for therapy are developed. The
genetic modification of T cells provides a potential solution for
this problem, since T cells can be engineered to express a TCR
capable of recognizing the desired antigen with high affinity or to
express an artificial CAR that is specific for a tumor cell surface
molecule (Fioure 2).

T-cell receptor gene transfer

The specificity of T-cell recognition is provided by the TCR, and
the transfer of 7CR-a and -B genes into recipient T cells can
endow the cells with the antigen specific-
ity of the introduced TCR (90]. Thus, one
approach to derive T cells for therapy of
B-cell tumors is to introduce TCR genes
from clones with specificity for a viral,
minor H antigen, or nonpolymorphic
tumor antigen into T lymphocytes of a
patient [891-94]. The 7CR-o and -B genes
can be derived from the rare T cells that
have been isolated with high affinity for
the desired antigen, or from transgenic
mice that express human HLA alleles and
have been immunized with the human
protein to generate a high-affinity murine
T-cell response from which the murine
HLA-restricted TCRs can be cloned [93].

Tumor-specific
TCR

Gene transfer into T cells

The majority of TCR transfer studies have
employed y-retroviral vectors (RV) based
on murine leukemia virus or murine sar-

Tumor-specific
- CAR

coma virus, or self-inactivating lentiviral
vectors (LVs) [95,96]. A characteristic of RV
is that cell division is required for vector
integration following infection [97]. By
contrast, LVs have the ability to transduce
a variety of slowly or even nondividing
cells, including unstimulated T cells in
the absence of TCR activation [9s]. For the
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genetic modification of T cells, this may be an advantage since
TCR activation and sustained proliferation required for RV trans-
duction may impair the ability of transduced T cells to persist
after adoptive transfer and reduce their anti-tumor activity. Both
RV and LV preferentially integrate into transcriptionally active
genes, and entail a risk of insertional mutagenesis and transfor-
mation of modified T cells, although LVs are considered to be
less genotoxic [99.100]. The development of lymphoproliferative
complications due to dysregulated proto-oncogene expression in
a gene therapy trial that used engineered hematopoietic stem cells
in patients with X-linked severe combined immunodeficiency
(SCID), highlighted the risk related to cell transformarion as a
consequence of gene insertion and has led to the development
of self-inactivating vectors with reduced mutagenic potential
(Box 1) [101-103], Compared with hematopoietic stem cells, mature
T cells have been found to be more resistant to oncogene trans-
formation and so far, no case of malignant transformation has
been reported in adoptive immunotherapy trials that employed
T cells genetically modified with suicide genes or gene markers
(104]. Nonviral gene-delivery systems, such as electroporation into
T cells have also been developed, however, the expression that can
be achieved with plasmid DNA may vary considerably among
T cells and is only transient after electroporation of RNA [105,106).
A potentially attractive nonviral system for stable gene transfer is
the sleeping beauty (SB) transposon technology. SB is a synthetic
transposable element that has been generated from the ances-
tral Tcl/mariner-like transposon in fish [107]. DNA transposons
encode a transposase flanked by inverted terminal repeats that
contain transposase binding sites. Any gene of interest flanked by
the inverted terminal repeats can undergo transposition into the
host genome via a cut and paste mechanism. SB tranposase has
been shown to enable stable gene transfer into primary human
T cells and its utilization for TCR gene transfer is anticipated [108).

The only experience using 7CR gene transfer to generate T cells
for adoptive therapy of human cancer has been in metastatic
melanoma. In the first reported study, two out of 15 patients
experienced objective tumor regressions after receiving autolo-
gous T lymphocytes engineered to expressa TCR specific for the
melanocyte differentiation antigen MART-1 [92]. Although this
study established the therapeutic potential of genetically modi-
fied T cells for the treatment of human malignancies, issues were
identified that need to be addressed to improve the results. These
include safe methods for gene delivery that achieve adequate and
stable TCR transgene expression, strategies for minimizing pair-
ing of the introduced TCR chains with the endogenous TCR

Gene transfer into somatic cells can trigger oncogenesis as a consequence of the upregulation of cellular proto-oncogenes. Insertional

Box 1. Potential genotoxicity of gene transfer into somatic cells.

chains that might result in a deleterious specificity, and introduc-
ing the TCR into T cells that can establish a durable functional
T-cell response in vivo after adoptive transfer.

Achieving adequate TCR expression, pairing & avidity
Tocell receptor transgene cassettes that allow the coupled tran-
scription of both genes under control of the same promoter yield-
ing a single coding mRNA molecule have been developed. These
vectors utilize an internal ribosomal entry site or virus-derived
sequences that encode self-cleaving peptides, such as 2A to pro-
morte coordinate translation of the mRNA into two separate 0.-
and B-chain proteins. Recent studies that compared both features
favored 2A elements, which allowed translation of the TCR-a
and -B chains at an almost equimolar ratio and provided optimal
expression of the TCR [96].

A significant concern with TCR transfer is the potential for
cross-pairing of transferred with endogenous TCR chains, which
could result in the formation of hybrid receptors, with potentially
autoreactive specificity. Preferential pairing of the two introduced
TCR-o and-P chains can be achieved by replacing the human
constant regions of the TCR-a and-P chains with murine con-
stant regions, or by incorporating cysteine residues in positions
that promote disulfide bonds between the introduced chains [109].
As an alternative method, the introduction of TCR-o and -
chains into y8 T cells has been proposed to prevent TCR mis-
pairing. However, the low frequency of 78 T cells in the peripheral
blood and their preferential homing to the mucosa of the GI tract
make them less attractive for adoptive immunotherapy of B-cell
malignancies [110].

T-cell receptor chains specific for self-proteins are often of low
affinity, and it may be necessary to improve affinity for thera-
peutic efficacy. This can be accomplished for a TCR of known
specificity through directed iz vitro evolution, enabling the engi-
neering of TCRs with the ability to bind HLA-bound peptides
at picomolar concentrations [111], or by high-throughpur screen-
ing of TCR that have been mutated randomly to identify higher
affinity pairs.

Chimeric antigen receptors

In 1997, the monoclonal anti-CD20-antibody rituximab was
approved as the first therapeutic antibody for cancer treatment
and has since revolutionized the treatment of CD20-positive
B-cell tumors. The combination of rituximab with standard
chemotherapy has significantly improved response and survival
rates compared with chemotherapy alone [112.113]. The potential

mutagenesis has resulted in the development of leukemia in a subset of patients with X-linked severe combined immunodeficiency who
were treated with hematopoietic stem cells that had been corrected by retrovirus-mediated gene transfer. Mature T cells have been
shown to be relatively resistant to oncogene transformation as a result of retroviral insertion [104], and vector design may further reduce
the genotoxic risk from vector integration and improve the safety of gene-modified T-cell therapy of malignancy. Nevertheless, this issue
remains a concern for the clinical translation of therapeutics with gene-modified T cells. An additional approach to improve safety is to
concurrently introduce a mechanism for conditional cell suicide, either using a drug that activates a death program or a monoclonal
antibody to invoke killing by antibody-dependent cellular cytotoxicity [142-145].
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to combine the specificity of monoclonal antibodies with the
advantages of a durable cellular immune response spurred the
development of CARs that could be expressed in T cells. CARs
typically consist of a scFv that incorporates the heavy and light
variable chains (VH and VL, respectively) of a monoclonal anti-
body that recognizes a tumor cell molecule fused to the {-chain
of the CD3/TCR complex to trigger T-cell activation and cyto-
toxicity. To improve activation after engagement of the CAR, a
costimulatory signal can be provided by the addition of CD28 or
other costimulatory signaling domains to the {-chain [114,115]. An
important advantage of CAR-modified T cells is their ability to
recognize tumor cells without the requirements of MHC restric-
tion, removing obstacles, such as defects in antigen processing and
low levels of MHC expression on malignant cells, that might limit
the efficacy of conventional or TCR-modified T cells.

Several B-cell lineage surface molecules are retained on B-cell
tumors and represent attractive targets for CAR-modified T-cell
therapy. The feasibility of adoptive immunotherapy with aurol-
ogous CD20-specific CAR-modified T cells has been studied
in patients with NHL and mantle cell lymphoma. In a trial of
seven patients, two maintained a previous complete response,
one achieved a partial response and four had stable disease [114].
Modified T cells persisted for up to 5-9 weeks after infusion in
some patients but at a very low level. Improving the magnitude
and duration of the response achieved by adoptive transfer will
be important to improve efficacy, particularly for the treatrment
of patients with a larger tumor burden. Other surface molecules
that are expressed on B-cell tumors have been targeted with
CAR-modified T cells in preclinical studies, including CD19 and
CD22 m7118], and clinical trials with CD19-redirected T cells
are now in progress in several laboratories for B-ALL, B-CLL
and lymphoma.

Clinical trials of T-cell therapy using CAR-modified T cells
should provide insight into potential limitations of this approach.
One concern is that transferred T cells might be eliminated pre-
maturely due to a host immune response to the murine VH and
VL fragments of CARs that are derived from murine antibodies.
Another issue identified in preclinical work is that the stoichiom-
etry of antibody binding to tumor cells is different from that of
the TCR/MHC interaction and might not provide for optimal
T-cell activation or survival 7 vivo. Clinical trials are required to
determine how significant these issues will be. Many molecules
being targeted on B-cell malignancies by CAR-modified T cells
are also expressed on normal B cells, and successful therapy is
likely to result in a B-cell deficiency, unless strategies are devel-
oped for the conditional elimination of transferred T cells after
tumor eradication is complete.

Qualitative properties of T cells required for effective
adoptive therapy

The efficacy of adoptive T-cell therapy requires that the trans-
ferred tumor-reactive T cells home to sites of tumor, mediate
effector functions in the tumor environment, and persist suf-
ficiently long ## vive to eradicate the majority or even all of the
malignant cells. Preclinical models and clinical trials have shown

that modifying the environment into which T cells are transferred
and selecting T cells with distinct properties for adoptive transfer
are important for achieving optimal anti-tumor effects.

Homing of T cells to tumor sites

The ability of adoptively transferred T cells to migrate to and
penetrate large tumor masses has been shown to be an impedi-
ment to effective therapy of solid tumors in murine models [119),
and may reflect alterations in homing receptors expressed on
T cells, dysregulated expression of leukocyte adhesion molecules
on the tumor vasculature and biophysical properties of the tumor
environment that may limit T-cell infiltration [120,121]. There are
limited data on the migration of human T cells administered
to patients with malignancy and B-cell tumors in particular.
Adoptively transferred T cells specific for EBV antigens expressed
on EBV-associated post-transplant lymphoproliferative disease
or HD were readily identified in tumor biopsies, suggesting that
homing may be less of an obstacle for tumors that originate in
lymph nodes or bone marrow, particularly if high levels of trans-
ferred T cells can be achieved and sustained in the blood [69].
Many tumors produce chemokines to attract and educate cells
to have immunosuppressive functions, thus, in situations where
homing of effector T cells is limited, it may be possible to improve
their migration to tumor sites by introducing chemokine receprors
that respond to factors produced in the tumor environment [122).

Local suppression of effector function in the
tumor environment
It is increasingly apparent that the tumor environment is hostile to
the development and function of effector T cells as a consequence
of the local recruitment of Tregs and myeloid suppressor cells,
tumor cell expression of ligands for inhibitory receprors, and/or
secretion of molecules that inhibit effector T-cell function. The
precise immune evasion strategies employed by B-cell malignancies
are beginning to be elucidated and will be instructive for designing
modifications to adoptively transferred T cells or the host to over-
come immune evasion. For example, PD-L1 is present in HD and
MM and promotes anergy and apoptosis of T cells after binding to
programmed death-1 (PD-1) (123,124]. PD-1 expression was elevated
in tumor-infiltrating and peripheral T cells of HD patients and
blockade of the PD-1 signaling pathway restored IFN-y produc-
tion of tumor-infiltrating T cells, suggesting that such an approach
might improve the efficacy of adoptively transferred tumor-reactive
T cells (124]. Other immune escape strategies have been identified
in HD and MM, including the production of TGF-p and IL-10,
and strategies to render T cells resistant to these negative regulators
have been described [56,125]. Finally, loss of tumor antigen expres-
sion and downregulation of HLA and costimulatory molecules,
occur in B-cell malignancies, suggesting that targeting mulriple
epitopes might be necessary to prevent the emergence of antigen
loss variants under immune selective pressure provided by adoptive
T-cell transfer [12¢].

Recent studies by Gribben ez /. have identified direct effects
on gene-expression profiles of CD4* and CD8* T cells induced
by cell-to-cell contact with B-CLL cells [127]. The affected genes
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are involved in cytoskeleton formation, vesicle trafficking and
cytotoxicity, and the altered gene expression in T cells is accom-
panied by defective synapse formation with target cells, leading to
impaired recognition of malignant B-CLL cells. The formation of
a functional immune synapse between T cells and B-CLL could
be partially restored in vitro with the immunomodulatory drug
lenalidomide, suggesting its potential use to promote recognition
of tumor cells by adoptively transferred T cells [128,129).

Improving persistence of adoptively transferred
tumor-reactive T cells with cytokines

Studies in animal models of adoprive T-cell therapy for leukemia
have demonstrated that transferred T cells must persist for long
periods to mediate complete tumor rejection. Efforts to translate
T-cell therapy to human malignancies have required the i vitro
isolation and expansion of T cells, which may render them less
fit to survive and function iz vive. One of the first strategies that
improved T-cell survival after adoptive transfer was the adminis-
tration of IL-2 [130]. Administration of both low-dose and high-
dose TL-2 transiently improved the persistence of transferred
T cells, however high-dose IL-2 was accompanied by significant
side effects [131].

IL-7 and IL-15 are used less often than IL-2 for expanding
T cells in vitro but have been shown to be critical for survival
and proliferation of memory T cells in vive (132.133]. IL-7 and
IL-15 levels become elevated in lymphopenia and induce the pro-
liferation of T cells to restore homeostasis [134). It was therefore
hypothesized that the induction of lymphopenia might lead to
prolonged persistence of adoptively transferred T cells by reduc-
ing the competition for homeostatic cytokines, minimizing the
influence of Tregs and other suppressors, and creating space in the
lymphoid compartment of the recipient for the transferred T cells.
The use of lymphodepleting chemotherapy alone or with irradia-
tion prior to the transfer of melanoma-specific T cells resulted in
better persistence and expansion of transferred T cells n vivo, as
well as improved tumor infiltration and anti-tumor activity [135].
Further clinical studies will help to elucidate whether the admin-
istration of homeostatic cytokines alone may have a similar effect
on transferred T cells and circumvent the toxicity associated with
lymphodepleting chemoradiotherapy.

Selecting T cells with the intrinsic capacity to persist &
function after adoptive transfer

Clinical trials of adoptive T-cell therapy for human viral diseases
after allogeneic HCT using T-cell clones or polyclonal T cells
derived from a healthy donor with prior exposure to the patho-
gen demonstrated that transferred T cells could persist long-term

It has been suggested previously that at least some memory T cells have properties of self-renewal and differentiation, attributes typically

Box 2. Distinct programming of T cells used for adoptive therapy.

in vivo [64,136). This proved not to be the case when autologous
tumor-reactive T cells were isolated from cancer patients and used
to treat human malignancies, and poor persistence of transferred
T cells probably contributed to the lack of sustained anti-tumor
efficacy (116.130.135]. An explanation for these apparently discrep-
ant results is now emerging from work in animal models, which
suggest that the distinct transcriptional programs of naive and
subsets of memory T cells impart qualitative differences that are
retained in effector progeny and influence cell fate after adoptive
transfer (Box2).

Discrete phenotypic and functional subsets of T cells have
been identified, including naive (TN), effector (TE), central
memory (TCM) and effector memory (TEM) T cells 11371
After TCR engagement by antigen in vivo, TN cells undergo
proliferation and programmed differentiation, resulting in the
generation of large numbers of TE cells, most of which die as
antigen is cleared, leaving a small pool of functionally distinct
TCM and TEM cells that persist long-term and respond to
antigen re-exposure by differentiating into a new wave of TE
cells [137138). It has generally been assumed that TE cells iso-
lated from TN, TCM or TEM subsets would behave similarly
and have equivalent efficiency when used for adoptive T-cell
therapy. Recent data in a nonhuman primate model in which
antigen-specific TE cells derived from either TCM or TEM were
reinfused into animals has cast doubt on this assumption. In this
study, T-cell clones derived from TCM, but not those derived
from TEM cells were capable of persisting long term, reacquir-
ing the phenotype of memory cells and populating memory
T-cell niches #n vivo after adoptive transfer (139]. These results
demonstrate that some of the progeny of clonally derived TE
cells retain intrinsic programming of the parental cell of origin
and provide an explanation for the inconsistent persistence of
transferred T cells when unselected T cells are used as the source
to generate tumot-specific T cells for adoptive immunotherapy.
Moreover, these findings suggest that selecting T cells from the
TCM pool for the introduction of T-cell or chimeric antigen
receptors that target B-cell malignancies may ensure more uni-
form persistence after cell transfer. An alternative approach that
has been employed is to use T cells specific for a virus, such as
EBV or CMYV for genetic modification, since many of these cells
will be derived from TCM. This strategy also enables signal-
ing through the endogenous TCR to potentially amplify and
maintain the transferred T cells in vivo and has been used in
preclinical studies with EBV-specific T cells expressing an anti-
CD30( CAR to target HD and with some success in clinical
trials with EBV-specific T cells expressing a CAR specific for
neuroblastoma [140,141].

assigned to stem cells [146]. A recent study in mice demonstrated that the initial division of a naive T cell after antigen encounter is
asymmetric and endows each of the daughter cells with distinct properties that dictate their ability to function as memory cells [147]. A
putative memory T stem cell has also been described in a murine model of graft-versus-host disease [148]. Taken together, this work
illustrates that even similar T-cell subsets exhibit distinct programming, and has focused greater attention on how properties of T cells
other than tumor specificity might influence their efficacy in adoptive immunotherapy.
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Expert commentary

The application of adoptive T-cell therapy for human malignan-
cies, including B-cell tumors has long held attraction due to the
potential for specific elimination of tumor cells without the tox-
icities associated with chemotherapy and radiation. There is con-
vincing evidence from allogeneic HCT that B-cell malignancies
are susceptible to elimination by T cells, however the translation
of this knowledge into specific adoptive T-cell therapy has been
impeded by the lack of readily available antigens to target in B-cell
tumors, with the exception of Ig—Id or EBV antigens in the sub-
set of malignancies that express EBV proteins. Efforts to identify
polymorphic and nonpolymorphic tumor antigens expressed on
B-cell malignancies that can be recognized by T cells have led to
studies of T-cell therapy in preclinical models, and clinical trials
of this approach have been initiated. The engineering of T cells to
express a TCR or CAR that targets antigens and surface molecules
that are broadly expressed by B-cell malignancies can overcome the
obstacle of isolating tumor-reactive T cells from the endogenous
repertoire, and has facilitated the initiation of clinical trials by sev-
eral groups in both aggressive and indolent B-cell tumors. Critical
insight has been derived into qualitative properties of T cells that
ensure persistence after adoptive transfer. The evaluation of data
from well-designed clinical trials and ongoing studies in animal
models will determine the potential toxicity, efficacy and limita-
tions of adoptive T-cell therapy for B-cell malignancies, and will
direct subsequent studies that may lead to the establishment of
adoptive T-cell transfer as a useful and broadly applicable modality.

Five-year view

The field of adoptive T-cell therapy is currently undergoing a
significant resurgence, due in part to the proven efficacy of this
approach in melanoma, the opportunities provided by molecular

profiling of tumors to identify target antigens, and the feasibility
of isolating or engineering T cells of defined specificity. Allogeneic
HCT will remain a mainstay of therapy for B-cell malignancies
owing to its proven curative potential, and efforts in several labora-
tories to identify polymorphic antigens expressed on B-cell tumors
using genome-association studies will identify minor H antigens
that can be rargeted selectively with T-cell therapy to augment
GVT reactivity without causing GVHD. If this endeavor is suc-
cessful, the use of less toxic RIC regimens might be extended to
younger patients with more aggressive B-cell tumors. Clinical trials
of adoptive T-cell therapy for B-cell malignancies in the nontrans-
plant setting, including those that use TCR- or CAR-modified
T cells, have already been initiated and will be completed in the
next 5 years. These trials will provide data on the safety and effi-
cacy of this approach that will be used to design subsequent trials,
and determine whether it is appropriate and how best to incor-
porate T-cell therapy into conventional therapeutic regimens. In
patients who fail to respond to T-cell therapy, it will be important
to analyze whether the failure of therapy reflects intrinsic proper-
ties of effector T cells, or systemic or local suppression of function
in the tumor-bearing patient to provide insight into the subset
of patients that can benefit most by T-cell therapy, and to derive
strategies for improving outcome in patients less likely to respond.
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¢ Indolent B-cell malignancies are susceptible to the T-cell mediated graft-versus-tumor effect of allogeneic hematopoietic cell transplant
as a consequence of recognition of polymorphic and tumor-associated antigens.

* B-cell malignancies express or overexpress several nonpolymorphic proteins that have limited expression on normal tissues, and can be
targeted by tumor-specific T cells present in the endogenous repertoire.

* Gene-transfer techniques can be used to endow T cells with tumor specificity, either through the expression of T-cell receptor genes
that recognize tumor-associated peptides displayed on MHC molecules, or through the expression of single-chain antibody fragments

that are specific for B-lineage surface molecules.

* Effector T cells derived from central memory precursors exhibit long-term in vivo persistence after adoptive transfer, migrate to memory
T-cell niches and revert to the memory pool, suggesting that adoptive T-cell therapy for cancer employing central memory cells may

have improved efficacy.

* T-cell homing to tumor sites and maintenance of effector function in the immunosuppressive tumor microenvironment will be critical

for the success of adoptive T-cell therapy.
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