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Advanced molecular research techniques have transformed hematology in recent years. With im-
proved understanding of hematologic diseases, we now have the opportunity to research and evaluate
new biological therapies, drugs and drug combinations, treatment schedules and novel approaches,

including stem cell transplantation. Further agtances in our knowledge regarding the formation and
function of blood cells and blood-forming
tissues should ensue, and it will be a ma-

jor challenge for hematologists to adopt
these new paradigms and develop integrat-
ed strategies to define the best possible
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Adoptive T-cell therapy for
B-cell malignancies
Expert Rev. Hematol. 2(5), 517-532 (2009)

The success of allogeneic hematopoietic cell transplantation (HCT) for B-cell malignancies is
evidence that these tumors can beeliminated by T lymphocytes. This has encouraged the
developmentof specific adoptive T-cell therapy, both for augmenting the anti-tumoreffect of
HCT and for patients not undergoing HCT.T cells that are capable of recognizing antigens
expressed on malignantBcells may be recruited from the endogenousrepertoire or engineered
to express tumor-targeting receptors. Critical insights into the qualities of T cells that enable
their persistence and function in vivo have been derived, and obstacles to effective T-cell-
mediated tumoreradication are being elucidated. These advancesprovide the tools to translate
adoptive T-cell transferinto reliable clinical therapies.

Keyworps: adoptive T-cell therapy * allogeneic hematopoietic cell transplantation * central memory T cell
* chimeric antigen receptor * immunoglobulin idiotype * graft-versus-host disease * graft-versus-tumor effect
* minor histocompatibility antigen * T-cell receptor « tumor antigen

Thepotentialto use immune-basedtherapies for
human malignanciesis attractive because of the
specificity of antibody and T-cell recognition.
The most profound advances have been made
in the developmentofantibodies as therapeutics,
and several monoclonalantibodies that recog-
nize molecules on the surface of cancercells are
being used in humancancertherapy. Antibodies
that target CD20 and CD52 are now routinely
employed in standard therapeutic regimens for
subsetsofpatients with B-cell malignancies (1-3).
The developmentofeffective T-cell therapy for
human malignancyeither through vaccination
or by adoptive T-cell transfer, whichrefers to the
isolation, expansion and reinfusion of tumor-
reactiveTcells, has been substantially morechal-
lenging. The difficulties in developing T-cell-
based immunotherapies are due,in part, to the
inability ofcurrent vaccines to reproduciblyelicit
effective tumor-reactive T-cell responses, and the
complexity of deriving and expanding tumor-
reactive T cells ex vive that have the capacity to

persist and function following adoptive transfer.
Despite these obstacles, the exquisite ability of
T cells to distinguish diseased from normalcells
has encouraged the continued investigation of
strategies to employT cells as therapeutic agents.

Thereis evidence from allogeneic hematopoi-
etic cell transplantation (HCT) that advanced
B-cell malignancies are susceptible to a T-cell-
mediated graft-versus-tumor (GVT) effect,
 

www.expert-reviews.com
10.1586/EHM.09.47

although GVTactivity cannotyet be reproduc-
ibly separated from graft-versus-host disease
(GVHD) [4-7]. The demonstration that B-cell
tumors are recognized by T cells has provided
optimism that donor T cells specific for tumor-
associated antigens mightbeisolated, expanded
and administered to the patient to augmentthe
GVTeffect; or that autologous T cells might
be elicited or engineered to recognize tumor-
associated antigens, without the need for allo-
geneic HCT. Engineering of tumor reactive
T cells can be accomplished by gene transfer
techniques that introduce a T-cell receptor
(TCR) with specificity for peptide fragments of
intracellular proteins displayed on class I and
class II MHC molecules expressed by the tumor,
or a chimeric antigen receptor (CAR) that con-
sists of a single-chain antibody fragment(scFv)
specific for a B-cell surface molecule linked to
the ¢-chain of the CD3/TCR complex {8,9}. This
review will discuss the rationale and theoretical
framework for developing adoptive T-cell ther-
apy for B-cell malignancies, the obstacles that
have been encountered, and the directions that
are currently being takenforclinicaltranslation.

GVT effect of allogeneic HCT in
B-cell malignancies
Allogeneic HCT provides a potentially curative
therapy for a variety of hematologic malignan-
cies, including many B-cell tumors. Originally,
enEEEEEEEE
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allogeneic HCT was developed as a methodofrescuing patients
from thelethaltoxicity of high doses ofmyeloablative chemoradio-
therapy administered to achieve greater tumor-cell killing than
could be achieved with conventional doses of chemotherapy [10],
and was used as a treatmentoflast resort for patients with refrac-
tory leukemia, including B-lineage acute lymphoblastic leukemia
(B-ALL). Consistent with the prediction from murine models,
that immunerecognition oftumorcells could contribute to tumor
eradication, human allogeneic HCTfor B-ALL was accompanied
by a T-cell mediated GVT effect[1-13]. AGVTeffect ofallogeneic
HCThassubsequently been confirmedin other B-cell malignan-
cies, including chronic lymphocytic leukemia (B-CLL), multiple
myeloma (MM)and non-Hodgkin lymphoma (NHL)(14-18). The
myeloablative chemotherapy regimen contributes substantially to
tumor control butit is now realized that the curative potential
of this procedure is a result of the immunologic elimination of
malignantcells. This is evident from the strikingly lower relapse
rate and increased leukemia-free survivalrate in patients receiving

an allogeneic HCT compared with syngeneic HCT [12,13]. There
are several factors that limit the success of allogeneic HCT and
efforts to improve outcomeare focused on reducingtoxicity dueto
conditioning and GVHD,and augmenting the GVTeffect (Taste 1).

Donor lymphocyteinfusions for B-cell malignancies
A critical role for donor T cells in the GVT effect was dem-
onstrated by studies by Kolb et al. who investigated the use of
donor lymphocyte infusions (DLIs) in patients with leukemia
relapse after allogeneic HCT {19]. Durable complete remissions
were achieved in 10-40%ofpatients with B-ALL, B-CLL, MM
and lymphomas (20-22). This compares with responserates ofup to
70%in patients with relapsed chronic myeloid leukemia (CML)
andit has been hypothesized that the superior ability ofCMLcells
to differentiate into antigen presenting dendritic cells (DCs) and
prime anti-tumor T-cell responses may be responsible for these
differences in outcome [19,23]. To improve the outcomeofpatients
with B-cell malignancies receiving DLIs, strategies such as the
administration of pre-DLI chemotherapy or the use of ex vivo-
activated donor lymphocytesare being explored. The induction

  
 
Table 1. Factors that limit the success of allogeneic
hematopoietic cell transplantation.*

Toxicity due to the Employ reduced-intensity
conditioning conditioning regimens
regimen

Graft-versus-
host disease

Improve drug regimensfor
immunosuppression
Targeted suppression ofalloreactive T-cell
activation or function
Remove alloreactive T cells from the donor
stem cell graft

Tumorrelapse Adoptive transfer of tumor-reactive T cells
Vaccinationto elicit tumor-reactive T-cell

responsesin vivo

_ Hudecek, Anderson, Nishida & Riddell |

of GVHDremains a major complication associated with the use
of donor lymphocytes. Although some patients receiving DLI
achieve complete remissions in the absence of clinically evident
GVHD,most respondingpatients develop acute and chronic
GVHDsuggesting the antigens that are recognized on tumor
cells are often shared with othertissues. The risk of GVHD can
be attenuated in a subsetofpatients by using gradually escalating
doses of DLIbutthis strategy is mosteffectively applied in slowly
progressive malignancies [24-26].

Reduced-intensity conditioning regimensfor
allogeneic HCT
Allogeneic HCT employing myeloablative conditioning is
restricted to younger and medically fit patients to avoid exces-
sive mortality from toxicities related to chemoradiotherapy. The
median ageat diagnosis for B-CLL and MMis over 60 years and
these patients often have comorbidities due to their age, underly-
ing malignancyor prior chemotherapy. This limitation to the use
ofallogeneic HCT was overcomeby the development of reduced-
intensity conditioning (RIC) regimens that use low doses of
chemoradiotherapy to immunosuppresstherecipientsufficiently
to preventrejection ofthe donorstem and T-cell graft, and enable
a GVTeffect to mediate tumoreradication(27,28). RIC-HCT has
been effective in several indolent B-cell malignancies, including
B-CLL, MMand lymphoma,although aggressive lymphoma and
B-ALLare less responsive [5-729]. Similar to the observations made
in patients receiving myeloablative HCT, the anti-tumoreffi-
cacy of RIC-HCTishighly correlated with GVHD, which often
requires long-term immunosuppressive therapy and is a major
cause of morbidity and mortality. Therefore, the development
of approaches that could be incorporated with HCT, such as the
adoptive transfer of T cells that can specifically target antigens
that are preferentially or selectively expressed on the tumor to
augment the GVT effect without inducing GVHD,is a high
priority of current research efforts.

Minor histocompatibility antigens as targets for the
GVTeffect

In the context of an allogeneic HCT from an HLA-identical
donor, T-cell recognition of minor histocompatibility antigens
(minor H antigens)is responsible for GVHDandhas been impli-
cated in the GVT effect. Minor H antigens result from genetic
polymorphisms between the HCTrecipient and the correspond-
ing HLA-identical stem cell donor (30). The most common mecha-
nism for generating a minor H antigen is a non-synonymous
single nucleotide polymorphism (SNP) that results in a peptide
presented by HLA-moleculeson recipient cells to which the HLA-
identical donoris not tolerant and can be recognizedas ‘non-self”
by donor CD8* and CD4* T cells (31). Other mechanismsfor gen-
erating minor H antigensincludingalternativesplicing of peptide
fragments, and differential protein expression as a consequence
of gene deletion have also been identified [32,33].

Reduced-intensity conditioning-HCTrelies almost exclusively
on immuneelimination of tumorcells and provides an opportu-
nity to dissectthe specificity of tumor-reactive T cells that develop
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after HCT, and identify minor H or tumor-associated antigens
that are the targets of the GVTresponse.In a studyat the Fred
Hutchinson Cancer Research Center (FHCRC) we analyzed the
temporalkinetics andspecificity ofT cells that develop after non-
myeloablative-HCT for B-CLLbecause large numbers of tumor
cells could be stored pre-transplant andusedto assess recognition
by donor T cells that developed in therecipient post-transplant
34]. We found that CD8* and CD4* T-cell responses directed
against minor H antigens expressed by B-CLL developedin all
patients that achieved sustained tumorregression andcorrelated
with the clearance of tumorcells from peripheral blood, bone
marrow and lymph nodes. By contrast, patients with progres-
sive B-CLL after HCT failed to develop T cells that recognized
leukemic cells, even though they often developed GVHD,sug-
gesting the failure to eradicate the tumor in these patients was
because alloreactive T cells only recognized antigens that were
not shared by target tissues of GVHD and the tumor (Fiver 1)
[34]. The kinetics with which tumor-reactive T cells developed in
respondingpatients after RIC-HCTvaried from several weeksto
1 year, however onceestablished,these T cells persisted long-term,
indicating that immunologic memory wasestablished. Analysis of
the specificity of CD8°T cells that recognized B-CLLin patients
that achieved a complete remission dem-
onstrated that multiple minor H antigens
were being targeted, including those that
were broadly expressed on both leukemic
cells and nonhematopoietic tissues[34].

A focus of current work in the field

of allogeneic HCT is the identification
of minor H antigens that are limited in
their expression to normal and malignant
hematopoietic cells, and are absent on
GVHDtarget tissues. Several minor H
antigens that meet this prerequisite have
been discovered, including HA-1, ACC-1
and LRH-1 (31.35,36], which are selectively
expressed on all hematopoietic cells; and
PANE-1, HB-1 and CD19, which are
exclusively expressed on B-lineagecells
and could be used to target B-cell malig-
nancies [37-39]. However, the utility of an
individual hematopoietic-restricted minor
H antigen as a target for T-cell therapy is
determined by the frequency of the HLA
allele that presents the antigen and the
requirementthat the patient and donorbe
mismatched for the minor H antigen, in
the appropriate direction. For HA-1, the
most extensively studied minor H anti-
gen, the disparity rate is estimated to be
4,2-8.5% in HLA-A2°sibling pairs and
6.8-12.2% in HLA-A?2 matched unrelated

pairs (40]. These dataillustrate a problem
for the translation ofminor H antigen spe-
cific T-cell therapy into clinical practice

mediate GVHD.
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with the panel of minor H antigens that are presently known,
since only a few patients could actually benefit from this strategy.
This obstacle will only be resolved by the discovery of additional
minor H antigens. The HapMapproject has identified over 10°
SNPs in the human genome that confer amino acid sequence
changesin codingregionsandthis database has enabledtheuse of
genomeassociation studies for minor H antigen discovery, which
should rapidly expand the number of minor H antigensat our
disposal(41). A secondobstacle for targeting minor H antigens is
the need to derive and expand minor H antigen-specific T cells
from the donorfor adoptive transfer in every case. A potential
solution discussedlaterin this review is the isolation ofTCRgenes
from high-avidity minor H antigen-specific T cells, construction
ofgenetransfer vectors and engineeringofprimary donor T cells
for transfer in suitable patients.

Adoptive immunotherapywith T cells specific for
nonpolymorphic tumor-associated antigens
Ideally, nonpolymorphic antigensexpressed on B-cell tumors could
be targeted using autologousT cells to circumventthe need to finda
suitable donorfor allogeneic HCT and the complications associated
with HCT.In ouranalysis ofT-cell responses that developed after

Leukemia/tumorcell

Epithelialcell

 
DonorTcells

Figure 1. Expression of minor H antigens on tumorcells and epithelium dictate
GVHD and GVT activity mediated by donorT cells. Minor H antigens that are
selectively expressed on tumorcells but not on epithelium can serve as targets for a
selective GVT response in the absence of GVHD.T cells specific for minor H antigens
expressed on both tumor andepithelium can mediate both a GVT effect and GVHD,
those specific for minor H antigens on tumorbut not epithelium mediate a selective GVT
response, while those specific for minor H antigens on epithelium but not on tumoronly

GVHD: Graft-versus-host disease; GVT: Graft-versus-tumor.
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allogeneic RIC-HCTfor B-CLL,we were surprised to find that a
proportion of T-cell clones were specific for nonshared and shared
determinants that are only expressed on the recipient B-CLL,
and not on Epstein—Barr virus (EBV)-transformed B cells (34).
Additional studies are in progress to characterize these putative
tumor-specific antigensthat are targeted as part ofthe anti-B-CLL
response after transplant, and to determine whether they repre-
sent tumor-specific mutations or nonpolymorphic proteins. Several
candidate tumor-specific proteins have already been identified in
distinct subtypes of B-cell malignancies and are being pursued
as targets for T-cell therapy. These include the immunoglobulin
idiotype (Id), the bcr—abl protein in Philadelphia chromosome-
positive B-ALL[42}, and EBV-associated proteinsthat are expressed
in EBV-positive Hodgkin disease (HD), Burkitt's lymphoma(BL),
and EBV-induced lymphoproliferations that develop in severely
immunocompromisedpatients. In addition to tumor-specific deter-
minantsthat are restricted in their expression to the B-cell tumor,
manyproteins have been found to be overexpressed or aberrantly
expressed in malignant B cells and to be present at much lower
levels in normaltissues (Taste2). Tolerance to many ofthese tumor-
associated self-proteins is not complete andit has been possible
to isolate T cells that selectively lyse tumor cells. Whether such
T cells can be used for adoptive therapy withoutexcessive damage
to normaltissues will require evaluation in pilotclinicaltrials.

Tumor-specific antigens: targeting the
immunoglobulin idiotype
B-cell malignancies derive from a single B-cell clone that expresses
a unique immunoglobulin (Ig) molecule on thecell surface. The
variable regions of the heavy andlight chains of the tumorIg

Table 2. Nonpolymorphic antigensin B-cell malignancies.  
Immunoglobulin CDRregion ofId Individual Id expressed in

ae F S Hudecek, Anderson, Nishida & Riddell

contain determinantsthatarespecific for the malignantclone and
are referred to as Id. The Id is a specific target for immunotherapy
and passive immunotherapy with custom-made monoclonalanti-
Id antibodies inducing an anti-tumoreffect in up to 66% of
patients, and long-lasting tumor regressions achieved in some
cases[43]. However, this approach failed to completely eradicate
all malignantB cells, and some patients relapsed owing to out
growth of a mutated tumorId-variant that had lost the epitope
recognized by the monoclonal antibody(43,44). T-cell recognition
of Id-derived epitopes has also been demonstrated, and Id-specific
T cells were shownto eradicate B-cell tumors in murine myeloma
models [45].

Based on the partial efficacy of passive antibody therapy in
humansand animal model data demonstrating anti-tumoractiv-
ity of Id-specific T cells, it was logical to evaluate vaccination
regimens that mightelicit both antibody and T-cell responses,
Clinicaltrials have focused onpatients with follicular lymphoma
(FL), which is sufficiently indolent to provide time to produce
the vaccine and to develop an immuneresponse after vaccina-
tion. Studies by Kwak e¢ a/. showed that immunization with
autologousId protein generated Id-specific humoral and cellular
immuneresponses in patients with FL [46]. In subsequenttrials,
adjuvant cytokines and Id-loaded DCs were incorporated into
vaccine regimens in an effort to improve immunogenicity and
efficacy [47.48]. In a Phase I/II study by Bendandiet a/., in which
granulocyte macrophage colony-stimulating factor was added to
the vaccine, anti-Id antibody responses were induced in 15 out of
20 patients and CD8*/CD4* T-cell responses were induced in 19
out of 20 patients. A subset of these patients achieved sustained
molecular remissionsoftheir lymphoma,providing evidence for

an anti-tumoreffect of vaccination[48]. A
subsequent Phase II study in patients who
had relapsed after initial chemotherapy,
confirmed the immunogenicity of this
approach and suggested a clinical ben-

 
(51)

idiotype each B-cell malignancy efit of vaccination based on a prolonged
Viral antigens EBV latent proteins EBV-LPD, Hodgkin disease (65,68) duration of complete response to reinduc-

(e.g., EBNA-1, 3, LMP-1,2) tion chemotherapy [49]. Both humoral

Chromosome Bcr/abl Philadelphia chromosome- [42] and cellular immuneresponses may be
translocation positive B-ALL important in anti-tumoreffects following

Sena Bel-2 B-CLL nai anti-Id vaccination,althougha fraction of
proteins eromodulin B-CLL (74) patients who achieved complete remission

Mdm2 B-CLL (73} after Id vaccination did so in the absenceof
RHAMM/CD168 B-CLL (iso) detectable antibody responses [48]. A recent
Survivin B-CLL [75] retrospective analysis of FL patients who
DKKI MM (78) had received Id vaccinations addressed the

ae ue Br 71 question whether the superiorclinical out-
SPAN-XB MM. : a comeassociated with an anti-Id immune
WT-1 MM,B-ALL [80,81] response also resulted in an improved over-

: all survival (OS). The study showed that
Aberrantly expressed Cancer-testes antigens MM [80] the generation ofan antibody response-corroteins e.g., NY-ESO-1, : . ~: ee MAGE) related with an improved OSat 10 years,
B-ALL: B-cell acute lymphoblastic leukemia; B-CLL: B-cell chronic lymphocytic leukemia;
CDR: Complementarity determining region; EBV: Epstein-Barrvirus; Id: Idiotype; LPD: Lymphoproliferative
disease; MM: Multiple myeloma.

whereas the generation ofan anti-Id T-cell
response was surprisingly not associated
with improved OS [50]. This could reflect
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the sensitivity of assays to detect Id-reactive T cells compared
with those to evaluate humoral immunity. Characterization of
anti-Id T-cell reactivity has mapped the immunogenicepitopes
within the hypervariable complementarity determining regions
of the Ig heavy chain [51]. Of interest, in vitro studies have also
suggested that Ig framework-derived peptides can function as
cytotoxic T-cell epitopes(52), although mappingofthe specificity
of responses in vaccinated patients has yet to reveal recognition
of frameworkregions.

The potential benefit of Id vaccination in FL has now been
investigated in three Phase III studies [53]. The results of these tri-
als have notyet been published butpreliminary information that
has beenreleased indicates that only onetrial showed a significant
benefit in disease-free survival for vaccinated patients(53]. This
study included 177 previously untreated patients with FL who
achieved a complete remission after induction chemotherapy. The
mediandisease-free survival for patients who received Id vaccina-
tion was 33.8 monthsversus 21.1 monthsin the control arm.This
advantage in disease-free survival has not been observed in the
two otherstudies[53]. The publication of data from thesetrials is
awaited with interest, and may provide insight into whatfactors
contribute to the differences in outcomefollowing Id vaccination.

Compared with the success of Id vaccination in FL, the induc-
tion of anti-Id immunity in MM andaggressive lymphoma
has been more challenging, and clinical responses have only
been observed in a minority ofpatients [54,55]. The neutraliza-
tion of anti-Id-antibodies by circulating myelomaprotein and
immune-escape mechanisms, such as the secretion of TGF-B
and IL-10, by myelomacells may compromise the priming and/
or function ofanti-Id T-cell responses 56}. Additionally, studies
in murine myeloma models showedthatId-specific T cells are
progressively deleted from the T-cell repertoire with increasing
serum levels of myelomaprotein [56,57]. Evenif reactive T cells
can beelicited, the functional phenotype maybe critical in
anti-tumor activity, with cytotoxic T lymphocytes and Th1
cells inhibiting tumor growth and Th2 cells promoting tumor
progression [58].

Idiotype-specific T cells can be generated in vitro through
stimulation with peptide-pulsed or Id-transduced autologous
DCs,as well as throughgenetic introduction ofchimeric anti-Id
receptors,but efforts to employ adoptive T-cell transfer to target
Ids have been limited to animal modelstudies[59,60]. The require-
ment to produce a customized Id product from each patient, to
use as a reagent for antigen presentation, combined with the
complexity of reproducibly deriving a T-cell product for adop-
tive therapy from each patient makes such an effort challenging.
The use ofvaccination with Id-protein or Id-loaded DCtoelicit
Id-specific T cells that could then be more readily isolated and
expanded ex vive may provide a solution to thelatter problem,
andfacilitate studies to determineifvaccination combined with
adoptive T-cell transfer could improve upon the results achieved
with vaccination alone(55]. Furthermore, vaccination with tumor
lysate-loaded DCs mayrepresenta strategy to induceorreactivate
a T-cell response with reactivity against multiple tumorantigens,
including the Ig—Id (61).

 
Targeting EBV-associated B-cell malignancies with
T-cell therapy

The lymphotropic EBV wasfirst discovered in cultured lympho-
cytes from BL(#2), and has also been detected in HD. The onco-
genic potential of EBVis evidentin severely immunocompromised
HCTandsolid-organ transplant patients who develop EBV-driven
B-cell proliferations, termed EBV-associated lymphoproliferative
disease. These tumors develop as a consequence of inadequate
T-cell surveillance, and express the full range oflatent cycle EBV
antigens, including Epstein—Barr nuclear antigen (EBNA) -3A, -3B
and -3C proteins, whichserveas targets for T cells in immunocom-
petent donors. Indeed, EBV-associated lymphoproliferative disease
that occurredin recipients of T-cell depleted allogeneic HCT can
be successfully treated by the adoptive transfer of unselected lym-
phocytes from therespective EBV-seropositive donor, althoughthis
approachis complicated by GVHD{3}. To avoid GVHD,Rooney
et al. isolated EBV-specific T cells from the peripheral blood of
HCT donors by repeated in vitro stimulation and demonstrated
that adoptive transfer of only the EBV-reactive T cells promoted
regression of established EBV-driven lymphomas, and prevented
the developmentoftumors when administered prophylactically(64).
The introduction of a marker geneinto a subsetoftransferred EBV-
specific T cells was usedto track infused T cells and demonstrated
that the cells persisted long-term in vivo [64].

Epstein-Barr virus is also associated with BL and HD that
occur in immunocompetentindividuals, but these tumors express
a veryrestricted set of EBV antigens, that presumably facilitates
their escape from host immunity. EBNA-1is the only EBV protein
expressed in BL butis not recognized efficiently by CD8°*T cells
[65.66]. HD also expresses EBNA-1, and the weakly immunogenic
latent membrane proteins (LMP-1) and -2. Although LMP-1 and
-2. are weakly immunogenic,strategiesforisolating and expanding
autologous T cells specific for these antigens from patients with
HD have been developed. (67.68]. Pilot studies in which T cells
targeting these EBV antigens have been expanded and adoptively
transferred to patients with HD have shown that the EBV-reactive
T cells migrate to tumorsites and result in tumorregression in a
subsetofpatients [69].

Targeting nonmutated tumor-associated antigens derived
from self-proteins
Microarray studies that have compared the gene-expression profile
of malignantB cells to their respective normal counterparts have
uncovered highly expressed genes in the varioushistologic types of
B-cell tumors(70-72). Algorithmsthat predict peptide binding to
MHChaveidentified potentially immunogenic peptide epitopes
that might serve as targets for T-cell therapy in several overex-
pressed proteins, including MDM2, fibromodulin and survivin
in B-CLL (73-75); NY-ESO-1, SPAN-XB, DKK1, HM1.24 and
WT-l in MM (76-80) and WT-1 in B-ALL[81]. Tumor-reactive
CD8*Tcells that recognize these and other self-peptides have
been isolated from normal donors using in vitro culture tech-
niques [73-78,82,83]. However, it is often difficult to isolate T cells
with highaffinityto these self-antigensfrom patients who have been
pretreated with cytotoxic chemotherapy that affects T-lymphocyte
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numbersandfunction. Additionally, it remains to be determined
whether targeting antigens thatare also expressed in some normal
tissues with T-cell therapy may lead to undesired toxicity.

Efforts to target self-proteins expressed on B-cell tumors by
adoptive therapy haveinitially focused on WT-1 and NY-ESO-1,
whichare only expressed at low levels in very few normaltissues
butare highly expressed in tumorcells ofsomepatients. WT-1 is
expressed at highlevels in myeloid leukemias and B-ALL and at
very low levels on CD34* hematopoietic stem cells. WT-1-specific
T-cell responses havebeenelicited in normal donors and implicated
in the GVTeffect against B-ALL after allogeneic HCT(83,84). A
W'T-1 peptide vaccine increased the frequency ofWT-1-tetramer-
positive T cells and induced an anti-tumorresponsein a subsetof
leukemia patients without adverse events(85]. Techniques for the
isolation of T cells specific for multiple epitopes in WT-1 from
normal donors have been described [82,83], and clinical trials of
adoptive T-cell therapy targeting W'T-1 have beeninitiated.

NY-ESO-1is a memberofthe cancertestis (CT) family ofpro-
teins that are normally only presentin thetestis and theplacenta,
but are upregulated in a variety of tumortypes, including a sub-
set of patients with MM and melanoma. NY-ESO-1 was found
to be the most immunogenic CT antigen and both spontane-
ous and vaccine-induced immuneresponses against NY-ESO-1
have been reported in cancer patients [86,87]. A clinical trial of
adoptive T-cell therapy for melanoma with autologous CD4*
NY-ESO-1-specific T-cell clones resulted in a remission in one

Endogenous TCR

 Endogenous TCR

 Insertion of gene encoding
tumor-targeting TCR or CAR

Figure 2. Gene transfer can retarget primaryTcells to recognize tumorcells.
Schematic demonstration of the engineering of bispecific T cells by inserting the a- and
B-genesof a TCR specific for a tumor-associated antigen, or a gene encoding a CAR
constructed of a single-chain antibody fragment fused to TCR signaling domains.
CAR: Chimeric antigen receptor; TCR: T-cell receptor.

Hudecek, Anderson, Nishida & Riddell |
outofnine patients, illustrating the potential for T cells ofthis
specificity to mediate anti-tumoractivity [88]. These results have
implications for the developmentof adoptive T-cell therapy for
MM,since many membersofthe CT antigen family, including
NY-ESO-1, are expressed in myeloma cells and these proteins
have been implicated in tumorprogression[s9].

Genetic modification: endowingT cells with receptors
that target tumor antigens
Although polymorphic and tumor-associated antigens have been
identified for B-cell malignancies and mediate anti-tumoractiv-
ity én vitro or in preclinical models, their translation into clinical
trials is hampered in manycases by thefailure to reproducibly
isolate high-affinity T cells from patients or healthy donors that
are specific for these antigens. The promise of adoptive T-cell
therapywill only berealized ifmethodsfor the reproducible pro-
duction of tumor-reactive T cells for therapy are developed. The
genetic modification of T cells provides a potential solution for
this problem, since T cells can be engineered to express a TCR
capable of recognizing the desired antigen with highaffinityor to
express an artificial CARthatis specific for a tumorcell surface
molecule (Ficure 2).

T-cell receptor gene transfer
Thespecificity ofT-cell recognition is provided by the TCR,and
the transfer of TCR-a and -B genes into recipient T cells can

endowthecells with the antigen specific-
ity of the introduced TCR(90). Thus, one
approach to derive T cells for therapy of
B-cell tumors is to introduce TCR genes
from clones with specificity for a viral,
minor H antigen, or nonpolymorphic
tumorantigen into T lymphocytes of a
patient[8,91-94]. The TCR-o and -B genes
can be derived from the rare T cells that

have been isolated with high affinity for
the desired antigen, or from transgenic
mice that express human HLAalleles and
have been immunized with the human

protein to generate a high-affinity murine
T-cell response from which the murine
HLA-restricted TCRs can be cloned [93].

Tumor-specific
CR

 
 GenetransferintoTcells

The majority ofTCRtransfer studies have
employed y-retroviral vectors (RV) based
on murine leukemia virus or murine sar-

comavirus, or self-inactivating lentiviral
vectors (LVs) [95,96]. A characteristic of RV

is that cell division is required for vector
integration following infection {97}. By
contrast, LVs have theability to transduce
a variety of slowly or even nondividing
cells, including unstimulated T cells in
the absence of TCRactivation [98]. For the

Tumor-specific
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genetic modification of T cells, this may be an advantage since
TCRactivation andsustainedproliferation required for RV trans-
duction may impair the ability of transduced T cells to persist
after adoptive transfer and reduce their anti-tumoractivity. Both
RV andLVpreferentially integrate into transcriptionally active
genes, andentail a risk of insertional mutagenesis and transfor-
mation of modified T cells, although LVs are considered to be
less genotoxic [99,100]. The development of lymphoproliferative
complications due to dysregulated proto-oncogene expression in
agenetherapytrial that used engineered hematopoietic stem cells
in patients with X-linked severe combined immunodeficiency
(SCID), highlighted the risk related to cell transformation as a
consequence of gene insertion and hasled to the development
ofself-inactivating vectors with reduced mutagenic potential
(Box1) [101-103]. Compared with hematopoietic stem cells, mature
T cells have been found to be moreresistant to oncogene trans-
formation andso far, no case of malignant transformation has
been reported in adoptive immunotherapytrials that employed
T cells genetically modified with suicide genes or gene markers
(104]. Nonviral gene-delivery systems, such as electroporation into
T cells have also been developed, however, the expression that can
be achieved with plasmid DNA mayvary considerably among
T cells andis only transient after electroporation of RNA[105,106].
A potentiallyattractive nonviral system for stable gene transferis
the sleeping beauty (SB) transposon technology. SB is a synthetic
transposable element that has been generated from the ances-
tral Tel/mariner-like transposon in fish [107]. DNA transposons
encode a transposase flanked by inverted terminal repeats that
contain transposase bindingsites. Any geneofinterest flanked by
the inverted terminal repeats can undergo transposition into the
host genome via a cut and paste mechanism.SB tranposase has
been shownto enable stable gene transfer into primary human
T cells andits utilization for TCR genetransferis anticipated [108].

The only experience using TCR genetransfer to generate T cells
for adoptive therapy of human cancer has been in metastatic
melanoma. In the first reported study, two out of 15 patients
experienced objective tumor regressionsafter receiving autolo-
gous T lymphocytes engineered to express a TCR specific for the
melanocytedifferentiation antigen MART-1 (92). Although this
study established the therapeutic potential of genetically modi-
fied T cells for the treatment of human malignancies, issues were
identified that need to be addressed to improvethe results. These
include safe methodsfor genedelivery that achieve adequate and
stable TCR transgene expression,strategies for minimizing pair-
ing of the introduced TCR chains with the endogenous TCR

Genetransfer into somatic cells can trigger oncogenesis as a consequence of the upregulationof cellular proto-oncogenes. Insertional
Box 1. Potential genotoxicity of gene transfer into somatic cells.
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chains that mightresult in a deleterious specificity, and introduc-
ing the TCRinto T cells that can establish a durable functional
T-cell response in vivo after adoptive transfer.

Achieving adequate TCR expression,pairing & avidity
T-cell receptor transgene cassettes that allow the coupled tran-
scription ofboth genes under controlof the same promoter yield-
ing a single coding mRNA molecule have been developed. These
vectors utilize an internal ribosomalentry site or virus-derived
sequences that encodeself-cleaving peptides, such as 2A to pro-
mote coordinate translation of the mRNAinto two separate O-

and B-chain proteins. Recentstudies that compared both features
favored 2A elements, which allowed translation of the TCR-o.
and - chains at an almost equimolarratio and provided optimal
expression of the TCR(96).

A significant concern with TCR transfer is the potential for
cross-pairingoftransferred with endogenous TCRchains, which
could result in the formation ofhybrid receptors, with potentially
autoreactivespecificity. Preferential pairing of the two introduced
TCR-o and-f chains can be achieved by replacing the human
constantregions of the TCR-a and-chains with murine con-
stant regions, or by incorporating cysteine residues in positions
that promotedisulfide bonds betweenthe introduced chains(109).
As an alternative method,the introduction of TCR- and -
chains into y5 T cells has been proposed to prevent TCR mis-
pairing. However, the low frequency of8 T cells in the peripheral
blood and their preferential homing to the mucosa of the GItract
make them less attractive for adoptive immunotherapy of B-cell
malignancies[110}.

T-cell receptor chainsspecific for self-proteinsare often of low
affinity, and it may be necessary to improve affinity for thera-
peutic efficacy. This can be accomplished for a TCR of known
specificity through directed in vitro evolution, enablingthe engi-
neering of TCRswith the ability to bind HLA-boundpeptides
at picomolar concentrations[111], or by high-throughputscreen-
ing of TCRthat have been mutated randomly to identify higher
affinity pairs.

Chimeric antigen receptors
In 1997, the monoclonal anti-CD20-antibody rituximab was
approved as thefirst therapeutic antibody for cancer treatment
and has since revolutionized the treatment of CD20-positive
B-cell tumors. The combination of rituximab with standard
chemotherapy hassignificantly improved response and survival
rates compared with chemotherapy alone(112,113). The potential

  
mutagenesis has resulted in the developmentof leukemia in a subset of patients with X-linked severe combined immunodeficiency who
were treated with hematopoietic stem cells that had been corrected by retrovirus-mediated gene transfer. Mature T cells have been
shown to berelatively resistant to oncogene transformation as a result of retroviral insertion [104], and vector design may further reduce
the genotoxic risk from vector integration and improve the safety of gene-modified T-cell therapy of malignancy. Nevertheless, this issue
remains a concern fortheclinical translation of therapeutics with gene-modified T cells. An additional approach to improve safety is to
concurrently introduce a mechanism for conditionalcell suicide, either using a drug that activates a death program or a monoclonal
antibody to invokekilling by antibody-dependent cellular cytotoxicity [142-145].
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to combine the specificity of monoclonal antibodies with the
advantages of a durable cellular immune response spurred the
development of CARsthat could be expressed in T cells. CARs
typically consist of a scFv that incorporates the heavy and light
variable chains (VH and VL,respectively) of a monoclonal anti-
body that recognizes a tumorcell molecule fused to the ¢-chain
of the CD3/TCR complex to trigger T-cell activation and cyto-
toxicity. To improve activation after engagement of the CAR, a
costimulatory signal can be provided by the addition ofCD28 or
other costimulatory signaling domainsto the ¢-chain (114,115). An
important advantage of CAR-modifiedTcellsis their ability to
recognize tumorcells without the requirements of MHCrestric-
tion, removing obstacles, such as defects in antigen processing and
low levels ofMHCexpression on malignantcells, that mightlimit
the efficacy of conventional or TCR-modifiedTcells.

Several B-cell lineage surface molecules are retained on B-cell
tumors and representattractive targets for CAR-modified T-cell
therapy. The feasibility of adoptive immunotherapy with autol-
ogous CD20-specific CAR-modified T cells has been studied
in patients with NHL and mantle cell lymphoma.Inatrial of
seven patients, two maintained a previous complete response,
one achieved a partial response and four hadstable disease [116].
ModifiedTcells persisted for up to 5-9 weeks after infusion in
somepatients butat a very low level. Improving the magnitude
and duration of the response achieved by adoptive transfer will
be important to improveefficacy, particularly for the treatment
of patients with a larger tumor burden. Other surface molecules
that are expressed on B-cell tumors have been targeted with
CAR-modified T cells in preclinical studies, including CD19 and
CD22 [117,118], and clinical trials wich CD19-redirected T cells

are now in progress in several laboratories for B-ALL, B-CLL
and lymphoma.

Clinical trials of T-cell therapy using CAR-modified T cells
should provide insight into potential limitations of this approach.
Oneconcernis that transferred T cells might be eliminated pre-
maturely due to a host immuneresponse to the murine VH and
VLfragments of CARsthat are derived from murineantibodies.
Anotherissue identified in preclinical work is that the stoichiom-
etry of antibody binding to tumorcells is different from that of
the TCR/MHCinteraction and might not provide for optimal
T-cell activation or survivalin vivo. Clinicaltrials are required to
determine howsignificant these issues will be. Many molecules
being targeted on B-cell malignancies by CAR-modified T cells
are also expressed on normalB cells, and successful therapy is
likely to result in a B-cell deficiency, unless strategies are devel-
oped for the conditional elimination of transferred T cells after
tumoreradication is complete.

Qualitative properties of T cells required for effective
adoptive therapy
Theefficacy of adoptive T-cell therapy requires that the trans-
ferred tumor-reactive T cells hometo sites of tumor, mediate

effector functions in the tumor environment, and persist suf-
ficiently long é# vivo to eradicate the majority or even all of the
malignantcells. Preclinical models andclinicaltrials have shown
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that modifying the environmentinto whichT cells are transferred
andselecting T cells with distinct properties for adoptive transfer
are importantfor achieving optimal anti-tumoreffects.

HomingofT cells to tumorsites

Theability of adoptively transferred T cells to migrate to and
penetrate large tumor masses has been shown to be an impedi-
mentto effective therapy of solid tumors in murine models (119),
and mayreflect alterations in homing receptors expressed on
T cells, dysregulated expression of leukocyte adhesion molecules
on the tumorvasculature and biophysical properties of the tumor
environmentthat maylimit T-cell infiltration [120,121]. There are
limited data on the migration of human T cells administered
to patients with malignancy and B-cell tumors in particular,
Adoptively transferred T cells specific for EBV antigens expressed
on EBV-associated post-transplant lymphoproliferative disease
or HD werereadily identified in tumorbiopsies, suggesting that
homing may beless of an obstacle for tumors that originate in
lymphnodesor bone marrow,particularly if high levels of trans-
ferred T cells can be achieved and sustained in the blood {69}.
Many tumors produce chemokines to attract and educatecells
to have immunosuppressive functions, thus, in situations where
homingofeffector T cellsis limited, it may be possible to improve
their migration to tumorsites by introducing chemokine receptors
that respond tofactors produced in the tumor environment[122].

Local suppression of effector function in the
tumor environment

It is increasingly apparentthat the tumor environmentis hostile to
the developmentandfunction ofeffector T cells as a consequence
of the local recruitment of Tregs and myeloid suppressorcells,
tumorcell expression of ligands for inhibitory receptors, and/or
secretion of molecules that inhibit effector T-cell function. The

precise immuneevasionstrategies employed by B-cell malignancies
are beginning to be elucidated andwill be instructive for designing
modifications to adoptively transferred T cells or the host to over-
come immuneevasion. For example, PD-L1 is present in HD and
MMandpromotes anergy and apoptosis ofT cells after binding to
programmed death-1 (PD-1) (123,124). PD-1 expression waselevated
in tumor-infiltrating and peripheral T cells of HD patients and
blockade of the PD-1 signaling pathway restored IFN-y produc-
tion oftumor-infiltrating T cells, suggesting that such an approach
might improve theefficacy ofadoptively transferred tumor-reactive
T cells (124). Other immuneescape strategies have beenidentified
in HD and MM,including the production of TGF-B and IL-10,
andstrategies to renderT cells resistant to these negative regulators
have been described[56,125]. Finally, loss of tumor antigen expres-
sion and downregulation of HLA and costimulatory molecules,
occur in B-cell malignancies, suggesting that targeting multiple
epitopes might be necessary to prevent the emergenceof antigen
loss variants under immuneselective pressure provided by adoptive
T-cell transfer [126].

Recent studies by Gribbenet a/. have identified direct effects
on gene-expression profiles of CD4* and CD8* T cells induced
by cell-to-cell contact with B-CLLcells [127]. The affected genes
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are involved in cytoskeleton formation,vesicle trafficking and
cytotoxicity, and the altered gene expression in T cells is accom-
panied bydefective synapse formation withtarget cells, leading to
impaired recognition ofmalignant B-CLL cells. The formation of
a functional immune synapse between T cells and B-CLLcould
be partially restored im vitro with the immunomodulatory drug
lenalidomide, suggestingits potential use to promoterecognition
of rumorcells by adoptively transferred T cells (128,129).

Improving persistence of adoptively transferred
tumor-reactive T cells with cytokines
Studies in animal models of adoptive T-cell therapy for leukemia
have demonstrated that transferred T cells must persist for long
periods to mediate complete tumorrejection. Efforts to translate
T-cell therapy to human malignancies have required the n vitro
isolation and expansion of T cells, which may render them less
fit to survive and function én vivo. Oneofthefirst strategies that
improved T-cell survival after adoptive transfer was the adminis-
tration of IL-2 (130). Administration of both low-dose and high-
dose IL-2 transiently improved the persistence of transferred
T cells, however high-dose IL-2 was accompaniedbysignificant
side effects [131].

IL-7 and IL-15 are used less often than IL-2 for expanding
T cells i vitro but have been shownto becritical for survival
and proliferation of memory T cells in vivo (132,133). IL-7 and
IL-15 levels becomeelevated in lymphopenia and induce thepro-
liferation of T cells to restore homeostasis [134]. It was therefore

hypothesized that the induction of lymphopenia might lead to
prolongedpersistence of adoptively transferred T cells by reduc-
ing the competition for homeostatic cytokines, minimizing the
influence ofTregs and other suppressors, and creating space in the
lymphoid compartmentoftherecipientfor the transferredTcells.
Theuse of lymphodepleting chemotherapy alone or with irradia-
tion prior to the transfer of melanoma-specific T cells resulted in
better persistence and expansion oftransferred T cells in vivo, as
well as improved tumorinfiltration and anti-tumoractivity(135).
Further clinical studies will help to elucidate whether the admin-
istration of homeostatic cytokines alone may havea similar effect
on transferred T cells and circumventthetoxicity associated with
lymphodepleting chemoradiotherapy.

Selecting T cells with the intrinsic capacity to persist &
function after adoptive transfer
Clinicaltrials of adoptive T-cell therapy for humanviral diseases
after allogeneic HCT using T-cell clones or polyclonal T cells
derived from a healthy donor with prior exposure to the patho-
gen demonstrated thattransferred T cells couldpersist long-term

 
it has been suggested previously that at least some memoryT cells have properties of self-renewal anddifferentiation, attributes typically
Box 2. Distinct programmingof T cells used for adoptive therapy.

 

in vivo (64,136). This proved not to be the case when autologous
tumor-reactive T cells were isolated from cancerpatients and used
to treat human malignancies, and poorpersistence oftransferred
T cells probably contributed to the lack of sustained anti-tumor
efficacy [116,130,135]. An explanation for these apparently discrep-
antresults is now emerging from workin animal models, which
suggest that the distinct transcriptional programs of naive and
subsets of memory T cells impart qualitative differences that are
retained in effector progeny andinfluencecell fate after adoptive
transfer (Box 2).

Discrete phenotypic and functional subsets of T cells have
been identified, including naive (TN), effector (TE), central
memory (TCM)and effector memory (TEM)Tcells (137).
After TCR engagementbyantigen in vivo, TN cells undergo
proliferation and programmeddifferentiation, resulting in the
generation oflarge numbers of TE cells, most of which die as
antigen is cleared, leaving a small poolof functionally distinct
TCM and TEMcells that persist long-term and respond to
antigen re-exposure by differentiating into a new wave of TE
cells [137,138]. It has generally been assumed that TE cells iso-
lated from TN, TCM or TEM subsets would behave similarly
and have equivalentefficiency when used for adoptive T-cell
therapy. Recent data in a nonhuman primate modelin which
antigen-specific TE cells derived from either TCM or TEM were
reinfused into animals has cast doubton this assumption.In this
study, T-cell clones derived from TCM,but not those derived
from TEMcells were capable of persisting long term, reacquir-
ing the phenotype of memorycells and populating memory
T-cell niches in vivo after adoptive transfer [139]. These results
demonstrate that some of the progeny of clonally derived TE
cells retain intrinsic programmingof the parentalcell of origin
and provide an explanation for the inconsistent persistence of
transferred T cells when unselected T cells are used as the source
to generate tumor-specific T cells for adoptive immunotherapy.
Moreover, these findings suggest that selecting T cells from the
TCM poolfor the introduction of T-cell or chimeric antigen
receptors that target B-cell malignancies may ensure more uni-
form persistenceaftercell transfer. An alternative approach that
has been employedis to use T cells specific for a virus, such as
EBV or CMVforgenetic modification, since manyof these cells
will be derived from TCM.This strategy also enables signal-
ing through the endogenous TCRto potentially amplify and
maintain the transferred T cells in vivo and has been used in
preclinical studies with EBV-specific T cells expressing an anti-
CD30¢ CARto target HD and with somesuccessin clinical
trials with EBV-specific T cells expressing a CAR specific for
neuroblastoma[140,141]. 
 

 
assigned to stem cells (146). A recent study in mice demonstrated thatthe initial division of a naiveTcell after antigen encounteris
asymmetric and endowseach of the daughter cells with distinct properties that dictate their ability to function as memory cells [147]. A
putative memory T stem cell has also been described in a murine model of graft-versus-host disease [148]. Taken together, this work
illustrates that even similar T-cell subsets exhibit distinct programming, and has focused greater attention on how propertiesof T cells
other than tumorspecificity might influence theirefficacy in adoptive immunotherapy.
 

www.expert-reviews.com

525

Miltenyi Ex. 1011 Page 14



Miltenyi Ex. 1011 Page 15

 
Expert commentary

Theapplication of adoptive T-cell therapy for human malignan-
cies, including B-cell tumors has long held attraction due to the
potential for specific elimination of tumorcells without the tox-
icities associated with chemotherapy andradiation. There is con-
vincing evidence from allogeneic HCT that B-cell malignancies
are susceptible to elimination by T cells, however the translation
of this knowledge into specific adoptive T-cell therapy has been
impededby thelack ofreadily available antigensto target in B-cell
tumors, with the exception of Ig—Id or EBV antigens in the sub-
set of malignancies that express EBV proteins. Efforts to identify
polymorphic and nonpolymorphic tumorantigens expressed on
B-cell malignancies that can be recognized by T cells have led to
studies of T-cell therapy in preclinical models, and clinicaltrials
of this approach have been initiated. The engineeringofTcells to
express a TCR or CAR thattargets antigens and surface molecules
that are broadly expressed by B-cell malignancies can overcomethe
obstacle ofisolating tumor-reactive T cells from the endogenous
repertoire, and hasfacilitated theinitiation ofclinicaltrials by sev-
eral groups in both aggressive and indolent B-cell tumors. Critical
insight has been derived into qualitative properties of T cells that
ensure persistence after adoptive transfer. The evaluation of data
from well-designed clinical trials and ongoing studies in animal
models will determine the potential toxicity, efficacy and limita-
tions of adoptive T-cell therapy for B-cell malignancies, and will
direct subsequentstudies that may lead to the establishment of
adoptive T-cell transfer as a useful and broadly applicable modality.

Five-year view

Thefield of adoptive T-cell therapy is currently undergoing a
significant resurgence, due in part to the proven efficacy ofthis
approach in melanoma, the opportunities provided by molecular

= Hudecek, Anderson,Nishida & Riddell

profiling of tumorsto identify target antigens, and thefeasibility
ofisolating or engineeringTcells ofdefinedspecificity. Allogeneic
HCTwill remain a mainstay of therapy for B-cell malignancies
owing to its proven curative potential, and efforts in several labora-
tories to identify polymorphic antigens expressed on B-cell tumors
using genome-association studies will identify minor H antigens
that can betargeted selectively with T-cell therapy to augment
GVTreactivity without causing GVHD.If this endeavoris suc-
cessful, the use of less toxic RIC regimens might be extended to
youngerpatients with more aggressive B-cell tumors. Clinicaltrials
ofadoptive T-cell therapy for B-cell malignancies in the nontrans-
plantsetting, including those that use TCR- or CAR-modified
T cells, have already been initiated and will be completed in the
next 5 years. Thesetrials will provide data on the safety and effi-
cacy ofthis approach thatwill be used to design subsequenttrials,
and determine whether it is appropriate and how bestto incor-
porate T-cell therapy into conventional therapeutic regimens. In
patients whofail to respond to T-cell therapy, it will be important
to analyze whetherthefailure of therapyreflects intrinsic proper-
ties of effector T cells, or systemic or local suppression of function
in the tumor-bearing patient to provide insight into the subset
of patients that can benefit most by T-cell therapy, and to derive
strategies for improving outcomeinpatientsless likely to respond.
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* Indolent B-cell malignancies are susceptible to the T-cell mediated graft-versus-tumor effect of allogeneic hematopoietic cell transplant
as a consequenceof recognition of polymorphic and tumor-associated antigens.

* B-cell malignancies express or overexpress several nonpolymorphic proteins that have limited expression on normal tissues, and can be
targeted by tumor-specific T cells presentin the endogenousrepertoire.

* Gene-transfer techniques can be used to endowTcells with tumorspecificity, either throughthe expression of T-cell receptor genes
that recognize tumor-associated peptides displayed on MHC molecules, or through the expression of single-chain antibody fragments
that are specific for B-lineage surface molecules.

* EffectorT cells derived from central memory precursors exhibit long-term in vivo persistence after adoptive transfer, migrate to memory
T-cell niches and revert to the memory pool, suggesting that adoptive T-cell therapy for cancer employing central memorycells may
have improved efficacy.

* T-cell homing to tumor sites and maintenance of effector function in the immunosuppressive tumor microenvironmentwill be critical
for the success of adoptive T-cell therapy.
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