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Basic Computer
Graphics

He completed a functional design of what our userinterface is to accomplish and howitis logically struc-
tured, we mustlay the technical groundwork required

for implementing graphical presentations. This chapter covers the basics of
2D computergraphics, involving the basic drawing techniques and hardware.
Also included is the necessary 2D geometry required for interaction with
primitive forms. Wealso discussthe issuesof text, clipping a drawing to stay
within a particular region, andcolor.

In this chapter, we focuson the basic 2D primitives that are required to pre-
sent information to the users so they can interactively manipulate it. The
field of computergraphicsis quite diverse, and only thebareessentials are pre-
sentedhere.In creating realistic images of physical objects, we must consider
3D perspective viewing, realistic reflection of light and shadow,texturing
physical objects, and removing hidden surfaces. The whole area ofrealistic
physical models as well as the animation of such models is not considered
here. A variety of computergraphicstexts already address these issues.

In addition to ignoring high-level 3D modeling and rendering, wealso
ignore scan conversion. Scan conversion is the process of converting a geo-
metric shape suchasa line or polygonintoasetof pixels that represent the
shape on the screen or a printer. Weassumethat any userinterface tool kit
will provide methodsor procedures that perform such tasks for us.

In this chapter, we assume that we are using a graphics package thatcan
draw a variety of 2D shapes, given the appropriate inputs. Our problem is to
understand howto invoke such methods and how to organize them in a way
that will efficiently display our user's information. Understanding the various
display architectures will help us understand how thosearchitecturesaffect
interactive software.
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3.1 Models for Images 5se pri to re resent 2D images—Stto es, pixels, andaePe ways to af - are helpful for display, modeling,orThere are tl

nd each hasitregions. Eac
interaction, 4

epresenting geometric objects3.1.1 Stroke Modele modelis the earliest form used for Fodel, we describe all images as strokesof somespeci-1 showsa simple diagram ee
er. In this ™fied color and thickness. For example, Figureits accompanying stroke representation.In the stroke representation, the type of stroke and its geometry arererefresh displays and direct-view storage tubes reuenacontrol hardware was required to hesented. Early vectortheir images in this fashion. Speciallate the stroke representation into images On the screen. Plotters accept suchrepresentations and convert them into paths that the pen should coltsdraw the stroke on paper. PostScript printers also accept such a epeetion, which they then convert to a region model and thento a pixel model in

actual printing.The stroke modelis the one thatis commonly u
applications. Most graphics packages in user interfacomplex stroked objects, including arcs, ellipses, ell
with rounded corners, and various curved shapes.

The strok
in a comput

sed for many interactive
ce tool kits provide mort

iptical arcs, rectangles

3.1.2 Pixel Model
The stroke model, however, 1s not adequate for representing moreTybil
complex images, such as Figure 3-2. Such images req)
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divides the image into a discrete numberof pixels and then stores an intensity
or color value for each pixel. In addition,all of today’s graphics hardware is
pixel based, which meansthat ultimately all models must be reduced to pix-
els before printing or display.

There are three key aspects to the resolution of a pixel image. The number
of rowsof pixels and the numberofpixels per row constitute the spatial reso-
lution of the image. For good display screens, this is 1024x768, with somedis-
plays going higher. For most laser printers, the resolution varies from
3000x2400 to 6000x4800 in order to create a high-quality printed page. The
third aspect is the image depth or numberofbits required to represent each
pixel.

There are four basic forms of pixel-based images. Thefirst is a simple
bitmap, where each pixel consists of one bit that is either on or off. Such a
model is suitable for representing the black and white of a printed page. In
orderto represent levels of gray, several pixels are grouped togetherin various
patterns of on and off, producing an appearance of grayness. This is the
approachusedin laser printers, which can either put down a spotof ink or not.
With very high resolution, this halftoning or dithering process can produce
acceptablegray.

In the second method, gray-scale images provide more than1bitper pixel.
Some systemssuchastheearly NeXTprovided2 bits per pixel. This approach
only doubled the space required to store the screen image while providing four
levels of gray. This 2-bit image only marginally improved the quality of pho-
tographs and other realistic images, but it significantly improved the appear-
ance of interface items such as buttons and type-in boxes. Items that the
Macintosh (using bitmaps) had to represent as grainy patterns appeared
smooth on the NeXT. Most modern gray-scale systemsprovide8 bits (1 byte)
per pixel, which can represent 956 levels of gray ranging from 0 (black} to 255
(white). A 1024x1024 gray-scale image requires | megabyteof storage.
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Figure 3-3 Pixel representation of a line

; i full-color rep-The third, and mostflexible, representati aeaes Braeeacea:
resentation. Colors are assembled from the three ad eeeee Pcconcol.
green, and blue. With8bits per primarycolor(3 bypealyi Seenca toraAors can be represented. Such an image format r aeStereShiy teal:1024x1024 image. Space becomesa problemwhen Sabtic full-color images. For photograph-quality images that are 3000 )
approximately 22 MBof storage are required. Because of these requirements,
compression techniquesare often used.

Thefourth representation is the color-mapped image. In this case, only 8
bits are used per pixel. Instead of storing a color, each pixel stores an index
into a color table that contains the full 24 bits for each indexed color. This

allows manycolor images to be represented in the same space as a gray-scale
image. Manycolordisplays that are being used for normalinteraction, rather
than photograph-quality applications, are based on the lookup-table image
model. In addition to cutting the storage spaceto a third, the smaller number
of bytes also reduces the amount of computation required to manipulate the
pixels.

Although the pixel model can represent any image, there are some prob-
lems when converting strokeor region objectsinto pixels.If the spatial resolu-
tion of the pixel Image is low, as shown in Figure 3-3, aliasing can occur where
smoothobjects, such as a line, appearjagged.

on of ima

 



 
Figure 3-4 Antialiasedline

 
Figure 3-5 Region-based image

3.1.3 Region Model

The third image modelis the region model.In this model, stroke objects are
used to outline the regionto befilled, as shown in Figure 3-5. There are vari-
ous models by whichregionsarefilled, including constant colors or various
blendings to produce shaded effects. A major advantage of region models is
that filled shapes can be represented in very little memory and in a way that
is independentof the display resolution. This is very advantageousfor high-
resolution display devices, such as laser printers, where transferring a full page
to the printer would requireat least 2, MBin pixel form (thus slowing commu-
nications) and would require that the computer software be aware of the
printer’s resolution.

Even text is represente
the printer; this method allows go

das regions and then converted to bitmapsinside of
od clear text of any size to be generated. In
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, y Origin at the center

Origin at lowerleft

Figure 3-6 Normal Cartesian coordinates

t be converted to a regionmus :
Bee ter. Otherwisefact, even a line that is 1 pixel wide o ae caoer onaof pixels when rendered on a 600-dpi

the line would be too thin in print.

3.2 Coordinate Systems

An importantconsideration in drawingobjectsis the coordinate system of the
drawing and the coordinate system in which the objects are defined in the
application. These coordinate systems may not be the same; this merits care-
ful discussion

3.2.1 Device Coordinates

Device coordinates are the coordinatesof the actual display device. In most
Bene texts, ae origin of the coordinate system is either in the lowerleft
or the center with positive x going to the right and positive ishownin Figure 3-6. 3 nae rE

eli ereranate system is rarely usedfor frame buffers graphicsdisplays, or
printers, because most display devices woé rk from the upperleft anSeger zkEp reason, most devices use the coordinates aay, in ee

cases Aaeeeieerunatss peaeys ponuye tebers, Seroae
ew S where additional i i

by the printer’s processor before actual daniomaie oF neane
Onesignificant ificati

eetaaoeto the use of device coordinatesin displaying
presented with a windowaAoge interface tool kits, the programmeris
Presented to the programmer a fe BAACHOR for the display. This window 8

Sa virtual display on which the programmeris

 Re ——
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Origin at upper left

—_. —_—$—$——

y

Figure 3-7 Device coordinates

Origin at upperleft

 
Figure 3-8 Windowcoordinates

free to draw. Most such systemsalso provide a frame around this window that
allows the user to manipulate the window’s location and size. The program’s
coordinates are placed inside of the window as if the frame did notexist, as
shownin Figure 3-8. The programmerthentreats the window asa display in
and ofitself and generally ignoresthe larger space of device coordinates.

Window coordinates and sizes, like display coordinates and sizes, are
almost always expressed in pixels. Because some windowscan receive mouse
events that are outside of their boundaries, mouse events in some systemsare
reported in display coordinates rather than window coordinates. It is impor-
tant to know howa particular system handles mouse coordinates so that the
appropriate conversions are doneto makethe input coordinates and the draw-
ing coordinates consistent.
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3.2.2 Physical Coordinates hen dealing with display
Pixel-based device coordinates can be a BOO ret is 20 pixels long on a
devices of varying resolutions. For example, a line 4 ; laser printer. What we
1024x1024 screenappears very differently on a ne its, such as inches, cen.need is to specify display coordinates in physical units,

laser printer in termsof inches,
timeters, or printer points.

00 dots (pixels) per inch laserLet us suppose that we want to eek one
Suppose also that we know that this isa é ,printer, The conversion from 5 inchestopixels i

5 inches « 600 dpi = 3000 pixels aeints to the inch. For
Printer points for defining font sizes are defined oF 72 points toa 400-dpi printer, the height of 12-point text would be

12points*Linch , 499 dpi - 67 pixels
72 points

Defining devices in physical units simplifies the formatting of displayseebe used on a variety of media butalso requires a multiplication of every co
dinate by some constant. Because these conversions can cause a performance
problem on low-end machines, sometool kits still present pixel coordinates
as the modelfor devices and leave any conversions upto the application. Laser
printers, on the other hand, have been forcedby their varying resolutions to
present physical units as their coordinate model,

3.2.3 Model Coordinates

In manysituations, the information objects are modeled in coordinates that
are very different from the display coordinates. In a word processoror drawing
package, the coordinates of the model are in physical units for printingbecausetheapplication is modeling exactly whatis going onto the page.

For an architectural drawing, however, the model units are feet or meters
when designing buildings. Thus a scaling transformation is required that
transforms feet, for example, into inches, which can then be used as physicaldisplay units. A possible scaling might be 10 feet to the inch. This wouldmake the total transformation (for an example length of 22 feet) from modelcoordinates to a 100-pixel-per-inch display

22 feet» Linch , 100pixels
10 feet linch — 220 pixels

Theconstants in this formulaca ined jn be combinedinto a simpler formula thatcan be usedon allpartsof the drawingof the building: P
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.. pelbpixe22 feet + —“BIXSI§ _ 720pixelsoot

If, howeve hrT; t > Tar + > }Sraheed, CAUSE he scale of the drawing changes or the display device isn Constants must be recalculated |

3.2.4 Interactive Coordinates
Up until now we
received from Aeate ye considered SERUt Wet aes SeUbRooates
directions whe toler oF other device, the mapping must workin the other
Maree Ent AR £ general formula maps a point in some model coordi-

a particular location on the screen:
ModelPoint= 'DrawScale « PhysicalToPixel + WindowOrigin = OutputPoint
The DrawSca : nespeatpeicesrenatomne this point into physical display units, Physical-

Ceeree S the point from physicaldisplay units into pixels, and theBl ovesthe whole drawing to where the windowis located on
the screen. WindowOriginis definedin pixels.

If a mouse inputis received, it will be defined in pixels relative to the upper
left of the screen, The transformation mustbe reversed to producea pointin
model coordinates. This new transformationis

(InputPoint — WindowOrigin) ;
PhysicalToPixel- DrawScale _ ModelPoint

Weneed to have the input point converted to model coordinates so that we
can use that point as information in changing our model of the application
information.

There are many moreissues involvedin defining the geometric mappings
between application models and actualdisplays. The simple analysis we have
done here is only the beginning. In Chapter 10, we will discuss a more com-
plete system based on homogeneous coordinates and matrix algebra.

3.3 HumanVisualProperties
In order to interactively present informationto users, we need to understanda
little about the human visual system. This understanding is essentialin

that are understandable andpleasing
designing presentations a
to the eye.

nd interactions
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3.3.1 Update Rates

Early moviemakers were limited by their technology in ay numpetor cae
of film that could be presented to a viewerin a second. Conseq y, yi yi ent but it does not look
silent films appear very jerky. We perceive the movem yeehved totiewers
real, Experimentation has shown that when images are presented tc i wersat more than 20-30 frames per second(fps), the images fuse together and
appear to be moving continuously. This is because the frame rate has
exceeded the rate at which the visual system samples the inputsto the retina.
NTSCvideo is 29,997 fps, film is 24 fps, and PALvideois 25 fps.

On a 30-MIPS(millions of instructions per second) computer—the avail-
able rate when this book was begun—there are 1 million instructions avail-
able to update the display frame in 1/30 of a second. Although : milion
instructions seemslike a lot, rememberthat a 640x480display (television res-
olution) has 307,200 pixels, leaving 3.25 instructionsperpixelif every pixelis
to be manipulated between each frame. On a 300-MIPS computer—therate in
commonuse by the time manyof you read this book—therearestill only 32.5
instructionsper pixel per frame. This is a serious problem for video applica-
tions.

For normalinteractive use, however, we do not change every pixel in every
frame; therefore the magic numberof 30 fps for smooth motionis not required
for mostinteractive uses. If the user wantsto drag an object across the screen,
experiments have shownthat 5 updates per secondto the object being dragged
are sufficient to maintain the “interactive feel.” Obviously, improving this
updaterate up to 30 updatesper second will make the movement appear more
smooth and natural. For dragging tasks, 5 updates per secondis the lower
bound for acceptable interaction. This meansthat ourdisplay update process
for dragging purposes, must complete in less than 1 /5th of a second to he
acceptable.

For interactions that are not continuous, such as displaying a new student
record or finding a word in a document, delaysof 1-2. seconds are acceptable
In ae situations, weare nottrying to create a smooth movement but are
visually moving to a new context. Such context movements on the part of

3.4 Graphics Hardware
A brief introduction t0 basic graphics devices is ; idevices for which our images willbeoePEEtaa



 

 

 

Display
controller

Figure 3-9 Frame buffer architecture
 

3.4.1 Frame Buffer Architecture
The Rene buffer, shown in Figure 3-9, is the dominant architecture for dis-
play devices. The graphics package, whichis part of the interactive tool kit
running in the central Processing unit (CPU), sets pixel values into the frame
buffer memory. The framebuffer is the repository of the image thatis being
displayed on the screen.In manycases, the CPU can read the image outof the
frame buffer as well as modify it. Various display technologies use differing
techniques to convert the contentsof the framebuffer into a visible image.

3.4.2 Cathode Ray Tube

The most populardisplay device is the cathode ray tube (CRT), whichis the
basis for standard televisions. For such a device, the display controller scans
the frame buffer memoryfrom top to bottom,left to right to retrieve pixel val-
ues. Simultaneously with this scan of the frame buffer, an electron beam is
scanning acrosstheface of the display in a similar pattern. The display con-
troller modifies the intensity of this beam based on thepixel values found in
the frame buffer. This produces an image on the phosphorof the screen. In
most color displays, there are three beams, onefor each of the primary colors,
red, green, and blue.

The phosphor image decaysbasedonthepersistence of the phosphor. Ifa
long-persistence phosphoris used, the image will not decay by the time the
display is refreshed again. Too long a persistence means that fast-moving
objects have ghosts of the objecttrailing behind. Ifa low-persistence phosphor
is used, then the image will start to decay before the display controller can
redraw it, causing the display to appearto flicker.If the display is refreshed 30
times per second, there is a conflict between ghosting from high-peinielsnes
phosphorsandtheflicker of low-persistence phosphors. On good displays, t Hs
is resolved by refreshing the screen 60 times per second (60 Hz) so that the
user cannotperceivetheflicker. On higher-quality displays, this may go up to
75 Hz.
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ber of suchdispl 5 Bennet This resolu-

Padiution of American SEnats By aeineoez amortize

CRT I sas a tel the developmér aisclavil Good-quality
Ae ll remrinehee, than just over computer atiot 1024x768, with
Chisforcompiter work have resolutions on the at oinig felch higher
eine in the 1200%1000 range and experimentalsyst©

ays 1
The resolution of a huge

tion is determined by the reso”
evision,

4.3 Liqui stal Display3 Liquid Cry tal displays (LCD) because they are
rys n the liquid crys-iquid cMostportable computers use liqui oe kBareelo

flat and have low power consumption. By placing stals is changed. When
tals, the polarization of light passing through cae Bais eitennade Gane:
used in conjunction with polarizing filters, such cry
pareOPAuveisgeEh ‘que where the circuits for con-: assive-matrix techniqueingenscepatllreeae hery of the screen and the settings

h the screen. Thistrolling the crystals are located at the peripher
of the various pixels must be done sequentially throug heelresults in a constant image withoutflicker, but the time required to change
pixel’s color is much slower than 30 fps. Depending on how slow this timeis,

” or disappear whilefast-moving objects, such as cursors, may “submarine” oO!
moving quickly. This is because the cursor has moved from its location before
the display wasfully changed.

More expensive LCDsuse an active-matrix technology that places the con-
trol circuitry for each pixel next to the crystals that are being controlled. This
yields higher-contrast images, much faster times to change pixels, and elimi-
nates the submarining behaviorof cursors.

All LCDsuse a frame buffer architecture similar to that of the CRT. The

difference is that the display controller is controlling the opacity of crystals
rather than the intensity of an electron beam. Similar technology is used by
display devices that have not yet gained a wide market, such as plasmapanels
and others.

3.4.4 Hardcopy Devices

Beycoe are only indirectly involved with the user interface. How-
anae ° the same software techniques—andin a good software Bens n

code—are used to generate both hardcopy and screen output The
d 3

SEMeseomenaesaeroin the frame buffer of a hardcopy
device. ldth is a large factorin drawing on a hardcopy

Oneofthe ol ;plotter. This MeeTa for hardcopy graphical output is the pen
asec’ onthe stroke image model, except that the coor-
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dinates of strok : « : :

h objects are sent to the plotter in physical coordinates. Thelotter then

all of the Tattybechiainatndl, Paper to draw the stroke, This process has
Reed realistic images. : € stroke model, including the inability toodern | ’

ficulty is sukingeana are based on the frame buffer model. The primary dif-
print a standard Ittapgiowware.f the frame buffer requires 3.6 megabytes to
each pageis Prohibitive. Fy ae Communicating this much information for
model. The most nopnlay; ¢ bias reasons, laser printers generally use a region
based on FORTH,2 whieh an nese is PostScript. ! The PostScript language is
driver software. The Believe#1 ye printer to be programmed by the print
straight lines, and the Bdlacee ie cau are regions bounded by splines and
initions. This methodallows rat s the frame buffer from these region def-
and sophisticated images, very compact communication of very precise
HtnearaonDnneey however, the region image modelis not suffi-
Aavba Htc the Guinea os also accept pixel-based images that are then ren-

, printer = frame buffer. Such images are usually much lowerin
resolution than theprinter's resolution, which somewhat mitigates the com-
munication-bandwidth problem,

From the frame buffer a laser writes an electrostatic charge on a drum or
belt. Toner (powdered ink)is attracted to the charges and sticks to the surface
wherever a chargehas been written. The drum orbeltis then rolled across a
piece of paper to whichthe tonersticks. The toner is heat fused to the surface
of the paper so thatit will not rub off. In addition to the standard laserprinter
technology, there areinkjet printers, which use frame buffers of lowerresolu-
tion, and various high-quality color printing technologies such as dye subli-
mation and waxtransfer.

3.5 Abstract Canvas Class

In building our software architecture for the presentation of user information,
we need an abstraction for a drawing surface. We will call this a Canvas. A

tract class that defines the methods wewill use for drawing.
graphics packages provide sucha class.If they

do not, it is essential that the application programmerdesign one.
The Canvas class defines a uniform modelfor drawing on a 2D sae that

can be used everywherein the application. A Canvashas a widthas pis
and defines its physical units. From this peateee!yeSaeeps
cl for a window onthescreen, an 1mage 3
eric ih a file in whichapicture1s to be saved for aieipe
these subclassesis implementederrerjace definedbythe abstract
tions for the output image, DU
class they can all be treated the same.

Canvasis an abs

Manyuserinterface tool kits or
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yng the subclasses to Canvas that must beThere dre 8 ariations am
There are somevariations ] : co| pixel resolution of the Canvas. A screenconsidered, Thefirst is the acta : j

windowthat is 8 inches high cannot represent the same even as a
laser-printed page of the same size. In some cases, the application program

be aware of theresolution limitations of the screen window and
kindof detail it attempts to display. Another majordif-

the pixels. It is important to know if we are draw
ing on a Canvas that only supports black and white or on one that supports
gray scaleorfull color, because it makes a significant difference in the way the
presentationis defined. A third differenceis that some Canvases, suchas a
screen window, can dynamically change size while others, such as a printer

may need to
may needto adapt the |
ferenceis in the capacity of

page, cannot. ;
All modernuser interface packages provide a uniform modelfor drawing on

a 2D surface. This is independentof whator where this surface might be. In X,
there is a standard interface for drawing to windows, drawing to images in
memory, andsavingtofiles. There is no suchinterface to hardcopy devices. In
NeWSand on the NeXT,PostScript is the model for drawing on any drawable
surface, including windows, memory images,files, or printers. The View class
in NeXTSTEPperforms the Canvasrole of providing this abstraction. On the
Macihtosh, the basic Quickdraw package provides GrafPorts as the abstrac-
tion for drawing. In MacApp, the GrafPort features are more carefully
abstractedinto the View class. View has, for example, a subclass called TStd-
PrintHandler that will draw on the printer using the View abstraction for
drawing. Microsoft Windowsprovides the Graphical Device Interface (GDI),
whichis not object oriented but provides a uniform interface for drawing on
various media including the screen. The GDIassociates a particular graphical
device driver with a “device context.” All drawing occurs througha device
context that then translates the drawing commandsinto appropriate output.
In Visual C++, the device context concept from MS Windowsis encapsulated
into the abstract CDCclass, which can handleprinting, windows, files, and
images.

3.5.1 Methods and Properties

Our drawing functionality can be defined in termsof the methods andproper-
He that OLE raneSee provides, The methods can be groupedinto deanite

ines and shapes, drawingoftext, clippiee, ! , Clipping our drawingsso that they do not
#2.ieee of specified portions of the Canvas, and controlling color andce
estenee ate ae fieldsof theclass exceptthat they are accessed byods rather than directly. Thae a y. [ne reason for this form of a
Seeaea set, Be subclasses such as a printer require istota
seat aa iesaerearae oo Properties include the coordinate sys-,,thecurrent drawingcolor, or the line width.

 



 

 

 

 

65
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(X1, ¥1)

(X2, ¥2)

Figure 3-10 Properties of a shape

ll of these p riesaera faplemenryne are accessed by methods on the Canvasclass. The
Pree eh: ation of these methodsis different for each kind of outputsuriace that we are trying to draw onto

3.6 Drawing

acoaraie part mE graphical outputis the drawing of geometric shapes.This section discusses how we model such shapes and also covers some of the
geometry that will be neededas weinteract with these shapes. Text is such a
special case that wetreatit separately.

All graphical shapes have a few properties in common.These include basic
geometry of the shape, line or border width,fill or line color, and a pattern or
texture. For example, the rectangle in Figure 3-10 has its geometry defined by
its two corner points. It has a width and colorfor its border as well as a color
for filling in the rectangle.

We could define ourrectangle facility with a single method of the following
form:

void Canvas::Rectangle(X1, Y1, X2, Y2, LineWidth, LineColor, FillColor]

Such methods, however, are painful to use because of the numberof para-
meters required. In most cases, the LineWidth, LineColor, and FillColor will
be the same for a large numberof rectangles and other shapes.

For this reason, most graphics packages limit their drawing methods to
specify only geometric information.The other properties are handled by cur-
rent settings on the Canvas object. For example, we might provide Canvas
with the following methods:

void Canvas::Rectangle(X1, Y1, X2, Y2)
void Canvas;:SetLineWidth(LW)

long Canvas::GetLineWidth|)
void Canvas::SetLineColor(LC}
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Figure 3-11_Rectangles and their properties (see text)

Color Canvas::GetLineColor()

void Canvas::SetFillColor({FC)
Color Canvas::GetFillColor()

Note that each property has a Set and a Get method. When a rectangle—or
any other shape—is drawn, the settings of the current properties are used to
supply the remaining information. In most systems, these settings are stored
in the Canvas objects; thus they maybedifferent for different windows or
printers. To draw several rectangles, we mightdo the following:

Canvas Cnv;

Cnv.SetLineWidth(1);
Cnv.SetLineColor(Black);
Cnv.SetFillColor(White);
Cnv.Rectangle(50, 50, 150, 100):
Cnv.Rectangle(200, 120, 250, 140);
Cnv.SetFil]Color(Gray):
Cnv.Rectangle(180, 20, 220, 40);

This producesthepicture shown in Figure 3-1],
Current property settings are used wid i ;

method does have some fbsee Heated vAtcecaeeSCRTECS. This
forget to set the properties before drawing the objects. In s rerul, you may
might work, becausethe properties are already correct. Sonicun Cases thisthe program is changed, the properties wil] be different a nae ater, when
drawing code does not work correctly. n suddenly your

Mostdrawingin graphics systemsis performed in termsof
itives and text. The geometric primitives can be divided into Seometric prim-

Paths and closed

 



 
 

(X2, ¥2)

(X1, Y1) 
 Figure 3-12 Control points ofa line 
 
 
 

 shapes. We only dis ;eS are Leena: the basic geometries of these shapes in terms of how
détails of haw ta y the programmer. You must consult a graphics text for the

convert these shapesinto pixels on a screen or page.

 
3.6.1 Paths

The first set of geometric objects we discuss are paths, or 1D objects that are
drawn in a 2D space. The simplest description of these objects is that they
have no inside or outside; they are infinitely thin. Most of our geometric ques-
tions involve paths. Whenpathsdefine the borderof a filled shape, the geome-
try of the shape is determined by the geometryof the path, which is its border.
Thepathsthat we discussarelines,circles, arcs, ellipses, splines, and complex
piecewise paths.

Lines

Lines are the simplestofall paths and provide the easiest geometric solu-
tions. Figure 3-12 showsa line andits control points. Control points define
the line’s geometry and we use them to compute the coefficients for our line
equations.

Circles
The next most interesting geometric shape is the circle. The simplest

modelfor a circle is defined by its center and its radius. The radius is not a
lest geometry. Circles can also becontrol point but it does provide the simp |

defined by their center and some point on the circumference of the circle, as
shownin Figure 3-13.

Arcs | )Arcs are fragmentsofcircles and as such use the same equations as circles.stricted part of the circle that forms theThe question is how to define the re 3 2 }r sing the parametric equations for a circle andarc. This is most easily done by usin ors,
restricting the parameter values; this geometry 1s discussed in Chapter 9.
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(Xp, Yp)

(Xe, Yc)

“es aTa _

Figure 3-13 Geometry of a circle

Figure 3-14 An ellipse

Ellipses and Elliptical Arcs

There are two major classes of elliptical shapes to consider, The simplest
classis thesetof ellipses whose major and minor axesareparallel to the x and

class of shapes is more computationally expensive. There are applicationswherethe general class of ellipses is required, but we can go a long way with-out them.For our discussion, werestrict ourselves to the ellipses aligned withthe x and y axes, as shown in Figure 3-]4.
Splines

Piecewise Path Objects
The path objects defined so f na

drawing needs, Paths suc eh oeetally notsufficient for all of our
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Figure 3-15 Piecewise satis

 
Figure 3-16 Closed Shapes

is, whether the pieces connect smoothly or whether thereis a sharp corner.
Issues of how to ensurecontinuityare discussedin Chapter 9,

3.6.2 Closed Shapes

The graphical objects described above only draw lines. Frequently we want
closed shapes thatcanbefilled, as shownin Figure 3-16. Theyare generally
defined by a border, whichis a path object. The filled shapeis defined asall
points lying inside of the closed shape. The definition of the inside and the
outside of a closed shape will be deferred until we havea better definition of
the geometry of these shapes.

3.7 Text

The drawingof text is one of the most commonneedsin graphical userinter-
for a variety of labeling and informa-faces, not only for text editors but also

tion presentation needs. Unfortunately, this can be one of the more oO
parts of an application, due to the wide variety of textual representations ;ha
have evolved over time and the various mechanisms used for representing
them.
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Courier (fixed-SPpece font)
Avant Garde (sans serif)
Helvetica (sans serif)
Times Roman (serif)

Figure 3-17 Font families

3.7.1 Font Selection | Ly
Thefirst task in drawing graphicaltext is to select oe font iWedhe to
is to be drawn. There are a variety of ways 1n which Beeose ed, i re
general there are three primary arguments: the font family, the sty! ce, an the
size. The font family defines the general shape of the characters in the font, as

in Figure 3-17. ‘ere satel! Fonteeaivnee monospaced or fixed-space font, meaning that
every character in the font has the same width. Fixed-space fonts worklike
typewriters and character-based terminals. Alignment and spacing of charac-
ters is very easy, but the resulting text is not as pleasant to read noris it very
space efficient, since the character “i” gets the same space as “G.” The
remaining fonts shownin Figure 3-17 are proportionally spaced fonts. Each
character hasa different width depending uponits needs.

The Times Romanfont is an example of a serifed font. Each vertical stroke
that reaches the baseline hasa little foot, or serif, on the bottom. The Avant
Garde and Helvetica fonts do not have such serifs. Compare the “i” in Times
Roman with the “i” in Helvetica. When characters from a serifed font are
strung together, the serifs tend to form a line, which visually defines the line
of text. This facilitates eye trackingacross the line while reading. In general,
long lines of serifed text can be read more quickly than sansserif text because
the eye has less difficulty in horizontal tracking. The advantage with serif
type for reading on paperdoes not necessarily hold true for reading on screens
due to resolution problems. With lowerresolutions, the serifs ma make let-ters harder to discriminate. y € et

Font Style

Within a fontfamily, there are frequentnily, y a variety of sty]Thesestyles are variationson thebasic character shapes Bra pt font face.
3-18. Own in Figure

On somesystems, various styles such as Times Roman bo
completely separate fonts. On other systems, they are sean ld are treated asate fonts but are
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Times
Helvetica

Tj

Ae Helvetica bold
cesaat Helvetica italic

Old italic Helvetica bolditalic
Figure 3-18 Font styles

9 point

10 point

12 point

14 point

18 point

24 point

36 point
Figure 3-19 Fontsizes

grouped together within families. On the Macintosh, there may only be a
Times Romanfont, and the font system automatically distorts the base font
to create bold, italic, and outline versionsof thefont.

Font Size

The third primary control on font selection is the font size or vertical
height of characters. This is usually expressed in points, where 1 point = 1/72
of an inch, as shownin Figure 3-19. A pointis a unit of measure that has car-
ried over from printing. Unfortunately, in many systems the point size of a
font is only loosely related to the actual vertical size of the charactersas dis-
played on the screen. The problem lies in the low resolution of many graphics
displays. Some more complex fontsare slightly larger than their point size
would indicate because that is how many pixels are required to clearly display
characters in the font. On mostlaserprinters, however, the pointsize of a font
accurately reflects its height.

Theset of things that can
ily, style, and size even thoug |
Other controls vary widely with the particular w

be specified abouta fontis not restricted to fam-
h these are the most common specifications.

indowing system being used.

———x———“|
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Width

Figure 3-20 Fontsize information

ion i in developing applications that port fromFontselection is a major problem in ¢
one system to another. In fact, porting a drawing or document Beeeen
machines that are running the same windowing system cen ca 5 oO P 5lems becauseofthe differences in the fonts actually installed on the machine.

3.7.2 Font Information

Havingselected a font family, style, and size, there is a variety of information
we need to know about the font in order to display text at the appropriate posi-
tions on the screen. Consider the characters in Figure 3-20.

As with thefont family, style, and size, there are a variety of ways in which
font geometry is represented. Figure 3-20 showsthe general characteristics,
although these vary amonggraphics packages. The most useful piece of infor-
mationis the height since that indicates how muchvertical space should be
allocated to accommodatea line of charactersin this font. The leading is the
space between multiplelines of text. In some systems, the leading is incorpo-
rated into the heightofthe font. In some,it is an additional parameter on the
font. In others, the leading has to be handled separately by programmers usingthe font.

In most systems, the vertical position of text is indicated by the y coordi-
nate of the papelipe: Note that in the case of the character “pumadamauthe® . if

owest extentof the line of text. The distance between thebaseline and the
lowest extent of any character in the font is the descent. The dist

ancebetween the baseline and the highest extent of the font is the ascent. Th
. These

neededto position text vertically, Ormation normally
Horizontal positioning oftext is a little more

width of each character may vary. All wi
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rately. The very;rtical o =4

thinetee vary frotheMnriorene are uniform for an entire font. The horizon-sc acter toc . 4s > c 4 3 * :fixed-spaced fonts such as eines haracter, The only exceptionsto this are

3.7.3 Drawing tex¢
In most systems d ing text j
in which all followingwe oor * relatively eietapack
baleenbe nnin: anid ae ext will be drawn. For each text string to be drawn, a

© string to be drawnare specified, for example: ;Canvas Cnyv:

Cnv.SetFont( “Times”, Bold, 10):
Times Roman; bold; 10 peda

Cnv.Text (10, 20,”"This is the text”):

ost position ofmost p the first character. Thereare other alternatives, however. We
he reference point defines the bottom
he baseline. We could also specify that

the x coordinate defines the center or rightmost position of the string. Some
systems provide only reference points at the leftmost baseline, since all of the
others are easily calculated by programmers using the system. MS Windows
on the other hand, provides a SetTextAlign routine that sets the current align-
ment for subsequentreferencepoints. This allowsfor all of the possible vari-
ants.

Suppose we wantedto output multiple lines of text that are appropriately
spaced depending on the font being used.It is never wise to hard-code font
heights and widths because sooneror later some user will wanta different
font and all that code will need to be rewritten in order to accommodate the

newflexibility. To solve this problem, wecan usethefont height information,
as follows:

Canvas Cnv;

long Height;

Cnv.SetFont(“Times”, Plain, 12);

Height = Cnv.GetFontHeight(); 4 wr
Cnv.Text(10, 20, “This is the first line iis ee
Cnv.Text(10, 20 + Height, “This is the second Vine hi
Cnv.Text(10, 20 + 2*Height, “This is the third line”);
For an arbitrary numberoflines, this is done in a loop incrementing the y

Position by Height each time.
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“gome bold text” on a single
trings with different fonts,

her. This can be done
A slightly more complex acaaE .

line. This string must be output as aSqe : ech aandthey mustbe correctly positioned relative t«
as follows:

Canvas Cnv:
long Width;

Cnv.SetFont("Times”, Plain, 12);
Cnv.Text(10, 20, “Some”);
Width = Cnv.StringWidth(“Some”);
Cnv.SetFont("Times”, Bold, 12);

Cnv.Text(10 + Width, 20, “bold”);

Width = Width + Cnv.StringWidth(“bold”);
Cnv.SetFont(“Times”, Plain, 12);

Cnv.Text(10 + Width, 20, “text”);

These two examplesillustrate what is necessary when outputting strings in
multiple fonts. If we were faced with multiple lines and varying fonts perline,
we would need more complexcalculations of line height and width.

3.7.4 Outline vs. Bitmapped Fonts

In order to draw a textual character into a frame buffer or onto some other
pixel-based display, we must knowtheset of pixels that make up the charac-
ter. In many windowingsystems, fonts of characters are simply defined as the

que is verybitmaps,or set of pixels, that make up each character. This techni
efficient but it has several problems. Whenthe size of the font is very large,
the amountof space requiredto store all of the bitmaps becomes a problem,
especially when eachfont size requires a separate set of bitmaps. Thisis even
a problem with small font sizes when drawing onto high-resolution printers.
At 300 dpi, a 10-point font can take over 20 KB of space. A /2-pointfont at 300
dpi would take 1.4 MB, Using very manysizes of a particular font can easilyconsumea large amountofspace,

Toresolvethis problem, many systems now representfonts by storing char-apie as closed shapes, This means that only the outline needs to be stored, as
ev inFigure 3-21. Theoutline of the letter A is stored as a piecewise pathof ‘ines andsplines, or on some systemsaslines andelliptical arcs. Such char.

—«=a
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Figure 3-21 Outline fonts

 
Figure 3-22 Editing a line of text

3.7.5 Character Selection

eeHettacJ eter.aAseee ms interfaces, editing text requires that theeter are be able to select a given acter in a ivea specific mouse position. Take, for eeaie Ainaneaaa
Figure 3-22. The problemis thatthe sizes of each of the characters are differ-
ent. All systems that Support proportionally spaced text provide a mechanism
for obtaining the width of each characterfor a given selected font. On most
systems, there is a single call that returns an array of character widths. Index-
ing this array with the ASCII value of a character yields the desired informa-
tion. The algorithm for selecting the character, then,is as follows:

Canvas Cnv;

iNgotmhinglert, =

The leftmost location where the string was drawn.
int Mousex, =

The X coordinate of the mouse location.

ehanits thy, =

A pointer to the string being edited.
int CharWidths[256];

Mmeorr xs Stren;

Cnv.SetFont(“Times”, Plain, 12);
Cnv.GetCharWidths(CharWidths);

StrLen = Length(Str);
{= 0;

X = StringLeft;
while(I < StrlLen && X < MouseXx)



 
se 3 BASIC COMPUTER GRAPHICS

 
Figure 3-23 Selecting text from among multiple lines

{
y=xX + CharWidthsL Str[I] J:
Te I +1;

}

Selected characteris at Str[I-1].
dtosSometimes, as in Figure 3-23, there is a nee ap

within multiple lines of text. In this case, we must take ae ha
height in determining whichline of text is being selected. The &
rithm for this is as follows:

1. Computethe line of text being selected using the yp
and thetext height plus leading.

2. Starting at the beginningof the text string, run through the string, count-
ing new line characters, until the beginning of the appropriate line is

elect a text point from
ount the text

1 algo-

osition of the mouse

found.

3. Apply thesingle-line selection algorithm described above, starting at the
beginningofthe line of text.

3.7.6 Complex Strings

Ourdiscussion sofar has covered the drawing of simple strings of ASCII text.
Somegraphics packages support the creation of compoundstrings that con-
tain additional formatting information. The simplest of these include style
information such as, bold, italic, or change of font. These issues complicate
selection and computationof text height.
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3.8 CLIPPING «The prob]

7 em is com li A+ | 7garian that us plicatec Slight] iEARN S¢ the c¢ oe Sitly by languages such as :Cyrillic fonts Can ‘sc aree different Gyrillie alphabet oe or Bul-
Reeee characterg, es . ee that Map the 256 values in a byte age adsess
pletely differen, a ie Mapping of 8-bit integers into characte fas € appro-

However,there ir ee but the software techniques are identical ani. 4re langiace ve ical,

ten ont to left insteadorporesuch as Hebrew and Arabic—thatare writpoint for drawin aC OF left to right. This oe :EZ and the is means that the text referenceBecause of the worldwide. algorithms for text dalection ae it Wea
e use of En : : / ‘ 7 -rseqa.glish in technology, users of such lan-

right and right-to-left text
Oriental language

ivtidite thaya Sone as Chinese or Japanese, use ideographic represen-
gle word or a word Dacca of characters, each of which representsa sin-
frequently written top to Kod Except for the fact that such languages are
mdiaie ane the cain ea eet instead of left to right, many of the algo-

188est problem is that there are far more than 256
larger font ar ire

eee Heeeee eae languages—with thousands of characters—also
¥ Problemsin addition to the graphics problem of drawingtext strings.

In order to ibe truly international, an interactive application must support
ieae of a variety of languagesin a single drawing, document, or data-
Bie Nae more general character representations such as UNI-

CODE, which attempts to define a 2-byte encodingforall of the world’s major
written languages.’

3.8 Clipping

The clipping problem arises when we wantto limit drawing to a particular
area of the screen. Thereare a variety of cases in which this might occur. The
simplest is clipping to a rectangle, as shown in Figure 3-24. This is a com-
monly used form in computer graphics for clipping displayed objects to the
bounds of the window in whichtheyare to be displayed.

The rectangular-window clipping model is not sufficient, however, for
most modern windowing systems. As Figure 3-25 shows,atleast rectilinear
clipping regions are required. If any drawingis to be done on the window in
the back, all of its output must be clippedto the rectilinearvisible region that

s are laid over the top. And as shownin pepeodate
remains when other window !
3-26, such rectilinear regions must allow for holesif they are to accomm
all of the cases.
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dl
Figure 3-24 Rectangularclipping
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Figure 3-26  Rectilinear region with holes

3.8.1 Regions

wee sed as the basi adexactvisible area. Thecritical consid basis for clipping objects to the~~" Consideration when choosing a particular
of region as thebasisfor clippingis the complexity anesPeanaiinweee



 
 
 

 

 

79

87 CLIPPING &
intersections of
of the region.

the j iegraphical objects that are being clipped and the boundaries

Types of Regions
As noted above, the sim

commonregion definition i Tre i
finear remont ats cee n current windowing systemsis rectilinear, Recti-
SRA edesean rine hi - apes with their edges defined entirely by vertical
about the simplest PMRaaee with vertical and horizontal linesare just
fuuneas OFsuchvepies netry to compute, that, coupled with the general use-i ions, is the r¢

Rcrmeaiandowing ; } reason they are used so frequently,. : ysten jered i
generalization of the ecitlis support clipping to arbitrary polygons, which is a

: : 1 ine€arregion in that thelines are not restricted to

plest clipping region basis is rectangles. The most

PostScript- ;Nilespokercet such as NeWS or NeXTSTEP,canclip to any
€d with a combination of lines and curves. This is ahighly flexible and powerf : , ;ition coca tke ‘lenin ul model butit requires significantly more compu-

Some systemssupport clipping regions that are defined as pixel masks. A
set of pixels with a 1 value is defined for th saan
region.If a given pixelis 1, then ob; in the entire area within a bounding
pixel. If the pixel is 0 then Neary rawn in the region will show at that
model is very fast when handled se oe will not show atthat pixel. Thise lowest levels of the system where
objects are actually scan-converted to pixels. Also, the model is very powerful
in that any shapedregioncanbe defined.It is not very space efficient, how-
ever, andit has the problem of being very resolution dependent. One alterna-
tive is to define the clipping region as complex curvedor polygonal shapes and
then to scan-convert those shapes to a pixel mapat the particular desired
screen resolution.

One mechanism for reducing the space requirementsof pixel-based regions
is to run-encode them.For a given horizontal line of pixels, the 1s and Os are
grouped together.Insteadof storing each 1 or0 for each pixel, we canstore the
numberof 1s and Os in a row. Consider the shape in Figure 3-27. For any given
horizontal line, there is a string of Os for the empty spaceto theleft, a row of
1s for the space inside the shape, and a row of Os for the empty space to the
right. By storing just three numbers, we represent all of the shape information
on any given row.

Set Operations on Regions
When working with a clipping region,

as a set of points on the 2D plane that
work with the region in terms of set oper

it is helpful to think of such a region
lie inside of the region. We can then

ations. Throughout therest of the
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ping regionFigure 3-27 An arbitrary clip

 
Figure 3-28 Set operations on rectangles

yle of clipping region thatis supported by a
hem as abstract objects defined inbook, we ignore the particular st

interested in are union, intersec-given graphics package and simply treat t
termsof sets. The set operations that we are
tion, and difference.

Closure A most important property whenconsidering types of regionsis
closure under the set operations. Closure means that given someset, the

hat set will yield a memberof theresult of any combination of operations on t
sameset. Take, for example, the rectangular regions A and B in Figure 3-28.

Notethat the union A U B is not a rectangle andthat the difference A — B is
also not a rectangle. The intersection A 4 B is a rectangle. This example illus-
trates that rectangular regions are closed underintersection but are not closed
under union or difference. This lack of closure can be a problem in termsof
the usability of a particular class of regions.

We can overcome the closure problems with rectangular regionsby repre-
epee.ee i a list of nonoverlapping rectangles rather than asa single
as mL 2Oe ; ene are closed under union anddifference. In Figure
gaeee presentAU B bydividing B into three small rectangles, oneofisAB and the other two of which mak hferalAsm ie deluauetieracne e up the remainderof B. The
be representedbyslicing A into thr fapeianges om F. SintSe
them. Anyrectilinearregi Ba areuct Techaneles and(aaa

gion can be represented by a list of rectangles.
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Abstect Class for a Region1e ; i

apresunis of this text, we assumethatall regions arerectilinear and
a of lists of rectangles, Aj] subsequent uses of regions, however,are based on the abstract Region class that has the following methods:

Region Region::Union(Region]
Returns 7 ; i
one * 4 region that is the union of the target region with the argu-

Region Region::Intersect(Region)
Returns a i ; ; i
aieregion that is the intersection of the target region with the

Region Region::Difference(Region)
Return: ;insall parts of the target region that are not in the argument.

int Region::IsEmpty()

Returnstrueif the region is empty andfalse otherwise.
Rectangle Region::Bounds()

Shas the smallest rectangle that completely encloses the region.
int Region::IsInside(Point}

Returnstrueif the pointis inside of the region andfalse otherwise.
Region MakeRegion\(basic primitive shape)

Constructs a region from a basic primitive object.

In addition to the set operations, there is also a methodfor determining the
rectangular boundsfor a region, used for quick tests on the region before con-
sidering all of the complexity of the actual region definition. The IsInside
method is used with mouseselection to determineif the region has been
selected.

By using these methodsonthe abstract Region class, we can take care of
mostof our userinterface needs. We usethedifference operator extensively to
handle problems with overlapping windows.

In order to use regions, we need to augmentour abstract Canvas class with
several methods,as follows:

Region Canvas::BoundingRegion()

Returns the regions that define the outside of the canvas.

Region Canvas::VisibleRegion()

Returns the region of the canvas actually visible through all other
canvases that might be overlapping.
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egion) ; i.a . F ction of the argument and the
n to the interse his is Anadwed) DBE

void Canvas::SetClipRes!O”

ure drawing (untiSets the clipping regio
visible region. All fut
clipped to this reg10”- —

Region Canvas::GetClipRegion|}
Returns the clipping resto”.

The BoundingRegion method returns afr
; iti es

rectangular in their definitions. oe som ‘ od 2windowscan be defined. The visible regio Vag ehall windowsthatlie in
its bounding region minus the bounding regic "ig very important for draw-
front. As will be discussedlater, this visible regio used to restrict drawingto
ing informationefficiently. A clipping Plates regions will be used exten-
some smaller area inside of the canvas. Clipp n displayed informa-: anges 1sively when updating the screen 1n response to chang
tion.

ause windows may not be
uch as X, nonrectangularegion bec

for a window canvas is defined asystems 5

3.9 Color

To understandthe use of color, it is important to understand how the human
of the eye is covered with two types of lighteye perceivescolor. The retina =
ds are sensitive to a broad spectrum oflight.sensors, rods and cones. The ro et

Becausethe rodsare sensitive to a broad spectrum, they cannot discriminate
betweencolors, they primarily sense light intensity or shades of gray. In con-
trast, there are three types of cones. Becauseof variations in pigment in the
cones, each type is sensitive to a different band of the light spectrum. In
humans,thereare conesfor red, green, and blue.

The eye does notdirectly measureall of the wavelengths ofvisible light.
Forexample, yellowlight, whichfalls in the spectrum between red and green
excites both the red cones and the green conesand thus gives a visuals
tion of yellow light. The samevisual sensati foesee pu ua! sensation of yellow can be produced bysimultaneously providing somelight in the red band andband. The h et ed | some in the green

uman eyeis incapable of differentiating between light in thlow wavelengths andlight that consists of both red andgree ne e yel-nThefact is exploited by color modeling systems. Eaenie)SeanepeS-

3.9.1 Models for Representing Color
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bag RGB Color Model1e€ Mixi 5

tion of SobaMeraeatees renauctaen of light to produce the visual sensa-
displays. We can Srcdacdcaveat wavelength forms the basis for all color
varying intensities of the ceed e humanvisual sensations of color by using
shownthat the human cH —e colors red, green, and blue. It has also been
This meansthat wecan re Fant only distinguish about 64 levels of intensity.
retina using6 bits for each Lae all of the colors that can be sensed by the

The 64levels of intatane ary color, or a total of 18 bits.
the sensitivity of the etal y, Neesat only accountfor retinal sensitivity, not
light that enters the eye analat AREAAnite The pupil, by varying the amountof
larger range of light intensit indaid mptifia) BtLaWe Se eyeeecea tre
as well as in a dark basement:# allowsusto function both in bright sunlight: . For most readin d oth facomputerscreen, the pupil only makes mj : g and other uses of a comp
of intensity for each prim Ss minor adjustments. This means that 256 levels
PeeleWe thiswnduunt ey color are more than adequate for human visual
bits (3 bytes) per pixel There: all computer displays represent colors with 24
per primary color but the nadie frame buffers with a greater range than 8 bitstion functions, rath itionalbits are for image processing or composi-

Mant nese er than for visual presentation of information.
the canvas by s Seaae allow the programmerto set the currentcolorof

di y specifying the RGBvalues of the desired color. This color isthen pees subsequent drawing operations. Because a color can be repre-
sented in 24 bits, it is frequently represented by a single long word with spe-
cial functions that assemble and extract the RGB componentsof the color. We
can augmentour canvas with the following methods:

 
long MakeRGB(int Red, int Green,int Blue);
int GetRed(long RGB);

int GetGreen(long RGB);

int GetBlue(long RGB);

void Canvas::SetColor(long RGB);
void Canvas::SetRGB(int Red, int Green,int Blue);
long Canvas::GetRGB();

s, we have chosento represent eachof the col-
ors red, green, and blue with an integer number between 0 and 255. In other
systems that wish to remain more independentof the color resolution,red,
green, and blue are each represented by a floating-point number between 0.0
and1.0.

For our abstract Canvasclas
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whatdisplay devices must
5 not a very good model

s are asked for the
they are very hard
he hue, saturation,

e delAichiugh thenCaanenaL accurately repreee a
use to produce color sensations1 igowesa le, if user
for users to express a particular color. Forampeloney
RGBvaluesthat represent the color of a mani aneee
pressed to doso. For this reason, many user interla
and value (HSV) system for specifying colors. ies

Huerepresents the primary wavelength of 1 rife might be red, yellow,
whatthey think of when they think of color. T f iensity or brightness of
orange, green, cyan, blue, or purple. The valueis the * teeange hue with verythe light. Thus we havelight red or dark red. A yellow
low value would produce brown.

Saturationis a little morediffi
the primary light wavelengthis. If there 1
color is highly saturated. On the other hand,
red light but also a lot of blue and green. T.
still red and the value or intensityis unchang
than red. With pink, which has low saturation,
with the red color. High saturation means a very pure CO
tion meansthata lot of white or gray has been mixedin.

The HSV modelis directly linked to the RGB model, which is required for
actually drawing on the display. The code for converting between HSV and
RGB is somewhatcomplicated but not excessively.*

most people, this is

ure of how pure

d light present, then the
be the same amount of

ary wavelength is
ed, but the coloris pink rather

there is a lot of white mixed
lor while low satura-

cult to explain, it is a meas
s only re
there may be
he hue or prim

The CMY Color Model
For people trainedin thevisual arts, such as painting andprinting, coloris

not defined in terms of mixturesof light but rather mixtures of pigment. A
pigmentgets its color from the light that it absorbs (does not reflect). For
example, a green piece of plastic appears green not becauseit is generating
green light but because it has absorbed thered andthe bluelight andis only
reflecting green.

For mixing pigments, the cyan, magenta, and yellowThese are called the subtractive eytte red, SEoe
additive primaries. Each of these colors correspondsto theabsence of one of
eesprees. ByAe aie when thereis no red, magenta indicates, and yellow is whatis left when bluelight is removed. Mixithe subtrac ved. Mixingall of
aah HMRaeproducesblack rather than white because whenall

In the printin aiaries are mixed, all wavelengthsare absorbed.
addition to ait agents ud HesiSROaaa
printing andink rather than the mie lis need for black is a propertyof
greater contrast and clarity can be eemixing. of.colorsjineesaaam
actually using black ink rather th . leved through the printing process byan by mixing the CMY pigments to produce
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black. (This is the basis for four- aig ; ‘
withK standingfor black.) our-colorprinting, the system acronym is CMYK,

3.9.2 HumanColor Sensitivity
humanretjarte:000,000ae Throximately 7,000,000 cones and between 75,000,000

sensitive to variations | ese numbers mean that humansare 10 times more
color wavelength of|; rePage than they are to variations in hue or thedetail between two ht. This also means that our ability to discriminate fine

areas that have different hues but similar intensity ismuch worse thanourabi]j at : milthan hue. ility to distinguish details that vary in intensity rather

to distinguish betweenthe two. This meansthat 90% of humanvisual capac-
ity 1s useless in reading the text. In the case of dark on light, however, the rods
can distinguish between text and background and can thus contribute to
resolving the shape of each character.

Theability of the retina to distinguish differences of intensity is not uni-
form acrossthevisible spectrum. The eye is muchless capable of distinguish-
ing intensity at the fringes of the spectrum (deep red andviolet) than it is in
the center where the yellows andgreens are found. Reds and blues are less
easy to resolve than othercolors. This meansthat putting blue text on a dark
red backgroundwill cause problems because weare forcing the eyeto distin-
guish detail in the areas of the spectrum whereit is least capable of resolving
differences.

In termsof usability for all people, we must remember that many segments
of the population are colorblind. In 1% of the male population, oneofthepri-
mary colors cannotbe sensed. A protanope(red blind) individual is not able to
pick up the red primary; for such a person, bright cyan (green and blue) cannot
be distinguished from white. A deuteranope cannotdetect the green primary,
and the very rare tritanope cannotsensethe blue primary. In mostsituations,
this is not a problem because mostof our visual processing depends on the
rods, which are sensitive across the entire visible spectrum. Whatthis means,
however, is that we mustnot presentusers with visual tasks that require dis-
crimination based solely upon hue. There mustalso bea contrast in value or
intensity.

In addition, the rods and conesare not distributed uniformly across the
Tetina; there is a central area that has a much higherdensity. This high density
of sensors allows muchsharperresolution of images.It is this part of the eye

 



EEE——————

jg makeup of the eye ace modate such a narrowthat we use in reading. Thi ssed earlier. We accom
focus of visual attention di8c¥ ;
focus by moving our eyes-

3.10 Summary the images that are a central
i vered the basics of drawing drawing is the questionaltCESBRicAlanPeREHOD. Central to the processof Device coordinates are

of the soordinats system used to specify theseewhich images are to be
those actually supported by the device or system’ndependence by specifying
drawn. Physical coordinates provideresoNon Model coordinates allow an
the physical size of the images that are drawn. nted rather than thePts ‘ epreseobject to be specified in thesizeit is actually being Paas these coordinate
size in which it is rendered. The transformations
systemsare discussed in moredetail in Chapter10. Bee
only a brief introduction has been given for outputee ieFacicolay

monofthese devices are the cathoderay tube (CRT), the TUS ai stems, we
(LCD), and various hardcopy devices. For purposes ofeeae iisscan
encapsulate all of these in the abstract Canvas class; using this a oaat
draw on any device regardless of its implementation. The actu Sieeat:
image creation are handled in the implementations of the various subc :
of Canvas. Most of the drawing on a Canvasis done in termsof geometric
primitives such aslines, circles, ellipses, arcs, and splines, or combinations of
these primitives. Closed shapes are also formed from such geometries. Such
stroke models for graphics objects are easy to specify and manipulate, butulti-
mately they must be converted to pixels for printing or display. It is also fre-
quently the case that rectangular arrays of pixel values can be drawn on a
canvas. Such direct use of the image model supports painting and image
manipulations.

Of special interest is the drawing of text, which is complicated by a variety
of factors related to various fonts. Outline fonts have clear geometric defini-
tions while resolution-dependent, pixel-based fonts provide speed at some
cost of space. Fonts with variable sizes and variable Spacing pose additional

felgorithmic problems whenthey are being drawn andselected. International
;ones which will become increasingly important, also complicate the prob-

| The concept of clipping to restrict drawin
introduced. This is the basis for most
other interactive techniques. Clippin
abstract Region class, which provides
able space. The geometry of

wing to a defined region has been
windowingandfor a wide variety of

g has also been encapsulated in the
set Operations on regions of the draw-

Fegions is discussed in Chapter9.
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The SPECification of coloris also important. We deceive the human eye in
terms of color by only presenting mixtures of red, green, and blue (RGB). This
physically based modelfor color, however, is not very intuitive. Instead, the
hue, saturation, and value (HSV) modelis a better way to express intendedcol-
ors. For those trained in the visual arts, the cyan, magenta, yellow, and black
(CMYK) model Mirrors the behavior of pigments rather thanlight.

Throughoutthis chapter, human issues have also been addressed. When
which those images changeis impor-drawing images on the screen, the rate at

tant.If we draw changesfaster than 30 times per second, the changes fuse into
continuous motion becausethis rate is faster than the samplingrate of the
humaneye. If we move Something across the screen, a redraw rate as slow as 5
times per second preserves the “fee]” of movementeven if the movement no
longer appears smooth to the eye. When drawingtext, the notion of serifs,
which aid the eye in tracking across lines of text while reading, wasdiscussed.
Finally, the issues of color perception were addressed, in particular the fact
that humansdifferentiate light and dark far better than variationsin color,
and the fact that resolving detail in the blue andred areas of the spectrum is
muchharderthanatthecenterof the Spectrum in the green and yellow bands.


