UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

MYLAN PHARMACEUTICALS INC.,

Petitioner,

v.

NOVO NORDISK A/S,

Patent Owner.

Case No. IPR2023-00723

Patent No. 8,129,343

DECLARATION OF DR. CHRISTOPHER J. SOARES, PH.D., IN SUPPORT OF PETITION FOR *INTER PARTES* REVIEW OF U.S. PATENT NO. 8,129,343

DOCKET

TABLE OF CONTENTS

I.	INTRODUCTION		
II.	QUALIFICATIONS AND BACKGROUND 7		
	A.	Education and Experience; Prior Testimony7	
	B.	Legal Standards and Materials Reviewed10	
	C.	Scope of Work	
III.	PERSON OF ORDINARY SKILL IN THE ART14		
IV.	THE '343 PATENT		
V.	CLAIM CONSTRUCTION		
VI.	SUMMARY OF OPINIONS		
VII.	BACKGROUND ON DRUG SYNTHESIS		
	A.	Drug-Structure Optimization	
	В.	Peptide Synthesis	
VIII.	SCOPE AND CONTENT OF THE PRIOR ART		
IX.	SPAC	POSA WOULD HAVE BEEN MOTIVATED TO USE A DI-AEEA CER AND C ₁₈ FATTY DIACID WITH A REASONABLE EXPECTATION UCCESS	
	A.	The POSA would have been motivated to modify liraglutide by adding a di-AEEA spacer to the existing glutamic acid linker with a reasonable expectation of success	
	B.	The POSA would have been motivated to modify liraglutide by acylating a C18 fatty diacid onto the di-AEEA spacer via a glutamic acid linker with a reasonable expectation of success	
Х.	A POSA WOULD HAVE ARRIVED AT THE CLAIMED INVENTION THROUGH ROUTINE EXPERIMENTATION OF KNOWN VARIABLES 80		
XI.	CON	CLUSION	

TABLE OF ABBREVIATIONS

Full Name of Cited Reference	Abbreviation
U.S. Patent No. 8,129,343	'343 patent
Accardo, Physicochemical Properties of Mixed Micellar Aggregates Containing CCK Peptides and Gd Complexes Designed as Tumor Specific Contrast Agents in MRI, 126 J. AM. CHEM. SOC. 3097 (2004)	Accardo
Adelhorst, <i>Structure-Activity Studies of Glucagon-like</i> <i>Peptide-1*</i> , 269(9) J. BIO. CHEM. 6275 (1994)	Adelhorst
Albericio, Orthogonal Protecting Groups for N(alpha)- amino and C-terminal carboxyl functions in Solid-Phase Peptide Synthesis, 55(2) BIOPOLYMERS 123 (2000)	Albericio
Amblard, <i>Fundamentals of Modern Peptide Synthesis</i> , <i>in</i> PEPTIDE SYNTHESIS AND APPLICATIONS 3 (John Howl ed., 2005)	Amblard
Autio, Mini-PEG Spacering of VAP-1-Targeting ⁶⁸ Ga- DOTAVAP-P1 Peptide Improves PET Imaging of Inflammation, 1 EJNMMI RSCH. 1 (2011)	Autio
Baggio, A Recombinant Human Glucagon-Like Peptide (GLP)-1–Albumin Protein (Albugon) Mimics Peptidergic Activation of GLP-1 Receptor–Dependent Pathways Coupled with Satiety, Gastrointestinal Motility, and Glucose Homeostasis, 53(9) DIABETES 2492 (2004)	Baggio
Bhattacharya, <i>Crystallographic Analysis Reveals Common</i> <i>Modes of Binding of Medium and Long-Chain Fatty Acids</i> <i>to Human Serum Albumin</i> , 303 J. MOL. BIOL. 721 (2000)	Bhattacharya
U.S. Patent No. 6,514,500	Bridon
Cistola, Carbon 13 NMR Studies of Saturated Fatty Acids Bound to Bovine Serum Albumin. I. The filling of Individual Fatty Acid Binding Sites, 262(23) J BIOL CHEM. 10971 (1987)	Cistola I
Cistola, Carbon 13 NMR Studies of Saturated Fatty Acids Bound to Bovine Serum Albumin. II. Electrostatic Interactions in Individual Fatty Acid Binding Sites, 262(23) J BIOL CHEM. 10980 (1987)	Cistola II

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

2

TABLE OF ABBREVIATIONS

(continued)

Full Name of Cited Reference	Abbreviation
Clodfelter, <i>Effects of Non-Covalent Self-Association on the Subcutaneous Absorption of a Therapeutic Peptide</i> , 15(2) PHARM. RSCH. 254 (1998)	Clodfelter
Nulf, DNA Assembly using Bis-Peptide Nucleic Acids (bisPNAs), 30(13) NUCLEIC ACIDS RES.2782 (2002)	Corey 2002
Dong, <i>Glucagon-Like Peptide-1 Analogs with Significantly</i> <i>Improved in vivo Activity, in</i> PEPTIDES: THE WAVE OF THE FUTURE (Michal Lebl et al. eds., 2001)	Dong
Drucker, Development of Glucagon-Like Peptide-1-Based Pharmaceuticals as Therapeutic Agents for the Treatment of Diabetes, 7 CURRENT PHARM. DESIGN 1399 (2001)	Drucker 2001
Drucker, Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides, 127(12) J. CLIN. INVEST. 4217 (2017)	Drucker 2017
U.S. Patent No. 5,359,030	Ekwuribe
U.S. Patent No. 7,576,050	Greig
Veronese, Introduction and Overview of Peptide and Protein Pegylation, 54 ADVANCED DRUG DELIVERY REVIEWS 453 (2002)	Veronese
Holst, <i>The Incretin Approach for Diabetes Treatment</i> <i>Modulation of Islet Hormone Release by GLP-1 Agonism</i> , 53 (suppl. 3) DIABETES S197 (2004)	Holst 2004
Holz, Glucagon-Like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in Treatment of Diabetes Mellitus, 10 CURRENT MED. CHEM. 2471 (2003)	Holz
Kenyon, 13C NMR Studies of the Binding of Medium- Chain Fatty Acids to Human Serum Albumin, 35(3) J LIPID RES. 458 (1994)	Kenyon
Kim, Development and Characterization of a Glucagon- Like Peptide 1-Albumin Conjugate: The Ability to Activate the Glucagon-Like Peptide 1 Receptor In Vivo, 52(3) DIABETES 751 (2003)	Kim

DOCKET ALARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

TABLE OF ABBREVIATIONS

(continued)

Full Name of Cited Reference	Abbreviation
Kiso, Amide Formation, Deprotection, and Disulfide Formation in Peptide Synthesis, in PEPTIDES: SYNTHESIS, STRUCTURES, AND APPLICATIONS 39 (Bernd Gutte ed., 1995)	Kiso
U.S. Patent No. 6,268,343	Knudsen Patent
Knudsen, Potent Derivatives of Glucagon-Like Peptide-1 with Pharmacokinetic Properties Suitable for Once Daily Administration, 43(9) J MED CHEM. 1664 (2000)	Knudsen 2000
Knudsen, <i>GLP-1 Derivatives as Novel Compounds for the Treatment of Type 2 Diabetes: Selection of NN2211 for Clinical Development</i> , 26(7) DRUGS OF THE FUTURE (2001)	Knudsen 2001
Knudsen, <i>Glucagon-Like Peptide-1: The Basis of a New Class of Treatment for Type 2 Diabetes</i> , 47(17) J MED CHEM. 4128 (2004)	Knudsen 2004
Kurtzhals, Albumin Binding of Insulins Acylated with Fatty Acids: Characterization of the Ligand-Protein Interaction and Correlation between Binding Affinity and Timing of the Insulin Effect in vivo, 312 BIOCHEM J. 725 (1995)	Kurtzhals
LEHNINGER PRINCIPLES OF BIOCHEMISTRY (David L. Nelson et al. eds., 4th ed. 2005)	Lehninger
Luu, Automated Multiple Peptide Synthesis: Improvements in Obtaining Quality Peptides, 47 INT'L J. PEPTIDE PROTEIN RSCH 91 (1996)	Luu 1996
Markussen, Soluble, Fatty Acid Acylated Insulins Bind to Albumin and Show Protracted Action in Pigs, 39(3) DIABETOLOGIA 281 (1996)	Markussen
Meinenhofer, 3 - Peptide Synthesis: A Review of the Solid- Phase Method, in HORMONAL PROTEINS AND PEPTIDES (Choh Hao Li ed., 1973)	Meienhofer
Ozempic prescribing information (Oct. 2022)	Ozempic Label

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.