
1 Exhibit 1035
Samsung v. DoDots

IPR2023-00701

 ue

: Scott Isaacs

MicresoftPress

1 Exhibit 1035

Samsungv. DoDots
IPR2023-00701

2

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by Scott Isaacs

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means withoutthe written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Isaacs, Scott, 1971-

Inside Dynamic HTML/ Scott Isaacs.
Pp. cm.Includes index.

ISBN 1-57231-686-1
1. HTML (Document markup language) 1. Title.

QA76.76.H94183 1997005.7'2--de21 97-33678
CIP

Printed and bound in the United States of America.

123456789 QMOM 210987

Distributed to the book trade in Canada by Macmillan of Canada,a division of Canada
Publishing Corporation.

A CIP catalogue record for this bookis available from the British Library.

Microsoft Press booksare available through beoksellers and distributors worldwide. For further
information aboutinternational editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Website at
mspress.microsoft.com.

Java is a rademark of Sun Microsystems, Inc, Microsoft, Microsoft Press, the Microsoft Press logo,
Visual Basic, Visual C++, Windows, Windows NT, and the Windowslogo are registered trade-
marks and ActiveX,JScript, and the Microsoft Internet Explorer logo are trademarks of
Microsoft Corporation. Other product and company names mentioned herein maybe the
trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Patricia Draher
Manuscript Editor: Jennifer Harris
Technical Editors: Gary Nelson and Kurt Meyer

CONTENTS

ACKNOWIECGMENES.ossecvssrsssnsnnenseneaneenentenesnesnsnsnesseaceussutiusnsissensyseicassevessenvansera vii
INMFOCHUCHION.........caavaststsnsaisivieasnatiovinbnstignsehdsbabionaiiiahaesillne ubissaii aius ix

PART i: HTML AND SCRIPTING
CHAPTER ONE

Overview of HTML and CSS 3
New HTMLFeatures.....

Cascading Style Sheets
Examining an HTML DTD... ccc ccscueeee

CHAPTER TWO

Fundamentals of HTML Scripting 34
Dynamic HTML Object Hierarchy
Authoring Scripts....
Choosing a Scripting Language: JavaScript vs. VBScript
Advanced JavaScript Techniques ..0.0.........cccccccccccccscecssssssseassennenee 50
Scripting and Web Security

CHAPTER THREE

Dynamic HTML Event Model 57
General Event Model «00.00.
Event Binding...
The event Object...ee
Programming Standard User Events
Event Examples oo...

3

INSIDE DYNAMIC HTML

CHAPTER FOUR

The Browser Window 89
The window Object oo...occccsssessusessetsetscscusacnsaneeseeseeee 90
The Window Environment.. a: 92
Window Events on. . 97
Timer Events 200.0... ccccecececececeeneneeeeeeteene we. 102
The clientinformation or navigator Property... .. 108

CHAPTERFIVE

Window and Frame Management 113
Manipulating the Window ooo...ceceeeeessececeeneserraearavanenes 114
Creating New Windows... wee 116
Manipulating Framesets.. vee 130
Special Event Considerations.. .. 144

PART tt: DOCUMENT STRUCTURE
CHAPTER SIX

The HTML Document 149
Referencing the document Object...
Changing the Document’s Colors...
Accessing Meta Information About the Document..
Modifying the HTML Stream00000 Pr

aeeloil
aap 151
ws 155
.. 164

CHAPTER SEVEN

Document Element Collections 167
Using the Collections oo.ie i
The HTMLStructure and Collections....

«» 168
V7

CHAPTER EIGHT

Scripts and Elements 189
Identifying Elements 20.2.0... ccccccccesesssesseeceesenneneeee .. 190
Accessing an Element’s Attributes 192
Parsing Information0.00.0.... .. 196
Creating New Elements... ». 200
Customizing Elements.... . 201

eeeeee

Contentsooo

CHAPTER NINE

Scripting Individual Elements 207
Programming the Body and Frameset Elements
Programming the Anchor Element
Programmingthe Link Element.....
Programming the IMG and Map Elements.
Programming the Marquee Element....
Programming the Object Element.
Programming the Table Element.......

... 208
- 216
. 222
226

. 237
239

.. 240

CHAPTER TEN

Forms and Intrinsic Controls 254
FIT ML Forms ooo. ceeccseenescereseaeavsscanesensseeesessescecevevsesvsnvavavaes 252
Programming Text Input Elements... 262
Programming List Elements.............. sue 200
Programming Lists Using Radio Buttons and Check Boxes......... 277
Programming CommandButton Elements..........0.0.0.0.0..00000 we 280
Programming Label and Fieldset Elements0.00000.0..ccc00: 283

PART ttt: DOCUMENT STYLE AND ANIMATION
CHAPTER ELEVEN

Dynamic Styles 287
Dynamic Styles and CSSoot susteenseenernieness 288
Style Sheet Properties 289

Inline Styles... wo 291
Changingthe class Attribute eve 292
Global Style Sheets wank wn 295
Adaptive Layout Techniques Ssisnaasaaeide ||
Data Display Techniques.......... ines S16
Text Animation Techmiquess 2.000.0.00.00.0c0ccccccccicsscecsesseseeesessseeeeneeeeerevneee B25

CHAPTER TWELVE

Dynamic Positioning 329
CSSPositioning. .. 830

-» 339
a. 356

Scripting CSS Positioning .
The Rendering Context......

4

INSIDE DYNAMIC HTML

Part iv: DOCUMENT CONTENTS AND
DATA BINDING

CHAPTER THIRTEEN

Dynamic Contents 371
Contents Manipulation.
Dynamic Contents Properties ..
Dynamic Contents and document.write....
 .. 387

CHAPTER FOURTEEN

User Selection and Editing Operations 395
Introducing the TextRange Object.....
Programming the TextRange Object .
Accessing the User’s Selection..
Executing Commands..................

. 396
399
409

+ 410

CHAPTER FIFTEEN

Data Binding with HTML 413
WhatIs Data Binding?0...ccccceeeesesueetseetsateeerensesererennene 415
Data-Binding Architecture 416
Data Consumers: HTML Elements.. sg » 422
Building Basic Pages Using Data Binding.. 431
Writing Scripts Using Data Binding............. sue 437
AdvancedFeatures... we 445

TADOX occ tctecceteteereeeees .. 451

vi

ACKNOWLEDGMENTS

The foundationsfor this book were built from presentations I’ve made on Dy-
namic HTML.Theissues and questionsraised served as the basis for this book’s
organization and samples. To everyone who has heard me speak and asked a
question, thank you.

To the entire Microsoft Internet Explorer 4.0 team—especially the Tri-
dent team—without yourhard work,the vision of Dynamic HTMLwould never
have been achieved. Thankstoall the individuals at Microsoft, too numerous
to list, who previewed and helped improve the book.

To Richard Rollman,a special thanksforall his help with the chapter
“Data Binding with HTML.”Mythanksalso go to the Microsoft Press team for
producing the book and the companion CD.

Andfinally, thanks to my wonderful wife, Jocelyn. Without her patience
and support, this book would never have beenwritten or finished.

vii

5

“ windew, TSTE4- =" CHS3%
: “(Cparselint(navidatoga
ei ANev ide torappverstor

INTRODUCTION

The World Wide Web ignited a computer revolution by enabling anyone to
publish HTML documents. Until recently, the information in these documents
was mostly static, requiring the server to respond to userinteractions. With the
introduction of Dynamic HTML, the Web paradigm hasshifted away from
requiring server interactionsto creating interactive Web sites and Web appli-
cations. Because Dynamic HTMLallows HTML documentsto interact with the
user and change completely on theclient, you can create rich Web applications.

Dynamic HTMLis built on an object model that extendsthe traditional
static HTML document. This book introduces you, the Web developer, to Dy-
namic HTMLandteaches you howto create pages that are live and interac-
tive on the client. This book assumes a working knowledge of HTMLandbasic
programming principles. It does not teach you HTML or show you how to
program inJavaScript,JScript, or VBScript; instead, these languages are used
as tools for dynamically manipulating the page.

Near the endofthis introduction, you'll find a description of the four
parts of this book. Before continuing, read this overview to get a feel for how
Dynamic HTMLwill be presented here throughaseries ofbuilding blocks. By
the endofthis book,all the pieces for creatinglive and interactive Web pages
will be in place.

Creating Interactive Pages
The concept of creating interactive Web pages is not new—Microsoft and
Netscapeinitially defined a simple object model that was presented as a way
ofcreating interactive pages. On closer inspection, the object model was found
to be efficient only for basic form validation. Dynamic documents were mostly
a myth prior to Microsoft Internet Explorer 4.0 because the only time a page
could change was duringits creation. Interactive documents were simulated
by completely reloading the page or by embedding objects in the page. Many
of theseJava applets, ActiveX controls, and even animated GIFs were designed
to perform textlike manipulation, which provided a way to work around the
static nature of HTML.However, using objects as a replacementforstyle and
contents control is a poor solution.

6

INSIDE DYNAMIC HTML
eee

After examining manyofthe scenarios for these objects and animated
GIFs, Internet Explorer developersrealized the need for a more powerful API
(application programminginterface) for manipulating documents. With an
object modelthatprovidesfull access to the document,authors can take advan-
tage of the layoutabilities built into HTML and CSS (CascadingStyle Sheets).
This object model greatly improves performance by reducing the need for
downloading large animated GIFs and applets. Information becomesinstan-
taneously accessible becauseit is no longer hidden within images or objects.

Dynamic HTMLprovides the API necessary for complete controlover the
HTML document. Nolonger does a page need to be defined whileit is load-
ing. After loading, any portion of the page can be dynamically and immedi-
ately changed.For example, you can create an application that has expanding
and collapsing outlines. When the user expandsorcollapses the outline, the
contents are displayed or hidden instantaneously. Imagine being able to cre-
ate pagesthat can automatically change andtailor themselvesto the user. All
this and moreis possible with Dynamic HTML.

Theability to modify a document and have the dacument automatically
reflowitself is the underlying innovation used throughout Dynamic HTML.
Traditional browsers were basically document navigation tools that displayed
a documentandthen waited for the user to point to a new document. When
a change to the documentwas needed, either a request was sent to the server
for a new page or an entire new page was generated ontheclient.

Programming Languages

A programming language is used to manipulate the Dynamic HTML object
model, but Dynamic HTMLis designed to be platform independentand lan-
guage neutral. Therefore,JavaScript, JScript, VBScript, C++,Java, or any other
programming language can be used as the language of choice.

This bookuses primarilyJScript for accessing the document object model.
JScriptis Microsoft's implementation of the EGMA262 (European Computer
Manufacturers Association) standard designed by Microsoft, Netscape, and other
organizations. This standard formalizesthe language constructs ofJavaScript
andScript so that interoperable implementations can be created.It is impor-
tant to rememberthatthis standard defines only the constructs of the lan-
guage. Even though the languageis often associated with the object model,
this standard does not define the object model. Therefore, when you are de-
termining whether a browser supports a version ofJavaScript or JScript, you
mustbe carefulto distinguish whether an object modelor a language feature
is being discussed. The JScript in Internet Explorer4.0 is compliant with the
ECMA standard,but the implementation ofJavaScript 1.2 in Netscape 4.0 is not.

Introduction

NOTE: The terms javeScript and JScript can generally be used
interchangeably to refer to the programming language. JavaScript
is used throughout this book because it is more widely recognized.

Applets and objects on the page can also communicate with the page. For
example, in Internet Explorer, an object written in Java, C++, or some other
language can communicate with the page through the object model. The tech-
niqueforcreating applets that use Dynamic HTMLis beyondthe scopeofthis
book. However, this book does provide a foundation for understanding the
Dynamic HTMLcapabilities available to such objects.

If you are familiar with the existing JavaScript language and existing ob-
ject model, you'll find that the extensions for the Dynamic HTMLobject model
are a fully compatible superset. Any pages written for past versions of Internet
Explorer or for Netscape Navigator 3.0 will continue to run in Internet Ex-
plorer 4.0. This compatibility allows Web developers to take advantage of their
existing skills as they learn about these new innovations. If you are new to
JavaScript, learning how to program the HTMLpage allowsyou to extend and
enhanceyourpagesand yourusers’ experience in ways never before possible.

New Features

Dynamic HTML removesall restrictions on access to the document. Dynamic
HTMLin Internet Explorer 4.0 empowers developers with a number of new
features, which are discussed in the following sections.

= HTML 4.0 and advanced CSS support Internet Explorer 4.0 sup-
ports the latest HTML 4.0 standard, CSS1, and manyof the new CSSenhancements. These HTML and CSS standards define whatis ex-

posed by the Dynamic HTML object model.
i Full access to the document's structure All elements in the docu-

mentare available through the Dynamic HTML object model. You
are no longerlimited to scripting the form elements. Thestyle and
contents of any element can be dynamically changed, and these
changeswill be immediately reflected in the document.

In addition, the intrinsic controls have been enhancedto better
support HTMLand CSS, which allows the Web author to manipu-
late the appearance of these controls—includingsetting the text
color, background color, and font—on buttons and text controls.
The object model behind the intrinsic controls is similar to the ob-
ject model behind the documentand allows easy access to the style
and contents.

xi

7

INSIDE DYNAMIC HTML

@ Dynamic style The document's CSS style sheets can be changed at
any time. The documentdoes not need to reload from the cache or
communicate with the server. The object model is designed to allow
a page to display any changes immediately. For example, the appear.
ance of an element can change as the user moves the mouse orclicks onit.

m@ Dynamic contents The object modelallows the contents of the
document to be accessed and changed. Again, no server communica-
tions are involved, and the response is intendedto be instantaneous.
For example, you can write a ticking clockutility in standard HTML.
You no longer need Java applets or ActiveX controls to changecontents.

@ Instant user response Dynamic HTML provides a powerful new
event model that exposesall user actions to the page. Scripts in a
documentcan respondto all the user’s actions within the browser.
Based on the user’s actions, any aspect of the document’s contents
orstyle can be dynamically changed.

@ Client/server web pages Internet Explorer 4.0 adds extensions to
HTMLelementsto create data-boundtables and single-record forms
and reports. Data is asynchronously downloaded and rendered in
the documentusing a few basic HTMLextensions. The data can be
cachedlocally, allowing client-side searching and sorting without
requiringassistance from the server. For example, search engines
don’t need to provide only a few matchesat a time. Instead, a search
engine can send responsesto the client, where they are rendered as
they are received. The user can immediately sort and furtherfilter
the data entirely on the client, without sending subsequent requeststo the server.

® Multimedia and animation effects Internet Explorer4.0 tightly in-
tegrates multimedia and animation effects with the document's con-
tents. These effects includefilters that can simulate light sources
and shadows andothereffects that operate directly on text or con-
trols. Transition effects between images and text, and even between
pages, cau also be added.

All of these features are based on currentdiscussion within the working
groups of the W3C (World Wide Web Consortium). The Dynamic HTML object
modelis being reviewed by the Document Object Model working group. The

Introduction

goal of this groupis to define an object modelthatis language independent
and platform neutral and that meets a set of requirementsfor structured docu-
ments. The object model defined in Internet Explorer 4.0 meets most of the
requirements outlined by the Document Object Model working group.

Defining an HTML Document
HTMLis anapplication SGML (Standard Generalized Markup Language). In
an SGML/HTML document, tags add structure to the document's contents.
A traditional SGML documenthasthreedistinct aspects: structure, style, and
contents. With the introduction of Dynamic HTML, HTML nowincludes a
fourth component: behavior. The term behavior refers to the interaction be-
tween the HTMLpage andtheuser. This book’s primary focusis on creating
HTML-based applications by manipulating the different components of the
document. Structure is exposed througha set of elementcollections;style is
exposed on each element and throughastyle sheets collection; and contents
are exposed through each element and through a TextRange object. Scripts
manipulate structure, style, and contents in response to events to produce adocument’s behavior.

Structure and Style
Structure provides context for the information contained within a document.
For example, the Header elements H1 through H6 are meantto define vari-
ous headers andtheir relative importance. An H1 element mightbe followed
by another H1 or an H2 but should not be followed by an H3 element. As
HTMLquickly evolved, however, the separation between structure and presen-
tation was often ignored. Authors used HTMLtagsnotas a way to provide
structure but as a way to define style. The H1 elementwasoften used to mean
big, bold text rather than to indicate top-level headers. As a further deviation
from SGML,stylistic tags were invented. For example,the and <I> tags were
introduced to mark boldanditalic text.

Whenviewinga page, the user (and many times the author) usually does
not care aboutstructure. The author’s goalis to create an interesting page that
will hopefully increase the numberofhits, or visits, the Website receives. This
desire for originality was thejustification for many ofthestylistic tags that werecreated.

Abusing style does have consequences, however. For one, tools become
less powerful. If an authorcorrectly uses structure, an indexing tool can more
intelligently index the document's contents. If the tag is used to

xiii

8

INSIDE DYNAMIC HTMLee

xiv

indicate that a wordis of importance,an indextool can assign a greater weight.
However, many authors use simply to display words in boldface,
rather than to indicate they have greater importance,invalidating the usefulness
of the tag.

Amore important reason for properly structuring your pageis to improve
accessibility to the underlying information. Imaginea browserthat speaks the
information rather than displays it—perhaps a browserfor visually impaired
users or even a voice-based browserin yourcar. This browser needsto be able
to extract various connotationsfrom the text. Strong words should be spoken
with greater emphasis, and headers should provide an outline of information
on the page. Ifa documentused markupfor presentation only, the voice-based
browser would notbe able to properly deliver the document.

HTMLalso definesa set of rules representing the properstructureof the
document. A DTD (documenttype definition) describes which elements can
be contained within other elements.It is important to understandthatnotall
HTMLelements should be included anywhere within a document. Usually,
when a Web page renders poorly across browsers, it is due to HTMLthatfails
to conform to the DTD. Unfortunately, manyof the pages on the Web do not
conform to any HTML DTD,andrather than force users to define correct
documents, browsers have evolved a lax set of rules for parsing the document
that attemptto interpret the author’s intent—often withless than idealresults.

Until mid-1996, style in HTMLwascontrolled quite simply by using tags
andstylistic attributes, such as ALIGN. Underthese conditions, HTML was
failing to be a true SGMLlanguage,in which structure and style are defined
separately. In a true SGMLlanguage, a documentcan havean associatedstyle
sheet that defines how the structural elements are rendered. SGMLprovides
a numberoflanguages for definingastyle sheet.

In mid-1996, a new language named Cascading Style Sheets was intro-
ducedfor specifying style in HTML.The CSSspecification was coauthored by
Bert Bos and HakonLie of the W3C,with input from manyW3C members, and
has been adoptedby the major browser implementations. Basically, with CSS
a Strong element(and even a Bold element,for that matter) no longer indi-
cates boldface text. Instead, the Strong elementretainsits traditional purpose,
to indicate an important word.A style sheet now specifies that Strong elementtext should be rendered in boldface:
STRONG {fant-weight:bold}

To take full advantage of Dynamic HTML,your documentshould prop-
erly separate the contents andstructure from the presentation. Dynamic HTML
is easier to use and works more predictably with valid HTML documents. And

Introduction

as the following chapterswill show, manipulating invalid HTMLis more dif-
ficult and might create unpredictable behavior.

The Organization of This Book

Part I:

Part Il

Learning to program interactive pages is a cumulative process. This book be-
gins by explaining basic concepts and then builds on these concepts to teach
you how to access the different componentsof the browser and the document.
The following sections provide an outline of the four parts of this book.

HTML andScripting
Chapters 1 through 5 introduce the relationship between scripting and the
HTMLdocument, describe the browser window, and show you howto use the
Dynamic HTML event model. This book assumes a working knowledge ofHTML
and programming in eitherJavaScript or VBScript.

Part I introduces the object hierarchy, which exposes the fouraspects of
the document: structure, style, contents, and behavior. These aspects are dis-
cussed in detail in Parts IT through IV, andsince these areasare closely related,
the explanations overlap somewhat.

: DocumentStructure

In Dynamic HTML,all elements andtheirattributes are available program-
matically. Part If shows you howto access and take advantage of the document
elementcollections and how to manipulate the individual elements within the
document.This part also demonstrates how to create rich, interactive forms that
can process information onthe client without requiring round-tripsto the server.

Part Ill: Document Style and Animation
Tightly coupled with individual elementsis the concept ofstyle, the topic of
PartIII. Usingstyle sheets, the Web author can specify the document's appear-
ance, spacing, colors, and so on.

Part III also shows you how to add basic animation to an HTMLpage.
Dynamic HTMLexposesa set of memberfunctions that enable an HTML
elementto float and move over the HTMLpage,allowingthe creation of simple
presentation-like effects. In addition, Dynamic HTMLincludesa set of pow-
erful extensions that let you add real multimedia animation and transition
effects to your Web page. With these enhancements, the HTMLcontents can
be animated using only a few lines of code.

xv

9

INSIDE DYNAMIC HTML

Part IV: Document Contents and Data Binding
Part IV demonstrates how Dynamic HTMLallows pages to dynamically reshape
themselves. The contents are exposed through properties on each element
and through a text object model. With dynamic contents, HTMLtext and
unformatted text can beeasily accessed and changed.

Chapter15, “Data Binding with HTML,’ showsyou howto use Dynamic
HTMLtocreate client/server Web pages, including binding an HTMLtable
to a set of data that can belocally manipulated. This feature allows you to
create high-speed data-aware pages that can besorted,filtered, and bulk-edited—all on the client,

Companion CD
The companion CD includes the sample code from the book, togetherwith an
indexing page that containslinksto all the samples and can sort andfilter the
links to help you find particular programs quickly.

Also on the CD are copies of Microsoft Internet Explorer 4.0 and the
Microsoft Internet Client Software Development Kit. The documentation in
the SDK includes a complete reference to Dynamic HTMLaswell as other
helpful information,

The author’s personal Web site (www.insideDHTML.com)is a great
source for additional information about Dynamic HTML. Microsoft main-
tains several Websites related to Dynamic HTML, including the Site Builder
(www.microsoft.com/sitebuilder) andJScript (www.microsoft.com/JScript)sites.

Support

xvi

Every effort has been madeto ensure the accuracy of this book and the con-
tents of the companion CD. Microsoft Press provides corrections for books
through the World Wide Web at mspress.microsoft.com/mspress/support/ If
you have comments, questions, or ideas regarding this book or the compan-
ion CD, please send them to Microsoft Press using postal mail or e-mail:
Microsoft Press
Atin: Inside Dynamic HTML Editor
One Microsoft Way
Redmond, WA 98052-6399
MSPINPUT@MIGROSOFT.COM

Please note that product supportis not offered through the above mail addresses.

HTML AND

SCRIPTING

10

prghetets Srigaes
Beeea uta
eaten engi
eaeaeBeene

Overview of HTML and CSS

Hr (Hypertext Markup Language) is continually evolving. Within the past
year and a half, two major innovations have extended HTML: anentirely new
language for controlling style, and an object model for adding behavior and
dynamism to documents. Dynamic IITMLin Microsoft Internet Explorer 4.0
encompasses not only the object model for manipulating the document, but
also many ofthe latest HTML and CSS (Cascading Style Sheets) recommen-
dations and working drafts from the W3C (World Wide Web Consortium).

This chapterintroduces someofthe recent innovations to HTMLand CSS
supported by Microsoft Internct Explorer 4.0. The combination ofexisting
HTMLfeatures and these newinnovations with the Dynamic HTML object.
mode!allows you to create interactive Web pages and Web applications. This
chapteris not a comprchensive review of HTML and CSS—theeffective use
of HTMLand CSSis a topic for an cntire book. Rather, this chapterlets you,
the Web author, familiarize yourself with the latest work in these arcas.

The following topics are covered in this chapter:

© New HTMLfeatures This section introduces some of the new fea-
tures that will be included in the next version of HTML. This next
version of HTML, HTML4.0, is being designed by the W3Candits
members. By the time you read this book, the HTML 4.0 recom
mendation by W3Cwill probablybe final. This section also intro-
duces HTMLfeatures supported by Internet Explorer 4.0 that go
beyond HTML4.0.

®@ Cascading Style Sheets The intent of SGML (Standard General-

aE i ized Markup Language), and therefore of HTML,is to separatecontents from presentation. This separation wasnotpossible before
the introduction of CSS, when tags such as and were
incorporated in HTMI.to indicate how content was to be pre-
sented. These tags violate the fundamentals of a structured docu-
mentby allowing the presentation to be embedded in the contents.

Fy
i red

zh
nie Hip

ees i ot i

ee
He

10

11

I: HTML AND SCRIPTING

This section introduces the CSS language andits relationship to
the recentscripting additions. CSSis a static representation for add-
ing style to a document, but through the object model extensions,
thatstyle can be dynamically changed. For example,thestyle of
text can be changed based on the user’s environment.

@ Examining an HTML DTD HTMLis a structured language with a
formaldefinition. This section discusses the importance of the DTD
(document type definition) that defines HTML. The HTML DTDis
the SGMLdeclaration of the HTML language. A DTD defines the
supportedset of elements and their attributes and specifies whether
an element can contain other elements. Unfortunately, the majority
of pages on the Web violate the HTML DTD. With the addition of
an object modelthat exposes the entire page to scripting, ensuring
consistent and rational behavior by creating properly structured
documents takes on greater importance.In this section, you'll learn
how to read a DTD anduseit to create valid HTML documents.

New HTMLFeatures
Internet Explorer 4.0 adds full support for HTML4.0, the next version of
HTMLto be embodied as a W3C recommendation. This section introduces the
features newly incorporated into HTML4.0. (Some of these features were
available in Internet Explorer 3.0 but are only now being incorporated into a
W3C recommendation.) At the time this book was written, HTML 4.0 was to
include the following new features:

Frameset and [Frame elements

Form andaccessibility enhancements
Table enhancements for headers, footers, and columns

Script element for embeddingscripts

a

a
a

@ Object element for embedding custom objects
a

@ File upload capabilities for submitting files to the server
a Enhancedset of named entities

Framesets and IFrames, table enhancements, and the Object and Script
elements have all been supported since Internet Explorer 3,0, Internet

11

ONE: Overview of HTML and CSS

Explorer 4.0 expands onthe earlier version by providing supportfor the rest
of the features in the precedinglist. For information about HTML 4.0 and
these features, check out the W3C Website (www.w3.org) and Microsoft's Web
site (www.microsoft.com). The scripting of these new elementsandattributes
is discussed throughoutthis book.

The rest of this section introduces the HTMLsyntax for the Objectele-
ment, form andaccessibility enhancements, and a few other HTMLfeatures
supported by Internet Explorer 4.0 that go beyond HTML4.0.

Chapter 2, “Fundamentals of HTMLScripting,’ focuses on the Script
element, the primary mechanism for embedding scripts in the document.
Framesetsare introduced in Chapter 5, “Window and Frame Management.”

The table enhancementsare not discussed in detail in this book. These
enhancementsinclude specifying table headers, footers, and bodies as well as
providing greater control over columns. More information aboutthe tableenhancements can be found at the Microsoft Website.

A named entity consists of predefined characters that can be embedded
in the document using &name;. For example, a commonly used namedentity
is the nonbreaking space (&mbsp;), which inserts a space that won't wrap at a
line break in the document.

Embedding Custom Objects
The Object elementis used to embed custom objects in an HTML document.
This elementwasinitially supported in Internet Explorer 3.0. The Objectele-
mentis used to extend HTMLby embedding Java applets, ActiveX controls,
and supported MIMEtypes in Internet Explorer. Supported MIMEtypesin-
clude HTMLfiles andthe various image formats, such as GIF,JPEG, and PNG,
The syntax for the Object elementis generally as follows:

<OBJECT CLASSID="ActiveX UUID" WIDTH="pixels" HEIGHT="pixels'>
<PARAM NAME="property" VALUE="propertyValue">

</OBJECT>

In addition to specifying the CLASSID,an optional CODEBASEparameter can
be specified to provide a location from which to download the object. Param-
eters can be specified through one or more Param elements contained within
the Object element.

Theonly valid contents within an Object element are Param elements.
Browsers that support the Object element ignore all other HTML within the

12

PART

————a

I: HTML AND SCRIPTING

Object block. This feature can be used to provide contents for down-level
browsers that do not support the Object element, as shown here:
<OBJECT CODE="myClass.class" WIDTH=20@ HEIGHT=200>

<PARAM NAME="color” VALUE=“red">
<PARAM NAME="background™ YALUE="green">
<P>Your browser does not support the Object element and

cannot view the application.</P></OBJECT>

Form and Accessibility Enhancements
HTMLformswereinitially limited to requesting basic information from the
user. The interface waslimited to plain-text containers, radio buttons, and check
boxes. Forms in HTMLareevolving to provide more of the power andflexibil-
ity that existing form and database packages permit. In addition, many of the
enhancementsrelated to formsalso greatly improve accessibility, allowing users
with disabilities to better access a page with their browsers.

NOTE: Throughoutthis book, the term intrinsic controls is used
to refer to the built-in controls in HTML.Intrinsic controls include
all elements the user directly interacts with for input and output,
such as the image,text, button, and marquee controls.
Theset of form enhancements in HTML4.0 allows you to addlabels and

access keys, add advisory text to all elements, control tabbing order, disable
controls, and group related controls. In addition, Internet Explorer 4.0 en-
hances the intrinsic form elements with supportforstyle sheets and for default
and cancel buttons. Buttons and text boxescan be created using differentfonts
and colors based onstyle sheets. The use of style sheets is introduced in the
section “Cascading Style Sheets”later in this chapter.

Adding Labels and Access Keys
The new Label elementis an inline text container that can associate contents

with a specified control. Label elements are to controls whatlinks are to book
marks; just as links bring a bookmark into view, when the userclicks a label
the associated control is brought into view and given the focus. For radio
buttons and check boxes, clicking on thelabel also clicks the associated but-
ton, changingits value.

Just as the <A> tag that defines a link references a bookmark, the
<LABEL>tag references an associated control element using a FORattribute.
The FORattribute contains the unique ID of a control on the page. The fol-
lowing code createslabels for a check box and a text box:

12

ONE: Overview of HTML and CSS——SSeS

<HTML>
<HEAD>

<TITLE>Label Demonstration</TITLE>
</HEAD>
<BODY>

<H1>Label Demonstration</H1>
<TABLE>

<TR>
<TD NOWRAP>

<LABEL FOR="Info">Send Information: </LABEL>
</TD>
<TD>

<INPUT TYPE=CHECKBOX ID="Info" VALUE="Information">
</TD>

</TR>
<TR>

<TD NOWRAP>
<LABEL FOR="Email">E-Mail Address: </LABEL>

</TD>
<TD>

<INPUT TYPE=TEXT ID="Email"” SIZE=3@>
</TD>

</TR>
</TABLE>

</BODY>
</HTML>

Figure 1-1 showsthis label demonstration in action. When a buttonlike
controlis activated, its label is drawn with a dashed border aroundit. The label
itself can also be clicked on to activate the control.

Figure 1-1.
The Label Demonstration Web page.

13

PART I: HTML AND SCRIPTING

The Label elementadds the capability to associate contents with a con-
trol. To help improve the accessibility of the Label element, HTML4.0 also
provides an ACCESSKEYattribute. The ACCESSKEYattribute containsa single
character that can be used asa shortcutfor referencing the control: pressing
the Alt key followed by the access key character accesses the shortcut. (The
access key is not case sensitive.)

The following code creates a label with an access key:
<l-- Label with an access key -->
<LABEL FOR="txt1" ACCESSKEY="U">

User Name:
</LABEL>
<INPUT TYPESTEXT ID="txti" SIZE=3@>

The purpose of the tagin this exampleis to use a globalstyle that
defines how the access key in the label’s text should be rendered. Microsoft
Windowstraditionally underlinesaccess keys. This underlining can be accom-
plished in HTMLbyaddingthe following globalstyle and wrapping the access
key in the label’s text with tags:
<STYLE TYPE="text/css">

vaccesskey {text-decoration:under] ine}
</STYLED

The U element could be used as an alternativeto the global style to force
an underline. However, that technique does not provide the benefitsofstyle
sheets. Using a globalstyle makesit easy to change the appearance ofall ac-
cess keys in the document.

Labels degrade gracefully in browsers that do not support them. Because
the <LABEL>tagis ignored by down-level browsers,those browsers render the
label as plain text. (Browsers that understandstyle sheets underline the access
key letter) The Label elementsignificantly improves usability and accessibility
andis highly recommended wherevercontrols are used.

Adding Advisory Text to an Element
AI HTMLelements now support the TITLEattribute, an advisory string that
is renderedin Internet Explorer4.0 as a ToolTip. A ToolTipis a small window
of text that is displayed when the mouse pointer hovers over an element. A
ToolTip can be associated with any element, allowing everything from a con-
trol to a headingto display extra information, Changingthe input check box
created earlier to include a TITLEattribute displays a ToolTip when the mouse
pointer hovers over the check box:
<INPUT TYPE=CHECKBOX [D="Info" VALUE="Information™

TITLE="Check here and enter your user name for more information.">

13

ONE: Overview of HTML and CSS

Figure 1-2 shows the ToolTip Demonstration application in action.

ToolTip Demonstration
Send Information: [7

B-Mal Addose SareeaaaN

Figure 1-2.
The ToolTip Demonstration Web page.

As with the <LABEL> tag, the TITLEattribute raises no down-level
browserissues becausetheattribute is ignored. Therefore, using this attribute
is recommended whenextra information might be helpful. The most common
uses of the TITLEattribute are on links, for extra information aboutthe link,
and on controls, for information about the contents of the control.

Controlling Tabbing Order
A TABINDEXattribute was added in HTML 4.0 to all the inputcontrols on
the document. This attribute lets the Web authorexplicitly control the tab-
bing order. By default, the tabbing order ofall elements on the page matches
the order in which they are defined in the HTMLsource. The TABINDEX
attribute lets the author control the tabbing order among elements, indepen-
dent of the source order of the document. Supplying a negative TABINDEX
value in an element causes the elementto be skipped in the tabbing order.

While elements within a form belong to the form, the TABINDEXat-
tribute applies to the entire document. Therefore, only one elementin the
documentshould have a tab index of a particular value. The source order
resolves any conflicts in which multiple elements share the sametab index value.

Disabling Controls
Disabled controls are controls that cannot be activated or whose contents can-

not be changed. In HTML4.0, two attributes are exposed that prevent the
contents from being edited: READONLY and DISABLED. The DISABLED
attribute makes the element unable to receive the focus, and hence unable to
receive any events. DISABLED should be used whena controlis not applicable

14

PART Ut: HTML AND SCRIPTINGae

10

to the current context. For example,if prerequisite information must be en-
tered before a control can be used,that control can be disabled until the cor-
rect information orstate is reached. Disabling a controlis a simple process:
<!-- Disabled Control -->
<INPUT TYPE=SUBMIT ID="btnSubmit™ VALUE="Submit Data" DISABLED>

Whenappropriate data is entered that makes the submission valid, the Sub-
mit Data button can be enabled through a script. Examples of dynamically
manipulating form elements with the object model are presented in Chapter
10, “Forms andIntrinsic Controls” .

The READONLYattribute is used whenthe controlis applicable to the
context but the contents of the control are noteditable. Unlike a disabled
control, a read-only control canreceive the focus andits contents can be se-
lected. However,its contents cannot be changed. The READONLYattribute
is applicable only for elements the user can enter datain. For example, But-
ton elements are never editable, so supplying a READONLYattribute for a
button control would be redundant.

A read-only control does not appear different from a control thatis
editable; a disabled control in Windows, however, appears grayed. Thefollow-
ing code demonstrates how to makethe E-Mail Addressfield from Figure 1-1disabled:

<INPUT TYPE=TEXT [D="Email" SIZE=3@ VALUE="UserName@com™
TITLE="To enter an e-mail address, first check the Send

Information check box.”
DISABLED>

Figure 1-3 demonstrates a disabled text box. A script can enable the text
box when the user checks the Send Information check box.

abled Element Demonstration - Microsoft Internet. eit

Disabled Element

Demonstration

Send Information: [i

E-Mail Address: [UserNeme@com & _To eres an e-mad addrecs, fist chack the Send infomation

Figure 1-3.
The Disabled Element Demonstration Web page.

14

ONE: Overview of HTML and CSS

The New Button Element

HTML 4.0 provides a powerful new Button element that enables rich HTML
contents to be displayed as a button. Forinstance, the following Buttonele-
mentcan be added to the Label Demonstration example:
<l-- HTML-based button -->
<BUTTON STYLE="font-family:Arial; font-size:l6pt; color:navy">Send Me

Information!</BUTTON>

Figure 1-4 shows the Button Demonstration application in action.

PPRPeiereaiCal Biel Fa
gy

Button Demonstration

Send Information: [7

E-Mail Address: [UserName@com
Figure 1-4.
The Button Demonstration Web page.

Buttons can be created withall the flexibility available in HTMLandstyle
sheets. The only disadvantage to the Button elementis that down-level brows-
ers render the contents not as a button but as normal HTMLtext. Therefore,
for down-level browsers, you must define another button within the Button
element by using an <INPUT> tag:
<BUTTON STYLE="background:URL(cool.gif) yellow; font-weight:bold™>

<P ALIGN="Center">Calculate</P>
<P ALIGN="Center" STYLE="font-stylesitalic">Now</P>

<1-- The following button is for older browsers. -->
<INPUT TYPE=BUTTON YALUE="Calculate Now">

</BUTTON>

In browsers that support the Button element, the <INPUT>tagis ignored, and
in down-level browsers that do not support the Button element, the HTMLis
still rendered, plus a buttonis also displayed.

11

15

PART I: HTML AND SCRIPTINGee

NOTE: This technique, in which the up-level browser ignoresthe
alternative HTML, actually creates an invalid document because
the DTD that defines HTMLprohibits Input elements within a But-
ton element. However,this techniqueis demonstrated here because
it is currently the only way to use a Button elementeffectively with
down-level browsers that do not support the <BUTTON?>tag.

The Fieldset Element

12

The Fieldset elementis used to group form controls, similar to the way <DIV>
tags are used to group related HTMLcontents. The Fieldset element was de-
signed mostly for accessibility, allowing pages to clearly group setsof controls.
For example, an invoice form may contain threefieldsets: a shipping address,
an ordersection, andbilling information.If you specifically group the fields
using a Fieldset element, a browsercan easily distinguish the three groups. The
Fieldset elementis renderedby Internet Explorer 4.0 to look similar to group
boxes in dialog boxes:
<!l-- Grouping related controls -->
<FIELDSET>

<LEGEND>Size</LEGEND>
<INPUT TYPE=RADIO YALUE="Big” NAME="SIZE" ID="BIG">
<LABEL FOR="BIG">Big</LABEL>
<INPUT TYPE=RADIO YALUE="Smal1" NAME="SIZE" ID="SMALL">
<LABEL FOR="SMALL">Sma11</LABEL>

</FIELDSET>

Figure 1-5 shows an example Fieldset element.

| GB Fieldset Demonstration - Microsoft (nterriet Explorer

Figure 1-5.
Fieldset element containing a group of related controls.

ONE: Overview of HTML and CSSeee

The fieldset can contain a single legend displayed onthefieldset’s bor-
der. The legend can be followed by any HTMLcontents. Thefieldset works
fairly well on down-level browsers and is recommendedfor grouping related
fields, but <DIV> tags shouldstill be used to group related HTMLcontents.

The Default and Cancel Buttons

Internet Explorer 4.0 adds two simple usability enhancements: The Submit
button now acts as the default button for a form, meaningthat the button is
activated whentheuser presses Enter within a form. The Reset button acts as
the cancel button for a form, meaning that the buttonis activated when the
user presses Esc within a form.

The default and cancel buttons work within the scope of the currently
active form. Therefore, if a document has multiple forms, the current default
and cancel buttons depend on the form theuseris interacting with. The Sub-
mit and Reset buttons can also work outside the scope of the form as the de-
fault and cancel buttons but without any default behavior. Outside a form,
scripts are required to define a behavior for the buttons.

Figure 1-6 shows the default and cancel buttons. Default buttons speci-
fied using TYPE=SUBMIThave an extra border.

nutemal

Figure 1-6.
The. default and cancel buttons.

The Improved Marquee Element

The Marqueeelementis not new to Internet Explorer 4.0—itfirst shipped in
Internet Explorer 3.0—butit is currently specific to Internet Explorer andis
not a part of HTML4.0, In Internet Explorer 4.0, the Marquee element has
been extendedto display HTMLtext and now includesthe capability to scroll

13

16

SSSSSS——eor—eeeOnnnn

PART I: HTML AND SCRIPTINGoe

contents up and down in additionto left and right. The Marquee element is
as rich as, and in somewaysricherthan, the Button element described earlier.
Marquees can be created that contain controls and even tables, and all the
event handlers for elements within a Marquee elementfire appropriately. In
addition, the marquee is now represented by a powerful object in the object
model. Chapter9, “Scripting Individual Elements,” provides examples of using
the Marquee element's object. The following code demonstrates an upward-
scrolling marquee:
<!-- HTML marquee -->
<MARQUEE STYLE="height:15@px" DIRECTION="Up">

<TABLE>
<CAPTION>Stock Ticker</CAPTION>
<TR><TD>AAAAS/TO><TD>198</TD></TR>
<TR><TD>ZZFD</TO><TD>45</TD> </TR>

</TABLE>
</MARQUEE>

Data-Binding Enhancements
Internet Explorer 4.0 introduced the capability to bind an HTMLpageto a
data source on the server and to bind different HTML elementsto fields and
data from that data source. Whenthe pageis loaded,the datais also sent from
the server and asynchronously appears onthe page. At a high level, this allows
client/server Web pagesto be created on which all the data is manipulated by
the client. For example, a search engine can returna list ofsites that can all be
filtered and sorted by the client, withouthavingto go backto the server. The data
is instantly displayed on the page withoutreloading. The HTML data-binding
enhancementsare discussed in detail in Chapter 15, “Data Binding with HTML?

Cascading Style Sheets

14

CSSis a language with a set of properties for defining the appearance of a
document. The CSS specification (CSS1) defines properties and a declarative
language for associating those properties with elements in the document.
Internet Explorer 3.0 providedinitial support for CSS; this support has been
expanded and improvedin Internet Explorer 4.0. Understanding CSS is im-
portant for adding dynamicstyle to a page. (Dynamicstyle is the modification
ofthestyle sheet associated with the documentthrougha script.) The W3C Web
site (www.w3.org) contains the latest information aboutthe innovations and
features supported by CSS. ; ;

Style sheets are an abstraction in whichthestyle of a documentis defined
separately from either the contents or the structure. There are essentially three

16

ONE: Overview of HTML and CSS——

Inline

techniquesavailable to the Web authorfor addingstyle sheets to a document—
in general, each level of complexity offers greater benefits while increasing the
level of abstraction necessary. Thefirst techniqueis to use an inlinestyle sheet.
Inline styles are simple: thestyle is defined directly on the element. The sec-
ond techniqueis to use a globalstyle sheet to define the style for a document
at the beginning of the document. The third and mostabstract and powerful
techniqueis to use a linkedstyle sheet to definethestyle separately in another
document.

Inline styles are not muchdifferent from traditional HTML. With inline
styles, the appearance of the documentcannotbe easily changed. The advan-
tage is that the amountofmarkupis usually significantly reduced, and HTML
can be used more appropriately to provide additional context rather thanjust
presentation. Usinga globalstyle sheet better separates the presentation from
the contents andallowsthe style and rendering of the documentto be quickly
and independently modified. Using a linked style sheet provides the greatest
benefit by allowing the appearance ofa set of pages or an entire Website to
be defined throughasinglefile.

The term cascading in CSSrefers to the ability to merge multiple style
sheets to formasingle style definition for an elementorfor the entire docu-
ment. This feature allows the Website’s style sheet to be merged in a predict-
able way with the style sheet in the document, and even with an inline style.

Styles

Aninlinestyle is basically a style sheet for a single instance of an element and
is specifiedin line in the element's begin tag. The inlinestyle sheetis defined
using the STYLEattribute, and the dataforthe attributeis specified using the
style sheet language. For example, the following code makes a paragraph’s
contents larger and centered on a yellow background:
<P STYLE="font-size:120%; text-align:center; background:yellow">

This creates a yellow, centered paragraph with a larger font.</P>

Inlinestyles can help you learn thestyle sheet language or quickly change
a single instance of an element. However,inlinestyles are not in keeping with
the true spirit of a structured document and do not work well when you are
trying to change the appearanceof a set of elements in a document where
the presentation and contents are not completely separate. To separate the
document’s style from its structure, the style sheet should be specified either
in the document’ head orasa separatefile thatis linked to the document.

15

17

PART I: HTML AND SCRIPTING ONE: Overview of HTML and CSSeseseseeeeeeeeeseseeesese

Global Style Sheets To define a linkedstyle sheet, the <LINK> tag is used in the head of the
The <STYLE>tag is used to adda globalstyle sheet to a document andis usually
contained within the document's header. Centralizing all the document'sstyle
in a single location makesit easy to modify how the documentis rendered. The
followingstyle sheet defines the renderingforall paragraphs in a document.
To change the rendering ofall paragraphs, only this single entry needsto be
modified. If inline styles were used, every paragraph in the document would
need to be changed.
<HTML>

<HEAD>
<STYLE TYPE="text/css">

P {font-size:12@%; text-align:center; background: yellow}
</STYLE>

</HEAD>
<BODY>

<P>All paragraphs are now larger and centered on a yellow
background. </P>

</BODY>
</HTML>

The TYPEattribute ofthe <STYLE>tag defines the language forthe style
sheet as a MIMEtype.Internet Explorer 4.0 supports only CSS and therefore
parsesonly style sheets oftype text/css. Ifa differenttypeis specified thatis not
supported by the browser, the contents ofthe style block are ignored. Omit-
ting the TYPE attribute causes the language to default to text/css. Although
setting the TYPEattribute is optional, doingsoisstill recommended to more
clearly document your source code.

A selectoris used to associate a style with a particular element. In the pre-
ceding example, a simple selector was created that associated a style with all
paragraphs. More powerful contextualselectors can also be defined; these selec-
tors are introducedin the section “Defining a Style Sheet”later in this chapter.

Linked Style Sheets
A linked style sheet is a style sheet that is supplied in an external file. The
advantage of using a linkedstyle sheetis that all the rules and styles can be
defined and encapsulatedin a single file that can be shared across multiple pages
or even across the entire Website. With a linkedstyle sheet, the rendering ofall
the paragraphs on an entire Website can be changed through a single docu-
ment, A linked style sheet can also improve performance becauseit is cached
locally on the client, separate trom the document, so each documentis smaller
andthestyle information needs to be downloaded only once.

17

document:
<HTML>

<HEAD>
<LINK REL="stylesheet” TYPE="text/css" HREF="fancy.css"></HEAD>

<BODY>
<P>This document uses the styles specified in fancy.css.</P></BOBY>

</HTML>

The RELattribute is used to specify that the linkedfileis a style sheet, and the
TYPEattribute specifies the style sheet MIME type. The HREFattribute is a URL
pointing to the external style sheet. The contents of a linked style sheet must
be only contextual rules andstyle definitions and must notinclude any HTML.

Defining a Style Sheet

You use the same syntax to create a style sheet within the document that you
use to create a linkedstyle sheet. This section introduces the components of
the CSS language. The CSSlanguageconsists of selectors and presentation rules.
Selectors specify the elements that are associated with a particular rule, and
presentation rules specify how those elements are to be rendered.

CSS provides two typesofselectors: simple and contextual. The simple
selector associates an elementbased onits attributes or type, without regard
to its contextual position within other elements. Contextualselectors are more
powerful in that they can associate a rule with a particular element's
containership—for example, all tags inside <P> tags.

In its most basic form, a simple selector can be created that associates a
particular element, class of elements, or ID with a specific style. The follow-
ing code demonstrates a numberofsimpleselectors andtheir presentation rules:
<STYLE TYPE="text/cess">

/* Change all H1ls to red, #/
H1 {color:red}

/* Make al? elements with CLASS="special" boldface. */
-special {font-weight:bold}

/* Give the element with ID="special" a yellow background. */
#special {background: yellow}

/* Give the Hl elements with CLASS="cool" wider letter spacing. */
H1l.cool {Tetter-spacing:2px}</STYLE>

18

PART I: HTML AND SCRIPTING ONE: Overview of HTML and CSSpO—

18

Selectors can also be grouped in a comma-delimitedlist, which allows
multiple selectors to share the same declaration:
/* Make all headers share the same rule. */
Hi, H2, H3, H4, H5, H6 {color:red; background:yellowl

Contextualselectors specify a containership hierarchy with which to asso-
ciate the style. The containership is specified by a space-delimited list. For
example, the following code defines a rule for all EM elements contained ina P element:
P EM {color:blue}

Each selector can reference the CLASS,the ID,or the element type. Hereis
a more complex version of a contextualselector:
/* Any element of CLASS="cool” that is contained within an

LI element of CLASS=“special" and further contained within
a UL element will get this style. */

UL LI.special .cool{font-weight:bolder; font-size:120%}

All elements of a contextualselector are case insensitive—for example,.coolis
the same as .cOoL.

Pseudo-Classes
A pseudo-class consists of elements of a single type that meet a certain contex-
tual criterion. For example, Anchor elements that have beenvisited constitute
a pseudo-class named visited, and active anchors and unvisited anchorsconsti-
tute the active and link pseudo-classes, respectively.

The pseudo-class is specified in a style sheet using a colon (:) as thedelimiter:

A:link {color:green}
:link {color:green}

The second example omits the element name (A) because only anchors have
a link pseudo-class. The pseudo-class can be used in the same manneras the
class or ID specifier andis also case insensitive. CSS1 defines pseudo-elements,
which are similar to pseudo-classes, for thefirst line andfirst letter in an element,
but Internet Explorer 4.0 currently supports only the anchor pseudo-classes.

selector, and by a contextualselector for Strong elements inside H1 elements.
The cascading aspect of CSS defines how those three ruleswill be merged. In
general, a rule for a more specific contextual selector overridesa less specific
one, and rules definedlater in the sourceofthe style sheet or document have
higher precedence.

CSS Features

This section provides a sampling ofsomeofthe interesting new features of CSS
supported by Internet Explorer 4.0, Some of these features can be used to
replace commonlayouttricks that are currently performedusingtablesto align
contents. These features are mostly contained in supplemental working drafts
and proposals, not in the core CSS1 specification.
Text Justification

InternetExplorer 4.0 providesfull supportforleft, right, andfulljustification
of text. Full justification is new to Internet Explorer 4.0 and allows contents
to be aligned at both the left and right margins. Justification is specified us-
ing the CSS ‘text-align property:
<P STYLE={"text-align:justify">

This paragraph is justified using the CSS text-align property.</P>

Custom Bulleted Lists

Using the list-style property, you can override built-in bullets in lists by using
custom bullets as specified by a GIF. Bullets can be specified forthelistitself or
for individuallist items. This technique degrades well on down-level browsers,
wherethelistwill be displayed using the standard bullet rather than the custom
bullet. The following code demonstrates how io replace the standardbullet:
<HTML>

<READ>
<TITLE>Custom Bulleted List</TITLE>
<STYLE TYPE="text/css">

/* Display cool.gif instead of default bullet symbol, */
UL {list-style-image:URL(cool.gif)}<P STYLED

Cascading Order ae
Morethan oneselector can refer to the same elements. CSS defines a cascad- “wb
ing orderthatis used to resolve anyselector and rule overlaps. The cascading The bullet is replaced with cool.qif.
order mergesall the rules applicable to an elementby sorting them based on </BODY>
their specificity. For example, a Strong element contained within an H1ele-
ment might have presentation rules defined by an H1selector, by a STRONG.

18

<HTML>

19

19

CEE

PART I: HTML AND SCRIPTINGeee

Figure 1-7 showsa list using custom bullets.

|ERs

HTML 4.0 consists of

Table enhancements
@ Form enhancements
6 Script elementand more...

Figure 1-7.
A bulleted list using custom bullets.

Creating Sidebars
Sidebars weretraditionally created using tables, but with the CSS float prop-
erty, tables are no longer required. Text contents can beassigned a class by
using a or <DIV> tag, and the float property can then besetin a style
rule for that class. Using the float property, you can easily create two types
of sidebars:

@ Sidebars that are aligned along theleft or right edge and thatare
surroundedbytext, similar to images.

© Sidebars that appear outside the marginsof the flow of the docu-
ment. Creating this type of sidebar requires manipulating the mar-
gins of the element.

The following code demonstrates howto create these two types ofsidebars:
<HTML>

<HEAD>
<TITLE>Sidebar Example</TITLE>
<STYLE TYPE="text/css">

BODY {margin-left:15@pt; margin-right:9pt}
.outflow, . inflow {float:left; width:15@pt; color:navy}
.outflow {margin-left:-150pt; width:15@pt)

</STYLE>
</HEAD>

20

19

ONE: Overview of HTML and CSSeee

<BODY>
<H1>Sidebar Example</H1>
<DIV CLASS="inflow">

Notice that the text wraps around this sidebar.</DIV>
<P>This example demonstrates a sidebar that exists within the

flow of the document. The contents wrap around the sidebarand continue below it.
</P>
<DIV CLASS="outflow">

This sidebar appears in the left margin of the document.
</DIV>
<P>This example demonstrates how to manipulate a document's

margins to force a sidebar to float in the margin. By
adjusting the margins, you can make the sidebar overlay theflow of the contents.

</P>
</BODY>

</HTML>

Figure1-8 illustrates the two types of sidebars.

Seeee

Sidebar Example
Notice that the text wraps ‘This example demonstrates aaroundthis sidebar sidebar that exists within the flow
ofthe document. The contents wrap aroundthe sidebar andcontinus below it.

This sidebar appearsin the left This example demonstrates how to taanipulate a document's
margin of the document margins to force a sidebar to float in the margin. By adjusting the

margins, you can makethe sidebar overlay the flow of the contents
Figure 1-8.
A sidebar with text wrapping aroundit, and a sidebar set in the left margin.

Thevisibility Property vs. the display Property
The CSS1 specification defines the display property for removing elements
from the presentation of the document. The working draft on CSS position-
ing exposes an additional property, visibility, that allows elements to become
transparentin the document's flow. You use these two properties to achieve

21

20

PART

22

I: HTML AND SCRIPTING

different presentation effects in the rendering and flow of the document.Set-
ting the visibility property to hidden causesthe contents to be renderedentirely
transparently. The contents are still in position in the flow, but they are not
visible. Setting the display property to nene causes an elementto be ignored by
the rendering engine, as if the element never appeared in the document.

Figure 1-9 showsthe effects of the visibility and display properties. The
right column shows the contentseither with visibility-hidden or display:none, and
the left column shows the contentsfully displayed. With display:none, the con-
tents that are not displayed take up no space in the document's flow.

visibility vs. display
Using the CSS visibility Property
‘This is the contents before, This is the contents before.
This is the contents inside.
‘This is the contents after. This is the contentsafter

Using the CSS display Property
‘This is the contents before This is the contents before
‘This is the contents inside, This is the contents after

‘This is the contents after,

F|
SSS=oEm aa 4

Figure 1-9.
The effects of setting the visibility and display properties.

Controlling the Cursor
The CSS cursorpropertyis used to customize the mouse pointer when the user
moves the mouse over an element. This property is especially useful when
traditionaltext elements have script associated with them, For example, using
a traditional -beam cursorwith text that the user is supposedto click like a button
will be confusing. Instead, an arrow or otherrelevant cursor should be used.

The following table lists the settings for the cursor property currently
specified by CSS, Examples of these cursors can be found with the Chapter 1
examples on the companion CD.

20

ONE: Overview of HTML and CSS

 Value Description

auto The browser determines which cursor to displaybased on the current context.

crosshair Simple crosshair cursor.
default Usually an arrow; the platform-dependent defaultcursor.

hand Handcursor; used to represent a region on the screenthatis clickable.

text Usually an I-beam; used to indicate editable text.
help Usually a question mark or a balloon; indicates that

help is available for the object under the cursor.
G-TESIZE, NE-TESIZE, Various arrow-shaped cursors; used to represent a
nw-resize, n-resize, resize operation—for example, when the user clicks on
Se-TESIZE, SW-TESIZE, the border of a window to resize the window.
S-TOSU2E, W-TESIZE
move Used to indicate that the element can be moved.

wait Usually a watch or an hourglass; indicates that the
program is busy and the user should wait.

CSS Support for Intrinsic Controls
In Internet Explorer 4.0, the text, button, and marqueecontrols fully support
style sheets. The Select element haslimited supportforstyle sheets. To prevent
problemson earlier browser implementations, intrinsic controls do not inherit
style sheets from parent elements. Instead, style rules must be associated with
specific elements through their elementtype or their CLASSor ID attributes.

The following simple style sheet formatsall Input elements in a class
named ¢ext as green boldface text:
<STYLE TYPE="text/css">

INPUT.text {color:green; font-weight: bold}
</STYLE>
<INPUT CLASS="text" TYPE=TEXT VALUE="Green Bold Text™>

Using the CLASSattribute ensuresthat only Input elements marked with the
text class are changed. This technique requiresa little redundancy between
the TYPE and CLASSattributes because the selector in CSS that associates

elements with styles currently does not recognize arbitrary attributes; CSSis
limited to associating styles with elements based only on the CLASSor ID
attribute or the elementtype.

23

21

PART Iz: HTML AND SCRIPTING

24

Embedding Custom Fonts
Before Internet Explorer 4.0, Web authors hadto usethe built-in fonts of the
browser or guess what fonts might be available on the system, Internet Ex-
plorer 4.0 provides the Web author with the ability to specify fonts that are
downloaded with the Web page, ensuring that the page is rendered correctly.
The downloadable fontis specified using enhancementsto the CSS syntax. The
syntax for specifying a downloadable fontin a style sheet is shown here:

@font-face {font-family:fontName; srezurl (filename. cot) }

The fontNamevalueis a user-defined namethatis later referenced by the font-
Jamily CSS property. Here is a complete example:
<STYLE TYPE="text/css">

@font-face {
font-family:demoFont;
src:url(http://somewhere.com/coolFont.eot)}

H1 {font-family:demoFont, Arial, sans-serif}
<STYLE>
<H1>This text is displayed using the downloaded demoFont.</H1>

Oncea new fontis specified, it can be used as a valid font namefor font-
family. The font-family property can take a list of fonts so thatif the first font
could not be downloaded, the browser can try a different font or a different
font family until one works. In this example, the last fontspecifiedis sans-serif,
which allows the browser to use any sans serif font to render the element.

UserSettings
Internet Explorer 4.0 supports the ability to create Web pages that automati-
cally adapt to the look andfeel of the user’s system. A set of new color and font
keywordsis available for specifying the user's system settings. A demo pagethat
displays text formatted with yoursystem settings is included with the Chapter
] examples on the companion CD.

Table 1-1 lists the set of new color keywords available in Internet Ex-
plorer 4.0. (Existing colors that can be specified for any CSScolorattribute
are notlisted.) A complete list of named colorsas well as a demo page that
displays each of these colors can be found on the companion CD,

Table 1-2 on page 26lists the font keywords that represent the current user
system settings. These values can be used only for the font property; they cannot
be used with the font-family property because thefont-family propertyis already
automatically based on the user’s system settings.

21

 ONE: Overview of HTML and CSS

Color Values

Keyword Description
activeborder Active window border color
activecaption Active window caption color
appworkspace Background color of multiple documentinterface

(MDI) applications
background Desktop background color
buttonface Face color for buttons
butionhighlight Highlight color for buttons
buttonshadow Shadow color for buttons
buttontext Text color on buttons

captiontext © Text color in caption, the window sizing box, andscrollbar arrow buttons
graytext Grayed (disabled) text color; set to Gif the current

display driver does not support a solid gray color
highlight Color of item(s) selected in a control
highlighttext Text color ofitem (s) selected in a control
inactiveborder Inactive window border color

inactivecaption Inactive window caption color
inactivecaptiontext Text color in an inactive caption
infobackground Backgroundcolor for ToolTip
infotext Text color for ToolTip
menu Menubackground color
menutext Text color in menus
scrollbar Color of scrollbar background
threeddarkshadow Dark shadow color for three-dimensional displayelements

threedface Face color for three-dimensional display elements
threedhighlight Highlight color for three-dimensionaldisplay elements
threedlightshadow Light shadow color for three-dimensional displayelements

threedshadow Shadowcolor for three-dimensional display elements
window Window background color
windowframe Window frame color
windowtext Text color in windows

Table 1-1.
New system color keywords in Internet Explorer 4.0,

25

22

PART I: HTML AND SCRIPTING

Font Values

Keyword Description

caption Font used for captioned controls (buttons, drop-downlists,
and so on)

won Font used to label icons
menu Font used in menus

messagebox Font used in dialog boxes
smallcaption Font used for labeling small controls
statusbar Font used in window status bars

Table 1-2.

New system font keywords in Internet Explorer 4.0.

CSS Positioning
Internet Explorer 4.0 also supports a new CSSdraft, CSS-P, that provides greater
contro] overthe positioning of elements. Combining these new extensions with
scripting allows elements to be animated and moved around onthepage. This
feature provides the Web author with complete control over the document's
layout and theability to control the position of andrelationship between ele-
ments. Chapter12, “Dynamic Positioning,’ introduces the syntax for position-
ing elements with CSSaswell as the supportfor scripting positioned elements.

Filters and Transition Effects
Internet Explorer 4.0 also supportsa set offilters and transitions that can be
associated with the HTMLcontents.Filters can be directly applied to text in
the document. Transitions allow presentation-like effects such as dissolves
andslides to be added to the documentorto elements in the document. For
example, you can make text shadowed or semitransparent, and you can make
pages fade in or out when the user enters or exits them. This functionality is
supported through the new CSS filter property.

Examining an HTML DTD

26

HTMLis an application of SGML, soit allows the creation ofstructured docu-
ments. Unfortunately, a recent scan of the Web shows that most Web pages are
not true HTML documents. Browser implementationsare partly to blame for
this laxity because they are very lenient when parsing documentsandoftenat-
tempt to decipher the Webauthor’s intent, rather than reject invalid documents.

With the introduction of Dynamic HTML and CSS,structure takes on
greater importance. Pages that are properly structuredwill interact better and

22

 QNE: Overview of HTML and CSS

be morereliable across multiple browsers. Scripts will ran much morepredict-
ably because there is no ambiguity in the document’s description. The event
architecture exposed by Dynamic HTMLalso relies heavily on the document’sstructure.

Understanding how to create a proper HTML documentrequires the
ability to read a DTD (documenttype definition). The DTD definestheset of
valid elements, identifies which elements can be properly contained by other
elements, and specifies the valid attributes for each element. This section intro-
duces you to the basics of reading and understanding a DTD;it is not intended
to teach you howto author and create custom DTDs. Explainingall aspects of
an SGML DTD would require an entire book—of which manyareavailable.

Defining an Element
An elementin the DTDis defined using the ELEMENT keyword. The element's
definition specifies whether the element contains anything and whether the
begin and endtags are optional or required. The following code demonstrates
a prototype for defining an element:

<!ELEMENT ¢elementName beginTag endTag contentModel>

The beginTag and end'Tag placeholders can be either a hyphen(-) or an O. A
hyphenindicates that the tag is required, and an O indicates that the tag is
optional. The contentModel placeholder can be EMPTY, which indicates that
the element cannot contain anything,orit can be a specification ofthevalid
contents for the element. The following code defines a Body element, in which
the begin and endtags are optional:
<!ELEMENT BODY 0 0 %body.content

-- Begin and end tags are optional; containing body.content. -->

While there are many elements in HTMLthat supportoptional begin and end
tags,it is still good practice to always explicitly provide them. Doingso helps
make the document much more readable and reusable, especially to those who
do not understand the intricacies of HTML. Whenthese delimiters are not

supplied, the browserwill infer their location based on the contents.
The preceding Body elementdefinition specifies that the element can con-

tain %body.content. The % in this specifier indicates that the contents are defined
through a macro (called an entity in SGML). The </ENTITY% body.content...>
definition specifies the elements that can be contained within a Body element.
Such macros are useful because they allow contents models to be reused by
multiple elements, making the DID more compact andeasier to use. Contents
models can also be defined directly in line. For example, the code on thefol-
lowing page defines the Map element, which can contain only Area elements.

27

23

PART I: HTML AND SCRIPTING

<!ELEMENT MAP - - (AREA)*>

Thesetofvalid elements in the contents modelis specified using a simple regu-
lar expression language. The * qualifier following the (AREA)tag indicates that
any number of Area elements can be contained within a Map element.

Defining Attributes
Attributes are defined in a mannersimilar to elements. Attribute lists are
defined using the !ATTLIST keyword. Theattributes for the Body element aredefined as follows:
<!ATTLIST BODY

@attrs; -- id, class, style, lang, dir, events --
focus; .
background SURL #IMPLIED -- texture tile for document background --
topmargin; CDATA #IMPLIED
leftmargin; COATA #IMPLIED
&body-color-attrs; -- bgcolor, text, link, vlink, alink --
onLoad script #IMPLIED -- intrinsic event --
onUnioad %script #IMPLIED -- intrinsic event -->

Thefirst tag following the !ATTLIST keyword specifies the elementthe at-
tributes are associated with andis followed by the attributelist. Each attribute
is either a macropointing to anotherlist ofattributesora definition of the data
typethat indicates whethertheattribute is required or implied. A macro can
be used to associate a group ofattributes with the elementor even to specify
the data type.

Defining an Entity

28

An entity is a macro that can be reused elsewhere in the DTD. Theattrs entity
used by the Body elementis shown below along with the style entity. Notice
that the atirs entity points to additional entities: style, iJ8n (internationaliza-
tion), and events.
<IENTITY % attrs "%style %i18n %events">
<IENTITY % style

"id ID #IMPLIED -- document-wide unique id --
class CDATA #EMPLIED -- comma list of class values --
style CDATA #IMPLIED -- associated style info --
title CDATA #IMPLIED -- advisory text -->

The body.content entity is also defined using other entities:

23

ONE: Overview of HTML and CSS

<IENTITY % body.content "(%heading | %text | %block | ADDRESS)*">

This definition indicates that the body can contain any numberof the elements
specified by the heading, %text, and %block entities and any number of Ad-dress elements.

Oneof the most complex elements in HTMLis the Table element. Here
is the definition for the Table element:
<!ELEMENT table 7

(caption?, (col*|colgroup*), thead?, tfoot?, tbody+)>
<IELEMENT caption - > (Stext:)4+>
<!ELEMENT thead - O (trt+)>
<!ELEMENT tfoot - 0 (trt)>
<!ELEMENT tbody 00 (trt)>
<!ELEMENT colgroup - 0 (col*)>
<!ELEMENT cal - O EMPTY>
<!ELEMENT tr - 0 (th tai+>
<!ELEMENT (th|td) - 0 4body.content>

Thetable’s contents can begin with a single optional caption, followed by any
numberof Col or ColGroup elements, followed by a single optional THead
element and an optional TFoot element,followed by one or more TBody ele-
ments. The commadelimiter defines the ordering of the elements. Therefore,
the Caption element, if supplied, must be the first element contained withinthe table.

It may seem odd that the table does not allow a TR element to exist im-
mediately below the table. This does not mean that almostall tables on the Web
are invalid. The TBody elementis defined as having an optional begin tag and.
an optional end tag. Therefore, a TR outside of a THead or TFootimplicitly
falls into the TBody. This relationship is further maintained in the object
model, where the TBody elementis always synthesized. A synthesized element
in the object model represents an elementthat implicitly belongsto all docu-
ments, regardless ofwhetherit is explicitly defined. For example, all documents
are considered to have HTML, Head, and Body elements exposed in the ob-
ject model, Synthesized elements in the object modelare discussed in greater
detail in Chapter 7, “Document Element Collections.”

This concludes your brief introductioninto the world ofSGML DTDs.You
should now be able to read an HTML DTD andcreate valid HTML documents.
For more information about HTMLandto obtain valid DTDsforall versions
of HTML,see the W3C Website (www.w3.org). To see the DTD used in Inter-
net Explorer 4.0, see the Microsoft Website (www.microsoft.com).

29

24

einen eeenS ibs

tai ier decks rarest bneetle sg ade latsee Rane co
Bureeiner eeepug?

pee gar
eepifeeb
niteeen

Giese ipara aeten

eg
ely eee

Bie ene

aoh
Eh
Py?

at

24

Fundamentals of

HTML Scripting

The Dynamic HTMLobject model has evolved from the object models that
were included in Microsoft Internet Explorer 3.0 and Netscape Navigator 3.0.
This chapterprovidesa historical perspective, comparing the old object models
with the one provided by Dynamic HTML and demonstrating the level of
support provided by the different versions of the browsers.

Scripting languages have evolved alongside the HTMLobject models. By
embedding scripts in your documents, you can access the HTMLobjectsto
manipulate the elements on your Web pages. This chapter introducesthis
powerful programming technique.

The following topics are covered in this chapter:

@ Dynamic HTML object hierarchy The Dynamic HTML objecthier-
archy is the API for creating live and interactive pages. The ob-
jects in the hierarchy represent the browser and the elements of
the HTMLpage. In this section, the object models supported by
Internet Explorer 3.0 and Netscape Navigator 3.0 and 4.0 are dis-
cussed and compared to the Dynamic HTMLobject model sup-
ported by Internet Explorer 4.0.

® Authoring scripts The Dynamic HTML object model is accessed
by writing scripts andassociating them with the HTML document.
A scriptis associated with the HTML documentby using a Script
element, which contains executable code in a specified language.
The Script elementcan also be used to associate external scriptli-braries with the document.

31

25

PART I: HTML AND SCRIPTING

@ Choosing a scripting language: JavaScript vs. VBScript The two
primary programming languages used on the Web are JavaScript
and VBScript. Both languages can fully manipulate the Dynamic
HTMLobjects. This section helps you determine which language to
use for specific circumstances.

® Advanced JavaScript techniques This section discusses some of
theJavaScript techniques used throughoutthis book.It is not meant
to provide a language tutorial, but rather to familiarize you with
someof the interesting features of the JavaScript language and
their relationship to Dynamic HTML.

@ Scripting and Web security Security is a widespread concern on
the Web. A programming language imposeslimitations in order to
ensure the clients’ security, and a programmer must understand
these limitations. This section introduces the security model for Dy-
namic HTML.Additional security issues are addressed throughoutthis book.

NOTE: This chapteruses elernents of the Dynamic HTMLobject
model to demonstrate various techniques. For each such use, you
will find a reference to the chapter in which the featureis discussedin detail.

Dynamic HTML Object Hierarchy

32

A minimal HTMLobject model wasfirst introduced as part of Netscape
Navigator 2.0’s JavaScript implementation. The original implementation ex-
posedonly a relatively small numberofdocumentaspects to manipulation by
a scripting language. However,it did lay the groundwork for the object mod-els that followed.

Internet Explorer 3.0 separated the original object modelfor describing
the documentfrom the language implementation.Thislaid the foundationfor
the language-independence requirement of Dynamic HTML. Internet Ex-
plorer4.0 built on this object model to completely exposeall aspects of thedocument.

Figure 2-1 shows the object model supported by Internet Explorer 4.0.

25

TWO: Fundamentals of HTML ScriptingEEE

eld

 styleSheets

Figure 2-1.

The Internet Explorer 4.0 object model. ss

26

SySooo

PART 1: HTML AND SCRIPTING
—_—SS_

34

SSSme

The Evolution of the Dynamic HTML Hierarchy
Thefollowinglists outline the evolution of object support through thedifferent browsers.

Internet Explorer 3.0 supports the following objects:
@ anchors @ links
@ document @ location

@ document.frames @ navigator
Mi elements @ window

@ forms B window.frames
@ history

Netscape Navigator 3.0 supports the sameset of objects as Internet
Explorer 3.0 except for document.frames and adds the following objects:

@ applets B images

Internet Explorer4.0supports the sameset ofobjects as Internet Ex-
plorer 3.0 and Netscape Navigator 3.0 and adds the following objects:

Ball B@ screen

@ body @ scripts
@ clientInformation @ selection

@ event B styleSheets

‘ Theselists are useful when you are comparing the level of func-
tionality desired with the specified set of browsers. For Internet Ex-
plorer 3.0 compatibility, either yourscripts must be limited to Internet
Explorer 3.0 supportor your code must conditionally check the version
and brand ofthe browser to ensure graceful degradation.

; The window object is the top-level object in the HTMLobject model, The
window object is the frame for the document object. All interactions with the
document occur through the window, The window object also exposes infor-
mation about the current document's URL, previous URLs theclient hasvis-
ited, and the current document's type.

26

TWO: Fundamentals of HTML ScriptingTe

The window can contain different types of documents depending onthe
MIMEtype. There are two types of HTML documents: a traditional HTML
document and an HTMI.frameset. For both types, the contents ofthe docu-
mentare exposed through the document object. Because framesets divide the
screen into multiple frames, each individualframeis also exposed through the
window’s frames collection. Each framein this collection actually represents
another window object—andpotentially another document, or anotherframes
collection, and so on. Framesets are discussed in detail in Chapter5, “Window
and Frame Management.”

Dynamic HTML Evolution (or Revolution)
Netscape Navigator 2.0 and Internet Explorer 3.0 introduced basic object
models for HTML documents. However, the level of support was mostly lim-
ited to conditionallogic during page loading and form validation. No changes
were permitted that would alter the shape or rendering of the document.
Internet Explorer 4.0 has overcomethis limitation by providing an object
model that exposes the entire document.

Rather than define an entirely new object model, developers designed the
Dynamic HTML object modelas a supersetofthe existing model. In addition,
the Dynamic HTMLobject modelis consistent with current programming
paradigms,allowing developers to leverage existing knowledge. If you are
familiar with scripting for Internet Explorer 3.0 or Netscape Navigator 3.0, you
already have the basis for learning Dynamic HTML.

Support for Older Browsers
While graceful degradationis intrinsic to HTML, it is not possible with script-
ing languages. Whena parser does not recognize an HTMLtag,it is supposed
to ignore the tag. Asa result, the presentation of the corresponding element's
contents maybeslightly different than intended. Ignoring statements is not
feasible for scripts—ignoringa line in a script can be fatal to the rest of the
code, as each line of code maycreate or change the existing state of the docu-
ment. Therefore, when you are authoring scripts for multiple browsers and
versions, degradation is not something that you can ignore; instead, you must
carefully plan forit in the engineering and design of your page.

Dynamic HTMLintrinsically provides powerandflexibility not available
in earlier versions of HTML.You can author yourpagesto use manyofDynamic
HTML’ featuresandstill work well across all browsers. Throughoutthis book,
techniques are provided to help you write code that can degrade gracefully.

35

27

ES
PART JU: HTML AND SCRIPTING—_—_—————————

In somecases, the code is merely providing a visual cue oreffect, and degra-
dation is usually trivial. In other cases, depending on the purposeofthescript,
the only solutionis to create an alternative page that provides similar function-
ality in a different manner. In general, the more dynamic a pageis, the more
forethoughtis required to ensure that the page runs on down-level (less ca-
pable) browsers. Figure 2-2 shows a page enhanced for Dynamic HTML run-
ning in two browsers: Internet Explorer 3.0 on the left, and Internet
Explorer 4.0 on the right. The Internet Explorer 3.0 version displays an ex-
panded,flat table of contents pane, while the Internet Explorer4.0 version
contains an outline and a fancy table of contents.

BOverview of HTML and CSSHIML 40
CSS Features
CSSPositioning

* Overview of HTML and CSS
HTML 4.0

CSS Features Syste SetangsQPendamentals efHTML Scripting@Dymaaic MIML Evest Medel‘he Browser Window
CSSPositioning
Systom Settings ‘Window and Frame ManagementScroling Window‘Modal Dialogs‘Window ManagerFrameset HierarchyFrameset Browser

+ Fundamontals of HTML Seripting
Supported Languages
‘Naming Conventions

= Phenenmmie MTMT Fane iit

Figure 2-2.
A Dynamic HTML page as displayed by Internet Explorer 3.0 (on the left)
and Iniernet Explorer 4.0.

Remembertoo that there may be bugs and inconsistencies in the existing
implementations. Therefore, even ifa page designed to run across browsers and
Rersions uses a commonsetofobjects and members (propérties and methods),
it shouldstill be tested againstall targeted platforms,

Dynamic Reflow

36

Theability to access and change any aspect of a page demonstrates oneof the
key innovations enabled by Dynamic HTML.Past browsers, while allowing
some documentchanges, were not capable of causing the documentto reflow
itselfwithout complicated scripts that reconstructed entirely new documents.
Dynamic HTMLbreaksfree from theserestrictions. Whenevera script manipu-
lates and changes an attribute of an elementora style sheet or modifies the

27

TWO: Fundamentals of HTML Scriptingee

contents, the documentintelligently recalculates and repaints the page with
the new information.

Dynamic HTMLwasdesigned to take advantage of the existing HTML
and CSS (Cascading Style Sheets) recommendations and working drafts.
Rather than require Web developers to learn a new modelfor representing a
page, the Dynamic HTMLobject modelexposesa reflection of the document
to the scripting language. For example, a script can change the CLASS at-
tribute of any HTMLelement.In the scripting language, the CLASSattribute,
like all attributes, is exposed as a property of the element—in this case, the
className property. Modifying anyattribute is internally consistent with the
user opening the file in an editor and changing the attribute in the source
file. This model ensures that as HTMLand CSSevolve, the object model natu-
rally follows.

Authoring Scripts
Scripts are not the only way to access the Dynamic HTMLobject model; the
Dynamic HTMLobject model can be accessed in the following three ways:

@ Throughscripts within or referenced by an HTMLpage. These
scripts can access the contents of the current documentor docu-
ments from the same domain in other frames or windows.

@ Through embedded applets and controls that reside on the page.
@ Through hosts thatsit outside or alongside the browser. For ex-

ample, the Find dialog box in Internet Explorer 4.0 was created us-
ing Dynamic HTML.

All three methods manipulate Dynamic HTMLin similar ways. This book
concentrates on thefirst approach,accessing the object model through scripts
that are associated with an HTML document. However,all the concepts and tech-
niques presented in this book can also be applied to the other two methods.

The Script Element
Scripts behind the page can be associated with the documentusing one of
three techniques. The most common techniqueis to enclose code within a
Script element. (The other two techniquesare to put the code in a separate
file and reference it with a <SCRIPT> tag or to put the code in an eventat-
tribute in anothertag.) The Script elementis a container for code written in
aspecific programminglanguage.A Script elementcan either contain the code

37

28

PART FI: HTML AND SCRIPTINGeee

38

in line inside the documentorrefer to an external file. Scripts contained within
a Script elementcan beassociated with an element through code, throughspe-
cial attributes on the Script element, or through language-dependent mecha-
nisms. Individual elements can havescripts associated directly with them
through eventattributes exposed in the elementitself.

The syntax for the Script elementis as follows:

<SCRIPT LANGUAGE="languageName" [TYPE="MIMEtype'][SRC="optionalFile") [DEFER]>
Script statements

</SCRIPT>

The scripting languageis specified using the LANGUAGEattribute. The
following code demonstrates how to specify a script for both VBScript and
JavaScript:
<SCRIPT LANGUAGE="VBScript”>

* VBScript code
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
/?/ JavaScript code

</SCRIPT>

NOTE: InVBScript, comments are denoted by an apostrophe(');
inJavaScript, comments are denotedby either a // (which makesthe
rest of the line a comment) or /* contents */ (which makes contents
a comment, even if it spans multiple lines). The scripting engineig-nores all commenttext.

Forhistorical reasons, omitting a LANGUAGEattribute causes the script
to be parsed as JavaScript. Rather than rely on the default language, you
should always specify the LANGUAGEattribute in order to document the
script’s context.

NOTE: The Script element’s LANGUAGEattribute is deprecated
in HTML4.0 in favorof using the TYPEattribute. The TYPEat-
tribute takes a MIMEtypefor the language:forJavaScript you use
text/JavaScript, and for VBScript you use text/VBScript. However, be-
cause down-level browserswill not recognize the TYPEattribute, we
recommendthat you continue to use LANGUAGEoruse both LAN-
GUAGEand TYPE. Notethat specifying a TYPEattribute, when
recognized, overrides any LANGUAGEsetting.

28

TWO: Fundamentals of HTML Scripting

With the introduction of Netscape Navigator 3.0, Netscape started to
append a version numberto theJavaScript languagestring. Therefore, to write
code that executes only in Netscape Navigator 3.0 and Microsoft Internet
Explorer 4.0 andlater, set the LANGUAGEattribute to favaScript11. This
technique works becauseif the browser does not recognize the specified lan-
guage, the codeis not executed andthescriptblockis skipped. For code that
demonstrates how to determine what scripting languages the client supports
without having to check the browserversion ortype, see the section “Multiple
Scripting Languages” later in this chapter.

Scripts contained within a Script element can execute code in two con-
texts: during the parsing of the page and asthe result of an event. The follow-
ing script demonstrates both types of code. Codethatis included directly in
the Script elementbutnotcontainedwithin a functionis executed immediately
whenit is parsed. Code thatis contained within a function can execute only
whenthe functionis called, either directly or because of an event. Events are
notificationsthat occur when the userinteracts with the page or whenthestate
of the document changes—for example, when the userclicks on the document,
or when the documentis loaded. The event modelis introduced in detail in
Chapter 3, “Dynamic HTML Event Model?
<HTML>

<HEAD>
<TITLE>Execution af Code</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// The following alert occurs while the page is being loaded.
alert('Hello. World!");

function helloWorld() {
// This code executes only when the helloWorld function
// is called.
alert('Hello, World Too!");

}
</SCRIPT>

</HEAD>
</HTML>

Script Libraries
Scripts may be contained in an externalfile and associated with any number
of HTML documents. This arrangement serves several purposes, the most
apparentofwhichis thatit allows generic scriptlibraries to be written that are
shared by multiple pages. Depending on the browser, these script pages can

39

29

aa
PART I: HTML AND SCRIPTING—.CC

becomecached, thus increasing performance, as common functionality does
not have to be written into every page. Another purpose depends on how pages
are authored.If there are separate authors for scripts and contents, both do
not need access to the same file simultaneously. Instead, the script author can
write the scripts in one file, while the contents author writes the contents in
anotherfile. This is consistent with the separation of presentation and contents
alreadyavailable with style sheets.

Referencing of an external script is done using the SRC attribute, as in
this example:
<SCRIPT LANGUAGE="JavaScript” SRC="genericFile.js">

/* Optionally write code here for browsers that don't
support the SRC attribute. */

// The closing SCRIPT tag ts always required.</SCRIPT>

Even whenthe SRC attributeis supplied, the <SCRIPT> tag muststill have an
end tag. Browsers that support the SRC attribute ignore the contents of the
Script element. Browsers that do not recognize the SRC attribute execute the
contents of the Script elementas the code.

Externalscriptfile supportis available only in Netscape Navigator 3.0 and
Internet Explorer 4.0 andlater. Therefore,ifyou use externalscriptfiles, take
care to makeprovisions for the prior versions of these browsers.

Immediately Executed Code

As mentioned, Dynamic HTMLlets you create code that can execute during
the parsing of a page. This codeis written outside the scope of any event han-
dler, subroutine, or function. Such code can serve two main purposes:

@ Adding properties to the window object andinitializing their state
®@ Outputting contents into the document’s stream

Thefirst purposeis similar to declaring what might normally be considered
global variables, In all currentscripting languages,variables that are scoped to
the window object are addeddirectly to the window object as properties. For
example,here the variable x is added as a property to the window:
<SCRIPT LANGUAGE="JavaScript">

var x = @; // Create property and initialize to @.
alert(window.x); // Output @, the value of x.</SCRIPT>

40

29

TWO: Fundamentals of HTML Scriptingnnum

To better understand the preceding code, consider the following, more
elaborate example:
<SCRIPT LANGUAGE="JavaScript">

// Create property x and initialize to 14.
var x = 10;

function foot) {
// This code is not executed unless explicitly called.
/* Create an instance variable, y, that lives only as

long as the function is being executed. */
var y = @;
alert(x); // Output 1@; x is a property of the window.

}

// Call foo while loading the page.
food:
window. foo(); /?/ Call the foo function again because the foo

/? function is added to the window.
</SCRIPT>

This code demonstrates that immediately executed code and functions can be
interspersed. Codethatcalls a function while the page is loading must have
the function declared in advance. ;

The second purpose of codethat executes when the page loadsis to write
coritents into the document. This is done using the document object's write
method. Hereis a simple program that writes Hello, World! into the HTML
document:
<HTML>

<HEAD>
<TITLEDHel10, Wortd!</TITLE>

</HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript">
// Write the string “Hello, World!” into the document.
document .write("<H1>Hello, World!</H1>")

</SCRIPT>
</BODY>

</HTML>

The write method can becalled only during the loading of the page, to

insert contents into the parsing of the document. To manipulate and change
the contents once the page is loaded, you must use a different technique.

41

30

PART Iz: HTML AND SCRIPTINGoo,

Dynamically adding contents to the document during the loading processis
discussed in Chapter 6, “The HTML Document,’ and manipulating the con-
tents is discussed in Chapter 13, “Dynamic Contents.’

Locations of Scripts in the Document

42

A document maycontain any numberofScript elements. A Script element can
live in either the head or the body of the document. For most purposes, the
location ofthe scriptis not importantin relation to the design of the page.
However, scripts that perform initialization are usually more convenient and
more readable when placed in the document's head.

Thelocation of a Script element is more importantif the elementis ac-
tually writing contents into the stream oris referencing an elementin the docu-
ment. Writing into the stream is done using the write or writein method of the
document object, as in the following example:
<HTML>

<SCRIPT LANGUAGE="JavaScript">
// Generate an entire document from this script.
document .write("<HEAD><TITLE>My Document</TITLE></HEAD>"):
document .write("<BODY><H1>This is my page.</H1></BODY>"):</SCRIPT>

</HTML>

This codecreates and renders the following HTML:
<HTML>

<HEAD>
<TITLE>My Document</TITLE>

</HEAD>
<BODY>

<HI>This is my page.</H1></BODY>
</HTML>

If you are writing head contents,it is importantto put thescript within
the head. For example, a script placed in the middle of the page should not
output HTMLtext that sets the document'stitle. Any time the write methods
are called, the contents are placed into the stream at the currentlocation. For
example, inserting a <TITLE> tag in the wrongplace may violate the HTML
DTD (document type definition) and have unpredictable results.

The use of the write methods is discussed in detail in Chapter 6, “The
HTML Document.” Generating pages using document.write is not always an
ideal technique becauseitmasks the contents from editing and indexingtools,

30

SSeSeeSSSS———oe

TWO: Fundamentals of HTML Scripting

which mightnot be able to interpret scripts. Without executing the script
behind the page, the actual contents are unknown.

Object Availability
Scripts that execute duringthe parsing of the page and that reference elements
on the page needto be positionedcarefully. For these scripts, only the elements
that have been previously loaded are available for scripting because no for-
ward declarations of elements are possible, The same holds truefor any func-
tions or variables that may be called—they must always be specified prior tothe call.

Attemptingto access anything in the HTMLsource codethatfollows the
Script element during immediately executing code will generate an error. For
example,scripts that execute in the head of the documentwhile the page is
downloading cannot reference any of the forms or other elements thatexist
in the body.

Thisrule is true only for scripts that execute during the downloading of
a page. Scripts that execute in response to events are not required to follow
the referenced element. Once the documentis entirely parsed,all aspects of
the documentare considered fully accessible. However,it is possible for event
handlers to be called before the documentis entirely loaded. Before referenc-
ing an elementthat might notyet be loaded, you should test for the existenceof the element:

<SCRIPT FOR="document” EVENT="onclick()" LANGUAGE="JavaScript">
// This code executes whenever the user clicks in the document.

// Verify that the element exists.
if (null != document.all.myElement) {

// Do something.
3
else

alert("The document is not entirely loaded yet!");
</SCRIPT>

Event bindingis discussed in Chapter 3, “Dynamic HTML Event Model.”

Deferring Script Execution
Internet Explorer 4.0 can provide improved performanceforscripts that do
not contain immediately executed code. If the Script element contains only
function declarations, supplying the DEFERattribute in the <SCRIPT> tag
notifies the browser that it does not have to wait for the entire script to be

43

31

PART
SaaSEEE

I: HTML AND SCRIPTING—eoeeeSSS

parsed andinterpreted. Instead, the browser can continueto load anddisplay
the page. This attribute should be used only when the Script elementcontains
nothingbut function declarations and when any subsequentscripts that are
immediately executed do notcall these functions. Immediately executed code
defined within a deferred Script elementcan react unpredictably. When used
appropriately, the DEFERattribute has no adverse effect on browsers that do
not recognize it. Those browsersignore the attribute and perform the tradi-
tional blocking until the script is parsed.

Multiple Scripting Languages

44

Similartoits ability to specify multiple Script elements, a single documentcan
also contain and execute multiple scripting languages. All currently available
scripting languages will execute on the page, assuming that the browser sup-
ports them. For example, using Internet Explorer, a page can be authored
containing bothJavaScript and VBScript code. Furthermore, it is possible for
one languageto call the functions defined by another language, as demon-
strated in the following code. Calling a functionscripted in another language
is possible becauseall functions and variables are added as methods and prop-
erties of the window object.
<SCRIPT LANGUAGE="VBScript"™>

* Simple subroutine that pops up a message box
sub MyATert(str)

msgBox(str)
end sub

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript™>
// Call the VBScript subroutine, MyAlert, defined above.
MyAlert("Hello, World!");
window.MyAlert("MyAlert is a method of the window object.");</SCRIPT>

Thefact that multiple languages can be used together makespossible an
easy technique to determine what languages the browser supports. Thefollow-
ing code demonstrates this technique:
<SCRIPT LANGUAGE="JavaScriptl.1"><t--

window.jsil = true; // Set flag for JavaScript 1.1.a)
</SCRIPT>

31

TWO: Fundamentals of HTML Scriptingcm

<SCRIPT LANGUAGE="VBScript">
Kl--

vbSupport = True * Set flag for VBScript.'-->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
<}-- --><H1>Your browser does not support scripting.</H1>
<l--

/* In this example, JavaScript is considered the lowest common
denominator. This example can be modified to use a different
language for the final testing. */

document.write("JavaScript is supported.
");
if (null != window. js1l)

document.write("JavaScript 1.1 is supported.
");
if (null != window. vbSupport)

document .write("VBScript is supported.
");
fi -->
</SCRIPT>

Hiding Scripts from Down-Level Browsers
Unless you take someprecautions, browsers that do not supportscripting will
renderthe script code aspart of the document’s contents. This occurs because
the down-level browserwill ignore the <SCRIPT> tag and process the contents
as HTMLtext. This is consistent with how HTMLhandles unrecognized tags
andis necessary in the evolution of HTML. Tohidescripts from a down-level
browser, create an HTML commentthat wraps the code:
<SCRIPT LANGUAGE="VBScript">
cI

* VBScript code
* The next line ends the HTML comment.

rae
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
ital

// JavaScript code
ff -->
</SCRIPT>

Both languagesinterpret the opening HTMLstring for creating a com-
ment, <-, as the beginning ofa single-line comment,so the line is ignored
by the languageparser. The close comment mustbe preceded by the language-

45

32

PART I: HTML AND SCRIPTINGee

46

specific commentdelineator(' in VBScript, // in JavaScript). This causesall
code within the Script elementto be treated as a commentand not rendered
by a down-level browser.

Whenusing the commenting scheme, be careful not to output the open-
ing orclosing commentdelimiterin anystrings anywhere in the code. If out-
putting the string is necessary, be sure to breakit into multiple parts:
<SCRIPT LANGUAGE="JavaScript™>

<t--
/* The close comment tag being written into the document

is broken into two strings, #/
document .write("<" + "!-- This is a comment to write into the " +

“stream. --" + “">");
f] -->
</SCRIPT>

Using HTML commenttagsinside a script hides the script from down-
level browsers, but it does nothing to help warn the user that the pagerelies
onscripting. Therefore, to supply text to a browserthat does not support script-
ing, a special ¢NOSCRIPT> tag is exposed. The contents of a NoScript element
are ignored by browsers that supportscripting.
<!-- Contents for browsers without scripting support --><NOSCRIPT>

<H1>This page requires scripting support.</H1>
<H2>Please obtain the latest version of Internet Explorer

to properly view this page.</H2></NOSCRIPT>

This technique works in a down-level browser because the down-level
browserignores the <NOSCRIPT>tagjust asit ignores the <SCRIPT> tag and
outputs the contents. A scriptable browser knows that when it encounters a
<NOSCRIPT> tag,it should not render anything until after the </NOSCRIPT>
tag ends the element.

The user of a scriptable browser can disable scripting support. When
scripting supportis disabled, the browseracts like a down-level browser and
outputs the NoScript element's contents.

Internet Explorer 4.0 allows you to disable scripts throughits security
settings. Internet Explorer 4.0 has a powerful security model that can be cus-
tomized for different “zones” ofWeb content; each zone represents the entire
Web, theintranet,ora particularset ofpages. Thefollowing steps disable script-
ing for a particular zone:

32

TWO: Fundamentals of HTML ScriptingEee

1. From the View menu, choose Internet Options to display an Internet
Options dialog box.

2. Select the Security tab from thelist of pages.
3, Select the zone to customize. Select Custom, and click the Settings

button.

4. In the Scripting category, select the Disable option for Active
Scripting.

5. Click OK or Apply to save thesesettings.

Netscape Navigator 2.0 does not support the <NOSCRIPT>tag.You must
use another technique to warn the userthat the page requiresscripting. This
involves writing a trivial script in the document that uses an enhancementof
the commentingtrick to force output on down-levelclients:
<1-- Alternative technique for providing down-level contents -->
<SCRIPT LANGUAGE="JavaScript™>
<l-- -->Your browser fails to recognize scripts. <!--

// Mrite your code.
a
</SCRIPT>

The commenting technique has the following disadvantage: when you
disable scripts, the contents of the Script elementare ignored, and the contents
of the NoScript elementare displayed. Therefore, the text for the comment
is not displayed whenscripting is disabled.

While the NoScript technique covers browsers that do not support script-
ing,it does nothingto differentiate vendor implementations. Different vendors
will be implementingdifferent versions of Dynamic HTMLasit evolves. A script
may or may not run on different browsers. There is unfortunately no easy
solution to this problem. Some Web authors may chooseto create multiple
pages andsenddifferent pages based on theclient's identity. This redirection
can be done onthe client. An example ofthis redirection is provided in the
following section.

NOTE: Inorderto highlight the features ofDynamic HTML they
demonstrate, most code samplesin this book will not include any
provisions for down-level browsers.

47

ad

33

PART I: HTML AND SCRIPTING

Client-Side Redirection

One methodfor handling different software versionsis to redirect the user to
different pagesbased ontheclient’s browser, as shown in the following code.
Client-side redirection occurs when a script behind the page conditionally
switches the browser to a different document, By conditionally testing the
version of the browser, analternative version of the page can be loaded. When
this technique is used, the base page shouldbe the Page that targets your
most important audience becausethe redirection will have performance
implications. When the redirection occurs, it will result in two pages beingdownloaded.

<SCRIPT LANGUAGE="JavaScript">
var MS = navigator. appVersion, indexOf ("MSIE");// Check whether this is [E4.
window. isIE4 = (MS > 0) &&

(parseInt(navigator. appVersion.substring(MS +5, MS + 6)) >= 4);
if ClislE4) // If not IE4, get non-dynamic page. ,

window. location="downlevelpage. htm";</SCRIPT>

To avoid the performance implications ofclient-side redirection, you can
perform the check on the server-side and send down only the correct page.
However, dependingonthe server’s privileges, this may notbe a viable option,

Choosing a Scripting
Language: JavaScript vs. VBScript

48

As mentioned, the Dynamic HTML object modelis language neutral and can
be scripted in anyavailable programming language. Therefore, the choice of
language depends on the preference of the Web author and the intended
audience for the page.

There are currently two primary languagesfor scripting pages on the Web:
JavaScript and VBScript. A committee of the ECMA (European Computer
Manufacturers Association), with representatives from Netscape, Microsoft, and
other vendors, has approved a standardization ofthe JavaScript language.
Microsoft'sJScript implementation in Internet Explorer4.0 is fully compliantwith the new standard.

Forcreating Webpages on the Internetfor which maximum exposureis
necessary, JavaScript provides the most potential,asit is currently supported
by both Netscape’s and Microsoft's browsers. (This also assumesthat your code
is targeting the set of features shared across the different implementations.)

33

TWO: Fundamentals of HTML Scripting

In addition, the syntax for controlling program flow inJavaScriptis very simi-
lar to the syntax in Java and C++, languages familiar to many Web authors.

Although both Microsoft and Netscape supportJavaScript, the compa-
nies are at different stages of implementing the features in Dynamic HTML.
Therefore, if you want cross-browser interoperability, exercise caution when
you are authoring dynamic pages. Throughoutthis book, techniqueswill be
offered to help you constructintelligent and interoperable pages.

Forintranets in which only one type of browser is used, the scripting
language becomesa secondaryissue. In this case, the language choice should
be based on whatbrowseris the standardfor the company and what knowledge
the Web developers have. If the Web developmentstaff is widely versed in
MicrosoftVisual Basic, and Microsoft Internet Exploreris the browser ofchoice,
it may be cheaperto develop in VBScript than to retrain and use JavaScript.

This Book Uses JavaScript
This book separates the concept of the object model from the programming
language. However, without a programming language Dynamic HTML would
need to be presented very abstractly, so for the sake ofclarity this book uses
the JavaScript language forall examples.

Certain JavaScript objects are not a part of the Dynamic HTML object
model andarespecific to the language. For example, the date, math, number,
and other data types are all specific to the language.It is up to the language
implementation to expose compatible data types. For example, VBScript ex-
posesa string data type, but in VBScriptthestring is not an object with its own
interface. Instead, string manipulations are performed separately using func-
tions. The following code comparesa string manipulationofthe title property
using VBScript and JavaScript:
<!-- Simple comparison between VBScript and JavaScript

string functions -->
<SCRIPT LANGUAGE="VBScript™>

dims ‘ Declare the string variable.
s = document.title ‘ Initialize.
msgBox(len(s)) * Qutput the length of s.
msgBox(left(s, 1)) * Qutput the first character of s.

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
var s = document.title; // Can initialize at declaration time,
alert(s.length); // Output the length of s.
alert(s.charAt(@)); /? Qutput the first character of s.

</SCRIPT>

49

34

PART
r |

I: HTML AND SCRIPTING

Advanced JavaScript Techniques
This section introduces someofthe advancedJavaScript concepts used through-
out this book, This section is not meant to teach JavaScript, but rather to en-
sure familiarity with some of the more powerful butless common aspects of
the language.

Adding Properties to Objects

50

Arrays and objects in JavaScript provide two techniques for accessing their
contents: directly referencing the contents as a property using dot(.) notation,
or referencing an index into the array using bracket ([imdex]) notation, An
indexinto aJavaScript array can bea string value that represents the property
name. Dot notationallows direct access to a property when the property name
is known in advance. Whenthe property being accessed needsto be a variable,
it can be accessed late-bound usinga string identifier:
<SCRIPT LANGUAGE="JavaScript”>

var prop = "title":
alert(document.title); // Access the title using dot notation.
alert(document[prop]); // Access the property referenced by

// the prop variable.

// Arrays and built-in objects work alike.
var ar = new Array;
ar.myProperty = “Demo”;
alert(ar.myProperty):
alert(ar[”myProperty"]);

</SCRIPT>

Objects inJavaScript are uniquein their ability to automatically expand.
You can add a new property to an object simply by assigningit a value, This
feature comesat the expense of making debugging moredifficult.

JavaScript is case sensitive, as demonstrated here:
<SCRIPT LANGUAGE="JavaScript">

alert(document.title): // Output the title of the document.
document.Title = "Not the real title"; // Add a Title property.
alert(document.Title); // Output the new Title property.</SCRIPT>

In this example, the two alert statements are actually different. Furthermore,
the second line generates no error; instead, Title is added as a property of
document. Therefore, you must be careful when writingJavaScript code. Debug-
ging a large amountof script may be quite difficult.

34

TWO: Fundamentals of HTML Scripting

NOTE: Internet Explorer 3.0 did not enforce these case-sensitivity
rules. Internet Explorer 4.0 and all Netscape Navigator releases
enforcestrict case sensitivity.
To help alleviate this debugging problem, Internet Explorer 4.0 exposes

a property on the document, the expando property, that can be usedto disable
the implicit property addition feature ofJavaScript, as shown in this code:
<SCRIPT LANGUAGE="JavaScript™>

/* Internet Explorer 4.@ supports the ability to turn off the
associative array nature of built-in objects. +*/

document.expando = false;
document.Title = "Not the real title"; // Error--no such property

</SCRIPT>

The expando property doesnotdisable the explicit addition of properties to the
window throughvariable declarations, but it does disable the implicit addition,
as in the following example:
<SCRIPT LANGUAGE="JavaScript">

document.expando = false;
var xX = @; // No error
alert(window.x); // x explicitly added.
window.y = 18; // Error--no y property

</SCRIPT>

NOTE: Internet Explorer 4.0 is the first browser that supports the
expande property to control the associative array characteristic of
objects. Netscape Navigator 4.0 and earlier versions of Internet
Explorer do not recognize this property. When the expando property
is not recognized, referencing it will automatically cause it to be
added to the document object.
Because any object may contain any numberof properties, JavaScript

exposes a convenient operatorfor accessing them. With afor...in loop, you can
execute a statementfor each exposed property in an object without knowing
whatthe properties are. For example, the following code outputsall the prop-
erties exposed on the window object:
<SCRIPT LANGUAGE="JavaScript">

// Display an alert with all the properties of the window and
f/ their values,
var sProps = "Window Properties\n";
for (props in window)

sProps += props + ": " + windowL[props] + "\n";
alert(sProps);

+ </SCRIPT>

51

35

PART I: HTML AND SCRIPTING

Function Pointers

52

Any function can be assigned to and manipulated as a property. This factal-
lows a function to be dynamically added as a method that can be inyoked or
to be dynamically associated with an event handler.

Function pointers are extremely powerful in thatthey let you reuse func-
tions as methodsof an object, as in this example:
<SCRIPT LANGUAGE="JavaScript">

é/ Define a simple function named test.
function test() {

alert("Function has been invoked.");
}

// Assign the onclick handler to be test.
// This causes the function test to be called when the document
// is clicked.
document.onclick = test;

</SCRIPT>

In addition, when a functionis called, it has access to an arguments array
containing any parameters that were passed into the function. JavaScript au-
tomatically populates the arguments array at the time the function is invoked.
The following code demonstrates how a function can access the arguments array:
<SCRIPT LANGUAGE="JavaScript">

function testArgs() [
/* A function in davaScript can access an arguments array.

This array contains all parameters that were passed into the
function. +#/

alert(arguments.length + " arguments"); // Qutput the number of
// arguments.

// Output each argument.
for (var i = @; i < arguments.length; i++)

alert("argument "+ i+" - " + arguments[il);
}
testArgs(1, 2, 3, 4); // Call testArgs with four arguments.

</SCRIPT>

The arguments array allows a function to be written to which a variable
number of arguments can be passed. Based on the arguments thatwere passed,
different actions can occur. A simple demonstration of where to use this ca-
pability is a summation routine:
<SCRIPT LANGUAGE="JavaScript">

function Sum() {
// Sum up al7 the arguments passed in and return the result.

35

TWO: Fundamentals of HTML Scripting

var intSum = @;
for (var intLoop = @; intLoop < arguments.length; intLoop++)

intSum += arguments[intLoop];
return intSum;

alert(Sum(1, 1, 1, 2)); // Add the four values.
</SCRIPT>

Functions can also be dynamically created using the new operator. The
new operatorallows a new function routine to be constructed on thefly, Afunction is created as follows:

var functionname = new Function(argsl, ..., argsn, body);

Any numberof args may be supplied, including 0. The last argumentto the
Function constructor is always the code to execute. For example, the follow-
ing code creates a simple function that returns the difference between twonumbers:

var Difference = new Function("x","y","return x - yi);

This exampleis contrived, as it would be simpler to either perform the opera-
tion directly or encapsulate the codein a real function. The valuein this code
is that a temporary function can be created and discarded, or the code pro-
vides a simple way to dynamically construct a function call. Creating func-
tions to dynamically create event handlers is demonstrated in several examples
in this book.

Checking for Support
JavaScript offersa flexible way to test whether a particular property or method
is supported by the browser. This technique can be used to predetermine
whether the code is going to succeed and possibly to run alternative code if
the feature is unavailable. For example, the following code checks whetherthe
all collection on the documentis supported:
<SCRIPT LANGUAGE="JavaScript">

if (null == document.al1) {
// The all collection is not supported; run alternative code

t
else {

// Do something with the al] collection.
3 .

</SCRIPT>

53

36

PART

Ti HTML AND SCRIPTING

Property and Function Naming Conventions

54

Theability to add variables and functions to any object in JavaScriptis very
powerful. However, with this power comesrisk as Dynamic HTMLevolves.
Every time a developer dynamically adds a property to an object, a potential
conflict is created between that property and a future enhancementto the
object model. Here are a few guidelines that can minimizetherisk offutureconflicts:

@ Beginall variables with a capital letter, prefix them with the data
type, or prefix them with an underscore (for example, Counter,
iniCounter, or _counter).

@ Do notuse the nameof a tag as a variable name, regardless of how
it is capitalized. This will prevent potential conflict with elements
that use or may eventually use the new construct (for example, new
image).

® Donotprefix any variables or functions with imi, css, or style. These
prefixes may have more widespread use in the future.

Perhapsthe best technique for avoiding any conflict is to add only a single
memberobject to any built-in object and then addall the new custom mem-
bers to this object. This technique isolates the potential conflict to a single
property, butit requiresalittle forethought: you must predefine the single
property to ensure that no syntax errors are generatedin the code. Hereis an
example of this technique being used on the window object, in whichall cus-
tom members are added to a property named _Custom:
<SCRIPT LANGUAGE="JavaScript™>

// Before using the _Custom object, initialize it as a property of
// the window object.
if (null == window._Custom)

window._Custom = new Object;

// Add properties to _Custom.
window. _Custom.special = true;
window. _Custom.top = self:

</SCRIPT>

Theinitializing statementis necessary before any properties can be added to
the _Custom object because JavaScript can add only one memberto an object
ata time. IfCustomwasnotfirstinitialized, an error would have occurred when
the special property was accessed.

36

TWO: Fundamentals of HTML Scripting

Scripting and Web Security
With the introduction of scripting, Internet security has become an extremely
importantissue. Currently, browsers create a sandbox aroundthe scripted page
so thatit can access only a well-definedset of information. There is no wayin
Dynamic HTMLto access theclient’s machine and hard disk beyonda very well-
controlled mechanism known ascookies. Cookies are discussed in Chapter6,
“The HTML Document,”

Even withoutaccessing the user’s machine, however,the ability to access
the contents and manipulate a page could have beenasecurity risk. For ex-
ample, a page outside a firewall should not be able to access the contents of a
pagethat is within the firewall. An unauthorized page could access the text
of the page andsendit backto the server. The sandbox model requires the
pages to be from the same domain before permitting unlimited access to the
contents. This restriction prevents a documentin one frame from accessing a
documentin another frameif the documents come from differentsites.

To further guarantee security, the object modelis limited in a number of
cases. For example,thefile upload object allows a user to uploadfiles to the
server, To ensure that the page does not have accessto the user’s file system,
the value property representingthe file to be uploadedis read-only. The his-
tory object that allows Forward and Back buttons to be created does not expose
any information about the URLthatis about to be displayed. Additional se-
curity restrictions are pointed out throughoutthis book.

For those who are very concerned aboutsecurity, the browserallowsus-
ers to turn on andoff different features, including Java applets and ActiveX
controls, cookies, and even scripting. The object modelcan accesslimited infor-
mation that helpsit determinethe state of the browser and react accordingly.

55

37

pediaria soi us

EureSritntaee eIls ie hat eevee
cn ad ti He seeee i

ide ea

 ieaay eit

sete Rea

37

Dynamic HTML Event Model

Evvenis are notifications that occur as a result of user actionsor stale changes
within a document or window. Dynamic HTML exposesa set of events that
allows the Web author to respond to mostinteractions between the user and
the document. By responding to events, the author can create completely
inleraclive pages.

In this chapter, you'll be introduced to techniques for handling events.
The chapter concludes by demonstrating an application that combines the
built-in support features of Dynamic HTMLwith the powerofJavaScript func-
tion pointers to create a customized event binding mechanism.

The following topics are covered in this chapter:
@ General event model Dynamic HTML. provides a powerful event

moclel thatis closely related to the document's underlying struc-
ture. By understanding and taking advantage of this model, you
can write efficient, maintainable code. The Dynamic HTML event
model is based on two powerful newfeatures for controlling the
document’s behavior: event bubbling and default actions.

Eyent bubblingis the event model feature that observes
the document's structural hierarchy in the processing of event
notifications. All events can be responded to by each parent ele-
ment in the containership hicrarchyas well as by the element the
event occurred within. In other words, every action occurs on the
element, its parent clement, and so on until the body and eventu-
ally the documentitself receive the event notification. The event
can be processed at each level, enabling you to write compact ge-
neric code.

Default actions represent the browsers’ built-in handling of
the event. Many events allow the default action to be overridden
for custom handling or to be augmented with complementary
processing.

57

38

PART [: HTML AND SCRIPTING

Understanding the event modelis crucial to understanding how
to harness the power of Dynamic HTMLto create interactive docu-
ments. This section introduces the event architecture; later chapters
will cover techniques and operationsin detail.

lm Event binding Event binding is the association of a script with an
event on the documentor window, or with an event on an element
in the document. This section discusses the different techniques
available in Dynamic HTMLforbinding scripts to events.

@ The event object The event object exposes the information related
to an eventto the script. The event objectis a language-independent
mechanism for passing parameters and for controlling different as-
pects of the event model. For example, on a mouse event, the cur-
rent mouse location and button state information are exposed
through properties of the event object.

®@ Programming standard user events Standard user events include
the mouse, keyboard, focus, and help events that are available on
almost every element in the document. This section introduces the
interactions between these events and the event object. Additional
events are supported by certain elements and objects and are dis-
cussed throughoutthis book with their respective objects.

m Event examples The chapter concludeswith two examples of
eventbinding. Thefirst example consists of an Event Tutor that can
be used to learn about the event model. In this example, events on
a documentcan be trackedindividually or as a group. The second
example, Event Broadcaster, is a powerful demonstration of
JavaScript function pointers and events. In this example, you'll
learn how to write a custom event-binding mechanism that allows
multiple functions to be easily associated with a single event.

General Event Model

58

Whenthe user interacts with the page or when the documents state is about
to change, an eventis fired. The user generates events by moving the mouse,
clicking a mouse button,or typing on the keyboard within a document. Docu-
mentstate changes that can fire events include the loading of the document,
images, or objects; the occurrence of an error on the page; and the changingof focus from one elementto another.

38

THREE: Dynamic HTML Event Model

Event Bubbling
HTMLdocumentsare structured documents with a defined containership
hierarchy. Event bubblingis the generic capability for all actions to follow this
structural hierarchy. When an event occurs,it fires first on the source element
and then on the source's parent element,and it continuesto fire on successive
parent elements until it reaches the document element.

Event bubbling did notexist in earlier versions of the HTML object model
becauseit was not necessary. In the past, browser implementers considered only
a few elementsinteresting enough to fire events. With the introduction of
Dynamic HTML, however, all elements nowfire events. This means that now
all elements on the page—everyP, H1, and so on—canand dofire events. The
extension of events to all elements could have madescripting a lot more
complex. But with event bubbling, the reverse happens—scripts can be more
powerful and betterwritten.

In the following code, the body, the anchor, and the imageall have events
associated with them:
<HTML>

<HEAD>
<TITLE>Go Home! </TITLE>

</HEAD>
<BODY>

Go Home
</BODY>

</HTML>

Without event bubbling, trying to write an event handlerforall click events
that occur on the anchor would be complex. The same event handler would
need to be written twice, once for the image and once for the anchor, This
redundancy would be necessary because if the user clicks on the image, the
image receives the event, and if the userclicks on the following text, the an-
chor receives the event. Event bubbling solves this problem. With event bub-
bling, clicking on the imagefirst fires the click event on the image. The event
then automatically fires on the anchor. After the eventfires on the anchor,it
fires on the body and finally on the document. Event bubbling allows an event
to be handled at any level of the containership hierarchy. In the preceding
code,a single event handlerforclicks on the anchorwill also handle clicks on
the image.

59

39

PART I: HTML AND SCRIPTING

Default Actions

In addition to event bubbling, many events have default actions. A default
action is whatthe browser normally doesas a result of the event. For example,
the default action of clicking on a link <A HREF-"..."> is to follow the speci-
fied HREF andload the page.

With the Dynamic HTMLobject model, it is possible to override an ex-
isting default action with custom behavior. If an event does not have a default
action and custom behavioris being written,it still is a good idea to cancel the
potential default action. This ensures that the codewill continue to execute
correctly if a default action is later supported by a browser.

The default action is not always defined by the source of the event—it may
be defined by a parent element. In the preceding example, when the userclicks
on the imagethe default action of following thelink is defined by the Anchor
element that contains the image. However, if the image cancels an event's
default action, the default action of the anchorwill no longer apply, because
the default action can be canceled by any element during the event chain. Once
an event handlerspecifies thatit is canceling the default action, the defaultaction for the entire event chain is canceled.

Event bubbling and default actions are different concepts and can be
controlled independently. For example,if the image stopped the event from
bubbling up to the anchor but did not cancel the default action, the anchor’s
default action would still apply to the event, and the link would still be followed.
The reverse also holds true: if neither the anchor nor the image cancel the
default action, but instead when the event reaches the Body element the de-
fault action is canceled, the link will not be followed. The properties for can-
celing the default action or stopping the event from bubbling are introduced
in the section “The event Object” later in this chapter.

Event Binding

60

Eventbindingis the association betweena specific event and a script. Dynamic
HTMLsupports a numberof language-independentways to bind scripts to
events. In addition, the scripting engines themselves can expose further cus-
tom ways to support event binding.

The language-independent mechanismsbind events throughattributes
on the Script element, through special HTMLattributes associated directly
with a specific element, and through the object modelitself. VBScript also
offers the Visual Basic-style binding mechanism, which involves naming the
handler subroutines in a specific way.

~~

ree
ae

39

THREE: Dynamic HTML Event Model

Event Attributes

In Dynamic HTML,all the elements within the documenthave been extended
to support keyboard and mouseevents, These events are exposedasattributes
directly on each element, allowing a direct association between the element
and the behavior. This associationis similar to the one between an element and

its inline style using the STYLEattribute. For example, you can bind the onclick
eventof a buttonto a function using anattribute as follows:
<l-- When the user clicks the button,

the foo() function is called. -->
<INPUT TYPE=BUTTON VALUE="Click Here”

ONCLICK="foo{);" LANGUAGE="JavaScript">

The ONCLICKattribute can eithercall a function or immediately execute one
or morelines of code. In this example, when theuserclicks the button,the foo
routine is called. The LANGUAGEattribute specifies in which language the
inline code is written. Omitting the LANGUAGEattribute defaults to the lan-
guage specified in thefirst script on the page, or to JavaScript in the absence
ofanypriorscripts. The following example demonstrates two inline statements
being executed whenthe user clicks the button:
<!-- When the button is clicked, display the alert and

then call the function foo(). -->
<INPUT TYPE=BUTTON VALUE="Click Here”

ONCLICK="alert(’The user clicked here.'); foot);"
LANGUAGE="JavaScript">

The button first outputs the alert box, and thenit calls the foo function.
All HTMLattributes are case insensitive, so case sensitivity is not an is-

sue whenyou use attributes such as ONCLICKto bind handlers to events. Case
sensitivity can be important when you use other event-binding mechanisms,
however. Event binding with HTMLattributes is convenient, butit has a num-
berofdisadvantages: Thefirst is that the HTMLlanguage needsto be extended
every time a new eventis invented. For example, the preceding onclick event
requires the DTD (documenttype definition) for the <INPUT>tag to be ex-
tended to include an ONCLICKattribute. This makes it much moredifficult
to add events in a standard way because HTMLevolves slowly. Furthermore,
objects or applications that exposearbitrary events also need to extend the
language or expose their own custom event-binding techniques. Therefore, this
approachis used only for a small set of built-in events. If an arbitrary objectis
embedded on the page,its events are exposed in a more generic way.

81

40

PART I: HTML AND SCRIPTING

Generic Event Support ;

62

A second binding mechanism overcomesthese disadvantages.It uses a few
Script elementextensions—namely, a FORattribute and an EVENT attribute—
to bind functions to events. The EVENTattribute refers to the event and any }
parameters that may be passed in, and the FORattribute specifies the name {
or ID ofthe elementthe eventis being written for. For example, an onmousemove
eventis exposed on the document. You can use the following <SCRIPT> tagto bind to this event:

<SCRIPT FOR="document™ EVENT="onmousemove()" LANGUAGE="JavaScript">
/{ This event handler is called whenever the mouse moves on the
// document.

</SCRIPT>

NOTE: JavaScriptis case sensitive for both the EVENT and the
FORattribute values on the <SCRIPT>tag. Be careful to ensure that
all event names are supplied in lowercase for built-in events and in
the appropriate case for any embeddedobjects. Also, if you specify
an ID in the FORattribute, you musttype it exactly as it appears in
the ID attribute of the elementitself. Whenever an event appears to
notbefiring, alwaysverify that the spelling and case are correct in
the <SCRIPT>tag.

There is one caveat to the preceding syntax. Netscape Navigator ignores
the FOR and EVENTattributes andwill attempt to execute the code immedi-
ately. Here’s a potential trick for working aroundthis restriction:
<SCRIPT LANGUAGE="JavaScript”>

// Assume that the browser supports the FOR attribute.
var ForSupport = true;

</SCRIPT> l

<SCRIPT FOR="fakeObject” EVENT="foo" LANGUAGE="JavaScript™>
// This event does not exist.
// If FOR and EVENT are supported, this code will never execute.
ForSupport = false:

</SCRIPT>

<SCRIPT FOR="document™ EVENT="onmousemove” LANGUAGE="JavaScript">
if (ForSupport) {

// Write actual event handler.
}
else

alert("Your browser does not support the required event
syntax.");

</SCRIPT>

40

THREE: Dynamic HTML Event Model

Another way to ensurethat the script code is not executed is to specify
the language as JScript. JScript is Microsoft’s implementation ofJavaScript.
Because Microsoft Internet Exploreris the only browserthat supports JScript,
the script does not require an ifstatementin order to be ignored by Netscape.
<SCRIPT FOR="document” EVENT="onmousemove()" LANGUAGE="JScript™>

// This event handler is called whenever the mouse moves over
// the document if the browser supports the JScript language
// engine.

</SCRIPT>

NOTE: Whenyouspecify the event name, the parentheses are
optional. For example, the above event could have been specifiedas EVENT="onmousemove".

Visual Basic—Style Event Binding
In addition to the techniques already discussed, VBScript also supports the
Visual Basic—style mechanism for bindingscripts to events. Visual Basic tradi-
tionally binds codeto an eventusing a specially named subroutine.If the sub-
routine is written in the Visual Basic-style format, the Visual Basic engine
knows which eventto bind the script to. For example, the following code binds
to an onmousemove event and an onelich event on the document:

<SCRIPT LANGUAGE="VBScript™>
Sub document_onMouseMove()

" Event handler for the mouse moving over the document
End Sub

Sub document_onClick()
* Event handler for the user clicking on the document

End Sub
</SCRIPT>

NOTE: Microsoft Internet Explorer 3.0 also supported the pre-
ceding syntax inJScript, but this syntax is not supported by Netscape
Navigator or by Internet Explorer 4.0. Therefore, this technique
should not be used with JavaScript.

InVBScript, an advantageto using this modelis that multiple event hand-
lers can be written within a single script block. The major disadvantageis that
external tools cannot easily determine what events have event handlers writ-
ten for them. Using the Script element's FOR and EVENTattributes syntax
or the inline HTMLeventattribute syntax allows a toolto easily scan a docu-
ment and determine what events have code associated with them. The Visual
Basic—style event-binding model won't be understoodby anytoolthatis not
specially written.

63

41

PART I: HTML AND SCRIPTING

Itis possible to bind to the same event in multiple languages.In this case,
the eventwill fire in each language whenit occurs, but the orderis undefined.
In general, avoid using this approach, as the results may be unpredictable.

Specifying Scripting Languages in Event Attributes
You can specify different languages for each inline HTMLeventattribute. The
LANGUAGEattribute used with the inline HTMLeventattributes specifies the
default language for interpreting the code. This default can be overridden by
specifying a language identifier in the event attribute value. The formatis asfollows:

<Element EventName="Language:Code">

Language is a case-insensitive string that specifies the scripting language
for the Code that follows. The languages supportedby Internet Explorer 4.0 are
JScript, JavaScript, JavaScript 1.1, and VBScript. JScript, JavaScript, and
JavaScript 1.1 run the same language engine. The onclick handler and the
onmousedown handler in the following <BODY> tag are specified in different
scripting languages:
<BODY ONCLICK="JavaScript:dothis(this);"

ONMOUSEDOWN="VBScript:dothat(me)">

Netscape Navigator does not support specifying languages within the
eventattribute value. Netscape Navigator and Internet Explorer both support
specifying a language on the HREFattribute of anchors, which allows you to
create JavaScript or VBScript code that will run when the userclicks on an
anchor. However, Netscape Navigator recognizes only JavaScript and will at-
temptto navigate to an invalid page if any other languageis specified.

Events as Properties
All events are also exposed as properties in the Dynamic HTMLobject model.
The property namesareentirely in lowercase and begin with the prefix on. The
purpose of exposing both events and event propertiesis to enable events to
be dynamically boundto functions at run time. All event properties can be
assigned a function pointer.

Whetherfunction pointers are supported depends onthe scripting lan-
guage. JavaScript supports function pointers, but VBScript does not. There-
fore, VBScript cannot generate an event handler dynamically. (However, you
can use VBScript code to assign aJavaScript function to an event.) When the
event occurs, the function specified by the property is invoked.

64

41

THREE: Dynamic HTML Event Modelee

<HTML>
<HEAD>

<TITLE>Function Pointer Example</TITLE>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON ID="myButton™ VALUE="Click here>
<SCRIPT LANGUAGE="JavaScript"™>

// Attach a function pointer to myButton.
// When myButton is clicked, an alert box is displayed.
document.all.myButton.onclick =

new Function("alert('Hello’);");
</SCRIPT>

</BODY>
</HTML>

To assign a function pointer, assign the name of the function directly to the
property.
<HTML>

<HEAD>
<TITLE>Function Pointer Assignment</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// Define a function named clicked.
function clicked() {

alert("Clicked");
}

</SCRIPT>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON iD="myButton” VALUE="Click here™>
<SCRIPT LANGUAGE="JavaScript">

7? Assign the clicked function to the onclick handler.
document.a11.myButton.onclick = clicked;

</SCRIPT>
</BODY>

</HTML>

NOTE: Whenassigning a function pointer, use only the name of
the function. Do not supply parenthesesor specify any parameters.
Doing so will cause the function to be executed, resulting in the
function's return value, rather than a pointerto the functionitself,
being assigned to the property.

65

42

PART &: HTML AND SCRIPTING

Timing of Event Binding

66

The point at which event handlers are bound to elements depends on the
scripting language.JavaScript hooks up events asynchronously while the page
is being loaded. Each Script element and eventattribute is hookedup asitis
parsed from the document. VBScript, on the other hand, does not bind events
until the entire pageis parsed,all external scripts are downloaded, and em-
bedded objects have begun loading.

ForJavaScript, this meansthatevents can startfiring in response to user
or other actions before the pageis entirely downloaded. Therefore, you should
take care that your event handlers don’t try to access any elements that might
not have downloadedyet.

You can write code that first checks for the presence of the elementor,
more generically, simply checks whether the entire page is parsed. Checking
whetherthe page is completely parsedis the simplest method and should be
compatible across scripting languages and browsers:
<HTML>

<HEAD>
<TITLE>Parsing Example</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function doClick() {
if (isLoaded) {

// Run event handler.
}
else {

alert("Please wait for the document to finish
loading.");

}
}

</SCRIPT>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON ID="myInput” VALUE="Click here”
ONCLICK="doClick()">

<SCRIPT LANGUAGE="JavaScript">
// This should be the last element parsed in the document.
isLoaded = true;

</SCRIPT>
</BODY>

</HTML>

You can also use an event handler to check whether the entire page has
been parsed. Twoevents can be used for this purpose: the onload event on the
window, and the onreadystatechange event on the document. The onload event
fires whenthe entire documentis parsed and all elementsare loaded. The more

42

THREE: Dynamic HTML Event Model

powerful onreadystatechange event on the document, which is supported only
in Internet Explorer4.0, fires several times as the documentpasses through
several loading states and fires for the last time when the documentis fully
loaded. The onload and onreadystatechange events are discussed in detail in
Chapter 4, “The Browser Window,” and Chapter 6, “The HTML Document”

Scoping of Scripts
All event handlers are scoped to the element to which the handleris bound.
This elementis exposed to the scripting language in JavaScript using the éhzs
property and in VBScript using the me property.

The event’s scope is not necessarily the elementthatfirst fired the event.
The elementthatfirst fired the eventis exposed through the srcElement prop-
erty on the event object. The event object is discussed in more detail in the
section “The event Object” later in this chapter.

Controlling the this Pointer
The following code demonstrates the three different ways you can bind a
handler to an event. All three handlers are effectively equivalentto each other.
<INPUT NAME="myBtn™ TYPE=BUTTON VALUE="My Button"

ONCLICK="alert(this.name);" LANGUAGE="JavaScript”>
or

<SCRIPT FOR="myBtn” EVENT="onclick()" LANGUAGE="JavaScript">
alert(this.name);

</SCRIPT>
or

<SCRIPT LANGUAGE="JavaScript"™>
myBtn.onclick = new Function("alert(this.name)");

</SCRIPT>

In these three examples,this.name returns myBtn because the elementis
referenced directly in the inline code orscript. If you wantto reference the
element in a subroutine called by an event handler, you need to passthe ele-
mentto the subroutine using the this keyword. For example,the following code
will display an emptystring rather than the text myBtn because the this pointer
in the foo function refers to the functionitself instead of the elementthat gen-
erated the event:

<SCRIPT LANGUAGE="JavaScript”>
function foot) {

(continued)

67

43

PART I: HTML AND SCRIPTING

68

// The this pointer does not refer to the button.
alert(this.name);

}
</SCRIPT>
<INPUT TYPE=BUTTON NAME="myBtn" VALUE="My Button™

ONCLICK="foo();" LANGUAGE="JavaScript™>

Instead, you should pass a reference to the myBin elementto the foo function
using the this keyword:
<SCRIPT LANGUAGE="JavaScript">

function foo(b)
// The b argument refers to the button because it was passed in
// by the event handler.
alert(b.name):

}
</SCRIPT>
<INPUT TYPE=BUTTON NAME="myBtn"™ VALUE="My Button”

ONCLICK="foo(this);" LANGUAGE="JavaScript">

The this pointeris also automatically set when an event handleris assigned
as a function pointer:
<H1 ID="myH1">This is a header.</H1>
<SCRIPT LANGUAGE="JavaScript">

function clickHandler() {
// The this property points to the element
// to which the handler is bound.
alert(this.tagName)

}
// Function pointer assignments do not need to pass the
// this pointer.
document.al].myHl.onclick = clickHandler;

</SCRIPT>

Names in inline code are resolved by searching members of the object
model in the following order:

1. All properties of the current element

2. All elements exposed for the name space—for example, in a form,
the controls on the form

3. The properties of the element containing the name space—for ex-
ample, the form’s properties for elements within the form

4. The properties on the document

THREE: Dynamic HTML Event Model

Shared Event Handlers

JavaScript supports the creation of a shared event handler. In JavaScript, any
elements that share the same namecanalso share the same event handlers by
using the Script element’s FOR and EVENTattributes syntax:
<SCRIPT FOR="gender" EVENT="onclick()" LANGUAGE="JavaScript™>

// This event handler executes whenever any element with the name
/f or ID "gender" is clicked.

</SCRIPT>
<INPUT TYPE=RADIO NAME="gender™ VALUE="Male">
<INPUT TYPE=RADIO NAME="gender™ VALUE="Female">

This technique works only in JavaScript. VBScript can fire an event handler
this way only on the basis of an element’s unique ID,not its NAME.If this code
were rewritten in VBScript, the radio buttons would need to be supplied with
unique ID values, and separate handlers would needto be written for each one.

An alternative for VBScript that also works for anyscripting language is
to use event bubbling and track the event from a parent container:
<SCRIPT FOR="GenderGroup™ EVENT="onclick()” LANGUAGE="VBScript">

" This event handler executes whenever any element within
‘ the GenderGroup block is clicked,
If “gender” = window.event.srcElement.name Then

’ User clicked a radio button.
End If

</SCRIPT>
<DIV ID="GenderGroup">

<INPUT TYPE=RADIO NAME="gender" VALUE="Male">
<INPUT TYPE=RADIO NAME="gender" VALUE="Female”>

</DIV>

The event Object
Most events by themselves are not very interesting without some additional
information. For example, the onmousedown eventis not very useful unless you
know which mouse buttons are pressed and possibly where the mouseis posi-
tioned. Keyboard events are useless unless you know which key is pressed.

Dynamic HTML exposesa language-independent mechanism for access-
ing information related to an event and controlling whether the event bubbles
and whetherthe default action occurs. This information is exposed through
an event object, which is a property of the window object.

69

44

PART

70

I: HTML AND SCRIPTING

Beforean eventis fired, this event objectis initialized with the currentstate
of the keyboard and mouse. The eventobject gives access to the event param-
eters and provides controlover event bubbling and the default action, The event
object always exposes at minimum the following set of properties for identi-
fying the elementthatoriginated the event sequence and for controlling event
bubbling and the default action:

Bi event.srcklement
B event.cancelBubble
B event.returnValue

ThesrcElementproperty returnsthe elementthatfirst generated the event.
For example, when you click on the home.gif image in the HTML sampleat
the beginningof this chapter, the image is the srcElement property while the
event bubbles through the anchor, the body, and the document,

The cancelBubble property is used to stop an event from bubbling up the
hierarchy. By default, this property is false and the event bubbles up. Assign-
ing true to this property stops the current event from bubbling. Setting this
property to true stops only the currentinstance of the event from bubbling,
however; it dces not prevent future events from bubbling.

The returnValue property is used primarily to override the default action
of an event. Notall events have default actions. However,ifyou write code that
adds behavior becauseofan event, always cancelthe default so thatifa default
action is added to the eventin the future, the page’s behaviorwill not change.
To cance] the default action, this property should beset to false.

ThereturnValue propertyis used mostoften to override the default action
of the event, but some events use the returnValue property differently. This
again reinforces the separation of event bubbling and default actions.

NOTE: JavaScript supports returning valuesdirectly to an event
handler using the return keyword. The return keyword updates the
returnValue property of the event object when the event handlerre-
turns control to the browser.

The event object is established at each event sequence. Therefore, any
assignments to the event object apply only to that instance of the event se-
quence. The next time an event occurs, the event object is reset. Canceling a
default action, for example, cancels only the default action for the current

44

THREE: Dynamic HTML Event Model

event, notforall subsequentevents.Forthis reason, an event handler—not the
code that immediately executes during the download of the page—should
access the event object.

Determining the Event
The event object exposes the type of the event through the type property. The
type property returnsthe event namein all lowercase without the on prefix. For
example, onmousedown is returned as mousedown, onclick as click, and so on. The
advantage in knowingthe type ofeventis that a single event handler can dis-
tinguish among and process multiple events:
function handleEvent() {

// Run common event handler.
switch (event.type) {
case “click”:

// Handle onclick event.
break;

case “mousedown":
// Handle onmousedown event.
break;

}
J
// Hook up events to handleFvent event handler.
document onclick = handleEvent;
document .onmousedown = hand]eEvent;

Accessing Parameters Through the event Object
The event object exposesall parametersof the built-in events as properties. For
example, information aboutthe current mouse pointer positionis available to
all events. Someinformationis available only during a particular event. Mouse
events also provide access to the current state of the mouse buttons. These
parametersare initialized and updated priorto thefiring of the event. This
example shows how to access event parameters:
<SCRIPT FOR="document" EVENT="onmousedown()" LANGUAGE="JavaScript">

// Output the state of the mouse button whenever it is pressed.
alert("x:" + event.clientX);
alert("y:" + event.clienty);
alert(“button:" + event. button);
alert("Source Element:” + event.srcElement.tagName};

</SCRIPT>

71

45

oo———————
PART 1: HTML AND SCRIPTING

Mouse Coordinates

The event object exposes properties that represent the mouse pointer location
based on different coordinate systems. The followingtablelists these mouse
event properties.

———

Property Description

clientX, clientY The horizontal and vertical coordinates of the mouse
pointerrelative to the client area of the window.

offsetX, offsetY The horizontal and vertical coordinates of the mouse
pointer relative to the rendering context.

screenX, screenY The horizontal andvertical coordinates of the mouse
pointer relative to the screen.

Figure 3-1 ilhustrates the relationship betweenthe different coordinates.
The creation of coordinate systems and rendering contexts is discussed in
Chapter 12, “Dynamic Positioning.” Thevaluesof these properties are constant
through anyeventfiring sequence, and these coordinates are established for
all events, not just mouse events.

Origin for sereenX, screeny’

Origin for clientX, client’

Origin for offset, alfsel'’

Figure 3-1.

Coordinatesystem origins for the event object’s mouse position properties.

72

45

THREE: Dynamic HTML Event Model

Key and Button Information
The event object also exposes properties that represent the current keys and
mouse buttons that are pressed at the time of the event.

Parameter Value

bution The current set of mouse buttons pressed:
0 Nobuttons pressed
J Left button pressed
2 Right button pressed
4 Middle button pressed
The button parameter represents the combinedstate ofall
the mouse buttons. For example, if the right and theleft
buttons are pressed, button returns 3.

ciriKey A Booleanvalue that indicates whether the Ctrl key
is pressed.

aliKey A Boolean value that indicates whether the Alt key
is pressed.

shiftKey A Boolean value that indicates whether the Shift key
is pressed,

These properties are useful when youare writing a global event handler
for the document. Using the mouse coordinates with the elementFromPoint or
rangeFromPoint method on the document, you can check whether the mouse
pointer is on a specific elementortext:
<SCRIPT EVENT="onkeypress()" FOR="document” LANGUAGE="JavaScript">

// Determine the element the mouse is on when a key is pressed.
// The fromPoint methods are based on client coordinates.
var e = document.elementFromPoint(event.clientX, event.clientY);
if ("H1" == e.tagName) {

// De something when a key is pressed while the mouse pointer// is on an H1 element.

}
</SCRIPT>

73

46

PART Iz: HTML AND SCRIPTING

Programming Standard User Events
Standard user events are the set of events shared byall elements in response
to userinteractions. These are events for tracking the mouseandthe keyboard,
focusing elements, andscrolling anyscrollable region. Many elements expose
events specific to the purpose of the element. For example, form elements have
onsubmit and onreset events. These additional events are discussed with their
respective elements in Chapters 8 through 10.

Mouse Events

74

The Dynamic HTMLobject model exposes events for tracking the different
states of the mouse, including every time the mouse is moved into and outof
elements,as well as when mouse buttonsare pressed. The following tablelists
the mouse events.

Event Description
onmousedown Mouse button waspressed.
onmousemoue Mouse was movedor is being moved.
onmouseup Mouse button wasreleased.
onclick Left mouse button was clicked, or the default action

of an element was invoked.
ondblelick Left mouse button was double-clicked.

onmouseover Mousepointer entered the scope of an element.
onmouseout Mousepointer exited the scope of an element.
ondragstart A drag-and-drop operation wasinitiated.
onselectstart Anewselection was initiated over an element usingthe mouse.

onselect A selection is occurring.

The onclick and ondbiclick Events
The onclick event is more a semantic event than a physical event. While an
onclick event usually occurs whenthe left mouse button is pressed and released,
it can also occuras the result of an action that simulates a click. For example,
the onclick event fires when the user presses the Enter key while a buttonlike
control has the focus. The ondbiclick event fires when the userclickstheleft
mouse button twice within a system-defined amountof time.

Whenan elementis clicked, the onclick eventis fired after the onmousedown
and onmouseup events fire. The onclick eventis not requiredto fire on the same

46

THREE: Dynamic HTML Event Model

element the onmousedown and onmouseup events occurred on. Suppose, for
example, that you have the following HTML code:
<HTML>

<HEAD>
<TITLE>Click Rules</TITLE>

</HEAD>
<BODY>

<HL>Welcome to My Home Page</H1>
<H2>Providing the Latest Dynamic HTML Information</H2>

</BODY>
</HTML>

If the mouse button is pressed and released on the H1 element, the
onmousedown, onmouseup, and onclick events are all fired on that element. If the
mousebutton is pressed on the H1 element and released on the H2 element,
however, the onmousedown eventis fired on the H1 element and the onmouseup
eventis fired on the H2 element. The onclick event is fired on the body,as is
any subsequentondbictick event that mayfire as partof this sequence, because
the body is the common element the mouse pointer is on when the mouse
buttonis released. The onmouseup eventis fired on the H2 element and not on
the H1 element because the mouse is not captured by anytextual contents.

HTMLelements that accept user input do capture the mouse event. If
the mouse button is pressed on a user input element and released ona tex-
tual element, the onmousedown eventis fired on the user input element, the
onmouseup eventis fired on the textual element,butno onclick eventis fired on
any element. The onclick event occurs on a user input element only when the
mouse button is pressed and released on the same element.

Because onclick and ondbtclick can be fired on the elementthat is common

to the elements on which the mouse button is pressed and released, these two
events can initiate on elements that are not leafnodes in the document's tree.
Leafnodesare the deepest nodes of the documentand actually containthe con-
tents. The onclick and ondbiclick events are unusual among user events, With a
few exceptionsintroducedin later chapters,all the other mouse and keyboard
events alwaysstart at a leaf node and bubble upward throughthe hierarchy.

Here is the event-ordering relationship between the onmouse and onclickevents:

1. onmousedown

2. onmouseup
3. onclick

75

47

PART

I: HTML AND SCRIPTINGen

76

If a double click occurs, the event sequence continuesas follows:

4. onmouseup
5. ondblelick

The onmouseover and onmouseout Events
The onmouseover and onmouseout events occur when the mouse pointer enters
or leaves an elementon the page. These mouse events expose the same param-
eters as the onmousedown and. onmouseup events. Theyfire only once onthe leaf
nodesof the documentand bubble upward,rather than firing on every bound-
ary crossing. For example, suppose you have the following HTML code:
<HTML>

<HEAD>
<TITLE>Over and Gut Boundaries</TITLE>

</HEAD>
<BODY>

<HleThis is a header.</HI>
<DIV>

<P>Welcome to my page.</P>
</DIV>

</BODY>
</HTML>

In this HTML page, when the mouse moves from the body into the boldface
text in the paragraph,a single onmouseout eventis fired on the Body element
and an onmouseovereventis fired on the B element. Because the event bubbles,
all elements whose boundaries are crossed receive an event notification.

Whenthe mousecrosses from the boldface text into the nonboldface text
in the paragraph, an onmouseout event is fired on the element and bubbles
through the paragraph.Thisis importantto note because the paragraph may
receive an onmouseout event even while the mouse pointeris still contained
within it.

To accurately test whether the mouse was movedoff an element, use the
element's contains method along with the toklement property of the onmouseout
event, which indicates the new element to which the mouse has moved. The
contains method indicates whether one elementis contained within another
element. With some simple code, you can test the destination elementto see
whetherit is contained within the element on whichthe eventfired.If itis, the
mouse pointeris still on the firing element. In this example of an onmouseout
event handler, the event handler would be attachedto the onmouseout event of
an element to test whether the mouse pointeris still withinit:

47

THREE: Dynamic HTML Event Model

<SCRIPT LANGUAGE="JavaScript">
function testexit(sre) {

// Test whether the mouse really left an element,
if (!src.contains(event.toElement)) {

// Mouse exited the element.
3

}
</SCRIPT>
<HL ONMOUSEOUT="testexit(this);">Some text</H1>

In this example, the this pointer, which represents the element on which
the event was fired, must be passed in. The srcilement property of the event
object cannotbe used instead; it might be a child element. For example, when
the mouse moves over the emphasized text in the preceding header, the em-
phasized text, not the H1 itself, would be the srcElement.

The same method works when the mouseis entering an element—almost
identical code works for the onmouseover event. The only changeis that the
JromElement property needsto be tested using the contains method:
function testenter(sre) {

if (lsrc.contains(event.fromElement)) {
// Mouse entered the element.

}

The onmouseover event fires when the mouse pointeris first moved over
an element. The event-ordering relationship between the onmouseover, onmouse-
move, and onmouseout events when the mouse pointer crosses a boundaryis as
follows:

1. onmouseout

2. onmousemove (may occur many times)
3. onmouseover

The ondragstart Event
Currently, Dynamic HTMLoffers limited built-in support for implementing
drag-and-drop operations. A single drag-related eventis exposed in the object
model for overriding the default drag behavior of the browser. When the user
clicks and holds down the mouse button and drags over certain elements on
the documentsuch as images and anchors, those elements take part in a drag-
and-drop operation.

There may be times when this behavior will interfere with the author’s
intentions. To prevent the built-in dragging behavior from beinginitiated, the
ondragstart event is exposed. This event essentially serves the single purpose
of allowing the developer to cancel the event by returning a value offalse.

77

48

PART I: HTML AND SCRIPTING

78

Thereis a close relationship between canceling the onmousemove event and
the ondragstart event. To prevent a user from initiating a built-in drag-and-
drop operation on an element, cancel the ondragstart event. To author your own.
drag operation on an element, you usually need to also cancel the onmousemaveevent,

An example in Chapter 12, “Dynamic Positioning,” simulates drag-and-
drop behavior by using the onmousemove event to move positioned elements
around the screen. This technique works well for providing drag-and-drop
support within a page. Dynamic HTMLdoesnotyet allow you to program ge-
neric drag-and-drop behavior across frames or across windows.

The onselectstart and onselect Events
Dynamic HTML exposes two events for completely tracking the user’s selec-
tion anywhere in the document: onselectstart and onselect, fired in that order.

Similar to the ondragstart event, an onselectstart eventis fired only when
a selection is aboutto be initiated, usually by the user clicking on some con-
tents in a document. The purposeof this eventis to allow you to preventa re-
gion of the documentfrom beingselected.It is importantto recognize thatthis
only prevents the initiation of the selection. For example, in the following
documentif the user clicks on the text Scott’s Page and tries to make a selec-
tion, no selection occurs:
<HTML>

<HEAD>
<TITLE>onselectstart Example</TITLE>

</HEAD>
<BODY>

<H1l>Welcome to
<EM STYLE="cursor:hand"

ONSELECTSTART="event.returnValue=false;”">Scott's Page

</H1>
</BODY>

</HTML>

However,if the userclicks on the text outside of Scott’s Page and drags the
mouse across Scoit’s Page, the text will be selected because only theinitiation
of the selection can be canceled.

The CSS curser property is used to change the mouse pointer to a hand
icon to signify that the contents can be clicked. By adding an onclick event
handler, you can specify a custom action to take place when the userclicks on
Scott’s Page. The combination of the cursor property and the onselectstart event
handlerprovides the samelevelofcontrolasis available by default with anchors.

48

THREE: Dynamic HTML Event Model

The onselectstart event bubbles up through the document. Therefore,it
is possible to catch this event on the documentandalways returnfalse. Doing
so prevents the user from selecting any text in the document. The enselecistart
event should belimited to situations in which the built-in text selection might
cause problems with the intended userinterface of the page.

The onselect event follows the onselectstart event and occurs while the se-

lection is being made.It fires multiple times as the user extends or collapses
the selection. The onselect event does not bubble. Instead,it occurs on the sec-
tion of the documentthe selection is occurring within: either the decument’s
Body elementfor textual contents or the input controls.

Keyboard Events
Dynamic HTMLprovidesthree events for tracking the user’s keystrokes: onkey-
down, onkeyup, and onkeypress, fired in that order. The onkeydown and onkeyup
events fire whenever any key on the keyboard is pressed and released. The
onkeypress eventfires after any ANSI keyis pressed.

The event object exposes four properties for determining the state of the
keyboard when these events occur. The shiftKey, altKey, and ctrlKey properties
are the same as those exposed for the mouse events.

Property Value

keyCode The ASCIIvalue of the key pressed. Setting this property
to in an onkeypress event handler cancels the event. Setting
it to a positive value replaces the key pressed with a different
ASCII key.

shiftKey State of the Shift key (érue/false).
altKey Stare of the Alt key (true/false).
clrlKey State of the Ctrl key (true/false).

Scroll Event

The Body element,as well as many other elements, can have scrollbars. When-
ever one of these elementsorits scrollbaris scrolled, the onscroll eventfires.
Scrolling occurs when the user explicitly scrolls the scrollbar or implicitly scrolls
the element through anotheraction. For example,clicking on a link to a book-
markfires the onscroll event if the documentneedstoscroll to bring the ele-
ment into view. The onscrol/ event cannotcancel the scrolling becauseit is fired
after the scrolling is complete. This event occurs only on the scrolled element
(for example, the Body element) and does not bubble.

79

49

PART I: HTML AND SCRIPTING

Focus Events

Dynamic HTMLprovides two events related to focus: onfocus and onblur. The
onfocus eventis fired when an elementis activated either by clicking on it or
through the keyboard. The element the user hasjust left receives an onblur
event. Only user inputelements and the body can receive the focus. Therefore,
clicking on HTMLcontentscauses the body to receive the onfocus event, notthe actual contents.

The onblur eventis also fired whenever another application or window is
activated over the current frame or application. Therefore, when you switch
windows, the current elementfires an onbdlur event. When you return to the
window, the onfocus eventis fired on that element.

The timing of these events in relationship to the window has some com-
plexities that are introduced in Chapter 5, “Window and Frame Management.”

Help Event

The document exposes an onhelp eventthat fires whenever the user requests
a helpfile for the document using the Microsoft Windows keyboard shortcut
(F1). This event does notfire when the user selects Help from the Help menu.
The onhelp eventfirst occurs on the element with the focus and bubbles up-
ward, The default action for this event is to display the built-in help file, but
this event can be overridden to display a custom helpfile.

The onhelp eventalso fires in modal dialog boxes that support context-
sensitive help through a Help icon available on thetitle bar. By clicking the
Help icon, the user can change the cursorto a special help cursor. When the
userclicks on an elementusing this cursor, an onhelp eventfires on the element
and then bubblesto each parent element.

An event handlerfor the onhelp eventtypically displays a custom helpfile.
The handiercan call the showHelp methodto display a Windows help (HLP)
file or the open method to display an HTMLfile. showHelp and open are both
methods of the window object. The showHHelp method can also display HTML
files, but the open methodis supported by more browsers andoffers more con-
trol over the display window. Chapter5, “Window and Frame Management,”
describes the open method.

Event Examples

80

The two sample programsin this section illustrate the powerof the eventar-
chitecture explainedin this chapter. With the first example, the Event Tutor,
you can test any page and see the events thatfire when you interactwithit.

49

FHREE: Dynamic HTML Event Model

Codein the second example, the Event Broadcaster, provides a general mecha-
nism for hooking up several handlers to each event.

Event Tutor

To help you learn more about event bubbling, the Chapter 3 samples on the com-
panion CD include an HTML document named tutor.htm that can reportall
events as they occur on a page.Figure 3-2 shows the Event Tutorapplication.

Event TutorB% MouseDown [i Select
Ti MouseOver Ti SelectStart “This page demonstrates how event bubbling works, In the panel to the le,[i MouseMove Fé Click select the events you want tracked Every time one of te specified events
TE MouseOut Te DblClick ‘occurs in this Frame, it will be reported in the text box in the left frame.
Fi MouseUp Ti Foaus Remember that events bubble, so a large number ofevents may be reported.
[i KesDown Fi Bhar (Try mousemove for an example }Th RegPress Change
1 ReyUp Ti DragStart ‘The source code for this document has oo event handlers. All the hard work is |done by the document inthe other Frame, s0 you can easily experiment withsay sample document

Sample Controls
TextBox
© Radio Button 1© Radio Button 2
T Check Box

Figure 3-2.
The Event Tutor application.

This example allows you to select which events to track in the document
containedwithin the right frame. Whenaselected event occurs on any element
in the rightframe,it is reported in the text box in theleft frame. Playing with
this example will clearly demonstrate for you how events bubble up through
the hierarchy.

Following is the source code from events.htm used to create the Event
Tutor. This code demonstrates tracking events across frames—a technique
discussed in detail in Chapter5, “Window and Frame Management.” This code
also takes advantage ofJavaScript’s model for exposing objects as associative
arrays and the ability to create custom functions.

81

50

PART IL: HTML AND SCRIPTING——————ee

<HTML>
<HEAD>

<TITLED>Event Tutor</TITLE>
<STYLE TYPE="text/css">

caption {font-weight:bolder; color:navy}</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function outputEvent(src, eventName) {
// Append event name to text area control.
document.a11.txtEvents.value += eventName + "

src.tagName + "\n";

function setupEvents() {
// The user clicked on a check box.
// Hook up or remove event handlers.
if ("checkbox" event.srcElement.type) {

var handler=event.srcElement.checked ?
new Function{"outputEvent(this, '" +

event.srcElement.id + "')")
null;

var allSample = parent.frames.sample.document.all:
// Add custom event handler to all elements in
// the other frame,
for (var intLoop=@; intLoop < al1Sample.length;

intLoop++) {
// Accesses the event property that matches
// the ID of the check box that was clicked.
allSampleLintLoop]I[event.srcElement.id] = handler;

}
}

</SCRIPT>
</HEAD>
<BODY>

<FORM NAME="EVENTS">
<TABLE WIDTH=100% ONCLICK="setupEvents()" CELLPADDING=4><CAPTION>Events</CAPTION>

<TR VALIGN="Top"><TD NOWRAP>
<!-- Notice the naming convention used below.

To add more events, the ID should specifythe event name, -->
<INPUT TYPE=CHECKBOX ID=onmousedown>
<LABEL FOR=onmousedown>MouseDown</LABEL>

<INPUT TYPE=CHECKBOX [D=anmouseover>

82

50

THREE: Dynamic HTML Event Model

<LABEL FOR=onmouseover>MouseOver</LABEL>

<INPUT TYPE=CHECKBOX [O=onmousemove>
<LABEL FOR=onmousemove>MouseMove</LABEL>

<INPUT TYPE=CHECKBGX [D=onmouseout>
<LABEL FOR=onmouseout>MouseOut</LABEL>

<INPUT TYPE=CHECKBOX [D=onmouseup>
<LABEL FOR=onmouseup>MouseUp</LABEL>

<INPUT TYPE=CHECKBOX [D=onkeydown>
<LABEL FOR=onkeydown>KeyDown</LABEL>

<INPUT TYPE=CHECKBOX ID=onkeypress>
<LABEL FOR=onkeypress>KeyPress</LABEL>

<INPUT TYPE=CHECKBOX ID=onkeyup>
<LABEL FOR=onkeyup>KeyUp</LABEL>

</TD><TD NOWRAP>
<INPUT TYPE=CHECKBOX ID=onselect>
<LABEL FOR=onselect>Select</LABEL>

<INPUT TYPE=CHECKBOX ID=onselectstart>
<LABEL FOR=onselectstart>SelectStart</LABEL>

<INPUT TYPE=CHECKBOX ID=oncTick>
<LABEL FOR=onclick>Click</LABEL>

<INPUT TYPE=CHECKBOX ID=ondblclick>
<LABEL FOR=ondb1click>Db1C1ick</LABEL>

<INPUT TYPE=CHECKBOX ID=onfocus>
<LABEL FOR=onfocus>Focus</LABEL>

<INPUT TYPE=CHECKBOX ID=onblur>
<LABEL FOR=onblur>Blur</LABEL>

<INPUT TYPE=CHECKBOX ID=onchange>
<LABEL FOR=onchange>Change</LABEL>

<INPUT TYPE=CHECKBOX ID=ondragstart>
<LABEL FOR=ondragstart>DragStart</LABEL>

</TD></TR>
</TABLE>
<!-- TextArea to output event sequence --><TEXTAREA ID="txtEvents" STYLE="width:95%" ROWS=14>
</TEXTAREA>

</FORM>
</BODY>

</HTML>

You can experimentwith this code on any documentby copying it from
the CD to your hard drive. Replace the sample.htm file with any file of your
choosing. You can also run the example on the CD by opening the tutor.htm
file, which uses both the sample.htm and the events.htm files.

83

51

PART Ti HTML AND SCRIPTINGwoOessSsSsesssssesese

Event Broadcaster

84

The event model exposed by Dynamic HTMLis generallylimited to a one-to-
one relationship between event and event handler. However, as is demonstrated
throughoutthis book,there will be many times when you needto associate
multiple actions with a single event. This association can be accomplished by
writing a routine for the eventthat calls each action in sequence, or this whole
process can be automatedby taking advantageofJavaScript’s function pointers.

The Event Broadcaster generalizes the event binding used by Dynamic
HTMLto supporta registration mechanism that can be used to bind multiple
actions toa single event. This program provides a small, reusable set of func-
tions that allow multiple actions to be bound to each event. Each of these
actions can also execute conditionally,

Bytaking advantage ofthis code, you can write reusable event handlers
that can beeasily plugged into any Web page withouthavingto rewire any other
code. This technique works by using a registering modelto allow functional-
ity to register an elementwith a particular action. The registry takes the place
of the developer manually hooking up event code.

While this mechanism greatly simplifies the writing of reusable code
snippets, you muststill be careful that multiple actions on a single event han-
dler or documentdo notcollide. There is no algorithmic wayfor you to pro-
vide this protection other than to be careful when adding new functionality.
To be mosteffective, interactions between registered functions for the sameevent should be avoided.

The following code represents the entirety of the Event Broadcaster reg-
istry. This code can be written only in languages that support the dynamic
creation offunctions—therefore,this functionality cannot be implementedin
VBScript. However, this code does not prevent you from supplying an action
andregistering an event handier written in VBScript.
<SCRIPT LANGUAGE="JavaScript">

// Event Broadcaster Registry Code
// This code generically binds multiple event handlers to// a single event,

function runHandler(eventName, eventSrc) {
// This is a generic event handler. For any event, this function
// validates the condition and runs the appropriate code.
var src = event.srcElement;:

51

THREE: Dynamic HTML Event Model

// First check the srcElement property.
for (var intLoop = @;

intLoop < eventSrc.manager[eventName].Jength; intLoop++)
if (eventSrc.manager[eventName][intLoop].condition(src))

eventSrc.manager[eventNamel[intLoop].doAction(src);

sre = src.parentElement;
// Walk the tree; stop at the source element for the event.
// tagName is null for the document; walk up entire tree.
var top = (this.tagName == null) ? "HTML" : this.tagName;
while (top != src.tagName) {

for (var intLoop = @;
jntLoop < eventSrc.manager[eventName]. length;
jntLoop++)

if (eventSrc.manager[eventName][intLoop].condition(src) &&
eventSrce.manager[eventName][intLoop].doTree}

eventSrc,managerleventName][intLoop].doAction(src);
sre = src,parentElement:

function setupHandler(eventName. eventSrc) {
// Create a new function handler for the event.
eventSrc[eventName] =

new Function("runHandler(*" + eventName + “", this);

function alwaysTrue() {
// Use this function when you don't want to check any condition.
return true;

function register(eventName, action) {
// This is the generic routine to register the event.
// Parameters (in order):
‘7 eventName - Event to bind to
/f action - Code to run when the event occurs
/f condition (optional) - Condition to test to perform the
if action; defaults to true
‘7 doTree (optional) - Determines whether to walk up all
it nodes of the tree; defaults to false
// eventSre (optional) - Element the event is associated with;
ff defaults to the document

// Determine the source element,
var eventSre = (null != arguments[4]} ?

document.alTLarguments[4]] : document:
(continued)

85

52

PART I:

86

HTML AND SCRIPTING

}

// Check whether an event manager exists on the object.
if (null == eventSrc,manager)

eventSrc.manager = new Object;
// Check whether an event manager exists for the specific event.
if (null == eventSrc.managerLeventName]) {

eventSre.managerleventName] = new Object;
eventSrc.manager[eventName}.length = @:
setupHandler(eventName, eventSre);

}

/f Add the event handler.
var ct = eventSrc.manager[eventName]. lengtht+;
eventSrc.managerLeventName](ct] = new Object;
eventSre.manager[eventName][ct].doAction = action:
// Check whether condition is supplied. If not, use alwaysTrue.
eventSrc,manager[eventName][ct].condition =

(null != arguments£2]) ? arguments[2] : alwaysTrue
// Check whether the tree is to be walked. Default to false,
eventSrc.manager[eventName|[ct].doTree =

(null != arguments(3]) ? arguments[3] : false;

function hookupEvents() {
var bindings = document.all.tags("BINDEVENT™):
for (var intLoop = @; intLoop < bindings.length; intLoop++) {

var bind = bindingsLintLoop];
if ((null t= bind.getaAttribute("event")) &&

(null I= bind.getAttribute("action"))) {
var bEvent = bind.getAttribute("event");
var bAction = new Function("return " +

bind.getAttribute("action") +
"Carguments[0])");

var bCondition =
(null == bind. getAttribute("condition"}) ?null

new Function("return " +
bind.getAttribute("condition") +
"Carguments[@7)");

var bTree = (“walk” bind.getAttribute("tree")):
var bSre = bind.getAttribute("for");
register(bEvent, bAction, bCondition, bTree, bSrc);

window.onload = hookupEvents;</SCRIPT>

52

THREE: Dynamic HTML Event Model

This code takes advantage of manyof the features ofDynamic HTML and
JavaScript. All the techniques used in this example are coveredin Jater chap-
ters. For example, HTMLdoesnot define or support the <BINDEVENT> tag.
Instead, Dynamic HTMLexposes unrecognized elementsin the object model.
You can usethis feature to associate information and extend scripts without
having to modify any code.

To use this code, write an action function andregister it with an event of
a particular object on the page. The following code demonstrates how dynamic
effects can be added to and registered in the preceding bindingservice. Dy-
namically changingthe style of an elementis discussed in Chapter 11, “Dynamic
Styles.”
<SCRIPT LANGUAGE="JavaScript">

// Dynamic style mouseover effect

function swapEffects(src) {
// If an effect is supplied, swap it with className.
if (null != src.getAttribute("“effect")) {

var tempClass = src.className:
sre.className = src.getAttribute("effect"):
src.setAttribute("effect", tempClass):

}

function checkEffect(sre) {
// Condition to check for before swapping the effect
return (src.getAttribute("effect”) != null);

}
</SCRIPT>

This script definesthe action and condition for swappingeffects with the class
attribute. The following HTML binds this code to the onmouseover and
onmouseout events of the document:
<BINDEVENT event="onmouseover” actio

condition="checkEffect™ tree="walk"
<BINDEVENT event="onmouseout™ action:

condition="checkEffect" tree="walk">

 “swapEffects"
 wapEffects"

The custom event binding is powerful in that the author does not need
to understand how to hook up code. Instead, the author can simply paste the
code into the page. With easy-to-use HTML,the code can beassociated with
any eventofany object. The real powerof this modelis revealedif the usertries
to hook up another action to the onmouseover or onmouseout event. Normally,

87

53

PART 4: HTML AND SCRIPTING

88

this would require writing custom onmousemove or onmouseout event handlers
to call the different actions in sequence. With the method demonstrated here,
all thatis necessaryis to paste the new function to be executed into the docu-
ment and to hookit up to the event using another <BINDEVENT>tag. The
registry code automatically manages the correct sets of event handlers and
ensures that they are fired for each event.

Anextra for attribute is supported on the <BINDEVENT>tag for asso-
ciating the event directly with a specific element. By default, the eventis at-
tached to the document. Thefor attribute takes the ID of the elementthatthe
event is being boundto.

53

CHAPTER FOUR

The Browser Window

Ih this chapter, you'll learn how to program the browser window, the top-level
object in the Dynamic HTML object model. Through the window object, in-
formation aboutthe browser and the contained documentcan be accessed. Two

types of HTML documentscan bedisplayed inside a window:a frameset docu-
ment and a standard HTML document. Frameset documentspartition a single
window into multiple, independently accessible frames. Chapter 5, “Window
and Frame Management,” and Chapter 6, “The HTML Document,” discuss the
two types of documentsin detail.

The window object exposes documentinformation (including informa-
tion aboutthe frames on the page and the URLforthe current document) and
provides access to information about the browseritself (includingthe client
brand,version, and features supported, through a navigator object), access to
event information, and most important, access to the document object that
exposes the HTML documentitself. The window object also lets you move
forward and backward through the history, customize the browser’s appear-
ance, and move andrelocate the window.

This chapter and Chapter 5 teach you how to manipulate the browser and
the contained documentusing the window object. This chapter focuses on the
members for manipulating the current window; Chapter 5 continuesthe dis-
cussion by showing you how to manipulate framesets and multiple browserinstances.

The following topics are covered in this chapter:

lm The window object This section provides a brief introduction to
the window object andits relationship to other objects, including its
uniquerelationship to global variables, which act as public mem-
bers of the window object.

@ The window environment This section shows you how to manipu-
late the browser environment—including the browser’s status bar,
the location of the document, the history list, and the user’s
screen resolution.

89

54

PART i: HTMLAND SCRIPTING

@ Window events The window object exposes changes in the docu-
ment’s state through several events. For example, these events can
help you determine when the documenthasfinished loading and
whether the documentis currently active.

& Timer events The window object also exposes methods for creating
timers. Timers are events that execute code after a specified amountoftime.

@ Theclientinformation or navigator property The navigator object
exposes specific information aboutthe client. This information in-
cludes the brand, version, and user options, allowingscripts to deter-
minethe capabilities of the client and to adjust the page accordingly.

The window Object
As mentioned, the window objectis the top-level object in Dynamic HTML.The
easiest way to understand the window objectis to thinkofit as a containerfor
a document orfor other windows. A window containing other windows is the
basis of a frameset. Figure 4-1 shows the window object hierarchy.

Figure 4-1.
The object hierarchyfor the window object.

90

54

FOUR: The Browser Window

The window object maintains information about the browser and exists as long
as the browser’s application windowexists. This meansthat as the user browses
from page to page, the window object remains available, even though the cur-
rent document changes. :

Referencing the window Object
Because the window objectis the top-level object in the HTML object model,
it does not have to be explicitly referenced when you are accessing the prop-
erties of the window. For example, the following two lines of codeare effec-
tively the same:
window.location.URL // Explicitly reference the window object.
location. URL // The window object is implicitly referenced.

In addition, the window object exposesa selfproperty that actually returns the
window. Therefore, the following five lines of code reference the same name
property:
name
self.name
window.self.name
window.self.window.name
window. window.name

Implicit windowreferences work only for code that references the current
window. To reference other, noncurrent windows or frames, the particular
window objects must be explicitly referenced.

The document and event Properties
The document property returns a document ohject representing the page con-
tained within the window. Through the document property, thestyle, structure,
and contents of the contained documentcan be accessed.

As mentioned in Chapter 3, “Dynamic HTML Event Model,” the event
property of the window object returns an event object, which provides infor-
mation about the current event. The event object is accessible only during an
event sequence and returns null atall other times.It is possible to respond to
events that occur in other windows or documents; Chapter 5, “Window and
Frame Management,” explains how.

Global Variables and User-Defined Properties
As mentioned in Chapter 2, “Fundamentals of HTMLScripting,” no global
variables are available whenyouare scripting in Dynamic HTML. Instead,all
variables declared outside the scope of a function or an event handler are

91

55

PART [: HTML AND SCRIPTING
eeeeEeSSSSSSSSFmmsseseseseseFs

automatically added as user-defined properties of the window object. When the
userexits a page, variables that were added by the page are removed from the
window, This is done for a numberof reasons: so that a new Page can becer-
tain that no propertiesyet exist on the page, and for security purposes, so that
anotherpage does not come along and attemptto read thestate of the prior page.

Therefore, the lifetime of the user-defined propertiesof the window object
is the sameasthelifetime of the script, even though the window object exists
until the application windowis destroyed. When a new pageis loaded, the only
exposed window object properties are the built-in properties defined by Dy-namic HTML.

Naming the Window

Each windowis created without a name. You can name a window by assigning
a stringto its name property. You can supply a namefor a frame when youcreateit as part of a frameset.

The name property designatesthe target for a link anchoror formresults.
By default,all pages are targeted to the currentframeorto the frame or win-
dowspecified by the <BASE TARGET=windowName> tag. You can overridethis
target by supplying a TARGETattribute to a link anchor or Form element,
specifying which named window the documentshould appear in.

The window object’s name propertyis retained by the browser as the user
navigates to a page in order to ensure that frame targeting is maintained,

Evaluating Strings as Code

The window object exposes an evalmethodthat can evaluate a passed-in string
as code and returnthe result. The code is executed in the context of the cur-
rently executing scripting language.

The Window Environment
This section discusses how to manipulate the browser’s window and surround-
ing environment. The browser windowconsists of a numberofareas that can
be controlled through scripting, including the location of the currently dis-
played document, status bar text, history, and screen resolution. Figure 4-2shows the various window features.

92

FOUR: The Browser Window

History buttons Current documentlocation

Window environment
defaultStatus and status messages

Figure 4-2.
The windowfeatures that can be controlled by the window object.

Status Bar

Thestatus bartextis usually displayed along the bottom of the browser. Access
to the messageis available through two properties: defauliStatus andstatus. Both
properties are read/write strings. The difference is that the status propertyis
used for a message thatis displayed temporarily, and the defaudiStatus property
displays a message until the defaultSiatus property is changed or the user ex-
its the browser window, as shown here:
<HTML>

<HEAD>
<TITLE>Status Text</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function setStatus() {
// Status message to display
window. defaultStatus = “Default status";
// Temporary message to display
window,status = "Temporary status";

}
</SCRIPT>

</HEAD>

(continued)

93

55

56

PART I: HTML AND SCRIPTING

<BODY>
<FORM>

<INPUT TYPE=BUTTON VALUE:
ONCLICK="setStatus():

</FORM>
</BODY>

</HTML>

 hange Status"

Whenthe ChangeStatus button is clicked, the status bar displays the string
Temporary status. Once the mouse is moved, the message will change to Default
status. When the userexits a page, the status bar text is reset to the browser’s
default message.

By using the onmouscoverand onmouseout events on an element, you can very
easily display a special status message when the mousepointeris on the element:
<A ONMOUSEOVER="window.status="Go Home'" ONMOUSEOUT="window.status="'™

HREF="home.htm">
Top Page

Sample code for creating scrolling status bar text that takes advantage of the
status property andtimers is presented in the section “Scrolling Status Bar Text”
later in this chapter.

History Buttons
Dynamic HTMLprovides methods for creating custom history buttons. Al-
though accessing the actual URLsvisited by the useris not possible, the his-
tory object exposes three methodsthatsimulate clicking the history buttons on
the toolbar: the go, forward, and back methods. The length property exposesthe
numberofelementsin the historylist. The following code creates simple Backand Forward buttons:
<HTML>

<HEAD>
<TITLE>History Buttons</TITLE>

</HEAD>
<BODY>

<FORM NAME="Browse"™>
<INPUT TYPE=BUTTON VALUE="Back"

ONCLICK="history.back();">
<INPUT TYPE=BUTTON VALUE="Forward”

ONCLICK="history.forward();">
</FORM>

</BODY>
</HTML>

56

FOUR: The Browser Window

Window Location

The addressof the page in the window is exposed throughthe location prop-
erty, which references an object that identifies the URL, parsed into easy-
to-use properties. These components make the URLeasier to retrieve and
manipulate.

The location Object Properties
Mostof the properties of the location object break the URLinto easy-to-use
components. The properties that relate to the URLarelisted here:

protocol://hostname:port/pathname?searchithash

Almost all URLs have a protocol, a hostname, and a pathname. The port, search,
and hash properties might not have values associated with them. The search
property represents the search string usually supplied for server-side CGI (Com-
mon GatewayInterface) scripts. The hash property represents the bookmark on
the page.

In addition, the location object exposes a few extra properties that con-
catenate the properties mentioned. For example, the host property simply
returns the hostname followed by a colon andthe port. The hrefpropertyis the
entire URL exposedasa singlestring.

Assigning a value to any of these properties causes the browser to imme-
diately try to navigate to the new page. For most operations, the Arefproperty
is the one you shouldsetto load a new page; you can also use the replace method,discussed next.

The location Object Methods
Two of the methods exposed on the location object are reload([force]) and
replace(url). Calling the reload method is analogousto clicking the Refresh
button on the browser—bothactions force the entire page to reload if it has
changed. By supplyingtrue as the force parameter, you can force the page to
reload, even if the server claims that the page has not changed.

The replace method navigatesto a new page. It workssimilar to assigning
a value to the Arefproperty, except that the replace method does not add the
currentpageto the historylist. The replace methodis usefulfor client-side URL
redirection, as shown in the following example:
<HTML>

<HEAD>
<TITLE>Browser Detectidn</TITLE>
<SCRIPT LANGUAGE="JavaScript">

(continued)

95

57

PART I: HTML AND SCRIPTING

// Load a different version of the page for Netscape users.
if ("Netscape™ == navigator.appName)

location. replace("nsversion.htm"):</SCREPT>
</HEAD>
<BODY>

<!-- Page for other browsers -->
</BODY>

</HTML>

Screen Information

The screen object exposes information aboutthe currentuser’s display, includ-
ing the screen resolution and color depth. This information lets your code
analyze the user’s visual support and update the display accordingly. The fol-
lowing tablelists the properties available on the sereen object.
a

 Property Description

width Horizontal resolution of the screen in pixels
height Vertical resolution of the screen in pixels
colorDepth Bits per pixel used by the display or buffer
availHeight Screen height inside docked windows
availWidth Screen width inside docked windows

The auailHeight and availWidth properties give the dimensionsof the portion
of the user's screenthatis available for windows—thatis, the Space not takenup by any docked tool bars.

This information can also be used at load time to determine how the
documentshould be presented:eitherdifferentstyle sheets can be applied,or
an entirely different document can be loaded. The following code demon-
strates howto redirect users with low-resolution screensto an alternative docu-
ment and how to disable a style sheet intended only for users with a specificcolor depth:
<HTML>

<HEAD>
<TITLE>Screen-Based Pages</TITLE>
<LINK REL="styleSheet” TYPE="text/css” HREF="256color.css">
<SCRIPT LANGUAGE="JavaScript™>

if ((64@ >= screen.width) || (48@ >= screen. height))
window. location. replace("lowres htm");

document.styleSheets[@].disabled = (screen.colorDepth < 8):

57

FOUR: The Browser Windowee

</SCRIPT>
</HEAD>
<BODY>

<!-- Document’s contents -->
</BODY>

</HTML>

Window Events

The window object exposes events that allow control over the currentstate of
the window. These events are useful for determining whether the document
is loaded and for responding whenit receives or loses the focus or when anerror occurs,

DocumentState Events

Eventsare available for tracking the loading and unloading of a document.
Handlers for these events should always be written in the document’s head to
ensure thatthey are hookedup as early as possible in the document’s loading
process.If the events are written in the middle of the document's contents, the
code mightnever runif, for example, the userleaves the documentbefore the
unloading code is even parsed.

Load Events
Thetwoevents related to the loading of the documentare onload and onready-
statechange. Both events help you determine when the entire document has
beenparsedandall elements have been loaded. The onreadystatechange event
is a new event that occurs on the document, not on the window; onreadystate-
change is discussed in detail in Chapter 6, “The HTML Document.”

The onload event fires when the entire documentis parsed but does not
necessarilysignal thatall objects on the documentare completely downloaded.
This eventis also supported by the Netscape Navigator 3.0 and Microsoft Inter-
net Explorer 3.0 object models.

Unload Events
Twoeventsrelate to the unloading of the document: onbeforeunload and on-
unload. The onbeforeunload eventis fired immediately before the onunload event.
The onbeforewnload eventgives the Web authora chanceto verify that the user
really wantsto exit the document. This confirmationis useful when exiting the
document would cause information to be lost because the userfailed to sub-
mit data to the server. For example,in a data-binding scenario in whichthe user
batches many changesontheclient, exiting the document withoutsubmitting

97

58

PART I: HTML AND SCRIPTING—SSSSSSSSSSSSSSSSSSFSSFFFFFFFFFffffsfFhFef

the data would cause the changesto be unintentionallylost. (Data bindingis
covered in detail in Chapter 15, “Data Binding with HTML.”)

The onbeforeuntoad eventcan display a predefineddialog boxthat presents
the developer’s text and asks whether the user wants to exit the document. To
display this query, set the returnValue propertyto a string, as shown in the fol-
lowing code. If you don’tset the retwrnValue property usinga string value, the
window simply unloads the documentwithoutdisplaying a dialog box.
<SCRIPT LANGUAGE="JavaScript” EVENT="onbeforeunload()" FOR="window">

event.returnValue = “Your input wil? be lost if you leave.";</SCRIPT>

; Figure 4-3 shows this custom message displayed by Internet Explorer 4.0in response to the onbeforewnload event.

Figure 4-3,
Custom message displayed in a special dialog box by the onbeforeunload event.

Forsecurity reasons, a documentcannotpreventthe window from unload-
ingit withoutthe user’s intervention. Thisrestriction prevents a documentfrom
locking the system and requiring the userto either end the browser applica-tion or reboot.

Immediately before the document is unloaded, the onunload eventfires.
Atthis point, there is no way to stop the process or ask the user not to leave
the document. Rather,this is where any cleanup code for the document should
be written—itis the last opportunityfor scripts to access the documentanditscontents.

Focus Events

98

The termfocus refers to the window or elementthatis active and receives user
notifications such as keyboard and mouse events. To allow you to determine
whenthe window receives and loses the focus, the window exposes the onblur
and onfocus events. In general, the onblur eventfires when the window loses

58

FOUR: The Browser Window
I

the focus to an element within the window or to another window, and the
onfocus event fires when the windowreceives the focus.

The documentthatis loadedby the browserinitially has the focus but does
notfire an onfocus event. When the window hasthe focus, every user interac-
tion with the windowwill cause the ondlur and onfocus event sequence to oc-
cur. For example, clicking on the focusable window’s documentfires the onblur
event on the window,followedby the onfocus event, even if the window alreadyhas the focus.

If the initial documentis a frameset, the framesetitself has theinitial
focus. As with traditional HTML documents,loading the frameset does notfire
an initial onfocus event. However, once the userclicks on or navigates to an
instance of a frame in the frameset, an onbdlur eventfires on the frameset and
an onfocus eventfires on the correspondingframe. This leadsto thefirst ruleof focus events:

@ In any browserinstance, only one item can have the focus at a time.

This one item can be a window object, a frameset, or an element within the
documentsuch as an input control or embedded object. Whenever the focus
changes, an onblureventfires on a windowor an element and an onfocus eventfires on some other element.

A documentmay contain any numberof focusable elements, including
the inputcontrols that take part in a form, embeddedcontrols, and applets.
Whenever oneof these elementsreceives the focus, an onblur eventfires on the

prior window or element and an onfocus eventfires on the focusable element.This leads to the second rule of focus events:

m@ Every change in focus occurs syrametrically, with an onblur event
firing on the elementlosing the focus and an onjfocus eventfiring
on the elementreceiving the focus.

The focus and blur Methods
You can force a window or an elementto receive or lose the focus by calling
its focus or blur method. Calling one of these methodscauses the associated
eventhandler to be executedonly ifa changeofstate is required. For example,
a windowthat already has the focuswill not fire the onfocus eventif its focus
methodis called. However, if the window does not have the focus and then
receivesthe focus through thefocus method, the onfocus event will be fired. This
distinction is important to recognize because you cannotrely on code being
executed in responseto all facus or blur method calls.

99

59

PART ft: HTML AND SCRIPTING
———

Error Handling

100

The window object exposes an onerror eventthatis fired whenever a scripting
error occurs on the page. Whenerrors occurinascript, the useris usually
presented with a cryptic message andthe pagefails to execute. Using an onerror
event handler, the page can override the builtin dialog box and display a more
explanatory message.

The onerror eventalso makesit possible to override the built-in dialog box
andfail silently, as shown in the following code. While thisis easy to accomplish,.
it is probably not advisable.If a scripting error occurs on the page, the page
mightenter an unpredictable state, causing the documentto no longer function.
<SCRIPT LANGUAGE="JavaScript">

function stopAllErrors() {
// No scripting errors will ever display a message.
return true; // A value of true prevents the dialog box

// from appearing,}

window. onerror = stopAllErrors; // Hook up onerror event handler.thisBadCode.Wil1Not.GenerateAnError(); // Syntax error</SCRIPT>

Unlike most events in the Dynamic HTML object model, returning true to the
onerror event forces the dialog box to not appear.Forall other events, return-
ingfalse prevents the event from performingits default action. This difference
is necessary in order to maintain compatibility with the onerror event in Net-
scape Navigator 3.0.

You can use the onerror event to gracefully handle errors in user input.
In the following example, the user types a color namethatis applied to the
document's text box.If the user types an invalid color name, a custom dialogbox warns the user that the color nameis invalid.
<SCRIPT LANGUAGE="JavaScript™>

function doError() {
if (arguments[@] == “runtime error 388") {

atert("Invalid Color Name");
return true:

}
}
window.onerror = doError;

</SCRIPT>
Coler:

<INPUT TYPE=TEXT ONCHANGE="this.style.color = this.value;"VALUE="Black">

as

59

FOUR: The Browser Window
EEE

The onerror event passes the event handler three arguments: an error
description, the nameofthe file in which the error occurred, and the line
numberof the error. Error handlers should not use the line number param-
eter because if the source is edited, the line numberswill be updated and the
error handlers will no longer work.

User Events
User events are events that fire when the user interacts with the window—for
example, when the user resizes or scrolls the window. These eventsfire after
the actions have been completed, so event handlers can’t cancel the actions,
Chapter5, “Window and Frame Management,’ introduces methodsthatscriptscan use to resize or scroll the window.

Using CSS (CascadingStyle Sheets), you can create containers within the
documentthat supportscrolling and resizing. These actionsfire the same
events on the containers as they do on the window.

The onresize Event

Every time the userresizes a window, an onresize eventfires on the window. This
eventlets you write code that rearranges the contents or even other windowsin relation to the current size of the document.

The onscroll Event
Theonscroll eventis fired each time the documentis scrolled, either by the user
manually moving the scrollbar or by an action that results in the document
being scrolled—for example, navigating to a bookmarkorusing the arrow keys.
The properties for determining the currentscrollbar’s position are exposed
through the body object on the documentitself. Interacting with these prop-
erties is demonstrated in Chapter5; a complete discussion of these properties
is presented in Chapter9, “Scripting Individual Elements.”

Specifying Window Events
All the window events—including onblur, onfocus, onload, onunload, and onbefore-
unload—canbe specified as attributes of the <BODY> tag in an HTMLpage,
which allows you to bind these events to a handlerusingattributes rather than
scripts, as shown in the following code:
<HTML>

<HEAD>
<TITLE>Hooking Up Event Handlers</TITLE>

(continued)

101

60

 nner
——>.

HTML AND SCRIPTING

<SCRIPT LANGUAGE="JavaScript">
function doload() {

// Do something when document is loaded.
3

function doUnload() {
// Do something when document is about to be unloaded.

}
window.onload = doload: // Hook up event handler in script,</SCRIPT>

</HEAD>
<!-- Hook up event handler using a Body element attribute. -->
<BODY ONUNLOAD="doUnload();">
</BODY>

</HTML>

Timer Events

102

Timersfire events after a specified amountof time, rather than as the result
of a user action. They are useful for animating objects in the browser or for
forcing code to execute after a fixed amountof time. The window object can
create two types of timers:

@ Timers that execute the code onceafter the specified time elapses
@ Timers that automatically cycle and execute the code each time the

specified interval elapses

Timers can be added to the window only through code; they cannotbe
specified as attributes of any element. The se/Timeout method creates a timer
that executes only once,andtheset/nterval methodcreatesa timer that repeat-
edly executes. Both methods take the same set of parameters:

var timerRef= window.setTimeout(script, time)
var timerRef= window.setInterval(script, time)

You can use a one-time timer to repeatedly execute a handlerif you re-
set the timerin the handler, as shown here:
<SCRIPT LANGUAGES"JavaScript™>

var timeEvery1l0@;
function Every1@a() {

// Write code to be executed here.
ee
/? Reset the timer.
timeEvery1@@ = setTimeout("Every100();", 188);

60

FOUR: The Browser Windowoe

// Make first call.
timeEveryl@@ = setTimeout("Everyl@@();", 108);

// When user exits the page, remove timer.
window.conunload = new Function("clearTimeout(timeEvery10Q@);");

</SCRIPT>

Ifyou use setInterval instead of seiTimeout, you don’t needto reset the timerinthe handler.

NOTE: Theseé/nterval methodwasintroduced in Netscape Navi-
gator 4.0 and Internet Explorer 4.0 as a convenience.Ifyou are writ-
ing code to run on down-level browsers, use the sefTimeout method.
instead of the setInterval method.

You can pass parametersto the handlerby building the functioncallstring
manually. The following code builds a function call with three parameters:
var tm = setTimeout("doThis(" + argl + ", 23, "+ arg3 + "):", 108);

Timers are created using a setTimeout or setInterval method and can be
removedat any point using the corresponding clear method: clearTimeout or
clearInterval. Both clear methodstake as a parameter the timerRefvalue re-
turned by the set method. Therefore, when you are setting up a timer, thereturned value should be saved in a variable.

In the precedingscript example, the timer is cleared in the onunload event
whentheuserexits the page. The onunload eventis fired right when the page
is about to be removed from memory.This step is optional, butit is good pro-
gramming practice becauseit ensures that the browserreleases the timer from
memory.

Using Timers
This section provides three examples thatuse timers. Thefirst example dem-
onstrates a timer that navigates to a new pageafter a specified interval; it uses
the sefTimeout method because the codeis intended to execute a finite number
of times. The next two examplesuse the set/ntervalmethod. The second example
createsscrolling status bar text using Dynamic HTMLto improve on thetypical
implementation of this common device. The third example createsa ticking
clock. Timers are used in many examples throughoutthis book to create in-
teresting effects.

Automatic Page Navigation
The codeon the following page demonstrates a simple timer that navigates to
a newpageafter a specified amountoftime.It also gives you a brief glimpse
into dynamic contents by displaying an updated countdown.

103

61

PART I: HTML AND SCRIPTING

<HTML>
<HEAD>

<TITLE>Countdown</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var intLeft = 5; // Seconds until navigation occurs

function leavePage() {
if (@ == intLeft) // Time is up--navigate

document. location = “home, htm";
else {

// Count down and output updated time by
// changing the contents of the element.
intLeft -= 1;
document.all.countdown.innerText = intLeft +" ";
// Wait another second.
setTimeout("leavePage()", 1004);

}
}

</SCRIPT>
</HEAD>
<BODY ONLOAD="setTimeout(*TeavePage()’, 1008)">

Navigation to home.htm will occur in

<t-- Output initial amount of time. -->
<SCRIPT LANGUAGE="JavaScript™>

document .write(intLeft);
</SCRIPT>

seconds,

</BODY>
</HTML>

The numberofsecondsthe timer takes to navigate is controlled by the intLeft
variable. Changing theinitial value of the intLeft variable also automatically
updatesthe initial value in the contents because of the simple script in the
document's body.

Scrolling Status Bar Text
The following code creates status bar text thatscrolls from right to left. This
example will run only in Internet Explorer 4.0 because the Body elementis
customizedwith a user-definedattribute to store the message. This technique
of addingattributes to elements to define new behavioris introduced in Chap-
ter 8, “Scripts and Elements.”

104

61

FOUR: The Browser Window

<HTML>
<HEAD>

<TITLE>Scrolling Status Bar Text</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function spacer(pos) {
// Simple routine to generate spaces
var space
for (var i i < pos; itt)

space t=" ";
return space;

function scrollStatus() {
// Verify that there is a message to scroll.
if (null != message) (

with (message) {
// Restart message.
if (position < -text.length)

position = maxSpace;
// Scrot¥] words off left edge.
if (position < @) {

position--;
window.status = text.substring(-position);

}
else {
// Qutput preliminary spaces.
window.status = spacer(position--) + text;
}

function initMessage() {
// Constructor for message object
// Message to display is a required argument.
this.text = document.body.getAttribute("message");
// The speed is optional.
if (null != arguments(@])

this.speed = arguments[@];
else

this.speed = 14;
// Initial number of prefix spaces
this.maxSpace = 136;
this.pesition = maxSpace;
// Start timer.
this.timer = setInterval("scrol]lStatus()", this.speed};

(continued)

105

62

PART I: HTML AND SGRIPTING

return this;
}

</SCRIPT>
</HEAD>
<BODY ONLOAD="message = initMessage(1@);"

message="Demo String to Scroll">
Demo Message Page

</BODY>
</HTML>

Ticking Clock
Before Dynamic HTML, ticking clocks could be added to documents only
through applets, images with complex code, or related tricks. This example
demonstrates how to create a ticking clockthatexists directly within the HTML
document. The following codespecifies that the outputfor the clock be placed
inside a Span element with the ID clock. After each tick, the contents of the
Span elementare replaced with the new time.
<HTML>

106

<TITLE>Ticking Clock</TITLE>
<STYLE TYPE="text/css">

#clock {color:blue; font-size:120%} /* Format the clack. */
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

// Check whether IE4 or later.
var MS = navigator.appVersion. indexOf("MSIE");
window. isIE4 = (MS > @) &&

(parseInt(navigator.appVersion.substring(MS + 5, MS + 6))
>= 4);

function lead@(val) {
// Add leading @s when necessary.
return (val < 18) 2? "@" + val.toString() : val;

}

function buildTime() (
var time = new Date();
var ampm = "AM";
var h = time.getHours();
// Fix military time and determine ampm.
if (h> 12) {

h=h- 12;
ampm = " PM";

}
return lead@(h) + ":" + lead@(time.getMinutes()) + "2" +

lead@(time.getSeconds(}) + ampm;

62

FOUR: The Browser Window

function tick() {
/¢ Replace the clock's time with the current time.
document.all.clock.innerText = buildTime();

}
</SCRIPT>

</HEAD>
<l-- Start up the timer only if the browser is I£4. -->
<l-- When unloading. remove the timer if it exists. -->
<BODY ONUNLOAD="f (null != window.tmr) clearInterval (window. tmr);"

ONLOAD="if (window. isTE4)
window.tmr = setInterval<"tick()", 999);">

<H1>Below is a live, ticking clock programmed entirely in HTML.
</H1>
<P>The current time is:

<SCRIPT LANGUAGE="dJavaScript">
// Down-level script support;
// output an initial static time.
document .write(buildTime());

</SCRIPT>
.

</BODY>
</HTML>

This code runs acceptably on down-level browsers that supportscripting.
Thetrick here is the document.write method contained within the body of the
documentto output the current timein the appropriate position in the stream.
In browsers that support Dynamic HTML,the clockwill continue to be up-
dated with the correct time. In nondynamic browsers, only the time at which
the page was loadedis displayed.

Timer Precision

Timerevents cannotberelied on to occur with precise regularity—a
timer event designed to fire once per second maynotactually do so.
Depending on the operating system, the timer may notfire until an-
other application or process yields to the browser.

Irregularity can be visible in a timer that is used for animation.
The animation might appear to stop momentarily, rather than move
smoothly. This hesitation is probably due to a delay in the timer’s exe-
cution caused by some other process or by the browseritself.

107

63

PART I: HTML AND SCRIPTING

The clientinformation or navigator Property
The clientInformation and navigator properties reference an object containingin-
formation abouttheclient. The clientInformation property was addedto Internet
Explorer4.0 as analias for navigatorto separate any implied relationship between
the object modeland a particular browser. However, because theclientInformation
property is currently supported only by Internet Explorer 4.0, you should use
the navigator property whenyouare targeting multiple browsers. Both proper-
ties return the same information, including the name andversionofthe client.

NOTE: Throughoutthis section, the clientInformation and navi-
gator properties and objects are used interchangeably. In all cases,
both properties and objects provide exactly the same information.
Usingthe clientInformation or navigator object, code can be executed con-

ditionally based on the browser brand or version number. Ifyou are simply cre-
ating code to work arounda bugor a small unsupported feature in one browser,
client-side checking workswell. But client-side negotiation that results in new
pages being downloaded requires multiple hits to the server. If you want to
provide different pages for each brand ofbrowser, you can get better perfor-
manceby transmitting the correct page initially, based on the headerthatissubmitted.

Client Brand Information

108

Thefollowing four properties on the navigator object exposethe client versionand name:

appCodeName
appName
appVersion
userAgent

Both Internet Explorer and Netscape Navigatorfollow the same general
formatfor the appVersion property. The appVersion property returnsthe version
of the client in the following format:

ctientVersion (platform; information [; extratnformation])

In Netscape Navigator, the platform field indicates which platform the browser
is running on. In Internet Explorer versions 3.0 and 4.0, the string compatible
is returned as the platform, and the actual platform is indicated in the
extralnformation field.

63

FOUR: The Browser WindoweT

In Netscape Navigator, the information field indicates the product's en-
cryption level. For example, / is returned for the international release, which
provides a weakerlevel of security than the U.S.version in order to comply with
U.S. exportrestrictions. The U.S. release returns U in this field. Internet Ex-
plorer returns a version numberin the information field.

The extraInformation field may return the platform or the build number
of the required operating system. Internet Explorer uses this field to return
detailed platform information. Depending on theplatform,this field may or
may not be used by Netscape Navigator.

In general, the fields in the appVersion property follow a consistent for-
mat. Your code can distinguish between the differentclients by parsing the
valueofthis property. The following tablelists the values returned by Internet
Explorer and Netscape Navigator on the Microsoft Windows platform for the
appCodeName, appName, and appVersion properties.

 Browser appCodeName appName appVersion
Microsoft Internet Mozilla Microsoft 2.0 (compatible;
Explorer 3.0 Internet Explorer MSIE 3.0A;

Windows 95)
Microsoft Internet Mozilla Microsoft 4.0 (compatible;
Explorer 4.0 Internet Explorer MSIE 4.0;

Windows 95)
Netscape Mozxila Netscape 2.01 (Win95; I)
Navigator 2.01
Netscape Mozilla Netscape 3.0 (Win99; T)
Navigator 3.0
Netscape Mozilla Netscape 4.0 (Win95; I)
Navigator 4.0

The userAgent property contains the HTTP (Hypertext Transfer Proto-
col) user-agent string that wasspecified in the HTTP request. The user-agent
stringisjust the concatenation of the appCodeName property and the appVersion
property, separated by a slash: appCodeName/appVersion.

Parsing appVersion
The code on the following page parses the appVersion propertyintoits basic
components. Theindividual elementsof appVersion are then addedto the navi-
gator object as properties.

109

64

PART f: HTML AND SCRIPTING——

<HTML>
<HEAD>

<TITLE>Application Version</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// Initialize version.
function getVersionInfo() {

var version = navigator.appYersion;

/? Locate the opening (.
var iParen = version. index0f("(", 8);

// The client version is the string before the (.
navigator.clientV¥ersion =

versjion.substring(@, iParen - 1);
var information = new Array();

// Automatically split the remaining values into an array.
information = version.substring(iParen + 1,

version.Tength - 1).split(":");

// First value is the platform.
navigator, platforminfo = informatton[@];

// Second value is the information field.
navigator.information = information[1];

/* Third value is extra information, which may be null
depending on the browser and platform. */

navigator.extralnformation = information[2];
}
getVersionInfot);

</SCRIPT>
</HEAD>
<BODY>

<Hl>Client Information</H1>
<SCRIPT LANGUAGE="JavaScript™>

// Output the information.
document.write("Platform: " + navigator.platforminfo +"
") 5
document .write("Client Version: " + navigator.clientVersion +

“
");
document. .write("Information; " + navigator.information +

"<BRI") 3
document .write("Extra Info: " + navigator.extralnformation +

"
");
</SCRIPT>

</BODY>
</HTML>

110

64

FOUR: The Browser Window

Multiple Windows and the navigator Object
The navigator object is not shared betweenall loaded instances of the window.
Instead, each window hasits own instance of the navigator object. While in
almostall cases the information exposed by the navigator objectis the same for
each window,this isolation is important. For security reasons, if an instance
of a page customizes the navigator object, only that instance is allowed to
accessit,

The preceding code parses the client information into multiple proper
ties that are addeddirectly to the navigator object. These properties are avail-
able only on the navigator object of the associated window. Referencing these
user-defined properties of the navigator object on another windowwill return
undefined values, as they do not exist.

UserSettings
The navigator object provides access to information about whetherJava and
cookies are enabled or disabled on the user’s browser.

Java Support
To determine whetherJava is enabled ontheclient, the navigatorobject exposes
a javalnabled method. This method returns a Boolean value thatspecifies
whethertheclient can displayJava applets.

Using the javaEnabled method, you can write a script that either inserts
the applet or displays a message to the user:
<SCRIPT LANGUAGE="JavaScript™>

if (navigator. javaEnabled())
document .write("<APPLET NAME=demo CODE=demo.class ™ +

"WIDTH=5@ HEIGHT=5@></APPLET>");
else

document.write("This page cannot run with Java disabled.“ +
"</BO"):

</SCRIPT>

Cookie Support
Internet Explorer 4.0 exposes a property, cookieEnabled, that specifies whether
the client supports cookies. Cookies allow a small piece of information that
is associated with the current URL or domainto be retained on theclient’s

machine. Someusers do not wantpagesto retain any information ontheir hard
drives and so disable this browser feature. The cookieEnabled property contains
a Boolean value that indicates whether the user has deactivated this support.
Using this property, you can write custom behavior that does not rely on the
client-side cookieif it is unavailable.

WW

65

PART

Is) HTML AND SCRIPTING

Unfortunately, Internet Explorer 3.0 and Netscape Navigator 4.0 do not
support the cookieEnabled property. Therefore, this method cannot always be
relied on for determining whether cookies are enabled onthe client machine.

New navigator Object Properties

112

The navigator object supports a numberofnew properties that you can use to
adapt your documentto different users. The following table summarizes these
properties.

 Property Description

cpuClass The type of CPU. The value for a Pentium machineis x86.

systemLanguage The default language for the system. For American
English the valueis en-us.
The user’s default language. For American English thevalueis en-us.userLanguage

platform The user’s current operating system. For MicrosoftWindows 95 the value is win32.

appMinorVersion The minorversion of the browser application. The
value for Internet Explorer 4.0 is 0.

onLine A Booleanvalue indicating whether the user is reading
the page online.

65

FIVeéECc HAPTER

Window and

Frame Management

This chapter shows you how to create, manage, and navigate between mul-
tiple windows, modal dialog boxes, and framesets. With Dynamic HTML, your
scripts can move, resize, and scroll windows. Your code can open HTMLdocu-
mentsin their own windows in severaldifferent ways and manipulate the mul-
tiple browser instances created. It can also partition the window into multiple
regionscalled frames and manipulate each frameas an independent window.

Thefollowing topics are covered in this chapter:

© Manipulating the window Chapter 4, “The Browser Window,’ in-
troduced events that fire when the user interacts with the window.

This section discusses the methods provided by the window object
for moving,resizing, and scrolling the document.

@ Creating new windows This section discusses how to write code
to manipulate multiple windows. The window object can be used to
create new instances of the browser window, thus creating new
window objects. In addition, the window object exposes methods
that let you display a variety of dialog boxes and HTML-based help
windows. These dialog boxes are useful for providing notifications
to the user, requesting simple strings, and asking yes/no questions.
You can also create custom modal dialog boxes and help files whosecontents are located in other HTML documents.

= Manipulating tramesets This section presents the HTML code for
creating a frameset and introduces the frames collection, which pro-
vides access to the individual frames. Each frameis an instance of

the window object, so the object model for windowsis also appli-
cable to each frame. All the techniques available for manipulating
windowscan also be used for manipulating frames.

113

66

PART I: HTML AND SCRIPTING

@ Special event considerations This section introduces techniques
for cross-frame and cross-window event handling and demonstrates
how to write an event handler in one window that handles events in
another window.

Manipulating the Window

114

The window object exposes methods for moving,resizing, and scrolling the
window. All three operationscan be performedrelative to the current window
state or to a new absolute position through a pair of methodsfor each opera-
tion. The following table lists these methods and their actions.

Method Manipulates Description

moveByloffsetTop, offsetLeft) Window Moves the window by the
specified offsets (measured in
pixels)

moveTo(top, left) Window Moves the windowso thatits
top left corneris at the
specified location (measured
in pixels)

resizeBy(offsetWidth, Window Resizes the window by the
offsetHeight) specified offsets (measured

in pixels)
resizeTo(width, height) Window Resizes the window to the

specified size (in pixels)
scrollBy(offsetHorizontal, Document Scrolls the document by the
offsetVertical) specified offsets (measured

in pixels)
Scrolls the documentto the
specified position (measured
in pixels; screliTo and scroll
are aliases for each other)

scrollTo(horizontal, vertical) Document
or scroll(horizontal, vertical)

The Manipulates columnspecifies whether the method applies to the
physical window orto the current document. Normally, window methodscalled
within a frame apply to the current frame, but the moving and resizing meth-
ods are exceptions. These methods always apply to the containing window.
Therefore, an invocation of any of these four methodsis the sameas calling
the method on the topmost window, as shown here:

66

FIVE: Window and Frame Management

top. methodName

The top property is described in the section “Manipulating Framesets”later
in this chapter. This property of a window object always returns the topmost
window in the documenthierarchy. The moving and resizing methods have
restrictions preventing them from moving the window off the screenorsiz-
ing it too small to be seen. The scrolling methods manipulate the document
in the window the methodis invoked on. Thescrolling methods correspond
to the scrollTop and scrollLeft properties exposed on the dedy property of the
document, which are introduced in Chapter9, “Scripting Individual Ele-
ments.” Calling the scrollTo methodis the sameas assigning new pixel values
to these properties.

Scrolling the Window
Thescroll method (and the equivalent scrollf> method) can be usedto scroll
the documentto a specified location using xy-coordinates. The xy-coordinates
are specified in pixels relative to the document's top left corner—this means
that scroll(0, 0) always scrolls the top left corner of the document onto thescreen.

The scroll method will notscroll past the end of the document.Ifyou pass
a vertical argument thatis too large, for example,the seroli methodwill not re-
turn an error;it will simply scroll the bottom of the documentto the bottom
of the screen, You cannot write code that will scroll the last line of the docu-
mentoff the screen.

‘Wheneverthe documentis scrolled, an onscroll eventis fired on the win-
dow. This eventfires regardless ofwhetherthe scrollingis the result of the scroll
method or the user manually scrolling the document.

In general, you should notwrite code that relies on the position of the
scrollbar, even if the width and height of the documentare taken into account,
because different resolutions and different platforms may renderfontslarger
or smaller or calculate the size of the documentdifferently. Instead, you should
write more generic code that checksfor specific state changes. For example,
in response to the onscrolfevent, you can write code thatdirectly checks whether
an elementis on the screen rather than trying to infer the location from the
scroll position.

Morebrowsers support the scroli method than the equivalent scrollTo
method. Thescrof/To method was introduced to allow naming consistency with
the moving and resizing methods.

115

67

PART I: HTML AND SCAIPTING

Creating an Auto-Scrolling Window
The following code shows you howto use a timer to create a document that
automatically scrolls. This code demonstrates how to use the scrollmethod and
take into accountthe document's size. This example producesscrolling text
similar to that produced by the built-in Marquee element.
<HTML>

<HEAD>
<TITLE>Automatically Scrolling Window</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var tScroll;
var curPos = @;

function runTimer() {
curPos = document.body.scrollTop + 3;
window.scrol1(@, curPos);
// Start over when end of document is reached.
if (curPos > document.body.scrollHeight -

document .body.clientHeight)
window.scrol1(@, @);

tScroll = window. setTimeout("runTimer();", 108);
}

window.onload = runTimer;
window.onunload = new Function("clearTimeout(tScroll)");</SCRIPT>

</HEAD>
<f-- The margin-bottom style attribute adds white space

following the last line of text. -->
<BODY STYLE="margin-bottom:35@pt">Contents to scroll
</BODY>

</HTML>

Creating New Windows

116

Dynamic HTML exposesfive methods on the windowfor creating different
types ofwindows. These methodsprovidea set of predefined window types as
well as custom HTML-based windowsand dialog boxes.

Thetwostyles of windowsthat can be created are modal and modeless.
A modal window, normally a dialog box,is a window that the user must respond
to before the application can continue. When a modaldialog boxis displayed,
the script in the original window stops andwaits for the dialog boxto be closed.
Modeless windows are windows that operate independently of the current
window;the code in modeless dialog boxes executes independently from the

FIVE: Window and Frame Management

other windows. Using modeless windows you can create multiwindowed HTML
applications.

The following table lists the methodsavailable for creating modal and
modeless windows.

Method Description

alert(message) Modal. Displays a simple modal dialog box
containing a supplied message and a single OK
button. The alert method should be reserved pri-
marily for displaying error messages.

confirm(message) Modal.Similar to alert but used to ask the user a
question. This dialog box displays the text along
with OK and Cancel buttons. Clicking OK re-
turns érue, and clicking Cancel returns false.

opentfurl [, name Modeless, Opens a new instance of the browser
L, features [, replace]}]}) with the specified URL. The open method allowsdifferent window features to be turned on oroff.
prompt(message Modal. Displays a dialog box that requests a
f, defauliText]}) string from the user. The optional defauliText

parameteris used to provide a default value for
the text box. If the user fails to enter a string and
clicks OK, an empty string is returned.If the
user clicks the Cancel button or the Close box, a
value of nud/is returned.

showModalDialog (url Modal.Similar to the open method butdisplays a
[, arguments [, features}]) modaldialog box containing the supplied URL.

Thescript can pass argumentsinto the dialog
box, and because modal dialog boxes block the
flow of the creating script, the dialog box can
specify a return value.

The following sectionsdiscuss the use of these methodsin detail.

Modeless Windows

The window object exposes an open methodthatlets you create a new modeless
window. The new windowis simply another instance of the browser;it hasits
own history and it navigates independently of the creating window.

The open method has the following syntax:
[windowObject =] window.open([url [, name [, features [, replace}]]])

117

67

68

PART I: HTML AND SCRIPTING

All parameters to the open methodare optional. The url parameterspecifies
theinitial page to load. Omitting this value opensan instance of the browser.
with a blank document, whichis useful when the documentis being generated
from script.

The name parameterassigns a name to the window to be used when the
windowis a target for subsequent documents. Targeting indicates where a
documentwill be displayed whenthe userfollows a link. The TARGETattribute
on the anchor can specify a window name.If no window exists for a specified
target, the documentis displayed in a new window. If notargetis specified, the
new documentis displayed in the current window. The name parameter, and.
therefore the TARGETattribute, can contain only alphanumeric characters
aud underscores (_),

The features parameterconsists of a string that specifies the windowfea-
tures to display in the newly created window,thereby turning onoroff the
menus, toolbars, and scrollbars and specifying an initial size for the window.
These features are discussed in detail in the section “Window Features”later
in this chapter.

The replace parameter specifies how the new URLwill be handledinits
window’s history list. If you ornit the replace parameter orpass a value offalse,
the URLwill be addedto the end ofthe list as usual. If you pass a value of
true, the URLwill replace the current URLinthelist if there is one; otherwise,
it will not be addedatall. The replace parameteris useful primarily for windows
that have already been opened.

Manipulating the New Window
The open methodreturns a reference to the newly created window.By assign-
ing the return valueto a variable, you can call methods on the window later
in your code. If the supplied window namerefers to a window that already
exists, another windowwith the same nameis not created;rather, the new URL
is displayed in the existing window. If you donotassign the return value to
a variable, you cannotcall the new window’s methods from code. You can,
however, get a referenceto the windowlaterby reopeningit, as shownin the
following example:
// Open a new window, but do not save a reference to it.
window.open("myPlace.htm", "myPlace"”);

é* Load a new document in the window "myPlace”
and save a reference to it. */

myPlace = window.open("myPlace2.htm", "myPlace");

r
Modal and Custom HTMLDialog Boxes|

68

FIVE: Window and Frame Management

This code creates only one new windowinstance. This techniqueis similar to
targeting the window with a new document.

As mentioned, modal dialog boxes require a response from the user before
interaction with the browser can continue. The window object exposes four
methods that let you prompt the user with a modal dialog box. Three meth-
odsdisplay simple built-in dialog boxes, and the fourth methodlets you create
custom HTMLdialog boxes. The companion CD containsa file that demon-
strates how to create the different types of modal dialog boxes.

The methodsfor built-in dialog boxes—alert, confirm, and prompt—take
message strings as arguments. In JavaScript, these strings can contain line
breaks, indicated by the \n escape character. (VBScript uses chr(13) to specify
line breaks.) Here is an example of a multiple-line alert message string:
alert("You entered invalid values on fields: \nName\nUser”);

The showModalDialog methodis used to create custom dialog boxes that
can display HTMLfiles. Inside the dialog box, the object modelis slightly
different from the traditional window object model because the dialog boxis
nota full instance of the browser, but rather a viewer for the HTML document.
A modal dialog box differs from a standard browser window asfollows:

@ No navigation can occur. (Clicking a link will open the URL in a
new instance of the browser.)

@ The contents within the dialog box are not selectable.

Modaldialog boxes are intendedfor displaying messagesthat require a re-
sponse and for requesting information from the user. Like the builtin prompt
and confirm methods, custom modal dialog boxes can return information tothe browser.

Whenyou display a custom modal dialog box, you should always supply
a close button.If you omit the close button, the dialog box can be dismissed
only by clicking on the Close box in the upper right corner of the window. To
create a close button, use the Submit button type so that the button acts as
the default button. The following code creates an OK buttonthat closes the
dialog box:
<INPUT TYPE=SUBMIT VALUE="0K" STYLE="Width:5em”

ONCLICK="window.close();">

119

69

 PART i: HTML AND SCRIPTINGaSFSFSFSFSSSMMMSSSSSSSSSSSSSSSSSSSSSSSSS

120

Displaying Custom Dialog Boxes
Thefirst and last arguments of the showModalDialogmethod are essentially the
same as those of the open method. The first argumentspecifies the URL to
display, and the last argumentspecifies the set of window features to display.
The second argumentis different. Rather than take a name,the second argu-
mentcan take anyvariable, includinganarray, and passit into the dialog box.
This argumentallows an application to pass information into the dialog box.

You can specify a return value for the showModalDialogmethodby setting
a special property on the dialog box. This property can take anytypeofvari-
able, which is returnedto the calling application.

Passing Information to and from the Dialog Box
Theinformation passed to and returned from the dialog boxis exposed in the
object modelof the dialog box. A copyof the variable specified as the second
argumentof the showModalDialog methodis exposed in the dialog box as the
dialogArguments property. The returnValue property is exposed for passing in-
formation backto the calling application. When the dialog boxis closed, the
value of this property is used as the return value for the dialog box. Thefol-
lowing code demonstrates how to access arguments passed into and return
arguments from a dialog box:
<HTML>

<HEAD>
<TITLE>Passing Variables</TITLE>

</HEAD>
<l-- When the dialog box is unloaded,

the value in the text box is returned. -->
<BODY ONUNLOAD="window.returnValue = document.all.ret.value:">

<P>You passed in the following value:</P><P ALIGN=CENTER>
<SCRIPT LANGUAGE="JavaScript">

document .write(window.dialogArguments);</SCRIPT>
<P>Enter a value to return to the application:</P><P ALIGN=CENTER>
<INPUT TYPE=TEXT ED="ret" VALUE="Return™>
<INPUT STYLE="width:Sem” TYPE=SUBMIT VALUE="0K"

ONCLICK="window.close()">
</BODY>

</HTML>

This dialog box could be invoked using the following command:
showModalDialog("pass.htm". “Pass this string to the dialog box.");

FIVE: Window and Frame Management

Creating an About Dialog Box
With the alert method, you can create a simple About dialog box. With the
showModalDialog method, you can create an HTML-enhanced About dialog
box. The following code displays a custom About dialog box. The first docu-
ment contains an About button to click to display the About dialog box.
<HTML>

<HEAD>
<TITLE>About Demo</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function about() {
// Display About dialog box.
event.srcElement.blur():
window. showModalDialog("about.htm™, "",

“dialogWidth:25em; dialogHeight:13em")
t

</SCRIPT>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON VALUE="About™ ONCLICK="about();">
</BODY>

</HTML>

The Aboutdialog box code is in the file about-htm:
<HTML>

<HEAD>
<TITLE>About Inside Dynamic HTML</TITLE>

</HEAD>
<BODY STYLE="text-align:center; font-size:75%;

background: lightgrey™>
<H2>Companion CD-ROM Version 1,0</H2>
<H3>By Scott Isaacs</H3>
<H4 STYLE="font-style:italic™>

Oemonstrating the Powar of Dynamic HTML!
</H4>
<t-- Submit button is the default button. -->
<INPUT TYPE=SUBMIT STYLE="Width:5em" VALUE="0K"

ONCLICK="window.close{)">
</BODY>

</HTML>

Creating Custom Input Dialog Boxes
The prompt methodis useful for requesting simple information from the user.
However, if multiple pieces of information are required, the prompt method
is not sufficient. To pass multiple values back and forth between the dialog box

121

70

PART I: HTML AND SCRIPTING
TT — — ———S——

and the creating window, you can use an array or an object. The following code
demonstrates how to request multiplefields of information and pass the infor-
mation back to the application:
<HTML>

<HEAD>
<TITLE>User Information</TITLE>
<STYLE TYPE="text/css">

BODY {margin-left:1@pt; background:menu}</STYLE>
<SCRIPT LANGUAGE="JavaScript">

function saveValues() {
// Build an array of return yalues.
var retVal = new Array;
for (var intLoop = @; intLoop < document.UserInfo. length;intLoop++)

with (document.UserInfolintLoop])if (name J= "")
retVal[name] = value;

window, returnValue = retVal;
event.returnValue = false;
window. close():

}
</SCRIPT>

</HEAD>
<BODY>

<!-- This form is used to group the contained controis in an
easy-to-access array. -->

<FORM NAME="UserI[nfo">
<FIELDSET>

<LEGEND>User Information</LEGEND>
<PoUser Name: <INPUT TYPE=TEXT NAME="User">
<P>Address: <TEXTAREA ROWS="3" a a

ofthese 3" NAME="Address”></TEXTAREA></FORM>
<P STYLE="text-align:center">
<INPUT TYPE=SUBMIT STYLE="width:5em" ONCLICK="SaveValues();"VALUE="0K"> ‘
<INPUT TYPE=RESET ONCLICK="window.close();" VALUE=" "

Prat ; Cancel"></HTML>

If the preceding codeis in a file named UserInfo.htm,the followingscript
will display the code in a modal dialog box and then loop through and reportthe return values:

122

70

FIVE: Window and Frame Managementa

<SCRIPT LANGUAGE="JavaScript">
var vals = new Array();
vals = window.showModalDialog("UserInfo.htm");
if (vals != null) {

strOut = "Returned values:";
for (name in vals)

strout += "\n" + name + “ = " + vals[name];
alert(strout);

}
</SCRIPT>

The companion CD contains a complete set of these modal dialog box
examples,listed togetherto allow easy comparisonofthe different dialog box
types.

Size and Position of the Dialog Box
Thesize and position of the dialog box are exposedas four properties of the
dialog box’s window:

@ dialogleft
@ dialogTop

@ dialogWidth
@ dialogHeight

These properties are specified in pixels and are read/write. In no case can the
dialog box be sized smaller than 100-by-100 pixels or positioned off screen.

Creating Browsable Modal Dialog Boxes
A technique that can be used to work aroundthelimitation that modaldia-
log boxes cannotbe navigated is to display a quasidocumentcontaining an
IFrame elementthat references the real documentto be displayed. The IFrame
elementcreates a full instance of a browser. While this technique works,it
should be used cautiously. It is not the purpose of a modaldialog box to per-
mit the user to navigate out into the Web.

Window Features

Whencreating a new window using the open or showModalDialog method, you
can specify a set ofwindowfeatures using the optional third parameter,features.
The features string is a delimitedlist of values that turn on oroff different as-
pects of the window. These values controlthe visual appearance of the window.
The following twotableslist the features available for these two methods.

123

71

PART
oOSSS

124

 I: HTML AND SCRIPTING

Thefollowing features are available to the window.open method.
—_—_—_——

Feature
directories

height

loft

location
menubar

resizable
scrollbars
status

toolbar
top

undth

Values Description

[yeslno] I[210]

pixels

pixels

(yes! vo])[210]
Cyesl no] [210]

[yesl no] 210]
Lyeslno]|[210]
[yeslno] |[210]

Lyesl no} [210]
pixels

pixels

Displays a directories bar that provides
quick links to various Web pages
Indicates theinitial height of the browserwindow
Indicates the distance between the browser
window andthe left edge of the desktop
Displays the address bar
Displays the default menus (custom menus
cannotcurrently be defined)
Indicates whether the windowis resizeable
Displays the scroilbars for the document
Displays the status bar at the bottom ofthe screen

Displays the toolbar
Indicates the distance between the browser
window and the top of the desktop
Indicates theinitial width of the browser
windowSS

The window.showModalDialog method supportsa slightly different set of
features for customizing the modal dialog box.
eeeee

Specifies the thickness of the dialog

Centers the dialog box
Indicates the initial height of the

Indicates the left position of the dialog box

Indicates the top position of the dialog box

Indicates theinitial width of the dialog box

Feature Values Description
border [thickl thin]

box border
center Lyeslno] [210]
dialogHeight css

measurement dialog box
dialogLeft CSsmeasurement

dialogTop cssmeasurement

dialogWidth cssmeasurement

(continued)

71

FIVE: Window and Frame Management——090000

i

DescriptionaFeature Values

font CSS font
font-family css

font-family
font-size CSS font-size

font-style CSS font-style

font-variant css
font-variant

font-weight css
foni-weight

help (yeslno]|[210]

maximize [yesl no]! [210]

minimize Lyest zo] |[210]

Defines the default font for the dialog box
Defines the default typeface for the
dialog box
Defines the default font size for the
dialog box
Defines the default fontstyle for the
dialog box
Definesthe default font variant for the
dialog box
Defines the default font weight for the
dialog box
Specifies whether to display a help icon onthe title bar

Specifies whetherto display a maximizewindow button onthetitle bar

Specifies whether to display a minimizewindow button on thetitle bar

Figure 5-1 illustrates some of the features available when youcreate a
window using the open method.

Directories bar
Address bar
Toolbar
Menu bar

Status bar

Figure 5-1.

Scrollbar

Resize tab

Optionalfeatures of a window created using the open method.

125

72

PART I: HTML AND SCRIPTING

126

The features String
Specifying a semicolon-delimitedlist offeature-value pairs creates the features
string:

"T feature = value [; feature2 = value2... [; featuren = valuen]]]"

To create a window that does not display several of the browser features, use
the following code:
window.open("example.htm", “example”,

“toolbar=no; location=no; menubar=no; status=no; directories=no");

For features that can be enabled or disabled, you can specify yes or no or 1 or
0, or simply supply the parameterto turn on the feature. For example,all of
the following statements turn on the menubar feature:
window. open(" » "menubar=yes”);
window. open(" » "“menubar=1");
window.open("...", "...", “menubar");

NOTE: If compatibility with existing browsers is required, use a
comma-delimited list for the open method’s features string, Semico-
lons are supported only by Internet Explorer 4.0.

Default Values
If you create a window with the open method butprovide no features string, a
default set of features is automatically provided. Ifyou provideafeatures string
that does notspecify all of the features, unspecified features don’t use the
same defaults; rather, they use the settings on the original window. The
showModalDialogmethod does not supportanyof the browserfeatures such as
toolbars and menubars because the modal dialog boxitself is not an instance
of the browser. By default, modal dialog boxesare displayed with onlya title
bar, a status bar, a Close box, and a help icon.

Moda! Dialog Box Features and CSS
Manyofthefeatures for the modal dialog boxareclosely related to CSS prop-
erties. This relationship is possible because a modal dialog box, unlike a
modeless browser window, displays a single document that cannot be navigated.

Thefont, font-size, font-weight, font-family, font-variant, and font-style prop-
erties supportthe samevalues as the CSS properties of the same names. These
properties and the dialog box position and size properties corresponddirectly
to style sheet properties, and theirvalues canbe overriddenby the docament’s
style sheet.

For example,the size of the dialog box can bespecified either by the page
calling showModalDialog or by the HTML documentdisplayed in the dialog box.

72

FIVE: Window and Frame Managementeee

The page calling showModalDialog can use the features string to specify thesize.
The HTML documentdisplayed in the dialog box can specify the size using
the CSS width and height properties. This size overrides any size specified by
the showModalDialog method.To create a dialog box that specifies its own size
as 10-by-10 ems, use the style sheet shown in the following HTMLpage:
<HTML>

<HEAD>
<TITLE>10-by-10@-Em Dialog Box</TITLE>
<STYLE TYPE="text/css">

HTML {width:10em; height:18em}
</STYLE>

</HEAD>
<BODY>

This example creates a 16-by-10@-em dialog box. Ems are a
relative unit that adapts well to different font sizes.

</BODY>
</HTML>

The opener Property
When a windowcreates another window,the second windowcanaccessthe first
throughits openerproperty. This property is read/write in Internet Explorer 4.0
andcan be reassigned to another top-level window. This property wasread-only
in Internet Explorer 3.0. The opener propertyis useful for calling methods
exposed by the window that created the new browser instance.

Closing a Window.
Windowscreated using code can be closed using the object model. For secu-
rity reasons, the user will be prompted if the code attempts to close the initial
browser window. The close methodis used to close the associated window:
window.close(); // Close the current window.

A.user might close one window thatis accessed or manipulatedbya script
in another window. Forthat reason, a closed windowis notentirely destroyed;
its closed propertyis still accessible to the user and to scripts. When you write
code for one windowthatuses properties or methods of a second window, you
should first check whether the second windowstill exists, as shown here:
// Check whether myWindow is closed.
if (imyWindow.closed) {

// Code that executes if the window is open
}
else {

/f Error handler code if necessary
}

127

73

PART I: HTML AND SCRIPTING

Creating a Window Manager
When a documentin a browsercreates another window, the only reference to
the windowis the variable returnedby the open method. The object model does
not expose a collection of open windows. Such a collection would be useful,
for example, if you wanted to query for the existence of a particular window
or to change the URL ofa window.

The following code shows you how to implement your own windows col-
lection containing referencesto all the windows your documenthas opened.
Thiscollection is analogousto the window’s frames collection, whichis discussed
in the next section. However, dueto the way variables work, the windows col-
lection is accessible only for the lifetime of the documentandis automatically
cleared when the user navigates away from the page.

The code defines a method namedcreateWindow that opens a window and
adds a referenceto it in the windews collection. Throughthis collection, you
can query whether a windowis open, change the contents, or close the window.
When the documentis unloaded,all windows created using createWindow are
automatically closed.
<HTML>

<HEAD>
<TITLEDWindow Manager</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

// Create an array to hold references to the child windows.
/+ Each member of this array will be a window object created

using the createWindow method below. */
var windows = new Array();

function newWindow(url. wname) {
// Constructor for the window
/* This function should be called only by the createWindow

function below. */
var features = "";
if (nuli t= arguments[2])

features = arguments[2];
return window.open(url, wname, features);

function createWindow(url, wname) {
// Add a window to the windows collection.
var features = arguments[2] == null ? "":arguments[2];
windowsCwname] = new newWindow(url, wname, features):

128

73

FIVE: Window and Frame Management
eeEEE

function closeWindows() {
// Close all windows opened by addWindow.
/* To close an individual window,

its close method is catled. #/
/* This function should be called during the onunload

event to automatically close all open windows. */
for (w in windows)

if (!windows[w].closed)
windows[w].close();

}

/* The following two functions demonstrate using the
createWindow and closeWindows methods. +/

function listWindows() f
// List the windows and their current states.
var swin = "Window List\n";
for (w in windows)

swin t= wot "i" +
((windows[w].closed) ? "Closed" : “Open™) + "An";

alert(swin);
3

function openSampleWindows() {
// Open two windows.
createWindow("closeme.htm", “ChildWindowl");
createWindow("closeme. htm", "ChildWindow2");

}
</SCRIPT>

</HEAD>
<BODY ONUNLOAD="closeWindows();">

<H1>Window Manager</H1>
<FORM>

<INPUT TYPE=BUTTON ONCLICK="openSampleWindows();"
VALUE="Add Windows">

<INPUT TYPE=BUTTON ONCLICK="1istWindows();"
VALUE="List Windows">

<INPUT TYPE=BUTTON ONCLICK="closeWindows();"
VALUE="Close Windows">

</FORM>
</BODY>

</HTML>

This window manager works well for named windows.Ifyou create several
windowsusing the createWindow method but pass emptystrings for their names,
the window managerwill lose trackofall but the most recently created window.

129

74

PART
 Iz HTML AND SCRIPTING

Manipulating Framesets

130

Framesets were first supported in Netscape Navigator 2.0 and Microsoft
Internet Explorer 3.0. Framesets are a special type of HTML document used
to divide a browser window into multiple regions called frames. Framesets are
most commonly used to display a menuor othernavigation mechanism in one
frame and a documentin anotheror to provide a nonscrollable headerat the
top of the page.

Figure 5-2 shows a frameset thatdisplays four panes: a table of contents
pane with information panes above and below it, and a document pane. The
table of contents pane containsa list of anchors representing documents.
Whenan anchoris clicked, the corresponding documentis displayed in the
right frame.

seule
Table of Contents

Figure 5-2.
Frameset with three frameson theleft, including a table of contents, and a
Jrameon the right containing a document.

This section first introduces the HTML elements for creating frameset
documentsandthen describes the object model for manipulating them. Each
frameis a distinct window object that can be accessed andreferenced by otherframes.

74

FIVE: Window and Frame Management
pu

Authoring Framesets
Thefirst step in creating a framesetis to determine the layout requirements.
A frameset can divide a screen into any number of rectangular regions; each
region contains its own HTML document.

The <FRAMESET>tag replaces the <BODY> tag in the HTML document
andis usedto split the screen. Within the Frameset elementare <FRAMEStags
that point each region to the individual document. Framesets can be nested
to easily divide the screen into horizontalandvertical columns.

NOTE: Internet Explorer 3.0 mixed the concepts of a frameset
and a documentwith body contents even though these were in-
tended to be independentconcepts. In Internet Explorer3.0, when
a page consists of both a frameset and a body, the body is rendered
asa frame behind theframeset. This behavioris no longer supported
in Internet Explorer 4.0 and wasnever supported by Netscape Navi-
gator and therefore should not be used.
Thesyntax for a frameset is shown here:
<FRAMESET COLS="..." ROWS="..."

<FRAMESRC="..." NAME=
</FRAMESET>

The COLS and ROWSattributes take comma-delimited lists of measurements
that are usedto divide the screen. For example,the following framesetdivides
the screen into four equal regions:
<FRAMESET COLS="50%, 50%” ROWS="50%, 50%">
</FRAMESET>

When these measurements are not specified, the frameset contains one row
and one columnthat take up the entire window.

Tofill the regions with contents, the <FRAME>tag is used. The number
of frames specified should be equal to the number of rows multiplied by the
numberof columns. In this example, the frameset should have four frames:
<FRAMESET COLS="50%, 50%” ROWS="50%, 50%">

<FRAME SRC="f1.htm">

<FRAME SRC="f2.htm">
<FRAME S f3.htm">
<FRAME SRC="f4.htm">

</FRAMESET>

131

75

PART I: HTML AND SCRIPTING

132

Frames in a frameset are populated across and then down. The preced-
ing HTMLcode divides the browser into four regions containing HTML files,
as shown in Figure 5-3.

with Four Frames -

[[fie EeView Gio FavetesHet

contains this
document.

Figure 5-3.
Frameset with fourframes.

There is no requirement that the numberofframes match the specified num-
ber ofrows and columns.If you provide too many Frame elements, the extra
oneswill be downloaded, butthey will not bevisible, If you provide too few
Frame elements, some paneswill appear without documents.

The following code demonstrates a technique that allows an extra frame
to be supplied but not displayed. This frame can contain contents that are
manipulated by custom code.
<FRAMESET COLS="50%, 58%">

<FRAME SRC="f1.htm">
<FRAME SRC="f2.htm">
<FRAME SRC=“hidden.htm">

</ FRAMESET>

Theframe containing hidden.htm is not displayed on the screen because the
first two frames take up 100 percentof the screen real estate. Scripts or other
contents that are being used for scripting purposes only might exist in
hidden.htm.

Framesets can also be nested using two techniques: a single cell can be
further subdivided into extra rows and columnsby specifying another frameset,

75

FIVE: Window and Frame Management
—_ ——

or a documentloadedinto a framecanitself contain a frameset that further
divides the screen. To use the first technique in the examplein Figure 5-3 to
split the lower right region into two columns,create the following HTMLcode:
<FRAMESET COLS="50%, 50%" ROWS="50%, 5@%">

<FRAME SRC="f1.htm™ NAME=f1>
<FRAME SRC="f2.htm™ NAME=f2>
<FRAME SRC="f3.htm™ NAME=f3>
<FRAMESET COLS="56%, 5@%">

<FRAME SRC="f4. htm" NAME=f4>
<FRAME SRC="f5.htm™ NAME=f5>

</FRAMESET>
</FRAMESET>

In this example, any one of the documents (fl.htm through £5.htm) can con-
tain anotherframesetthat further divides the window. When a documentin-
side a frame contains another frameset, you can change the number and
arrangementof your framesjust by changing that document. This technique
will be examined in more detail in the section “Targeting Frames”laterin this
chapter. With nested framesets, you can’t change the arrangementofthe frames
as easily.

To create only rows or only columns, you needto supply only the ROWS
or only the COLSattribute, More sophisticated control over the layout beyond
percentage values for ROWS and COLSis also supported. The values supplied
for each row or column can be a pixel measurementor an asterisk (*). The *
is used to distribute the remainingspace.To create a frameset in whichthefirst
columnis 50 percentof the width of the screen, the second columnis one-third
of the remaining space, and the third column is the rest of the space, use the
following code:

="50%, *, 24>
1.htm" NAME=f1>

<FRAME SRC="f2.htm™ NAME=f2>
<FRAME SRC="f3.htm" NAME=f3>

</FRAMESET>

Fixing the Size and Scrollbars
By default, frames can be resized and have full supportfor scrolling. Two at
tributes can be addedto a frame thatfix the size and disable the scrollbars for
the document: NORESIZE and SCROLLING.Specifying NORESIZEfixes the
currentsize of the frame; SCROLLINGhasthree valid values,as listed in the
table on the following page.

133

76

PART I: HTML AND SCRIPTING FIVE: Window and Frame Management————ee—————————_—_—_—_——

Browsers that support framesets know to ignore the contents whenthey parse

Value Description the NoFrames element. An example frameset documentis shown here:
auto Displays scrollbars only if necessary <HTML>
yes Alwaysdisplays scrollbars <HEAD>

A P ps <TITLE>Frameset Example</TITLE>
no Neverdisplays scrollbars, even if the contents are clipped </HEAD>

The following code demonstrates a few of the different combinations
available with the SCROLLING and NORESIZEattributes:
<FRAMESET COLS="50%, 50%" ROWS="5@%, 58%™>

#1.htm" NORESIZE>
f2.htm" SCROLLING="yes">
#3.htm” SCROLLING="no" NORESIZE>

<FRAME SRC="f4.htm™ SCROLLING="“auto">
</FRAMESET>

Borderless Frames

Internet Explorer 3.0 and Netscape Navigator 3.0 introducedthe ability to
create borderless frames. Borderless frames seamlessly display multiple pages
withoutanyvisual elements dividing the screen. This technique allows visually
appealing documentsto be easily constructed.

The BORDERattribute specifies the thickness of a border. Borderless
framesare created by setting the BORDERattribute of the <FRAMESET>tagto 0to make the bordersinvisible.

Three additional properties are available on the frameset that provide
greater control over the borders. The FRAMEBORDERattribute specifies
whetherthe border,ifpresent, will be drawn as a three-dimensional frame. The
FRAMESPACINGattribute,like the BORDERattribute, sets the border thick-
ness. The resulting border thickness will be the value of the FRAMESPACING
attribute plus the thicknesses of the three-dimensional edges, if any. The
BORDERCOLORattribute defines the color of the frame border.

Supporting Down-Level Browsers
Browsersthat do not support framesets will display an empty document when
they attemptto load the page. To provide contentsto an olderclient, HTML 4.0
defines the <NOFRAMES>tag. The NoFrameselement can contain anyvalid
body contents thatwill be ignored by frames-enabled browsers and displayed
on anyolder clients. This technique works because the older clients do not
understand the <FRAMESET>, <FRAME>, and <NOFRAMES> tags; they
simply ignore these tags and display the contents of the NoFrames element.

76

 <FRAMESET COLS="50%, 50%" ROWS="50%, SQ%">
<FRAME SRC="f1.htm™> 5

£2.htm">
£3. htm">

<FRAME SRC="f4.htm">
</FRAMESET>
<NOFRAMES>

To view this Web site, please use a frames-enabled browser or
click here for a no-frames version.

</NOFRAMES>
</HTML>

It is a goodidea to always provide no-frames commentsin frameset docu-
ments, They can be as simple as the statement in the preceding code oras
complex as an entire alternative Web page. The contents supplied in a
NoFrames element can include anchors and any other valid HTML code. A
minimal statement should be provided so that the user understands why the
Website is not working. Otherwise, a user with an older browser who sees no
contents may choose to not come back to the Website.

Anotheruse of the NoFrames elementis in the bodies of documents. For

example, a frameset mightprovide a navigation bar next toa main document,
butclients that do not support framesets will not display the bar when they
display the main document. You can provide a simpler navigation bar in a
NoFrames element in the main document,as shown in this example:
<HTML>

<HEAD>
<TITLE>Navigation Example</TITLE>

</HEAD>
<BODY>

<NOFRAMES>
<l-- These contents are displayed only in browsers without

frameset support. Embed an alternative navigation barbelow. -->
<P>

Home Page
Search Page

</P>
</NOFRAMES>

(continued)

4135

77

PART (3 HTML AND SCRIPTINGEe

136

Decument's contents go here.
<NOFRAMES>

<!-- Add a message at the end of the document. --><P>
This page is best viewed with a frames-enabled browser.

</NOFRAMES>
</BODY>

</HTML>

This technique workscorrectly in Internet Explorerversions 3.0 andlater, It
does not work in Netscape Navigator because Navigator currently displays the
contents of the NoFrames element whentheyexist in the bodyof the document.
Inline Frames

Internet Explorer versions 3.0 and later support the ability to create inline
frames. An inline frameis contained within the body of a documentinstead
of within a frameset and allows a single documentto contain other, indepen-
dent documentswithin the flow of the page. Theinline frameis functionally
similarto a framein a frameset. It supports targeting andallows users to navi-
gate within the frame, independent of the parent document.

Using an inline frameis similar to embeddingan object using the <OB-
JECT> tag. The following two HTMLstatements both embed a document:
<IFRAME SRC="banner. htm” WIDTH=50@ HEIGHT=50@></IFRAME>
<OBJECT TYPE="text/htmi” DATA="banner. htm" WIDTH=5@8 HEIGHT=500>

</OBJECT>

The primary difference between the two statementsis that the IFrame element
canlater be targeted similar to a framein a frameset. In general, the [Frame
element should be used to define the navigable user interface within a page,
and the Object elementshouldbe usedto include contents. The two elements
both embed banner.htm in the document, but only the [Frame elementallows
navigation within its own window.

The IFrameelementis a container whose contentsare ignored by brows-
ers that support [Frame. Therefore, just as you can use the NoFrames element
for non-frames-enabled browsers, you can specify alternative contents inside
the IFrame elementfor browsers that do not support IFrame:
<IFRAME SRC="banner. htm" WIDTH=5@@ HEIGHT=500>

<P>Your browser does not support IFrame.</P></TFRAME>

77

FIVE: Window and Frame Management—-_--ee

Adding Script Elements
Scripts in a frameset document must be defined in the Head elementof the
documentprior to the first Frameset element, as shown below. Browsers may
ignore scripts that appear within or after a Frameset element.
<HTML>

<HEAD>
<TITLESWith Framesets, Script Location Is Important</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

/* This script will execute because it occurs before the
Frameset element. */

</SERIPT>
</HEAD>
<FRAMESET ROWS="*">

<FRAME SRC="foo.htm™>
<SCRIPT LANGUAGE="JavaScript">

// Scripts following the <FRAMESET> tag are ignored.</SCRIPT>
</FRAMESET>

</HTML>

Targeting Frames
Naming a frameis similar to naming a window; the nameis used to specify a
target for a link. When an anchortargets a frame or window,it replaces the
currentcontents of the frame or window with the new document. Only indi-
vidual frames, including the frame containing the framesetitself, can be tar-
geted. The replacement documentcan have any MIMEtype supported by the
browser, including a framesetthat further divides the screen. This provides a
technique that gives the appearancethat multiple frames are being updated
simultaneously.

The simple frameset shown here divides the screen into two frames:
<HTML>

<HEAD>
<TITLE>Main Document</TITLE>
<BASE TARGET="fContent™>

</HEAD>
<FRAMESET COLS="300, *">

<FRAME SRC="menu.htm" NAME="fMenu">
<FRAME SRC="contents.htm" NAME="fContent">

</FRAMESET>
</HTML>

Thefile contents.htm, shown next, appears in the right column andcanitself
be another frameset. When the usernavigates, the right frame can be updated
with a new documentor an entirely new framesetdefinition,

137

78

PART Is HTML AND SCRIPTING

<HTML>
<HEAD>

<TITLE>Contents</TITLE>
</HEAD>
<FRAMESET ROWS="28%, *">

<FRAME SR elcome, htm">
<FRAME SRC="home.htm">

</FRAMESET>
</HTML>

Searching for a Targeted Frame
Whenyoutarget a frameset, a specific algorithm is used to determinethe result-
ing windowfor the document. This algorithm is important because multiple
frames might share the same name, Thelocation of a documentwith a speci-
fied target is determined by searching the set of named windows and frames.

If anyof the predefined target keywordsare specified, the documentis
displayed in that frame. For example, _TOP replaces the window with the new
document, _PARENTreplacesthe parent frame, and _SELFreplaces the cur-
rent document.For any other target name,all frames, inline frames, and win-
dowsare searched in the following order:

1. The current frame

2. Ail subframes of the current frame, then all subframes of those
subframes, and so on

3. The immediate parentof the current frame and then its subframes,
the subframes of those subframes, and so on

4. The next immediate parentandall its subframes, and so on up the
chain to the top-level window andits subframes

5. The named windows opened by the current window in an arbitraryorder

If no matchis found, a new windowis openedas the target for the URL.

Scripting Framesets

138

Framesets are accessed andscripted through aframes collection that contains
each frame definedby a frameset. Theframes collection on a window contains
all the child framesof the document. Each frameis a window object that ex-
poses the same object modelas a stand-alone window.

The frames collection is constructed based on the documenthierarchy,
not the visual hierarchy. Therefore, the visual hierarchy cannotbe explicitly

78

FIVE: Window and Frame Management

determined using the collection itself. For example, this HTML document
divides the screen into two rows: the top row is a single frame, and the bottom
row is divided into two columns.
<HTML>

<HEAD>
<TITLE>Nested Framesets in a Single Document</TITLE>

</HEAD>
<FRAMESET ROWS="50%, 50%">

<FRAME SRC="top.htm” NAME="tapRow">
<FRAMESET COLS="58%, 5@%">

 <FRAME SRC="bleft. htm" NAME="bottomLeft">
<FRAME SRC="bright.htm” NAME="bottomRight">

</FRAMESET>
</FRAMESET>

</HTML>

The frames collection exposed for the window containing the preceding docu-ment orders the frames as follows:

topRow
bottomLeft
bottomRight

Even thoughthe framesetsare nested, the frames collection flattens them intosource order.
If one of the documents referenced by a frameset contains another

frameset, a documenthierarchy results; each documentdefinesits own chil-
dren and each child window mayfurther define more children. For example,
suppose top.htm is a frameset document:
<HTML>

<HEAD>
<TITLE>Nested Document That Is a Frameset</TITLE>

</HEAD>
<FRAMESET COLS="40%, *">

<FRAME SRC=tleft.htm NAME="nestLeft">
<FRAME SRC=tright.htm NAME="nestRight">

</FRAMESET>
</HTML>

Thecollections are now hierarchical because the documentin the frame topRow
contains a subsequent frameset that in turn contains two more documents:

topRow
nestLeft
nestRight

bottomLeft
bottomRight

139

79

PART Is HTML AND SCRIPTING—_—_——

140

Thecollection of the topmost documentis still the same. However, drilling into
the top frame returns a nested collection:
top. frames. length // 3 frames: topRow, bottomLeft, bottomRight
top.frames["topRow"].frames.length // 2 frames: nestLeft and nestRight
top.frames[“topRow"].frames["nestLeft"].length // @: no children of

// nestleft

Frames as window Objects
Each framein theframes collectionis actually a window object. Theset of prop-
erties exposed on each frameis the same asthe set exposed by the top-level
window. The window properties discussed in the rest of this section are there-
fore properties of frames.

Dynamic HTMLexposes three related properties for referencing a win-
dow:self; parent, and top. The selfproperty always returns the current window.
The parent property returns the parent windowin a- frameset hierarchy. The
lop property returns a reference to the topmost window in the browser.

Whenthe window is the topmost window,the parent property returns the
current window. Therefore, when you write a loop that walks up the frameset
hierarchy, the break case is when the current window equals the parent win-
dow, not when the parent window is null. The following code walks up the
frameset hierarchyuntil the topmost window is reached:
var fParent = self;
while (fParent [= fParent.parent) (

fParent = fParent.parent;
}

Similar code determines whetherthe current windowis the topmost win-
dow in the object hierarchy:
if (self == top) {

/? Top window; do something.J
else {

// Document is in a frameset; do something else.}

The Implicit frames Collection
While the frames collection is exposed on the window object,it is not actually
a distinct property. Instead, the frames object and the window object represent
a single object. The existence of aframes property simplifies and helps disam-biguate code.

Thelack ofdistinction between objectsis important. InJavaScript, when-
ever a property is added to the window object,it is also available through the

79

FIVE: Window and Frame Management

frames collection and vice versa. Therefore, referencing the frames propertyis
not required. For example, the following pairs of statements are equivalent:
// Specify number of frames.
window. length:
window. frames. length;

// Access the topRow frame.
window, topRow;
window, frames. topRow;

// Access the first frame in the collection.
window[@];
window. frames[@1;

Althoughthereis no real distinction between objects,it is good coding
practice to use the frames collection when youexplicitly refer to frame-related
members and the window property when you are using properties on the cur-
rent window. This practice helpsself-document your code.

Defining Frame Contents
The contents of a frame are usually defined by a separate HTML document.
The SRCattribute of a frame can contain literal HTML code. The advantage
of putting HTML in a <FRAME>tag is that header frames can be defined
inline, as shown here, without requiring an external URL.This techniqueis
valuable in that it reduces the number of round-trips required to and fromthe server.

<HTML>
<HEAD>

<TITLE>JavaScript-Generated Frame</TITLE>
</HEAD>
<FRAMESET ROWS="8@, *">

<FRAME SRC="JavaScript:"<H1>Welcome to My Home Page</H1>'”
header">

<FRAME SRC="content.htm">
</FRAMESET>

</HTML>

Supplyingthe initial contents for a frame has noeffect onits ability to
act as a target. This technique can be further generalized to most attributes
that use an URL. For example, Chapter 9, “Scripting Individual Elements,”
demonstrates how to use JavaScript for the HREFattribute of an anchor. Al-
ternatively, the VBScript: prefix can define the contents using VBScript.

141

80

PART 1: HTML AND SCRIPTING

Traversing the Frameset Hierarchy
The following code visually demonstrates the documenthierarchy for any
frameset. This code walks the windowhierarchyin a specified browser instance
and outputs the documentcontainership hierarchy.
<HTML>

<HEAD>
<TITLE>Frameset Hierarchy</TITLE>

</HEAD>
<FRAMESET ROWS="60, *">

<FRAME SRC="frames.htm">
<FRAME SRC="anyDocument. htm" NAME="hierarchy”></FRAMESET>

</HTML>

The precedingfile is a top-level frameset. In the bottom frame,it displays
the documentto be analyzed (anyDocument.htm, but you can substitute any
document you want). In the top frame,it displays the document frames.htm,
listed next, which consists of a button andJavaScript code. When youclick the
button, the code creates a separate window showing the documenthierarchy.
This example is included on the companion CD.
<HTML>

<HEAD>
<TITLE>Frameset Hierarchy Generator</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function drillFrames{doc, w) {
doc.write("<TR><TD>Name: “ + w.name + "
";
doc .write("Location: " + w.location.href};
for (var i = 8; i < w.frames.length; i++) {

doc.write("<TABLE BORDER WIDTH=1@@% CELLPADDING=3>");
drillFrames(doc, w.frames(i]);
doc.write("</TABLE>");

}
doc.write("</TD></TR>");

}

function outputFrames() {
var doc = window.open().document;
doc.open();
doc.write("<H1l>Frameset Hierarchy</H1>")};
doc.write("<TABLE BORDER CELLPADDING=3>") ;
// Start at the sibling frame in the hierarchy.
drillFrames(doc, parent.hierarchy?):
doc.write("</TABLE>");
doc.close();

142

80

FIVE: Window and Frame Management——.

</SCRIPT>
</HEAD>
<BODY>

<FORM>
<INPUT TYPE=BUTTON YALUE="Walk” ONCLICK="outputFrames();"></FORM>

</BODY>
</HTML>

Determining the Layout of the Frameset
The frames collection exposes the documenthierarchy in the browser;it does
not expose the physical divisions of each frameset. This information is exposed
through the document object. The document object has an all collection, which
represents every clementin the document. Using the all collection, you can
determine the orderofthe framesets and frames. The document object and the
all collection are discussed in Part II. Programming the Frameset elementis
discussed in Chapter9, “Scripting Individual Elements.”

Determining Whether All Frames Have Been Downloaded
Framesets also expose an onload event on the frameset window. The onload
event occurs whenall the frames within the framesetfinish loading. Therefore,
any initialization that requires communicating across the frames in the
frameset should be written in this event handler.

In addition, the frameset document exposes a property that can be used
to query the currentstate of each frame and window: readyState. While each
frameis being loaded,this property’s valueis interactive, and whenall the frames
have been downloaded,its value is complete. The readyState property can be used
as a flag to verify thatall the frames have been downloaded, The readyState
property and the related onreadystatechange event are discussed in detail in
Chapter 6, “The HTML Document.”

Simulating a Browser
The code in this section shows how to create a very simple browser using
framesets. This HTML documentsets up the frameset:
<HTML>

<TITLE>Frameset Browser Demo</TITLE>
<FRAMESET ROWS="6@, *">

 <FRAME NAME="browser™ SRC="browser.htm™>
<FRAME NAME="content™ SRC="">

</FRAMESET>
</HTML>

143

81

PART I: HTML AND SCRIPTING FIVE: Window and Frame Managementooeee

The following documentrepresents the browser.htm file thatis rendered
in the top frame. The top framecontains Go and Refresh buttons anda text
box in which the user types the URL. A Forward and a Back buttonare in-
cluded for moving throughthe historylist. These buttons simulate the same
functionality found on most browsers’ toolbars:
<HTML>

<HEAD>
<TITLE>Browser Bar</TITLE>

</HEAD>
<BODY>

<FORM NAME="BrowseBar™ ONSUBMIT="parent.content, location. href =
this.txtGo.value; return false;">

<INPUT TYPE=BUTTON VALUES="Back”
ONCLICK="parent.content.history.back();">

<INPUT TYPE=BUTTON VALUES"Forward”
ONCLICK="parent.content history. forward();">

<INPUT TYPE=BUTTON VALUE="Refresh”
ONCLICK="parent. content. location.reload();">

<INPUT TYPE=SUBMIT VALUE="Go">
<INPUT TYPE=TEXT NAME="txtGo">

</FORM>
</BODY>

</HTML>

NOTE: Browsersecurity restrictions might prevent the Forward
and Backbuttonsin this code from navigating if the documentsin-volvedare in different domains.

In this example, the controls are placed within a Form element to ensure
compatibility with Netscape Navigator 2.0 and 3.0, which fail to render any
controls thatare not inside Form elements. Internet Explorerversions 3.0 and
later do not have thislimitation and can display andscript controls even if theyexist outside of forms.

Special Event Considerations
UsingJavaScript function pointers, you can assign an event handler in one frame
or a browserto an event property in another. This powerful technique allows
easy sharing of code between documents; however, it also adds complexity,

The event object is tightly related to the windowthatfired the event.
Therefore, even though an event handler might be located in a documentin

81

anotherframe, the event object of the frame that generated the event must be
used, which requires walking the object hierarchy from the elementthat gen-
erated the event to the event object.

While this technique allows you to write flexible and powerful code,it is
limited by the security model in the browser. For example, a page cannotas-
sign event handlers to the events of a frame or browser window that contains
a documentfrom another domain. Withoutthis restriction, a rogue page could
hook the keyboard events and track the entry of confidential information.
Furthermore, once the user navigates away from a page,all the event handlers
are detached. This is consistent with the Dynamic HTML object model, in
which a new pageis always provided with an entirely fresh state.

The function assignment methodis the mostefficient way to hook events
in anotherframe;it does not require the creation of an extra function handler.
However,this technique allows access only to the element generatingtheevent:
<SCRIPT LANGUAGE="JavaScript">

function doclick() {
/* This is the event handter for the click event of the

document in window2, */
/* The event object cannot be dccessed directly using

the current window's event object. Instead,
window2's event object must be accessed.
The this pointer passed in points to the document
that generated the event. */

with (this.document.parentWindow.event) {
/?/ Use the event object.

}

var window2 = window.open("sample. htm");
/* Bind the event handler of window2 to the

doClick function in this document. */
window2.body.onclick = doClick;

</SCRIPT>

Scripting events across framesis the basis of the Event Tutor example in
Chapter3, “Dynamic HTML Event Model.” The Event Tutor works by dynami-
cally hooking the events of the sample document and outputtingstrings in thecurrent window.

145

82

DOCUMENT

STRUCTURE

ae i Soli is
sae oe range eaei Hae ernest ieieee heer Pre ee

ea sesPiriceetelft ree F pees oi i i rrHaasatseated
qtriartaitatgtit ere reeuienipe Ea

uae a is
Hisiee

 a Peep ieDaePa rineeseta epee tlateBel

82

83

TTA P apan este!

ia . eS
ease of } =

The HTML Document

through the document property on the window. The document property refer-
ences an object that encapsulatesall the information about the document. The
document object is the most important and powerful object of the Dynamic
HTMLobject model. Through this object,all elements contained in the docu-
ment canfire events and can be accessed and modified byscripts, allowing you
to create a dynamic document.

The elements in the HTML document are exposed through the collec-
tions on the document object. The contents of the document are accessible
through these elements and through a TéxtRange object. Both techniquesal-
low youtoaccess and changethe contents. Thestyle ofthe documentis exposed
through the styleSheets collection, which provides access to the global and linked
style sheets associated with the document.

Ourdiscussion ofthese issues will span several chapters. This chapter
begins the discussion by covering the following topics:

ie

Lente

i

He

siephiter i
J SEN sat ‘ itd The structure, contents, and style of an HTML document are exposed
coeeats tres

:ti

Referencing the document object The document object is a prop-
erty of the window. This section shows you how to access the HTML

: document contained within the current window as well as docu-
sete roents displayed in other windows.

Tee Pls ptrbirbenlyinw tortiris) piel c} @ Changing the document’s colors The document object exposes
i p drys properties for manipulatingthe color of the text and background

on the page. These properties are compatible with the existing ob-
ject model implementations in Netscape Navigator and Microsoft
Internet Explorer 3.0.

ces pie @ Accessing meta information about the document Information de-Lei pearnibdees rived while the document is downloaded is exposedto the objectay model. This meta information includes the initial file size of theof}

ts ae f ;
eenee 4

83

84

PART lis DOCUMENT STRUCTURE___---—_——————————————————————————

150

document and the dates when the file was created and last modi-
fied. In addition, any cookies associated with the documentcan be
retrieved or assigned.

§ Modifying the HTML stream The document object exposes methods
for manipulating the HTMLstream while the pageis loading.
These methods work only while a page is rendering and are not
used to modify a page onceit is loaded—separate objects and meth-
ods are exposed for this purpose.

Figure 6-1 showsthe document object andthe collectionsit contains. Next
to each collection is the tag for the HTML elementsit contains.

Figure 6-1.
The document object’s collections and the corresponding HTML elements,

all elements

<APPLET>, <OBJECT>

<FORM>

<IFRAME>

, <AREA HREF=...

<SCRIPT>

style sheet objects

84

SIX: The HTML Document

Referencing the document Object
The document object is referenced as a property of the window object. If you
reference a document withoutspecifying which windowitis in, you get the
current document. Each ofthe following examples references a documentto
getits title:
document.title // Current document's title
window.document.title // Same as above but explicitly references

// current window
myPlace.document.title // Title of document in the window myPlace

The myPlace reference in this example must be a window reference returned
by the open methodor the name of a frame in the current frameset hierarchy.

Regardless of whether the current window contains a frameset or an
HTMLdocument, the document objectis fully exposed.For security reasons,
someproperties may not be accessible across domains. For example, the con-
tents of a documentare accessible only to pages that share the document’s
domain.

Changing the Document’s Colors
Oneofthe simplest operations you can perform on a documentis to change
the colors of the backgroundand the text. The document object exposes prop-
erties that define the colors of the background,the text, and the links.

The color properties available on the documentare alinkColor, bg Color,
feColor, linkColor, and vlinkColor, The bgColor property controls the color of
the document's background, andthe /gColor property controls the default colorof the text.

Thethree link color properties represent the colors of the active,visited,
and unvisited links. Link is an ambiguous term—in this case, it refers to an
Anchorelementthat has an HREFattribute set:
This is a 1ink.

The active link is the link that has the focus andis normally indicated by a
change in color combinedwith a pale dotted border. A visited linkis a link that
the userhasrecentlyvisited, and an unvisited link is a link that has not yet beenfollowed.

Setting the document's properties directly is only one way to control the
document’s colors. You canalso set the colors using attributes in the <BODY>
tag or style sheets. Ifyou use the <BODY>tagorstyle sheet attributes, your code
will be more encapsulated, but the color properties on the document object are
supported by more browsers.

151

85

Snce

PART II: DOCUMENT STRUCTURE

Thefollowing table lists the color properties and their corresponding
<BODY>tag attributes.

 Property Attribute
alinkColor ALINK

bgColor BGCOLOR
fgColor TEXT
linkColor LINK
vlinkColor VLINK

Style sheets have a higherpriority in setting colors than the document's
properties or the <BODY> tag’s attributes. The document's properties will
alwaysreflect the colors shown onthe screen.If the coloris set using a style
sheet, assignments to the document's color properties will be ignored.

Valid Color Values

All the color properties, including those exposed on elements, takea literal
string representing the color nameor an RGBhexvalue.A list ofthe valid string
namesand their hexadecimal equivalents can be found on the companion CD.
RGBhex values are specified in the following format:

#RRGGBB

R, G, and Bstandfor the red, green, and blue channels; each channel accepts
a valid hexadecimalvalue in the range 0 through #FF.

Whenyou access the value of one of these properties on the document
or on an HTMLelement, you always get a hexadecimal number,even if you
initially supplied a string. For example, a property set with the string Red
returns #FF0000. However, the CSS (Cascading Style Sheets) properties retain
values as supplied, so a style property set to ved returnsred.

Scenario: Color Selector

152

A large numberof color names are now available in HTML.Thecolors that
these namesrepresentare often difficult to decipher, and determining what
colors go well together can be a complex task. The following code helps by
providing a colorselector that sets the backgroundandtextcolors. All aspects
of the color selector are encapsulated in the Div element,so the color selec-
tor andits scripts can easily be moved and run unchanged in other HTML
documents.

85

SIX: The HTML Document
en

<HTML>
<HEAD>

<TITLEDHTML-Based Color Selector</TITLE>
<STYLE TYPE="text/css">

TABLE {background:white}
/* Make all cells a uniform size. */
TO {width:3@pt: height:3@pt; cursor:default}</STYLE>

</HEAD>
<BODY>

<H1>Color Selector</H1>

<1-- When the user clicks on the cell, the screen is redrawn
with the corresponding background or text color. -->

<DIV ONCLICK="colorSelector()">
<SCREPT LANGUAGE="JavaScript">

function colorSelector() {
// Based on the table, change to the correct color.
// srcElement is the element the user clicked on.
if ("TO" == event.srcElement.tagName)

if (document.all.Text.contains(event.srcElement))
document.fgColor = event.srcElement.bgColor;

else if (document,al1.Background.contains(event.srcElement))
document.bgColor = event.srcElement.bgColor;

}
</SCRIPT>

<1-- To extend these tables, add cells to the background
and/or the text color tables. Each cell consists of a
background colar only, set appropriately. -->

<TABLE ID="Background™ BORDER>
<CAPTLON>Background Color</CAPTION><TR>

<TD BGCOLOR=Black></TD><TD BGCOLOR=Red></TD>
<TD BGCOLOR=Green></TD><TD BGCOLOR=LightBlue></TD>
<TD BGCOLOR=Yel low></TD>

</TR>
<TR>

<TD BGCOLOR=YellowGreen></TD><TD BGCOLOR=Orange></TOD>
<TD BGCOLOR=Navy></TD><TD BGCOLOGR=Magenta></TD>
<TD BGCOLOR=Brown></TD>

</TR>
<TR>

<TD BGCOLOR=Black></TD><TD BGCOLOR=Blue></TD>
<TD BGCOLOR=Burlywood></TD><TD BGCOLOR=Gold></TO>
<TD BGCOLOR=Cyan></TD>

(continued)

153

86

CSS

PART If: DOCUMENT STRUCTURE

</TR>
</TABLE>
<TABLE ID="Text™ BORDER>

<CAPTION>Text Color</CAPTION>
<TR>

<TD BGCOLOR=Black></TD><TD BGCOLOR=Red></TD>
<TD BGCOLOR=Green></TD><TD BGCOLOR=LightBlue></TD>
<TD BGCOLOR=Brown></TD>

</TR>
<TR>

<TD BGCOLOR=White></TD><TD BGCOLOR=Blue></TD>
<TD BGCOLOR=Burlywood></TD><TD BGCOLOR=Gold></TD>
<TD BGCOLOR=Cyan></TD>

</TR>
</TABLE>

</DIV>
</BODY>

</HTML>

Thecolorselector works by enclosing the twotables in a DIV element and
using event bubblingto detect all click events. Whenthe userclicks in the
DIV element, the click event handler checks whetherthe click occurred in a
cell of one of the two tables. If the click occurred in a celi, the event handler
first determines whetherthe cell is in the backgroundtableor text table and
then changes the corresponding documentcolor to match the color of the
clicked cell.

The preceding codecontains only a subsetof the available colors, but the
selection can easily be expanded by simply adding extracells to either the
backgroundcolor or the text colortable.

Reflecting HTML Attributes as Properties

154

The attributes of all HTML elements in a documentare exposed as proper-
ties in the object model. You can set an attribute in an HTMLtag, or you can
set the corresponding property. If you do both, the assignmentspecified
throughscript is the one that is displayed. For example, the script in the fol-
lowing codesets the background color to Red; subsequently setting the corre-
spondingattribute in the <BODY> tag to Blue fails to change the color:
<RTML>

<SCRIPT LANGUAGE="JavaScript">
document.bgColor = "Red";

</SCRIPT>
<BODY BGCOLOR="Blue">

The page background is red.
</BODY>

</HTML>

86

$1X: The HTML Document
ee

Accessing Meta Information About the Document
In addition to providing access to the contents of the document, Dynamic
HTMLexposes information that is derived from the documentwhileit is
downloading. This meta information includestheinitialfile size of the docu-
ment and the dates it was created, last modified, and last cached. Date infor-
mation can be used to determine the age of the documentto enable scripts
to warn the userif the contents are out of date.

The documentalso exposes information abouttheclient’s cookies. Cook-
ies are somewhatcontroversial because they allow a Website to store a small
piece of information ontheclient's machine that can later be referenced and
updated bythesite. This information is restricted in that the data can be ac-
cessed only by the Websites that created the data.

While not really meta information, information aboutthestate of any
embedded object—including whether the downloading of the documentor
object is complete—is also exposed bythe document. Thisin formationis essen-
tial when you are writing scripts that might execute before the page is com-
pletely available.

File Size

Title

The document exposesa /fileSize property that returns theinitial size of the
documentin kilobytes. The returned value represents the numberofbytes in
thefile that was downloadedand doesn’treflect any changesthat scripts might
have madeto the document.

The title property of the documentis assignedavalue in the HTML Headele-mentas follows:
<HTML>

<HEAD>
<TITLE>ODocument Title</TITLE>

</HEAD>
</HTML>

The title contains standardtext; it cannot contain HTML. The document's title
property returns the contents ofthe Title element as a string, You can assign
a new valueto this string to changethetitle displayed in thetitle bar. On win-
dowedsystems,thetitle is usually rendered as the windowcaption.

NOTE: Netscape Navigator 3.0 and Internet Explorer3.0 gener
ate an error when a pageattemptsto assign a value to the fitle prop-
erty. Internet Explorer 4.0 exposes this property as read/write.

155

87

eee
PART If: DOCUMENT STRUCTURE

Source Location

Date

156

The document exposes two properties that represent the source location for
the page: location and URL. Thelocation property on the documentis an alias
for the window’s location property—both return objects that expose the same
set of properties. Chapter 4, “The Browser Window,” discusses the window’s
location property in detail.

The document's URL property is an alias to the hrefproperty on the fo-
cation object.It is exposed for compatibility with earlier browsers. The location
property on the window or documentis useful for determining and changing
the currently displayed page.

Three dates are relevant for any document: the date the documentwasinitially
created, the date the documentwaslast updated by the author, and the date
the documentwaslast downloaded into the cache. This informationis exposed
through the following properties on the document:

Mi fileCreatedDate

@ fileModifiedDate or lastModified
@ fileUpdatedDate

The fileCreatedDate propertyis self-explanatory. The remaining properties aredescribed in the sectionsthatfollow,

The fileModifiedDate and lastModified Properties
ThefileModifiedDate and LastModified properties both contain the date the docu-
ment waslast modified. The value of either property can be combined with
information stored in the cookie property to check whether the documenthas
changed sincethe user’s lastvisit. Internet Explorer 3.0 and Netscape Navigator
support the lastModified property, but they do not support fileModifiedDate.
Internet Explorer 4.0 supports the new variation to maintain nameconsistency
with the other meta information that is newly exposed in Dynamic HTML,

The following code outputsthe date a file was last modified:
<HTML>

<HEAD>
<TITLE>Last Modified Date</TITLE>

</HEAD>
<BODY>

<P>Last Modified:
<SCRIPT LANGUAGE="JavaScript">

document .write(document.1lastModi fied);

87

SIX: The HTML Document
—————————————————————

</SCRIPT>
</P>

</BODY>
</HTML>

The write methodis used to write into the stream of the documentwhile the

page is loaded. This techniqueis discussed in greater detail in the section
“Writing HTMLinto the Stream”later in this chapter.

The fileUpdaitedDate Property
During browsing,files may become cached on the local user’s machine. The
fileUpdatedDate property returnsthe date the file was last updated from the
server. Using this property, you can write code that notifies the user if he or
she is using a page that has existed in the cache for more than a specifiedamountof time:
<HTML>

<HEAD>
<TITLE>fileUpdatedDate Example</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

/* Number of days that can elapse before
a new page is requested, */

var intAge = 7;

// Be sure there is an updated date.
if c'™ J= document. fileUpdatedDate) [

var dCreate = new Date(document.fileUpdatedDate);
var dToday = new Date();
/* Calculate number of days elapsed. getTime

returns the number of milliseconds between
midnight (GMT) on 1/1/197@ and the supplied
date and time, */

var intDays = Math. floor((dToday.getTime()
- dCreate.getTime()) / (1800 * 6@ * 60 * 24));

if CintAge < intDays)
if (confirm("Your cached page is " + intDays +

™ day(s) old.\n"
+ "Do you want to download a new page?”))
// Force a reload from the server.
location.reload(true);

}
</SCRIPT>

</HEAD>
<BODY>

Document contents
</BODY>

</HTML>

157

88

PART If: DOCUMENT STRUCTURE

MIME Type
The mimeType property returns the document’s MIMEtype.For all HTML
documents (including framesets), the mimeType property returns the value
Internet Document (HTML).

Cookies

158

An HTMLpagehastheability to save a small amountof information in a
special file on the client’s machine. This information is called a cookie. Many
people consider cookies to be a potential security risk because cookies allow
a page to write to the hard disk; browsers offer a way to disable this function-
ality. For this reason, no page should be written with the assumption that
cookies are available. When they are supported, however, cookies are useful
for maintaining state information used by multiple pages on the samesite.

Assigning a value to a cookieis different from retriéving the value. This
section shows you how to use cookies and provides helper functions for manipu-
lating them.At the end ofthe section is a demonstration of using a cookie to
create a client-side visit counter.

NOTE: Internet Explorer 3.0 did not allow cookies to be modi-
fied when the page wasaccessed usingthefile: protocol. This limi-
tation was removed in Internet Explorer 4.0.

Reading the Cookie
Multiple cookies can be associated with a single document or domain. When
the cookie propertyis read, all the cookies associated with the documentare
returned as a semicolon-delimited list of name-value pairs. Therefore, a rou-
tine is needed that can parsea list of cookies. JavaScript exposes some useful
methodsforeasily splitting delimitedlists into arrays. The following function
uses these methodsto parse the cookie string andreturnit as an array ofname-
value pairs:
<SCRIPT LANGUAGE="JavaScript">

function parseCookie() {
// Separate each cookie.
var cookieList = document.cookie.split("; "J:
// Array for each cookie in cookieList
var cookieArray = new Array();
for (var i = @: i < cookieList.length; i+) {

// Separate name-value pairs.
var name = cookieListLil.split("=");
// Decode and add to cookie array.

» cookieArrayLunescape(name[@])] = unescape(name[1]};
}
return cookieArray;

88

SIX: The HTML DocumentntSEE

}
</SCRIPT>

Thefollowing code demonstrates howto use the cookie array that parseCookiereturns:

var cookie;
var cookies = parseCookie(};
// Output each cookie.
for (cookie in cookies)

alert(cookie + "=" + cookies[cookie]);
// Check whether a cookie named foo exists.
if (null == cookies.foo) {

// No cookie named foo
}

The name-valuepairs you assign to cookies cannot contain white spaces,
commas,or semicolons. Any such characters must be replaced with appropriate
escape sequences.JavaScript provides two convenientfunctions that handle
escape sequencesforyou:escape, for replacing characters by escape sequences
in a string before assigningit to a cookie, and unescape, for reversing the op-
eration whenretrieving the cookie.

Astored cookie also contains expiration date, path, domain, andsecurity
information. You can supply this information when you create a cookie, but
you can’t retrieveit. This is one of the differences between assigning values to
a cookie andretrieving the cookie.

Writing a Cookie
The cookie property takes a string value in the following format:

name=value; [expires=date; [path=path; [domain=domain [secure;]]]]

The name-valuepairis the only required parameter when youassign informa-
tion to the cookie. The namecanbe anyvalid string with whichto associate a
value. Supplying a name-value pair withoutany of the additionalinformation
creates a cookie thatlasts only for the length of the current browsersession.
For example, the following codecreates a simple cookie thatstores the time
and date a page was loaded:
<SCRIPT LANGUAGE="JavaScript”>

var strLoaded = new Date();
document.cookie = “Loaded=" + escape(strLloaded);

</SCRIPT>

Assigning anothervalue to the cookie does not necessarily overwrite the
cookie—it overwrites the cookie onlyifyou use the same name.In the preced-
ing example, the name Loaded would be reused each timethe page was loaded.
In the following example, adding a new name adds a new entryto the cookie.

159

89

7 SS

PART Il: DOCUMENT STRUCTURE

<SCRIPT LANGUAGE="JavaScript">
document.cookie="First=Hello;
document.cookie = “Second=Hello;";
alert(document.cookie): // First=Hello; Second=Hellto

</SCRIPT>

To force a cookie to be deleted, you mustspecify an expiration date. To
delete a cookie, create a new cookie using an existing name and any arbitrary
value, but assign an expiration date that has already passed. When youuse this
technique, the cookie might not be immediately removed—it might remain
until the current instance of the browser is shut down.

The expiration date must be specified in GMTin the following format:
wkd, day Mon Year hh:mm:ss GMT

For example, the following date has this format:
Sat, 28 Sep 1998 19:01:05 GMT

In JavaScript, the easiest way to convert to GMTis to use the “eGMTSiring
method exposed on the Date object.

Ifyou set an expiration date in the future, the cookie will remain on the
client's machine until it expires. There is no guarantee that supplying an ex-
piration date will keep the cookie around because there is a limit to how many
cookies the client canstore and the user may at any time delete the cookie file.

By default, all cookies are saved with a path and domain, even if these
settings are notspecified explicitly. This is how security is maintained on the
cookie. A cookie is accessible only to the path and domain thatcreatedit.
Furthermore, when you create a cookie, you cannot specify an arbitrary do-
main, This restriction eliminates the possibility of secretly transferring infor-
mation from one domainto another. However, multiple pages from the same
domaincanshare a single cookie.

Using the Cookie
A cookie can be used to create custom pagesfor the user. The following code
demonstrates how to use a cookie to count the numberoftimes the user
hasvisited a Web page. The code uses the parseCookie function introducedearlier.
<HTML>

<HEAD>
<TITLE>Cookie Counter</TITLE>

</HEAD>
<BODY>

<SCRIPT LANGUAGE="davaScript">
/f This code requires the parseCookie function.

160

89

SIX: The HTML Document
nn

function setCookie(visits) f
/* This routine sets up the cookie by setting its value

to the number of visits and setting its expiration date
to 1 year from now. */

var expireDate = new Date<);
var today = new Date();
// Set an expiration date in the future.
expireDate.setDate(365 + expireDate.getDate()):
// Save the number of visits.
document.cookie = "Visits="+ visits + "; expires=" +

expireDate.toGMTString() + "5"

// Save today's time and date as the last visit.
document.cookie = “LastVisit="_+

escape(today.toGMTString()) +
"; expires=" + expireDate.toGMTString() + “3"5T

if ("" == document.cookie) (
// Initialize the cookie.
setCookie(1);
document .write("<H2>This is your first visit to our “ +

“humble home page.</H2>");
}
else {

// Parse the cookie.
var cookies = parseCookie();

// Qutput the Welcome Back message, and increment theff visit counter.
document.write("<H2>Welcome Back! You have visited us " +

cookies. Visits¢+ + " time(s)}!</H2>"):
document .write("<H3>Your last visit was on " +

cookies.LastVisit + ".</H3>");
// Replace existing cookie with an updated one.setCookie(cookies. Visits);

1
</SCRIPT>

</BODY>
</HTML>

Parent Window

Just as you can navigate from the window to the document, you can navigate
from the documentbackto its containing window. The window containing the
document is exposed through the parentWindow property. This property is

161

90

PART El: DOCUMENT STRUCTURE

useful for determining the containing object when only the document objectisavailable.

Two additional properties are available for accessing the window from the
document: Script andframes. The Script property is exposed for backward com-
patibility with Internet Explorer 3.0 and should no longer be used. The frames
property returnsa collection of inline frames in the document. This frames
collection returns the window becauseitis an alias to the window's frames col-
lection, which in turnis analias to the window object. Manipulating collections
is discussed in more detail in Chapter 7, “Document ElementCollections.” To
clarify the relationships between these properties, the following code demon-
strates several ways of returning the same window object:
window == self == window.frames == frames ==

window.document.parentWindow == window.document.Script ==
window.document. frames

DocumentAvailability

162

Asit loads, a documentor an embeddedobject progresses throughfourstates:
uninitialized, loading, interactive, and complete. The object's readyState prop-
erty contains the object’s currentstate. When the object changesstate,it fires
an onreadystatechange event. By using these tools in your scripts, you can make
your page behave appropriatelyfor the states of the document and embedded
objects and react to changes in states. Most important, your code can avoid
accessing objects that haven't completely downloaded.

The following table describes the states that the document and embed-
ded objects progress through,
EE

 State Description

uninitialized The page or objectis notyet initialized. Onceit starts
loading, it immediately progresses to the loadingstate.

loading The page or object is currently being loaded.
interactive Theuser can interact with the page or object even though

it is still loading—for example, anchors may belive and
loaded elements may begin to fire events.

complete The page or objectis entirely loaded.

When the document begins loading, it immediately progresses to the
loadingstate. It progresses to the interactive state when the browser encoun-
ters the first Script, Body, or Frameset element. The documentprogresses to

90

SIX: The HTML Document
———— '

the complete state when the entire documentis parsed and all embedded
objects are loaded.

The readyState Property
The document’s readyState property containsthe currentstate of the document
as astring. Each embeddedobjecthasits own readyStaie property reflectingitsown status,

Because a documentwill be in the interactive state before anyofits scripts
execute, the only readyState values its scripts will obtain are interactive and
complete. A script in anotherframe or window might obtain a valueofloading;
this will happenif the script accesses the document's readyState property dur-
ing the parsing of the document's Head elementand before anyscripts in the
Head elementhave been encountered, Anyscript might obtain any of the four
values as the readyState of an embeddedobject.

JavaScript event handlers are hooked up asynchronously during the
parsing ofthe page. Such a handler might execute before the entire pageis
loaded. If the handler performsoperations that require the page to befully
downloaded,it can test the document's readyState property before proceeding,
as shown in the following example:
<SCRIPT LANGUAGE="JavaSeript” EVENT="onclick” FOR="window">

if ("complete” == document.readyState) {
// Handle the event.

}
else

alert("This action is not available until the document " +
"finishes downloading.”);

</SCRIPT>

Alternatively, the handler can test the readyState properties of only those ele-ments it needs to access.

VBScript event handlers are hooked upasalast step before the document
progresses to the completestate. Therefore, handlers written in VBScript don’t
needto test the document's readyStele—except, ofcourse, ifa handler accesseselements in another document.

The onreadystatechange Event
The onreadystatechange event fires whenever thestate of the document or of an
embedded object changes. Each of these events can fire multiple times dur-
ing the downloading of a documentor an element.

If you bind a handler to the document's onreadystatechange event, the
handlerwill not be hooked up until the documentis alreadyin the interactive
state. Your handlerwill be called only once—namely, for the document's tran-
sition to the completestate. In this situation, the onreadystatechange eventis

163

91

PART Il: DOCUMENT STRUCTURE

essentially an alias for the window’s onload event, and the two can be used
interchangeably. Because Internet Explorer 4.0 is the only browser currently
supporting onreadystatechange, you can use this event ifyou want to exclude other
browsers; you can use the onload event if you want cross-browser execution.

Embeddedobjects in the documentalso fire the onreadystatechange event.
For example, the Object and IMGelements have onreadystatechange events. For
these elements, your code can receive the event for several state transitions,
depending on whenthe event handleris hooked up. In general, however, you
should notwrite code that dependson anystate transition to occur other than
the transition to the complete state.

Modifying the HTML Stream

164

Originally, the object model in Internet Explorer 3.0 did not allow the docu-
ment contents to be changed once the page was rendered. Since then, a num-
ber of methods have becn exposed for outputting HTMLinto the document's
stream while the page is being loadedor for generating an entirely new HTML
documentin anotherframe or browser instance. The example earlier in this
chapterthat outputsthe sourcefile’s last modified date illustrates how to add
HTMLto the stream of a downloading document. The example in Chapter 5,
“Window and Frame Management,” that creates a diagram of a document’s
frameset hicrarchy shows how to generate complete documents.

The available methods for adding contents to an HTMLstream asit is
being parsed and for generating complete documentsare as follows:

@ write

© writeln

open
@ close

Even though the object model now provides access to the stream, these meth-
odsarestill very useful for generating contentsas the pageloads. Yourscripts
can generate different HTMLcodein responseto the different conditions theyencounter.

NOTE: Oneof the innovations in Dynamic HTMLis theability
to modify the document’s contents after the page is loaded. You
can modify a documentusing properties and methodsof the Body
elementandits child elements, or using a new object named Texi-
Range. Modifying the contents of the documentis discussed in
detail in Part IV.

91

SIX: The HTML Document
i——<—<$<$<$<$

Marked Sections

Ifyou are familiar with SGML markedsections, youwill see that scripts
that write to the HTMI. stream aresimilar to marked sections. Marked
sections allow a browserto use different contents, depending on a spe-
cific condition. For example,aJava applet, a plug-in, or maybe an image
can be output to the screen, depending onthe feature support. of the
browser. However, generating contents through scripts hasa significant
disadvantagein that the contents of the document cannotbe predeter-
minedandindexed using tools without evaluating the scripts on the page.

Writing HTMLinto the Stream
The writeand writen methodsallow you to write HTMLinto the currentstream
while the documentis loading or into another stream that has been opened
using the open method. The write method is used in quite a few examples in
this book to output HTMLinto the stream while loading. Arguments passed
to the write methodare always convertedto strings before they are outputintothe document. .

The writen methodis similar to the write method,butit appends an end-
of-line character to the endof the line. Whether you use wrile or writein rarely
matters because most end-of-line characters are ignored in the HTMLstream.
End-of-line characters and spaces are important in only three instances:

@ PRE and XMPelements, in which end-oFline characters are
retained

m Elements that do not contain HTML, such as Script andStyle

@ Streams to a MIMEtype other than HTMI.

You should notuse the write and writen methods on the current document
after the documenthasfinished loading unless youfirst call the open method,
which clears the current document’s window and erasesall variables.

Creating Documents Using the open and close Methods
The document methodsopen andclose allow you to create new documents in
other frames or windows. These documentsdo noteven have to be written in
HTMLbecause the open method takes a MIME-type identifier. Therefore,if
you knowthe format for an image or other documenttype, the image or docu-
ment type can be output directly into a window.

165

92

PART Il: DOCUMENT STRUCTURE

The following code demonstrates using the open and close methods to
output documentinformationfor a specified window into another window:
function docInfo(win) {

/* Create an About dialog box. */
var aboutWindow = window.open("", "Info",

"toolbar=no; location=no; directories=no; width=375; "+
“height=254; status=no; menubar=no; resizable=no");

var prop;
// Open a stream on the new window.
aboutWindow.document.open();

// Output document information.
aboutWindow. document .write("<H1>Document Information</H1>"):;
for (prop in win.location)

aboutWindow.document.write(prop + “: " + self.lacation£[Cprop] +

");

// Close the stream on the new window,
aboutWindow.document.close();

NOTE: Theclear method was exposed in Internet Explorer 3.0
for clearing the document's contents. This method should no longer
be used becauseits future support is questionable andit acts unpre-
dictably on different browsers. Instead, the open and close methods
are sufficient for clearing and generating new documents.

Writing Scripts into the Stream

166

Yourscript can insert additional scripts into the stream. When you usethis
technique, be careful how yourscript closes the Script elementit is inserting.
Yourscript must insert the </SCRIPT> tag as two strings to be concatenated,
as shown in the following code. Otherwise, the HTML parserwill assume that
the tag ends the seript you are writing rather than the scriptit is inserting.
<SCRIPT LANGUAGE="JavaScript"™>

// Example of dynamically generating a script
document .write("<SCRIPT LANGUAGE='JavaScript’> x = 0; <" +

"/SCRIPT?") =
</SCRIPT>

92

CHAPTER S EVEN

Document Element Collections

The Dynamic HTML object model represents the document’ structure through
a set of collections exposed on the document object. Thesecollections provide
access to all HTMLelements contained within the document. Understanding
how these collections relate to the HTMLsource code and how to access these
collectionsis the first step to programming the HTML document. This chap-
ter shows you how to manipulate the document elementcollectionsas well as
how Microsoft Internet Explorer 4.0 parses the document.

Considerthe following short HTML document:
<HTML> =

<HEAD>
<TITLE>Document Structure</TITLE>

</HEAD>
<BODY>

<HL>Overview</HL>
<P>Examining an HTML document</P>

</BODY>
</HTML>

The object model provides a way to access the HTML,Head, Title, Body, H1,
and Paragraph elements and thereby modify theirattributes. The markup,like
all aspects of the document, is accessed using the document object introduced
in Chapter 6, “The HTML Document.” The document object exposes an all
collection that represents every element in the document andseveralfiltered
collections that represent a subset of the document’s elements. For example,
the forms collection contains only the Form elements. In addition, developerscan create their own custom collections of document elements.

Theability to access any elementin the documentis a key innovation in
Dynamic HTML. Until Dynamic HTML,scripts could manipulate only the set
of elements deemed interesting by vendors developing the browsers. Now Web
developers have complete control over the page and can decide for themselves

167

93

PART

Il: DOCUMENT STRUCTURE

whatis interesting. They canfilter the ali collection and manipulate anyset of
elements as a group, removingall limitations and providing universal accessto the document.

The following topics are covered in this chapter:

@ Using the collections Every collection in Dynamic HTMLshares
the same set of operations. This section shows you how to access the
elements within each collection, as well as how to create custom
collections of elements. Because every collection in the HTML ob-
ject modelfollows the samerules, this section provides a solid basis
for manipulating and using the collections. The rest of Part I
builds on this information by showing you how to manipulate the
individual elements within the collections.

@ The HTMLstructure and collections This section describes how
the HTML documentis parsed and exposed by the underlyingcol-
lections. This discussion also covers how invalid HTML documents

are parsed and surfaced in the object model, which is important to
understand when youare scripting generic pages in which control
over the document's structure is not available.

Using the Collections
This section focuses on using the ail collection to access the elements on the
page. The all collection in the document object represents every element in
the HTMLfile.It is manipulated using a set of properties and methods that
all the element collections support. These properties and methodsspecify how
many elements are in the collection, provide access to the individual elements,
and provide theability to filter the collection based on element type.

NOTE: Becauseall the collections share a commonset of prop-
erties and methods,all the membersdiscussed here can be used with
any elementcollection in the document.

Collection Size

168

Thefirst and most fundamental operation on a collection is determining the
numberofelements in the collection. The numberofelementsis returned by
the length property. For example, the sample documentat the beginningofthis
chapterhassix elements:
alert(document.all.length); // 6 elements

93

SEVEN: Document Element Collections

Accessing Elements
Elementsincollections are aécessed using the item method. The iéem method
takes either an ordinal position ora string identifier representing the name or
id attribute of an element. Whenyou are supplying an ordinal position, keep
in mindthatall collections are zero-based. Therefore, the following code enu-
merates the elementsin the ail collection:

// Display the tag name for each element.
for (var i = 8, i < document.all.length, i++)

alert(document.al].item(i).tagName);

NOTE: Ina looplike this that accesses the elements ofa collec-
tion, the conditional expression musttest that the index is less than
the length ofthe collection. Because the collection is zero-based,it
has no element whose index equals the collection’s length.

In VBScript, item is the default method on collections; specifying the item
method is optional when you are accessing elements. In JavaScript, default
methods are not supported; however, all objects are associative arrays, allow-
ing all named elements to be accessed using the array lookupnotation.For col-
lections, this meansthat all elements in the collection are also exposed as
properties on the object, which allows the elements to be accessed by their
ordinal position in the underlying array or by their string name or ID. The
preceding code fragment can be rewritten as follows:
// Display the tag name for each element.
for (var i = @, i < document.a]].length, i++}

alert(document.all[i].tagName);

NOTE: InJavaScript, referencing into an array is done using square
brackets ([]). In VBScript, because the default methodis used in-
stead of an array, the reference uses parentheses:

msgbox(document.all(i).id) " ¥BScript

The id and name Attributes

Upto now, only referencing the item by ordinal position has been demon-
strated, Referencing elements can also be donedirectly by using the idor name
attribute. There are a few distinctions between id and name. The id attribute

is supposed to uniquely identify an element within the document. The name
attribute can be shared by multiple elements; it is exposed only by certain
elements and usually has a specific meaning. For example, on an elementin
a form block, the name attribute is used as the submit name, and on multiple
radio buttons, the zame attribute is used to group the buttons.

169

94

PART Ul: DOCUMENT STRUCTUREnnnnnEEUUUIE!

170

Whenyouare assigning names for programmatic access, the idattributeshould be used. The name attribute should be reservedforits intended behavior
based on the element’s context. You may need to use nameifyou are writing
code to run on Netscape Navigator,as it currently does not recognize the id
attribute on any element other than elementspositioned with CSS (Cascad-
ing Style Sheets) positioning. The name attribute is supported in Netscape
Navigator to access the Form element, frames, and all built-in controls.

NOTE: To simplify terminology, from here on the term named
element refers to an elementthathaseither the id or name attribute set.

Referencing Named Elements
InJavaScript, you can use a name oran id to reference an elementin three ways:
using the collection’s item method,directly as a property of the collection, or
indirectly as an array lookup. The following examplesillustrate the three ways
to reference an element whose name orid is myElement:
document .all.item("myElement™) S
document .all.myElement
document .al1["myElement"]

Whenyou are referencing elements using the ifem method or an array
index on the allcollection, you can query for an elementbypassingavariable.
This techniqueis useful because the id or name attribute does not have to be
known in advance and hard-coded.You can write generic code with a variable
that contains the id attribute, as shown here:
// Get the tag name for the element with the specified id.
var retValue = window.prompt("Enter an ID:");
if (retValue != null)

alert(document.all[retValue].tagName};

Using the item Method to Return a Collection
An element’s name does not have to be unique in a document. Radio buttons
in a group typically share the same name,as in the following example:
<HTML>

<HEAD>
<TITLE>Radio Button Group</TITLE>

</HEAD>
<BODY>

<FORM>
Name: <INPUT TYPESTEXT NAME="YourName™>

<INPUT TYPE=RADIO NAME="Gender" VALUE="Male">Male

94

SEVEN: Document Element Collectionsoo

<INPUT TYPE=RADIO NAME="Gender" VALUE="Female">Female
</FORM>

</BODY>
</HTML>

Because name need not be unique, a namestring you useto look up a
collection element can match more than one element. When morethan one
element matches, the result of the lookup is a new subcollection containing
all the elements with the given name, The following examples access named
elements in the preceding code:
document .al1["YourName"] // Input box (not a collection)
document .a11["Gender"] // Collection of two elements
document.ali["Gender"].length // 2
document.al1["Gender"].item(@) // Male radio button

The subcollection follows the samerulesas all other collections; in par-
ticularit exposes a length property and an item method.Its elements are in the
same order as they are in the original collection.

Whenthe item method returns a subcollection, you can pass a second
parameter to select an element in the subcollection. For example, the Male
radio button can be accessed this way:
document.all.item("Gender", @) ~

VBScript and JavaScript each support a shortcut for accessing elements
in a subcollection without using the item method. For example, the following
code fragments both access the Male radio button:
' In VBScript, item is the default method.
document.al1("Gender", @)

// JavaScript uses array access.
document .al1["Gender"J[8]

Documents with duplicate ids are technically invalid, but nothing stops
a developer from authoring them,andyourscripts that access unknown docu-
mentsin other frames or windows may encounter them.Thefollowing example
code contains several elements with the id test:
<HTML>

<HEAD>
<TITLE>Duplicate IDs</TITLE>

</HEAD>
<BODY>

<H1 I1D="test">Header 1</H1>

(continued)

171

95

 PART II: DOCUMENT STRUCTURE

<P ID="test">This is a paragraph.
<P ID="test">This is another paragraph.
<INPUT ID="test" NAME="foo">This is a named Input box.

</BODY>
</HTML>

Duplicate ids are handledjust like duplicate names.If a script looks up
an element by an id and more than one element matchesthe id, all of the
elements are returned as a collection. The following expressions access ele-
ments in the preceding code that have the id tes¢:
document.all["test"]. length ff, 4
document.all].test. length // 4 (look up directly by id)
document.all.test.tags("P"). length {42
document.all.test.item("test").Jength // 4 (redundant code)

The Inputbox in the preceding codeis an interesting element.It is part
ofthe collection returned by item/(“iest”) andis exposedindividually as item("foo".
The Input box can also be accessed through the collection of elementswith id test:
document.all.test.item("foo"),tagName // INPUT
document .al1.foo.tagName ff Also INPUT

Ifan element’s name and id attributes have the samevalue,it nonetheless

appears only once in a collection of elements with that nameor id. An element
can exist only once in anycollection.

Distinguishing Between a Collection and an Element
When your code accesses an element by its name orid, either a collection or
an element maybe returned. Therefore, your code might needto distinguish
whetherthe returned object is an element ora collection, In JavaScript, the
length property returns null for single elements and the numbersof elements
for collections. The length property returns ullfor a single element because
it does notactually exist on the object—JavaScript automatically adds the length
property to the object with the default value of null.

Thefollowing code demonstrates how to check whethera collection or
a single element is returned:
// Using length
if (null == document.all["Gender"].Jength) {

// Single element
}
else {

// Collection
}

172

95

SEVEN: Documeni Element Collections

NOTE: You cannotuse length in VBScriptto differentiate indi-
vidual elements from collections. If you do, VBScript generates an
error because the property does not exist on the elementobject.

Referencing Unknown Element Names
If the item methodis called using a nameor an id attribute that does not exist
in the documentor that has not loaded yet, the method returns a nuil object:
var eft = document.all.item("foo");
if (null == el)

alert("Please try again when the page is loaded.");
else {

// Do something with the element named foo.
t

Directly Accessing Named Elements
In addition to being accessible through collections, some named elements are
also properties of the documentor the window. These elements are added to
the document and the window purely for backward compatibility; the recom-
mended. way to access them is to use the all collection.

Elementsofthe following types are addeddirectly to the documentif they
have a name or an idattribute: Form, IMG, and Applet.In addition,all elements
with an 7d attribute except input elements in a form are addeddirectly to the
window,whichallows you to access them withoutgoing through the document's
all collection:

<H1 ID=“myH1">Welcome to My Page</H1>
<FORM [D="form 1">

<INPUT TYPE=TEXT ID="text1">
</FORM>
<SCRIPT LANGUAGE="JavaScript">

// Access myHl as a window property.
alert(myHl.id}; // Output the id,
// Access myHl through the all collection.
alert(document.all.myHl.id);
// Input elements within a form are available through the form.
alert(forml.textl.id);

</SCRIPT>

Built-In Collections

The document exposes a numberof predefinedcollections, which all follow
the set of rules introduced earlier in this chapter. These collections are pro-
vided for compatibility with older browsers. The following tablelists the col-
lections and the tags of the elements contained within them.

173

96

PART Il: DOCUMENT STRUCTURE

ee

Collection Tags Description

all All tags Every elementin the document, insource order.
anchors <A NAME=.... Bookmarks.

applets <APPLET>; Embeddedobjects andJava applets.
<OBJECT>

forms <FORM> Forms.
frames <IFRAME> Inline frames.
images Images.
links <A HREF-., Links. If an Anchor element contains

<AREBA> both a NAMEand an HREFattribute,
it will be exposed in both the linksand the anchors collections,

scripts <SCRIPT> Scripts.

Rather than extendthislist for arbitrary tags, collections expose the tagsmethod
for creating a new collectionfiltered by a specified tag. The tags method elimi-
nates the needto clutter the object model with a collection for every element
type andlets the developer determine which elementsare interesting.

The tags Method

174

In addition to the item method,all document elementcollections expose a tags
method. The tags method takes a parameter representing the tag as a string
and returns a collection ofall elements with that tag, as shown in the follow-
ing code:
<HTML>

<BODY>
<HI>My Header</H1>
<P>This is strong text and more

strong text.</P>
<H1>Another Header 1</H1>

</BODY>
</HTML>

Thefollowing expressions use the ags methodto create collections ofelements
from the preceding code:
document.all.tags¢"H1") // Collection of both Hl elements
document.all.tags{("STRONG") // Collection of both Strong elements
document.all.tags("STRONG")[@] // First Strong element
document.a11.tags("P"). length ff.

96

SEVEN: Document Element Collections

Unlike the item method, the tags method always returnsa collection, even
if only a single element exists on the page. For example, calling the tags method
on the Body elementstill returns a collection, even though onlya single Body
element can exist:

document.all.tags("BODY") // A collection with one Body element
document.all.tags("BODY")[@] // The first element in the collection

The tags method always returns a collection because it was designed with a
single purpose,to filter a collection to a smaller collection. The item method
returns the single element that matches the identifier—and where there are
duplicate matches, a collection rather than an erroris returned.

Empty Collections
If the tags methodis called to query for a tag that does notexist in the docu-
ment, an empty collection with zero elements is returned:
if (@ == document.all.tags("H1"). length)

alert("There are no Hl elements in this document.");

In order to ensure that even unknown elements can be queried and filtered
for, the tags method does not return an error when passedto an invalid tag.

Custom Collections
Most of the document's built-in collections are the sameas collections you can
create using the tags method with the ail collection. For example, the forms
collection is the sameas the collection created by calling the tags method and
supplying form as the parameter. The following code creates a collection
equivalent to the formscollection:
document.myforms = document.al1l.tags("form");

You can create custom collections and add them to the document object using
a similar Lechmique, as shown here:
// Create a tables collection on the document.
document.tables = document.all.tags("TABLE");

This techniquerelies on a language feature supported byJavaScript, so this
code cannot run in VBScript and mightnot be capable ofrunning under other
languages. In VBScript, you mustcreate a variable to hold thecollection.

The preceding code demonstrates that multiple collections often refer
to the sameset of elements. Therefore, referencing an element in any of the
collections is the same as referencing that element in the ail collection. For

175

97

PART ti: DOCUMENT STRUCTURE

example, the following code fragment returns true because the same objectis
being referenced through two different collections:
// Both expressions point to the same object.
document. forms[@] == document.all.tags("FORM")(@];

The aii Collection in a Frameset Document

176

A documentthat contains a frameset also supports the document object and
exposes the sameail collection. The Frameset elementreplaces the Body ele-
mentin the ad collection because a documentcan contain traditional body
contents or a frameset, but not both. All the Frameset and Frame elements in
the documentare exposed in source code order, as shown here, which is use-
ful for determining the visual layout of the frames on the screen:

<HTML>
<HEAD>

<TITLE>Frameset Demo</TITLE>
</HEAD>
<FRAMESET ROWS="69, *">

<FRAME SRC="a.htm">
<FRAME SRC="b.htm™>

</FRAMESET>
</HTML>

The all collection for this document exposes the elementsin the following
order: HTML, Head, Title, Frameset, Frame, Frame.

In addition,all attributes of the Frameset and Frame elements are ex-
posed through the ail collection. Mostof the attributes can be assigned a new
value, but in somecases that value is not reevaluated—for example, the bor
der of the frameset cannot be modified once the frameset is rendered. How-
ever, a framesetwill update correctly if you changeits row or col attribute, or
if you change the sre or nameattribute of one of the frames.

Collections in frameset documentsdiffer from those in other documents

with respect to their inclusion of unrecognized elements. Only unrecognized
elements that appear before the first <FRAMESET>tag are exposed in the
object model. Once a <FRAMESET>tag is encountered,all elements other
than Frameset and Frameare ignored andare not surfacedin the object model.
Even NoFrames elements are ignored. If a NoFrames element appears before
the Frameset element,it is exposed in the al collection, but the contents of the
elementare notavailable. This limitation may be removedbya future version
of Internet Explorer.

97

SEVEN: Document Element Collections

The HTMLStructure and Collections
This section focuses on how the document's collections are constructed while

the documentis parsed. HTML documents are supposedtosatisfy the rules
defined by the HTML DTD (documenttype definition). The HTML object
modelrelies on these rules and somereal-world exceptions to ensure that the
document's structure is properly maintained. This section introduces the re-
lationship between the DTD andthecollections exposed on the document.

Building the aif Collection
The ali collection of elements correlates directly to the HTML document's tree.
The following simple HTML document demonstratesthis relationship:
<HTML>

<HEAD>
<TITLE>My Document</TITLE>

</HEAD>
<BODY> .

<H1l>Welcome to My Page</H1>
<P>This is an important document.</P>

</BODY>
</HTML>

Figure 7-1 displays the containmentrelationships between the elementsin this document.

Figure 7-1.
Containment relationships between the elements in an HTML document.

177

98

PART Ils DOCUMENT STRUCTURE

The document’s allcollection, which contains every element in the docu-
ment, represents this tree; it contains the elements in the tree in the order
found in the source code. The parser creates the ad! collection by performing
an operation known as a preordertraversal of the tree. In this example, the
contents and order'of the ail collection are initially as follows: HTML, Head,
Title, Body, H1, Paragraph, Strong.

The adi collection always represents the current state of the document.
You can change the elements in the ali collection by dynamically manipulat-
ing the document's contents, but the ai! collection always maintains the order
of the elements, even when scripts modify the contents. Dynamic contents
manipulation is discussed in detail in Chapter 13, “Dynamic Contents.”

Scopeof Influence
The HTMLtree contains information not immediately apparent from the all
collection—namely, the scope ofeach element. The scope of an elementis the
set of elementsit contains. For example, in the preceding documentthe Para-
graph element contains the Strong element, so the Strong elementis within
the scope of the Paragraph element. You can determine the scopeof an ele-
mentby analyzing the parentElement and children properties of each element in
the all collection, a process described in Chapter8, “Scripts and Elements,”

NOTE: The allcollection, as do all the elementcollections, rep-
resents the elementas a single object. The elements, rather than
individual begin and endtags, are sufficient for manipulating the
document's structure. Because elements are represented rather than
individual tags, fewer complexities are involved in understanding
and working with the collections. The exception to this rule is for
unrecognized tags. In this case, any unrecognized tag, whether a
begin or an endtag, is added to the collection. Unrecognized tags
have no scope ofinfluence over any children, This limitation is dis-
cussedin greaterdetail in the section “Unrecognized Elements”later
in this chapter.

Implied Elements

178

The DTD for HTMLspecifies that tags for the HTML, Head, Body, and TBody
elements are optional in the HTML documentbecause these elements can be
inferred from the content, as shown here:
<TITLE>Welcome to My Document</TITLE>
<H1>Welcome to My Page</Hl>
<P>This is an important document .</P>

98

SEVEN: Document Element Collections

This documentis equivalent to the preceding document.-Thetrees, and there-
fore the contents ofthe adi collections, are the same. The all collection always
exposes the HTML, Head, and Body elements for every document, regardless
of whether you explicitly authored them.

Differentiating the Head from the Body
In a document without <HEAD> and <BODY>tags, the split between head and
bodyis determined by the rules of HTMLas defined by the DTD. The Head
elementcontainsa specific set of elementsthat are different from thesetin
the Body element. Therefore, when thefirst Body element is encountered (for
example, H1), the scope automatically changes from the head to the body.

The following code fragment represents the DTD for the head of the
document. By examining this DTD, you can moreclearly see the distinction
between head and body:
<!tENTITY % head.misce “SCRIPT|STYLE|META| LINK”

-- repeatable head elements -->
<!ENTITY % head.content "TITLE & ISINDEX? & BASE?">
<!ELEMENT HEAD 0 0 (%head.content) +(%head.misc)>

This code shows that there can be at most one IsIndex element and one Base

element, that there must be exactly one Title element, and that there can be
any numberofelements specified by the head.misc entity. With two exceptions,
the Style and Script elements, the entities available in the head are mutually
exclusive from the entities available in the body. Therefore,it is quite easy for
a parser to determine when the scope has switched from the headto the body.

TheStyle and Script elements are ambiguouscases because they can exist
in both the head and the body. If a Style or Script elementis encountered
before any body contents, the elementis considered contents of the head. This
rule has no impact on the rendering or behavior of the document,butit is
importantto understand becauseit affects the scope of influence of the Head
and Body elements.

Optional End Tags
A few elements in HTMLdo not require an end tag. For example, a <P> tag
does not require a </P> to end its scope of influence. To determine when a
Paragraph or other element ends, the DTD is used. When an element that
cannotbe contained within the current scope is encountered, the prior scope
is considered to be terminated. As shown in the following example, if a <P>
tag is followed by an <H2> tag, the Paragraph elementendswith the <H2> tag
because an H2 element cannotbe a child of a Paragraph element.

179

99

PART Ii: DOCUMENT STRUCTURE

<HTML>
<H1>Scott's Home Page</H1>
<P>Welcome to my page.<H2>New Cool Stuff</H2></HTML>

Thetree in Figure 7-2 represents this HTML document.Notice thatthe
H2 elementis a child elementof the Body element, not the Paragraph element.

Figure 7-2.
Tree diagram ofa document with an implied end tag.

In general, documents are more readable and maintainable when end
tags are explicitly defined. Without end tags, anyone viewing the source must
have knowledge of the HTML DTDtoascertain the relationship betweenvarious elements.

Unrecognized Elements

180

Parsing of unrecognized elements in the HTML documentis an important
consideration as HTMLandbrowsersevolve. Imagine the introduction of an
<H7> tag. New browserswill understand how to interpret <H7> as a block
containertag, but down-level browserswill not recognize it. In accordance with
the rules of HTML,the <H7> begin andendtags are ignored when the docu-
mentis rendered by this hypothetical down-level browser because for unrec-
ognized tags DTD informationis unavailable to determine the rules and scope
ofthe tag.

Because there is no DTD for unrecognized elements, the unrecognized
begin and endtags are exposed in the allcollection. Unlike the rules ofHTML
specifying that unrecognized elements should be ignored, the object model
includes unrecognized tags, in order to provide complete information about
the documentto the developer.

99

SEVEN: Document Element Colléctions

The unrecognized end tag is also exposed because there is no way to
accurately determine whether the elementis a container. Even if a begin and
end tag appear in sequence in the document,there are no assurancesthat their
use wouldbe in conformancewith a DTDruleifone did exist for the element.
For example, the element might not be defined in the DTD as a container
element. Therefore, bothunrecognized begin and endtags are always exposed
as leaf nodesin thetree:
<HTML>

<P>Welcome to my <FOQO>coo1 document.</FO0></P>
</HTML>

Thetree in Figure 7-3 demonstrates how the internal parser represents
this documentwith unrecognized elements.

Paragraph

</FOO>

Figure 7-3.
Tree diagram ofa document with unrecognized begin and end <FOO> tags.

The all collection in the preceding example contains the following ele-
ments: HTML, Head, Body, Paragraph, <FOO>, Bold, </FOO>. Notice that
the Bold elementis not considered a child of the Foo element, but rather a child
of the Paragraph element. Because DTD information about Foois unavailable,
there is no wayto reliably determine whether the Foo elementis a container.
For unrecognized elements, exposing both the begin and endtagsallows the
developerto calculate the scopeof the element by manually walking throughthe all collection.

181

100

PART Uf: DOCUMENT STRUCTURE

182

If in a future version of Internet Explorer Foo becomes a valid HTML
element that can contain text, the document’s tree will change. Figure 7-4demonstrates this new tree.

Figure 7-4.
Tree diagram that would result if the browser recognized <FOO> tags.

While the ordering will be consistent across implementations, the number of
elements and the document's tree may vary depending on whether the Foo
elementis supported. This difference might cause problemsif your code re-
lies on ordinal positions of elements in the collection because the numberof
elements exposed can change from browser to browser. Instead, code that
accesses a specific element should always use an ID or identify the elementin
a more explicit context.

All unrecognized endtags are also exposed in the object model because
the object model makesno attemptto associateinvalid begin and end tags and
accepts them into thecollection as specified in the document. Therefore, ifa
</BAR> endtagis floating in the middle of the document,it will be repre-
sentedin the allcollection, even if no <BAR> begin tag was ever encountered.

From the pointofview of the DTD,all unrecognized begin and end tags
are considered to have no contents. Anyattributes and style sheet information
found on an unrecognized tag will have no effect on the document's render-
ing butwill be represented in the object model.

100

SEVEN: Document ElementCollections

Unmatched End Tags
Whenan unmatchedendtag that is recognized by the parser is encountered,
HTMLspecifies that the end tag should be ignored. However, as with unrec-
ognized tags, unmatched end tags are exposed in the all collection. In the
following example, the end tag is exposed in the object model:
<HTML>

This is not bold.
</HTML>

The end tag is exposed because the object model attempts to maintain an
accurate representation of the document.

Overlapping Elements
Overlapping elements occur when a true containership hierarchyis not fol-
lowed by the document. The following example demonsirates an everlap of
Strong and EM elements:
<HTML>

<BODY>
<P>This is a demonstration of

overlapping elements .</P>
</BODY>

</HTML>

Even though elementsoverlap, they do not affect the composition or ordering
of the allcollection. Theail collection consists of the following elementsin this
order; HTML,Head, Body, Paragraph, Strong, EM. Thetree for this document,
shown in Figure 7-5, does not represent the overlapping of elements orthe true
scope of influence for each element.

Overlapping elementsare actually invalid HTML.To achieve the desired
behaviorwithout using overlapping tags, you should create the documentwith
a clean containership hierarchy:
<HTML>

<BODY>
<P>This is a demonstration of

<EMDoverTapping elements.
</P>

</BODY>
</HTML>

Overlapping elements havelittle effect on most collections, but an element's
children collection may be inaccurate. Therelationship between overlapping
elements and the document's contents is a strong one, and is discussed in
Chapter 13, “Dynamic Contents.”

183

101

PART Ils DOCUMENT STRUCTURE

Figure 7-5.
Tree diagram ofa document with overlapping elements.

Tagless Contents
Tagless contents—textthat is not contained within any element—often occurs
within the body:
<HTML>

<BODY>
These contents are without a tag.
<P>These contents are within a Paragraph element.</P>
These contents follow a Paragraph element without a tag.

</BODY>
</HTML>

This HTML document would have only HTML,Head, Body, and Paragraph
elementsin its afi collection. There is no elementthat represents text outside
of containers. In strict HTML,this text is defined to be within a Paragraph
element. However, a <P> tag cannotbe synthesized in this case because explic-
itly defined paragraphshavea slightly different rendering scheme from implicit
paragraphs.

Invalid HTML

184

Dynamic HTMLis designed to work with valid HTML.Therefore, tags that are
placed outside of their proper scope are usually parsed as unrecognized ele-
ments. This rule is not fixed, however, and in some cases the HTML may be

101

SEVEN: Document Element Collections

cleaned up automatically during parsing. For example, imagine the following
invalid definition of a table:
<HTML>

<BODY>
<TD>This is a table cell outside of a table.</TD>

</BODY>
</HTML>

In this document,a table cell appears whereit doesn’t belong—namely, out-
side the scope of a table. When the documentis parsed, the table cell is not
recognized and is parsed as an unrecognized element. Therefore, both the
begin and end tags are considered invalid by the parser. The alcollection
exposes the elements of this HTML documentin the following order: HTML,
Head, Body, <TD>, </TD>.

You should not write documentsto rely on this behavior. Browsers may
chooseto clean up the HTMLor maychooseto not do any cleanup and ignore
the invalidly scoped elements. The only way to ensure that the elementcollec-
tion is built consistently is to create valid HTML documents.

There are a couple of known exceptions for which the document’s tree
will not conform to the HTML DTD. These exceptions exist because they
appear in a large numberof documents onthe Internet. The exceptionsdis-
cussed here are by no meansthe only exceptions, butthey are onesthat occur
commonly in HTML documents.

Lists
Lists are one of the few areas in which the HTMLis notcleaned up by the
parser. To ensure compatibility, the object model recognizestwocases of in-
valid HTMLasvalid markup:

@ LI elements can exist outside of UL and OLlist containers.

@Alist container can directly contain otherlist containers.

Thefirst exception wasallowed in Netscape Navigator 2.0 for creating bulleted
items that are not indented; the second exception came about through the
common,illegal practice of nestinglists.

Whenthefirst exception occurs, Netscape Navigator 2.0, whose imple-
mentation was followed by Internet Explorer 3.0, rendersthelist item without
indenting it. Even though the DTD for LI elements prohibits them from ex-
isting outside oflists, the DID used to create the tree, shown in the following
code, is lax and will not automatically wrap these LI elements.

185

102

PART (1: DOCUMENT STRUCTURE

<HTML>
<BODY>

This is an LI element outside of a list.
</BODY>

</HTML>

Theailcollection for this documentis ordered.as follows: HTML,Head,Body, LI.
The second exception, in which nestedlists are used entirely for increas-

ing the amountof indentation for bullets, is shown here:
<HTML>

<BODY>

This is a deeply indented bulleted list item.

</BODY>
</HTML>

This HTMLviolates the DTD because UL elements can only contain LI ele-
ments, not other ULs. When thissituation is encountered, no cleanup occurs.
The orderingfor the ail collection for this documentis as follows: HTML, Head,
Body, UL, UL,LI.

Form Elements in Tables
Another commonpracticeis to use formsin tables (outsideofcells) to create
a form that spans multiple rows orcells, as shown here:
<HTML>

<HEAD>
<TITLE>Forms in Tables</TITLE>

</HEAD>
<BODY>

<TABLE>
<FORM NAME="Forml">

<TRO<TO>Forml-related fields</TD></TR>
<TR><TD>More Forml-related fields</TB></TR>

</FORM>
<FORM NAME="Form2">

<TR><TD>Form2-related fields</TD></TR>
</FORM>

</TABLE>
</BODY>

</HTML>

186

SEVEN: Document Element Collections

In this document,the formswill be maintained with the correct scope inside
the table.

Thetree for this documentis represented by Figure 7-6.

Figure 7-6.
Tree diagramfor a document with Form elements inside a Table element.

There are probably other exceptions to the DTD. In general, invalid
HTMLmayresult in an unpredictable tree that may notbe consistent in each
browser release. Therefore, you should be careful to write HTMLthat corre-
sponds to the DTD. Doing so not only makesthe object model more consistent,
butit also improves the likelihood that different browsers will render the docu-
ment the same way.

187

103

 Prt L Fe rs if tf Ft +ie erie peatety
DPT ihe Hie ‘a siLs PearOpi cd ctrscemenicirtel bibtbere echt reich icesi oi ppassiaisiney sfaa

 ie
oR

ateiceaeay

103

scripts and Elements

Ths chapter shows you how to program and manipulate the clements of anHTMLdocument. All elements share a commonset of informationfor iden-
tifying the element, accessing the attributes on the element, and defining
the relationships between the element and otherelements in the document.
In addition, many elements provide custom properties, methods, and events,
giving youincreased control ofyour documents. A sampling of these elements
is discussed in Chapter 9, “Scripting Individual Elements,” and in Chapter 10,
“Forms and Intrinsic Controls.”

The following topics are covered in this chapter:

@ Identifying elements This section shows you howto distinguish
betweenthe different elements in the document. HTML exposes
a set of attributes that are useful for identifying and grouping
clements, including the tag nameitself and the ID, CLASS, and
NAMEattributes.

@ Accessing an element’s attributes AJ] element objects encapsulate
information abouttheir attributes and even provide accessto in-
valid attributes and values that may be specified on an element.
This section shows you how to access and use this information.

@ Parsing information Chapter 7, “Document Element Collections,”described howthe document's adi collection is constructed and ac-

cessed. The all collection provides access to the individual elements,
and each element exposesits relationships with other elements,
including information about the parsing and rendering of the
document. The parsing information represents the underlying
HTMLsource, and the rendering information represents calculated
information determined during the creation of the document. This
section reviews the relationships between elements in the parsing
tree and shows howthese relationships are exposed by the individualelements.

189

104

PART If: DOCUMENT STRUCTURE

© Creating new elements This section shows how elements can be
added to the documentusing the createElement method. There are
two techniques for controlling the document's structure: creating
elements in memory, and modifying the HTMLcontentsdirectly.
Dynamic HTMLcurrently supports the creation of elementsin
memory for only a few elements.

@ Customizing elements This section demonstrates techniques for
customizing existing elements and for creating new user-defined
elements. Customization is similar to subclassing an element and
takes advantage of Dynamic HTMLability to expose unrecognized
attributesto the scripting language. Custom elements can also be
defined by accessing and using unrecognized elements in the object
model. These user-defined elements can contain extra meta infor-
mation about the documentthat can beaccessed and manipulated
through the object model. :

Identifying Elements

190

When you write scripts and style sheets, you may want your code to apply to
one particular element,to all elements of the sametype,or to a heterogeneous
set of elements that you specify. Element objects have several properties that
make them easyto identify in these various ways. An object’s id and className
properties contain the values of the corresponding element’s ID and CLASS
attributes, respectively, and its tagName property contains the name of the
element's tag. Your code can use the id propertyto reference a single element,
the tagName property to referenceall elements of the sametype,or the class-
Name property to reference any set you define.

Elements that have a NAMEattribute also have a name property that
containsthe attribute’s value. You can use the name propertyto identify a single
elementor a group of related elements (such as radio buttons) in your code.
Butthe name propertyisn’t as widely applicable as the id property, for example,
and the object model includes it mainly for backward compatibility.

Valuesofthe tagNameproperty are stored in all uppercaseletters. Theid,
name, and className properties are case sensitive. The value coolstuff, for ex-
ample, represents a different class than the value cOOIStuff in a case-sensitive
language like JavaScript. Style sheets, however, are associated to elements
without regard to capitalization.

The following table summarizes information about the four properties
that identify elements.

104

EIGHT: Scripts and Elements

Attribute Property Case-Sensitive? Applicable Elements
(None) tagName Always uppercase All, including comments
ID id Yes All, except comments
CLASS className ‘Yes All, except comments
NAME name Yes Anchor, Applet, Button,

Form, IMG,Input, Map,
Meta, Object, Select, andTextArea

Using properties to identify elements, you can write a single script that
performsthe sameaction forall the elements in whatever set you choose. The
click event handler in the following sample code responds differently to mouse
clicks on the element with an idvalue off723, on elementsin the class coolstuff,
and on H1 elements.In each case, the handler changestheinline style of the
elementto alter the element’s appearance.
<HTML>

<HEAD>
<TITLE> Identifying Elements</TITLE>
<SCRIPT FOR="document” EVENT="onclick()" LANGUAGE="JavaScripti">

// The click event is fired on the document regardless of
// where the user clicks.
// The style property gives access to the inline style.
var curElement = event.srcElement;
if ("F123" == curElement.id.taUpperCase()) (

// Toggle element color between red and blue.
if ("red" == curElement.style.color)

curElement,style.color = "blue";
else

curElement,style.color = "red";
}
if ("COOLSTUFF"™ == curElement.className.toUpperCase()) {

// Make text bigger or smaller when clicked.
if C'™== curElement.style.fontSize)

curElement.style.fontSize = "150%";
else

curElement.style.fontSize

 }
if ("H1" == curElement.tagName) {

// Toggle the header between centered and left-aligned.
if ("center" == curElement.align)

curElement.align = "";
(continued)

191

105

PART 11: DOCUMENT STRUCTURE

else
curElement.align = “center";

3
</SCRIPT>

</HEAD>
<BODY>

<P ID="f123" STYLE="color:red™>
This paragraph has @ unique ID.</P>

<H1>Clicking on an H1 element changes its alignment.</H1>
<P>This paragraph contains

<STRONG CLASS="coolstuff">cool stuff.
</P>
<H1 CLASS="coolstuff">

This header is also cool stuff.
</HL>

</BODY>
</HTML>

In the precedingcode,the className and id values are converted to up-
percase before making comparisons; these values are thus treated on a case-insensitive basis.

Accessing an Element’s Attributes
Every element object exposesits attributes, style, and contents to scripting
languages. This mformation is obtained from the underlying source code for
the document. This section shows howattributes are exposed, Chapter 11,
“Dynamic Styles,” discusses accessing an element's style, and Chapter 13, “Dyna-
mic Contents,” discusses accessing an element’s contents.

Data Types
In HTML,anattribute alwaystakes one of the following data types: number,
string, string from a predefinedlist, or compact value. (Compactvalues are
values thatare true orfalse.) The DTD (documenttypedefinition) specifies the
data type for each attribute.

In the Dynamic HTMLobject model, eachattribute is exposed as a prop-
erty. Such a property has one of the following four data types:

m@ 32-bit integer for numbervalues
@ Boolean for compact values
@ String for arbitrary or defined strings
@ Function pointer for event attributes

192

105

EIGHT: Scripts and Elemenis

Thescript in the following HTML documentuses the four data types:
<HTML>

<HEAD>
<TITLE>Programming Attributes--Data Types</TITLE>

</HEAD>
<BODY>

<INPUT TYPE=TEXT SIZE=35 1D="txt1" DISABLED>
<H1 ALIGN="Left" ID="hdl” ONCLICK="alert¢(Clicked!")">

This is a left-aligned header.
</H1>
<SCRIPT LANGUAGE="JavaScript™>

alert(document.a1}.txtl.disabled); // Boolean true
alert(document.al1.hdl.align); // String left
alert(document.all.¢xtl.size); // 32-bit integer 35
alert(document.all.hdl.onclick); // Function pointer

</SCRIPT>
</BODY>

</HTML>

A property is exposed for every defined attribute in HTML, evenif the at-
tribute is not explicitly defined in the document. For example, the Inputele-
ment in the preceding code doesnothave the VALUEattribute specified, but
in the object modelall Input elements always expose the value property. The
value of a property correspondingto an unspecified attribute depends onits
data type. String properties contain empty strings; numberproperties contain
the default values for the corresponding attributes; compact properties con-
tain fadse; and function pointers contain nudl.

Aneventattribute contains codethat executesas the result of a specified
action. When the codestringis parsed,afunction objectis created. Rather than
expose thestring defining the function, a property representing such an event
contains a pointer to the function.

If you try to assign a value of one data type to a property of another, the
results will vary depending onthe scripting language.Either the valuewill be
coerced into the property’s data type or an errorwill occur. For example, ifyou
assign a numberto a string property in JavaScript, the interpreterwill trans-
late the numberintoits string representation before making the assignment.
If the language supports explicit casting from onetype to another, you should
explicitly cast values to ensure predictable results. The parsefnt function in
JavaScript, for example, changesa string representation of a numberinto anactual number:

document .myText.size = parseInt("100"); // 180

193

106

PART II: DOCUMENT STRUCTURE

194

Naming Conventions
While HTMLallowsattributes to be defined insensitive of case, JavaScriptis
case sensitive. To simplify programming with case-sensitive languages, the
object modeldefines all properties using a consistent naming convention,
which allows you to determine the property namefor any existing attribute
without having to lookit up in a reference.

Following this naming convention,all properties—notjust properties
representing attributes—have names beginningin lowercase; each appended
keyword begins with a capital letter—for example, tagName. Because most
attributes consist of a single keyword, the corresponding properties are gen-
erally all lowercase.

Foreach attribute, the corresponding property has the same nameas the
attribute, except in two cases: the className property represents the CLASS
attribute, and the htmiFor property represents the FORattribute (used with
LabelandScript elements). These exceptions are necessary becausefor and class
are reserved words in many programming languages.

Accessto Original Values
Because HTMLis text based, there are times when anattribute might contain
a value that is not compatible with the data type of the exposed property. For
example,the SIZE attribute represents the integersize of a text box. However,
if the HTML source contains a string rather than a number,the size property
still returns the default size because the data type for the value is predeter-
mined. The Dynamic HTML object modelis designed to ensure that even
invalid attributes and valuesare accessible to scripts. All elements expose the fol-
lowing methods to provide access to the untouched value from the originaldocument.

Mi getAttribute(propertyName [, options])

@ setAttribute(propertyName, Value [, options])
Ml removeAttribute(propertyName [, options])

The getAtéribute method takes the property nameasa string and returns
the value asit appears in the source code.If the sourcefile sets the SIZE at-
tribute to the string big, for example, thesize property returns the default size
20. But getAttribute(size") returnsthe string bigbecause the getAttribute method
always returns the untouched value from the source code.

ThesetAttribute methodlets the developer controlthe reverse operation,
wherebya string can be inserted into the HTMLstream,evenif the property

106

EIGHT: Scripts and Elements

value is a number. For example,setAttribute(“size", "small") puts the string value
smallinto the SIZE attribute. The size property on the elementstill returns 20.

The removeAttribute methodis used to remove anattribute from the object.
The three attribute methods expose an options parameter that controls

how the lookup is performed. Currently, the parametercontrols only case
sensitivity. With the default options value offalse, the lookupis case insensitive.
With an options value of true, the lookupis case sensitive, using the internal
capitalization of the attribute for known attributes and the capitalization de-
fined in the source code for unrecognizedattributes.

In general, case-sensitive lookups are not necessary and the attribute
methodscan be invoked withoutthe optionalflag. For multiple properties that
are capitalized differently, the property that is returnedis the first match found
in the properties list. The main purpose of the options parameteris to locate
a property whenthe same property nameexists multiple times with different
capitalizations.

NOTE: While the designers of the object model were careful to
avoid collisions between commonreserved words, there may be cases
in which an existing attribute collides with a reserved word in the
programminglanguage.If this occurs, the three attribute methods
can be usedto access any property value on the elementinstead of
accessing the attribute directly using the exposed property.

Enumerated Data Types
Many otherobject models exposevaluelists as enumerated data types. Usually,
the enumerated data typeis an integer or other number and a variety of con-
stants are defined to representits allowed values. To ensure language neutral-
ity, integer-based enumeration is not used in the Dynamic HTMLobject
model. Instead,all value lists are exposed asstring values. For example, the
ALIGNattribute stores a string that is supposed to be oneofthe three string
values: left, right, and center.

An attribute can be assigned a string capitalized in any manner, and it
will be properly evaluated. For example, the ALIGNattribute in HTMLorthe
corresponding align property can be assignedthe value left or LeFT, or any
other combination of uppercase and lowercase. However, when you retrieve
the value,it is always returned all lowercase.

Enumeratedstring values are converted to lowercase at parse time or
assignmenttime; the original case of these values is not accessible, The
getAttribute, setAttribute, and removeAttribute methodswill not respect the origi-
nalcapitalization of the enumeratedstringsandwill return them lowercased.

195

107

PART Uf: DOCUMENT STRUCTURE

Unrecognized Attributes
Chapter7, “Document ElementCollections,” demonstrated how unrecognized
elements are handled in the object model. Dynamic HTMLalso accurately
represents unrecognized attributes on any element. The attribute methods
provideaccessto attributes specified in the documentthat are not recognized
by Microsoft Internet Explorer 4.0. Using these methods, unrecognized at-
tributes can be added and removed from any element. With JavaScript, this
access is taken one step further—all unrecognizedattributes are also exposed
as properties of the element, as shown here:
<H1 [D=myH1 badAttribute=Test>

JavaScript can access a property named badAttribute on this H1 object. This
property is accessed in the same manneras any other property on the element:
alert(document.all.myH1.badAttribute) a : f/f Test
alert(document.all.myHl,getAttribute("badAttribute”)) // Test

Unrecognized attributes are exposed as properties with the same capi-
talization they have in the original document. For recognizedattributes, the
capitalization of the attribute in the documenthasnorelationto its capitali-
zation in the object model. To perform case-insensitive lookups, the attribute
methods should be used. In general, these methodsshould beused instead of
accessing unrecognizedattributes directly. This technique also eliminates the
potential for problems caused by typographicalerrors in the capitalization of
attribute names,In the section “Customizing Existing Elements”later in this
chapter, techniques are demonstrated forintelligently using unrecognized
attributes.

Parsing Information

196

Every element exposes information aboutitself and its relationship to other
elements. The exposed informationfalls into two categories: parsing informa-
tion and rendering information. The parsing information relates directly to
the attributes, styles, and contents defined by the document. The rendering
information represents the information calculated by the browser before dis-
playing the element.

The parsing information includes the identifying properties discussed
earlier, all the specified known and unknown HTMLattributes, the inlinestyle
sheet, and the element's relationship to other elements as defined by the docu-
ment. Theinlinestyle sheetis parsing information, not rendering information,
becauseit is defined explicitly in the document's source, rather than calculatedat rendertime.

!

107

EIGHT: Scripts and Elements

The rendering information is information that is calculated by the
browser during the composition of the document. Rendering information
includesthe position andsize of the elementin relation to its rendering con-
text—that is, who drew the element, which rendering context the element
belongs to, and the positions of any scrollbars. Rendering contexts and the
resulting renderingtree are discussed in detail in Chapter 12, “Dynamic Posi-
tioning” The remainderofthis section focuses on accessing and using the
parsing tree.

Determining HTML Containership
A couple of techniquesare available for determining what elements are con-
tained within other elements. As mentioned,the parent elementofan element
can be determined using the parentElement property. The child elements con-
tained within an element are enumeratedbya children collection and an all
collection on the element. The children collection represents the immediate
child elements, while the ali collection representsall the contained elements.

Accessing Child Elements
The all collection on the documentrepresents all the HTML elements con-
tained by the document. This containership conceptis carried through to
every elementobject. Every element object also exposes an ali collection that
representsall the elements contained within that element. In addition, a chil-
dren collection is exposed representing the elements that are immediate chil-
dren of the current element. Thesecollections work in the same manneras the
documentelementcollections introduced in Chapter 7, “Document Element
Collections.’ Usingthese collections, you can create a highly customized col-
lection. Here are a few examples:
// All the H1 elements that are children of the body
document. body.children.tags("H1")
// All LI elements in the third UL element on the page
document.all.tags("UL")[2].children, tags("LI")
// All Paragraph elements contained anywhere within the first DIV
// element, even in a nested DIV or Table element
document.al].tags("DIV")[@].al1.tags¢"P")

Determining Whether One Element Is Contained Within Another
As mentioned in Chapter 3, “Dynamic HTML Event Model,” every element
exposes a contains method that can be used to quickly determine whether
another elementis within its scope. The contains method takes an element and
returns a value of true if the elementis a child element, a child of a child, and
so forth.

197

108

PART Il: DOCUMENT STRUCTURE

The contains method wasintroducedto simplify writing onmouseover and
onmouseout event handlers. Code in Chapter3, “Dynamic HTML Event Model,”
demonstrates howto use the contains method to check whether the mouse cur-

sor has entered or exited the element on which the eventfired and hasn't onlyentered or exited a child element.

The sourceindex Property
All elements expose a read-only 32-bit integer sourcelndexproperty that contains
the element’s ordinal position in the document's ail collection. This position
is also the position of the elementin the parsingtree if the tree wereflattened
intoalist. The sourcelndex property can be used to determine therelative lo-
cation of an element andits relationship to other elements in the document.

Do notrely on the sourcelndexproperty to return the,samevalue; the index-
ing can change if more elements are created for-the documentin the future.
For example, do not expect two elements’ sourcelndex valuesto alwaysbe a fixed
distance apart. If you use the sourcelndex property, make comparisonsby ge-
nerically locating an elementin a loop.

Constructing a Parsing Tree
Oneofthe best ways to understand the containmentrelationships in an HTML
documentis to construct the parsing tree using the document's all collection.
The following document contains code that automatically outputs a nested
table representing the containership hierarchyofeach elementin the document.
This code fragment can be placed in any documentto get a quick tree view.
<HTML>

<HEAD>
<TITLE>Tree Bui lder</TITLE>
<SCRIPT LANGUAGE=“JavaScript">

function buildTree() (
var intParents = @;
var intIndent = @;
// strStruct stores the HTML string that
// will represent the document.
var strStruct = "<HTML><TITLE>Document Tree</TITLE>" +

“<BODY><TABLE BORDER CELLPADDING=5><TR>";
var elParent:
// Walk through every element in the document.
for (var intLoop = @; intLoop < document.al].length;:

intLoop+) {
elParent = document.all[intLoop];
7? Determine depth of the element.

198

108

EIGHT: Scripts and Elements

while (elParent.tagName != “HTML") {
intParentst;
elParent = elParent.parentElement;

}
// Nest or close nesting based on new depth.
if (intParents > intIndent)

strStruct +=
"<TABLE BORDER WIDTH=180% CELLPADDING=5><TR>":

else if (intParents < intIndent) {
for (var intClose = intParents;

intClose < intIndent; intCloset+)
strStruct += "</TABLE>

}
jintIndent = intParents;
intParents = @;
strStruct t= "<TD>" +

document.al][intLoop].tagName;
}
// Close any remaining scopes.
for (var intClose = intParents; int€lose < intIndent;

intCloset+)
strStruct += "</TD></TR></TABLE>";

strStruct += “</BODY></HTML>";
// Output the new document in a new window.

var w = window.open("", "tree");
w. document .open();
w. document .write(strStruct);
w.document.ctose();

}
window.onload = buildTree;

</SCRIPT>
</HEAD>
<BODY>

<H1>Tree Builder</H1>

Test Item 1

Subitem 1
Subitem 2

Test Item 2

<DIV>

<P>This is cool.</P>
</DIV>

</BODY>
</HTML>

199

109

PART Il: DOCUMENT STRUCTURE

This code constructs the tree by enumerating the document's alfcollection
andcalculating the depth of each element using the parentElement property.
This routine could be rewritten recursively using the children collection on eachelement.

Figure 8-1 shows the containership hierarchy generatedby this code. The
nested tables show what elements are scoped within what other elements.

Figure 8-1.
The containership hierarchy for an HTML document.

The document Property
Each element exposes a document property that represents the documentthe
element belongs to. This property allows generic scripts to determine what
document—and from the document, what window—an arbitrary element
originated from. For example,the following expression references the window
containing the element:
myElement.document.parentWindow // The window for an element.

Creating New Elements
Elements can be added to the document using oneof two techniques: creating
a new element in memory andassociating it with the document, or directly
modifying the underlying HTML contents. The direct modification of the

200

109

EIGHT: Scripts and Elements

underlying HTMLcontentsis discussed in Chapter 13, “Dynamic Contents.”
This section demonstrates thefirst technique, creating elements in memory.

Some elements can be created by using the createElement method on the
documentor by using the new operator on the window. Both methods perform
the same action and return a new element object. The createElement methodis
a language-independent mechanism for constructing elements; the new opera-
tor is provided for compatibility with Netscape Navigator. The newly created
element object is not maintained in memoryandis not associated with the
document until it is explicitly added to the document. The following code
demonstrates using both techniques to create an IMG element:
var img = new Image();
var img = document.createElement("IMG");

Internet Explorer 4.0 allows the creation of only three elementsin this fash-
ion: IMG, Option, and Area.

You can dynamically add new Option and Area elementsto list boxes and.
image maps, respectively. The construction of images is currently limited to
allowing images to preload into the cache. The IMG elementitself cannot be
added to the document. Instead, because the construction forces an image to
downloadinto the cache, simply assigning the URL ofthe imageto the sre
attribute of an existing image causes the new imageto display, as shown here:
var img = new Image():
jimg.src = “cool.gif": // Download the image in the background,
document.all.myImage.sre = “cool.gif"; // Use downloaded image.

New Option and Area elements can be added to the document. The Select
element exposes an options collection of the Option elementsit contains, and
the Map element exposesan areas collection of the Area elements it contains.
These collections allow additional Option or Arca elements to be dynamicallyadded or removed.

The technique for adding and removing these elements plus examples
of howto take advantage of preloading images are discussed in the next two
chapters. All other contents in the document’s Body element can be modi-
fied by directly changing the HTML,as discussed in Chapter 13, “DynamicContents.”

Customizing Elements
Dynamic HTMLexposesall information about the document, including un-
recognized elements andattributes. This feature can be used to create user-
defined behavior based on custom elements and attributes. For example, you

201

110

PART Ils DOCUMENT STRUCTURE

can write code that causes any UL elementthat is specified with the custom
outline attribute to be expandable and collapsible. And you can define a new
tag for defining constants and other behaviors in the document.

The benefit of these techniquesis that code becomes much more gener-
alized. No longer must a content author understandscripting to add complex
behavior to elements. Developers can now write their code moreintelligently
and document how the content author can use this new functionality that
custom attributes and elementsoffer.

Element Default Actions

All elements in the Body element of the document exposea click method.
Scripts can use theclick method to simulate a user clicking the element. The
methodfires the onclick event on the element, and then invokes any action the
elementtakes by default when clicked. Because the onclick eventis fired prior
to the default action occurring, the developer cai override the default action
in an onclick event handler.

Customizing Existing Elements

202

Because the object model exposes unrecognized attributes and their values,
extra information canbeeasily attached to the element and manipulatedusing
scripts. By adding unrecognized attributes, you can provideexisting elements
with additional behavior. For example, you can add an owéline attribute toa list
elementto specify that the list can be expanded andcollapsed. The code checks
whetherthe user has clicked inalist that has the outline attribute defined and
performsthe appropriate action.

Using unrecognized attributes is a powerful way to simulate subclassing
of an element. The behaviorof the element can be completely customized and
even overridden by using unrecognizedattributes with event bubbling.

Determining the Existence of an Attribute
Custom attributes can be used to modify an element’s behavior just by the
attribute’s presence, Code can check an elementto see whetherit hasthe at-
tribute and perform anaction if it does:

<H1 ID="header1">Test</H1>
<SCRIPT LANGUAGE="JavaScript">

alert(document.all.imagel.getAttribute("dragEnabled”) == null):
// false

alert(document.alt.headerL.getAttribute("dragEnabled™) == null);
// true

</SCRIPT>

110

EIGHT: Scripts and Elements

This example demonstrates adding custom attributes and simply checking for
their existence. Code in Chapter 12, “Dynamic Positioning,” extends this ex-
ample by enabling any element with the dragEnabled attribute to be dragged
around the document.

A custom attribute usedin this way differs from a compact value in an im-
portant respect. The custom attribute signals a behavior just by its presence,
unlike a compactvalue, which signals a behavior by havingthe value true. To
turn off the drag ability of an element in the preceding example, code must
remove the dragknabled attribute using removeAttribute, not simply changeits
value to false,

User-Defined Elements

Because unrecognized elements are exposed in the object model, you can add
elements to the documentthat contain meta information or other processing
information in a well-defined structured manner. For example, an unrecog-
nized element such as <LASTEDITBY name="Scott Isaacs">, containing the
nameof the person wholast edited the document, can be added to the docu-
ment. This element can now be referenced through code:
// First instance of the LastEditBy element
document.al]l.tags("LASTEDITBY")[@].getAttribute("name")

All attributes ofunrecognized elements and recognized elements can also
be accessed in the object model. This technique can be used to define new
behavior for a document, without modifying the scripts. For example,if a con-
stant requires frequent changing by a nondeveloper, supplyingit in an element
or as an unknown attribute on an existing tag may be an appropriate approach.
Or you could use a custom Sequence elementto define a sequence of presen-
tation effects to perform on the document.

This technique is extremely powerful for adding behavior to the docu-
ment, but be careful when you are using invalid HTMLto store information.
In the future,if a custom-defined element becomesa valid element in HTML,
there is potential for the page to no longer function properly.

HTML-Based Constants
Bytaking advantage of Dynamic HTML's ability to expose unrecognizedele-
ments, you can declare constants using HTMLrather than within the code. The
advantage to this approach is that constants can be edited without the need
to modify or understand scripting.

The following code uses an unrecognized element, HTMLConstant, to
store any necessary constants. HTMLConstant supports three attributes: 7d,
value, and type. The idand value attributes are required;they specify the name

203

111

PART fi: DOCUMENT STRUCTURE

204

of the constant and the default value. The type attribute is optional becauseall
constants default to strings. If an integer or a floating constantis required, the
type attribute must be specified.
<HTML>

<HEAD>
<TITLE>HTML-Based Constants</TITLE>
<HTMLCONSTANT 7 startPosition" valu integer">
<HTMLCONSTANT i endPosition” value= "float">
<HTMLCONSTANT id=“defaultUser™ value="Scott" types"string">

<SCRIPT LANGUAGE="JavaScript">
function setupConstants() {

// Get all constants.
var Constants = document.all,tags("HTMLCONSTANT™) ;
document._Constants = new Object);
for (var intLoop = @; intLoop < Constants.tength;

intLoop++) { 7
var temp = ConstantsLintLoop];
// Determine data type.
if ("integer” == temp.type)

document._Constants[temp.id] = parseInt(temp.value);
else if ("float" == temp.type)

document ._Constants[temp. id]
parseFloat(temp. value);

else
// String is default.

document._Constants[temp.id] = temp.value;
}

}
</SCRIPT>

</HEAD>
<BODY ONLOAD="setupConstants()">

<HI>HTML-Based Constants</H1>
</BODY>

</HTML>

All constants are exposed on a subobject on the document, _Constanis.
Constants can be referenced as follows:

document._Constants. constantiD

In the preceding document,constantsare notavailable until the documentis
loaded because the onload eventtriggers the initialization of constants, allow-
ing constants to be declared anywhere within the document.If access to the
constants is required before the documentis loaded, this function should be
called during the parsing of the page. All constants must be defined before
the script’s location in the source.

111

EIGHT: Scripts and Elements

Custom Content Containers
As demonstrated earlier, unrecognizedtags can be used to add more contextual
information to the document. This technique works well for creating
contentless elements. Contentless elements do nothave an endtag; they contain
all their relevant information in attributes (similar to the IMG element),

The object modelis not highly suited for creating custom content con-
tainers because of the way the elements are handled in the parsing tree. Un-
recognized tags cannothave any children and therefore cannothave any text
associated with them. Managingandassociating contents with an unrecognized
tag, while possible,is extremely difficult. This difficulty is not so mucha short-
coming in the object model as a shortcoming in the design of HTML. There
is no precise way to specify that an unrecognized elementis a container and
that an end tag should exist. Furthermore, the contentsof the containerwill
be rendered by any andall browsers because the elementwill not be recognized
and therefore cannot haveastyle associated with it.

Althoughit is beyond the scopeof this book,there is a markup language,
called XML (Extensible Markup Language), thatis designed for handling user-
extensible elements. XMLusesa syntax based on SGMLandsimilar to HTML
that can describe whether the elementis a container or an empty element. For
more information about XML, see the World Wide Web Consortium (W3C)
Website (www.w3.org) or Microsoft’s Web site (www.microsoft.com).

205

112

CHAPTER N IN E

scripting Individual Elements

Chapter 8, “Scripts and Elements,’ introducedscripting elements in Dynamic
HTML. While every element in an IITML documentis accessible to scripts,
this chapter focuses on techniques for programminga few ofthe elements that
appear most commonlyin scripts. Chapter10, “Forms and Intrinsic Controls,”
describes techniques for programming elements in forms.

The following topics are covered in this chapter:

| Programming the Body and Frameset elements HTMLdelines
two types of documents: documents with Body elements for display-
ing contents, and documents with Frameset elements for dividing
the screen into frames for loading other documents. This section
introduces techniques for manipulating these clements.

@ Programming the Anchor element Anchor elements serve a dual
purpose in HTML:aslinks that navigate to new pages, and as book
marksthat act as destinations. This section discusses how to manipu-
late both types of Anchor elements and howto add custom behaviorto them.

@ Programming the Link element The Link elementis used to
define relationships between documents. Microsoft Internet
Explorer 4.0 supports the Link element for specifying linkedstyle
sheets. This section shows you howto define and take advantage of
custom relationships between documents.

@ Programming the IMG and Map elements Dynamic HTML
exposes a rich object model for manipulating images and image
maps. Newimages can be loaded in the backgroundso that they
can be displayed instantly, and image maps can be dynamically
modified and scaled.

207

112

113

PART DOCUMENT STRUCTURE

@ Programming the Marquee element The Marquee elementis
currently an Internet Explorer—specific feature used to automati-
cally scroll a block of text. The Marquee element can be custom-
ized and manipulated using the Dynamic HTML object model.

@ Programming the Object element The Object elementis used
to embed custom contents, including ActiveX controls and Java
applets, in the HTML document. The custom contents can expose
a customized object model alongside that of the Object element.
This section shows you how to access this object model.

| Programming the Table element ‘Tables are used for two pur-
poses: displaying tabular datain a gridlike format, and creating
a sophisticated layout. This section discusses the relationship be-
tween the underlying HTMLfor the table and the object model
representation.

Programming the Body and Frameset Elements
An HTMLdocumentcan contain either of two types of contents: body con-
tents or a frameset definition. Thefirst Body or Frameset element appearing
in the documentdefines the document's type. A similar object modelis exposed
for the documentin bothcases.

The body Property

208

The document object exposes a body property that representsthe rootof the
document’s contents. The nameof this property is ambiguous because the body
property can representeither a Frameset or a Body element, depending on the
documenttype. As explained in Chapter 7, “Document Elemént Collections,”
every documenthas a Body or Frameset element, regardless of whetheritis
explicitly declared. If a document's frameset nests other Frameset elements, the
body property represents the outermost Frameset element in the document.

The Body or Frameset elementis also contained in the document's all
collection. Thus, the body property can be accessed directly from the documentas follows:

// Returns “BODY” or “FRAMESET" depending on the type of document
document. body.tagName;

Or it can be accessed through the all collection:
// For documents with a Body element
document.all.tags("Body").item(@).tagName; // Returns “BODY"

113

NINE: Scripting Individual Elements

/* Displays "true"; demonstrates that the two elements are the
same */

alert(document.al]l.tags("Body").item(@) == document .body);

// For documents with a Frameset element
document .all.tags("Frameset").item(@).tagName: // Returns “FRAMESET"
/* Displays "true"; demonstrates that the two elements are the

same */
alert(document.al].tags("Frameset").item(@} == document.body);

In the preceding code, the tags methodreturns a collection consisting of
the Body or the Frameset elements. If the document has a Body element, the
HTMLDTD (documenttype definition)limitsit to a single Body element, and
the parser ignores any extra ones. If the documenthas a Frameset element,it
can have multiple Frameset elements; the tags method returnsall of them,
beginning with the outermostone. In either case, the first elementin the
collection returned by the tags methodis the element contained in the body
property. The code uses item to access this element.

Availability of the body Property
The object model is constructed and exposed simultaneously during the pars-
ing of the document. Before the parser encounters the body or frameset of the
document, the body propertyis not available, and therefore the body property
returns null. The following codeillustrates the availability of the body property:
<HTML>

<SCRIPT LANGUAGE="JavaScript">
alert(document.body == null);

</SCRIPT>
<BODY>

<SCRIPT LANGUAGE="JavaScript">
alert(document.body == null); // false--follows <BODY> tag

</SCRIPT>
</BODY>

</HTML>

// true--precedes <BODY> tag

For documents with body contents, the <BODY> tag does not have to
appear explicitly in the documentto be accessible. Instead, the Body element
is implicitly created once the documentcontains an element—orsimply some
text—that must be a part of the body. The elements that make up body con-
tents are defined by the HTML DTD.Chapter 1, “Overview ofHTML and CSS,”
explains how to read a DTD, and more information about how the document
is parsed is provided in Chapter 7, “Document Element Collections.”

209

114

PART Uf: DOCUMENT STRUCTURE

Distinguishing Between Body and Frameset Contents
You canuse the tagName property to determine whether a documentcontains
a bodyor a frameset. The following code displays an alert box reportingits
document type—inthis case, a frameset:
<HTML>

<HEAD>
<TITLE>Frameset Exposed as the Body</TITLE>

</HEAD>
<FRAMESET ROWS="180%" ONLOAD="alert(document.body.tagName):">

<FRAME SRC="foo.htm">
</FRAMESET>

</HTML>

Checkingthe length ofthe frames collection on the window is notan ac-
curate way to determine whether a documentis a frameset, A documentwith
a Body element may contain JFrame elements, which would be included in the
frames collection.

Client Window and DocumentSize

210

The width and height of the client window are exposed as properties of the
Body and Frame elements. The physical size of the documentis the size of the
client area— thatis, the amountof space the documentoccupies on the screen.
The logical size of the documentis the size of the contents. For document con-
tents that are larger than the window,scrollbars are usually displayed. Fig-
ure9-1 illustrates the properties that represent the physical andlogicalsize of
the document, and the subsequentsections describe them. Other elements in
the documentcan expose the same properties for determining their size. The
special relationship these properties share with other elements in the document
is discussed in Chapter 12, “Dynamic Positioning.”

Physical Size
The physical width and height of the document(frameset or body type) are
exposed through the offsetWidth and offsetHeight properties of the Frameset
or Body element. The physical width and height measure the areaof the cur-
rently visible window includingthescrollbars. The clientWidth and clientHeight
properties are exposed to determinethesize of the client area—the physical
size as defined bythe offsetWidth andoffsetHeight propertiesless the size of the
scrollbars and surrounding borders. These properties are read-only and can-
not be used to change the size of the window.

In Figure 9-1, no horizontal scrollbar is displayed, so the offsetHeight
and clientHeightproperties would be the sameif the border wasset to 0. However,

114

NINE: Scripting Individual Elements

——serellHeight-+|
scroliLelt—e

=eaea]scrollWidth

Figure 9-1.
Properties for determining the window and documentsize.

a vertical scrollbaris displayed, so the offsetWidth and clientWidth properties
represent distinct values.

Logical Size
The Body elementexposes four properties for determiningthelogicalsize of
the document andtheposition of the user’s view into the document: serollWidth,
scrollHeight, scrollTop, and scrollLeft. The logicalsize of the documentrepresents
the total height and width of the document, notthe size of the browser win-
dow that providesa view into the document. These properties are notavailable
or necessary on frameset documents because the logical size of the frameset
is equivalentto its physical size.

The serollWidth and scrollHeight properties represent the logicalsize of
the documentin pixels. These properties are read-only and are calculated by
the browser based on the document contents. You can change the scrollWidth
and scrollHeight properties by dynamically adding or removing elements or
by resizing the window. Resizing the window usually affects both properties
because the contents rewrap to the new width.

The scrollTop and scrollLeft properties represent the scroll offsets of the
logical document. They representthe point in the documentthatis displayed
in the upper-left corner of the window. When the horizontal and vertical
scrollbars are scrolled all the way to the left and top edges of the document,
scrollLeft and scrollTop both equal 6. These properties are read/write and can
be modified to immediately scroll the documentto a particularpixelposition.

211

115

PART If: DOCUMENT STRUCTURE

If you needto set scroliLeft and scrollTop at the same time, the scroll method
on the window is a more convenient mechanism because it takes both new co-
ordinates, horizontal and vertical, as arguments.

As a group, these properties provide information for determining the
visible portion of the screen. The currently viewable area of the document can
be easily calculated using the size properties, as shown here:
upperLeftX = document.body.scrollLeft:
upperLeftY=document.body.scrol1Top;
lowerRightX = upperLeftX + document.body.clientwWidth;
lowerRightY = upperLeftY + document.body.clientHeight;

Thescrolling-related properties are also exposed on any otherscrolling
element. For example, you can give a Div elementscrollbars using the CSS
(Cascading Style Sheets) overflow 3 property, and the TextArea elementdisplays
scrollbars by default. When these elements havescrollbars, they expose the
scrolling-related properties for determining the scrolled regions of their con-
tents. The TextArea elementis discussed in detail in Chapter10, “Forms and
Intrinsic Controls,’ and the CSS overflow propertyis discussed in Chapter 12,
“Dynamic Positioning.”

Window Events

212

The Body and Frameset elements expose attributes correspondingto all
window-level events. For example, the following code in a documentwith a
Body elementspecifies an ONLOADevent handler for the window:
<BODY ONLOAD="doThis();">

The code for a frameset documentis similar:
<FRAMESET ONLOAD="doThis();" ROWS="*">

Even when you use the <BODY> or <FRAMESET>tag to specify the
handler for a window event, the event is scoped to the window object, not to
the body object. This distinction is important when youusethe this pointerin
the event handler. In a body-level event handler, this points to the bedy object;
in a window event handler, this points to the window object, even ifyou specify
the handlerin the <BODY>tag. The followingcodeillustrates how this point-
ers work for a window event (onload) and a body event(onclick):

 <BODY ONLOAD="alert(this == document.body); // false"
ONCLICK="alert(this document. body); /f true">

</BODY>

Furthermore, for window events, the srcElement property of the event objectcontains null.

115

NINE: Scripting Individual Elements

While a document can have multiple framesets, it can have only one
handler for each windowevent.If several Frameset elements in the document

define handlers for an event, only the last handler’s code is executed. In the
following example, only the second ondoad event handler executes, displaying
the alert 4. The event does notfire until the entire documentis loaded.
<HTML>

<HEAD>
<TITLE>Frameset onload Event</TITLE>

</HEAD>
<FRAMESET ONLOAD="alert('a’);" ROWS="108, *">

<FRAMESET ONLOAD="alert('b’);" COLS="*.#">
<FRAME SRC="a.htm">
<FRAME SRC="b.htm">

</FRAMESET>
<FRAME SRC="c.htm™>

</FRAMESET>
</HTML>

Because you can define only one handler per window event, you cannot
specify a handler on a Frameor nested Frameset elementthat works only for
that particular element. To protect against this behavior possibly changing in
the future, window event handlers should be specified only on thefirstFramesetelement.

The onresize Event
The onresize event is fired whenever the size of the physical window changes,
notthesize of the contents within the body or frameset document. Therefore,
this event is actually a window event when defined on the Body element. The
onyesize event is also exposed on elements within the documentthat have a
definedsize. In those cases, the eventfires only when the physical size of the
element changes.

Whena documentis first loaded into a new window,the onresize event does
notfire. Therefore, if cadeis being used to lay out the documentbased on the
initial windowsize, the code should be called from the onload event.

Programming Body Contents
Documents that contain a Body element have a few additional features not
available to frameset documents, including access to the HTMLandtextual
contents contained within the body and an onscroll eventthatfires when the
windowis scrolled.

You can write scripts to manipulate the text in the Body element or any
elementin the body. The techniques are discussed in Chapter 13, “DynamicContents.”

213

116

PART 11; DOCUMENT STRUCTURE

The onscroif Event
The window object exposes an onscroll eventthat fires whenever the win-

dowis scrolledeither explicitly by the user or through code. This event occurs
only in documentswith Body elements and notin frameset documents because
they do notdisplay scrollbars.

Programming Frameset Contents
Because the frameset documentis another type of HTML document,it sup-
ports the document object model. The frameset documentexposes an all col-
lection that providesdirect accessto all the elements in the document. Through
the alfcollection, the individual attributes of each Frameset and Frame element
can be accessed and in many cases dynamically modified.

While the numberof frames in the framesetis static and cannot be
modified without creating a new document, a numberofthe attributes of the
Frameset element can be changed. For example, the ROWS and COLS
attributes are read/write attributes, which allows you to change the layoutof
the frameset dynamically. This flexibility can be used to add custom behavior
to a traditionalframeset.

Thefollowing code creates a custom layoutthat allows the userto select
fromasetofpages: This example turnsoff the resizing capability of each frame
and instead automatically expands the frame the user clicks on. This layout
model requires a small amountofcode behind the frameset and each document.
<HTML>

<HEAD>
<TITLE>Sliding Frames</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var defSize = 25;
if (f == _current) return; // check if already active
_current = f;
function display(f) {

var newRows = "";
// Get all the Frame elements.
var elFrame = document.al].tags("FRAME”);
for (var intFrames = @: intFrames < frames. length;

intFrames++) {
var curF = frames[intFrames].document ;
if (curF.body == f.document.body) f

// Give selected frame all the space.
newRows += "*, ";
/* Make the header much bigger, */
curF.all.header.style.fontSize = "200%";
/* Turn on scrollbars for the active frame

by accessing the Frame element

214

NINE: Seripting Individual Elements

elFramelintFrames].scrolling = “yes”;
}
else (

// Set to default size.
newRows += defSize.toString() +", "3
// Reset header font size.
curF.all.header.style.fontSize = "";
// Turn off scrolling.
elFrame[intFrames].scrolling = "no";

}
}
document.body.rows = newRows;

}
</SCRIPT>

</HEAD>
<FRAMESET ROW: » 25, 25">

<FRAME SRC="home.htm" NORESIZE>
<FRAME SRC="news.htm" NORESIZE SCROLLIN
<FRAME SRC="info. htm" NORESIZE SCROLLIN

</FRAMESET>
</HTML>

 *

No">
No">

Figure 9-2 demonstrates this code in action. Whenthe userclicks on the
Newsor Information heading, the other frames automatically shrink and the
selected frame expands to take up the remaining view.

Figure 9-2.
An example of automatically slidingframes.

215

116

117

PART

I}: DOCUMENT STRUCTURE

In each documentin the frameset, the onfocus event handler mustcall the
display routine. The parent property on the document mustbe referenced tocall the function:
<!-- The onfocus event must be defined for each document in the

frameset. -->
<BODY ONFOCUS="parent.display(this);">

Also in each documentin the frameset, the ID ofthefirst paragraph must have
the value header. The text in this paragraph will be enlarged when the docu-ment has the focus.

This example demonstrates modifying the attributes of individual frames.The Frame elementin the ail collection of the documentis different from
the contents of the window's frames collection. The frames collection on the
window returns the window instance created based on the document’s source.
The Frame elementin the aifcollection represents the frameas defined by the
HTMLsourceandis used to create the window. Modifying the Frame element
can modify the window andits contents—for example,scrollbars can be manu-
ally turned on andoff. Scrollbars have been turnedoff in our example so that
they do not clutter the collapsed heading view of the document.

Programming the Anchor Element

216

The HTML Anchorelementserves a dual purpose: to specify links for navi-
gating to URLs andto specify bookmarks within the document. An Anchor
elementacts as a link if its HREFattributeis defined,andit acts as a bookmark
if its NAMEattribute is defined:

<!-- Link -->
<!-- Bookmark -->

The document's ali collection referencesall of the Anchor elements. The
documenthastwo additional collections that separately reference the links
and the bookmarks. Links are exposed through the links collection, and book-
marks are exposed through the anchors collection. A single Anchor element
can appearin both collections if both a NAMEand an HREFattribute are
specified.

Both the hrefand the name properties can be changed through code, so
the anchorobject can dynamically switch collections. For example, ifan anchor
with an empty hrefis assigneda string,it is automatically added to the links
collection andis also automatically rendered as a link on the screen. Regard-
less of the type of anchor andthe collectionsit is in, the anchorobject exposes
the sameset of properties, methods, and events.

117

NINE: Scripting Individual Elements

NOTE: From here on, anchors specified as are re-
ferred to as bookmarks and anchorsspecified as are
referredto as links to disambiguate the two types ofanchors. Theselinks are different from the Link elementdiscussed in the section

“Programming the Link Element”later in this chapter. The <LINK>
tag defines the Link element.

The href Property
The anchorobject has a numberofproperties that contain portions of the URL
exposedbythe hrefproperty. The protocol, hostname, port, pathname, search, and.
hash properties reference the individual parts of the URL, and the host prop-
erty contains both host name and port information. These properties, which
also belong to the location object, are described in Chapter 4, “The Browser
Window.’

Anchors and the Base HREF
An interesting relationship exists betweenrelatively specified HREFvalues and
the object model. A relative HREFis a URLthat doesnotstart explicitly with
// (for example, href="goHere.htm"). All relative HREFs are prefixed with a
default location. Unless otherwise specified, the default location is the loca-
tion of the current document. You can use the Base element to change the
default location. For relative URLs assignedto attributes, the default location
is added when the documentis parsed.For relative URLsassigned to proper
ties by scripts, the default location is not added until the URLis referenced.
The following code illustrates these points:
<HTML>

<HEAD>
<TITLE>Base HREF Demo</TITLE>
<BASE HREF="http://scotti/">

</HEAD> ~
<BODY>

page 1
page 2
<SCRIPT LANGUAGE="JavaScript">

alert(document.Jinks[@J.href); // http://scotti/pagel.htm
alert(document.Jinks[1].href); // http://ji/page2.htm
document. links[@].href = “newpage.htm";
alert(document.links[@].href); // newpage.htm

</SCRIPT>
</BODY>

</HTML>

217

118

PART IL: DOCUMENT STRUCTURE

Script-Specified HREF Attribute
The HREFattribute of an Anchor element may be alternatively specified as a
line of code to execute rather than as a URL. This techniqueis useful when a
frame is to contain a short string because it reduces the numberof necessary
round-trips with the server. For example, when the user clicks on the follow-
ing anchor, a simple documentthatdisplays the string Hello, world!is created:

The protocol is the language namefollowed by a colon, and the pathnameis
the rest of the string. The hrefpropertyitself contains the entire string with ap-
propriate escape sequences (such as %20 for each space).

Script-specified HREFattributes execute after the onclick event stops
firing. Also, since the HREFattribute is not an event, the event objectis not
available at the time the script-specified HREF executes,

NOTE: Take care when usingVBScriptfor script-specified HREF
attributes. Netscape Navigator recognizes only the JavaScript lan-
guage and will display a navigation error ifVBScriptis specified.

Events on the Anchor Element

218

The Anchor element supportsa set of standard events that indicate when the
userclicks on, moves the mouseover, or types in an anchor. The events that
can originate with the Anchor element depend on whetherthe anchoris a link
or a bookmark. If the Anchor element cannotact as a source for the event,
it will never be defined as srcElementif the event bubbles.

 Event Source
onblur Link anchors
onclick All anchors
ondblelick All anchors

onfocus Link anchors
onkeydown Link anchors
onkeypress Link anchors
onkeyup Link anchors
onmousedown All anchors
onmousemove All anchors
onmouseout All anchors
onmouseover All anchors

onmouseup All anchors

NINE: Scripting Individual Elements

However, through event bubbling, the Anchor elementcan receive the event
from a child event (such as an image in the anchor) even if it does not explic-
itly supportit. The precedingtablelists the events for which each type ofanchor
can act as the source. All events can be defined asattributes on the element,
through the <SCRIPT FOR= EVENT= > syntax or through properties of the
Anchor element. To be a source for focus and keyboard events, an element
must be able to receive the focus. Anchorsthatare links can receive the focus;
bookmarks cannot.

The default result of clicking on a link is a jump to the anchor. This ac-
tion can be overridden to customize how a page handles a link. The following
code cancels the default action of a specific link:

If you want compatibility with other browsers, return the value directly:

Moregenerically, anchors can be overridden at the documentlevel by
handling the document's onclick event, as shown in the following code. This
technique works because the standard events, except onblur and onfocus, bubble
up the document's hierarchy chain.
<SCRIPT FOR="document™ EVENT="onclick()" LANGUAGE="JavaScript">

// Event object contains global information for the event handler.
if ("A" == event.srcElement.tagName) [{

event.returnValue = false;
// Write custom handler code for the anchor.

}
</SCRIPT>

The event sequence defines the ondbiclick event to follow the onclick event.
The only way to determine whethera link received a doubleclick is to over-
ride the default action of the single click because the event sequenceis fixed.
There is no way to write an event handlerfor a link that performs a defaultaction for a click event and a different action for the double click because the

link already navigates to the targeted link before the ondblelick eventfires.
Therefore, the usefulness of an ondblelick event on a linkis fairly limited, and
most interactions with anchors are accomplished using the onclick event.

Customizing Links to Target Multiple Frames
Onetechnique for adding custom behaviorto an anchoris to define a few new
attributes on the Anchor element. This technique for simulating subclassing
was introduced in Chapter8, “Scripts and Elements.” This section demonstrates

219

119

PART If: DOCUMENT STRUCTURE

220

how to augment the traditional behavior of anchors. The simple example
presented here implements the basics for a much-requested feature ofHTML
and framesets—theability to target multiple frames with a single anchor. This
example demonstrates how authors can add their own functionality to a page,
without having to wait for the browser to add the support.

The following code adds two user-defined attributes to the Anchorele-
ment: mhref and mtarget. Both attributes take a semicolon-delimited list of
values—for mhvef, a list of URLs, and for méarget, a list ofdestinations for these
URLs. Whenthe userclicks on an anchor, the code first checks whether the
anchorhasthese specialattributes and,if it does, the code overrides the de-
fault behavior of following a single link with the custom linking code.
<HTML>

<HEAD>
<TITLE>Targeting Multiple Frames</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function checkElementTree(el, strTag) {
/* This simple function walks up the tree from the element

el and looks for any element with the tag strTag.
The first matching element found is returned. */

while ("HTML” != el.tagName) {
if (strTag == el.tagName)

return el;
el = el.parentElement;

}
return null;

}

function multidump() {
// Find the anchor.
var el = checkElementTree(event.srcElement, "A");
if (null t= el) { // Found an anchor,

// Check whether it is a multitarget anchor.
if ((null != el.getattribute("mhref")) &&

{null != el.getAttribute("mtarget"))) {
event.returnValue = false;
var mhref = new Array();
var mtarget = new Array();
// Parse attributes jnto arrays.
mhref = el.getAttribute("mhref").split(™
mtarget =

el. getAttribute("mtarget").split(”
/* Be sure there are an equal number

of targets and URLs. */
if (mtarget.length == mhref.length}

119

NUNE: Scripting Individual Elements

for (var intLoop = @; intLoop < mtarget.length;
intLoop++)

if (nul] != parent[mtargetLintLoop]])
parent[mtargetLintLoopJ].location.href =

mhrefCintLoop]:
}

}
}

</SCRIPT>
</HEAD>
<BODY ONCLICK="multidump{);">

<A HREF="#"
mhref="http://www.microsoft.com; http://www.netscape.com"
mtarget="left; right">

Browser Web sites

</BODY>
</HTML>

This code worksonly for framesthatare siblings to the frame containing
it. To make this code work for frames that exist anywhere in the frameset
hierarchy, you mustwrite codethatsimulates the searching algorithm used by
the browser to search the hierarchy of windows.

Subclassing elements with user-defined attributes is one of the most
powerfulways to take advantage of Dynamic HTML.It lets you easily custom-
ize elements, without having to hard-code the customizations into HTMLor
the scripting language. Custom attributes can be defined for identifying new
behavior, and the codecanlook for these identifiers and process the elements
accordingly.

Pseudo-Classes for Anchors

Style sheets provide a technique for definingstyles for the threestates ofa link:
visited, notvisited, and active. These states can each have a different style, which
you set using pseudo-classes in CSS. Pseudo-classes provide a technique for
improvinguser interactivity without requiring any code. See Chapter1, “Over-
view of HTML and CSS,’ or the CSSspecification at the W3C Website for more
information about pseudo-classes and the CSS language.

Beyond using the pseudo-class, no property is currently exposed to the
scripting language for directly determining whethera link has beenvisited.
Therefore, there is no simple way to conditionally script links based on whether
they have been visited.

221

120

PART (1: DOCUMENT STRUCTURE

Removing Anchors
Simply assigning an emptystringto either the hrefor the name property does
not remove an Anchor element from the document. However, this technique
will remove the elementfrom the links or anchors collection,respectively. (The
elementwill always remain in the all collection.)

An Anchorelement andits contents can be completely removed from the
documentbyusing the outerHTMLorthe outerTextproperty. To remove the in-
fluence of the anchorbutleave the contents, the TextRange object can be used.
The following code demonstrates how to manipulate TextRange. Don't worry
if you do not understand this code. The TéextRange object andits methodsare
discussed in detail in Chapter 14, “User Selection and Editing Operations.”
<SCRIPT LANGUAGE="JavaScript™>

function removeAnchor(aElement) {
// The anchor to remove is passed as an argument.
// Create a TextRange object.
var tr = aElement.parentTextEdit.createTextRange();
// Locate the Anchor element in the TextRange.
tr.moveToElementText(aElement);
// Execute a command to remove the Anchor element.
tr.execCommand("Uniink", false);

}
</SCRIPT>

Programming the Link Element

222

The previous section showed you how to program an Anchorelement thatis
either a bookmarkor a link, HTMLalso provides a Link elementthat can be
used to define relationships between different types of documents. This
section focuses on a techniquefor defining relationships between documents
using the Link element and the REL and HRFFattributes, which can be ac-
cessed from scripts.

At the time of this writing, Internet Explorer useslink relationships for
style sheets. However, by writing some simple scripts, you can use the REL
attribute to define otherrelationships. Defining relationships not only can
make your Website more manageable,butit also can make the Website acces-
sible to tools that analyze Websites.

The following example demonstrates howto create a navigation bar that
reads each document's Link elementto ascertain the next and previous docu-
ments. A navigation bar is useful when a sequence of documents is being
presented. The navigation bar and contents panes are defined through a

120

NINE: Scripting Individual Elements

simple frameset. Whenever a new documentis loaded, the documentcalls
a function on the frameset to update the navigation buttons based on the newdocument’slinks.

Figure 9-3 shows the navigation bar in action. The availability of the
buttonsin the top pane andtheir destination whenclickedare defined by Link
relationships.

OOaaeeae

Table of Contents

The destinations ofthe navigation buttons are defined in Link
elementsin the documentdisplayed. Buttonsare disablediftheir destinations are not defined in the current document. For
example, the Previous buttonis disabled because no
document exists sequentially before the table of contents.

Figure 9-3.
A navigation bar based on Link elemenis,

The links.htm Document

The links.htm document, shown in the following code, defines the frameset
_and contains the core code for managing the relationship between thelinks

“ on the page and the navigation bar. Each documentdisplayed in the contents
frame mustcall the setupLinks function after it loads in order to update the
navigation barof the navigation pane. Whenthe page unloads, the clearLinks
method mustbecalled in orderto disable all the relationship buttons, thereby
ensuring that the links are appropriateif the user navigates to a page that does
not define any relationships.

223

121

PART II: DOCUMENT STRUCTUREenn

<HTML>
<HEAD>

<TITLE>Link Relationships</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function setButton(b, dis, title, href) {
b.disabled = dis;
b.title = title;
b.href = href;

}

function clearLinks() {
var navDoc = window.navigation.document.all;
// Initialize buttons by disabling them
// and removing their titles.
with (navDoc) (

setButton(previous, true, "", ""):
setButton(next, true, yy

}

function setupLinks(doc) {
// The calling document needs to be passed in.
// Get all the Link elements. .
var links = doc.all].tags("LINK™);
var navDoc = navigation.document.al}:
clearLinks();
for (var intLink = @; intLink < links.length; intLink++)

var el = links[intLink];
if ("previcus” == el.rel) €

/* If a previous relationship is defined, updatethe buttons, */
setButton(navDoc.previous, false, el.titie,

el. href);
)
if ("next™ == el.rel) {

/* If a next relationship is defined, update
the buttons, */

setButton(navDoc.next, false, el.title, el.href);

}
</SCRIPT>

</HEAD>
<FRAMESET ROWS="28, *" BORDER=@>

 <FRAME SRC="navigate.htm" NAM navigation" SCROLLING=NO>
<FRAME SRC="contents.htm" NAME="contents">

</FRAMESET>
</HTML>

224

121

NINE: Scripting Individual Elementsa ————

The navigate.htm Document
This code creates the navigation bar:
<HTML>

<HEAD>
<TITLE>Navigation Bar</TITLE>
<STYLE TYPE="text/css">

body {margin-top:2pt; margin-left:2pt; background:gray}
input {font-weight:bald)

</STYLE>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON VALUE="TOC"” TITLE="Table of Contents“
ONCLICK="top.contents.location = ‘contents. htm';">

<INPUT TYPE=BUTTON [0="previous” VALUE=" < "
ONCLICK="parent,contents.location = this-hrefi">

<INPUT TYPE=BUTTON ID="next" VALUE= "
ONCLICK="parent.contents. location this.hrefs">

</BODY>
</HTML>

ov

NOTE: Thebuttonsin this example are drawn with extra spaces
between them because carriage returns separate their tags in the
code. To close the gap between the buttons, remove the carriage
returns and all spaces between the Input elements.

The contents.htm Document

Thefollowing codeis a sample contentsfile that definesa link relationship to
the next documentin the sequence. Whenthis documentloads, it must call the
setupLinks function to update the available links, and when it unloadsit mustcall clearLinks.
<HTML>

<HEAD>
<TITLE>Contents</TITLE>
<1-- Only a next relationship is defined. The Previous button

will be disabled for this document. -->
<LINK REL="next" HREF="chapterl.htm™ TITLE="Chapter 1">

</HEAD>
<BODY ONLOAD="parent.setupLinks (window. document) ;"

ONUNLOAD="parent.clearLinks();">
<H1>Table of Contents</Hi>

</BODY>
</HTML>

225

122

PART Ils DOCUMENT STRUCTURE

This example demonstrates two simple relationships, but it can be easily ex-
tended with more relationships to provide an enhanced toolbarin the navi-
gation pane.

Programming the IMG and Map Elements
Images and image mapsare fully programmable in Internet Explorer 4.0. You
can now change the SRC attribute andsize of an image and modify, add, and
remove Area elements from an image map, The object modelalso allows new
images to be asynchronously downloaded in the background while the user
interacts with the page. This section presents techniques for downloading
images and for manipulating the IMG element andassociated image maps.

Image Animation

226

One commontechnique for animating imagesis to change the image as the
mouse enters and exits the element. In Internet Explorer 4.0, this task is
trivial—you use the onmouseover and onmouseout events on the IMG element
itself:

<IMG SRC="start.gif™
ONMOUSEQVER="this.sre = ‘over.gif';"
ONMOUSEOUT="this.src = ‘start.gif'

Netscape Navigatorwill ignore this code because it does not currently
support onmouseover and onmouseout events on the IMG element. Netscape
Navigator does support these events on the Anchor element, however. There-
fore, with a little forethoughtit is possible to re-create the preceding scenario
in a more compatible way. By wrapping the IMG element in an Anchor
element, both Netscape Navigator3.0 or later and Internet Explorer 4.0 will
properly change the image:
<A HREF=""

ONMOUSEOVER="document .myImage.sre = ‘over.gif
ONMOUSEOUT="document.myImage.sre = ‘start.gif

The BORDER=0 attribute must be addedso that the default anchorbor-
der is not drawn around the image. Andwhile this technique doesprovide simi-
lar support in both Netscape Navigator and Internet Explorer, thereis still one
key difference. Because no size is supplied to the image, in Internet
Explorer the container of the image is automatically resized to match the
image and the surrounding contents are reflowed. In Netscape Navigator,

122

NINE: Scripting individual Elements

the size of the imageis fixed whenthefirst imageis loaded, so the next im-
age is scaled to fit. To work around this discrepancy, either ensure that the
images are the samesize or provide width and height attributes on the IMGelement.

While the preceding code works, a noticeable delay might occur when the
second imageisinitially downloaded. Dynamic HTMLsupports the ability to
preload an image behind thepagesothatit is immediately available for use.

Image Sequencing
Timer events can be used instead of user-generated events to change an im-
age. Dynamic HTML makesit simpleto create an image sequencerthatrotates
images after a specified amountof time. Images can be preloaded using a
special image constructor, and the IMG element's SRC attribute can be dynami-
cally changed.

The following code shows the application ofthis technique,a client-side
billboard that cycles through imagesafter a specified amountoftime. This
scenario uses unrecognized elementsto definethelist of advertisements. The
advantages of this modelare that new ads can be added and outdated ads can
be removed without having to modify any code. Anothertechniqueused in this
exampleis to preload the imagesbefore assigning the SRC attribute to ensure
a smoothtransition from image to image. An error recovery mechanism is
included to skip an imageifit fails to download.
<HTML>

<HEAD>
<TITLEDAd Sequencing</TITLE>
<!-- More ads can be added simply by extending this list. -->
<ADLIST src="adl.gif™ duration=3000>
<ADLIST src="ad2.gif" duratjon=5000>
<ADLIST src="ad3.gif">
<ADLIST src="ad4.gif" duration=18e0>
<SCRIPT LANGUAGE="JavaScript">

var adSet = document.ai1.tags("ADLIST");
adSet.current = 0;
var nextImage = document.createElement("IMG");

function preLoad() {
// Get next image.
// If an error occurs, skip to the next image.
/* Always set up image event handlers before assigning the

SRC attribute to ensure that no events are missed, */
nextImage.onerror = preload;

(continued)

227

123

PART II: DOCUMENT STRUCTURE

228

nextImage.sre =
adSet[adSet.current].getAttribute("src™);

// The duration attribute specifies how long the image is
// displayed.
nextimage.duration =

adSet[adSet.current].getAttribute("duration");
if (null == nextImage.duration) // If not specified, use

nextImage.duration = 2086; /f default 2 seconds.
if (++adSet.current == adSet.length)

adSet.current = @; // Start over.
}

function skipImage() {
// Check whether next image has been downloaded
if (nextImage.complete) {

document.all,ad.sre = nextImage.src;
var duration = nextImage.duration:
preLoad(); F
window.tm = setTimeout('skipimage()', duration);

}
else // Quickly iterate until image is available.

window.tm = setTimeout('skipImage()', 16);
}
preLoad();

</SCRIPT>
</HEAD>
<BODY ONLOAD="window.tm = setTimeout(’skipImage()', 1);*

ONUNLOAD="clearTimeout (window. tm) ;">

</BODY>
</HTML>

Internet Explorer 4.0 also supports the construction of new images for
background downloading using the new operatorin addition to the createklement
method. This operatoris supported for compatibility with Netscape Navigator's
JavaScript implementation. The new operatoris a language-dependent tech-
nique for creating new elements. For example,in the preceding code,theline
nextImage = document.createElement{("IMG"):
can also be written as

nextImage = new Image();

However, because Netscape Navigator does not expose custom elements to
scripts, the code for sequencing advertisements requires further modifications
in order to run in Netscape Navigator: the information aboutthe ad graphics

123

NINE: Scripting Individual Elements

needsto bestored bythe script, mostlikely in an array, rather than in custom
AdList elements.

Image Maps
Image mapsspecify different click regions on an image. The most commonuse
for image mapsis to create visual navigation maps. Whentheuserclicks in a
particular area of the image, the default action is to navigate the user toa
specified page. Using the event model, you can override the default action withan alternative action.

Defining an Image Map
HTMLprovides two types of image maps: server-side andclient-side. A server-
side image mapis specified simply by adding an ISMAPattribute to the image
and creating an image mapfile on the server. When the user clicks on the
image, the xy-coordinates are submitted to the server. The server-side image
maphas two inherentdisadvantages:it generally requires a server round-trip,
andit is noteasily accessible because the click regions are not known to the
browserorto scripts.

Client-side image maps use the Map element and havethe advantage of
not requiring a round-trip to theserver. Theyalso allow browsers to intelligently
map and outline the click regions of the image. The Map elementcontains a
set of Area elements that define the coordinates for each click region.

Map elements must be namedin orderto be associated with an image.
Oncethe Map elementis named, any numberof images can be associated with
it through the images’ USEMAPattribute. The value for USEMAP must be
specified as a link reference. For example, the following code associates an
image with an image map named diagram:

Client-side image maps and their syntax are demonstratedin the follow-
ing examples. However, the complete syntax for defining a server-sideorclient-
side image map is beyond the scope of this book. For details about image
map syntax, refer to an HTMLreference book or the Microsoft Web site
(www.microsoft.com).

Image Maps and Events
You can place an image map anywhere in the document,independentof the
image the mapis associated with. Because multiple imagescan sharea single
image map, the Dynamic HTMLobject model maintainsa special relationship
between the image and its image map whenfiring events.

229

124

PART DOCUMENT STRUCTURE

230

Whenan eventis fired on an image map, the Area elementreceives the
event, followed by the Map element, followed by the IMG elementthe user
clicked on. After the image receives the event, the event continues to bubble up
through the image’s parent elements. Thus, a single image map andevents can
be shared, or depending on the circumstances, the image itself can override
or add its own behavior to the image map. Elements that contain the image
map in the HTML source may neverreceive the events that originate in the
image map.

Accessing the Image Map
An IMG element's useMap property contains the nameofthe associated image
map, prefixed with a # character. By removing the leading # character from
the useMap property, you can access the image map. The useMap propertyis
read/write, so it allows image maps to be dynamically associated with the im-
age. The following code demonstrates a simple function for obtaining the
associated image map from an IMGelement:
function getMap(ellImage) {

// Be sure that a map is specified for the image.
if (null != elImage.useMap) £

// Remove the leading # from the bookmark.
var strMap = ellmage.useMap.substring{1):
/? Return the element with the specified name.
return document.all[strMap];

}
else

return null:

A useful application of dynamically changing an image mapis to provide
a different level of granularity in a complex image or geographic map.Figure
9-4 shows howaset of items—inthis case,cities and states—can be made more
manageable by letting the user first define a subset of items of interest. This
filtering technique becomes even more powerful when used todistinguish
between multiple overlapping regions.

Because thecities in this image overlap the states, the user mightfind it
difficult to make a selection. By allowing the user to decide between cities and
states, selection becomes muchsimpler, Thisfilteringis easily implemented by
toggling between two image mapsfor the image, depending on the user’s se-
lection, as shown in the following code.

124

NINE: Scripting Individual Elements

Select From:
© States
& Cities

Figure 9-4,
An image that can use two different image maps.
<HTML>

<HEAD>
<TITLE>Switching Image Maps</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function setMap{mapName) {
document.all.mapImage.useMap = mapName:

}
</SCRIPT>

</HEAD>
<BODY>

<P>Select From:

<INPUT TYPE=RADIO NAME="feature” [D="States" Value="#States”

ONCLICK="setMap(this.value};"” CHECKED>
<LABEL FOR="States">States</LABEL>

<INPUT TYPE=RADIO NAME="feature” ID="Cities” Value="#Cities”

ONCLICK="setMap(this, value) ;">

(continued)

231

125

PART

232

Ils DOCUMENT STRUCTURE

<LABEL FOR="Cities”>Cities</LABEL></P>
<P><IMG ID="mapImage" SRC="places.gif™ BORDER=8

WIDTH=197 HEIGHT=448 USEMAP="#States"></P>
<MAP NAME="Cities">

<AREA SHAPE="POLYGON" HREF="Ta.htm™
COORDS="188, 488, 164, 487, 165, 388, 111. 387.

189, 361, 86, 361, 73, 394, 94, 411">
<AREA SHAPE="POLYGON” HREF="sanfran. htm”

COORDS="12, 301, 58, 275, 75, 305, 8@, 301, 87, 314,
92, 326, 119, 329, 121, 34@, 45, 341, 44, 328,
9, 32B">

<AREA SHAPE="PQLYGON" HREF="portTand. htm"
COORDS="34, 120. 47, 120, 49, 115, 68, 115, 69, 123,

86, 127, 86, 131, 146, 131, 137, 144, 86, 145,
91, 162, 22, 164, 22, 148, 26, 144">

<AREA SHAPE="POLYGON” HREF="seattle. htm"
COORDS="73, 86, 93, 84, 92, 73, 125, 73, 123, 59,

92, 57, 87, 43, 93, 22, 82, 2, 71, 21, 79, 45">
</MAP>
<MAP NAME="States">

<AREA SHAPE="POLYGON” HREF="california.htm"
COORDS="14, 204, 18, 208, 83, 209, 79, 278, 166, 386,

171, 403, 167, 489, 166, 419, 163, 423, 164, 430,
166, 436, 161, 439, 115, 438, 112, 433, 118, 420,
97, 409, 92, 401, 82, 399, 77, 392, 56, 385, 54
369, 46, 357, 46, 352, 34, 338, 39, 327, 35, 322,
32, 309, 34, 297, 25, 297, 24, 288, 14, 273, 15,
255, 9, 235, 12, 224, 12, 221, 16, 216">

<AREA SHAPE="POLYGON"” HREF="aoregon.htm"
COORDS="16, 199, 136, 216, 148, 178, 143, 171,

138, 164, 153, 132, 147, 122, 103, 128, 88, 123,
72, 121, 55, 121, 51, 109, 37, 185, 22, 163,
23, 166, 18, 173, 14, 189">

<AREA SHAPE="POLYGON" HREF="washington. htm"
COORDS="33, 50, 64, 64, 57, 74, 57, 86, 63, 81,

70, 65, 66, 41, 152, 55, 147, 123, 188, 119,
86, 124, 74, 120, 56, 119, 51, 108, 48, 104,
36, 99, 43, 93, 37, 87, 41, 84, 36, 80">

</MAP>
</BODY>

</HTML>

NOTE: The coordinatelists in the Area elements cannotbe bro-
ken onto multiple lines or the codewill not run correctly. Thelists
are broken in the preceding codein orderto fit them on the page;
artificial line break symbols (—) indicate line breaks that shouldn't
appearin the actual code.

dddddddddddddd
ddd

125

NINE: Scripting Individual Elements

Accessing Area Elements
Dynamic HTMLexposesthe Area elements through the following collections:

@ The finks collection on the document
@ The adi collection on the document

@ Theareas collection on the Map elementcontaining the Area
elements

Scripts can accessthe attributes of the Area elementin anyofthese three ways
in order to dynamically modify them. The Area element has an HREFattribute
that contains a URL,and it exposes the same properties containing parts of
that URLthatthe location and anchorobjects expose. The areas collection pro-
vides the extra functionality of allowing new Area elements to be added and
removed from the image map.

Dynamically modifying the coordinates and shapes within an image map
is supported, butit is usually easier and more maintainable to define multiple
image mapsin the documentand switch between them. The exception is when
you can calculate the new click regions from the old by a simple transforma-
tion. For example, if an image can bescaled, it is easier to scale both the
image and the image map,If a zeom function is supported on an image, any
associated image mapalso needs to be zoomedwith the image:
<HTML>

<HEAD>
<TITLE?Dynamically Scating Image Maps</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function getMap(elImage) {
// Be sure that a map is specified for the image.
if (null [= elImage.useMap) {

// Remove the leading # from the bookmark
var strMap = ellmage.useMap.substring(1);
// Return the element with the specified name.
return document.all[strMap];

}
else

return null:
}

function zoomiImage(ellmage, amount) {
// Expand the image the specified amount.
var elMap = getMap(ellmage);
elImage.width *= amount;

(continued)

233

126

PART Uf: DOCUMENT STRUCTURE

elilmage.height *= amount;
// If an image map is available, scale it too.
if (null != elMap) (

for (var intLoop = @; intLoop < elMap.areas. length;
intLoop++) {

var elArea = e]Map.areas[intLocpl:
// Break the coordinates string into an array.
var coards = elArea.coords.split(".");
var scaledCoords = "";
// Rebuild the new scaled string.
for (coord in coords) {

scaledCoords += (coords[coord] * amount) + ",";

}

// Put the scaled coordinates back into the map.
elArea.coords = scaledCoords;

}

function swapButtons(bl, b2) {
// Swap the enabled/disabled buttons.
document .alt[bl].disabled = true;
document.al1[b2].disabted = false;

}
</SCRIPT>

</HEAD>
<BODY>

<P>
<INPUT TYPE=BUTTON VALUE="Zoom In”

ONCLICK="zoomImage(document.atl.imgl, 2);
swapButtons('zoomin', ‘zoomout');”

ID="zoomin">
<INPUT TYPE=BUTTON VALUE="Zoom Out”

ONCLECK="zoomimage(document.all.imgl, .5);
swapButtons(’zoomout’, ‘'zoomin');"

ID="Zoomaut" OISABLED>
</P>
<P>

<IMG SRC="img@@1.gif" WIDTH=20@ HEIGHT=200
ID="imgl" USEMAP="#map1">

<MAP NAME="map1">
<AREA SHAPE="POLYGON”

COORDS="92, 14@, 126, 114, 155, 139, 124, 163"
HREF="home. htm">

<AREA SHAPE="CIRCLE” COORDS="3@, 185, 38” HREF="cool.htm">

234

126

NINE: Scripting Individual Elements—

<AREA SHAPE="RECT™ COORDS="62, 28, 208, 79”
HREF="dhtml .htm">

</MAP>
<FPD>

</BODY>
</HTML>

Adding and Removing Area Elements
Usingthe areas collection, Dynamic HTMLsupports the ability to dynamically
add and remove Area elements from an image map. The techniquefor creat-
ing a new Area elementis the sameasfor creating a new image. The primary
difference is that this new Area element can be added directly to an existing
map’s areas collection, whereas a new image object cannot be added to thedocument.

Theareas collection exposes add and remove methods. The add method
takes an Area element created with the createHlement method andaddsit to the
areas collection. The remove methodis used to remove an existing Area element
from the image map. The following example is a simple image map editor
written entirely in HTML:
<HTML>

<HEAD>
<TITLE> Image Map Editor</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

var curFocus = null;

function areaFocus() {
// Track the last Area element selected.
if ("AREA"™ == event.srcElement.tagName)

curFocus = event.srcElement;
}

function removeArea() (
// Remove an Area element.
var coll = document.all.dynaMap.areas;
if (null != curFocus) // Make sure one is selected,

// Loop over Area elements and find the one selected.
for (var intLoap = @; intLoop < coll.length; intLoop++)

1f (eurFocus == coll[intLoop]) {
document .al1.dynaMap.areas.remove(intLoop):
return; :

}
alert("No Area element is selected.”);

(continued)

235

127

PART Il: DOCUMENT STRUCTURE

function addArea(f) {
/* Be sure that coordinates are specified. This code does

not perform any extra validation for the coordinates. */
if ("" l= f.coordinates.value) (

var elArea = document.createElement("AREA");
elArea.coords = f.coordinates.value:
// Determine shape selected.
for (var intLoop = @; intLoop < f.shape.jength;

intLoop++)
if (f.shapeLintLoop].checked)

elArea.shape = f.shapelintLoop].id;
document.all.dynaMap.areas.add(elArea);

}
else

alert("You need to enter a Coards value.");
event.returnValue = false;

}
</SCRIPT>

</HEAD>
<BODY>

<H1>Image Map Editor</H1>
<H2>Select a Shape</H2>
<FORM NAME="area™>

<i-- The 1D is used to determine the shape attribute. --><P>
<INPUT TYPE=RADIO NAME="shape" ID="rect” CHECKED>
<LABEL FOR="rect">Rect</LABEL>

<INPUT TYPE=RADIO NAME="shape” ID="polygon">
<LABEL FOR="polygan">Polygon</LABEL>

<INPUT TYPE=RADIO NAME="Shape™ ID="circle”>
<LABEL FOR="circle™>Circle</LABEL>

</P>
<P>

<LABEL FOR="coords">Coords</LABEL>
<INPUT TYPE=TEXT ID="coords” NAME="coordinates">

</P>
<P>

<INPUT TYPE=SUBMIT VALUE="Add Area”
ONCLICK="addArea(this.form)">

<INPUT TYPESBUTTON VALUE="Remove Area"
ONCLICK="removeArea()">

</P>
</FORM>

236

127

NINE: Scripting Individual Elements

<MAP NAME="dynaMap™ ONCLICK="areaFocus{)">
</MAP>

</BODY>
</HTML>

Programming the Marquee Element
Internet Explorer 3.0 supported a simple Marquee elementforscrolling text
horizontally. In Internet Explorer 4.0, the Marquee element was enhanced with
a complete object modelplus the ability to support and render any HTMLcode.
This new Marqueecontrol can even contain controls, which respond appro-
priately to mouseclicks and keyboard input as they move by. Other enhance-
ments include the ability to scroll in any direction—left, right, up, or down.

A marquee can display one of three behaviors: alternate, scroll, and slide.
In alternate mode, the marquee’s contents move back and forth or up and down,
always remaining on the screen. In scroll and slide modes, the contents move
in one direction. They may appearfrom the right marquee border, for example,
and moveleft across the screen. In scroll mode, the motion does notrepeatuntil
afterall of the contents have scrolled onto and off the marquee. In slidemode,
the motion repeats sooner,after the last of the contents have scrolled onto the
marquee. With any of these three behaviors, you can specify a finite number
of repetitionsor allow the marqueeto continue animating until the userjumps
to another page.

Marquee Animation Properties
The marqueeattributes are exposed as properties that can be dynamically
modified. For some of these properties, assigning a new value while the mar-
quee is running causes the marqueeto restart its animation; with others,it
does not. The following table describes the attributes and how changing them
affects the marquee.

Attribute/Property Restarts Marquee? Description

behavior Yes Specifies the alternaie, scroll, or
slide behavior for the marquee. Thedefault value is scroll.

direction No Specifies the direction of motion.
All four directions are supported:
left, right, up, and down. The default
valueis right.

(continued)

237

128

PART II: DOCUMENT STRUCTURE

Attripute/Property Restarts Marquee? Description

height Yes Specifies the physical height of the
marquee.

loop Yes Specifies the numberof times for
the animation to repeat. The default
value is infinite.

scrollAmount No Specifies the numberofpixels tomove each time the contents are
redrawn. The default value is 6.

scroliDelay No Specifies the numberofmillisecondsbetween times the contents are re-
drawn. The default valueis 85.

trueSpeed No Specifies whether the marquee
should catch up with any skipped
cycles. The default valueis false,
which causes the marquee to act as
it does in Internet Explorer3.0.
Specifies the physical width of the
marquee.

width Yes

Marquee Events
The Marquee element supportsall the standard mouse and keyboardevents.
All elements contained within the marqueealso continue to fire their respec-
tive events. The following table describes the events that the marquee exposes
during the animation.

Event Description

onstart The marqueeis about to begin scrolling. For a marqueein scroll or
slide mode, this event fires each time a new animation sequenceis
aboutto beinitiated. For a marqueein alternate mode, this event
fires once at the beginning of the animation.

onbounce The marquee animation has reached the end and will reverse it-
self. This event fires when the Marquee’s behavior property is set toalternate.

onfinish The marqueehasfinishedscrolling.

128

NINE: Scripting tndividual Elements

Marquee Methods
The Marquee element exposes two methodsfor starting and stopping the
animation:start and step. These methods can be used to manually control the
scrolling of a marquee.

Using the stop and start methods, the following code allows the user to
stop andstart a marquee by holding down andreleasing the mouse button over
the marquee. By stopping the marquee, the user can read its contents more
easily, The marquee’sile attribute is displayed as a ToolTip when the mouse
is held over the Marquee element.
<HTML>

<HEAD>
<TITLE>Marquee stop and start Methods</TITLE>

</HEAD>
<BODY>

<MARQUEE TITLE="Hold down the mouse button to stop the marquee.”
ONMOUSEDOWN="this.stop();”
ONMOUSEUP="this.start();">

<H1>Test Marquee</H1>
<P>Clicking the mouse button and holding it down

stops the marquee from scrolling.</P>
<INPUT TYPE=BUTTON VALUE="Demo Button”

ONCLICK="alert('’clicked");">
</MARQUEE>

</BODY>
</HTML>

Programming the Object Element
The Object element allows you to include controls and applets that extend the
browser. For example, you can create objects to embed graphsor even other
documentsdirectly into the document. An object may haveits own properties,
methods, and events, which the Object element exposesto scripts in the same
way that it exposes its own members.

Handling Property Conflicts
A conflict can occur between the object’s members and the members of
a generic Object element. For example, if the object exposes an id property,
it will collide with the id property exposed on the Object element. Whenthis
conflict occurs, referencing the id property references the element's version,
notthe object's. For referencing the object’s version of the id property, all object
elements expose an object property. This property returns access to the embed-
ded object’s members, as shown in the following code. ‘

239

129

PART Ils DOCUMENT STRUCTURE

document.al].myObject.id // HTML element's id property
document.all.myObject.object.id // Embedded object's id property

Alternative HTML

The Object element can contain HTMLcode thatis displayed in browsers that
do not support the Object element. The down-level contents are exposed as
an altHTML property of the Object element in HTML.

The altTMLproperty can be used to provide contentsto the userif the
objectfails to install. If the objectfails to install, the alternative contents re-
place the object on the page. In the following code, the value of the Object
element's altHTMLpropertyis the Paragraph element(the <P> and </P> tags
and the text between):
<OBJECT CLASSID="java:myClass">

<PARAM NAME="color" VALUE="red">
<P>

Either your browser does not support the Object element or an
error occurred while downloading the object.</P>

</OBJECT>

Object Events
An object can fire its own custom events. You can bind a handler to such an
event using the <SCRIPT FOR= EVENT= > syntax or a language-dependent
mechanism, but notusing an attribute in the element's tag. The Object element
exposesattributes for only those events that are predefined, notfor events that
the embedded object mayfire.

Objects that expose standard events such as mouse and keyboard events
can also take part in event bubbling. The objectitself fires its standard event,
followed by the browserfiring the event on every parent element. Generic event
handlers for standard events can test whether they originated in an object.

Programming the Table Element

240

Tables are used in HTMLfordisplaying tabular data andto provide greater
control over the layout and position ofelements in the document. Tables consist
of rows; each row contains any numberofcells, Dynamic HTML exposes a
custom object modelon tables that provides easy access to the underlying rowsandcells within the table.

Tables were greatly enhancedin Internet Explorer 3.0 to support features
that are now included in HTML4.0. The THead, TBody, and TFoot elements

129

NINE: Scripting Individual Elements

were added to define the header, body, and footersections of the table, and
the Col and ColGroup elements provide greater control over columns. When
used appropriately, these elements can improve the performanceofthetable,
especially by defining the widths of the columns and providing more control
over the rendering of borders. The Table element exposes a powerful object
model for dynamically manipulating tables.

The table Object
Every Table element exposes rich information aboutits contents. The table
object provides access to the three different sections of the table: THead,
TBody, and TFoot. A table can have only one THead and TFootbut any num-
ber of TBody elements. Therefore, the object model exposesa single tHead
and. tFoot property and a tBodies collection. Ifa table does not explicitly define
any sections, an implicit TBody elementis created and addedto the tBodies
collection.

If the table happens to contain multiple THead or TFootsections, the
properties reference the first section encountered, andall remaining sections
are exposed by the ‘Bodies collection.

The table object exposes methods for creating and deleting THead, TFoot,
and Caption elements. (There is currently no method to insert additional
TBody elements into the table.) These methodsarelisted in the following table.

Method Description
createTHead(), Creates and returns the specified section if one does
createTFoot(), not exist. If the section already exists, rather than cre-
createCaption() ate another, the method returns the existing section.
deleteTHead(), Deletes the specified section and its rows from the
deleteTFoot(), table if the section exists.
deleteCaption(}
insertRou([index}) Inserts a row into the table before the specified index.The row is added to the samesection as the row cur-

tently specified by the index. If no index is specified,the row is added to the end of the table in the same
section as the existing last row. This method returnsthe row that wasinserted.

deleteRow(index) Deletes the row at the specified index from the table.

Thetable object also exposesa rows collection. This rows collection rep-
resents every row in the table, independent of what section contains them.

241

130

PART If: DOCUMENT STRUCTURE

To determine what section containsa row, you can examine the parentElement
propertyof the individualrow. In addition, each section exposes a rows collec-
tion that represents the rows contained in that section.

The rows and cells Collections

242

The table object exposes the relationships between the table’s rows andcells.
As mentioned, the rews collection on the table object contains every TR element
in the table, and the rows collections on the tHead, tBedy, and tFoot objects
contain the TR elements in their respective sections. Each row subsequently
exposesa cells collection that references the TD or TH elements within the row.
The rows andcells collections expose the same tags and. item methodsthatare
available on the other elementcollections. You can use an element's id prop-
erty to look it up directly in a rows or cells collection.

Programming the rows Collection
The rows collection on the table object ignores whether a row is in the head,
body, or foot of the table, but the TR element’s relationship to its parent ele-
mentis still maintained:

<TABLE ID="myTable"™>
<THEAD>

<TR ID="header"><TH>City</TH><TH>State</TH></TR>
</THEAD>
<TBODY>

<TR><TD? Issaquah</TD><TD>Washington</TD></TR>
<TRO<TD>Seattle</TO><TD>Washingtan</TB></TR>

</TBODY>
</TABLE>

In this example, the rows collection of myTable contains the three rows in the
table. The parentElement property of an individual row can be examined to
determine whetherthe row is inside a TBody or a THead element:
document.all.myTable.rows.]ength 4/3
document.all.myTable.THead. rows. length fil
document.all.myTable. roaws[@].parentElement.tagName /?f THEAD
document.all.myTable.rows[1].parentElement.tagName // TBODY

Youcan easily determine any row’s position in the table. Three of the row’s
properties represent the row’s zero-based indexin the entire document,in the
table, and in a section. The sourcelndex property represents the element's lo-
cation in the document. This property, which all elements expose,is described
in Chapter8, “Scripts and Elements.” The row/ndex property represents the in-
dex ofthe row in the entire table, and the sectiontowIndex property represents

130

NINE: Scripting Individual Elements

the index of the rowin its section. In the previous example, the row contain-
ing Seattle has a rowlndex value of 2 and a sectionRowIndex of I, (Its sourcelndex
value depends on where the table appears in the document.)

Each row also provides accessto its cells throughacells collection. The
insertCelland deleteCell methods add and remove cells in the row. These meth-
ods work in the same manneras the insertRow and deleteRow methods. The

insertCell method takes an optional parameter, the index ofthe cell before
which the newcellis to be inserted, and returns the inserted cell. The deleteCell
methodtakes the index of the cell to delete. The following code shows how to
access and manipulatecells in the previoustable:
document.all.myTable.rows[@].celIs.length // 2 cells
document .all.header.cells.length // 2 cells, accessed through the ID
document .atl.header.deleteCel1(@); // Delete first cell in header row.

Eachcell has a sowrcelndex and a cellIndex property. The cellIndex property rep-
resents the index of the cell in the row.

The ROWSPANand COLSPANAttributes
The rows collections correspond to the HTMLstructure thatdefines thetable.
Therefore, evenif a cell spans multiple rows,it is exposed only onthe row that
definesthe cell. The following code demonstratesthis relationship by flatten-
ing out accessto a table that has a numberofcells spanning multiple columnsand rows:
<HTML>

<HEAD>
<TITLE>HTML Rows and Cells</TITLE>

</HEAD>
<BODY>

<TABLE BORDER ID="tb11">
<CAPTION>Sample Table</CAPTION>
<TR><TD ROWSPAN=3>8, @</TD>

<TD COLSPAN=2>0, 1</TD><TD>@, 2</TD></TR>
<TR>XTDD1, @</TD><TD ROWSPAN=2 COLSPAN=2>1, 1</TD></TR>
<TR><XTD>2, @</TD></TR>

</TABLE>
<SCRIPT LANGUAGE="JavaScript">

/f Output information about the table above.
document .write("<H2>Table Information</H2>");
with (document.ali.tb11) {

for (var intRows=@; intRows < rows.length; intRows++)
document write("Row " + intRows + " has " +

rows[intRows].cells.length + " cell(s).
");
(continued)

243

131

PART If: DOCUMENT STRUCTURE

document .write("<P>Here is the same table without " +
“any cells spanning multiple rows or columns:");

document .write("<TABLE BORDER>”);
for (var intRows = @; intRows < rows.length; intRowst++) {

document .write("<TR>");
for (var intCells = 4;

intCells < rowsCintRows].cells.fength;
intCelist+)

document .write("<TD>" + intRows + "," + intCells +
“C/TDO") |

document .weite("</TR>");
}
document .write("</TABLE>");

}
</SCRIPT>

</BODY>
</HTML>

Figure 9-5 displays the HTMLrepresentationofthis table. The rows and
cells are defined by the underlying source, independentof how thetable is
actually rendered, The numbersin a cell represent the index of its row in the
rows collection, followed by the index ofits cells in the cells collection. The sec-
ondtable provides a view of the table with the ROWSPAN and COLSPANattri-
butes removed, The correspondingcells have the same indexes in bothtables.

Sample Table

Oo.

=o
Table Information
Row 0 has 3 cell(s)
Row 1 has 2 cell(s)
Row 2 has1 cell(s)
Hereis the same table withoutang cells spanning
multiple rows or cohmans:

Figure 9-5.
Spanning cells and thecollections that contain them.

131

NINE: Seripting Individual Elements

You can modify the colSpan and rowSpan properties to dynamically change
the table’s layout. Changing these properties does not cause the rows or cells
collectionsto change. The only way to affect the collectionsis to explicitly add
or remove sections, rows, or cells from the table using the insert and deletemethods.

The onresize Event

Thetable exposes an onresize event thatis fired wheneverthetable is resized.
This eventfires when anycell changes in size. A script can changethe size of
a cell by changingits height or width property or by changing its contents. No
matter how many cells may change in size due to a single action, the onvesize
eventis fired only once onthetableitself.

Global Style Sheets
In general, CSSis not inherited by the contents of a table cell. This fact fol-
lows from historical practice with regard to HTML formatting elements. For
example,specifying a Font element around a table does not cause that font to
be used by the table contents. Whenstyle sheets were introduced, this rule
needed to be carried forward to ensure that existing pages did not break.
Therefore, when style sheets are required onatable, they shouldbespecified
on the table ortable cells directly to ensurethat they are applied to the contents.

Creating a Calendar
The following code example demonstrates how to manipulate a table using
the rows andcells collections. A script generates most of the documentus-
ing the document.write method.
<HTML>

<HEAD>
<TITLEDCatendar</TITLE>
<STYLE TYPE="text/css">

today {color:navy; fant-weight:bold}
.days {font-weight:bold}

</STYLE>
<SCRIPT LANGUAGE="JavaScript">

// Initialize arrays.
var months = new Array("January”, “February", "March",

“April”, "May", “dune", “July”, "August", “September”,
“October”, "November", “December");

var daysInMonth = new Array(31, 28, 31, 30, 31, 38, 31, 31,
3@, 31, 38, 31);

(continued)

245

132

PART

246

t DOCUMENT STRUCTURE

var days = new Array("Sunday". “Monday”. "Tuesday",
“Wednesday”, “Thursday", "Friday", "Saturday");

function getDays(month, year) {
// Test for leap year when February is selected.
if (1 == month)

return ((@ == year % 4) && (@ I= (year % 108))) ||
(@ == year % 400) 2? 29 : 28;

else
return daysInMonth[month];

}

function getToday() (
// Generate today's date.
this.now = new Date);
this.year = this.now.getYear() + 1900; // Relative

ff to 1908
this.month = this.now.getMonth();
this.day = this.now.getDate();

}

// Start with a calendar for today.
today = new getToday();

function newCalendar() {
today = new getToday();
var parseYear = parseInt(document.all.year

[document.all.year.selectedIndex].text) - 1908;
var newCal = new Date(parseYear,

document.all.month.selectedIndex, 1);
var day = -1;
var startDay = newCal.getDay();
var daily = 0;
if ((today.year == newCal.getYear() + 1988) &&

(today.month == newCal.getMonth()))
day = today.day; !

// Cache the table's tBody element named dayList.
var tableCal = document.all.calendar.tBodies.dayList;
var intDaysInMonth =

getDays(newCal.getMonth(). newCal.getYear() + 1904):
for (var intWeek = @; intWeek < tableCal.rows.length:

intWeek++)
for (var intDay = @;

intDay < tableCal.rowsLintWeek].cells. length:
intDay++) {

var cell = tableCal.rows[intWeek].cells[intDay];

132

NINE: Scripting Individual Elements

// Start counting days.
if (CintDay startDay) && (@

daily =
 daily))

// Highlight the current day.
cell.className = (day == daily) ? “today” : "":

// Output the day number into the cell.
if ((daily > @} && (daily <= intDaysInMonth))

cell.innerText = daily++;
else

cell.innerText =

}

function getDate() {
// This code executes when the user clicks on a day
// in the calendar.
if ("To" event.srcElement.tagName)

// Test whether day is valid.
if (7" != event.srcElement.innerText)

alert(event.srcElement.innerText);

}
</SCRIPT>

</HEAD>
<BODY ONLOAD="newCalendar(}">

<TABLE ID="calendar™>
<THEAD>

<TR>
<TD COLSPAN=7 ALIGN=CENTER>

<t-- Month combo box -->
<SELECT 1D="month” ONCHANGE="newCalendar(}">

<SCRIPT LANGUAGE="JavaScript™>
// Output months into the document.
// Select current month.
for (var intLoop = @; intLoop < months. length:

intLoopt+)
document .write("<OPTION “ +

(today.month == intLoop ?
"Selected™ 2") + ">" +

months[intLoop]);
</SCRIPT>

</SELECT>

<!-- Year combo box -->
<SELECT ID="year™ ONCHANGE="newCalendar{)">

<SCRIPT LANGUAGE="JavaScript">
(continued)

247

133

PART 88: DOCUMENT STRUCTURE

248

// Qutput years into the document.
// Select current year.
for (var intLoop = 1995; intLoop < 2009;

intLoopt++)
document .write("<OPTION " +

 (today. year intLoop ?
“Selected™ 2") + ">" +

intLoop);
</SCRIPT>

</SELECT>
</TD>

</TR>
<TR CLASS="days">

<l-- Generate column for each day. -->
<SCRIPT LANGUAGE="JavaScript">

é/ Output days.
for (var intLoop = @: intLoop < days.length;

intLoap++)
document.write("<TD>" + days[intLoop] + "</TD>");

</SCRIPT>
</TR>

</THEAD>
<TBODY ID="dayList” ALIGN=CENTER ONCLICK="getDate()">

<!-- Generate grid for individual days. -->
<SCRIPT LANGUAGE="“JavaScript">

for (var intWeeks = @; intWeeks < 6; intWeekst++) {
document .write("<TR>");
for (var intDays = @: intDays < days.length;

intDays++)
document.write("<TD></TD>")};

document .write("</TR>");
}

</SCRIPT>
</TBODY>

</TABLE>
</BODY>

</HTML>

The contents of the two combo boxesthat provide the month and year
lists are generated throughscriptfrom internalarrays that track the months
and days available to the calendar. The code also ensures that the current
month and yearareinitially selected when the documentloads. The table that
defines the calendaris itself generated by a script that generates the 42 cells
using two nested loops. Once the page is loaded, the newCalendarfunctionis
called and automatically walks throughandfillsin the cells of the table’s tBedyelement with the current month’s calendar.

133

NINE: Scripting Individual Elements

Figure 9-6 shows the calendar examplein action.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1 2 3

4 6 7 8 9 10
13 15 16 7
20 21 22 23 24

28 29 30 31

Figure 9-6.
A Dynamic HTMLcalendar.

This example also includes a simple click event handler that executes
whentheuserclicks on any date in the calendar. Currently the handler does
nothing more than display the date the user clicked, but it demonstrates how
the calendar can be easily extended to be more interactive and useful to an
application,

249

134

Forms and

Intrinsic Controls

This chapter shows you howto scriptuser interfaces that request and process
input from the user. HTMI. supports both controls that can take user input
and an elementthat provides a form model for grouping contents and submit-
ting them back to the server. These controls are known as intrinsic controls
because they are built into HTML. The functionality of the intrinsic controls
is still fairly limited when compared to most forms and database packages.
Validation and formatting are not yet directly supported, but youcan easily
add this behaviorusing the object model. This chapter presents techniques for
manipulating forms and intrinsic controls within a docurnent; it presents the
intrinsic controls in functional categories and shows you howto extend HTMI.
forms to be on a par with powerful forms packages.

The following topics are coveredin this chapter:

= HTMLforms Formsare used to group related input from the user
and submit it back to the server. Formsare fully accessible to scripts
and thus can also be used forclient-side processing. This section
provides an introduction to HTML formsand Input elements.

@ Programming text Input elements Text Input elements creale a
text box for requesting information from the user. Fourtypes of text
boxes are defined by HTML.: a single-line text box, a multiple-line
text box, a password text box, and a filename text box. This section
focuses on techniquesfor using events and the object modelto vali-
date and format the user’s input.

@ Programming Select(list) elements Select elements are used to
provide the user with a definedlist of options. Two styles oflists can
be created usingintrinsic controls: list boxes and combo boxes.For

setts Shiteivan tite i
pacaTiegh oh eit syed aby ui biliechet arileeereeaprinerlelploreeceph
eepcaelnposeeolinrasalene

251

:a
“a :a:SEsa :Sesier 4hspners|cyssae5ctmssee=SeesiSearsaSega= asOeanySle :afefeBeninret iinSheyedaahirises=4 : +7cts7ies=asaeRosaiae: =re4h.aaeatBECRESiaueasefestsseeSee=: SATShspaistisntiecys=FaneSha]Setaesaesitcis a <4Beis=saeresaeaisaeseh<r r:Bissry=iosatesSibi BRASSSayeSenseaeSeataegensypeatsoaFaasssaesa:ery]cathWasa:aSee:jeSoezE‘imn!HeruyPeisFrebesinesAlintasSUTresire4it =eoSeeretuniseessegrusheeGiaeeasperFOEpenSree CayleeeSaieensasfeissasitedStSay ;:Salenterro:Buae Reenaesserte:GaneairibeaeratePatsaiseer eey:Say: Seaaeee2znines13enSinéseMeSih

9‘iyFi =zBb: >io v -wo mmo zmri 4a 72
z

fee
134

135

PART BE: DOCUMENT STRUCTURE

both stylesoflists, the programming modelis the same. This section
focuses on techniquesfor scripting lists and for dynamically adding
and removinglist items.

@ Programminglists using radio buttons and check boxes Analter-
native way to allow the userto select fromalist of elementsis to
provide a set of check boxes or radio buttons, Check boxes are
useful for simple yes/no questions; radio buttons are used for select-
ing a single item fromalist. This section discusses the benefits of
usinglists with buttonsys. using a list box style and providesscripting
techniques.

@ Programming command button elements Four types of command
buttons can be created in HTML:plain-text buttons, rich HTML
buttons, submit buttons, and reset buttons. Submit and reset but-
tons have a defined behavior when used in forms andalso act as the
Default and Cancel buttons. The Default button is indicated by an
extra borderandis the button that receives the click event when
the user presses Enter; the Cancel button is clicked when the user
presses Esc. The other types of command buttons’ behavior must be
defined througha script. This section shows you how to take advan-
tage of command buttons.

@ Programming Label and Fieldset elements Labels and fieldsets
are a new addition to HTML andare necessary to create rich forms.
The Label elementis used to define the relationship between the
Input element and somecontents, and the Fieldset elementis used
to define the relationships among groupsof controls.

HTML Forms

252

The Form elementis used to logically group relatedintrinsic controls. These
controls can optionally submit their values back to a server or be processed.
entirely on the client. When the contents of a form are submitted, the name
andvalue of each inputcontrol within the form are enumerated and sent back
to the server. The server then processes the information and usually returns
anew page. Thefollowing HTML document demonstrates a form that requestsinformation aboutthe user:
<HTML>

<HEAD>
<TITLE>User Information</TITLE>

</HEAD>

135

TEN: FormsandIntrinsic Controls

<BODY>
<FORM NAME="Userinfo™>

<LABEL FOR="USER">User Name; </LABEL>
<INPUT TYPE=TEXT NAME="USER™ VALUE="User Name" ID="USER">
<LABEL FOR="ADDRESS”>Address: </LABEL>
<TEXTAREA ROWS=2 COLS=5@ NAME="ADDRESS" ID="ADDRESS">

Enter Address
</TEXTAREA>
<INPUT TYPE=SUBMIT VALUE="Submit Information">

</FORM>
</BODY>

</HTML>

This section focuses on how data is packaged for submission and how you
can manipulate the Form elementand intrinsic controls on the client. A dis-
cussion of the actual processing of the form on theserverside is beyond the
scope of this book.

Scoping Forms
Each form defines a separate scope for the elementswithinit. In addition, every
elementoutside of a form sharesits scope with the document. This scoping of
Input elementsis important because a single page can contain any numberof
forms, each of which operates independently. The Form element should not
be contained within other Form elements, so the scope of an elementshould
always be unambiguous to someonelooking at your code.

Scoping separates the name spacesavailable to the elements. For example,
if two forms both contain an element named User, the two elementswill ap-
erate independently. This is especially important for radio button groups in
which groupingis determined by each element’s name. Radio buttons provide
the easiest way to demonstrate the separation of scopes. For example, if two
forms on the same page have a radio button group namedState, the radio
buttonswill be mutually exclusive only within their respective forms. The fol-
lowing documentdefines two separate radio button groupsthat share the samename:

<HTML>
<HEAD>

<TITLE>Radio Button Scoping Demonstration</TITLE>
</HEAD>
<BODY>

<1-- Radio buttons outside the form are scoped together, <-->
<INPUT TYPE=RADIO NAME="State™ VALUE="NJ">Nd

(continued)

253

136

PART 11: DOCUMENT STRUCTURE

<INPUT TYPE=RADIO NAME="State” VALUE="NY">NY
<FORM STYLE="margin-left: 25pt">

<!-- The two radio buttons are mutually exclusive
and are independent of buttons outside this form. --><INPUT TYPE=RADIO NAME="State"” VALUE="WA">WA

<INPUT TYPE=RADIO NAME="State” VALUE="CA">CA
</FORM>
<INPUT TYPE=RADIO NAME="State™ VALUE="MA">MA

</BODY>
</HTML>

In this example,all five radio buttons share the same name,State, but not
the same scope. Thefirst two radio buttons ("NJ", "NY") andthe last radio
button ("MA") are within the same global scope and are mutually exclusive.
The two radio buttons inside the form ("WA", "CA") are in their own form
scope and are mutually exclusive only of each other. Therefore, the user can
select one value from within each radio button group.

Scripting the Form Element

254

Forms and the intrinsic controls within their scope have a rich programming
model. Through the form objectitself, you can submit and reset the form, as
well as access and manipulate the individual controls.

The forms Collection
Forms in a documentare exposed throughthe ail collection and theforms col-
lection. In addition, named formshaveaspecial relationship with the docu-
ment and can be accessed directly as properties of the documentitself. The
following code demonstrates a few of the ways to access Form elements using
the object model. The comments show whatwill be displayed by the Alert dialogboxes,
<HTML>

<HEAD>
<TITLE>Forms in the Object Model</TITLE>

</HEAD>
<BOBY>

<FORM NAME="forml">
</FORM>
<FORM NAME="form2">
</FORM>
<SCRIPT LANGUAGE="JavaScript">

alert(document.forms. length): 1/2
alert(document.forms(@].name); // form
alert(document. forms. farm2.name); /f form

136

TEN: Forms andIntrinsic Controls

alert (document. forml.name); ff form
alert(document.al1.form2.name); ff form2
alert(document.forms["form1"].name):; // forml

</SCRIPT>
_</BODY>

</HTML>

The elements Collection
Aspecial relationship is maintained between the form anditsintrinsic controls.
All the intrinsic controls contained within a form are exposed through prop-
erties of the form object as well as through an elements collection, which allows
direct access to any intrinsic controlthat exists on a form. The elements collec-
tion of the form object works similarly to the frames collection of the window
object, in which the collection is exposed simply to enhance code readability.
As with the frames collection, the elementscollection actually returns a reference
to the form object. For example, the following two lines of codeare the same:
document.forms[@].length // Number of elements on the first form
document. forms[@].elements.length

Andthe following three references are equivalent:
document. forms[@]
document. forms[@].elements
document. forms[@].elements.elements

The elements collection workslike all other collections in the object model and
provides access to the individualintrinsic controls on the form. The elements
collection also contains all the images within the scope of the form.

The rules presented in Chapter 7, “Document Element Collections,” can
be used to access the contents of the elements collection of the form object, If
any elements within a form share the same name, they are exposed as a sub-
collection. The tags and i#em methodsare also available. For example, the fol-
lowing code can be used to quickly access all the Button elementsin thefirst
form and to access the third element in the collection:
// Return a collection of buttons in the first form.
document. forms[@].elements.tags("BUTTON")
// Access the third intrinsic control on the form.
document. forms[@].elements[2]

In addition,all the intrinsic controls on the form expose aform property
that returns the form they belongto. This fact is useful if you need to access
the parent form from a generic intrinsic control during an event handler,as
shown in the following code.

255

137

PART If: DOCUMENT STRUCTUREnn

<FORM NAME="User™>
<!-- Pass the current form to the event handler. The this

property references the intrinsic control. and the form
property references the form the control is scaped to. --><INPUT TYPE=TEXT ONCHANGE="doClick(this. form) ;">

</FORM>

NOTE: Ifan intrinsic control is outside the scopeof a form, the
form property returns null.

Submitting a Form’s Contents

256

As mentioned, forms can beusedforclient-side processing or to submit data
back to the server. When a form is submitted to the server, the name and value
of each of the form’s controls are appended ontoasingle string and submit-
ted to the server. The string is created as an escaped ampersand-delimited
string of name-valuepairs. All elements scoped within the form are enumer-
ated, andthestringis built by concatenating the nameandvalueofall elements
that have a name.For example,for the user information form at the beginning
of this chapter, the submitted string would be the following:
TUSER=SCOTT+I SAACS&ADDRESS=1+Somewhere+Street+HA

The submitted string is fully escaped, so spaces are represented by a plus
sign (+).

Button Values
Buttons are submitted in a slightly different way from the standard text con-
trols. The followingtable lists the rules for the different types of buttons.

Button Type Description

Radio Onlythe value of the selected button in a radio button
group is submitted with the form.If no value is specified,the value defaults to ON.

Check box Check boxes submit their name-value pairs only when they
are checked.If no valueis specified, the value defaults toON.

Submit More than one Submit button can be specified on a form.
If the Submit button has a name, its name-valuepairissubmitted with the form.

aa

137

TEN: Forms andIntrinsic Controlsa

Shared Element Names
Therules for determining whatis submitted with a form are simple: the intrin-
sic control must have a name, and for buttons the button must be checked.
Becauseonly one radio button in a group can be checkedata time, onlya single
radio button value is submitted for each group. Thereis no restriction that the
names in the submitted string be unique, however. For example, if multiple
check boxes share the same name, the name-value pairsof all the checked
check boxes with that name are submitted. And in multiple-selectlist boxes,
a name-valuepair is submitted for each selected item.

Submit commandbuttonsalso follow this rule. However, because only
one commandbutton can beselected at a time, only the Submit button that
is selected is submitted. This technique can beusefulfor distinguishing be-
tween multiple Submit buttons on a single form. Most of the time, however,
submitting a value for the Submit buttonis not necessary and a name need not
be assigned to the button.

Disabled and Read-Only Elements
Elements can be disabled either through script or through HTML.Disabled
elements cannotreceive the focus, and they appear grayed in the Microsoft
Internet Explorer window. Because a disabled element is not considered ap-
plicable to the current contextof the form,its value is omitted during a formsubmission.

Thecontents of read-only elements cannotbe edited. By default, buttons
are read-only, and all other intrinsic controls are editable. Although thereis
no wayto makea button editable,the otherintrinsic controls can be made un-
editable using the HTMLreadOnly attribute or the corresponding object model
property. Unlike disabled elements, read-only elements are included in theform submission.

Object Values
Internet Explorer4.0 supports submitting an Object element with the form if
the objectis given a name andhasa default value that can be submitted. This
allows applets or ActiveX controls to take part in the form's submissionjust asintrinsic controls do.

Where Do Form Submissions Go?

By default, the submittedstringis sent back to the current URL. Two methods
for submitting data are available: GET and POST.Youspecify which method
to use by setting the method property of the form. The default is GET, which
causes the submit string to be appendedto the URL andthen opened as though

257

138

PART DOCUMENT STRUCTUREeehv

the resulting string were a new anchor. The submit method that should be used
dependson the particular application being run on theserver.

Instead of submitting the form back to the URLofthe page, you can
specify a custom location for the form using the action property of the form.
The action property holds the URLofthe server program thataccepts the data
sent by the form. This property can be dynamically changed through a script
to conditionally submit data to different locations.

Where Do Form Results Return To?
While the action property defines the server destination for the data, the tar-
get property defines the client destination for any returned information. The
target property works the sameasthe target property of the Anchor element and
is used to specify what frame or windowthe contents are to be displayed in.
This property can be usedto create a clean user interface in which the entire
screen is not constantly updated. For example, if two framesare displayed, one
frame can request information from the user and the other frame can displaythe returned result.

Canceling a Form Submission
Scripts can be used to dynamically force a submission or to prevent a submis-
sion from occurring. You can prevent a form submission by returning false to
the onsubmit event handler. To doso,either set the returnValue propertyof the
event objecttofalse or returnfalse directly to the event. A common mistake when
returning the value to the event handleris to return the value onlyto a line
of code in the event handlerrather than to the event handleritself, as shownhere:
<HTML>

<HEAD>
<TITLE>Canceling Form Submission--Wrong Way</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function doSubmit(f) {
return false;

}
</SCRIPT>

</HEAD>
<BODY>

<!-- The form's submission is NOT canceled. -->
<FORM ONSUBMIT="doSubmit(this) ;">

<INPUT TYPE=CHECKBOX NAME="Info">
<INPUT TYPE=SUBMIT>

</FORM>
</BODY>

</HTML>

258

138

TEN: Formsand Intrinsic Controlsen

In this example, the form submission is not canceled even though false is re-
turnedby the called function because the return value is not subsequentlyreturned to the onsubmit event handler.

Thecorrect way to cancel the form submissionis to return the value re-
turnedby the called function. Hereis the correct way to define the <FORM>
tag:
<FORM ONSUBMIT="return doSubmit(this);">

Now when the onsubmit event handler executes, the value returned by the func-
tion is correctly returned to the event handler.

Forcing a Form Submission
Theform object exposes a submit methodthat results in the form’s data being
submitted. Calling the submit method doesnotfire an onsubmit event. There-
fore, if validation is necessary, the onsubmit’s event handler must be manually
invoked before the submit method is called, as shown in the following code.

When you use this technique, the return value of the onsubmit event handler
should always be checked.
<HTML>

<HEAD>
<TITLE>Manual Form Submission</TITLE>
<SCRIPT LANGUAGE="JavaScript”>

function doSubmit(f) [
// Write conditional code that determines
// whether to submit.
return f.Info.checked;

}

function manualSubmit(f) {
var isSubmit = f.onsubmit();
// Submit if no value or true is returned.
if CCisSubmit) || (null==isSubmit))

f.submit(); // Submit the form.
}

</SCRIPT>
</HEAD>
<BODY>

<FORM ONSUBMIT="return doSubmit(this)
// Must return the value of the event handler.">
<INPUT TYPE=CHECKBOX NAME="Info"™>
<INPUT TYPE=BUTTON ONCLICK="manualSubmit(this.form)™

VALUE="Submit">
</FORM>

</BODY>
</HTML>

259

139

 DOCUMENT STRUCTURE——

Resetting a Form’s Contents
Whena pageis first loaded, the initial settings of the controls are cached in
special default properties. For text controls, the default propertyis defaultValue;
for commandbuttonsor radio buttons, the default propertyis defaultChecked;
andfor thelist controls, the default property for each item is defaultSelected.
Whentheform is reset, the values from these properties are copied back intothe valuesof the controls.

The Reset button provides a built-in way for a user to reset a form to the
original values. The sameaction can be simulated on the form bycalling the
reset method on the form itself. Similar to the form’s submit method, the onreset
eventis not fired whenthe reset method is invoked. The technique demon-
strated in the preceding section for the submit method canalso be usedto force
the reset methodafterfirst calling the onvese¢ event handler.

Determining Whether to Use a Form Element

The Form elementis generally required when the useris expected to submit
results to the server. With Dynamic HTML,controls can be used solely for
client-side interactions. In this case, the Form elementis optional and the con-
trols can be embeddeddirectly on the page.

Using the Form elementforclient-side manipulation hasno adverseeffects
andoffers a numberofbenefits. Using a Form elementprovides Input element
groupingwithin the elements collection and namespace scoping for radio but-
tons. Also, with Netscape Navigator, controls are displayed and accessible from
scripts only when theyare containedwithin a form block. If compatibility with
Netscape Navigatoris required, the controls must always be contained withina Form element.

Hiding and ShowingIntrinsic Controls
Dynamic HTMLsupportsa special type of intrinsic controlthatis always hid-
den. Because this control cannot be accessed or manipulated bythe user,it is
used primarily as a placeholderfor a calculated value that is to be submitted
with the form. An Input element with its TYPEattribute set to HIDDEN can-
not be madevisible. Therefore,ifyou need to dynamically manipulate the visi-
bility of a control, you should use a standard intrinsic control with its CSS
(CascadingStyle Sheets) display propertyset to noneorits visibility property set
to hidden, Later, by changing the visibility or display property, the control can
be displayed. Like a HIDDEN Inputelement, invisible intrinsic controls are
submitted with the form's contents. The following code makesan initially in-
visible controlvisible. If the intrinsic control was a HIDDENInput element,
the display property would have no effect on it.

260

TEN: Formsand Intrinsic Controlsom

<INPUT TYPE=TEXT STYLE="display:none” ID="myTextbox">
<SCRIPT LANGUAGE="JavaScript™>

// Make the text box visible.
document.all.myTextbox.style.display =

</SCRIPT>

Using HIDDEN Input Elements
HIDDENInputelementsare useful mostly for submitting calculated
data with a form. Another use of HIDDEN Input elements is to work
around a shortcoming in Netscape Navigatorthat causesscriptvariables
to be reinitialized every time the windowis resized—bystoring the vari-
ables in hidden fields, you don’t have to worry about the user resizing
the window. A hidden field exposes the same object modelasthe text
box without the events related to user interactions.

Interacting with Disabled Intrinsic Controls
Disabled elements appear grayed. However,ifa disabled text box contains no
contents, the user might noteasily recognize that the elementis disabled. By
checking whether the user interacts with a disabled control using event bub-
bling, you can provide an explanation to users when theytry to click on a dis-abled control.

Disabled elements do not themselves fire events. Instead, events are fired

on thefirst parent elementthat is enabled. The following code demonstrates
addinga special “disabledError” message to an intrinsic control and then gen-
erically testing forit:
<HTML>

<HEAD>
<TITLE>Disabled Demonstration</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function checkControl() {
/* If the user clicks on a disabled control, this code

displays an error message if one exists. */var el = event.srcElement;
if (el.disabled) {

var msg = el.getAttribute("disabledError”);
if (null != msg}

alert(msg);
(continued)

261

139

140

PART Il: DOCUMENT STRUCTUREsw

else
alert("You clicked on a disabled element.”);

}
}

</SCRIPT>
</HEAD>
<BODY ONCLICK="checkContral()">

<INPUT TYPE=BUTTON DISABLED VALUE="Demo”
disabledError = "This element is disabled because...">

</BODY>
</HTML>

NOTE: Early HTMLdrafts proposed an ERRORattribute for the
intrinsic controls.You should avoid addinga custom attribute named
error to ensure that no conflict arises if this attribute becomes partof the HTML recommendationin the future.

Programming Text Input Elements

262

HTMLsupports the following fourtypesof text controls for requesting inputfrom the user:

@ <INPUT TYPE=TEXT>

@ <INPUT TYPE=PASSWORD>
@ <INPUT TYPE=FILE>

@ <TEXTAREA>...</TEXTAREA>

The TEXTInputelementcreates a single-line text box, and the TextArea
elementcreates a multiple-line text box. The PASSWORDInputelementis a
special single-line text box in which the user’s inputis visually masked on the
screen—eachcharacterthe usertypesis displayed as an asterisk (*). The FILE
Input elementdisplays a text box and button with whichthe user canselect a
local file. When the form is submitted, the contents of the selectedfile are sent
back to the server.

NOTE: The TextArea element,as with any elementthat displays
scrollbars in Dynamic HTML, exposes scrollTop, scrollLeft, scrollWidth,
and scrollHeight properties. These properties provide full access to
thesize of the contents and the extentof the contents currently being
viewed. For moreinformation aboutthese four properties, see Chap-
ter 9, “Scripting Individual Elements”

140

TEN: Forms and Intrinsic ControlsnN

The varioustext Input elements in HTMLcurrently do not have built-in
functionality for validating and formatting user input. Priorto scripting, such
functionality had to be performed onthe server, often creating unnecessary
round-trips. By writing client-side scripts and using Dynamic HTML,you can
formatandvalidate inputinstantly on the client. This section focuses on tech-
niquesfor testing user input.

Accessing the Control’s Contents
The contents of the text Input elements are exposed through two techniques:
the value or innerText property for direct access to the contentsasa string, and
the createTextRange methodfor rich access to the contentsas characters, words,
or sentences, The innerText property is an alias for the value property; the two
can be used interchangeably. Text manipulation using the TextRange objectis
discussed in Chapter 14, “User Selection and Editing Operations.” This chap-
ter focuses on using the value property for manipulating the contentsof thecontrol.

The File Upload Element
The <INPUT TYPE=FILE> tag allows the contentsofthe file specified in the
text box to be uploadedto the server, For security reasons, the File Upload
elernent has a limited object model. The File Upload elementis supported by
Netscape Navigator 3.0 andlater and by Internet Explorer 3.02 andlater. Its
value propertyis read-only and represents the filename and path,notthefile’s
contents. Events are supported on the File Upload element, but their use is
fairly limited since you cannot manipulate the user’s input. When required,
you can use the events and the value property to check thata file is selected.

Validating User Input
Validating user input prior to processing improves the usability of your Web
site. This section presents four techniques that can be used with any text in-
put from the user.

Validating While the User Types
Validation can be performed on each character the user types by tracking
keyboard eveints: keypress, keydown, and keyup. The keypress eventis the best event
to use for tracking keyboard input because the default action of the keypress
event is to process the typed character. Returning a value offalse to this
eventprevents the character from being processed, so the character won't be
appendedto the user input. The following example demonstrates how to limit
a text box to numeric input.

263

141

PART II: DOCUMENT STRUCTUREa—_—eS

<HTML>
<HEAD>

<TITLE>Validating While the User Types</TITLE></HEAD>
<BODY>

<LABEL FOR="age">Age</LABEL>
<INPUT ED="age" TYPE=TEXT SIZE=3

ONKEYPRESS="if ((event.keyCade < 48) [|
(event.keyCode > 57)) event.returnValue = false;">

</BODY>
</HTML>

This text box allows only ASCII values from 48 to 57, which represents the
numerals 0 through 9 on the keyboard. Anyother character typedby the user
is ignored.

Validating When the User Exits the Control
Immediate validation is most useful for filtering user input. A more common
approachisto validate the inputat the time the user completes entering a new
value. Whenan invalid value is entered, the user should be notified using at
least one of the following two techniques:

@ Modifying the appearance of an elementto reflect invalid values
m@ Asking the userto correct an invalid value when he orshe exits the

field

Both techniquestake advantage ofthe onchange event, whichis fired at the time
the user exits an input control after changing the value. The onchange event
is fired on the element immediately prior to the onbdlur event. It can be used
to validate the user’s entry and thento display a dialog box or change the form's
appearance basedonthe entry. Canceling the onchange eventprevents the user
from exiting the control when navigating within the page. If the useris navi-
gating to a newpage, cancelingthis event doesnotstop the navigation.

Thefollowing code demonstrates changingthestyle of an element based
on the entered value. This technique is described in detail in Chapter 11, “Dy-
namic Styles.” Dynamically changingthestyle is useful for providing the userwith clear feedback.
<HTML>

<HEAD>
<TITLE>Validating When Exiting a Control--Technique 1</TITLE><STYLE TYPE="text/css">

264

~y-

141

TEN: FormsandIntrinsic Controls

»badValue {background:red; color:white}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">

function validateNumber() {
// Get the source element.
var el = event.srcElement;
// Valid numbers
var num = "@123456789";
event.returnValue = true;
/* Loop over contents. If any character is not a number,

set the return value to false. */
for (var intLoop = @;

intLoop < el.value.length; intLoop++)
if (-1 == num.indexOf(el.value.charAt(intLoop)))

event.returnValue=false;
if (levent.returnValue) // Bad value

el.className = “badValue"; // Change class.
else

// Clear class to use default rendering.
el.className="";

}
</SCRIPT>

</HEAD>
<BODY>

<LABEL FOR="Age">Age:</LABEL> <INPUT ID="Age" TYPE=TEXT SIZE=3 TITLE="Enter your age”
ONCHANGE="val idateNumber<) ;">

</BODY>
</HTML>

Instead of changingthestyle of the element, you can warn the user with
an Alert dialog box when an invalid valueis entered. The following code dem-
onstrates how to alert the userifhe or she enters an invalid value in a State field.

In addition, this code performs rudimentary formatting by making the user’s
input uppercase.
<HTML>

<HEAD>
<TITLE>Validating When Exiting a Control--Technique 2</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function checkState{check) {
var states = "ALAKAZARCACOCTDEDCFLGAHIIDILINIAKS";
states += "KYLAMEMDMAMIMSMNMOMTNENMNVNHNONMNY
states += "NCNDOHOKORPARISCSDTNTXUTYTVAWAWVWIWY":

(continued)

265

142

PART Ii: DOCUMENT STRUCTURE

// Inctude the following to test for Canadian provinces.
/* Canadian provinces included only if

a second parameter is supplied and is set to true. */
if Carguments[1])

states += "ABBCMBNBNFNSONPEPQSK";
/* If the string is found in an even position, the state

is valid. */
return (@ == (states.indexOf(check) % 2));

}
</SCRIPT>

</HEAD>
<BODY>

<LABEL FOR="state">State:</LABEL>
<INPUT [D="state" TYPE=TEXT SIZE=2 MAXLENGTH=2

ONCHANGE="this.value = this.value.toUpperCase();
if (IcheckState(this.value)){

alert('Invalid State’);
return false;}">

</BODY>
</HTML>

Validating When the User Submits the Form
You can use submit-time validation to determine whetherrelated information

is valid or to ensure thatall required informationis supplied. For example,if
the user indicates that he or she is married, the spouse’s nameorother infor-
mation might also be required. The following code demonstrates how to ex-
tend the intrinsic text box control with a required attribute to ensure thatit is
filled in by the user:
<HTML>

<HEAD>
<TITLE>Validating When the User Submits the Form</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function isEmpty(str) {£
// Check whether string is empty.
for (var intLoop = @; intLoop < str.length; intLoop++)

if (" " [= str.charAt(intLoop))
return false;

return true;

function checkRequired(f) {var strError =
for (var intLoop

 ; intLoop<f.elements.length; intLoop++}

266

142

TEN: Forms andtntrinsic Controls

if (nulll=f.elements[intLoop].getAttribute(“required”)})
if (isEmpty(f.elementsLintLoop].value))

strError t= "9 " + f,elements[intLoop].name + “\n";
if c"™ l= strError) {

alert("Required data is missing:\n" + strError);
return false;

}
</SCRIPT>

</HEAD>
<BODY>

<FORM NAME="demo" ONSUBMIT="return checkRequired(this);">
User Name:

<INPUT TYPE=TEXT NAME="User Name” required>

E-Mail Address:

<INPUT TYPE=TEXT NAME="£-Mail Address" required>

Age (optional):

<INPUT TYPE=TEXT NAME="Age">

<INPUT TYPE=SUBMIT VALUE="Submit">

</FORM>
</BODY>

</HTML>

Representing Required Information
Anextension of the preceding example, demonstratedin the following code,
is to initially display requiredfields with a different backgroundc lor. As the
userfills in those fields, the background color changes back to the default,
which helps the user recognize whichfields must be completed before submit-
ting the form.
<HTML>

<HEAD>
<TITLE>Representing Required Information</TITLE>
<STYLE TYPE="text/css">

-required {background: red}
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function jisEmpty(str) {
for (var intLoop = @: intLoop<str.length; intLoap++)

if (" “ l= str.charAt(intLoop))
return false;

return true;

(continued)

267

143

PART Tis DOCUMENT STRUCTURE

function checkRequired(f) {
for (var intLoop = @;

intLoop<f.elements. length; intLoopt+)
if (“required"==f.elements[intLoop].className) {

alert("All red fields are required.");
return false;

}

function fixUp(el) {
el.className = isEmpty(el.value) ? "required" : "";

}

function checkChar(el) {
if (32 l= event.keyCode)

el.className = "";

}
</SCRIPT>

</HEAD>
<BODY>

<FORM NAME="demo" ONSUBMIT="return checkRequired(this);">
User Name:

<INPUT TYPE=TEXT CLASS="required”
ONKEYPRESS="checkChar(this):"
ONCHANGE="FixUp(this};"2>

E-Mail Address:
<INPUT TYPE=TEXT CLASS="required”

ONKEYPRESS="checkChar(this);"
ONCHANGES"fixUp(this);">

Age (optional):
<INPUT TYPE=TEXT SIZE=3>

<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM>

</BODY>
</HTML>

In this example, the CLASSattribute is used instead of the user-defined
required attribute to identify required fields.

Formatting User Input

268

Just as validation can improve the user’s experience by warning ofinvalid input,
formatting user input can make data more usable and readable. The same
techniquesused to validate data can also be used to format data. Formatting
user input can be donewhile the user types or when the userexits thefield.
This section shows you howto extendthebuilt-in input controls to add format-
ting information directly to an element using two custom attributes.

143

TEN: FormsandIntrinsic Controls

Thefollowing code demonstrates a minimal implementation that includes
the number-validating routine used earlier plus some simple formatting code
to changethestyle ifthe numberis positive or negative. Although this example
only changesthe style, a formatter can also be written that customizes the
value—for example, by adding digit separators or any other custom format.
<HTML>

<HEAD>
<TITLE>Formatting User Input</TITLE>
<STYLE TYPE="text/css">

«positive {color;green}
snegative {calor;red}
«badValue {background:red; color:white}

</STYLE>
<SCRIPT LANGUAGE="davaScript™>

function formatNumber() {
with (Cevent.srcElement)

className =
parseInt(value) >= @ ? “positive” : "negative";

function validateNumber() {
// Get the source element.
var el = event.srcElement; .
var num = “@123456789"; // Valid numbers
event, returnValue = true;
// Check first character for negative number.
event.returnValue = ("-" == el.value.charAt(@)) ||

(-1 %= num. indexOf(el.value.charAt(@)));
/* Loop over remaining contents. If any character

is not a number, set the return value to false. */
for (var intLoop = 1; intLoop < el.value.length;

intLoop++)
if (-1 == num.indexOf(el.value.charAt(intLoop)))

event.returnValue = false;
if (levent.returnValue) // Bad value

el.className = “badValue"; // Change class.
else

// Clear class to use default rendering.
el.className = "";

}

function checkFormat() {
event.returnValue = true;
if (null != event.srcElement.validate)

(continued)

269

144

PART 1 DOCUMENT STRUCTURE

if ("number== event.srcElement.validate)
validateNumber(); // Sets event.returnValue

if ((nul] != event.srcElement.getAttribute("format")) &&
(event. return¥alue))

if ("number™ ==
event.srcElement.getAttribute("format"))

formatNumber();
}

</SCRIPT>
</HEAD>
<BODY>

<INPUT TYPE=TEXT ONCHANGE="checkFormat();" format="number"
validate="number">

</BODY>
</HTML>

Using PasswordInput Controls
A Passwordfield is a text box in which the entire user input is masked with
asterisk (*) characters. This masking is useful when the useris typing sensi-
tive information. For security, scripts running under Internet Explorer 4.0
cannotaccess the true value of the control. Instead, the value property always
returns an * for each character the usertypes. The asterisks allow client-side
code to verify that a password has been entered or that the password has a
specific numberof characters. Key-related events also always return*forall
keypresses.

Whenusing Passwordfields, you should use the POST methodto submit
the data, Otherwise, the password’s value will be displayed as the search value
in the form’s submission.In eithercase, the value is not encrypted. Furthermore,
Netscape Navigator currently exposesthereal value entered,rather than aster-
isks, so Passwordfields should be used carefully in security-sensitive situations.

Programming List Elements
The Select elementis used to presenta list of options to the user. There are
two styles oflists: combo boxes (drop-down lists) and list boxes. These twolist
styles are generally interchangeable, andtheir scripting modelis identical. The
only exception is thatthelist box style can be used to create a multiple-select
list box, which lets the user select multiplelist items. Figure 10-1 shows the three
typesoflists.

270

144

TEN: Forms and Intrinsic Controls

 Combo Box:|Computer =

Book Stare
List Box: [Mail Order

EE Store |Multiple-Select List Box:

Figure 10-1.
The three types of lists available using the Select element.

Defining a List Box
You create a list box using the Select element. The Select element contains
Option elements representing eachlist item. The three typesoflist boxes can
be created as shown in the following code:
<HTML>

<HEAD>
<TITLE>List Types</TITLE>

</HEAD>
<BODY>

<FORM NAME="Tists">
<SELECT NAME="combostore">

<OPTION VALUE="Computer" SELECTED>Computer</OPTION>
<OPTION VALU ookstere">Book Store</OPTION>
<OPTION VALUE="MailOrder">Mail Order</OPTION>

</SELECT>
<SELECT NAME="liststore™ SIZE=3>

<OPTION VALUE="Computer™ SELECTED>Computer</OPTION><OPTION VALU aokstore”>Book Store</OPTION>
<OPTION VALUE="MailOrder">Mail Order</OPTION>

</SELECT>
<SELECT NAME="multistore” SIZE=3 MULTIPLE>

<OPTION VALUE="Computer™ SELECTEO>Computer</OPTION><OPTION VALU ookstore”>Book Store</OPTION>
<OPTION VALUE="MailOrder” SELECTED>Mail Order</OPTION>

</SELECT>
</FORM>

</BODY>
</HTML>

271

145

PART DOCUMENT STRUCTURE

Specifying a SIZE attribute results in a list box instead of a combo box.
The value of the SIZE attribute determines the numberof rows displayed. To
create a multiple-select list box, you specify the MULTIPLEattribute. When
the MULTIPLEattribute is supplied without a SIZEattribute, a list box with
a default size of four rows is automatically created.

Adding Styles to List Boxes
Limitedstyle sheet supportis providedforlist boxes. The color and background
color of each option can be modified usingstyle sheets, which allows you to
create visually interesting list boxes or even a colorselector:
<HTML>

<HEAD>
<TITLE>Color Selector</TITLE>

</HEAD>
<BODY>

<SELECT STYLE="width:75pt">
<OPTION STYLE="background:red; color:white” VALUE="RED">

Red
</OPTION>
<OPTION STYLE="background:navy; color:white”™ VALUE="NAVY">

Navy
</OPTION>
<OPTION STYLE="background:black: color:white™ VALUE="BLACK">

Black
</OPTION>
<OPTION STYLE="background:white; color:black” VALUE="WHITE"™>

White
</OPTION>

</SELECT>
</BODY>

</HTML>

Thestyle for selected itemsin thelist in this example does not change, however.

Relating List Contents to the Submitted Value

272

The contents of an Option element are displayed on the screen, but this dis-
playedvalue is not submitted back to the server. Instead, the value attribute is
submitted and mustalso be specified in the <OPTION?tag. In general, when
you are using a Select elementinside a submittable form, each option should
have a value attribute. Forlists that are manipulated from script and are not
displayed on a form,the value attribute can be used optionally or scripts can
rely on the text property directly.

145

TEN: Forms andIntrinsic Controls

Scripting the List Contents
The options collection exposes the Option elements containedin a Select ele-
ment. Each option in the collection exposesits attributes as well as the con-
tents between the start and end tags of the Option element, which are exposed
through the text property.

Option Elements
The Option elements in the documentare an exception in the Dynamic HTML
object model because they are not exposed in the document's ail collection.
Also, the Option element does not expose any extra events or properties be-
yondits standardsets of attributes and the text property. Instead, the Option
elementis exposed only throughits parent Select element because the Select
element ownsall the interactions with the list, including events.

Adding and RemovingList Elements
You can dynamically add items to or remove itemsfrom list boxes. This tech-
niqueallows thelist to be customized in response to user input. To add values
to or removevalues fromalist box, you can use the technique introduced in
Chapter 9, “Scripting Individual Elements,” for adding and removing image
map areas. This section presents a more appropriate alternative.

The options collection supports the ability to dynamically add or remove
elements. Elementsare created using the createElement methodor through the
new operator, as shown here:
var elOption = createElement("OPTION");
/f or .
var elOption = new Option; // Netscape Navigator supports

// this method.

Options are then addedto the list box using the add method on the options
collection or removed using the remove method on the options collection. Op-
tions can also be added or removed byassigning an option directly to an ar-
ray index or bysetting an existing option to null. This technique is supported
for Netscape Navigator compatibility. The following code compares using the
two techniquesonlist items in a list box named 1b on a form named demo:
var elOption = new Option();
// Add and remove using methods.
document.demo.1lb.options.add(eldption, @); // Add as first item.
document .demo.1b.aptions.remove(2); // Remove third item,

// Add and remove using Netscape Navigator-compatible technique.
document .demo.1b.options(@] = elOption; // Add as first item,
document.demo.1b.options(2] = null: // Remove third item,

273

146

PART ft: DOCUMENT STRUCTURE

274

Thefollowing code demonstrates how to dynamically generatea list box
thatlists all the bookmarks on the page. Whenthe userselects an item from
the list, the document automatically scrolls the bookmarkinto view.
<HTML>

<HEAD>
<TITLE>Bookmark List</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function addNew(text, value) {
// Add a new option.
var el] = document.createElement("OPTION");
el.text = text;
el.value = value;
document.all.bm.options.add(el);

}

function buildList() {
/* When adding a new list item, the text is-the contents

of the anchor and the value is the name of the
bookmark. The value is used to scroll the element inta
view. *//

for (var intLoop = @; intLoop < document. anchors.length;
intLoopt+)

addNew(document.anchors[intLoop].innerText,
document. anchors[intLoop].name) ;

}

function scraltit(where) {
/?/ Scroll the specified bookmark into view.
document.aliLwhere.value].scrollIntoView();
// Reset list box.
where.value = null:

}
</SCRIPT>

</HEAD>
<BODY ONLOAD="buildList();">

<LABEL FOR="bm">Bookmarks:
<SELECT 10=bm STYLE="width:10@pt" ONCHANGE="scroltit(this};">
</SELECT>
<H1>Contents<H1>
Table of Contents
<H2>Abstract</H2>
About this document
<H2>Chapter 1</H2>
Chapter 1

146

TEN: FormsandIntrinsic Controls

<H2>Summary</H2>
Summary contents

</BODY>
</HTML>

Scripting Multiple-Select List Boxes
Multiple-select list boxes allow the user to select more than one item from a
list. In a multiple-selectlist box, the valuepropertyreturnsonlythefirst selected
item. To determineall the selected items, the entire list of options must be
enumeratedusing a script. The following function demonstrates howto build
an array ofselecteditemsfor anylist box. (Ifyou use this function with a single-
selectlist box, the resulting array will contain only a single value.)
<SCRIPT LANGUAGE="JavaScript™>

function getSelected(opt) {
var selected = new Array();
var index = @;
for (var intLoop=0; intLoop < opt.length: intLoopt+) {

if (optLintLoop].selected) {
index = selected. length:
selected[index] = new Object:
selected[index].value = opt[intLoop].value;
selected[index}.index = intLoop;

}
}
return selected;

}
</SCRIPT>

Using Check Boxesfor Small Lists
If the numberofoptionsis small, it might make moresenseto use a set of check
boxes instead of a multiple-selectlist box. By sharing the same nameacross
each check box in the set, the check boxeswill have the same submit behav-
ior as the multiple-select list box. The preceding function can be rewritten as
shownin the following code to determine which check boxesare selected.
Rather than enumerating the options collection contained in the Select ele-
ment, however, you must enumerate the Form elements with a given name.
Instead of passing an options collection to the function,the collection of check
boxesis used. Anotherdistinction is that check boxes expose a checked prop-
erty for determining whether they are selected, while the list box uses the se-
lected property, so the conditional logic in the function tests for either selectedor checked.

275

147

PART DOCUMENT STRUCTURE

<HTML>
<HEAD>

<TITLE>Multiple-Select Check Boxes</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function getSelected(opt) {
var selected = new Array();
var index = @;
for (var intLoop = @; intLoop < opt.length; intLoop++) [

if (CoptLintLoop].selected) ||
CoptLintLoop].checked)) {

index = selected. length:
selected{index] = new Object:
selected[index].value = opt[intLoop].value:
selected[index].index = intLoop;

}
return selected;

)

function outputSelected(opt) {
var sel = getSelected(opt);
var strSel = "";
for (var item in sel)

strSel += sellitem].value + "\n";
alert("Selected Items:\n" + strSel)}:

}
</SCRIPT>

</HEAD>
<BODY>

<FORM NAME="ColorSelector"™>
<INPUT TYPE=CHECKBOX NAME="color" VALUE="Red">Red
<INPUT TYPE=CHECKBOX NAME="color™ VALUE="Navy" CHECKED>Navy
<INPUT TYPE=CHECKBOX NAMI olor" VALUE="Black">Black ‘
<INPUT TYPE=CHECKBOX NAME="color™ VALUE="White”™ CHECKED>White
<INPUT TYPE=BUTTON VALUE="Selected Check Box Items”

ONCLICK="outputSelected(this.form.color);">
<P>
<SELECT NAME="multistore” SIZE=3 MULTIPLE>

<OPTION VALUE="Computer” SELECTED>Computer</OPTION>
<OPTION VALUE="Bookstore”>Book Store</OPTION>
<OPTION VALUE="MailOrder” SELECTED>Mail Order</OPTION>

</SELECT>
<INPUT TYPE=BUTTON VALUE="Selected List Items”

ONCLICK="outputSelected(this.form.multistore.options)">
</FORM>

</BODY>
</HTML>

276

TEN: Forms and Intrinsic Controls

Programming Lists Using
Radio Buttons and Check Boxes

Radio buttons and check boxes are renderedsimilarly butserve distinct pur
poses. Radio buttons are used to represent a set of two or more mutually
exclusive items. Check boxes are used to specify a decision with two or more
independentchoices.

Radio buttonsaresimilar to the single-selectlist boxes introduced earlier
in this chapter. Radio buttons can be used interchangeably with a single-select
list, but they are most effective when a small numberof optionsare available.
For example, to specify a person's gender,a radio button group would be more
effective than a single-selectlist box.

Radio buttons are more difficult to use than a list box if you are building
the set of options dynamically. For this scenario,the list box is more appropriate
becauseitemsinalist box can easily be manipulated as a group, whereas each
radio button is actually a separate control that needs to be manipulated in-
dependently, and adding or removingradio buttons requires manipulating the
contents of the documentdirectly.

Radio Buttons

Radio buttons are exposed as a groupsimilar to the optionsin a single-select
list box. As mentioned, specifying the same namefor buttons within the same
scope creates a group. Mutual exclusion based on nameis supported only for
radio buttons. When the submission of a form with a radio button group oc-
curs, of all the radio buttons in a group only the valueforthe selected radio
button is submitted. Assigning the same nameto any other type of control does
not cause any special submission behavior. When multiple controls that are not
radio buttons share the same name,all name-value pairs are appropriately sub-
mitted depending on the rules for each control—for example, named check
boxes are submitted only if they are checked, and all namedtext boxes are
submitted.

Supporting Custom List Values
Radio buttonsare useful for providinga list of possible responses in a survey.
Sometimes you might wantto allow a user-entered valueasa last resort if none
of the list options are valid. The following code demonstrates a simple way to
providea text box for a custom responseif the user’s choice is not listed—the
text control is enabled only when the userselects Other.

277

148

-a

PART II: DOCUMENT STRUCTURE

<HTML>
<HEAD>

<TITLE>Custom Entry</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function checkRadio(f) {
f.Custom.disabled = !f.Q1["Other"].checked;
if ("Other" == event.srcElement.id)

f Custom. focus();
}

</SCRIPT>
</HEAD>
<BODY>

<FORM NAME="Demo" ONCLICK="checkRadio(this);">
<FIELDSET>

<LEGEND>Where did you buy this book?</LEGEND>
<P><INPUT ID="BStore" TYPE=RADIO NAME="01"

VALUE="Bookstore">
<LABEL FOR="BStore"> Bookstore</LABEL>

<P><INPUT ID="MOrder" TYPE=RADIO NAME="Q1"
VALUE="Mail Order">

<LABEL FOR="MOrder"> Mail Order</LABEL>
<P><INPUT ID="“CStore" TYPE=RADIO NAME="Q1"

VALUE="Comp Store">
<LABEL FOR="CStore"> Computer Store</LABEL>

<P><INPUT ID="Other” TYPE=RADIO NAME="Q1">
<LABEL FOR="Other"> Other: </LABEL>
<INPUT ID="Custom™ NAME="Other” TYPE=TEXT DISABLED>

</FIELDSET>
</FORM>

</BODY>
</HTML>

This code works properly regardless ofwhether the userclicks on the Jabel
for Other or on the radio buttonitself because when a userclicks on the la-

bel the onclick eventis first fired with sreHlementas the label and then again with
srcElement as the radio button. The onclick event handleralso fires if the radio

buttonis selected using the keyboard because the eventis not tied to the mouse
but ratherto the operation of changing the value ofthe control, For this rea-
son, a single onclick event handlerfor the radio buttonitselfis sufficient to catch
any potential change.

Check Boxes

Check boxes are useful for asking yes/no questions. In manycases, text boxes
are used to specify other relevant information when necessary. By writing some
simple code, you can make a check box enable or disable the relevantfields

278

148

TEN: Forms and intrinsic Controls

on a form.In the following code,ifusers request more information, they must
entertheir e-mail name and address. If they don’t request additionalinforma-
tion, the two fields are not used.
<HTML>

<HEAD>
<TITLE>Enabling Entry Fields</TITLE>

</HEAD>
<BODY>

<FORM NAME="Info">
<LABEL FOR=INFO>Send Info:</LABEL>
<INPUT ID=INFO TYPE=CHECKBOX

ONCLICK="this.form.email.disabled = !this.checked;
this.form.snailMail.disabled = !this.checked;">

<FIELDSET NAME="address">

<LEGEND>Address Information</LEGEND>
<LABEL FOR="emai1">E-mail Address</LABEL>
<INPUT TYPE=TEXT NAME="email” DISABLED>
<LABEL FOR="snailMail">Street Address:</LABEL>
<TEXTAREA ROWS=3 COLS=40 NAME="snailMail”

DISABLED></TEXTAREA>
</FIELDSET>

</FORM>
</BODY>

</HTML>

NOTE: Thereis currently no technique you can use to override
the default rendering for disabled controls.

The Indeterminate State
Check boxessupport an indeterminate state, which allows a check box to rep-
resentthree states: on, off, and unknown.For example, suppose you use a check
box to indicate whetherselected text is boldface. The unknown state would

apply when theuserselects some text that is part boldface and part not bold-
face. The unknown state can be set only through the object model, using the
indeterminate property on the check box. The indeterminate propertyis a Bool-
ean value—whenthis propertyis set to true, the check boxis displayed in theindeterminatestate.

Thechecked property of an indeterminate check box returns the value of
the check box betore it became indeterminate, even though an indeterminate
check box always appears the samein the user interface. The check boxis
submitted depending on the checked property, regardless ofwhether the check

279

149

PART IE: DOCUMENT STRUCTURE

box is indeterminate, Figure 10-2 shows the different check box states as dis-
played in Microsoft Windows:

[aoearcs tee =||

|feCaMw Ga Recta * FS

Ti Not Checked
M Checked
FE Indeterminate
I Not Checked Disabied
FG Checked and Disabled

Figure 10-2.
The different check box states.

The indeterminate check box looks the sameas the checked and disabled check
box. The difference between thetwois that you cannotclick a disabled check
box to changeits value, but you can click an indeterminate check box.

The onclick Event

For radio buttons and check boxes, the onclick event has a slightly different
behavior than it has for other elements. The onclick eventfires prior to the
execution of the default action, providing the Web author an opportunity to
overrideit. For check boxes, the defaultactionis to select or deselect the item,
andfor radio buttons the default actionis to select the item. When the onclick

eventfires for these controls, the control’s value already represents the new
value of the element. Canceling the default action causesthe value to revert
to the previous value. This process is different from other elements, for which
the state of the element does not change until after the event.

Programming Command Buiton Elements

280

Commandbuttonsare created using either the standard Input elementor the
Button element. The Input element supports three types of commandbuttons:
submit, reset, and plain-text buttons. The Button elementis new in Internet
Explorer 4.0 and providesthe ability to create rich HTMLbuttons.

149

TEN: Forms andIntrinsic Controls

Defining Default and Cancel Buttons
The submit and reset buttons act as the Default and Cancelbuttonswithin the
context of a form or the scope of the document. The Default buttonis origi-
nally displayed with an extra borderandsignifies the default action that oc-
cursif the user presses the Enter key. The Cancel button signifies the action
that occursif the user presses the Esc key.

Within the scope of a form, the submit and reset buttons are command
buttonswith the predefined behavior of submitting the form orresetting the
contents of the form. Outside a form, these buttonsact as standard command
buttons, behaving as the Default or Cancel button. In all cases, invoking the
Default or Cancel button behavior from the keyboardfires a click event on the
appropriate button element.

Submit and reset buttons are defined using the TYPE attribute on the
Input or Button element, as shown here:
<FORM NAME="User™>

<INPUT TYPE=TEXT NAME="User™ -VALUE="User Name">
<INPUT TYPE=RESET VALUE="Reset the Form™>
<INPUT TYPE=SUBMIT VYALUE="Submit the Form™>
<BUTTON TYPE=SUBMIT>Submit the Form</BUTTON>

</FORM>

There can only be one Default and one Cancel button per form or document
scope. When more than one Default or Cancel button is specified within a
single scope(that is, more than one submit or reset button), the first button
of each type specified in the HTMLsourceis the onethatwill be used within
that scope.

Button Events and Form Events

If you need codethatexecutesfor the submit or reset behavior of a form, you
should write the code on the form’s onsubmit and onreset events and not on the
onclick event of the submit and reset buttons because there are cases in which
the form can be submitted or reset without the buttonsever receiving an onclick
event. For example,if the form has only one text box, a submit button, and a
reset button, pressing Enter while the cursoris in the text box automatically
submitsthe value, but the submit button does notreceive an onclick event. Simi-
larly, if the user presses Esc, the reset button does not receive the onclick event,butthe ovreset eventis fired.

281

150

PART II: DOCUMENT STRUCTUREa

Creating Buttons Using the Button Element

282

You can create a button in HTMLusing <INPUT TYPE=BUTTON>or the
more general <BUTTON>...</BUTTON> tags. The following codecreates richsubmit and reset buttons:
<FORM NAME="test">

<BUTTON TYPE=SUBM1T>
<H1>Submit this form.</H1>

</BUTTON>
<BUTTON TYPE=RESET>

<H2>Reset this form.</H2>
</BUTTON>

</FORM>

Because you can place HTMLin the Button element, you can create interest-
ing effects in a button, Although any HTMLandstyle can be defined forthe
contents, the event model for the contents is limited comparedto the rest of
Dynamic HTML.

Button Events ‘

As shownin the following code, the Button element supports rich HTML,but
the elements within the button do notfire events. Therefore, event handlers
cannotbe written for any of the elements thatexist within the button.
<i-- The event handlers defined in this button do not fire. -->
<BUTTON>

<H1 ONCLICKS"alert(‘clicked!’);">Click Me!</H1>
<H2 ONMOUSEQVER="this.style.color = 'red‘';">Turn red.</H2>

</BUTTON>

Instead,all events on items within the Button element are routed directly tothe button itself.

Button Contents

The contentsof the button are exposed differently depending on whether the
buttonis defined using the <INPUT> tag or the <BUTTON?>tag. The contents
of a button created using the <INPUT>tag are exposed through the valueand
innerText properties, similar to the other Inputtypes. The contents of a but-
ton created using the <BUTTON>tag are exposed throughthe énnerText and
innerHTMLproperties, but not through the value property. Like the TextArea
element, a button created using a <BUTTON?>tag also exposes richer access
to the contents through the createTextRange method.

150

TEN: FormsandIntrinsic Controls

Programming Label and Fieldset Elements
Labels are used to associate HTMLcontents with an Input element, and field-
sets are used to group multiple controls. The LabelandFieldset elementsare
currently supported only by Internet Explorer 4.0.

The Fieldset elementis useful for grouping different input controls within
asingle form—for example, to group the shipping address and the receiving
address onasingle form. The Fieldset element does not expose anything ex-
tra to the object model beyond the standard events andits attributes. However,
with event bubbling Fieldset elements can be used to provide custom behay-
ior to groupsof controls.

Label elements are especially useful with check boxes andradio buttons.
Before Label elements, when a radio button or check box wasused,it had to
be clicked on directly. Now a label associated with a button can also be used
to select and deselect the button. The advantage to using Label elementsis that
they also provide a focus rectangle for the controls, makingit clear what the
purpose andcontents of the control are and providing an extra click region
that can be used to select the control. This feature can be added riskfree to
any Web page, as down-level browsers ignore the Label element.

The Label Element and onclick Events

The Label elementhasaninteresting effect on the event model. The default
action ofclicking on a Label elementis that the associated controlreceives the
focus. Therefore, when the userclicks on a Label element, the Label and all
its parent elements receive the onclick event. If the default action is not over-
ridden, the referenced controlis given the focus. If the referenced controlis
a check box or radio button,the onclick eventis then bubbled again from that
control. This second bubbling is whatallowsclicking on the label for a radio
button or check box to changethe value.

Unless you needto distinguish betweenthe userclicking on the label and
the userclicking on the controlitself, attach your event handlerto the control,not the label.

283

—

————————
ee

151

saaPease
ceesleseit %

eo

ee
se

 seri metaes

Moriarty
iraeeRe einEboSEbe resi ett eeetestala Efe

ee

badj
ay rk F : 4

oh iiicee ete thApart es eam abrEEgeCaeG, ne
a

reea

i EeeeeahRSai ee
atice fu

Qe
a2

se Serarae alent Pa

ie greatsFl

 UNEhi

Bikes abi

ry
us nt Eras=

Bry fered

Ulu beat pak

gEa

a
pia secieetieass fb

Baebesciesesectsrgereces
Cee
bag fete a ;

Be ieewes

ye pio
fe cee emirkee i friesBe sate

ee sponefter,

PiAe
erztrithy

151

DOCUMENT STYLE

AND ANIMATION

152

eee

iy asa bat ejaynes

ae
i cera areaceeeeaae ee cee bebseibatie tierce naa hy CHAPTER ELEVENi ie ys i a 7 c ni = r *

Dynamic Styles

Dynamic styles are an integral componentofinteractive Web pages. The docu-
ment’s appearanceis defined usingstyle sheets and HTML. Dynamicstyles use
the object model to modify the document’s CSS (Cascading Style Sheets) in
order to change the appearance of the document. Thesyntax for declaring a
CSS wasintroduced in Chapter 1, “Overview of HTML and CSS” This chapter
focuses on modifying style sheets using scripts in orderto alter the document's
appearance.

By applying dynamicstyles, you can transform existing documents into
more exciting documents withouta loss of contents on down-Icvel browsers.
On a down-level browser, the document appearsstatic, but when Dynamic
HTMLis supported the document comestolife. Because the easiest and most
effective way to learn about dynamicstylesis to studyand reviewcodc samples,
this chapter provides a large numberof Plug and Play code modules. The
purpose of these examples is to demonstrate how to apply various techniques
for creating more interactive documents.

The following topics are covered in this chapter:

@ Dynamic styles and CSS This section introduces the refationship
between CSS and dynamic styles and compares the relationship be-
tween dynamic styles applied to CSS and proceduralstyle sheet lan-
guages such as JavaScript Accessible Style Sheets (JASS) included
in Netscape Navigator 4.0.

@ Style sheet properties This section describes howstyle sheet
properties are exposed by the object model. CSS properties do not
always translate easily into object model properties because a single
attribute may contain many properties. For example, the background
attribute contains background color, image, and repeat information.

287

152

153

PART [10: DOCUMENTSTYLE AND ANIMATION

@ Inline styles This section shows you how to program theinlinestyle
of an element, the simplest technique for adding dynamic styles. A
style property that provides access to all the CSS-related properties
is exposed on every element.

™@ Changingthe class attribute A simple and elegant technique for
creating dynamicstyles is to write code that modifies the class or idattribute to associate an element with a different contextual rule.

This section provides reusable examplesthatillustrate this technique.
@ Global style sheets Changingthe inline style and the class attribute

are direct modifications of an element. The document object exposes
a styleSheets collection that represents all the Style elements and
linked style sheets in the document. This collection lets you modify
the individual style sheets directly and thereby apply formatting to
the entire document.

@ Techniques This chapter concludes with three sections that de-
scribe techniques for taking advantage of the features introduced
throughout the chapter, The section “Adaptive Layout Techniques”
shows you how to make a document changein response to the envi-
ronment. “Data Display Techniques” demonstrates hiding and
showing data in response to the user. “Text Animation Techniques”
shows you how to changestyles in response to a timer.

The samples demonstrating these techniques are included on
the companion CD.

Dynamic Styles and CSS

288

CSSdefines how particular elements within the documentareto be rendered.
The object model for manipulating the properties ofthe style sheet is based
on the CSS recommendation. When an attribute or rule is modified through
script, the static style sheet is updated and the page is immediately updated.

This dynamic style modelis different from theJASS model supported by
Netscape Navigator4.0. JASS is a procedural modelfor definingastyle sheet
for the documentatparse time rather than a programming model for manipu-
lating a document's style. For example, JASS can be used to write conditional
code that applies a differentstyle sheet depending on thesize of the screen
during the loading of the document. JASScan’t be used to changethestyle of
an elementin response to an eventwithoutreloading or requesting a new page
from the server.

153

ELEVEN: Dynamic Stylesa

In Microsoft Internet Explorer 4.0, dynamicstyles are not a procedural
style sheet language, but they can accomplish all aspects ofJASS and much
more. Rather than define an alternative style sheet language, dynamicstyles
in Internet Explorer modify the document's CSS-definedstyle sheet by allowing
you to defineinline style properties on every element, enable anddisable all
global andlinkedstyle sheets, and addrules to and changerules on an existing
style sheet.

Style Sheet Properties
Style sheets expose a numberofproperties that control the appearance of an
element’s contents. In the object model, these properties are exposed using a
consistent naming convention. Most properties in CSS separate keywordsusing:
a hyphen (-) character. Because the hyphenis interpreted as an operatorin
mostlanguage constructs, it cannot be part of any CSS property names as ex-
posedin the object model. Furthermore,for case-sensitive languages such as
JavaScript, each CSS property is exposed consistent with other properties—
thatis, the first keyword is lowercased, andall subsequent keywordsare capi-
talized. For example, the CSS margin-top propertyis exposed in the object
model as margin Top.

NOTE: While this rule is simple and can be applied generally,
one exceptionis necessary in order to avoid a keyword conflict with
scripting languages. The CSS float property specifies whether an
elementshould bealignedattheleft or right edge with subsequent
contents wrapping the element. Becausefloat is a commondata type
in manylanguages, the CSS float propertyis exposed asstyleFloatin
the object model.

CompoundProperties
Manystyle sheet properties are defined as compoundproperties. For example,
the CSS background attribute contains information about the background
image, URL,position, and so on. The following code shows the background
attribute defined for the Body element:
body {background:red URL(cool.gif)}

These compoundproperties can be difficult to manipulate through
script. To script the background property, a developer would have to parse the
CSS property into its core components. This parsingis simplified in the CSS

289

——

154

PART HEI: DOCUMENT STYLE AND ANIMATIONeee

object model by decomposing compound CSSproperties into multiple prop-
erties, each representing an aspect of the property. The following tablelists
the individual properties of the background property.
Ke

 Property Description
backgroundColor String color name or RGB value
backgroundimage URLto the background image
backgroundPosition Position of the background image
bachgroundRepeat Whether the background image repeats horizontally,vertically, or both
backgroundSerolt Whether the background imagescrolls with thedocumentoracts as a static watermark

The cssText Property

290

The essText property contains an element's style in the form of a string. Using
this property, you can set an element’s entire style or copy a style from one
elementto another. The following code gives paragraph p2 the samestyle as
pl. The section “Style Sheet Painter”later in this chapter provides a detailed
example of defining and sharingstyle rules across an entire document.
<HTML>

<HEAD>
<TITLE>Sharing the cssText Property</TITLE></HEAD>

<BODY>
<P ID="pl™ STYLES"text-indent:.5in; color:red™>

This paragraph is red with @ half-inch indent.</P>
<P ID="p2">

This paragraph has a default appearance. Click<INPUT TYPE=BUTTON VALUE="here"
ONCLICK="document.all.p2.style.cssText =

document .all.pl.style.cssText;">
to make this paragraph look like the first paragraph.</P>

</BODY>
</HTML>

aH

ELEVEN: Dynamic Stylesi

Modifying Properties
Mostofthestyle sheet properties supported by Internet Explorer 4.0 can be
dynamically modified, but a few properties cannot be dynamically changed:

i The display property can only be switched between none and the de-
fault value. Therefore, elements cannot be switched between block
andinline formats, Assigning a value other than noneor the default
value displays the document's contents using the default value.

i The styleFloat property is not fully dynamic on text elements such as
Span andDIV. Fortext elements,the styleFloat property can only be
changed from left to right or vice versa. If a text element was not
originally floating to theleft or to the right,it cannot be changed
following the loading of the document. For input elements (Select,
Button, Input, and so on), the styleFloat property can be dynamicallymodified between all the valid values.

@ Theposition property is read-only and cannot be dynamically
changed on any element.

Inline Styles
An inlinestyle is assigned to an elementusing the STYLEattribute. The STYLE
attribute lets you assign CSS properties directly to an instanceofthe element.
For example, using the STYLEattribute, you can make a paragraphblue:
<P STYLE="color:blue”>This is a blue paragraph. </P>

This technique improves on the existing HTML-based modelfor specifying
text color. Priorto style sheets, the paragraph would be madeblue using theFont element:

<P>This is a blue paragraph. </P>

The advantagesofusing theinlinestyle over thestylistic HTML elementsand attributes are as follows:

™@ Creates more compact HTML code

™@ Creates a smaller parsing tree, which leads to better performance
™ Better separates the conceptsofstyle and structure

291

154

155

PART Pils DOCUMENT STYLE AND ANIMATIONaeerateANaenh

Even inline styles are notin the truespirit of separating presentation from
content. The true definition of separating presentation from contentis to de-
fine all the styles outside the markup—forthis, globalor linked style sheetsare more appropriate.

Theinline style sheet does provide some conveniences for creating dy-
namic documents. For example, the style ofan element can be quickly changedwhen the mouse moves overit:

<H1 ONMOUSEOVER="this.style.backgroundColor = "yellow';”
ONMOUSEOUT="this.style.backgroundColor = '*;">

This element turns yellow when the mouse moves over it.</H1>

This code works by accessing the inlinestyle for the H1 element and assign-
ing a new value to the CSS backgroundColor property. The document's display is
immediately updated to reflect the changeto thestyle sheet. The inline style
is represented on every element through the style property; style is an object-
valued property through which scripts can accessall the CSS properties.

Changing the class Attribute

292

Changingtheinlinestyle is useful, butit can be a burdensome technique when
multiple property values need to be modified. A more effective way to change
styles is to define styles for two or moreclasses in a globalstyle sheet and dy-
namically changethe class attribute of an element. The class attribute of an
element is exposed through the className property. This property can be
changed throughscriptto associate a different style rule with the element. For
example,the following coderewrites the simple onmouseover color changetech-
nique from the previoussection to take advantage of global style sheets:<HTML>

<HEAD>
<TITLE>Changing the class Attribute</TITLE>
<l-- Create a global style sheet. -->
<STYLE TYPE="text/ess">

-yellow {background:yellow; font-weight:bolder}</STYLE>
</HEAD>
<BODY>

<H1 ONMOUSEOVER="this.className = 'yellow';"
ONMOUSEQUT="this.className = '';">

155

ELEVEN: Dynamic Styles

This element changes its class attribute
when the mouse moves over it.

</H1>
</BODY>

</HTML>

In this example, when the mouse passes over the H1 element, the value of the
CLASSattribute is changed to yellow. This causesthestyle specified for yellow
to be immediately applied. In this case, the background becomesyellow and
the text is made bold. The technique of changing class namesoffers two ad-
vantages: multiple parts of the style can be changed witha singleline of code,
and changingthe style sheet rather than changing the code can modify the
effect itself. This technique is extremely useful when you want a predefined
effect, especially when the effect is to be shared across multiple elements.

You can make controls dynamic by using the same technique. Code in the
following example changesthestyle sheet associated with a button in response
to four mouse events: the mouse moving over and leaving the element andthe
left mouse button being clicked and being released.
<HTML>

<HEAD>
<TITLE>Animated Buttons</TITLE>
<STYLE TYPE="text/css">

.over {color:yellow; background:navy}

.down (color:yellow; background:navy; font-style:italic}

</STYLE>
</HEAD>
<BODY>

<INPUT TYPE=BUTTON VALUE="Demo Button”
ONMOUSEOVER="this.className = ‘over’;"
ONMOUSEOUT="this.className = "";”
ONMOUSEDOWN="this.className = ‘down';”
ONMOUSEUP="this.className = ‘over";">

</BODY>
</HTML>

This example can be extended for other events and other elements and can
also be written generically by placing the event handlers in the Body element.

Ifyougive the buttonin the previous example a new defaultstyle by assign-
ing it a class name, you have to be careful to reassign that class name in response
to the onmouseout event. Code in the next example automatically keeps track
of elements’ original class names. It demonstrates a reusable architecture for
assigning different onmouseovereffects to different elements,including nested
elements, with only a small amountof code for each element.

293

156

—~

PART EIT: DOCUMENT STYLE AND ANIMATIONeee

<HTML>
<HEAD>

<TITLEDExploding Effects</TITLE>
<STYLE TYPE="text/css">

.explode {color:red; letter-spacing:5px}
«header {color:green}
/* To add effects, simply define new rules and associate them

with elements in the document. */
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function walkStyles(sre) {
/* Walk up the tree; for every element with an effect

property, swap the values of its effect and className
properties. The tree walk is necessary to ensure that
any nested effects are handled, #/

while ("HTML™ [= src.tagName) {
if (null [= sre.getAttribute("effect", false)) {

var tempClass = src.className; .
src,className = src.getAttribute("effect", false):
src.setAttribute(“effect”, tempClass, false);

} ‘
src = src.parentElement;

function setupEffect() {
// Entering an element
walkStyles(event.toElement):

}

function cleanupEffect() {
// Exiting an element
walkStyles(event.fromElement);

}

// Hook up event handlers.
document onmouseover = setupEffect;
document,onmouseout = cleanupEffect;</SCRIPT>

</HEAD>
<BODY>

<H1 CLASS="header” effect="explode">
This element will explode when the mouse moves over it.

</H1>
</BODY>

</HTML>

294

156

ELEVEN: Dynamic Styles

In the preceding code, the H1 element has a user-defined attribute
named effect that contains a class name for use when the mouseis over the
element. When the mouseis over the element, the walkStyles function swaps
the values of the element's className and effect properties, thereby changingits
style. When the mouse movesoff the element, the same function swaps thevalues back.

You can add new elementswith their own effects to this code quite easily.
Simply define new classesin the style sheet and assign them to an element's
builtin CLASSand custom effect attributes. The CLASSattribute specifies the
default renderingof the element, and theeffect attribute specifies the render-
ing of the element when the mouse movesoverit.

The techniquessections at the end of this chapter use dynamicclass
changesto create interactive and fun Web pages. Thecodeis similar to this
example, allowing these techniquesto be easily reused in existing Web pages.

Global Style Sheets
Theprevious two techniques involve changingthestyle of a single instance of
an elementat a time. By manipulating globalstyle sheets, a script can change
the style of many elementsall at once. The globalstyle sheet object model
provides complete accessto the globalstyle sheets defined both within a docu-
ment and in external files. Globalstyle sheets contained within the page are
associated with the documentthrough the Style element; the Link elementis
used to associate an externalstyle sheetfile with the page. With the global style
sheet object model, any style sheet can be completely customized,style sheets
can be turned on andoff, rules within the style sheet can be accessed and
changed,and new rules can be addedto quickly changethestyle of the entiredocument.

Dynamically modifying the globalstyle sheet is an extremely powerful
operation,butit can also becostly. Every time a new rule is added or removed
or a style is changedin the globalstyle sheet, the entire documentis recalcu-
lated. Therefore, take care to minimize the numberofoperationsyou perform
on the style sheet. When multiple changes to the documentare necessary, an
efficient techniqueis to define multiple style sheets and enable and disable
them. This technique is introduced in the section “Providing a List of Alter-
native Style Sheets” later in this chapter.

295

157

PART If: DOCUMENT STYLE AND ANIMATIONESSE

The styleSheets Collection

The documentexposesthesetofstyle sheets associated withit througha style-
Sheets collection. The styleSheets collection containsall the globalstyle sheets,
whetherthey are contained in the documentorlinked from an externalfile.
In the styfeSheets collection,as in all other collections in Dynamic HTML,objects
appearin the sameorder in which they appearin the document.

The styleSheets collection containsstyleSheet objects, not elementobjects.
Thereis a relationship between the styleSheet objectsin the styleSheets collection
and thestyleand fink objectsin the all collection. Each styleSheet object exposes
an owningElement property that returnsthestyle or link object that defined the
style sheet. Each style and each Link elementthatassociatesa style exposes a
styleSheet property that returns the s¢yleSheet object.

Referencing a Style Sheet

296

All elements in the documentsupportthe ID attribute. The ID attribute in the
Style and Link elementsserves a dual purpose:it provides the index value to
directly access the elementthrough the aifcollection, andit provides the index
value to directly access the styleSheet object in the styleSheets collection.Itis
importantto recognize that in the all collection, a particular ID attribute
references an actual style or link object, while in the styleSheets collection,it
referencesthe associated styleSheet object. The following example shows how to
referencea style object andits associated styleSheet object using an ID, and how
to reference each ofthose objects from the other:
<HTML>

<HEAD>
<TITLE>styleSheet Object ys. Style Element</TITLE>
<STYLE ID="demo" TYPE="text/css">

BODY {color:red}
</STYLE>
<SCREPT LANGUAGE="JavaScript"™>

// Return the style object.
var styleElement = document.all["demo"];
// Return a styleSheet object.
var styleSheetObject = document.styleSheets["demo"];

// Access each of these objects from the other.
// Both alert boxes display true.
alert(styleSheetQbject.owningElement == styleElement);
alert(styleElement.styleSheet == styleSheetObject):

157

ELEVEN: Dynamic Styles

</SCRIPT>
</HEAD>
<BODY>

contents
</BODY>

</HTML>

Providing a List of Alternative Style Sheets
The styleSheets collection can be used to enumerateall the style sheets in the
document. Eachstyle sheet can be individually enabled or disabled, turning
onor off the application of the style sheet to the document. This technique
enables a page to expose multiplestyles for the userto select from;it can also
be used to provide multiple views of the data.

Providing alternative style sheets has several advantages over dynamically
modifyinga single style sheet through code. Updating and maintaining alter-
nativestyle sheetsis easier than updating and maintaining scripts that modify
a single style sheet. Also, code to switch between alternativestyle sheets is more
efficient than code to modifya style sheet, especially if the code hasto change
a large numberofstyles. When youswitchstyle sheets, the documentis recal-
culated and displayed twice, once when the currentstyle sheetis disabled and
asecondtime whenthenewstyle sheetis enabled. In contrast, when you modify
a single style sheet, the documentis recalculated after each style is changed.

The DISABLEDAttribute

The Style and Link elements support the DISABLEDattribute, whichinitially
disables a style sheet. You can use this attribute to control which style sheets
are initially applied to the document. Scripts can later reset the Style and Link
elements’ corresponding disabled properties to change whichstyle sheets are
applied to the document. The examples that follow use this technique.

Providing Multiple Views
The following Web page allows the user to switch between different views of
the samedata. This techniqueis useful for providing severallevels of detail at
which to view the underlying data without requiring multiple pages to be down-
loaded. This example requires the user to explicitly choose between views. Your
code can also change the view in responseto other factors—for example, the
size of the browser—asshown in the “Adaptive Layout Techniques”section later
in this chapter.

297

158

PART III: DOCUMENT STYLE AND ANIMATIONsss

<HTML>
<HEAD>

<TITLE>Multiple Views</TITLE>
<STYLE [D="a11" TYPE="text/css">

#headOnly {display:none}
#allText {color:red: cursor:default}</STYLE>

<STYLE ID="headers" TYPE="text/css" DISABLED>
#allText {display:none}
#headOnly {color:navy; cursor:default}
DIV (display:none}

</STYLE>
</HEAD>
<BODY>

<H1> Demonstration of Multiple Views</H1><P ID="allText"
ONCLICK="document.styleSheets['headers'}.disabled = false;

document.styleSheets['all‘].disabled = true;">
You are viewing an entirely expanded version of the
document. Click on this paragraph to switch views.</P><P ED="headOnly” ‘

ONCLICK="document.styleSheets[‘headers'].disabled = true;
document.styTeSheets('all’].disabled = false;">

You are viewing only the headers of the document.
Click an this paragraph to switch views,</P>

<H2>Multiple Yiews</H2>
<DIV>Using the CSS object madel, you can provide multiple viewsof the data,
</DIV>
<H2>Swapping Data</H2>
<DIV>You can also swap data displays. You can include

predefined data in the document and selectively hide and
display it.

</DIV>
</BODY>

</HTML>

Figure 11-1 demonstrates the two views of the document, with the two
differentstyle sheets applied. Whenthe userclicks on thefirst paragraph,the
style is automatically switched and different information is shown or hidden.

298

158

ELEVEN: Dynamic Styles

Demonstration of

Multiple Views‘Youare viewing only the headers of the
document, Click on this paragraph toswitch views.

Multiple Views

Demonstration of

Multiple Views

Multiple Views
Using the CSS object model you can
provide muiliple views of the data Swapping Data

Swapping Data
You can also swap data displays, You can
inchide predefined data in the document
and selectively hide and display it

Figure 11-1.
Two views of a document obtained by alternating between style sheetscontained within the document.

Selecting from Multiple Style Sheets
In the preceding example, the userclicks on a paragraph to changethe dis-
play option. The following code takes an alternative approach;it provides a
drop-down list from which the user can select a display option:
<HTML>

<HEAD>
<TITLE>Listing Style Sheets</TITLE>
<STYLE [D="al1" TITLE="Entire Document" TYPE="text/css">

#headOnly {display:none}
#allText {color:red; cursor:default}

</STYLE>
<STYLE ID="headers™ TITLE="Headers Only" TYPES"text/css"

DISABLED>
#allText {display:none}
#headOnty {color:navy: cursor:default}
DIV {display:none}

</STYLE>
<SCRIPT LANGUAGE="dJavaScript">

(continued)

299

159

PART—

300

Tl ls DOCUMENT STYLE AND ANIMATION

function selectSheet(s) {
for (var intLoop = @;

intLoop < document.styleSheets. length; intLoop++)
document .styleSheets[intLoop].disabled =

(s.selectedIndex != intLoop);
3

</SCRIPT>
</HEAD>
<BODY>

<H1>Listing Alternative Style Sheets</H1>
<P>Select a View:
<SELECT ONCHANGE="selectSheet(this);">

<SCRIPT LANGUAGE="JavaScript™>
// Dynamically build list of options.
for (var intLoop = @;

intlLoop < document.styleSheets.length;
intLoop++)

document .write("<OPTIOND>" +
document .styleSheets[intLoop].title):</SCRIPT>

</SELECT> '
<P ID="allText">

You are viewing an entirely expanded version of the document.</P>
<P ID="headOnly">

You are viewing only the headers of the document.
</P>
<H2>Multiple Views</H2>
<DIV>Using the CSS object model, you can provide multiple viewsof the data.
</DIV>
<H2>Swapping Data</H2>
<OIV>You can also swap data displays. You can include

predefined data in the document and selectively hide and
display it.

</BODY>
</HTML>

The drop-down list displays the TITLEattributesofthe style sheets. TITLE
attributes are available on all elements; they are used here to give the style
sheets useful names. Whentheuserselects an item from thelist, the style sheet
with the corresponding TITLEattribute is applied to the document.

Figure 11-2 shows the two available views for this document. Additional
views can be added simply by defining additionalstyle sheets.

159

ELEVEN: Dynamic Styles

[aeeseeeee

Listing Alternative Listing Alternative
Style Sheets Style Sheets
Select a view: Selecta view:|Headers Only A

Multiple Views Multiple Views
Using the CSS object model you can
provide nuihiple views ofthe data Swapping Data

Swapping Data
You can also swap data displays, You can
include predefined data in the document
and selectively hide and displayit

Figure 11-2.
Comparison of the two different views available for this document.

Randomly Applying Style Sheets
The previous example demonstrates a technique that lets the user manually
selectstyle sheets, but there is no requirementthat this selection be done by
the user. You can write code that automatically applies a random style sheet so
that each visit to the page displays the same contents in a different way. This
simple technique makes a Website appear moreinteresting and dynamic with-
out having to continually change the contents.

The section “Adaptive Layout Techniques”later in this chapter demon-
strates a technique for changing the appearance of a page based ontheuser’s
environment.In general, any event—whether user initiated, the result of some
action, or even the result of a timer—can be used to modify the appearance
of the document.

Media-Dependent Style Sheets
HTML4.0 defines a mechanism forassociating different style sheets with dif-
ferenttypes ofmedia. Internet Explorer 4.0 supports two types of media:screen
and print. You can define differentstyle sheets that apply to the document when
it is displayed on screen or printed. The following code demonstrates how to

301

160

PART I : DOCUMENTSTYLE AND ANIMATION

define threestyle sheets, one for printing, one for viewing on screen, and onefor all views of the document:
<STYLE TYPE="text/css" MEOIA="screen”>

/* Applies only when the document is viewed on screen */
Hl {color:navy; text-align:center}
P {margin-left:1@pt}</STYLE>

<STYLE TYPE="text/css" MEDIA="print™>
/* Appltes only when the document is printed */
H1 {color:black}
P {margin-left:5pt}</STYLE>

<STYLE TYPE="text/css” MEDIA="screen, print™>
/* Applies when the document is displayed on screen or printed */
H2 (font-size: l2pt}

</STYLE>

If the media attribute is omitted, the style sheet applies to all views of the
document, The media attribute is a property on the styleSheet object and on the
Style and Link elements. You can dynamically change this property to switch
the mediathe style sheet applies to, The next section contains sample code that
can determine whichstyle sheets are currently being applied to the on-screenview of the document.

The styleSheet Object’s cssText Property
Thesection “The cssText Property”earlier in this chapter introducedthe cssTéxt
propertyas a style property that is exposed on each element. In addition, each
styleSheet object exposesa read-only essTéxt property, which represents the global
style sheet formatted as text. This property is very useful for quickly viewing
thestyle sheet associated with the page. The following code placed at the end
of a document outputsall the style sheets that are currently applied to thedocument:

<SCRIPT LANGUAGE="JavaScript™>
var ss = document.styleSheets;
document .write("<PRE>");
for (var intLoop = @; intLoop < ss.length; intLoop++)

// Style sheet is for the screen and not disabled.
if (CC"" == ssLintLoop].media) |

(-1 t= ssLintLoop].media.index0f("screen”))) &&
(lssLintLoop].disabled))

document .write(ss[intLoop].cssText);
document .write("</PRE>");

</SCRIPT>

ELEVEN: Dynamic Styles

The rules Collection

Every style sheet exposesits collection of rules. A rule is the combination of
the style declaration (for example, colored) aindits selector (for example, H1).
Using this collection, you can access and dynamically change the declaration.
Theselectoris read-only. If a new selector is necessary, you must remove the
rule and add a newrule to the style sheet. Rules are added and removed
through the addRule and removeRule methods on the styleSheet object.

Eachrulein the rules collection represents a single selector and declara-
tion, regardless of howitwas defined in the style sheet. The following example
demonstrates howastyle sheet with groupedselectors is exposed by the rules
collection:
<STYLE TYPE="text/css">

H1, H2, P EM {color:green}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">

var rules = document.styleSneets[@].rules;
for (var intLoop = @; intLoop < rules.length; intLoop++)

document.write("Rule: “ + rules[intLoop].selectorText +
“, Style: " + rulesLintLoop].style.cssText + "
");

</SCRIPT>

The preceding code outputs three separate rules because the grouping
is separated in the object model so that the individualstyles can be accessed
and changed moreeasily. This code also demonstrates two of the three
properties available on each rule. The selectorText is a read-only property that
represents the selector portion of the rule. The style property works the same
as the style property exposed ontheindividual elements;it allows thestyle forthe selector to be modified.

Adding and Removing Rules
The addRule method adds a new rule to thestyle sheet; the removeRule method
removes an existing rule from thestyle sheet. By default, new rules are added
to the endofthe style sheet, taking precedenceoverall rules defined earlier.
Because eachstyle sheet is merged independently, a new rule addedtothefirst
style sheet has higher precedence thanall the rules in that sheet, butit has
lower precedence than therules in any style sheets that follow. Therefore, to
ensurethat the rule takes precedence overexisting rules, you mustadd the rule
to thelast style sheet specified in the document, as shown here:
var intSS = document.styleSheets.length;
if (@ < intSS) // Be sure there is a style sheet to add the rule to.

document.styleSheets[intSS - 1].addRule("H1",
“color:red; font-size: 18pt"):

303

161

PART ITI: DOCUMENT STYLE AND ANIMATION

When you need more control over the position of the rule in thestyle
sheet, you can addtherule to the rules collection at a specified position by sup-
plying an index as the last parameter to the method. This code addsa rule to
the beginningof the style sheet:
var intSS = document.styleSheets. length;
if (@ < intSS) // Be sure there is a style sheet to add the rule to.

document.styleSheets[intSS - 1].addRule¢"Hi",
“cotor:red; font-size;18pt", @); // Add before the first rule.

In all cases, the addRulemethodreturnsan index representing wherethe rule
was addedinto the rules collection.In this example, where the indexis explicitlydefined, the addRule methodreturns0.

The vemoveRule method performs the reverse operation and returns the
index of the rule removed. The following code demonstrates how to remove
the first rule from thelast style sheet:
var intSS = document.styleSheets.length;
if (@ < intS$) // Be sure there is a style sheet to remove

// the rule from.document.styleSheets[intSS - 1].removeRule(@):

Linked Style Sheets and Rules
All style sheets expose a readOnly property, which indicates whetherthestyle
sheet can be modified. Forlinkedstyle sheets, this property returns true.
However,linked style sheets allow rules to be added and modified. Changing
a linked style sheet affects only the currently displayed instance of the docu-
ment. Adding a rule to a linkedstyle sheet does notcause the other documents
that share thatstyle sheet to update with the same rule. Thereis currently no
way, short of adding the rule to each document, to dynamically changea style
sheet shared by multiple documents.

Imported Style Sheets

304

You can use the @import statementin yourstyle sheet to import anotherstyle
sheet. Throughthe object model, you can dynamically access, add, and remove
imported style sheets.

The imports contained within a style sheet are exposed by the imports
collection, each elementofwhichis anothers¢yleSheet object. An importedstyle
sheet can furtherimport anotherstyle sheet. Therefore,to allow you to deter-
mine whatstyle sheet the import is contained within,the styleSheet abject exposes
a parentStyleSheet property, which returns the styleSheet object that defined the
import. For top-level style sheets, this property returnsa value of null.

161

ELEVEN: Dynamic Styles

The addImport method on the styleSheet object takes a string value repre-
senting the URL. According to the CSS specification, importedstyle rules
always exist at the beginning ofthe style sheet and therefore at the beginning
of the cascading order. Thus, any rules in imported style sheets have lower
precedence than the rules already in the style sheet. The following code
imports a style sheet named cool.css into thefirst style sheet in the styleSheetscollection:

document.styleSheets(@].addImport("URL('cool.css');");

Use the removelmport method to remove the importat the specified
position in the imports collection. The following code removesthefirst import
from thestyle sheet:
document.styleSheets[@].removelmport(Q) ;

Adding New Style Sheets
Style sheets can be addedto the documentbyusingthe ereateStyleSheet method
on the document. By default, the createStyleSheet methodaddsa new style sheet
to the endofthe styleSheets collection. To add a new linkedstyle sheet, supply a
URLasthe first argument; to specify where to insert the style sheet, supply an
index as the second argument.Ifyou needto create a nonlinkedstyle sheet
andinsertit at a particular position in thestyleSheets collection, pass null for
the first argument.

Style Sheet Painter
The following example demonstrates how to dynamically modify the global
style sheet of a documentto quickly change the appearanceofall elements of
the same type. This demonstration uses a frameset in which theleft frame
containsa set of styles and the right frame containscontentsto apply thestyles
to. The user selects a style from theleft frame and thenclicks on an element
in the right frame;all elements of the same type as the oneclicked on are
immediately updated. The tag name ofthe element to which thestyle will be
applied is displayed in the status bar. This example uses threefiles. The
stylizer.htm file contains a frameset and mostofthe core codeto transfera style
from thestyle frame to the contents frame. Thestyles.htm file containsa table
of styles to choose from, and the contents.htm file contains the contents to
apply thestyles to.

305

162

I

PART ITI: DOCUMENT STYLE AND ANIMATION

306

This example usesthe following techniques:

@ Event handlersfor the style and contents documentsare written inthe frameset.

@ Thestyle of a cell in the styles document’s table is changed by
changingits class name.A selected cell’s inline style sheet specifies
the colors and fontsize that are to be applied to elementsclicked in
the contents document.So the cell’s border, which indicates thatit
is selected, cannotbepartofits inline style; instead the borderis
definedin a globalstyle sheet.

@ The addRule methodis used to add new rules to the contents
document.

@ Thestatus bar is updated based on the position of the mouse.

Figure 11-3 showsthe style painter application as defined by the code
examplesthatfollow.

PUT

Select a style and
Evtaieiconen|Demo Contentsto applyit

Here are some demo contents to test the stylizer on.Small White and
Black Select a style fiom the left pane, and click on {liedinthis pane. The eleraent you click and all elements of

the same type wall SPEifele to match that style
This technique adds new rules to the style sheet forthis document

Figure 11-3.
Thestyle painter application in action.

Thestylizer.htm file The following frameset documentdivides the screen
into twoframes: the left pane displaysa list of style options, and the right pane
displays the documentto apply the styles to. The code that handles commu-
nications between the two other documentsis contained within this document.

162

ELEVEN: Dynamic Stylesee

<HTML>
<HEAD>

<TITLE>The Stylizer</TITLE>
<SCRIPT LANGUAGE="JavaScript">

window.curStyle = null;
function selectStyle() {

// Highlight the currently selected style cell.
var el = this.parentWindow.event.srcElement;
if ("TO" == el.tagName) (

if (null != curStyle)
curStyle.className =

curStyle = el;
curStyle.className = "selected";

}

function addStyle() {
// Add a new rule to the document for the selected style.
if (null != curStyle) {

var srcWin = this.parentWindow;
var tag = srcWin.event.srcElement,tagName;
srcWin,dacument.styleSheets(@].addRule(tag,

curStyle.style.cssText);

}

function hookupEvents() {
/* Bind each frame's click events to the appropriate

function in this document, */
window.styles.document.onclick = selectStyle;

_ window. content.document.onclick = addStyle;}
</SCRIPT>

</HEAD>
<FRAMESET ONLOAD="hookupEvents() COLS="178, *">

<FRAME SRC="styles.htm" NAME="styles">
<FRAME SRC="content.htm" NAME="content"™>

</FRAMESET>
</HTML>

The styles.htm file The following documentcontains a table of styles that
the user can select and apply to the contents document. Adding moretable cells
to the table can extendthelist ofstyles.

307

163

PART 14: DOCUMENT STYLE AND ANIMATION

<HTML>
<HEAD>

<TITLE>Style List</TITLE>
<STYLE TYPE="text/css">

/* This style is used to highlight the user's selection. */
-selected {border:2px black solid}

</STYLE>
</HEAD>
<BODY>

<P>Select a style and click on the document to apply it.</P>
<l-- A cell's inline style specifies the style that can be

applied in the contents document when the cell is selected.
The style is simply copied over. --><TABLE> .

<TR>
<TD STYLE="background:white; color:black; font-size:12pt">Smal] White and Black
</TD>

</TRO<TR>
<TD STYLE="background:red; color:white; font-size:18pt">

Big Red and White
</TD>

</TRO<TR>
<TD STYLE="background:navy; color:yellow; font-size:14pt">

Medium Navy and Yellow
</TD>

</TR>
</TABLE>

</BODY>
</HTML>

The content.htm file The following sample documentcontains contents to
whichtheselected styles are applied. The small script in this documentis used
to display the tag nameof the element to which thestyle is to be applied inthe status bar.
<HTML>

<HEAD>
<TITLE>Demo Contents</TITLE>
<SCRIPT LANGUAGE="JavaScript"™>

function updateStatus() {
/* Display the name of the element the mouse is over.

This is the element type to which the new style wil]
be applied. */

window.defaultStatus = event.srcElement.tagName;
}

</SCRIPT>

308

163

ELEVEN: Dynamic Styles

<STYLE TYPE="text/css">
/* Style block to add rules to #/

</STYLE>
</HEAD>
<BODY ONMOUSEOVER="updateStatus();">

<H1>Demo Contents</H1>
<P>Here are some demo contents to test the

styTizer on, </P>
<P>Select a style from the left pane, and click on

text in this pane. The element you click
and all elements of the same type will
change to match that style.

<P>This technique adds new rules to the style sheet for
this document.

</BODY>
</HTML>

Style Sheet Events
A styleSheet object is not created and added tothestyleSheets collection until the
entire style sheetis loaded,including the complete downloadingofany linked
or importedstyle sheets. For tracking thestatus ofa style sheet, the Style and
Link elements expose an onreadystatechange and an onload event. The readyState
property returnsa string that represents the currentstate of the element. These
events and the readyStatepropertyare similar to the membersofthe same names
on the document and window.

Whilea style sheetis being parsed,its readyState valueis loading. Once the
entire style sheet has been loaded,readyState changesto complete. Immediately
prior to complete, the styleSheet object is created and addedto the styleSheets col-
lection. The onreadystatechange or onload eventcan be used to track whenthestyle
sheet becomesavailable, The onload event always occurs immediately follow-
ing the onreadystatechange event,firing when thestyle sheet reaches the complete
state. The following document demonstrates the ordering sequence:
<HTML>

<HEAD>
<TITLE>Style Sheet Events</TITLE>
<STYLE TYPE="text/css"

ONREADYSTATECHANGE=
“alert('readyState: ' + this.readyState);”

ONLOAD="alert("laad event");">
H1 {color:red}

</STYLE>
</HEAD>

(continued)

309

164

PART

310

 DOCUMENTSTYLE AND ANIMATION

<BODY>
<H1>Heading</H1>

</BODY>
</HTML>

Alert boxes display the following messages in the order shown:

1. readyState: loading
2. readyState: complete
3. load event

Thestyle sheetis loaded synchronously into the document;while thestyle
sheetis being loaded,the rest of the documentis not parsed or rendered. One
use for the onreadystatechange and onload eventsis to provide the user with status
bar notificationsof the status of the document, as shown here:
<HTML>

<HEAD>

<TITLE>readyState of, the Document</TITLE>
<SCRIPT LANGUAGE="JavaScript™>

function updateStatus(msg) {
window.defaultStatus = msg;

}
</SCRIPT>
<!-- Provide an update of the downloading

of the style sheet. -->
<LINK REL="styleSheet" TYPE="text/css"

HREF="dhtml.css" TITLE="Default Sheet”
ONREADYSTATECHANGE="updateStatus("StyleSheet[’* +

this.title + ']: ' + this.readyState);*>
<SCRIPT LANGUAGE="JavaScript">

// Let the user know the document is still parsing.
updateStatus("Parsing: “ + document.title);

</SCRIPT>
</HEAD>
<BODY ONLOAD="updateStatus('');">

<H1>Status Tracking</H1>
</BODY>

</HTML>

If the style sheetfails to load because the server times outor the file does
not exist, neither the onload orthe final onreadystatechange event that signifies
the download is complete is fired. Currently, no error is generated and no
explicit error eventis available to track whetherthelinkedstyle sheet failed

164

ELEVEN: Dynamic Styles

to download. One workaround to solve this problem is to set a flag in the onload
event handler. If this flag is not set, an error must have occurred during
downloading ofthestyle sheet:
<HTML>

<HEAD>
<TITLE>Tracking Download Errors</TITLE>
<LINK REL="styleSheet” TYPE="text/css" HREF="dhtml.css"

TITLE="Default Styles" I ssl"
ONLOAD="this.downloaded=true; // Success!">

<SCRIPT LANGUAGE="JavaScript”>
/* If the property does not exist, an error occurred.

The property would be added to the element, not to the
styleSheet object. */

if (null == document .al1.ss1.downloaded)
alert("Error downloading style sheet.");

</SCRIPT>
</HEAD>
<BODY>

<H1>Error Tracking</H1l>
</BODY>

</HTML>

Adaptive Layout Techniques
The GSS object model enables documentsto adaptto the user’s environment.
Mostof the examplesin this chapter use dynamicstyles to addeffects or to allow
the user to manually select alternative style sheets. The document's layout can
also be changed based onthe display resolution, window screensize, or other
values intrinsic to the system. The following are a few high-level techniques you
can use to create pages that adaptto the user’s system:

@ Declareaninitial static style using style sheets. When appropriate,
use the system settings for color and font values.

@Declarealternative style sheets for the different environments. Add
script that establishes the initial style based on the environment.

@ Bindto the resize event of the Body or other elements to dynamically
change the enabledstyle sheets based on thesize of the window.

™ For more complex systems, construct rules dynamically, associate
them with the documentand changestyles algorithmically.

311

165

PART IIi: DOCUMENT STYLE AND ANIMATION

312

Thefirst three techniques are simple to add to a document,All thestyles are
declared using CSS, and scripting is used only to turn on andoff the appro-
priate style sheet. Using the last technique, you can create pages that change
ina much more procedural manner by directly manipulating the existing rules
and adding new rules using the methods describedearlier,

The following exampleusesthefirst three adaptive layout techniques
ihe documentalternates between three main style sheets, depending on the
windowsize. These three layout scenarios are merged with oneof the two color
schemes, based on the numberofcolors available. In addition, the navigation
barat the top of the window uses the color schemeofthe system menus. All
thestyle sheets are included within the document. Alternatively, they could
have been defined as a linkedstyle sheet and shared across an entire Website.

Figure 11-4 shows two of the document'salternative layouts.
[SRM

Figure 17-4,

Layouts ofan adaptive document in narrow-width and medium-widthwindows.

; Figure 11-4 displays part of the documentin narrow-width and medium-
width views. The most obvious difference between the views is the margins. The
box appears above the text in the narrowest view and floats to the side of the
text in the wider views, and the text changesto reflect the box’s position.

Hereisafulllisting of the code for this example:
<HTML>

<HEAD>
<TITLE>Adaptive Layout Example</TITLE>
<STYLE TYPE="text/css" ID="default">

/* Default style sheet that is always applied to thedocument */ eree

165

ELEVEN: Dynamic Styles
a

/* Define the menu bar to match the built-in menus on
the user's system. */

wmenu A.highlight {background:highlight; color:highlighttext}
«menu (background: menu}
-menu P {margin-left:5pt; margin-right:5pt}
.menu A {color:menutext; text-decoration:none; font:menu)

/* Define default margins. */
body {margin-top:@pt; margin-left:@pt}
_centerIndent {margin-left:Spt; margin-right:5pt)
cleftindent {margin-left:5pt: margin-right:5pt}
.tightIndent {margin-left:5pt; margin-right:5pt}
Hi {text-align:center}
-outline {border:1pt solid gray; margin:2pt 2pt 2pt 2pt}

</STYLED

<STYLE TYPE="text/css” ID="narrowScreen”>
/* Additional style rules for narrow screen;

all contents for wide screens are hidden. */
-wide {display:none}

</STYLE>

<STYLE TYPE="text/css" ID="midScreen">
/* Rules for middle-size screen; hide narrow contents. */
-narrow {display:none}
.floatLeft {margin-left:@; width:159; float: left}

</STYLE>

<STYLE TYPE="text/css” ID="wideScreen">
/* Nicest layout on the widest screen */
-centerIndent {margin-left:15%; margin-right:15%}
-leftIndent {margin-left:35%; margin-right:5%}
srightIndent {margin-left:5%; margin-right:35%}
floatleft {margin-left:-154; width:15@; float: left}
-narrow {display:none}

</STYLE>

<STYLE TYPE="text/css" ID="4bit">
/* Color depth of 4 or less +*/
BODY {color:red: background:white}

</STYLE>

<STYLE TYPE="text/css™ ID="8bit">
/* Style sheets for 8 or more bits af
BODY {background:URL(fancy.gif)}

(continued)

313

166

 PART It DOCUMENTSTYLE AND ANIMATIONSSE

H1 {color:purple}
H2 {color:navy}

</STYLE>

<SCRIPT LANGUAGE="JavaScript”>
// Select the style sheet for the available color depth.var ss = document.styleSheets:

ss["4bit"].disabled
ss["8bit"].disabled

(screen.colorDepth >= 6B);
1(ss["4bit"].disabled);

function updateLayout() {
// Change style sheet based on available screen width.
var ss = document.styleSheets;
ss["wideScreen"].disabled =

(458 > document. body. offsetWidth);
ss["midScreen"].disabled =

Ciss["wideScreen"].disabled ||

300 > document.body.offsetWidth); |ss["narrowScreen"].disabled =
I(ss["wideScreen"].disabled &&

ss["midScreen"].disabled);
}

function highlight() {
// Highlight the Anchor element in the menu.
if (’A" == event.toElement.tagName)

event.toETement.className = “highlight";

function cleanup() {
// Clear the class.
if ("A™ == event. fromElement.tagName) {

event.fromElement.className = "";
J

</SCRIPT>
</HEAD>
<BODY ONRESIZE="updateLayout();">

<SCRIPT LANGUAGE="JavaScript">
/* This call is in the body because updateLayout relies

on the Body element being available, */
updateLayout();

</SCRIPT>

<!-- Output a menu bar using the user's settings for menus. -->
<DIV CLASS="menu" ONMOUSEOVER="highlight()"

ONMOUSEOUT="cl eanup()">

314

166

ELEVEN: Dynamic Stylesenn

<P>Home
Searcha
About</P>

</DIV>

<H1>Adaptive Layout</H1>
<DI¥ CLASS="centerIndent">

This example demonstrates haw to use dynamic styles to create
a page that adapts to the surrounding environment. The menu
bar uses the system settings for colors. For systems
with poor color support, the document uses only black and
white rather than colorful headers, The layout will change
depending on the size of the window. The contents are
also slightly modified when the environment changes.

</DIV>

<DIV CLASS="leftIndent">
<H2>Floating Elements</H2>
<TABLE 1D="tleft" CLASS="floatLeft">

<TR>
<TD CLASS="outline" VALIGN="Top™>

Adaptive Layout and

Dynamic HTML!
<P>Resize the window

for an example.

</TD>
</TR>

</TABLE>

<i-- The reference to the floating element is changed
depending on the size of the screen. -->

<P>The figure
to the left
above
demonstrates that elements can move into and out of the
flow based on the window size.

</P> ,
<P>The rendering of the page changes based on the window size

and the number of colors supported. The text and the
floating element are repositioned to optimize the amount
of real estate available on the screen.

</P>
</DIV>
<DI¥ CLASS="rightIndent">

<H2>Conditional Data</H2>
(continued)

315

167

PART

TEE: OOCUMENT STYLE AND ANIMATION

<P>
Different data can be displayed in response to the
environment.

</P>
<P CLASS="wide™ STYLE="color:red">

You are viewing a wider version of this document.
</P>
<P CLASS="narrow" STYLE="color:red">

The document has a different style because your window isnarrow.
</P>

</DIV>
<DIV STYLE="display:none">

<!-- This message is displayed only if the style sheet
is not supported, -->

This page is best viewed with a browser that supports CSS
and Dynamic HTML.

</DIV>
</BODY>

</HTML> '

This document independently adapts to the user’s environment;it can be
combinedwith user interactions that also change the display. When an adap-
tive layout documentrespondsto user-initiated changes,the userinitiatedstyles
should take precedence over the automatically applied styles, For example,if
the useris explicitly hiding or showing data,the layout changes should respect
the user’s choices. The easiest way to give precedenceto user-initiated styles
is to put them in inlinestyle sheets or the last globalstyle sheet while using
global style sheets for the adaptive layoutstyles.

Data Display Techniques

316

The adaptive layout technique changed the documentautomatically based on
the user’s environment. Data display techniques focus on the user interacting
with the documentto changethe display of data. They allow theuserto focus
on the most importantdata on the page. For example, rather than presentthe
user with a large document, you mightinitially display only headers and other
relevant information. The user can then click on a header or othertext to
display or hide any related information, and by doingso will have a highly
interactive experience. These techniques also adapt well to down-level brows-
ers on which the documentis displayed entirely expanded, without the extra
interactivity.

167

ELEVEN: Dynamic StylesnT,

Using Cursors to Highlight Contents
When you make a document dynamic, you turn various elements into click
regionsor give them otherspecial behavior. In orderto use these elements, the
user has to know which onestheyare. By displaying different cursors when the
mouseis on different elements, you can help the user discover them.

By default, the mouse cursorover an informational elementis an I-beamthatindicates that the text is selectable. Over behavioral elements—for ex-

ample,all links in the document—thecursoris a hand thatindicates that theelements can beclicked.

Internet Explorer 4.0 provides the Web author control over the cursor
through a new CSS cursor property. The cursor property allows the author to
define the cursor to display when the mouseis on the element. For example,
when you create a click region, a hand cursoror other pointer is more appro-
priate than an L-beam cursor. Chapter 1, “Overview of HTML and CSS,” pro-
videsa table ofall the types of cursors supported through the cursorproperty.

Thefollowing code demonstratesdisplaying a hand cursor whenthe mouseis on an H] element:
<H1 STYLE="cursor:hand” ONCLICK="alert(‘clicked");”

ONSELECTSTART="event.returnValue = false;">
When on this header, the mouse pointer is a hand.

</H1>

The onselectstart event is handled to disable the initiation of text selection in-
side the header. Canceling this eventby returningfalse prevents theuserfrom
starting a selection within the header;it does not prevent the text from beingselected. Selections can start outside the header and be extended through the
header contents. This behavior is the default behavior for links.

Hiding and Showing Data
Thefollowing example contains generic code that dynamically displays and
hides existing data. 2
<HTML>

<HEAD>
<TITLE>Displaying and Hiding Data</TITLE>
<STYLE TYPE="text/css">

body {background: white}
.expandable {color:blue; cursor:hand}
-expanded (color:black; font-size: "12pt"}
.collapsed {display:none}

</STYLE>
(continued)

317

168

PART [U1: DOCUMENT STYLE AND ANIMATIONjulsssnTErennn,EEE

<SCRIPT LANGUAGE="JavaScript">
// Generic display code
function outliner() {

// Get child element.
var child =

document.alllLevent.srcElement.getAttribute("child",
false)];

// If child element exists. expand or collapse it.
if (null != child)

child.className = child.className == "collapsed" ?
“expanded” : “callapsed™;

}
</SCRIPT>

</HEAD> ‘
<BODY ONCLICK="outliner();">

<H1 CLASS="expandable” child="info">
Click here for more information.

</HL>
<DI¥ ID="info” CLASS="collapsed">

These contents arenot displayed initially. Clicking on theheader above displays them.
</DIV>

</BODY>
</HTML>

With this code, any elementcan actas the click source for displaying or
hiding other information. To make an elementactasa click source, assignit
a class name ofexpandable and give it a custom attribute named child.

The expandable class defines the mouse pointer to be a hand whenitis
over an elementof the class, The expandable class only standardizes the appear-
anceofclick sources, so using it is optional. You can modify the class to fur-
ther standardize the appearance of expandable items.

The custom child attribute must contain the ID ofthe data thatis to be

displayed or hidden. Clicking on the expandable item causesthe data’s class
nameto be changed from collapsed to expanded or vice versa, depending on
whetherit is currently hidden or displayed. You shouldinitialize the data‘s class
nameto collapsed or expanded to specifyits initial appearance.

Expanding and Collapsing Outlines
Theprevious example demonstrates how to generically display and hide contents.
The code can be extended to generically create an expandingandcollapsing
outline. The following scenario demonstrates how to subclass thelist container

318

168

ELEVEN: Dynamic Styles

(UL or OL) elements to support outlining. Whenthis code is on the page,lists
on the page support expanding and collapsing.
<HTML>

<HEAD>
<TETLE>Expanding and Collapsing Outline</TITLE>
<STYLE TYPE="text/css">

/* Outline style sheet */
UL {cursor:hand; color:navy}
UL UL (display:none; margin-left: 5pt}
-leaf {cursor:text; color:black}

</STYLE>
<SCRIPT LANGUAGE="JavaScript">

function checkParent{src, dest) (
/f Search for a specific parent of the current element.
while (sre != null) {

if (sre.tagName == dest)
return src:

src = src.parentElement;
}
return null;

}

function outline() {
// Expand or collapse if a list item is clicked.
var open = event.srcElement;
// Be sure the click was inside an LI element, This test
// allows rich HTML inside lists.
var el = checkParent(open, "LI");
if (null [= e1) {

var pos = 0;
// Search for a nested list.
for (pos = @; pos < el.children.length; post)

if (uL" el.children[pos].tagName)
break;

if (pos == el.children. length)
return:

}
else

return;
el = el.children[Lpos];
if ("UL" == el.tagName) (

(continued)

319

169

PART III: DOCUMENT STYLE AND ANIMATION—

/f Expand or collapse nested list.
if ("" == el.style.display)

el.style.display = "block";else
el.style.display = "";

J
event.cance]Bubble = true;

}

document.onclick = outline;
</SCRIPT>

</HEAD>
<BODY>

 '
Item 1

<LI CLASS="leaf">Subitem 1
Subitem 2

<LI CLASS="leaf">Subsubitem 1

 +

<LI CLASS="leaf">Item 2

</BODY>

</HTML>

Creating an Expandable Table of Contents
Combining an expanding andcollapsing outline with the mouse effects intro-
duced earlier in this chaptercan create a highly interactive menu. The HTML
usedto create this documentis the standard HTMLforcreatingnestedlists.
Style sheets and code bring the standard HTMLalive asan interactive outline.
Because a standardlist is used, this page degrades gracefully on browsers that
do not support Dynamic HTML—for example, Internet Explorer3.0 displays

_ the documentas a standard bulletedlist.
Thecode for this example can be found on the companion CD. Tocre-

ate an expandable menu,follow these steps:

1. Create a bulleted list to represent the expandable items, but to
makethelist more user-friendly, replace the standard bullets with
images. With Dynamic HTML,these images are changed to repre-
sent the expanded and collapsed state of each item. The twostates

320

169

ELEVEN: Dynamic Stylesen

are definedusingstyle sheets, as shown in the following code frag-
ment. A special class, open, is specified to represent the expanded
state. Because adding the open class gives the CSS style rule a higher
precedence than the default case, the open.gif file is displayed.
/* GIFs of an open and a closed folder to use in

place of the standard bullets */
UL.toc LI {list-style-image:url(close.gif)}
UL.toc LI.open {list-style-image:url(open.gif)}

/* Colors for highlighted menu options and for the selected
link. ¥/

UL.toc A:active. UL.toc A.select {color:white;
background: blue}

UL.toc .over {color:red} /* Highlight cotor +/

2. Contain the child elementsofalllist items within a nestedlist for
each item. The codefor this example requires the nested ULto im-
mediately follow the Anchor element representing the topic header,
as shown in the following code fragment. Therefore, rich HTML
cannotbe usedwithin the top-level link. If rich HTML is desired, the
provided script can be extended to walk forward and skip over anyof the extra elements.

Qverview of HTML and CSS

HTML "4.0"

CSS Features

<LID
CSS Positioning

<LIDSA HREF="chl/settings. htm" TITLE="System">
System Settings

3. Combinethis layout with the appropriate script to create a com-
pletely expandable outline.

The complete documentandthescript necessaryto create the expanding
outline are shown in the following code. This example can be extended with more
topics and children simply by adding more HTML—noextra codeis necessary.

321

170

e nn]
PART If ls: DOCUMENT STYLE AND ANIMATION ELEVEN: Dynamic StylesSeenee aee

322

<HTML>
<HEAD>

<TITLE>Contents</TITLE>
<STYLE TYPE="text/css">

BODY fbackground:navy; color:white}

UL.toc {cursor:hand}

‘/* Set image for the bulleted Tist. */
UL.toc LI {list-style-image:url(close.gif))
UL.toc LI.open {list-style-image:url(open.gif)}

function mouseEnters() {
// Be sure the element is not the current selection and
// that it is an anchor.
if ((curSelection != event.toElement) &&

("A" == event.toElement.tagName))
setStyle(event .toElement,"over");

}

function mouseLeaves() {
// Again, be sure the element is not the current selection
/f and that it is an anchor.

UL.toc UL {list-style:none} if ((curSelection != event.fromElement) &&
("A" == event. fromElement.tagName))

/* Hide the child elements by default. #/ setStyle(event.fromElement, "");UL.toc UL {display:none}
/* Display the child elements. */
UL. toc UL.expanded {display:block}

UL.toc LI A {text-decoration:none; color:yellow;
font-weight:bold}

UL.toc LI UL A {color:white}
UL.toc Aractive, UL.toc A.select

{color:white; background:blue}
UL.toc .over (color:red} /* Highlight color +*/
UL.toc UL P {margin-top:8; margin-bottom: 2}</STYLE>

<STYLE TYPE="text/JavaScript">
/* Technique to display the outline in Netscape

}

function outliner() {
var child = null, el = null;
/* Assumes that the DIV containing the child

elements immediately follows the heading anchor. */
switch (event.srcElement.tagName) {
case "

ei = event.srcElement.parentElement;
child = document.alllevent.srcElement.sourceIndex + 1];
break;

case "LI":
el] = event.srcElement:
child = document.all[Levent.srcElement.sourceIndex + 2];

Navigator 4.0. +#/ break;
/* Define an alternative style for "UL.toc UL", */ }
contextual (classes.toc.UL, tags.UL).display = "block": /* Be sure the child element exists and that it is the

</STYLE> child LI. #*/
<BASE TARGET="DEMO"> if ((null {= child) && ("UL" == child.tagName) &&
<SCRIPT LANGUAGE="JavaScript"> cL child.parentElement.tagName)) {

// Generic display code if (™" == child.className) {
// Collapse the item.

// This technique allows you to write generic code that child.className = “expanded";
// automatically causes related contents to be either el.className = “open”;
// displayed or hidden. }

else {
var curSelection = null; // Expand the item.child.className = "";
function setStyle(src, toClass} { el.className = “closed”:

// Format the element to the specified class. }
if (null != sre) }src.className = toClass;

170

(continued)

323

171

PART LEI: DOCUMENT STYLE AND ANIMATIONNS-

if ("A" == event.srcElement.tagName) {
if (null != curSelection)

setStyle(curSelection, "");
// Save and highlight new selection.
curSelection = event.srcElement;
setStyle(curSelection, “select");

}
}

</SCRIPT>
</HEAD>
<BODY>

<UL CLASS="toc” ONCLICK="outliner();”
ONSELECTSTART="return false;" ONMOUSEOVER="mouseEnters();"
ONMOUSEOUT="mouseLeaves();">

HTML and CSS Overview

HTML "4.8"
 ,

CSS Features

CSS Positionirng

<A HREF="chl/settings.htm"
TITLE="System Settings">

System Settings,

Fundamentals of HTML Scriptting

<A HREF="ch2/langs. htm”

TITLE="Supported Languages">
Supported Languages

324

171

ELEVEN: Dynamic Styles

<A HREF="ch2/guidelns. htm"

TITLE="Variable Naming Guidelines">
Naming Conventions

<1-- New options can be added simply by adding

more list items. -->

</BODY>
</HTML>

This example demonstrates how to write generic reusable code. The menuis
completely encapsulated basedon style sheets and scripts that are associated
directly with the table of contentslist. This example can be used in any docu-
ment without modification to the documentor thisscript.

While this page downgrades gracefully in browsers that do not support
style sheets and with the style sheet support in Internet Explorer3.0,it uses
special codeto display correctly in Netscape Navigator 4.0. As of that release,
the display:none value is recognized and the child elements are notdisplayed.
Because Netscape Navigator does not support dynamic style manipulation,the
outline cannot be dynamically expandedto display the nested data. To display
correctly in Netscape Navigator, this documentuses the following JASSstyle
sheetscript. This style sheet is recognized only by Netscape Navigator 4.0 and
is used to redisplay the hidden contents. TheJASSstyle sheet follows the CSS-
defined style sheet in the document.
<STYLE TYPE="text/JavaScript">

/* Define an alternative style for “UL.toc UL". */
contextual(classes.toc.UL, tags.UL).display =

</STYLE>

This techniquefor defining aJASSstyle sheetis useful for tweaking the ren-
dering between Internet Explorer 4.0 and Netscape Navigator 4.0. You can
define otherstyles for use in Netscape Navigator using JASS; for more infor-
mation, refer to the Netscape Website (www.netscape.com).

Text Animation Techniques
Changingthe style of an element in response to a timer can animatetext.
Scripts can modify one or morestyles on every signal from a timer. The fol-
lowing two examples demonstrate changing the appearance of an elementover

325

172

PART 1 it: DOCUMENT STYLE AND ANIMATION

326

time. These examples can be modified to change any CSS property of the
element.

Modifying a document’s appearance using a timer is useful for drawing
attention to information on the document, The techniquecan beusedin lieu
of using large animated GIFs; animating text with a few lines of script always
yields better performance than downloading GIFs that serve the same purpose.

As written, these sampleswill not work on downlevel browsers, but you
can easily add codeto test what browseris runningthe page, andstart and stop
the timer onlyif the browseris Internet Explorer 4.0.

Elastic Text

Thefollowing simple demonstration ‘changesthe CSSletter-spacingproperty of
an element in responseto a timer. This technique can be usedto add an inter-
esting effect to headers or other contents.
<HTML>

<HEAD>
<TITLEDElastic Text</TITLE>
<SCRIPT LANGUAGE="JavaScript">

/f Array of sizes to cycle over
var sizes = new Array("@px", "1px", “Zpx™, “4px”, "8px"};
sizes.pos = @:

function rubberBand{) {
var el = document.all.elastic;
if (null == el.direction)

el,direction = 1;
else if ({sizes.pas > sizes.length - 2) ||

(@ == sizes.pos))
el.direction *= -1;

el.style.letterSpacing = sizes[sizes.pos += el.direction];
J

</SCRIPT>
</HEAD>
<BODY ONLOAD="window.tm = setInterval(‘rubberBand(}",

ONUNLOAD="clearInterval (window. tm) ;">
<H1 ID="elastic” ALIGN="Center">This Is Elastic Text</H1>

</BODY>
</HTML>

108) ;"

Pulsating Elements
The following code extends the previous example by modifying multiple
elements on each tick of the timer and by using a newclass to specify the
alternative style:

172

ELEVEN: Dynamic Styies

<HTML>
<HEAD>

<TITLE>Pulsating Buttons</TITLE>
<STYLE TYPE="text/css">

.pulsate {letter-spacing:2; font-weight:bolder; color:blue}
</STYLE>

<SCREPT LANGUAGE="JavaScript">
function pulsate() {

// Get all] elements with the pulsate name or ID.
var pel = document.al].pulsate;
if (null == pél.length) // Only one element

pEl.className = pE1.className == “pulsate™ ?
vw: "pulsate™:

else // Iterate over all pulsate elements.
for (var i = 4:

with (pE1Li])
i < pEl.length; i++)

className = className == “pulsate" ?
“": "pulsate":

}
</SCRIPT>

</HEAD>
<BODY ONLOAD="window.tm = setInterval('pulsate()', 1508);"

ONUNLOAD="clearInterval (window. tm) ;">
<INPUT TYPE=BUTTON NAME="pulsate”™ VALUE lick Mel">
<INPUT TYPE=BUTTON NAME="pulsate” VALUE="CTick Me Too!"™>

</BODY>
</HTML>

327

173

Pe Lieatee oat ;
PAPE reeEapraEuTetaber gEoo

CHAPTER TWELVE

Dynamic Positioning

Css (Cascading Style Sheets) provides the syntax for specifying the precise
positions of HTML elements. Dynamic positioning uses the object modelto
access and manipulate the positions of elements in the document through
the CSS object model and through the rendered positions of the elements
on the screen.

Precise control over positioning elements with HTML was pioneeredin
Microsoft Internet Explorer 3.0 using the HTML Layout control. The HTML
Layout control was designed as an ActiveX control that interpreted an early
version of the CSSpositioning syntax. An ActiveX controlwas used rather than
embedding the supportdirectly into the browserto give the W3C (World Wide
WebConsortium) more time to define andfinalize a positioning syntax. Inlate
1996,a syntax was agreed upon in the W3C CSS Positioning (CSS-P) working
draft. Scott Furman, a representative of Netscape, and I, as Microsoft’s repre-
sentative, cowrote the draft. Internet Explorer 4.0 and Netscape Navigator

i 4.0 both support the CSS-P working draft for positioning elements, so pages
ey] Bi B 4 Rae authored using CSS-P have a fair degree ofinteroperability between browsers.

rhe Lie es Ieper There arestill some minordifferences between browsers, however, in the exact
ates ati se : rendering of an element’ size and position.EAIPILetete ete CEE ye The CSS-P working draft specifies the CSS syntax for definingtheinitial

ahd ! a ia i placement of elements on the page;it does not define the scripting model. The
object model exposed in Netscape Navigator 4.0 for moving positioned ele-
ments is different from the model exposed in Internet Explorer4.0, Netscape
Navigator’s model providesa subset of the functionality available in Internet
Explorer.

‘Lhe CSS-P working draft defines three types of positioning: static, abso-
lute, andrelative. Static positioning is the default and correspondstothe tradi-
tional way HTMI.documentsare laid out. In absolute positioning, an element
is taken out of the normalflow of the documentand positioned according to
the parent coordinate system. The absolutely positioned element has noeffect
on any ofits surrounding elements in the document. In relative positioning,

Patebe ;: Hw E

2Eeyore
sahes ;

Ei

329

173

174

—

PART II: DOCUMENT STYLE AND ANIMATION TWELVE: Dynamic Positioning

CSSPositioning Properties
The CSS-P workingdraft defines new CSS properties supported by both Internet

an elementstays in the flow of the documentandis positionedrelativeto its
normal position in the flow. When the documentis resized, a relatively posi-
tioned element may move and even change in shape as the documentis
reflowed. Absolutely andrelatively positioned elements create coordinate sys-
tems for positioning any child elements they might have.

This chapter introduces the CSS-P properties and the scripting model for
controlling the location of any element. The following topics are covered in

Explorer 4.0 and Netscape Navigator 4.0, The following table lists these prop-
erties; the default value for each property is shown in boldface.

 is ch . Allowablethis chapter: Property Values Applies To Description
& CSS positioning This section discusses the CSS enhancements position static | absolute| All elements Specifies whether the

for controlling the positions of elements. CSS positioning sup- relative ieineahe
ports two new ways to Position an element: relative, which posi- (static), relative to its
tions an elementrelative to the element’s normallocation in the normalposition in the
document's flow, and absolute, which moves the element outside flow (relative), or outside
the flow, whereit can be positioned with precise accuracy. This the flow (absolute).
section introduces the CSS positioning properties and the rela- top, left auto | <length> | All elements Define the top andleft
tionship between these two positioning models.

@ Scripting CSS positioning CSS positioning properties can be
dynamically manipulated through the Dynamic HTMLobject
model. This section shows you how to animate text and graphics
by using timers and how to respondto user events to enable
drag-and-drop operations.

@ The rendering context This section demonstrates the relationship
between an element’s position andits surrounding elements and
introduces the rendering relationship between elements, which
defines how an element's position is determined in the document.

width, height

<percentage>

auto | <length> |
<perceniage>

with positionset to absolute
or relative
All block ele-
ments, replaced
elements (for
example, IMGelements and
intrinsic controls),and elements
with position set.to absolute

positions of the element
relative to its parent
rendering context.
Define the width and
height of the element.
Percentages are relative
to the parent renderingcontext.

clip auto | rect(top All elements Defines the clipping
right bottom left) with position region for the element.set to absolute

css Positioning z-index auto | number All elements Specifies an element’swith position position overlapping or
The CSS-P working draft defines extensionsto style sheets to provide increased set to absolute being overlapped by
positioning control over HTML elements. Absolute andrelative positioning or relative other elements.
allow the Web authorto precisely control the location andsize of an element visibility inherit | visible | All elements Specifies whether the
and to overlap elements. Combining these enhancementswithscripting allows hidden elementis visible. A
the animation of elements. This section providesa brief introductionto using hidden elementis not
the CSS positioning enhancements. removed eromy thelocument’s flow.

overflow visible | hidden | All elements with Specifies whether

330

174

auto | seroll position set toabsolute andall
block elements

scrollbars are displayedif the contents do not
fit in the element.

331

175

PART Ulf: DOCUMENT STYLE AND ANIMATION2

Positioning Elements

332

Traditionally, most elements in HTMLarepositionedrelative to previousele-
ments in the flow of the document. One exception to this rule is the ability to
align images and other objects and have text wrap around them. With the
introduction of CSS positioning, elements can nowbe positioned on a fixed
planeseparate from the document's flow oroffset from their traditional posi-
tion in the document. CSSpositioning allows elements to overlap and provides
Web authors with more precise control over the layout than was previously
possible.

As mentioned, the CSS position property takes one of three values: static,
absolute, or relative, Static positioning,the default, has no effect on the tradi-
tional layout of the HTML document.

Relative positioningis used to offset an elementfrom its normalposition
in the flow. Setting an element's position value to relative does notbyitself change
the layout, butifyou also set the top or left property, the elementis offset from
its normalposition in the flow. In the text in Figure 12-1, one wordisrelatively
positioned with offsets of 10 pixels in both the x and y directions. Notice that
the rest of the documentis laid out just as it would be if the word wasn’t off-
set, Relative positioningis especially useful when you are animating elements
such as images neartheir normal positions in the document.

Pilates)

An element can either be positioned rolati to itslocation in the document's flow or be posihoned at an
absolute location in the document.

Figure 12-1.
A relatively positioned element.

175

TWELVE: Dynamic Positioning

Absolute positioning is used to specify a fixed location for the element
outside the flow of the document. In the text in Figure 12-2, one wordis ab-
solutely positioned near the upperleft corner. Notice that no spaceis set asidefor this word in the flow.

E Absolute Positioning - Microsoft Internet Explorer [ifm a |

absobent can either be positioned relative to its
location in the document's flow or be positioned at an
lecation in the document.

Figure 12-2.
An absolutely positioned element.

Because absolutely positioned elements are positioned outside the flow, the
location of the element within the document's source becomesless important.
The elementshould be placed in the source in a location that would provide
reasonable results on down-level browsers that do not recognize the position-
ing enhancements and therefore display the image in the flow of the document.

In Internet Explorer 4.0, all elements in the body of the documentsup-
port static and relative positioning. However, only the following elements
support absolute positioning:

m Applet @ Input
@ Button @ Object
@ DIV @ Select

@ Fieldset @ Span
m= [Frame @ Table
m IMG @ TextArea

333

176

PART IEil: DOCUMENT STYLE AND ANIMATIONEET

Toabsolutely position text, you should use a Span or DIV element. In general,
the Span and DIV elements can be used interchangeably, but when youare
deciding whetherto use Span or DIV, consider the expected appearance of the
element in down-level browsers. If the text requires a break beforeit and a break
afterit, a DIV elementshould be used;if the text can appearin the flow ofthe
paragraph, a Span elementshould be used. The documentshould always be
tested on all target platformsto ensure thatit displays adequately.

Defining Coordinate Systems

334

Every elementthatis absolutely or relatively positioned must be positioned
relative to another elementor position in the document. Thelocation from
which the elementis offsetis called the root of the element’s coordinate system.
Bydefault, relatively positioned elements havetheir root based on their nor-
malflow position in the document. Therefore,if the documentis reflowed, the
root of the coordinate system as well as all child elements within that coordi-
nate system will move.

Absolutely positioned’ elements are positioned with respect to some con-
taining element's coordinate system. The upperleft corner of the document
defines the default coordinate system forall absolutely positioned elements.
Wheneveran elementis relatively or absolutely positioned, a new coordinate
system is defined for all elements it contains.

Size and Position Properties
Whenan elementis positioned either absolutely orrelatively, its top and left
properties specify the offset of the elementfrom the upperleft corner of the
coordinate system. The width and height properties define the physical width
and heightof the elementasit is rendered on the screen. Whenyou are using
relative sizes, the width and height properties are interpretedrelative to the size
of the element defining the coordinate system. Thetop, left, width, and. height
properties can be specified as a percentageorin any of the units (for example,
points, pixels, and ems) defined by CSS. Figure 12-3 shows the top, left, width,
and height properties of two nested DIV elements.

-

176

TWELVE: Dynamic Positioning

[SpeeteemReeeyceeee

top: 50 pixels;
Jett: 80 pixels

—___ wiath: 225 pixels ————»

[Absolutely positioned DIV element,
ates a coordinate system

top: 100pixels;
left: 40 pixels
i—— width: 160 pixels —»
Absolutely positionedlement inside the DIV

height.100pixels

23ga2gA

S2
Figure 12-3.
Nested coordinate systems defining the roots for the positions and sizes ofelements.

Automatic Sizing
Forthe top andleft properties, the default auto value is the element’s normal
position in the flow. With top and left both set to auto, a relatively posi-
tioned elementis displayed the sameasa static element, and an absolutely
positioned elementis displayed outside the flow but anchored atthe position
it would have asa static element. If the width or height property is omitted, the
elementis automatically sized based on its contents.

The visibility Property
By default, an elementis visible based on whetherits parent elementisvisible.
For example, hiding the Body elementby setting the visibility property to hid-
den also hidesall the contents in the document. You can override this inheri-
tance by explicitly setting an element's visibility property to hidden orvisible,
rather than the default, inherit. When the visibility propertyis explicitly set, the
elementoverrides any inherited value andis displayed or hidden appropriately.

335

177

PART Ia: DOCUMENT STYLE AND ANIMATION

The z-index Property
Thez-index property defines the graphical z-order, or overlapping, of elements
in relation to other elements. Every coordinate system defines a new z-ordering
space for the rendered elements, thereby making the z-ordering hierarchical.
For example,if a DIV elementis absolutely positioned on top of the body’s
contents, the contents of the DIV element cannot appear behindthe textin
the body. All the elements within the DIV element can only be positioned
relative to the DIV element’s coordinate system.

By default, all elements that define a coordinate system, including the
Body element,are positioned with a z-index of 0. Other elements can be posi-
tioned behind the text by having a negative z-index value. Elements whose 2-
index values are notspecified are implicitly assigned z-index values according
to their orderin the source document. Therefore, an elementthatis positioned
later in the documentis displayed above any elements positionedearlier.

Clipping Regions

336

Eachabsolutely positioned elementhasa clipping region associated with it. The
purposeof this clipping region is to define the portion of the documentavail-
able for displaying the elementandits contents. Anythingoutside that portion
is clipped, or not displayed, by the document.

The clipping region can be viewed in terms of an opaquepiece of paper
that covers the physicalareaof the absolutely positioned element.In this piece
of paperis a rectangular hole that defines the visible area of the element.
Everything notvisible through the hole in the paperis clipped and becomes
invisible.

Figure 12-4 illustrates how clipping regions work. Theleft side of the
figure showsa page with no clipping performed. Thelarger rectangle is a DIV
element. The smaller rectangle is contained in the DIV elementbutabsolutely
positioned outside the DIV element’s borders. The rightside ofthe figure shows
the same page with clipping performed.

The default value ofthe clip property is auto, which causes the contents
not to be clipped. You can setthe clip property value to be a rectangle:

clip:rect (top right bottom left)

Thetop, right, bottom, andleft settings define the clipping rectangle with respect
to the absolutely positioned element’s upperleft corner. Each of the four
settings can be specified with any valid CSS length or can beset to auto to

177

TWELVE: Dynamic Positioning

prevent clipping in that direction. If the top and left settings are negative,
elements above and totheleft of the absolutely positioned element can be
included within the clipping region.

Rebateakaaens
Ee: MerGet 2

The clip value can bepsedto hide contents This elementis
Pa bsolutely teraaoove ana

ositioned with ow this DIV. Notice
espect to the borders and the ‘tepet

element positioned [DIV element ment positioned Veeyond the right yond the rightorder, Contents can rder. Contents can
continue beyond the atinse beyondthei seified chipping

Figure 12-4.
4 DIV element with part of its contents outside its borders, with no clipping
(on theleft) and with a clipping rectangle defined (on. the right).

The overflow Property
The overflow property controls how any contents that extend beyond the physi-
cal size of the element are handled. The overflow property takes one of four
values: visible, hidden, auto, and scroll. With overflow setto visible, all contents are
displayed, even contents outside the specified height and width of the element.
With overflow set to hidden, only the contents within the element's height and
width ace displayed; no contents flow beyond the specified boundaries.

The auto andscroll values are used for adding scrollbarsif the contents
are larger than the height and width of the element. Scrollbars can be added
to any absolutely positioned element, to DIV elements with a defined height,
and to any elementthat supports the CSS float property. The overflow value
scroll always displays scrollbars, while the value auto displays them only when
they are required.

The following document demonstrates how to create a scrolling sidebar:
<HTML>

<HEAD>
<TITLE>Scrolling Sidebar</TITLE>

</HEAD>

(continued)

337

178

PART TIT: DOCUMENT STYLE AND ANIMATIONcecm

338

<BODY>
<DIY STYLE="overftow:scroll; float:left;

width:12@pt; height:12apt">
<H1>Scrolling Sidebar</H1>
<P>This text appears in a scrolling window that is floating

to the left of the main contents.</P>
</DIV>
<P>These contents appear to the right of the scrolling DIVelement.

</BODY>
</HTML>

Figure 12-5 shows this document,

Scrolling
Sidebar
This text appears in a
scrolling window thatis

fozine to the left oftheal

Figure 12-5.
A document with a scrolling sidebar.

Whenscrollbars are specified for an element, they automatically extend
to include absolutely positioned child elements. This extension ensures that
the user can reachall child elementsthat are absolutely positioned. You can
create forms and complex layouts thatare fully accessible. The exception to
this feature is any elementthatis positioned negatively. Under no circumstances
do the scrollbars extend into the negative coordinate space.

Whenscrollbars are displayed using the overflow property, clipping does
not affect absolutely positioned child elements; the usercanstill scroll to them,
and theywill be visible. Instead,if the clipping region doesnotinclude the
entire element with scrollbars, the elementitself will be clipped. Figure 12-6
demonstrates this relationship. In the screenshot on the right, the absolutely

TWELVE: Dynamic Positioning

positioned elementis not visible becauseit is inside the DIV elementwith the
scrollbars.

) Clipping the Contes

beast avove ana
ow this DIV. Notice
borders and the

Am ae ae
vow thas DIV.wice the borders

‘ment positioned dthe clement
yond the rightrder, Contents can
atinue beyond the
seified clipping

stoned beyondright border,sotents can
Figure 12-6.
On the left, an element with a clipping region and withoutscrolibars; on the
right, the same element with the same clipping region and with scrollbars.

NOTE: Relatively positioned elements have no effect on the scroll-
bar. Only the element’s original space in the flow is used in the
scrollbar calculation because the relatively positioned element's lo-
cation in the documentis technically its position in the flow and the
offset is simply a manipulation of the rendering position. Further-
more,relatively positioned elements are mostoften used for anima-
tion. Including these elements in the scrollbar calculations would
interfere with the animation effect. For example, you shouldbe able
to scroll text off the right edge of the screen;no scrollbar should ap-
pearthat would allow the userto scroll the text back into view.

Scripting CSS Positioning
Any element predefined with absoluteor relative positioning can be dynami-
cally moved and resized through scripting. This technique allows positioned
elements to be animated by repositioning,resizing, and dynamically changing
the clipping region of the elément. Manipulating an element's position and
clipping region is done through the style sheet object models.

The CSSposition property in Internet Explorer 4.0 is read-only. For a script
to move an element, the element must be defined to have relative or absolute

339

179

PART DOCUMENTSTYLE AND ANIMATION

positioning whenit is created, whetherit is created from the source code or
inserted using dynamic contents, the topic of Chapter13, “Dynamic Contents”
This rule holdstrue evenif the style sheet is modified through the CSS objectmodelafter the element is rendered.

CSSPositioning Properties
Each CSSsize or position property is exposed througha set of properties that
makeit more convenient and simplerto access and manipulate the element's
size andlocation. Like the other CSS properties, top, left, width, and height are
exposed throughthestyleproperty on the element. These properties are strings
andreturnthe values and the specified units—for example, an element with
a top value of 20 points returns 20pt.

Manipulatingthis string can befairly difficult, especially when your code
is trying to reposition an elementon the screen. Therefore, in addition to the
string-value properties, four properties that representjust the specified value
are exposed: posTop, posLeft, posWidth, and posHeight. If the top valueis the string
20pt, the posTop value is the number 20; as a number,it can be manipulated
more directly.

Because many measurements in the Dynamic HTML object model use
pixels, four additional properties are exposed that return thesize and position
values converted to pixels: pixelTop, pixelLeft, pixelWidth, and pixelHeight, Assign-
ing a value to one of these properties causes the value to be converted back
to the originally specified units whenit is exposed throughthe pos* andstring-
value properties.

These twelvestyle sheet properties are determined when a documentis
parsed.In the section “The Rendering Context”later in this chapter, proper-
ties for accessing the rendered size and position of the elementare explained.
Together, these properties let you create completely custom layouts in which
the script controls the entire rendering of the document.

Absolute Positioning

340

The following examples dernonstrate how to manipulate absolutely positioned
elements. Absolutely positioned elements are used to enable drag-and-drop
operations and to position elements at fixed locations on the screen.

Static Logo
Using the CSS background property, you canfix the position of the background
image to create a static logo that wor’t scroll with the window. For example,
this codefixes an image in the lower right cornerof the client window:

179

TWELVE: Dynamic Positioning

BODY (background: URL(logo.gif) fixed bottom right no-repeat}

Using CSS alone, you cannotfix elements other than background images so
that they won't scroll with the window. However, using absolute positioning and
a simplescript you can add this behavior. This examplecreatesstatic text that
alwayssits in a fixed position relative to the upperleft corner of the current
window. The code for positioning the text tracks the onscroll events in order
to move the element when the documentis scrolled.

This example text logois similar to the television logos that appear ran-
domly throughout the broadcastofa show. Althoughthis example displays the
logo constantly, it can easily be revised to cause the logo to disappear and
reappearafter a scheduled amountof time by simply swapping the display
property between none and block using a timer. (If an element's display prop-
erty is set to none by a globalstyle sheet, a script cannot changeits value to an
emptystring to display the element. Instead, the script mustexplicitly set the
display property to block or inline, as appropriate for the element.)

The following code is the simplest implementationofa text logo.It places
the logo in the upperleft corner of the screen, which requires only tracking
the scroll event and does not require any calculations to determine the logo’s
position. To display the logo in any of the other corners, you mustalso track
the onresize event. When the userresizes the page, the logo's position must be
recalculated based on the new windowsize, and the width or height of the
elementitself must be taken into consideration.
<HTML>

<HEAD>
<TITLE>Static Logo</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function resetLogo() {
document.all.Logo.style.posTap = document.body.scrollTap;
document.all.Logo.style.posLeft =

document .body,scrollLleft;
J

</SCRIPT>
</HEAD>
<BODY ONSCROLL="resetLogo(}">

<DIV ID="Logo” SRC="logo.gif”
STYLE="position:absolute; z-index:-1; top:@px: left:@px;

color:gray">
Inside DHTML

</DIV>
<P>Add HTML document here.</P>

</BODY>
</HTML>

341

180

PART III: DOCUMENT STYLE AND ANIMATION

342

The logo works best with light-colored text; otherwise, it may obscure
relevant contents on the page. The logo can be positioned either behind
or on top of the contents by setting the z-index property: a —1 value positions
the logo behind the contents; J (the default) positions the logo on top of the
contents, The logo canfall either behind or on top of other elements depend-
ing on the other elements’ z-index values.

BouncingBall .
This exampleillustrates the relationship between the position properties and
the size of the window. The following codeis an extension ofthe static logo
example—here an image moves around on the screen and bouncesoff the
edges of the window:
<HTML>

<HEAD>
<TITLE>Bouncing 8al]</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var x = @;
var y = @; +var offsetx = 4;
var offsety = 4;

function bouncelt{) {
var el = document.all.bounce;
x += offsetx;:
y t= offsety;
if ((x + el.offsetWidth >= document.body.clientWidth +

document .body.scroltleft) ||
(x <= document.body.scrollLeft)) {

offsetx = -offsetx;
if (x <= document.body.scrollLeft)

x = document.body.scrotlLeft;
else

x = document.body.clientWidth - el.offsetWidth +
document. body.scrollLeft;

if ({y + el.offsetWidth >= document.body.clientHeight +
document.body.scrollTop) |{

{y <= document.body.scrollTop)) {
offsety = -offsety;
if (y <= document.body.scrol1Top)

y = document.body.scrollTop;
else

y = document.body.clientHeight - el.affsetHeight +
document .body.scrollTap;

180

TWELVE: Dynamic Positioning

}
el.style.posLeft = x;
el.style.posTop =

}
</SCRIPT>

</HEAD>
<BODY ONLOAD="window.tm = setInterval(‘bounceIt(}', 18);"

ONUNLOAD="clearInterval (window.tm) ;">
<IMG SRC="ba)1.gif" ID="bounce”

STYLE="position:absolute; top:@; left:@; z-index:-1">
<H1>Bouncing Ball</H1>
<P>The ball bounces around and around under the text.</P>
<P>This page works even if you resize

or scroll the window.</P>
<P>This page takes advantage of:
<UL

DAbsolute positioning
Moving elements based on the timer
Z- indexing
Client size and scrollbar position properties

</BODY>

</HTML>

A timer controls the movementof the image on the screen. The image
moves behindthe text becauseits z-index value is lower. This example animates
an image, but any HTMLcan be animatedacrossthe screen. For example, you
can replace this image with a DIV element, supply the DIV elementwith a
width, add some HTMLcontents, and animateit.

WipeEffects
Scripting the CSS clip propertylets you create interesting wipe effects. For a
wipe-in effect, the contents of an element gradually appear on the screen,
beginning with one edge and ending with the opposite edge. For a wipe-out
effect, the contents disappear in the same manner. The following document
provides a function for creating different vertical and horizontal wipe effects
on an absolutely positioned elementas well as buttons for testing the wipeeffects:
<HTML>

<HEAD>
<TITLE>Wipe Effects</TITLE><STYLE TYPE="text/css">

BODY {text-align:center}
(continued)

343

181

PART f2ts DOCUMENT STYLE AND ANIMATION TWELVE: Dynamic Positioning

wipe {position:absolute; top:2@@pt; left:40%;
clip:rect(@ 100% 180% @); border:2pt navy solid;

width:1@@pt; background:white} }P {margin-top:@pt; margin-bottom: apt}
INPUT {width;: 160%}

el.size = @;
break;

else // Set up wipe-out.
switch (direction) {

</STYLE> . ; . case “clipBottom":
<SCRIPT LANGUAGE Javascript" ID="WipeEffects"> el.clipRight = “100%”;

function wipe(direction) { el.clipBottom = el.offsetHeight;
var el = document.all.wipe; el.size = 0;
/* The second argument is optional and specifies whether a el.ine *= -1;

wipe in or wipe-out occurs. ine} default is a break:
wipe-in. #/ case “clipRight":

var inte = true; el.clipBottom = "1@8%";
if Cargumentsf1] != null) el.clipRight = el.offsetWidth;

into = arguments{1]; el.size = 0;. . el.inc #= -1;
if (null = ee nt) { break;

dt unelaze effect. ; | case “clipTop":
// All wipe information is stored in the element, el.clipBottom = "18Q%";

el.init = true; — el.clipRight = "180%";
elclhion) = 6; el.clipHeight = el.offsetHeight;
el.clipRight = @; el.size = el.offsetHeight;
el.clipBottom=@; break;
el.clipLeft =@ case “clipLeft":
el.inc = 4; el.clipBottom = "180%";7 7 / B el.clipRight = "100%";
if (into) // Set up wipe-in. el.clipleft = @;

switch (direction) { el.size = el.offsetWidth;
case “clipBottom" break;

el.clipRight = "108%"; }
el.size = el.offsetHeight; }
peor ; // Increment clip.

case "clipRight”: el[direction] += el.inc;
el.clipBottom = "100%"; /f Set clip.
el.size = el.offsetWidth; el.style.clip = "rect(" + el.clipTop +" "+
break; el.clipRight +" " + el.clipBottom + " "+

case "clipTop”: el.clipleft + ")";
el.clipBottom = "180%"; // Check whether finished.

e1 cl ipRight = "108%"; if (((el.size >= el[direction]) && (el.inc > @)) ||
el.clipTop = el.offsetHeight: (Cel[direction] >= 0) && (el.ine < @)))
el.inc #= -1; setTimeout("wipe(’" + direction + "*, “+ into + ")"
el.size = @; 10);
break; else

case “clipLeft™: el.init = null;

el,clipBottom="100%"; }
SEUet "108%"; ; </SCRIPT>
el.clipleft = el.offsetWidth; </HEAD>el.ine *= -1;

(continued)

344 345

181

182

 PART IIE: DOCUMENT STYLE AND ANIMATION TWELVE: Dynamic Positioning

<BODY> <HTML>
<Hl>Wipe Effects</H1> <HEAD>
<P STYLE="padding-bottom: 5pt"> . <TITLE>Pop-Up Menu</TITLE>

<INPUT TYPE=BUTTON STYLE="width:26@pt" VALUE="Display™ <STYLE TYPE="text/css">

ONCLICK= /* Make the menu float to the left of the text. */
“document.all.wipe.style.clip='rect(@ 100% 180% @)'"> #menu {float:left; width:5@pt; background: lightgrey; |

<FIELDSET STYLE="width:1i3@pt"> border:2px white outset; cursor:default} |
<LEGEND>Wipe-In Effects</LEGEND> ¢/* Hide the pop-up menus initially. #/ |<P><INPUT TYPE=BUTTON VALUE="Wipe to Bottom” #menu .popup {position:absolute: display:none;

ONCLICK="wipe('clipBottom')"> background: lightgrey; border:2px white outset;
<P><INPUT TYPE=BUTTON VALUE="Wipe to Right" width:135pt; margin:2pt}

ONCLICK="wipet'clipRight')"> #menu P {margin-top:@pt; margin-bottom: @pt}
<P><INPUT TYPE=BUTTON VALUE="Wipe to Top” .over {color:navy; font-weight:bold}

ONCLICK="wipe{'clipTop')" </STYLE>
<P><INPUT TYPE=BUTTON VALUE="Wipe to Left” <SCRIPT LANGUAGE="JavaScript™>

ONCLICK="wipe(’clipLeft')"> var curPop = null;</FIELDSET>
function clearCurrent() {

<FIELDSET STYLE="width:13apt"> // Hide the pop-up menu that is currently displayed.
<LEGEND>Wipe-Out Effects</LEGEND> if (null != curPop)
<P><INPUT TYPE=BUTTON VALUE="Wipe fram Bottom" curPop.style.display = "";

ONCLICK="wipe('clipBottom', false)"> curPop = null;
<P><ENPUT TYPE=BUTTON VALUE="Wipe from Right" }

ONCLICK="wipe('clipRight', false)">
<P><INPUT TYPE=BUTTON VALUE="Wipe from Top” function popup) {

ONCLICK="wipe<'clipTop’, false)"> var el = event.srcElement;
<P><INPUT TYPE=BUTTON VALUE="Wipe from Left” clearCurrent();

ONCLICK="wipe('clipLeft’, false)"> // Display a new menu option.
</FIELDSET> if (("P" == el.tagName) &&
<DIV ID=wipe> ("menu” == el.parentElement.id)) {

<P>Home /?/ Position and display the pop-up menu.
<P>News var elpop = document.all[el.sourceIndex + 1]:
<P>Info elpop.style.pixelLeft = document.all.menu.affsetLeft +
<P>About document.all.menu.offsetWidth - 7
<P>Demo elpop.style.pixelTop = el.offsetTop +

</DIV> document.all.menu.offsetTop;
</BODY> elpop.style.display = "btock";

</HTML> curPop = elpop:
}

Creating Pop-Up Menus ; event .cancel Bubble true;
Using absolute positioning, you can create menusthat are displayed when the
user clicks on a keyword or an HTML-defined menubar. You can extend the function highlight() {
following code, which creates an expandable menu of URLs,for use in your iy Highlight the menu options.
own documents. The pop-up menuscanbeeasily enhancedtoslide into view SE ee Ee eeere oeP P D ; if (Cevent.fromElement.tagName == "P") &&
using the wipe effects code in the preceding example. (continued)

346 347

182

183

PART LIT: DOCUMENT STYLE AND ANIMATION

(event.fromElement.parentElement.id == “menu™)}
event.fromElement.className = "";

if (null != event.toElement)
if (Cevent.toElement.tagName == "P") &&

(event .toElement.parentElement.id == "menu"))
event.toElement.className = “over”;

}
</SCRIPT>

</HEAD>
<BODY ONCLICK="cTtearCurrent(}">

<H1l>Menu Example</H1>
<DIV [D="menu" ONCLICK="popup()" ONMOUSEOVER="highlight()"

ONMOUSEOUT="highlight¢)">

<P>Navigate
<DIV CLASS="popup”>

<P>Home
<P>Inside DHTML Information

<P>Tip of the Week

</DIV>
<P>News

<DIV CLASS="popup">
<P>Headlines
<P><A HRE nternet.htm">Internet News <P>Rumor Mi11

</DIV>
</DIV>
<P>Click on a menu option in the box on the left.</P>

</BODY>
</HTML>

Adding Drag Support
By combining absolute positioning with the mouseevents, you can simulate the
dragging and dropping of elements. A simple way to add drag-and-drop sup-
portis to write a script that looks for a dragEnabled attribute on any element.
The script in the following code automatically handles dragging for all ele-
ments that have this attribute, including nested positioned elements, so
the code doesn’t have to be modified every time you add another elementto
drag. If the user holds down the mouse button on an elementthat has the
dragEnabled attribute and then moves the mouse, the elementwill follow.
An alternative technique is to use a special class name value instead of the
dragEnabled attribute.

348

183

<HTML>
<HEAD>

TWELVE: Dynamic Positioning

<TITLE*Adding Drag Support</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// This code allows any absolutely positioned element
// with the custom attribute dragEnabled to be dragged.
Var elDragged = nuli // Element to drag

function doMouseMove() (

}

// Check whether mouse button is down and whether
// an element is being dragged.
if ((1 == event.button) && CelDragged != null)) {

// Move the element.
// Save mouse's position in the document.
var intTop = event.clientY + document.body.scrollTop;:
var intLeft = event.clientX + document.body.scrollLeft;
// Determine what element the mouse is really over.
var intLessTop = @;
var intLlessLeft = @;
var elCurrent = elDragged.offsetParent;
while (elCurrent.offsetParent != null) {

intLessTop += elCurrent.offsetTop
intLessLeft += elCurrent.offsetLeft;
elCurrent = elCurrent.offsetParent;

}
// Set new position.
elDragged.style.pixelTop =

intTop - intLessTop - elDragged.y;
elOragged.style.pixelLeft = .

intLeft - intLessLeft - elDragged.x;
event.returnValue = false;

function checkDrag(elCheck) {
7/7 Check whether the mouse is over an element
// that supports dragging.
while (elCheck != null) {

if (null != elCheck.getAttribute("dragEnabled"))
return elCheck;

elCheck = elCheck.parentElement;

return null;

(continued)

349

184

PART If: DOCUMENT STYLE AND ANIMATION

function doMouseDown() {
// Store element to be dragged.
var eiCurrent = checkDrag(event.srcElement);
if (null != elCurrent) {

elDragged = elCurrent:
// Determine where the mouse is in the element.
elDragged.x = event.offsetX;
elDragged.y = event.offsety;
var op = event.srcElement;
// Find real location with respect to element being

// dragged.
if ((elDragged != op.offsetParent) &&

(elDragged != event.srcElement)) {(
while Cop != elDragged) {

elDragged.x += op.offsetleft;
elDragged.y += op.offsetTop;
Op = op.offsetParent;

} *

function doSelectTest() f{
// Don't start text selections in dragged elements,
return (null == checkDraglevent.srcElement) &&

CelDraggedi=nul1));
}

// Hook up mouse event handlers.
document.onmousedown = doMouseDown;
document .onmousemove = doMouseMove;
// Reset element when mouse button is released.
document.onmouseup = new Function("elDragged = null;
dacument.ondragstart = doSelectTest;
document.onsetectstart = doSelectTest;

</SCRIPT>
</HEAD>
<BODY>

<H1>Dragging Positioned Elements</H1>
<P>These contents are static and can't be dragged. The

following image can be dragged even though it is behind
this text.

<IMG SRC: all.gif" dragEnabled
STYLE="position:absolute; top:14px; left:2@px; cursor:hand;

Z-index:-1;">
<DIV STYLE="position:absolute; top:15@px; left:2@px;

350

ao

184

TWELVE: Dynamic Positioning

border:2px navy solid; width:1@@; cursor:hand”
dragEnabled>

This text can be dragged.
</DIV>

</BODY>
</HTML>

To move an element, this code calculates the element’s new position relative
to the documentbased on the mouse’s position relative to the document. The
mouse’s position is calculated by adding the clientXandclientYproperties to the
scrollTop and scrollLeft properties of the Body element. The element's position
relative to the documentis the sum ofits offsets and the offsets ofall ofits offset
parents relative to their respective rendering contexts. The offset properties
are discussed in the section “The Rendering Context”later in this chapter.

Relative Positioning
Elementsthatare relatively positioned take up space in the normalflow ofthe
document. These elements are positioned offset from their normalflow posi-
tion. The primary function ofthis feature is to animate elements into theircorrect location in the document.

Thefollowing two examples demonstrate animating text onto the screen.
The first example provides an introduction to animating text; the second
example is more comprehensive and providesa set of functionsforcreating a
sequenceofpresentation effects. An examplein the section “Aligning Relatively
Positioned Elements” later in this chapter demonstrates how to cause all rela-
tively positioned elements to be animated fromasingle point on the screen.

Flying Text
In general, when you wanttextto fly in from beyond an edge of the screen,
the text shouldbe invisible initially and then appear after a reasonable amount
of time. To create text that animates in from the edge of the screen, the best
techniqueis to start with the text off screen at a distant negative coordinate
and thensetits initial position based on the state of the browser when the
animation is about to begin.

Because Dynamic HTMLdoesnotspecify a concrete size for the contents
and because the user can scroll anywhere within the document,the initial
position of the elementis very important. Theinitial position of the element must
take into accountthe physical size of the screen andtheposition ofthe scrollbars.
The following code demonstrates how to make textfly in from the right edge
of the screen. This example starts with the text somewhere in the negative

351

185

PART = DOCUMENT STYLE AND ANIMATION

352

coordinate space so that the user cannot reach the text using the scrollbars.
At the time the animation is about to begin, the elementis repositioned be-
yondthe right edge of the screen. This way, regardless of where the useris in
the document, the element always appears to animate onto the page without
a long delay, and under no circumstances can the user accidentally view the
element before the animation.
<HTML>

<HEAD>
<TITLE>Flying Text</TITLE>
<STYLE TYPE="text/css">

Hl {text-align:center}
#tip {position:relative; left:-19@@px)

</STYLE>
<SCRIPT LANGUAGE="JavaScript”>

function slideIn() (
var el = document.all.tip;
// Test whether element is off screen.
if (-100@ el.style.pixelLeft) {

el.style ntStyle = "italic";
// Reposition element beyond right edge of screen.
el.style.pixelLeft = document.body.offsetWidth +

document.body.scrollLeft;

if (20 <= el.style.pixelLeft) {
el.style.pixelleft -= 28;
setTimeout("slideIn();", 58);

}
else {

el.style.pixelLeft = @
el.style.fontStyle = "";

}
}

</SCRIPT>
</HEAD>
<BODY ONLOAD="slideIn();">

<H1 ID="tip">Tip of the Week</HI>
<P>Animating text from off screen</BODY>

</HTML>

Presentation Effects
By expanding on the preceding example, you can easily create presentation
style effects that animate text onto the page. This example demonstrates how
to add custom presentation behavior that can iterate through elementseither

185

TWELVE: Dynamic Positioning

automatically or through the user clicking the mouse. The sequencing is de-
fined by taking advantage of Dynamic HTML'sability to expose unrecognized
elements. A Sequence elementdefinesa set of elements to animate andspeci-
fies whether they should animate automatically or in responseto mouse clicks.
Multiple sequences can be defined by specifying multiple Sequence elements.

Thefollowing document demonstrates two sequences—thefirst sequence
occurs based on a timer, and then the second sequence occurs based on the
user clicking the mouse:
<HTML>

<HEAD>
<SEQUENCE order="Textl, Text2, Text3, Text4, Text5" speed="20"

type="auto” increments=15>
<SEQUENCE order="Text6, Text7" speed="28" type="click™

increments=15>
<TITLE>Presentation Effects</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var slideShow = new Object();

function initSequence(s) {
var sTemp = s,sequences[s.currentSequence];
if (null != sTemp) (

// Get list of element IDs ta sequence.
s.sequencer = new Array);
s.sequencer = sTemp.getAttribute("order").split(", “):
// Initialize sequence.
for (var intLoop = @; intLoop < s.sequencer.length;

intLoopt+)
if (null != document.all(s.sequencer[intLoop]]) {

var el = document.all(s.sequencer[intLoop]];
el.initTop = el.style.posTop;
el.initLeft = el.style.posLeft;

}
s.speed = (null == sTemp.getAttribute("speed")) ?

28 : sTemp.getAttribute("speed™);
s.type = ("auto” == sTemp.getAttribute("type”™));s.increments =

(null == sTemp.getAttribute("increments")) ?
15 : sTemp.getAttribute("increments™):

s.inc = @;
s.position = -1;

}
(continued)

353

186

PART I DOCUMENT STYLE AND ANIMATION

else {
s.position = null:
if (document.onclick == doFly)

document .onclick = new Function();

}

function nextSequence(s) {
// If sequence is available. run it.
if (null != s.position) {

// S.position represents an element in a sequence.
// Run until no more elements are found; then look for
// next sequence.
s.positianHt
if (s.position < s.sequencer,tength) {

s.inc = @;
if (s.type) // Runs on a timer

window. setTimeout("doFly();", s.speed)else // Runs on the click event

document. onclick = doFly;}
else {

s.currentSequencet+;
jinitSequence(s);
nextSequence(s);

}
}
else {

s.position = null;
if (document.onclick == doFly)

document .onclick = null;
}

}

function slide() {
// Initialize sequencer--get all <SEQUENCE> tags.
slideShow.sequences = document.all.tags("SEQUENCE");
slideShow.sequencer = new Array();
if (@ < slideShow.sequences.length) {

slideShow.currentSequence = @:
initSequence(slideShow); // Initialize.
nextSequence(slideShow); // Start first sequence,

}

function doFly() {
var dt, dl;

354

186

TWELVE: Dynamic Positioningee

var el =
document,.all[slideShow. sequencer[slideShow.position]];

document.onclick = null; // Stop click events
// until complete.

/¢/ Reposition the element.
slideShow. inct+;
dt = el.initTop / slideShow. increments;
di = el.initLeft / slideShow. increments;

el.style.posTop = el.style.posTop - dt;
el.style.posLeft = el.style.posLeft - dl:

if (slideShow.ine < slideShow. increments)
window.setTimeout("doFly();", slideShow. speed)

else {
el.style.top = 9;
el.style.left = @;
nextSequence(slideShow) s

}
}

</SCRIPT>
<STYLE TYPE="text/css”>

BODY {color:white}
DIV {position:relative; width:100%; font-size:16pt:

height:4@px}
H1 {text-align:center; font-size: 18pt}

</STYLE>
</HEAD>
<BODY BACKGROUND="img@@1.gif" ONLOAD="sTide<);">

<H1>Inside Dynamic HTML</H1>
<DIV [D="Text1" STYLE="top:@px; left:-35@px">

Overview of HTML and €SS</DIV>
<DIV ID="Text2" STYLE="top:@px; left:-35@px">

Fundamentals of HTML Scripting</BIY>
<DIV ID="Text3” STYLE="top:@px; Teft:-35@px">

Dynamic HTML Event Model</DI¥>
<DIV ID="Text4™ STYLE="top:@px; Teft:-358px">

Dynamic Styles</DIV>
<DIV ID="TextS” STYLE="top:@px; left:-35@px; color:yellow">

Click to Continue</DIV>
<DIV 1D="Text6" STYLE="top:@px; left:-358px">

Dynamic Contents</DIV>
<DIV ID="Text7" STYLE="top:@px; left:-358px">

Dynamic Presentations!</D1V>
</BODY>

</HTML>

355

187

PART til: DOCUMENT STYLE AND ANIMATION

The custom <SEQUENCE>tag, which should be defined in the head of
the document, supports the following attributes. The only required attribute
is order; the otherattributes will be provided with default values if they areomitted.

Attribute Name—_Description

order Defines the element IDs that should be sequenced. Each
item must be explicitly separated using a commafollowed
by a space.

Speed Defines how fast the items are animated in. This same
speed is used to determine the delay between elements
that are autosequenced.

type Specifies whether the sequence occurs automatically
through the timer (auto, the default) or manually in re-
sponseto clicks (click).

increments Specifies how many intermediate positions each image
will assumeasit animatesto its final position. More incre-
ments with faster speed can create a smoother animation.

The Rendering Context

356

While CSS positioning offers tremendousflexibility, it can often add a lot of
complexity to the page. The preceding examples demonstrate using CSS po-
sitioning on elements that are positioned independently. Oneof the key ad-
vantages of HTMLisits ability to automatically reflow contents depending on
their size and thesize of the window. If the Web author intends to position
elementsin responseto the size of the window and contents, the author must
write custom layout code with script rather than rely on HTML.In general,it
is easier to author and maintain documentsthat use dynamicstyles to take
advantage of the automatic flow nature of HTMLthanto write custom layout
code, and writing a custom layout manager can require a large amountofscript.

Dynamic HTMLexposes the information—complexasit is—necessary
to create a powerful custom layout. For each element,this information includes
offset information and the identity of the element from which the offsets are
calculated. To write scripts that handle their own layout, you have to under-
stand these offset relationships.

187

TWELVE: Dynamic Positioning———

Rendering information—thesize and position of each elementin the
body of a document—is recalculated by the browser each time the document
is reflowed. Rendering information is therefore much more transient than
parsing information, whichincludestheattributes,styles, and contents defined
for the elementsin the source document. Thedistinction between the values
provided by the documentand the rendering values calculated by the browser
is important to understand.

For example, an element might be defined as having a width value of 20%
and an unspecified height. The 20% value as well as its pixel equivalent are
exposed through the style property. However, the height value is not exposed
throughthe style property becauseit is not defined. When the browser renders
the element,it calculates a height and exposes it as a separate property. In
addition, the browser calculates and exposes the top and left positions of the
element; these valuesare notalways the same as the top andleftvalues defined
using CSS positioning.

Each elementis drawn relative to another element,its offset parent. An
element's offset parent provides the rendering context in which the elementis
drawn, The Body elementis the topmost offset parent. For many elements, the
Body elementis the offset parent, and the browser calculates each element's
position relative to the upper left corner of the document. Butif an element
is inside an absolutely positioned DIV element, for example,its position is
calculatedrelative to the DIV element,whichis its offset parent. An offset
parent provides the context in which an elementis rendered;specifically, it
defines a rootfor the offsets that determine the element’s position.

Every clementexposesits rendering information. An element's offsetParent
property contains a reference to the elementdefiningits rendering context,
andits offsetTop and offsetLeft properties contain its coordinates with respect to
the origin definedbyits offsetParent. In addition, rectangular elementsgenerally
expose offsetWidth and offsetHeight properties, which represent the element's size.

Only certain elements and elements of certain styles can define new
rendering contexts and becomeoffset parents for other elements. The follow-
ing elements define new rendering contexts:

®@ Body element

@ Elements with CSS position values of absolute
@ Elements with CSS position values of relative (define new rendering

contexts only for absolutely positioned elements they contain)

357

188

PART O11: DOCUMENT STYLE AND ANIMATION TWELVE: Dynamic Positioning

@ Elementswith CSS float valuesofleft or right Parsing Tree
@ Elements given explicit width or height values

@ Table, Caption, TR (table row), and TD and TH (table cell)
elements

@ Fieldset and Legend elements
@ Marquee elements
™ Map elements

Each elementhasa single offset parent, andit might define a rendering
context for any numberof child elements. In this regard, an element's offset
parentis similar to its parent element in the parsing tree. But an element's off-
set parent is not required to be the sameasits parentin the parsingtree;its
offsetParentand parentElement properties can andoften will reference different
elements. A diagram showing the offset parents for all elements in the docu-
ment is known as the rendering tree for the document.

Figure 12-7 shows both the parsing tree and the renderingtree for the fol-
lowing document.

<HTML>
<HEAD>

<TITLE>Parsing Tree vs. Rendering Tree</TITLE>
</HEAD>
<BODY>

<P>The parsing tree represents the Rendering Treecontainership hierarchy
defined by the contents of the HTML document.</P>

<DIV ID=D1 STYLE="position:absolute; top:6@; left:28">
<P>The rendering tree represents the relationship between

elements as they are rendered by the browser.</P>
<DIV ID=D2 STYLE="height:8@; width:100%; overflow:scrol1">

<P>This code creates a scralling element. However, it does
not define a new coordinate system. The
following elament is positioned based on the coordinate
system of the absolutely positioned DIV.</P>

<IMG STYLE="position:absolute; top:6@; left:40"
SRC="imgl.gif">

 </DIV>
</DIV>

</BODY>
</HTML>

. Figure 12-7.
Parsing tree and rendering treefor a document.

358 359

188

189

PART Tift: DOCUMENT STYLE AND ANIMATION

In this example, the Paragraph element, the EM element, andthe first
DIV elementareall children of the Body element. The EM element becomes
a rendering child of the body becauseits parent element, Paragraph,is not a
constrained element according to the preceding list. The first DIV element,
on the other hand, defines a new rendering context becauseit is absolutely
positioned. Therefore,all elements within this DIV elementare children ofthis
rendering container unless another elementcreates a new rendering context
within the DIV element.

The second DIV element, D2,also creates a new rendering context be-
causeit is a constrained container. This is where things seem to gettricky. When
an elementis positioned absolutely,it is taken outof the flow of the document
and positioned relative to the nearest coordinate system. A constrained con-
tainer doesnot necessarily define a new coordinate system. The scrolling DIV,
D2, does not create a new coordinate system because no absoluteorrelative
positioning is specified. Only elements with position values of absolute or
relative create new coordinate systems. Therefore, the image inside D2 that
is absolutely positionedis actually positionedrelative to the first DIV, D1. This
relationship is also maintained in the rendering relationship. D1 is the offset
parent for D2.

A Rendering Context Demonstration

360

The relationship between an element andits rendering context is best
understood by examining a sample HTML document. The following docu-
ment, included on the companion CD,reports the offsets of any element on
the page. The documentalso contains examples of several different ways in
which a rendering context can be created. Clicking on any elementin the
documentdisplays a list of offsets for each rendering context the elementiscontained within.
<HTML>

<HEAD>
<TITLE>Offset Demonstration</TITLE>
<STYLE TYPE="text/css">

BODY, TD, DIV, CAPTION, FIELDSET, LEGEND {cursor:default}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">

function doClick() {
// Build a string of all the offsets, starting from the
// clicked element.
var el = event.srcElement;
var offset = "Offsets\n";
while (el != null) £

189

TWELVE: Dynamic Positioning

affset += "\n" + el.tagName + ": (" + el.offsetTop +
", "+ el,offsetLeft + ")";

el = el.offsetParent;
}
alert(offset);

J
document .onclick = doClick;

</SCRIPT>
</HEAD>
<BODY>

<H1l>Offset Demonstration</H1>
<PoClick on an element to see its rendering context and offset

relationship. This page helps demonstrate how an element
becomes constrained and creates a new rendering context forthe elements it contains.

<P>This is a standard paragraph containing
emphasized text.

<TABLE BORDER>
<CAPTION>Table Demo</CAPTION>
<TR><TD>Table Cell 1</TD>

<TD>Table Cell 2</TD></TR>
<TR><TD> Table Celt 3</TD><TD>Table Cell 4</TD></TR>

</TABLE>
<FIELDSET STYLE="width: 208pt"™>

<LEGEND>Fieldset Demo</LEGEND>
<P>This is a fieldset.
<BUTTON><POHTML Button</BUTTON>

</FIELDSET>
<P STYLE="position:relative; top:58; left:168pt">This is a

relatively positioned paragraph.</P>
<DIV STYLE="overflow:auto; height:50pt; width:15@pt

border:lpt gray solid">
<P>This DIV element has a constrained width and height and

may display scrollbars if the contents do notfit.
</DIV>
<DIV STYLE="position:absolute; top:34@pt; left:15@pt;

width:1@@pt; border:1pt gray solid™>
<DIV STYLE="position:absolute; top:@pt; left:12apt;

width:10@pt; border:1lpt gray solid">
<P>This is an absolutely positioned DIV element within

another absolutely positioned DIV element.
</DIV>
<P>This is an absolutely positioned DIV element.</P>

</DIV>
</BODY>

</HTML>

361

190

PART = DOCUMENT STYLE AND ANIMATION

The Offset Properties of
Relatively Positioned Elements

A relatively positioned element’s top and left style properties representits
offsets from its normal position in the flow, butits offsetTop and offsetLeft
properties representits position with respect to its offset parent. Figure 12-8
demonstrates the relationship between these style properties and rendered
position properties.

js example demonstrates the relationship between a
‘ly positioned element's fop andJeff style attributes

fsetTop and offsetLeft properties.

is relatively positioned,
top: 78 pixels;jaf: 25pixelsoffsetTop: 166 pixels;

offsetLeft: 160 pixels

Figure 12-8.
A relatively positioned element’s top andleft style properties and its
offsetIop and offsetLeft properties.

The offset properties are purely rendering properties that representthe
calculated positions of an elementin the document.

Determining Whether an ElementIs in View

362

The following function can determine whether the upperleft corner of an
elementis currently visible on the screen. This function returns false if the
element’s upperleft corner is not visible, even if the elementis partially
on screen. The function works this way so that it can can be applied to any
element on the page.
function onScreente) (

// Test whether the supplied element is visible.
var rp = e.offsetParent;
if (rp == null)

return false;

190

TWELVE: Dynamic Positioning

var pleft = e.offsetLleft:
var ptop = e.offsetTop:
while (true) (

if (i((pleft >= rp.scrotileft) &&
(pleft <= rp.scrolileft + rp.clientWidth) &&
(ptop >= rp.scrollTop) &&
(ptop <= rp.scrallTop + rp.clientHeight)))

return fatse;
pleft += rp.offsetLeft - rp.scrollleft ;
ptop += rp.offsetTop - rp.scrollTop:
rp = rp.,offsetParent;
if (rp == null)

return true;

}

This code can be easily enhancedto test whether an intrinsic control or a
constrained elementis visible by factoring in the width and height of the ele-
ment, but this technique will not work for nonrectangular elements because
they do not expose offsetWidth and offsetHeight properties.

Scrolling to an Element
Any element in the body of a documentcan be broughtinto view using the
scrollIntoView method. The scrollIntoView method supports a single optional
parameterthat specifies whether the element should appearasthefirst or last
line in the window. Omitting the parameteror supplyingthe value truescrolls
the elementto thefirst line; a value offalse scrolls the elementto thelastline.
For example, the following codescrolls the first H1 elementin the document
into view:
// Scroll element to the first line.
document.all.tags("H1").item(@).scrollInto¥iew(}
// Scroll] element to the last line.
document.all.tags("H1").item(@).scrollIntoView(false)

Identifying an Element at a Specified Position
The document object exposes the elementFromPoint method for identifying an
elementataparticular «y-coordinate position on the screen. This methodtakes
an xy-pixel position relative to the window’s client area and returns the element
object at that position. The elementFromPoint methodis useful for determining

363

191

PART fT: DOCUMENT STYLE AND ANIMATION

what element the mouseis on during an event handler. For example, the fol-
lowing code places the tag name ofthe element the mouseis on in a text box:
<HTML>

<HEAD>
<TITLE>Where Is the Mouse?</TITLE>
<SCRIPT FOR="document" EVENT="onmousemove()”

LANGUAGE="JavaScript”>
document.all.txtCurrent.value =

document.elementFromPoint(event.x, event.y),tagName;
</SCRIPT>

</HEAD>
<BODY>

<H1>This Is a Header.</H1>
<P>Current Element: <INPUT TYPE=TEXT [D="txtCurrent”™ SI1ZE=20>
</P>

</BODY>
</HTML>

The Map Element .
The Mapelementdefinesa special rendering context. Because a Map element
can be shared by multiple images,it is considered outside any rendering con-
text. Therefore, the Map elementreturns nudl for the offsetParent property and
Ofor theoffsetTop andoffsetLeft properties. The Area elements within the Map
element return valuesfor their offsetTop andoffsetLeft properties relative to the
upperleft corner of the containing Map elementand return the Map element
as the offset parent. Therefore, to determine the position of an Area element
on the screen, you must take into accountthe particular image's offsets.

Aligning Relatively Positioned Elements

364

Aligning elements horizontally or vertically can range from trivial, requiring
no code, to somewhat complex, requiring a fair amountof code. With two
absolutely positioned elements within the same coordinate system, aligning the
elementsis as simple as providing the sametop or left property. Because rela-
tively positioned elements are offset from their position in theflow, aligning
relatively positioned elements requires a few lines of code.

The following document demonstrates how to first stack all relatively
positioned elements on top of each other and then animate them backtotheir
normal positions in the document. The code that aligns the elementsis
contained in the alignElements function. This function takes any relatively

TWELVE: Dynamic Positioning

positioned elementandstacksit on top of the elementwith an ID ofsre. Alter-
natively, a fixed point on the screen can be used instead of another element.
<HTML>

<HEAD>
<TITLE>Animating from a Single Point</TITLE>
<STYLE TYPE="text/css">

-fly {position:relative; colorinavy; visibility:hidden}</STYLE>
<SCRIPT LANGUAGE="JavaScript"™>

function alignElements(el) {
/* Position the passed-in relatively positioned

element that is in the same coordinate system
on top of the element whose ID is src. */

el.style.pixelTop
= document.all.src.offsetTop - el.offsetTop;

el.style.pixelleft
= document.atl.src.offsetLeft - el.offsetLeft;

el.style.visibility = “visible";
}

function moveIn(el) {
// If the element is not at its position in the flow,ff move it closer.
var moved = false;
if (el.style.pixelTop < @) {

el.style.pixelTop += 8;
if (el.style.pixelTop > 6)

el,style.pixelTop = @:
moved = true;

}
else {

if (el.style.pixelTop > @) {
el.style.pixelTop -= 8;
if (el.style.pixelTop < @)

el.style.pixelTop = 0;
moved = true:

J
}
if (el.style.pixelLeft < 6) {

el.style.pixelLeft += 8;
if (el.style.pixelLeft > @)

el.style.pixelLeft = 0;
moved = true;

(continued)

365

191

192

PART I[1%: DOCUMENT STYLE AND ANIMATIONa,

else (
if (el.style.pixelTop > @) {

el.style.pixelLeft -= 8;
if (el.style.pixelLeft < @)

el.style.pixelLeft = @;
moved = true;

}
}
/* The move variable reflects whether the element has

moved. If the element has already reached its position
in the flow, this function returns false. */

return moved;
}

function flyInTogether() {
var more = false;
// Animate into place al} elements with class name fly.
for (var intLoop = @; intLoop < document.al].length;

intLoop++) f
if ("fly" == document.all[intLoop].className)

more © moveln(document.al1LintLoop]) || more;
}
// Keep running until all elements reach their locations
// in the flow.
if (more)

setTimeout("flyInTogether()", 18);
}

function setup() {
//f Align all elements that are going to be animated.
for (var intLocp = @; intLoop < document.al].length;

intLoop++) {
if ("fly" == document.all[intLoop].className)

alignElements(document.allLintLocp]);
}
flyInTogether();

}

window.onload = setup;
</SCRIPT>

</HEAD>
<BODY>

<H1 ID=sre>Animate from a Single Point</H1I>

<LI CLASS="fly"><P>Create animated documents. </P>
<LI CLASS="Fly"><P>All elements start together

at a single point.</P>

366

192

TWELVE: Dynamic Positioningee

<LI CLASS="fly"><P>This example works using relative
positioning. </P>

<LI CLASS="fly"><P>First align the elements, and then fly
them into place.</P>

<LI CLASS="Fly"><P>Once the elements are in place, this is
a standard HTML document!</P>

<LI CLASS="fly"><P>Simply supplying a special class nameanimates an element.</P>

<P STYLE="text-align:center">Not all text must be animated!

</BODY>
</HTML>

367

193

 PepieerapineeEeeeen

a

ipaat

pu —
iedosatpeaseHE

Heatsti

;se eiii i ne

reper tits
Leenatspierre

proeeauiy
rf

193

PAR T Iv

DOCUMENT

CONTENTS AND

DATA BINDING

194

194

GC HAPTER THIRTEEN

Dynamic Contents

The term dynamic contents refers to the ability to access and change a portion
of a document's contents without requiring the downloading or construction
of an enlircly new page. A good exampleis a ticking clock that is automa-
tically updated in the HTMLof the document. Oncepersecond, the clock in
the documentis updated with a new time—without having to generate a newdocument,

Dynamic HTMLprovidesdirect access to the contents of a document,all
the way down to the individual characters, This access enables any portion of
the documentto be quickly and immediately updated. Once the documentis
updated, surrounding contents may reflow, depending on the size and posi-
tion of the new contents. Reflowing the documentalso often occurs with
dynamicstyles when thesize or display of an elementis changed. Dynamic con-
tents extends this model to changing the text and HTMLonthe page.

Because the mosteffective route to understanding how to dynamically
manipulate the document's contentsis to review code, this chapter focuses on
code samples to demonstrate the different techniques. The following topics are
covered in this chapter:

@ Contents manipulation This section briefly introduces three con-
tents manipulation techniques supported by Dynamic HTML.

@ Dynamic contents properties The contents of an element are ex-
posed through four properties and two methods. These properties
provide the easiest and most direct way to access and change the
document's contents. This section discusses how to use the proper-
ties to change an clement’s contents, as well as how these properticsinteract with the document.

@ Dynamic contents and document.write The document.write method
allows contents to be inserted into a page while the page is being
loaded; dynamic contents allows the manipulation of contentsafter

371

195

PART IV: DOCUMENT CONTENTS AND DATA BINDING

the page has been loaded. This section explores techniques for
combiningthese features to create interactive documents.

Contents Manipulation

372

Dynamic HTMLexposesthefollowing three techniques for manipulating the
contents of a document. Thefirst techniqueis used to generate contents while
a page is loading, and the other two techniques are used to manipulate the
documentafter the page hasfinished loading.

®@ Writing contentsinto the stream during the loading of a page
@ Manipulating the contents using properties and methods exposed

on all elements in the body of the document

@ Programming the TextRange object, which exposes an object modelfor the document's text

Thefirst technique uses the write and writen methods of the document
object. These methods can insert contents into the current documentasit is
being downloaded, and they can construct new documents, but they cannot
change contents that have already been parsed. Chapter 6, “The HTML Docu-
ment,” discussed the document’s write methods. The write and writeln meth-
ods are supported in Netscape Navigator version 2.0 andlater and Microsoft
Internet Explorer 3.0.

Thelatter two techniques constitute dynamic contents and are new with
Internet Explorer4.0. All elements in the document's body provide direct access
to the contained contents of any element by using four properties and two
methods. This chapter introduces these members, which are the simplest way
of accessing and changing the contents of the document.

The TextRange object exposes a custom text-based object modelthat pro-
vides arbitrary access to the underlying contents, giving you more control over
the documentat the expense of predictability. This technique allows you to
Manipulate contents as you would using a text editor. While many mani-
pulations are possible through the text-based model,it is not as precise as a
true top-down tree approach and has a numberoflimitations. Chapter14,
“User Selection and Editing Operations,’ reviews the TextRange object model's
strengths and weaknesses.

195

THIRTEEN: Dynamic Contents

Dynamic Contents Properties
The Body element andall elements contained within it expose four properties
for accessing and modifying the HTML contents: innerHTML, innerText,
outerHTML, and outerText. An element’s innerHTML property exposesits con-
tents, including the HTML markupforanychild elements. The innerIéxt prop-
erty exposes the contained text without any HTMLtags.Assigning a new value
to one of an element’s inner properties replaces the contents of the element.
The outerHTML and outerText properties resemble the innerH{TML and inner-
Text properties, but they reference the entire elementrather thanjust its con-
tents. Assigninga value to one of an element's outer properties replaces the
entire element. In the following example, clicking a button replacesthe but-
ton with the boldface text Blown Away!:
<HTML>

<HEAD>
<TITLE>Disappearing Button</TITLE>

</HEAD>
<BODY>

<INPUT TYPE=BUTTON VALUE="Blow me away!”
ONCLICK="this.outerHTML = 'Blown Away!'">

</BODY>
</HTML>

Onelimitation of these properties is that they can reference an element
orits contents only in their entirety; they cannot reference just a portion of
the contents. To use these properties to change the third character or word
within an element, for example, you would have to reconstruct the string and
reinsert it. The TextRange object provides an alternative technique that allows
any portion of the documentto be manipulated directly.

The dynamic contents properties use fairly strict rules for determining
what HTMLis valid. These rules are stricter than the rules usedto originally
parse the page, but notas rigid as the HTML DTD (documenttypedefinition).
Ifyou assign invalid HTMLto oneofthese properties, an error can occur and
the new contents might not be inserted. While the properties accept some
invalid HTML,you should always supply syntactically valid HTML to ensure
predictable results.

In addition to these properties, every elementin the body ofa document
also exposes two methodsfor inserting contents before orafter the begin or
end tag: tnsertAdjacentHTML and. insertAdjacentText. These two methodsare
useful for quickly inserting new paragraphsorlist items into the document.

373

196

PART IV: DOCUMENT CONTENTS AND DATA BINDING

Figure 13-1 illustrates all the ways the contents of an element can be
manipulated.

Properties
jnnerHTMILAinnerText

<H1>Welcome to My Home Page</H1>

outerHTML/outerText

InsertAdjacentHTML/InsertAdjacentText Methods
<H1>Welcome to My Home Page</H1>

afterBegin beforaEnd

beforeBegin afterEnd

Figure 13-1.
All the places HTML andtext can be accessed and modified.

HTMLvs. Text Properties
The primary distinction between the innerHTML and outerH1TML properties
on the one hand and the innerText and outerText properties on the other hand
is that the HTMLproperties expose the entire markup while the text proper-
ties expose the contents without the markup. Consider the following HTML
fragment:
<H1>Welcome to Scott's Home Page</H1>

For the H1 elementin this fragment, the followingtable lists the values of each
of the four properties.
—_——ss

 Property Value

innerText Welcome to Scott's Home Page
innerHTML Welcome to Scott's Home Page
outerText Welcome ta Scott's Home Page
outerTML <H1>Welcome to Scott's Home Page</H1>

374

196

THIRTEEN: Dynamic Contents

The innerText and outerText properties always return the same value but
behave differently when you assign new values to them. Assigning a value to
the innerText property replaces only the contents of the H1 elementwith new
contents. Assigning a value to the outerText property replaces the H1 element
andits contents with the newtext. For example, assigning the value Thank you
Jor visiting to each of these properties has different results: When you assign
this value to the innerText property, the resulting HTMLis <H1>Thank you
for visiting</H1>,Ifyou use the outerText property instead, the resulting HTML
is Thank you for visiting; the <H1> tags are removed.

The markupin the values of the innerHTML and outerHTMLproperties
does not necessarily match the markup in the source code. Instead, extrane-
ous spaces are cleaned up andtheattributes may be reordered. When you
assign values to the HIML-related properties, be sure to use proper escape
sequencesfor anyentities. The < and > angle brackets are interpreted as tag
delimiters; if the angle brackets are to be included in the contents and not
parsed as HTML,they mustbe specified as entities by using ⁢ and &gi;.
Whenyou assignvalues to the text properties, these brackets are automatically
converted to their escape sequence equivalents.

Nonbreaking Spaces
Nonbreakingspaces(spaces at which line breaks are prohibited) and ordinary
spaces are considered separate characters in the object model, where they are
represented by the ASCII values 160 and 32, respectively. Comparing the two
charactersyields the value false, as in this example:

document.al].sl.innerText == " " // false; not a space

To check whether a nonbreaking space is an element’s contents, either check
the ASCII value directly or compare the HTML propertyto the entity itself,as shown here:

document.all.sl.innerHTML == “ " // true

Anyspecified entity that matchesa built-in entity value is converted to the
built-in name. The nonbreaking space entity can also be specified as
instead of usingits keyword identifier. Dynamic HTMLrecognizes that this
value is a nonbreaking space and converts it to .

Using the Dynamic Contents Properties
The easiest way to learn the differences between the dynamic contents prop-
erties on an elementis through examples. The following sections present two
examples: thefirstis a review of the ticking clock example in Chapter4, “The

375

197

PART I¥: DOCUMENT CONTENTS AND DATA BINDING

376

Browser Window,’ and the secondis a tic-tac-toe game that demonstrates dy-
namically retrieving contents and assigning contents into a document.

A Ticking Clock
Theticking clock example in Chapter 4 uses the innerText property to update
the time. A Span elementwith the ID clock contains the text with the current
time. Every second,a scriptcalls a function named buildTime to create a string
with the current time, and then outputs the string into the Span elementwith
ID clock using this statement:
document.all.clock,innerText = buildTime();

Tic-Tac-Toe
Thetic-tac-toe example creates an interactive game using dynamic contents.
A table provides the layout for the game board. Every time the user clicks in
a cell, the cell’s contents are replaced with an X or an O using the innerText
property. The size of the game board can be dynamically changed by insert-
ing a newtable in the place ofthe existing one using the outerHTML property.
<HTML>

<HEAD>
<TITLE>Tic-Tac-Toe</TITLE>
<STYLE TYPE="text/css">

TD {font-weight:bold}
#board TD {width:50px; height:5@px: text-align:center;

font-size:18pt; cursor:hand}
-X {color:blue}
-0 {color:red}
-draw {color:green}

</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function TicTac() (
// Object for tracking the game
this.lastMove = true;
this.inProcess = true;
this.scores = new Object();
this.scores.xScore = @;
this.scores.oScore = @;
this.scores.draws = @;
this.size = 3;
this.drawBoard = initBoard;

function buildTable() {
// Build the HTML table to be inserted into the document.

197

t

THIRTEEN: Dynamic Contents

var tb = "<TABLE BORDER ID=board
ONCLECK="doBoardClick{);'>";

for (var intRow = @; intRow < game.size; intRow++) [
tb += "<TR";
for (var intCell = @; intCell < game.size; intCell++)

tbh += "<TD>andsp;</TD>";
th += "</TR>";

}
tbh += "</TABLE>";
return tb;

function initBoard() (

}

document.al]l.board.outerHTML = buildTable();
game.inProcess = true;
game.lastMove = true;

function checkWinner(xCount, oCount) [

}

// Process resuits of the scan for a winner.
if (game.size == xCount) {

alert("X Wins!");
game.scores.xScoreH+;
return false;

if (game.size == oCount) {
alert("O Wins!");
game. scores.oScoretH+;
return false;

}
return true;

function checkGame() {
// Tests all the directions for a winner.
var xCount = @, oCount = @, total = @;
var el = document.all.board;
// Check horizontal direction.
for (var intRows = @; intRows < el.rows. length:

intRowst++) {
xCount = @, oCount = 0;
for (var intCells = @;

jntCells < el.rows[intRows].cells.length;
intCellst+) {

var strCell = el.rows[intRows].cells[intCells]:
if ("X" == strCell.innerText)

(continued)

377

198

PART IV: DOCUMENT CONTENTS AND DATA BINDING

xCount++;
if ("0" == strCell.innerText}

ocount+H;
}
game.inProcess = checkWinner(xCount, oCount):
if (!game.inProcess)

return;
total += xCount + oCount;

}
// Check vertical dtrection.
for (var intCeTls = @: intCells < el.rows. length;

intCellst+) f{
xCount = 8, oCount = 9;
for (var intRows = 0;

intRows < el.rows[intCellsj].cells. length:
intRowst++) {

var strCell = e].rows[intRows].cellsfintCells]:
if ("X" == strCell.innerText)

xCount++;
if ("0" == strCell.innerText)

acount++;
}
game.inProcess = checkWinner(xCount, oCount);
if (!game.inProcess} return;

}

f/f Check diagonal (upper Teft to lower right).
xCount = @, oCount = @;
for (var intRows = @; intRows < el.rows.length:

intRows++) {
var strCell = el.rows[intRows].cells[intRows];
if ("X" == strCell.innerText)

xCount++;
if ("O" == strCell.innerText)

oCount++;
}
game.inProcess = checkWinner(xCount, oCount);
if (!game.inProcess) return;

// Check diagonal (lower left to upper right).
xCount = @, oCount = @;
for (var intRows = @; intRows < e].rows.]length;

intRowst++) {
var strCell =

el.rows[game.size - intRows - 1].cells[intRows];
if ("X" == strCell.innerText)

xCount+;

378

198

THIRTEEN: Dynamic Contents

if ("0" == strCell.innerText)
oCount++;

}
game.inProcess = checkWinner(xCount, oCount);
if (!game.inProcess)

return;
if (total game.size * game.size) {

alert("draw™);
game. inProcess = false;
game.scores.drawst++;
return

J

function updateScore() {
// Output new score.
for (scores in game.scores)

document.all[scores].innerText = game.scores[scores];

function doBoardClick() {
if (game.inProcess) {

if ("TD" == event.srcElement.tagName) {
var strCell = event.srcElement;
// Check whether the cell is available.
if (" " == strCell.innerHTML) (

strCell.innerText = (game.tastMove ? "X"
event.srcElement.className =

game.jastMove ? "X" : "O";
game.lastMove = !game.lastMove;

}
}
checkGame();
if (!game.inProcess)

updateScore();

// Manages the game variables
var game = new TicTac;

</SCRIPT>

: 0");

<SCRIPT FOR="size” EVENT="onclick()" LANGUAGE="JavaScript™>
/f Shared event handler for the board-sizing radio buttons
game.size = parseInt(this.value);
game.drawBoard();

</SCRIPT>

(continued)

379

199

PART IV: DOCUMENT CONTENTS AND DATA BINDING———

</HEAD>
<BODY>

<H1>Tic-Tac-Toe</H1>
<P><INPUT TYPE=BUTTON VALUE="New Game™

ONCLICK="game,drawBoard():">
<P><INPUT NAME=size TYPE=RADIO VALUE=

<LABEL FOR="X3">3 x 3</LABEL>

<INPUT NAME=size TYPE=RADIO YALUES"4" 1D="x4">
<LABEL FOR="x4">4 x 4</LABEL>

<INPUT NAME=size TYPE=RADIO VALUE="5" ID="x5">
<LABEL FOR="x5">5 x 5</LABEL>

<P>
<SCRIPT LANGUAGE="JavaScript">

document .write(buildTable());
</SCRIPT>
<TABLE>

<TR Class=x><TD>X Wins:</TD><TD ID=xScore>@</TD></TR>
<TR class=o><TO>0 Wins:</TD><TD ID=oScore>@</TD></TR>
<TR class=draw><TD>Draws:</TD><TD [D=draws>@</TD></TR>

</TABLE>
</BODY>

</HTML>

 " ID="x3" checked>

Figure 13-2 shows the TicTac-Toe program in action.

Tic-Tac-Toe
NettGama

 o[x
|

Figure 13-2.
The Tic-Tac-Toe program game board.

380

199

THIRTEEN: Dynamic Contents

Using the Adjacent Methods
An element's insertAdjacentHTMLandinsertAdjacentText methods insert HTML
and text before or after the start tag, or before or after the end tag. Both
methodstake two arguments: the first argumentrepresents where the contents
are being inserted, and the second argument represents the actual contents.

The fourvalid values for the first argument represent each of the four
insertion locations: beforeBegin, afterBegin, beforeEnd, and afterEnd, where Begin
represents the begin tag and End represents the end tag. These methodsare
useful for insertions that do notaffect any of the existing contents.

Generating Footnotes
This example demonstrates how to add pop-up footnotes to a page. The fol-
lowing codeworksby locatingall elements that are specified as footnotes and
inserting footnote numbersin the document. The authordesignates a footnote
by adding a Span elementwith the class namefootnote. The style sheet defines
these Span elementsasinvisible. An alert containing the footnotetextis dis-
played whenthe userclicks on the inserted footnote number.
<HTML>

<HEAD>
<TITLE>Oynamic Footnotes</TITLE>
<STYLE TYPE="text/css">

SPAN {display:none}
SUP.FNID {color:blue; curser:hand}

</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function setupFootnotes() {
// Get a collection cf all the Span elements.
yar spans = document.all.tags("SPAN");
for (var i = @; i < spans.length; i++) {

var el = spans[i]:
// If element is a footnote, process it.
if (“footnote == el.className) {

// Add a superscripted footnote number.
el.insertAdjacentHTML("beforeBegin”,

"CSUP CLASS=FNID>" + (i + 1) + " </SUP>");
// Link the footnote number to the Span element.
document.allfel.sourceindex - 1].1inkFN = el;

(continued)

381

200

PART IV: DOCUMENT CONTENTSAND DATA BINDING

382

function displayFN() {
// If the number is clicked on, display the footnote.
if ("FNID" event.srcElement.className)

if (null event.srcElement, 1inkFN)
alert{event.srcElement.1inkFN.innerText);

}

window.anload = setupFootnotes;
document.onclick = displayFN;</SCRIPT>

</HEAD>
<BODY>

<H1>Dynamic Footnotes

Copyright (C) 1997 by Scott Isaacs.

</H1>
<P>Dynamic HTML is a “powerful way of creating Web pages"

Scott Isaacs, “Inside Dynamic HTML.”</SPAND>
and “Soon Dynamic HTML will be used in most applications.”

Joe-Cool Developer, “The Future of the Web."

<P>This page automatically generates and numbers the footnotes
at load time. The footnotes are stored as hidden contents on
the page.</P>

</BODY>
</HTML>

You can display footnotes in ToolTips rather than in alert boxes by set-
ting the TITLEattribute of each footnote numberto the text of the footnote.
Anotheralternative would be to display each footnote within the text when the
user clicks the footnote number;for this technique, customize the displayFN
function to change the display style attribute for the footnote text.

Creating Custom HTML List Boxes
This example uses HTMLelements to simulate two list boxes whose items can
be selected and copied betweenthelists. A single custom list box can also be
used without the copying functionality to provide a rich selectionlist.

In the following code, twolist boxes are created using scrolling DIV ele-
ments. Each item in the list boxesis a standardlist item in a bulleted list. When
the userclicks on an item toselectit, the background color changes. When the

_

200

THIRTEEN: Dynamic Contents

user double-clicks on the item or clicks one of the arrow buttons, the item is
removed from one list and inserted at the end of the other list using the
insertAdjacentHTML method.
<HTML>

<HEAD>
<TITLE>Custom HTML List Boxes</TITLE>
<STYLE TYPE="text/css">

«list {cursor:hand; overflow:auto: height:75pt; width:15ept;
border:1pt black solid}

«list UL {list-style-type:none; margin-left:2pt;
mMargin-top:@pt; margin-bottom: @pt}

-list UL LI {margin-top:@pt; margin-bottom: apt}
list UL LI.selected {background:navy; color:white}

</STYLE>
<SCRIPT LANGUAGE="JavaScript™>

function checkParent(sre, tag) {
while ("HTML” != src.tagName) {

if (tag == src.tagName)
return src;

src = src.parentElement;
}
return null;

}

function selectItem(list) (
var el = checkParent(event.srcElement, “LI");
if ("LI” == el.tagName) {

if (null != list.selected)
list.selected. className =

if (list.selected != el) {
el.className = "selected";
Tist.selected = el;

}
else

list.selected = null;

}

function copy(src, dest) {
var elSre = document.all[srcJ;
var elDest = document.all[dest];
if (elSrc.selected J= null) (

elSre.selected.className =
(continued)

383

201

PART &V¥; DOCUMENT CONTENTS AND DATA BINDING

elDest.insertAdjacentHTML("“beforeEnd”,
elSrc.selected.outerHTML) ;

elSrc.selected.outerHTML = "";
elSrc.selected = null; // reset selection

J
I

</SCRIPT>
</HEAD>
<BODY>

<H1>Custom HTML List Boxes</H1>
<P>The bulleted lists simulate rich HTML selection lists.</P>
<TABLE>

<TR>
<TD>

<DIV CLASS="list">
<UL ID="src" ONCLICK="selectItem(this);”

ONDBLCLICK="copy('src', ‘dest");
Scott's Home Page
Parents' Home Page
<LID
<LI5Inside Dynamic HTML Home Page
Microsoft Home Page
Item 6
Item 7

</DIY>

</TD><TD>
<P><INPUT TYPE=BUTTON VALUE="-->"

ONCLICK="copy{'src'. 'dest’):">
<P><INPUT TYPE=BUTTON VALUE="<--"

ONCLICK="copy{'dest’. ‘sre');"></TD><TD>
<DIV class="list">

<UL ID="dest" ONCLICK="selectItem(this);"
ONDBLCLICK="copy('dest','src');">

</DIV>

</TD>
</TR>

</TABLE>
</BODY>

</HTML>

Figure 13-3 illustrates these custom list boxes.

384

201

THIRTEEN: Dynamic Contents

Custom HTMLList Boxes
‘The bulleted lists simulate rich HTML selectionlists.

Microsoft Home Page

Figure 13-3.
Two list boxes created from existing HTML elements.

Accessing the Contents
The contents of a documentcannot be accessed or manipulated until the
documentis completely loaded. Therefore, be careful whena script or an event
handler attempts to access and manipulate the contents.If the code might
execute before the pageis loaded,the code shouldfirst test the readyState prop-
erty of the document:
if ("complete” == document.readyState) {

// Manipulate the contents.
}
else {

/?¢ Display a warning or perform alternative action.
3

Image Error Handling
The next example demonstrates how to queue documentchangesuntil the
page is entirely loaded. This example replaces any images thatfail to down-
load with error messages and the images’ titles. The trick hereis to ensure that
the documentis loaded before accessing the contents because an image might
fail and fire the onerror event before the page is completely loaded.

The following code buildsa collection ofall the imagesthatfailed before
the page entirely loaded. Once the page is loaded, each image in the queue
of bad imagesis replaced with the appropriate text. Any future errors are
handled immediately.

385

202

PART IV; DOCUMENT CONTENTS AND DATA BINDING—e—SSF

<HTML>
<HEAD>

<TITLE>Image Error Handling</TITLE>
<STYLE TYPE="text/css">

SPAN.error {background:yellow; font-weight:bold}</STYLE>
<SCRIPT LANGUAGE="JavaScript">

var Errors = new Array();
Errors[@] = 8;

function badImage(el) [
if (document.readyState != "“complete”) {

Errors(@]4;
Errors(Errors(@]] = el;

}
else // The document is loaded; output error directly.el.outerHTML =

"Error Loading Image: " +
el.title + "";

function reviewErrors() {
for (var ji = 1; i <= Errors[@]; i++)

Errors[i].outerHTML =
“Error Loading Image: " +

ErrorsLi].title + "</SPAND>";
}

window.onload = reviewErrors;
</SCRIPT>

</HEAD>
<BODY>

<P><IMG SRC="bad.gif" ONERROR="badImage(this);"
TITLE="Cool Picture™>

<P>
<IMG SRC="bad.gif™ ONERROR="badImage(this):”

TITLE="Inside Dynamic HTML Web Site™>

</BODY>
</HTML>

This code also works if an anchor wraps the image. The newtext that replaces
the imageis rendered within the anchorand properlyjumpsto the page when
the user clicks on the element. This code can be expanded to outputa mes-
sage after an onabort event.

If replacing the image with text is considered too extreme, you can eas-
ily modify the ditle attribute by adding a messagethatsays an error has occurred.

386

202

 THIRTEEN: Dynamic Contents

(Thetitle attribute in Internet Explorer 4.0 is displayed as a ToolTip.) This
modification can be accomplished withoutall the hard work ofcreating the
error queue because attributes of elements can be modified before the page
is loaded, The following code demonstrates this feature added in line for an
image; it works without any other code:
<IMG SRC="bad.gif™ TITLE="Cool Picture”

ONERROR="this.title = 'Error Loading: ‘ + this.title™;>

Dynamic Contents and document.write
The dynamic contents model is a powerful tool for manipulating a loaded
document, butit does not completely eliminate the need for the document.write
method.In fact, these two features complementeach other extremely well. In
the following examples, dynamic contents techniquesare usedto locate spe-
cific text thatis then outputinto a new windowusing the document.write method.
Thefirst scenario creates a banner frame when the documentis contained
within a frameset, and the second scenario demonstrates two techniques for
indexing a page.

Creating a Header Bar
Web authors have long desired a feature whereby an HTMLpage can supply
a bannerto be displayed in a header bar aboveit. In earlier browsers, this
feature could only be simulated by creating a framesetthat loadstwofiles at
a time, onefile for the documentand anotherfile for its banner. Usingtwofiles
per document adds complexity, as the files need to be synchronized. The
following code simplifies matters by including the banner in the document's
contents. If the page is loaded outside a frameset, the code displays the ban-
nerinside the document, so no documentfidelity is lost.
<HTML>

<HEAD>
<TITLE>Banner Document</TITLE>
<STYLE TYPE="text/css">

DIv#bannerContents {display:none}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">

function outputBanner() {
if (null != parent. frames[@]) {

parent. frames[@}.document.open();
parent. frames[@].document .write(

document .al1.bannerContents.outerHTML)
(continued)

387

203

PART IV: DOCUMENT CONTENTS AND DATA BINDING THIATEEN:OOS Dynamic Contents

parent. frames[@].document.close();
t . ; i . .
else // Not in a frameset; turn on the banner. but it doesn’t automatically resize the header bar when the user navigates to

document.all.bannerContents.style.display = "block"; another pagethat hasa differentsize banner. You can add code to such other
} pagesto call the parent window’s fixup function to resize the header bar.

window.onload = outputBanner;
</SCRIPT> Enhanced Indexes and Tables of Contents

This frameset code sizes the headerbarfor thefirst documentthatloads,

</HEAD> The most commonuseof framesetsis to displaya list of documentoptionsin<BODY>
<DIV [D=bannerContents>

<H1>Inside Dynamic HTML</H1>
</DIV> automatically generates an anchor index, and the second example automati-
<P> Inside Dynamic HTML teaches the Web developer cally generates a table of contents. The index or table of contentsis best dis-

how to create interactive and live Web pages.</P> played in a sibling frame.
</BODY> Thefirst example includes custom code to determine whereto display the

</HTMLD index. If the documentis loadedinside a framesetandasibling frame has the

The contents of the banner DIV can be any HTML, including scripts. The ID menu, the documentdisplays the index in that frame. Otherwise, the docu-
entire contents will be copied to the other frame. ment opens a new windowto display the index. The second example includes

To complete this example, the following frameset document contains similar code to determine where to display the table of contents.
codethat automaticallysizes the frameset once the banneris loaded. This code
changes the dimensionsof the rows by assigning the scrollHeight property of Link and BookmarkIndexes

one frame and the selected documentin anotherframe. The following ex-
amples demonstrate more interesting uses of framesets. The first example

the bannerto the heightof the frameso that the bannerframeis appropri- The following quick indexer example creates an index window containing
ately sized. copies of all the document’s Anchor elements. The code uses each anchor’s

<HTML> : ‘ *
CHEAD> rendered in the index window.<TITLE>Banner Frameset</TITLE> <HTML>

<SCRIPT LANGUAGE="JavaScript”™> <HEAD>
function fixup() { <TITLE>Auto Indexing</TITLE>

// Auto-size banner frame. <SCRIPT LANGUAGE="JavaScript">
document.al1.FS.rows = function setupIndex() {

window. frames. Banner.document.body.scroliHeight + // Open new window.
"HPs var winIndex = null;

}
/* If in a frameset and a menu frame exists, output to

window.onload = fixup; that frame; otherwise, output to a new window. */</SCRIPT> if (window.parent != self)
</HEAD> if (null != parent.menu)
<FRAMESET ROWS="100, *" ID="FS" FRAMEBORDER=@> winIndex = parent.menu:

<FRAME NAME="Banner”™ SCROLLING=NO NORESIZE> if (null == winIndex)
<FRAME SRC="Banner.htm"> winIndex = window.open("", "Index",

</FRAMESET> “width=300; height=500");
</HTML> // Start writing index document.

winIndex.document.open();

innerHTMLproperty to copyits contents so that images can be appropriately

(continued)

388

203

204

PART IV: DOCUMENT CONTENTS AND DATA BINDING

winIndex. document .write("<HTML>");
winIndex.document .write("<TITLE>Index</TITLE>");

// Determine the base HREF and base target.
var baseHREF = null:
var baseTarget = null:
// Check whether any <BASE> tags are present in// the document.
var base = document.all.tags("BASE");
for (var i = 8; i < base.length; i++) [

// Retrieve the base HREF and target if specified.
if (null != baseLi].href)

baseHREF = base[i].href; -
if (null |= base[i].target) -

baseTarget = base[i].target:
} -

// Set up window name to act as target if no base exists.
if ((null == baseTarget) || ("" == baseTarget)) {

fee window.name)
window:name = “outputhere”;

baseTarget = window.name;
}

// Tf base HREF doesn't exist, set to current path.
if ((nult == baseHREF) [[| ("" == baseHREF)) {

baseHREF = location.,protocol + location.pathname;
}

// Qutput base into window.
winIndex.document.writeln("<BASE TARGET="_ +

"'" + baseTarget + "'" + “HREF='" + baseHREF + "">");
winIndex.document.writeln("<H1>Links</H1>");
// innerHTML is used so that images and rich HTML
// are automatically retrieved.
// Enumerate all Anchor elements; skip image maps.
for (var i = @; i < document.links.length; i++) {

var el = document.1inks[1];
if ("A™ == el.tagName) {

var pAText = el.outerHTML;
winIndex,document.writeln("<P>" + hText);

}
}

winIndex.document .writeln("<Hi>Bookmarks</H1>");
// Enumerate all bookmarks.
for (var i = @: i < document.anchors.tength; i++) {

390

Tr

204

THIRTEEN: Dynamic Contents

var el = document.anchors[i];
if ("A" == el.tagName) {

var hText = e].innerHTML;
winIndex. document .writeln(

“<P>" + hText +
“<IAO"); .

}

winIndex.document.close();
}
window.onload = setupIndex;

</SCRIPT>
</HEAD>
<BODY>

<H1>Auta Indexing</H1>
<H2>Link Demonstrations</H2>
<P>The following links will appear in the link index:</P>
<P>Inside Dynamic HTML
<P>Microsoft's Web Site
<P>Images also work:
<P>
<P>Rich HTML anchors are automatically picked up:
<P>Inside Dynamic

HTML
</BODY>

</HTML>

Table of Contents
This example, which is similar to the link indexing code, automatically num-
bersall headersandcreateslinks to them in a separate table of contents win-
dow. Letting Dynamic HTML numberthe headers eliminates the need to
renumber them by hand every time you insert a new one.If the table of con-
tents is in a separate window, the window closes when the user navigates away
from the page.
<HTML>

<HEAD>
<TITLE>Manipulating Headings</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// Nariable for the table of contents window
var winTOC = null;

function setupHeaders() (
var levels = new Object;
var level = 8;

(continued)

391

205

PART IV:

392

DOCUMENT CONTENTS AND DATA BINDING

if (window.parent != self)
if (null != parent.menu)

winTOC = parent.menu;
if (null == winTOC)

winTOC = window.open("", “Index”,
“width=38@; height=500");

winTOC.document.open();
winTOC.document.write("<HTML>");

winTOC.document .writeln("<TITLE>Contents</TITLE>");
// Write click event handler to scroll element into view.
winTOC.document .writeln("<SCRIPT> function gotoHeader()" +

“{if (event.srcElement.]inkTo [= null)" +
“event.srcElement.]inkTo.scrollIntoView(true)} </" +
"SCRIPT");

winTO€ document .writeIn("<BODY ONCLICK='gotoHeader()*" +“STYLE="cursor:hand'" +
“onmouseover="if (event.srcETement.tagName ==" +
“" ;SPAN")" +
“event .srcElement.style.textDecorationUnderline " +
"= true’ onmouseout = " +
‘event.srcElement.style.textDecorationUnderline " +
= false">");

winTOC, document. .writeln("<Hl>Contents</H1>");
var level = @;

// Enumerate all elements for Heading elements.
for (var i = 8; i < document.all.length: i++) {

var el = document.all[il;
var charl = el,tagName.substring(@, 1);
var val2 = parselnt(el.tagName.substring(1, 2)):
if (("H" == charl) && (2 == el.tagName.Tength) &&

(val2 > @) && (val2 <7)) £
// Nest or unnest the list.
if (val2 > level)

for (; level < val2; levelt+) {
if Clevels[Tevel} == null)

levels[level] = @;
winTOC document .writeln("<DL>");

}
else if (level > val2)

for (; level > val2; level--) {
levels[level - 1] = @;
winTOC. document.write] n("</DL>");

3
levels[level - iJH;
var hText = document.allli].innerText;

+

205

THIRTEEN: Dynamic Contentseee

winTOC. document .writeln("<DT>");
var strNum = "";
for (var iOut = @; idut < level; iQutt+) {

winTOC.document .write(levels[idut].toString¢) +
mys

strNum += Jevels[iOut] + ".";
}
document. .atl[il].insertAdjacentText("afterBegin",

strNum +" ");
winTOC document .writeln(" " + hText + "");

// Add a property with a reference to the header.
winTOC.document.al1l[winTOC.document.all.length -

1].1inkTo = el;
}

}
winTOC.document.close();

}

window.onload = setupHeaders;
// If outputting to a frame, remove this unload event
/f/ handler.
window.onunload = new Function

("if ClwinTOC. closed} winTOC.close()");
</SCRIPT>

</HEAD>
<BODY ONLOAD="setupHeaders():">

<H1>Dynamic HTML Auto-Numbering</H1>
<P>All the headers are automaticatly numbered and

a table of contents is generated.</P>
<P>Below are sample headings to be numbered,
<H2>Finds a1] the headers.</H2>
<P>Al] done automatical ly!</P>
<H2>Automatically fills in a heading number.</H2>
<H1>Better Performance and Less Maintenance</H1>
<H2>Jdust maintain the page.</H2>
<H2>Don't worry about renumbering headings.</H2>
<H3>Test header 3</H3>
<H2>No need to maintain separate contents document.</H2>

</BODY>
</HTML>

Inserting code from this document into any long Web page makes the
page moreinteractive and easier to navigate. This example also demonstrates
why proper nesting of headersis valuable. While the code can handle incor
rectly nested headings, the results are more meaningful when the headers are
properly ordered,

393

206

PART EV: DOCUMENT CONTENTS AND DATA BINDING

394

Figure 13-4 shows the Table of Gontents application in action. The table

of contents and numberedheadersare automatically generatedafter the pageis loaded.

SSeS nected

Contents 1. Dynamic HTML
Auto Numbering1 Dyraeris. Axe

Nucheneg :1.1, Findsall the headers All the headers are automatically numbered
1.2, Automatically fils in a and a table of contents is generated
heading number

2, Better Performance and Less Below are sample headings to be sumberedMaintenance
2.1, Just maintain the page 1.1. Finds all the headers,2.2. Don't worry about
renumbering headings2.2.1, Test header 3
2.3, No need to maintain
separate contents document

All done automatically!

1.2, Automaticallyfills ina
heading number. sl

Figure 13-4.
A table of contents and numbered headers.

206

CHAPTER FOURTEEN

User Selection and

Editing Operations

This chapter introduces the TextRange object, which is used to access and
manipulate the document’s contents. Dynamic HTMLdefines an object model
that can manipulate a document throughscript, similar to a text editor. The
TextRange object representsthe editing capabilities of the browser and exposes
operations that constitute the editing model. Using the TextRange object, you
can edit any text and you can access and manipulate the highlighted text thatthe user has selected on the screen.

The following topics are covered in this chapter:

@ Introducing the TextRange object This section introduces the
TextRange object, how it represents the text contents of the docu-
ment, andits relationship to the document's structure. In addition,
some of the limitations and ambiguities of the TextRange object arediscussed.

@ Programming the TextRange object This section shows you how to
navigate and modify a document's contents using the TextRange
object’s properties and methods.

™ Accessing the user’s selection This section shows you how to access
the user’s selection, one of the primary uses of the TextRange object.
Both plain text and HTMLtextselected by the user are accessible,
and the user’s currentselection can be manipulated and changed.

m Executing commands Dynamic HTMLexposesa set of editing-
related methods that are exposed both on the document and on
the TextRange object. This section shows you how to use these meth-
odsto query for information about the document and to manipulate

395

207

PART IV: DOCUMENT CONTENTS AND DATA BINDING

the appearance of the document. The methods that manipulate the
documentare used to indirectly modify the HTMLin order to obtain
desired effects—for example, to create an Anchor element from
arbitrary text.

Introducing the TextRange Object

396

Up to now,you've seen how to modify a documentdirectly by manipulating the
individual elements or the style sheets. Just as global style sheets manipulate
a document's style independentofits structure, the TextRange object manipu-
lates the document's contents independent ofboth style and structure. This
object is intended to complementthe inner and outer element properties for
manipulating documentcontents introduced in Chapter 13, “Dynamic Con-
tents.’ These elementproperties offer more robustresults and should generally
be used instead of the TextRange object whenever possible.

The TextRange object provides access to the text as a long buffer of char
acters. For example, consider the text in this simple document:
<HTML>

<BODY>
<H1>Wel come</H1>
<H2-Table of Contents</H2>

Chapter 1
Chapter 2

</BODY>

</HTML>

Figure 14-1 showsthe text for this document,positioned belowtheparsingtree.
Characters belongingto a particular elementin the tree are shown under that
element's influence. For example, Chapter J is influenced bythe first LI element.

TextRange objects can be created only by special elements that are con-
sidered text edit owners. A text edit owner is an element that can create a
TextRange object using the createTextRange method, thereby providingaccess to
the underlying buffer. Currently only two types of HTML elements canactas
text edit owners in Dynamic HTML:the Body elementis the text edit owner
for all the rendered contents, and the input elements, such as Input, Button,
and TextArea, are text edit owners for their contents. For example, you can
create a TextRange object for the preceding documentbycalling the bedy object’s
createTextRange method:
var tr = document.body.createTextRange();

—_

207

FOURTEEN: User Selection and Editing Operations

Once a TextRange object is created, any ofthe contents within the object can
be freely accessed.

Welcome Table of Contents Chapter 1 Chapter 2 Text range

Figure 14-1.
Relationship between the TextRange object and the document structure.

Initially, all the text influenced by the text edit owner is spanned by the
TextRange object. For example, the TextRange object in the preceding document
spansall the text in the Body element. You can use a TéxtRange object’s meth-
ods to reposition it to span different text. A TextRange object spansthetext that
is being manipulated or changed. A script can replace the spanned text just
as a user canselect old text and type in replacementtext in a word: processor.
The section “Executing Commands”later in this chapter introduces methods
for manipulating the appearance of the documentthat are similar to a user
selecting a font or changingthe style of text in a rich text editor.

The TextRange object is designed to be robust enough to automatically
acceptarbitrary HTML embeddedin the document. Whennewtextis inserted
into a TextRange object, the HTMLisalso inserted into the document,just as
if the user had chosen Paste from an Edit menu andinserted arbitrarytext.
These operations are powerful, but they are not intended to provide the de-
veloper with precise control over the document. Instead,the developercan use
these operations to modify the documenton a high level without being con-
cerned aboutthe specific HTML code that implements the modifications. The

397

208

PART (Vi: DOCUMENT CONTENTSAND DATA BINDING

rules governing the HTMLcodethat these operations generate are likely to
change for the next release of Microsoft Internet Explorer. Therefore, the
TextRange object should not be used when the result of an operation requires
the HTMLto have a particular shape. Instead, the inner and outer properties
should be used.

Spanning Text

398

A TextRange object does not specify the text that it spans in terms of the ordi-
nalindexesof the text range’s start and end characters. Rather,it specifies the
spannedtextin a way that is more loosely bound to positions in the document
and can survive state changes to the document. For example,if the TextRange
object spansthe entire contents of the documentand the contents expand or
shrink through anotherprocess, the TextRange object automatically reflects this
change and continues to span the entire contents.

TextRange Limitations
The TextRange object currently is very closely tied to characters, which causes
ambiguities between the TextRange object and the documentstructure. In many
cases in HTML,a single character position cannot accurately represent how
the characteris influenced by the HTML,as shown here:
<P>This is <I>bold and italic</I> text.</P>

In the TextRange object, these contents are represented as Thisis bold and italic
text. The parent ofthe letter bin the text buffer is the Italic element, and the
parentofthe Italic elementis the Bold element. No character in the word bold
or the preceding space has the Bold elementas its immediate parent. Using
the TextRange object, you cannot insert boldface but notitalic text before the
word bold. The TextRange object is currently based onasingle insertion point
that can exist either before the letter 5 (which makes the text boldface and
italic) or in the space following the wordis (which makesthe text neither bold-
face noritalic). The TextRange object cannotinsert text between the and
<I> tags. To insert text between the and <I> tags, use the insertAdjacentText
and énsertAdjacentHTML methods, introduced in Chapter 13, “Dynamic Con-
tents.” These methods can insert text before or after any begin or end tag in
the document’s body.

208

Co
FOURTEEN: User Selection and Editing Operations

Programming the Texftfange Object
This section introduces the properties and methodsavailable for manipulat-
ing the TextRange object. The methodsallow scripts to manipulate the under-
lying text in much the same way as a person could editit with a text editor,
selecting text and typing or pasting new text into the document. Viewing the
methodsthis way will help you understand how they work.

Creating a TextRange Object
As mentioned, a TextRange object is created by calling the createTextRange method
on an elementthatis a text edit owner. Like the dynamic contents properties,
the TextRange objectis notavailable until after the entire documentis parsed.
During the parsing of the document,any attemptto create a TextRange object
using the createTextRange methodfails. Therefore, ensure that the document
is entirely loaded before using any method thatreturns a TextRange object.

The TextRange object returned by the createTextRange method should al-
most always be assigned to a variable. Otherwise, the TextRange object created
in memoryis immediately destroyed. Hereis the right way to create a TextRange
object:
var tr = document.body.createTextRange();

And here is the wrong way:
document .bady.createTextRange(); // This does nothing.

Theonly circumstance in which you don't haveto assign a new TextRange
object to a variable occurs when a sequence of operations can be performed
in a single step—tfor example, when you replace the HTMLthatthe TextRange
object represents:
/f Replace the entire body’s HTML.
document. body.createTextRange().pasteHTML("<H1>New Document</H1>"):

The parentTextEdit Property
Every elementhas a property named parentTextEdit that references thetext edit
ownerresponsible for the element's contents. Using this property can give your
code compatibility with future versions of the object model. Currently the

399

209

PART I¥: DOCUMENT CONTENTS AND DATA BINDING

parentTextEdit properties for most elements in a documentreference the Body
element. Elements contained within a Button elementare the only exceptions;
their text edit owner is the Button element. However, future versions of the
object model might support more elementsas text edit owners. When you cre-
ate a TextRange object for an element, useits parentTextEdit property to iden-
tify its text edit owner, and your code should still workif the text edit owner
changes. The following codeillustrates this technique:
/? el represents an element object in the document.
var tr;
if (lel. isTextEdit)

tr = el.parentTextEdit.createTextRange();
else

tr = el.createTextRange();

Every elementin the body of a documentexposesthe isTextEdit property,
which indicates whether the elementis a text edit owner. The preceding code
uses the element ¢/ to create a TextRange objectif elis a text edit owner; other
wise, the code uses the parent text edit owner ofel. The following simpleline
of code demonstrates that the Body elementis a text edit owner:
alert(document.body.isTextEdit); // true; the Body element is a

ff text edit owner.

Representing the Document’s Contents

400

The TextRange object has two properties, text and him!Text, that provide accessto the document’s unformatted and formatted text.

The text property represents the document's text without any of the HTML
markup. This property is read/write and can be used to replace the unformatted
contents. The ¢ext propertyis similar to the outerText property on the element
objects in the way it exposes the document's contents andin thetypesof val-
ues that can be assignedto it.

The htmlTextproperty represents the text together with the HTML markup.
This property represents the HTMLthe same way the oulerHTML property
representsit, but unlike the owterHTML property, the himlText property is read-
only. To assign new HTMLto the TextRange object, you must use the pasteTML
methodinstead. Assigning new HTMLis handled by a separate method be-
cause it is not symmetric with reading the current HTML.A value you insert
into a text range using the pasteTML method mightnot matchthevalue that
is subsequently returned by the himlText property; the TextRange object might
modify or clean up the HTMLyouinsert, and the HTML mighteven influ-
ence contents beyond the boundaries of the TextRange object.

209

FOURTEEN: User Selection and Editing Operations

The pasteHITML methodis designedto insert valid HTML. Whenyoucall
the pasteHTML methodon a particular element, the fragmentyou paste will
be within the span of that element, andit should be valid HTMLwithin that
span as defined by the DTD (documenttype definition). The browserwill at-
tempt to clean up any HTMLthat doesn’t conform,and it can extend HTML
beyond the boundariesoriginally spanned by the TextRange object. When the
pasteHTMLmethodreturns, the TextRange object is updated to span the newlyinserted text.

text vs. himlText

The primary advantage ofusing the text property over himlTextand pasteHTML
involves the handlingofentities representing angle brackets. When you assign
a valueto a text property, the valueis parsed as unformatted HTML,so any
angle brackets are automatically replaced by the correspondingentities; for
example, < is replaced by &dt;. When you reada text property, entities are re-
turnedas their literal values.

Whenyouinsert new text in a text range using the pasteHTML method,
the text is parsed as HTML,so any angle brackets are interpretedas parts of
HTMLtags. If you want to embed an angle bracket in the text, you must sub-
stitute the appropriate entity yourself. When you use the htmlText property to
retrieve a text range, any angle brackets in the text appear asentities; for
example, < is returned as ⁢,

White Space
The text property of the TextRange object represents white spaceasit is rendered
on the screen, not as it is represented in the underlying document. In most
cases in HTML,extra white space is ignored. For example,if an HTMLdocu-
mentuses three spaces between each word, the textwill be displayed with only
a single space between each word. In addition, carriage returns inside an HTML
documentare ignored; block tags determine line breaks.

The exception to these rules is in PRE and XMP elements.In these ele-
ments, the existing white space is preserved and any white spacelater insertedis maintained.

Floating End Tags
You cannotforce an existing element in the documentto endearlierby insert-
ing a new endtag. For example, suppose a documenthas this Bold element:
This is bold text.

If you use a TextRange object to insert a new end tag between the words
bold and text, the new tag will not become the end tag for the Bold element.

401

210

PART IV: DOCUMENT CONTENTS AND DATA BINDING

The pasteTML method doesnotinsert a fragmentliterally into the tree. Instead,
the fragmentis validated against the DTD, which specifies that any extra end
tags are ignored. Soinserting the tag will have no effect on the text oron the documenttree.

Invalid Scope
Some HTML elements canvalidly appear only within the scope of otherele-
ments. For example, a TD elementis supposed to be contained in a TR element
inside a Table element. Chapter7, “Document Element Collections,’ describes
the parser’s rules for handling elements in the source documentthat are not
within their valid scope. Many ofthe samerules also apply to HTMLthatis
inserted using a TextRange object. For example, the following code attempts
to replace the document’s body with a single TD element:
var tr = document.body.createTextRange();
tr. pasteHTML("<TD>Cell outside any table or row</TD>");

In this example, the contentsare inserted into the document, but the surround-
ing <TD> tags are ignored becausea valid table is not defined. This error
handling is not guaranteed to be maintained from version to version of Dy-
namic HTML;therefore, to ensure predictable results, be careful to supply a
proper HTMLfragment.

Relating the TextRange Object to the Document’s Structure
The TextRange object has a pareniElement method that reports the relationship
between the text range and the document's structure. This method returns the
lowest elementin the parsing tree that influences the entire range oftext. As
illustrated in Figure 14-1 on page 397, every character in the text range is in-
fluenced by a leaf node (a node with no children). When a TextRange object rep-
resents a character,its parenthlement methodreturnsthé leaf node influencing
the character. When a TextRange object represents a range of characters,its
parentElement is the node that influences the entire range. When a TextRange
objectis first created on the Body element,it representsall of the text,so its
parentElementis usually the Body elementitself.

Positioning the TextRange Object
Whena TJextRange object is first created, it encompassesall of the text influ-
enced by the text edit owner on whichit was created. For example,calling the
createTextRange method on the Body element returnsa text range that contains
all the contents of the body.

—

210

FOURTEEN: User Selection and Editing Operations

Aset of TextRange object methods repositions the TextRange object to span
different text. The underlying architecture for the TextRange objectis not tied
to the ordinal indexesof the charactersit spans in the text buffer. You cannot
directly manipulate the endpoints of a text range, assigning them new char
acter indexes. Instead, the TextRange object move methodsreposition the ob-
ject in waysto facilitate operations on the text. They can position the TextRange
object to span any character, word, sentence, text edit owner, element, or point
on the screen. These methodsdo notcause any text to be moved around the
document. The followinglist enumerates the methodsavailable for position-
ing a TextRange object:

expand(unit)

collapse(start)
moveToElementText(element)

moveStart(unit, count)

a

t|
a

HB move(unit, count)
a

B moveFind(unit, count)
B moveToPoint(x, y)
& findText(string, count, flags)

Two additional methodsare available for repositioning the TextRange object:
setEndPoint and moveToBookmark. The setEndPoint method complements the
compareEndPoints method. These methods are discussed in the sections “Manag-
ing TextRange Objects” and “Manipulating Bookmarks”later in this chapter.

The expand and collapse Methods
The expand method expands a TextRange object to fully encompassa charac-
ter, a word, a sentence,or the entire text of the text edit owner on whichitwas
created. For example, if the TéxtRange object spans a portion of a word, call-
ing its expand methodwith the parameter word causesit to span the entire word.
The expand methodreturns a Boolean value indicating whether the method
succeeded,

Thecollapse method performs the reverse operation, placing the TextRange
object’s begin and end markers together as an insertion point. An optional
parameter determines whetherthe insertion pointis placed at the beginning
or end ofthe current range; the default value is true, which places the inser-
tion pointat the beginning.

403

211

PART IW: DOCUMENT CONTENTS AND DATA BINDING

404

The moveToElementText Method

The moveToElementText methodpositions the TextRange object to span the text
influenced by an element. Consistent with the behavior of the TextRange ob-
ject, there is no guarantee thatassigning a value to the TextRange object posi-
tioned using moveToElementTextwill change only the element’s contents. Instead,
if you need to change the contents of an elementdirectly, you should use the
inner and outer properties, introduced in Chapter 13, “Dynamic Contents”

The moveToElementText method is useful for navigating through the docu-
mentto perform subsequent manipulations such as analyzing thefirst word of
each header. The TéxtRange object can be easily movedto an elementand then
repositioned to spanjust the first word of text in that elementwithouthaving to
parse anystrings. The next section focuses on the move methodsthat can dothis.

The move, moveStart, and moveEnd Methods
The move, moveStart, and moveEnd methods reposition the TextRange object by
a specified amount. The moveStart and moveEnd methodsreposition the begin
and end markers of the JextRange object. The move method repositions the
TextRange object’s begin marker by the specified amountandcollapses the ob-

ject to an insertion point.
Each of the three methods takes the same two parameters. Thefirst

parameterspecifies whether to move by word, character, or sentenceorto the
end of the text stream. The second parameter specifies how manyunits to
move. The second parametercan beeithera positive or a negative value, which
indicates whether to move forward or backward. The first parameter can be
any of the following string values:

 Unit Deiinition

character Movesby the specified number of characters
word Moves bythe specified number of words
sentence Moves by the specified numberof sentences
textedit Movesby the specified numberoftext edit elements

The move, moveStart, and moveEnd methods return the actual number of
units that were moved. For example, if you were trying to move 200 wordsin
a 100-word document, the move method would reposition the TextRange object
to the last word in the documentand return the numberofwords moved. To
check whetheran operation was successful, compare the return value with the
numberof units moved:

211

FOURTEEN: User Selection and Editing Operations

if (200 == tr.move("word", 288)) {
// Success!

}
else {

// Failed to move 20@ words.
}

The move methodpositions the TextRange object as an insertion point
between two characters. For example,calling the move method to move forward
three words positions the TextRange object between the third and fourth words.
In this case, the text property would return an emptystring. Assigning a value
to the text propertyor calling the pasteH7TML method wouldinsertthe text into
the documentatthat point.

The moveStart and moveEnd methods move the start and end character
positions. For example, this technique can be used to expanda selection offour
wordsto five words either by movingthestart position backward or by moving
the end position forward. The following code demonstrates howto obtain the
first word of an element in the document:

function firstWord(myElement) f{
// Obtain a TextRange object.
var tr = document .body.createTextRange();
// Move the TextRange object.
// myElement represents an element in the document,
tr.moveToElementText (myE] ement);
// Collapse the TextRange object to the beginning of the element.
tr.collapse();
if (tr.moveEnd("word", 1))

return tr.text;
else

return "";

Thefollowing example demonstrates how to count the numberofwords
in a document. This code can be easily changed to count other units by chang-
ing the first parameter in the move method.
function countWords() {

var tr = document.body.createTextRange();
var intCount = @;
// Collapse the TextRange object to the beginning af the document.
tr.collapse(true);
while (tr.move("word", 1))

intCount++;
return intCount - 1; // Loop moves past last word

405

212

PART IV: DOCUMENT CONTENTS AND DATA BINDING

406

When moving by word or characterunits, all elements that represent an ob-
ject, including images, intrinsic controls, and so on, represent a single unit,

NOTE: The ways these methods reposition the TextRange object
can be compared with the ways certain keystrokes move the cursor
or change textselection in popular word processors such as Microsoft
Word. For example, the move method repositions the TextRange
object as an insertion point the same way that the Right and Left
arrow keys reposition the cursor in a word processor. Pressing an
arrow key movesthe cursor one character; holding down the Ctrl key
and pressing an arrow key moves the cursor one word. The moveStart
and moveEnd methods expandor contract the text spanned by a
TextRange object the same way that keystrokes expand or contract
selected text. Holding down the Shift key and pressing the Right or
Left arrow key causes a selection to expand or contract one charac-
ter in the specified direction. Holding down the Shift and Ctrl keys
causes the selection to expand or contract a wordat a time.

The moveToPoint Method
The moveToPoint method takes a pointin the client area of the screen as an
argument, determines what item in the documentis renderedat that point on
the screen, and places the TextRange object as an insertion pointby that item.
This method, when used in a mouse event handler to determine whattext the
mouseis on,offers finer granularity than the srclementproperty, which returns
the element the mouse pointeris in. The following mouse event handler code
displays in the status bar the word the mouseis on:
function doMouseMove() {

var tr = document.body.createTextRange();
tr.moveToPoint{event.clientX, event.clientY);
// Expand to the entire word under the mouse.
tr.expand("word") ;
window.status = tr.text;

J
document.onmousemove = doMouseMove;

The findText Method
The findText methodlocatesa specified string in the document. The browser’s
Find dialog boxes use the findText method and can demonstrate the flexibil-
ity provided by this method.

The findText method takes three parameters. Thefirst parameteris the
string to locate in the document. The second parameter represents how many
characters to search in the document;the value must bepositive for a forward

212

$$$,
FOURTEEN: User Selection and Editing Operations

search and negative for a backward search. The third parameter specifies
whether an entire word must match the string and whether a match must be
case sensitive: pass 2 for full word matching, 4 for case-sensitive searching, and
6 for case-sensitive word matching.

Managing TextRange Objects
Methods areavailable to clone a TextRange object, to compare two TextRange
objects, and to position one TextRange objectrelative to another one.

The duplicate Method
The duplicate method creates a copy of the TextRange object on whichit is
called. For example, the following code creates a copy of the TextRange ob-
ject named ¢r:
var tr2 = tr.duplicate();

The inRange and isEqual Methods
The inRange method specifies whether the supplied text range is within the
span of the TextRange object on which the methodis called:
alert(tr2.inRange(tr}}: // true; tr is within tr2.

The isEqual method compares two TextRange objects to see whether they
span the same text, The methodis necessary because two TextRange objects rep-
resenting the same range of text can nonetheless be distinct objects, so com-
paring them directly as objects will not work. The following code demonstrates
the right and wrong ways to see whether two objects span the sametext:
// Set up example.
var tr = document.body.createTextRange<{):
var tr2 = tr.duplicate();
// Wrong way to compare text ranges:
alert(tr == tr2); // false; these are two different objects.
// Right way to compare text ranges:
alert(tr.isEqual(tr2)); // true

The compareEndPoints and setEndPoint Methods
The compareEindPoints method compares two TextRange objects to see whether
their start or end positions coincide. The setEndPoini methodsets the start or end
position ofone TextRangeobjectto the start or end position of another TexiRange
object. Both methods take two parameters. A start or end position of the
TextRange object on which the methodis called is comparedwith orset to a start
or end position of the TextRange object specified by the second parameter. The

407

213

PART EV: DOCUMENT CONTENTS AND DATA BINDING

first parameter can take anyofthe valuesin the followingtable, which specify
whatpositions are to be used.

Value Description

StartToStart Sets or compares the start position of the current TextRange
object to the start position of the TéextRange object specified
in the second parameter

StartToEnd Sets or comparesthe start position of the current TextRange
object to the end position of the TextRange object specified
in the second parameter -

EndToEnd Sets or compares the end position of the current TextRange
object to the end position of the TextRange object specified
in the second parameter

EndToStart Sets or comparesthe end position of the current TextRange
object to the start position of the TextRange object specified
in the second parameter

For example, the following function determines whetherthe érDest object
continues where the éSrc object leaves off:
function continues(trSre, trDest) {

return trSrc.compareEndPoints("EndToStart”, trDest);
}

Scrolling the Range into View
TextRange objects are manipulated entirely in memory. Changing thetext and
himlText properties on the TextRange object does not cause the documentto
scroll. To scroll the text spanned by a TextRange object into view, use the same
scrollintoView methodthatall elements support. This methodtakes a single
optional parameter that specifies whether to scroll the text in the TextRange
object to the top of the screen (érue) or to the bottom ofthe screen (false).

Manipulating Bookmarks

408

A bookmarkrepresents a TextRange object’s position in the text, similar to an
HTMLbookmark representing a position in a document. You can use a
TextRange object’s getBookmark methodto save a record of the object’s current
position as a bookmark andits moveToBookmark method to return to a saved
position.

The getBookmark method returns a bookmarkasa string value. Like
TextRange, a bookmark does not record start and end positions as character

213

FOURTEEN: User Selection and Editing Operations

indexes. Rather, the bookmark is a string that contains the position informa-
tion in an encoded form. Thestring is not meant to be manipulated directly
and should be used only with TextRange methods.

The moveToBookmark methodtakes a bookmark string as a parameter and
positions the TéxtRange object according to the bookmark. This method returns
a Boolean value that indicates whether the operation is successful.

You could make one TextRange object’s position match a second TextRange
object’s position by calling the first object’s moveToBookmark method and pass-
ing it the bookmark returned by the second object’s getBookmark method.
However, a more direct way to copy a bookmarkis to use the duplicate method.

Embedded Objects
Embedded objects are the HTML elements that represent intrinsic controls,
Object elements, images, and so on. Each embedded objectis represented by
a space in the JéxtRange object. To determine whethera space in a TextRange
objectactually represents an embedded object, obtain another TextRange ob-
ject that spans just the space and check the paventElement method.

To add an embedded objectto the TextRange object, insert the appropriate
HTMLinte the documentusing the pasteHTML method. Oncethe assignment
is made and the HTMLis parsed, the text in the TextRange object is automati-
cally updated with a space to representthe newly instantiated embeddedobject.

Selecting the Text Range
The TextRange object exposes a select method that makes the text spanned by
the objectthe user’s current selection. When a TextRange objectis selected, the
text it spansis selected on the screen. Subsequently extending the TextRange
object does not extend theselection unless you call the select method again.

Accessing the User’s Selection
Userselectionis closely related to the TextRange object. The document's selec-
tion property references an object that exposes the currentselection in the
browserto scripts. This selection object also exposesa type property that returns
the type ofthe selection: None for no selection and Text for a text-based selec-
tion. Whentextis selected on the screen, the selection object’s createRange
method returns a TextRange object that spans the selected text. Repositioning
this TextRange object will not change what text is selected on the screen, but
changes madeto the text by the TéxtRange objectwill of course bereflected on
the screen. To change the selection on the screen to match a TextRange object,

409

214

PART
 Vi DOCUMENT CONTENTS AND DATABINDING

you cancall the TextRange object's select method. For example, the following
code uses a Texttange object to extend the selection on the screen by one word:
if ("Text™ == document.setection.type) {

var tr = document.selection.createRange();
/? Move the end position to include one more word.
tr.moveEnd("word", 1);
//} Reselect the range.
tr.select();

}
else

alert("No text is selected,");

Always test the type of the selection before you do any manipulating
because the browser supports a second type ofobject, called a ControlRange,
for selecting multiple controls. Because multiple controls are currently not
selectable when youare browsing a document, the Confro/Range object is notdiscussed here.

Executing Commands

410

The Dynamic HTMLobject model exposes a set of methods thatallow user
operationsto be executed directly on a range or on the document. These
operations correspondto different actions the user can perform onthe text.
For example, there are commands for making text boldface or not boldface,
similar to a Bold toggle button in a text editor. These commands modify the
underlying HTMLto achieve the desired result. Currentlyall style manipula-
tions occurby inserting the presentational HTML markupinto the document.
There are no guaranteesthat the commandswill perform style manipulations
this way in futurereleases of the browser. The only guaranteeis that the com-
mandswillstill create the samevisible end results.

These commandsenable a page to manipulate the documentstyle and
contents without worrying about the HTMLstructural rules. For example,
when the Bold commandis invoked, appropriate HTMLis automatically gener-
ated, Commandsarealso available for performingotherbasic user operations,
such as cutting and copyingtext, adding controls to a fixed region, and undo-
ing thelast operation.

TextRange objects and the document object expose a number of methods
for executing and querying the status of commands. These methodsfall into
two categories: those that return the status of a command and those that ex-
ecute a command.The six available methodsfor determining a command'sstatus are shown here:

214

FOUATEEN: UserSelection and Editing Operations

M queryCommandSupported(cmdlD)
queryCommandEnabled(cmaID)
queryCommandState(cmdID)

a
a

@ queryCommandindeterm(cmdID)
W gueryCommandText(cmdlD, text)
a queryCommandValue(emdID)

These methods are best understood in the context of a text editor’s user

interface. The queryCommandSupporied and queryCommandEnabled methods
return Boolean values reporting whetherthe specified commandis supported
by the object and whetherit is currently available. If a commandis disabled,
executing the commandhasnoeffect on the document. The queryCommand-
State method indicates whether the specified commandhas beencarried out
on the object; for example, calling this method with the parameter Bold returns
true if the object spans boldfacetext, false if not, and null if the method can-
not determine the state. The queryCommandIndeterm method indicates whether
the state of the commandis available. For example,if a TextRange object spans
both boldface text and plain text, this method returns true because the actualboldstate is unavailable.

The queryCommandText and. queryCommandValue methodsprovide further
information about a command. The gueryCommandText method returnsa short
menustring or a longer status barstring that describes the function. Because
the texts of these strings may vary among browsers, you shouldnotwrite code
that relies on a particular string being returned. The queryCommandValue
method returns the actual value of the command.For example, calling this
method with the parameter FontName returns the nameofthe font.

Noneof the preceding methods have any effect on the document; they
simply return information aboutthe currentstate. To interact with the docu-
ment, the following two methods are exposed:

B execCommand(cmdlD [, displayUL] [, value])
Mi execCommandShowHelp(cmdlD)

The execCommand method executes a command. The emdiD argument represents
the commandto invoke and is required. The optional displayUI parameter
specifies whetherto display or hide any corresponding user interface. By de-
fault, any associated userinterfaceis notdisplayed. In somecases, bypassing the
user interface would create a security concern, so the displayUI argumentis

Ai

215

iV: DOCUMENT CONTENTS AND DATA BINDING

ignored and theuserinterface is always displayed. For example, invoking the
Print commandwill not print the documentwithoutfirst alerting the user. The
value attribute supplies a value to the command. The execCommandShowHelp
methoddisplays the helpfile if one is supported for the specified command.

The following code, which analyzes a document in order to determine
how manyfonts are displayed,illustrates how the queryCommandValue methodcan be used:

<SCRIPT LANGUAGE="“JavaScript™>
function walkDocument() {

var fonts = new Array();
var tr = document.body.createTextRange();
tr.collapse();
while (tr.moveEnd("character", 1)) {

var val = tr.queryCommandValue("FontName”) ;
if (null == fonts[val]) {

fonts[val] = true;
fonts.length++

}
tr.collapse({ false);

}
var settings = "Total Fonts: " + fonts.length + “\n";
for (var font in fonts) {

settings += " "+ font + "\n";
}
alert(settings);

}
</SCRIPT>

The companion CD containsa list of all the available commands and the
typesof values they accept and return.

Te indo ELMS 7

=(iparseint(navigatcg
aoc NGI e COT appv F

215

 ASTES

CHAPTER FiF TEEN

Data Binding with HTML

Unit thearrival of data binding, accessing data via Web pageswasslow. (And
the Internet has becomesloweras traffic has increased—especially if you're
limited to a 28.8-Kbps modem.) Pages that accessed data were slow to render.
This was due, in large part, to servers not only supplying Web pagesbutalso
being tasked with accessing the database and merging the data with the page
to create a complete HTMLpagefor the client. Moreover, once that page was
transmitted to the client there was no wayfortheclient to differentiate between
the data and the HTMLthat containedit. As a result, when users wanted to
manipulate the data—for example,to sortit in a different order—they needed
to makeanotherrequestto the server. Such a request would result in the server
accessing the samedata again, formattingit differently, and transmitting the
new pageto the client. The server would once again transmit the same data
embedded in the HTMLpage to the client. Some servers were also required
to maintain client state to ensure that data was consistently displayed to the
user. All these factors resulted in a user experience equivalent to mainframe
terminals in terms of interactivity. Fortunately, all this has changed.

Enter data binding. Data bindingis a feature of Dynamic HTML that
salves manyof these problems. Data binding maintainsthe distinction between
the data and the HTMLthatdisplaysit. Data is transmitted to the client asyn-
chronously and rendered asynchronouslyasit arrives, muchlike a progressively
rendered GIF. Becausethe client is able to differentiate the data,it can per
form manipulations, such as sorting, on the client without a round-trip to the
server. This autonomy reduces the numberofserver hits and the amountof
data transmitted. Web pages built using data binding display data more quickly,
remove the burden of formatting from the server, and provide a moreinter-
active, responsive experience to theuser byeliminating long waiting periods
between pages.

413

216

PART IV: DOCUMENT CONTENTS AND DATA BINDING

414

The goal of this chapter is to give you enough information to build an
HTMLpageusing data binding as well as to provide a reference as you build
data-bound pages. The following topics are covered in this chapter:

® Whatis data binding? Data bindingis a concept introduced in Dy-
namic HTML.This section defines the term binding and introduces
the conceptsthat will be explored in the remainderof this chapter.

®@ Data-binding architecture This section discusses the three compo-
nents of the data-binding architecture: data source objects, HTML
data-binding extensions, and the binding and repetition agent. Data
source objects supply data to Web pages and encapsulate the func-
tionsof transmission, specification, manipulation, and script access.
The HTMLdata-binding extensions are attributes that can be in-
cluded on HTMLelements, Elements that include data-binding at-
tributes are called data consumers. The attributes specify the data
source object that supplies data to the element. The binding and
repetition agent recognizes data source objects and data consumers
on a Web page and synchronizes data transfers between the HTML
elements and the data source.

@ Data consumers: HTML elements A large number of HTMLele-
ments support data binding. This section providesa list of these
elements and explains how they are used to display and allow user
interaction with the data supplied by a data source object. This sec-
tion also provides examples that demonstrate how to bind each sup-
ported HTMLelement.

® Building basic pages using data binding This section discusses the
three basic types of binding: current record binding, repeated table
binding, and paged table binding. Current record binding displays
data from the current record in bound elements. You can use a script
to change which record in the dataset is current, When a new record
becomescurrent, the bound elements are updated to show data from
that record. Repeated table binding allows the Web author to repeat
a set of HTMLelements, called a template, to build a table that dis-
plays all the rows in a data set. Paged table binding is similar to re-
peated table binding exceptthat it allows the Web authorto limit
the numberof recordsdisplayed in the table. The paged table can
be thought ofas a window into the data set. Using scripts, the Web
author can then move this window around the data set to displayadditional data.

216

FIFTEEN: Data Binding with HTML

@ Writing scripts using data binding As part of the data-binding func-
tionality, a rich event model is provided to Web authors for writing
applications. Events are provided for validation, record movement,
and asynchronousdata transmission. This section also describes
the basics of accessing data from a data source object using ADO
(ActiveX Data Objects).

@ Advanced features This section gives a brief overview of a number
of advancedfeatures of data binding, including data updates,
the recordNumber property, and object model access to the data-
binding attributes. This section discusses how a Web page can be
madeinto a client/server application by enabling data updates.
The recordNumber property, available from every elementin a re-
peated or paged table, allows the Web authorto easily determine
to which record from the data source object the element is bound.
The remainderof the section discusses adding, deleting, and modi-
fying data-bindingattributes on elements using the Dynamic HTML
object model.

WhatIs Data Binding?
Before we discuss the three componentsof the data binding architecture,let’s
explain what is meant by the term binding. Simply put, a binding expressesthe
relationship between the data supplied by a data source object and the HTML
consumerof the data. This relationship is called a binding because the value
of the datem (short for data item) is synchronized betweenthe client and the
server. When an HTML consumer—for example, an HTMLtext box—modifies
a datem, the modified datem is saved back to the data source object. Con-
versely, if the data source object changes the data value, the modified datem
is sent to the data consumer, Generalizing further, multiple consumers can be
boundto the same datem,and all valuesofall consumersare synchronized to
the value supplied by the data source object. Values in the data source object
are boundto the values in one or more data consumers.

Two distinct styles of binding are available: current record binding and re-
peated table binding. Current record binding uses HTMLelementsto display data
from a single record from the data set—the currentrecord.A different record
can then be made current, in which case—the elements are updated dynami-
cally to display the data from that record. Repeated table binding lets you
specify a set ofbound elements, called a template, that is repeated oncefor each
record in the data set. Web authorsalso have the option oflimiting the num-
ber of records repeated in the table, a feature known as table paging. Table

415

217

PART IV: DOCUMENT CONTENTS AND DATA BINDING

paging and the two bindingstyles will be discussed in detail in the section
“Building Basic Pages Using Data Binding”later in this chapter.

Data-Binding Architecture
The data-bindingarchitecture consists of three major components: data source
objects, HTML data-binding extensions that define data consumers, and the
binding and repetition agent. Data source objects supply data to the page, and
HTMLdata consumers display the data and provide waysfor the userto interact
with the data. The binding andrepetition agent provides supportfor the two
styles ofbindings. Additionally, the binding andrepetition agentis responsible
for synchronizingall bindingsto a single datem when users modify the data
on the page.

Data Source Objects

416

Data source objects provide an openarchitecture for supplying data to a Web
page. Data source objects are inserted in a Web pageusing either an <APPLET>
tag or an <OBJECT> tag, as shown here:
<OBJECT ID="stocklist” WIDTH="@" HEIGHT="0"

CLASSID="clsid:333C7BC4-460F-1100-BCO4-@980C7055A83">
<PARAM NAME="DataURL" VALUE="stockdata.txt">
<PARAM NAME="FieldDelim™ VALUE="|"><PARAM NAME="TextQualifier” VALU ">
<PARAM NAME="UseHeader™ VALUE="true”>

</OBJECT>

Oncea data source object has beeninserted on a page, data consumers can
be defined to display the data andinteract with the user.

Data source objects can be implementedin a variety of programming
languages, including Java, Microsoft Visual Basic, and Microsoft Visual C++.
Data source objects are responsible for four major functionsof data access:

l@ Transporting data to and from the page—Data source objects must
implement the mechanismsforretrieving data for an HTMLpage.
Data sourceobjects are solely responsible for transporting the data
to the client and, optionally, transporting modifications of the data
by the client back to the server. They can transportthis information
in any mannerthey see fit—using HTTP (hypertext transfer proto-
col), FTP (file transfer protocol), local file access, or connection-
based database protocols. Dynamic HTMLdoesnotplace any
constraints on the transporting ofdata.

+

217

a al

FIFTEEN: Data Binding with HTML

Most well-authored data source objects will support asynchro-
nousdata delivery—thatis, the data source object will expose the
data incrementally asit is transmitted to the client rather than wait-
ing for the entire data set to be present before exposing the data.
Because the Microsoft Internet Explorer 4.0 browser supports in-
crementaldisplay of bound data, use of a data source object that
supports asynchronousdelivery will result in the data being dis-
played and available for interaction with the user sooner, muchlike
an interlaced GIFis displayed incrementally.

Supplying the mechanism for specifying the data to be transferred—
Because data source objects are responsible for the transfer of data,
they are similarly responsible for the mechanism that specifies what
data is to be transferred (accessed). Data source objects are free to
use a query language of their choice, URLs,pathsto files, other
processes, other objects, or any other meansof specifying data that
is compatible with the protocol they utilize for accessing the data.
Providing methods for manipulating the data on the client—Data
source objects can support properties and methods for manipulat-
ing the data they supply. For example, the data source objects in-
cluded with Internet Explorer 4.0 support properties and methods
for sorting andfiltering the data that they supply. When you set
these properties or call these methodsfromascript, the data source
object performs the manipulation and, through notification inter-
faces with the binding and repetition agent, informs the browser that
the data has been modified. The browser in turn redisplays the
bounddata to reflect the current order (for sorting) or the new,
reduced or expandeddataset (for filtering).

Data source objects can also support data updating. The data
source object can allow the user to change the values of bound
HTMLelements on the Web page. The data source object transmits
the changeddata back toits source, usually a database or a Web
server, where the changeswill be saved. The RDS (Remote Data
Service) is one such data source object. RDS is included with mini-
mal configurations of Internet Explorer 4.0. More information
about RDScan be obtained from the Microsoft Website at
www.microsoft.com/data.

Sorting, filtering, and updating aren't the only manipulations
supported by data source objects. A data source object can support

417

218

PART IV: DOCUMENT CONTENTS AND DATA BINDING

any manipulation appropriate to the type of datait supplies. For
example,a data source object that provides an amortization sched-
ule for a loan might expose three properties: interest rate, loan
amount, and duration. Whenever any of these properties are modi-
fied, the data source object would generate a different data set be-
cause a changeto the values will change the amortization schedulefor the loan.

® Providing an object model for script access to data (referred to as a
data object model)—In general, data binding requireslittle or no
script to build basic pages unless you need to perform validation,
calculations, or data manipulations.

Internet Explorer 4.0 provides the AD@ object modelfor every
data source object. However, data source objects can optionally ex-
pose their own additional object model in circumstances in which
the data exposed doesnotlenditself to access using ADO. An ex-
ample of a data source object that must expose its own data object
model is the XML (Extensible Markup Language) data source ob-
ject; see the Microsoft Web site at www.microsoft.com/standards/xml
for more information.

HTML Data-Binding Extensions

418

Data from data source objects is displayed to the user using standard HTML
elements. The key to these elementsdisplaying the datais the inclusion of one
or more of the HTML data-binding extensions.

NOTE: The data-binding extensions have been proposed to the
‘W3C (World Wide Web Consortium) for inclusion in the HTML
standard.

The data-binding extensionsare four new attributes that can be included
on a wide variety of HTML elements. The attributes specify the data source
object that supplies the data to the element, what column orfield of the data
source object to bind, whetherthedatais plain text or should be interpreted
as HTML,and,for repeated tables, whether the table should display only a
subsetof the data supplied by the data source object. The following sections
discuss these attributes in detail. For a completelisting of elements that sup-
port the data-binding attributes, see the section “Data Consumers: HTML
Elements”later in this chapter.

218

a

FIFTEEN: Data Binding with HTML

SS

OLE-DB Simple Provider
In general, a data source objectwill read its data into an in-memory
cache ontheclient. The data source object must then have a way to
expose the data in this cache to the browser. Data source objects do
this by implementing either the OSP (OLE-DB Simple Provider)inter-
face or directly through OLE-DB, whichis a set of OLE interfaces for
accessing data.

Fortheinitial release, Internet Explorer 4.0 will support all data
source objects implementing OSP. The RDSincluded with Internet
Explorer 4.0 is the only supported OLE-DBprovider for Internet Ex-
plorer 4.0. Support for arbitrary OLE-DB providers will be added in
futurereleases, but this section will discuss only OSP.

OSPis an openspecification and is compatible with bothJavaBeans
(the component modelfor Java) and OLE. OSP provides a simple
interface for exposing data in the client-side cache. In most circum-
stances, the client-side cache can be viewedas an arrayor a setof tabu-
lar data—thatis, a data set madeupofrows,in which each row has the
same numberofcolumns. OSP providesaccessto this array of data one
cell at a time, OSP supports the capability to add and delete rows;it
also requiresthe data source objectto fire notifications whencells are
modified or when rows are added anddeleted. These notifications are
used by the Internet Explorer4.0 bindingandrepetition agent to keep
each bound elementsynchronized with the current record's data val-
ues. Data source objects that expose OSP can be implementedinJava,
Microsoft Visual Basic 5.0, and Microsoft Visual C++ using MFC
(Microsoft Foundation Classes) or, preferably, ATL (Application Trans-
action Language) 2.0,

The DATASRCAttribute
The DATASRCattribute indicates the data source objectthat supplies the data.
DATASRCisset to #<IDref> where <IDref> is the ID of the data source object.
Using the earlier example under “Data Source Objects,” the DATASRCat-
tribute pointing to the stocklist object would be expressed as follows:
DATASRC=#stocklist

In general, the DATASRCattributeis not used alone;it is combined with
the DATAFLDattribute. However, there is one exceptionto this rule: repeated

419

219

PART IVs DOCUMENT CONTENTS AND DATA BINDING

420

tables. Repeated tables use only the DATASRCattribute because the bind-
ing on a repeated table indicates only the source of repetition, Bound HTML
elements inside the table display and interact with the actual data.

The DATAFLDAttribute

Data source objects expose their data as a tabularset consisting of multiple rows
with a fixed number of columns. The data source object gives the columns
names that can be referenced through the OSP interface. The definition of
column namesis the responsibility of the data source object. The DATAFLD
attribute indicates the named columnorfield that is to be bound from the data
source object.

In general, the DATAFLDattribute must be accompanied by DATASRC.
However,for an element within a repeated table, DATASRCis omitted because
it is inherited from the DATASRCattribute on the Table element. See the
section “Repeated Table Binding”later in this chapter for more information.

The DATAFORMATASAttribute

The DATAFORMATASattribute specifies the formatof the data supplied by
a data source object. DATAFORMATAScan take one of three values: NONE,
TEXT, and HTML. The default value is NONE, When NONEis specified (or
whentheattribute is not included), the data source objectis askedfor the native
type required by the data consumer—almostalways text for HTMLelements.
When TEXTis specified, the data source objectis asked specifically for a text
value, regardless of the underlying data type of the column. For example,if
the data source object supplied a columnoftypeinteger,it would be required
to convert those integers to strings when DATAFORMATASwasspecifiedas TEXT.

Most important, when DATAFORMATAShasthe value ATML,the data
supplied by the data source objectis interpreted as HTMLratherthan as plain
text. The data is parsed, and any HTML elementswithin it are renderedasif
they were present directly on the Web page. By setting DATAFORMATASto
HTML,you can store HTMLin your data rather than storingit statically on
your page.

The DATAPAGESIZEAttribute

The DATAPAGESIZEattributeis specific to a repeated table.It gives the Web
authorthe flexibility to limit the length of a repeated table, and hence the
overall length of a data-boundpage.It takes positive integers asits value, and
it must be used in conjunction with the DATASRCattribute.

219

FIFTEEN: Data Binding with HTML

If the DATAPAGESIZEattribute is not specified, the table’s templateis
repeated for every record supplied by the data source object. Including DATA-
PAGESIZE ona table limits the number oftimes the template is repeated to
the value specified. The rowsdisplayed in the table can thenbe scrolled us-
ing methods from the Dynamic HTMLobject model on the Table element.

Binding and Repetition Agent
Thethird componentof the data-bindingarchitecture is the binding and rep-
etition agent—called the binding agentfor short. The binding agentis a built-
in componentofInternet Explorer 4.0. It is responsible for interpreting the
data-binding attributes and then actually supplying the data from a data source
object to the data consumers. To achieve this, the binding agent performs a
numberoftasks. First the binding agent recognizes data source objects and
data consumersincluded on a page or added dynamically to the page using
the Dynamic HTMLobject model. The binding agent keepstrack ofwhat data
source objects are available and to which columnsof the data source object thedata consumers are bound,

The binding agent also performs the appropriate processing as deter-
minedby the type of binding expressed. For current record binding,the bind-
ing agent supplies data from the current record to the data consumers. When
a new record becomescurrent, the binding agent updates the data consum-
ers with the data from the new current record. For repeated table bindings,
the binding agent repeats the table’s template for each record supplied by the
data source object. Individual bound elementswithin the table are supplied
values from the appropriate columnfor each record in the data sourceobject.

Another function of the binding agentis to keep the data synchronized
between data consumers and data source objects. Thisis actually a dual func-
tion. The binding agent monitors data source objects and detects changes to
data by handling notifications; when data to which an HTMLelementis bound
changes, the binding agent propagates the changes to the bound element.
Likewise, when a user changes a bound element's value by interacting with the
page, the binding agent propagates the changeback to the data source object.

Last, the binding agentis responsible forfiring script events for the data
source objects and data consumers. Events are provided on data consumers
to allow page authorsto write scripts that validate user input or that respond
to actions taken by the user, such as changing which record is current. More
details on the available script events can be foundin the section, “Writing
Scripts Using Data Binding”later in this chapter.

421

220

rr=~llll/c.4
PART IV: DOCUMENT CONTENTS AND DATA BINDING FIFTEEN: Data Binding with HTML

Data Consumers: HTML Elements

Data binding uses standard HTMLelements to present data to the user. These
elements include HTML Form elements, basic HTML constructs such as An-
chors and Images, more esoteric constructs such as Objects and Applets, simple
containers for other HTMLelements such as DIV and Span, and Tablesfor
repeating items from a data set. This section provides a detailed explanation
of each data consumer, beginning with the basic consumers and continuing
to the more complex elements.

The DIV and Span Elements
DIV and Spanare simple containers for text or for other HTMLelements. Be-
cause DIV and Span are block elements(they have begin andend tags), binding
them bindstheir contents. Both DIV and Span support the DATAFORMATASat-
tribute and can be bound to HTML data in the columnofa data source ob-
ject. Neither elementcan have its contents modified by the viewerof the page;
therefore, the bindings to the DIV and Span are also read-only.

NOTE: Datacanstill be modified throughthe data object model.
In this case, changes to the data from a scriptwill be reflected in
bound DIVsand Spans.

The following code demonstrates a bound DIV and a bound Span:
<DIV DATASRC=#stocklist DATAFLD="Symbo1” DATAFORMATAS=TEXT></DIV>

The Input Element

422

The types of Input elements supported by data binding arelisted here:

™ TYPE=TEXT—Data binding enables binding to the VALUEattribute
of the text box and, in keeping with the text box’s normal mode of
operation, allows the user to edit the value. Changes made to the
item are stored in the data source object. An example of how to bind
a text box control is shown here:
<INPUT TYPE=TEXT DATASRC=#stocklist DATAFLD="Shares">

™ TYPE=RADIO—Data binding binds the VALUEattribute from a
group of radio buttons having the same NAMEattribute. The DATA-
SRC and DATAFLDattributes must be included onall the radio but-
tons in the group, If the bound value from the data source does not

220

match any of the values of the bound radio buttons, no radio but-
tons are selected. When the userselects a radio button, the corre-
spondingvalueis stored in the data source object.

An example of a group of data-bound radio buttonsis shown
here:

<INPUT TYPE=RADIO VALUE=S DATASRC=#stocklist
DATAFLD="Type">Short

<INPUT TYPE=RADIO VALUE=L DATASRC=#stocklist
DATAFLD="Type™>Long

@ TYPE=CHECKBOX—tThedata-bound behavior of a check box dif-
fers significantly from its behavior within an HTMLform.Data-
bound check boxes bind a Boolean value, not the VALUEattribute
of the check box. A data-bound check box always provides a valueof True or False.

An example of a data-bound check boxis shown here:
<INPUT TYPE=CHECKBOX DATASRC=#stocklist DATAFLD="ExDiv™>

@ TYPE=HIDDEN—Adata-bound hidden elementis useful only in hy-
brid pages that use data binding in conjunction with a Submit but-
ton. A data-bound hidden element has its VALUEattribute bound.
When an HTMLform that contains a data-bound hidden elementis
submitted, the hidden element's value will be sent to the server.

An example of a data-bound hidden elementis shown here:
<INPUT TYPE=HIDDEN DATASRC=#stocklist DATAFLD="DateUpdated">

® TYPE-PASSWORD—Data-boundpassword fields have exactly the
same data-binding behavior as data-bound text boxes, Their VALUE
attribute is bound and the value typed by the user is stored in the
data source object.

NOTE: The Input elements do not require an enclosing Form
element when used for data binding. No Submit button is requiredeither.

The TextArea Element

Data binding a TextArea elementbinds the completetextof the multiline text
box to a single column.

An example of a data-bound TextArea élementis shown here:
<TEXTAREA DATASRC=#stacklist DATAFLD="News">

423

221

PART &V: DOCUMENT CONTENTS AND DATA BINDING

The Marquee Element
As with the DIV and Span elements, binding to a Marquee element binds the
contents of the element.You can optionally add the DATAFORMATAS=HTML
attribute to indicate that the bound data is HTML.Ifyou do so, the data will
be parsed and rendered by the browser.

An example of a data-bound Marquee elementis shown here:
<MARQUEE DATASRC=#stacklist DATAFLD="Last™ DATAFORMATAS=HTML>
</MARQUEE>

The Select Element

424

A data-boundSelect elementallows the binding ofa single selected value from
a list. The VALUEattribute of the Option elementcorrespondingto the selec-
tion is the value stored in the bound columnof the data source object. When
the valuein the data source object does not correspondto any values specified
onan Option elementin the Select element, no valuesare selected. Data-bound
Select elements can use either the drop-down list or the combo box userin-
terface, dependingonsetting of the SIZE attribute. The MULTIPLEattribute
is ignored on data-boundSelect elements becauseit is not possible to bind an
element to more than one value from a single column.

An example of a data-bound combo box is shown here:
<SELECT DATASRC=#stocklist DATAFLD="Type">

<OPTION VALUE=L>Long
<OPTION VALUE=S>Short

</SELECT>

A data-bound drop-down list would. use the following Select element:
<SELECT SIZE=2 DATASRC=#stocklist DATAFLD="Type”>

<OPTION VALUE=L>Long
<OPTION VALUE=S>Short

</SELECT>

Althoughthelist of optionsfor the Select element cannot be bound di-
rectly to a data source object, it is possible, throughascript, to populate the
optionsof the Select element from a data source object. The following code
illustrates this technique:
<!-- Data source object to supply the Select element options --><OBJECT ID="selectlist" WIDTH="@" HEIGHT="0"

CLASSID="clsid:333C78C4-460F -11DQ-BCQ4-@880C7055A83">
<PARAM NAME="DataURL" VALUE="“selectdata.txt">
<PARAM NAME="UseHeader™ VALUE="True">

</OBJECT>

221

FIFTEEN: Data Binding with HTMLSSaee

<!-- List to be populated -->
<SELECT ID=typeselect>
</SELECT>

<SCRIPT FOR=window EVENT=onload{) LANGUAGE="JavaScript™>
var i, newop;

selectlist.recordset .MoveFirst();
for (i = 1; 1 <= selectlist.recordsat.AbsolutePosition; i++) {

newop = document.createElement("option"™);
newop.value = selectlist.recordset("value”);
newop.text = selectlist.recordset("display");
typeselect.add(newop);
selectlist.recordset.MoveNext();

}
</SCRIPT>

The handler for the window onload event reads through the data from the data
source object and adds an option for each record in the data to the Select
element. The MoveFirst method and AbsolutePosition property are explained in
the sections “Move Methods” and “The recordNumber Property,’ respectively,
later in this chapter.

The IMG Element

Data binding supports binding the SRC attribute of the Img element. The value
supplied by the binding should be a URLto the imagefile to be displayed. The
URLcanbeeither an absolute URLor a relative URL. Whenitis a relative
URL,either the base URLfor the documentor the URL specified in a <BASE>
tag is used to constructthe full URL toretrieve the imagefile. The download-
ing of the imagefile proceedsas if the IMG elementwerestatically defined
within the document—thatis, the image data is downloaded using the threadsavailable to the browser. -

An example of a data-bound IMG elementis shown here:

The Anchor Element

Like the IMG element, binding to the HREFattribute of an Anchor element
is supported in Dynamic HTML. The boundvalueis expectedto be either a
relative or an absolute URL. The samerules apply to the URL of the Anchor
elementas apply to the Img element.

An example of a data-bound Anchorelementis shown here:
,,.

425

222

PART IV: DOCUMENT CONTENTS AND DATA BINDING

You can include bound text for an Anchor elementby using the anchor
in combination with other elements, such as a Span element. Here the sym-
bolfor the stock in our example is used as a hyperlink to the company’s Web
site:

The Button Element

It is possible to bind the contents of the Button elementby including the DATA-
SRC and DATAFLDattributes on the element. The face of the button will

display the bound text. The DATAFORMATASattribute can also be included
on the binding to display HTML ontheface of the button.

An example of a data-bound Button elementis shown here:
<BUTTON DATASRC=#stocklist DATAFLD="Chart™ DATAFORMATAS=HTML></BUTTON>

The Label Element

Binding a Label elementis similar to binding a Button element. The contents
of the Label element are bound, and the binding can contain HTML. One
word of caution: Label elements cannot be used within a repeated table. Be-
cause a Label elementis associated with a control by setting its FOR attribute
to the ID of the associated control, it is not possible to uniquely assign a La-
bel element to a single control in a repeated table.

The Object and Applet Elements

426

You can also bind an arbitrary numberof properties of ActiveX controls and
Java applets. To bind a property of an Object or Applet element, you include
the DATASRC and DATAFLDattributes on the <PARAM>tag thatspecifies
the nameof the property to bind. This example shows bindingsto the fore-
ground and background colors of the control or applet:
<APPLET CODE=myapplet.class>

<PARAM NAME="backcolor™ VALUE="green”
DATASRC="#dsc1" DATAFLD="colar”>

<PARAM NAME="forecolor™ VALUE="yellow"
DATASRC="#dsc1" DATAFLD="textcolor™>

</APPLET>

222

 FIFTEEN: Data Binding with HTML

To bind toJava applets, the Applet element must be implemented accord-
ing to the JavaBeans specifications for properties—that is, there should be
corresponding public get and set methods for the property specified by the
NAMEattribute of the <PARAM?tag. As with ActiveX controls, the Applet
elementis not required to implement property change notifications.

Object elements (ActiveX controls) work exactly the same way as Applet
elements. An example of a data-bound Object elementis shown here:
<OBJECT CLSIDS" ">

ackcolor™ VALUE="blue™
#dscl" DATAFLD="color">

<PARAM NAM orecolor™ VALUE="white”
DATASRC="#dsc1" DATAFLD="textcolor™>

</OBJECT>

AnActiveX control must support a property whose nameis specified by
the NAMEattribute of the <PARAM>tag. Most ActiveX controls fire notifi-
cations when the value ofa property changes. However, data binding does not
require the controlto fire these notifications.

ActiveX controls can specify a default property for binding bysetting the
DefaultBind flag in the type information for the property. Data binding sup-
ports bindingto this default property by setting the DATASRC and DATAFLD
attributes directly on the Object element:
<OBJECT CLSID="..." DATASRC="#dsel" DATAFLD="text">

<PARAM NAM ackcolor™ VALUE="blue"
DATASRC="#dsc1" DATAFLD="color">

<PARAM NAME="forecolor™ VALUE="white™
DATASRC="#dscl" DATAFLO="textcolor™>

</OBJECT>

Notice that you can mix default binding with any numberof Param element
bindings.

The Frame and IFrame Elements
You can bind the HREFattributes of both Frame and [Frame elements.In both
cases, the bound data should supply a URL.Thebindingsdifferin that IFrame
elements can exist in any page. An IFrame element canbeused like any other
elementthat supportsdata binding simply by adding the DATASRC and DATA-FLD attributes:
<IFRAME DATASRC=#stocklist DATAFLD="Website”>

427

223

PART IV: DOCUMENT CONTENTS AND DATA BINDING

Onthe other hand, a Frame element mustexist within a Frameset element
and not within the body of an HTML document. To take advantage of Frame
binding, the data source object must be placed within the Head elementof theHTMLdocumentthat contains the Frameset element:
<HTML>

<HEAD>
<OBJECT ID="stocklist™ WIDTH="@" HEIGHT="0"

CLASSID="clsid:333C7BC4-460F -11D0-BC@4-@686C7055A83">
<PARAM NAM DataURL” VALUE="stockdata.txt">
<PARAM NAME="FieldDelim™ YALUE="|">
<PARAM NAME="TextQualifier” VALUES="">
<PARAM NAME="UseHeader™ VALUE="true">

</OBJECT>
</HEAD>
<FRAMESET>

<FRAME DATASRC=#stocklist DATAFLD="Website"> ie
</FRAMESET>

</HTML>

Binding to the Frame elementis useful when you wantto enable the user
to view a list of URLs in sequence. A current record bindingis used with the
Frameelement, and as the current record is moved, the Frame elementdisplays
data from the new URL supplied by the data source object. Frame elements
cannot be used within a repeated table.

The Table Element

Thelast supported data consumeris the Table element. The Table elementis
a special data consumerin thatit is a container for other bindingsrather than
a bindingitself. A bindingon a Table elementspecifies that the contents of the
table, excluding the THead and TFoot elements,is to be repeated over the data
set specified by the DATASRCattribute:
<TABLE DATASRC=#stock]ist>

</TABLE>

Whenthecontentsofthe table are repeated, a bound elementwithin the
Table element takes its data from the current record and from subsequent
recordsin the data source. For example,the following table displays a list of
all the stock symbols—with their last quote, change, and volume—from a datasource namedstocklist:
<TABLE ID="stocktb1” DATASRC="#stocklist” BORDER=1>

<THEAD>

428

FIFTEEN: Data Binding with HTML

<TR ONCLICK="sort():">
<TD CLASS=thd><D1¥ ID=Symbol>Symbol</DI¥></TD>
<TD CLASS=thd><DIV ID=Last>Last</DIV></TD>
<TD CLASS=thd><DIV ID=Change>Change</DIV></TD>
<TD CLASS=thd><DIV ID=Volume>Volume</DIV></TD>

</TR>
</THEAD>

<TBODY>
<TR>

<TD>

</TD>
<TD ALIGN=right>

<DIV DATAFLD="Last"></DIV>
</TD>
<TD ALIGN=right>

</TD>
<TD ALIGN=right><DIV¥ DATAFLD="Volume"></DIV></TD>

</TR>
</TBODY>

</TABLE>

Figure 15-1 shows the resulting table.

E) Fepeatnd Table Dato Binding-Microsait Internet Cxpt_ Pils!
Ce ‘Ee

Repeated Table

[Symbol Last ‘Volume
faapl [19.9 | 4302800
lamzn 29 .257 299000
Icsco | 79.81 .25] 5469200

fom [104.75 | 4000800
fintc 93.63 .81 [21846700
Imsft [140.63] -0.75] 7364100
Inscp 37.63 -94] 1768800
forcl[54.88 0.44] 4345400
fsunw [-45. 501 4000
[yhoo [829600

Figure 15-1.
An example of a repeated table.

429

223

224

PART IV: DOCUMENT CONTENTS AND DATA BINDING

Table 15-1 lists the data consumers, the data-binding attributes they sup-
port, and whetherthey support data updates.

Tag Bound DATA- DATA-~~DATA- DATA- Data
Attribute SRC FLD FORMATAS PAGESIZE Updates

<DIV> Contents v v v
 Contents v v v
<INPUT TYPE= VALUE v ¥ v
TEXT>
<INPUT TYPE= VALUE v v v
RADIO>
<INPUT TYPE= Boolean cor- ¥ ¥v v
CHECKBOX> respondingto checked

state

<INPUT TYPE= VALUE v Y
HIDDEN>
<INPUT TYPE= VALUE v ¥ ¥
PASSWORD>
<TEXTAREA> Contents v v v
<MARQUEE> Contents v “ v
<SELECT> Selected v Vv Vv

item.
 SRC a v
<A> HREF v v
<BUTTON> Contents v ¥v v
<LABEL> Contents v v v

<OBJECT> or Default v ¥v v
<APPLET> property
<PARAM> Property v v ¥

of object
or applet

<FRAME> HREF ¥ ¥
<IFRAME> HREF v v

<TABLE> Repetition Vv Vv

Table 15-1.
Summary of data consumers.

430

224

FIFTEEN: Data Binding with HTML

Notice in the Table element example that the data-bound elements within
the Table element do not specify the DATASRCattribute. Because the Table
elementis repeated, elements in the table inherit the DATASRCattribute
value—namel,, #stocklist—from the repeated table.

You can include multiple TBody elements and multiple rows with any
combination of ROWSPAN and COLSPANattributes. When you are creating
a repeated table, you should construct the table to display and format the data
for a single record from the data source object. The entire contents of the table
will then be repeated for each record in the dataset. It is possible to limit the
numberofrecords repeated in a Table element.See the section “Paged Tables”
later in this chapter for details.

Building Basic Pages Using Data Binding
Nowthat you understandthe role of data source objects, the attributes used
to specify a binding, and the HTMLelements that can be bound,let’s apply
this information to building three basic pages using data binding.

Current Record Binding
Think of the current recordas an index or a pointer to somerecord in the data
source. The values from the columnsin this record are displayed in the bound
elements. A different record can be made current by incrementing or decre-
menting the index or pointer. When a new record becomescurrent, the bound
elements are dynamically changedto reflect the data from the new record.

Thefollowing code demonstrates how to specify a current record binding:
<BODY TOPMARGIN=@ LEFTMARGIN=4@ BGCOLOR="sF FFFFF">

<H2>Current Record Binding</H2>

<P>Stock:

 ()

<P>Last:
<P>Change:

</SPAND

(continued)

431

225

PART IV: DOCUMENT CONTENTS AND DATA BINDING—

432

<P>Chart:
<HR>
<INPUT TYPE=BUTTON VALUE=" [|< “ONCLICK="stocklist.recordset .MoveFirst();">

<INPUT TYPE=BUTTON VALUE=" < "

ONCLICK="stocklist.recordset.MovePrevious();">

<INPUT TYPE=BUTTON VALUE=" > "

ONCLICK="stocklist.recordset .MoveNext();">

<INPUT TYPESBUTTON VALUES" >| ”ONCLICK="stocklist.recordset .MoveLast():">

</BODY>

For current record binding, every bound elementcontains both the DATASRG
and DATAFLDattributes.

Figure 15-2 shows how the current record binding exampleis displayed.

Current Record BindingStock: MICROSOFT Come 3
Last: 140.63

Change: -G 78
Chart:

Figure 15-2.
A page using current record binding.

Notice the four HTMLbutton controls included in this example. These
controls provide userinterface elements to control whichrecordis current in
the data source.Clicking the buttonssetsthefirst, previous, next, or last record

225

FIFTEEN: Data Binding with HTML

as the currentrecord. This technique is discussed in detail in the section “Move
Methods”later in this chapter.

Repeated Table Binding
The following code demonstrates howto create a simple repeated table. This
example builds on the earlier stock table example with a few modifications,
Here the Symbol columncontainsboth the stock symbol and a bound Anchor
elementlinking to each company’s Website. The data has been divided be-
tween two table rows, and a small chart has been addedto each item in the table
to show that stock’s performanceover the last six months. The cell containing
the chart spans the two rows of each item.
<TABLE ID="stocktb1” DATASRC="#stocklist™ BORDER=1>

<THEAD>
<TR ONCLICK="sort();">

<TO CLASS=thd ROWSPAN=2><DIV [D=Symbol>Symbol</DIV></TD>
<TO CLASS=thd><DIV ID=Last>Last</DIV></TD>
<TD CLASS=thd><DIV ID=Change>Change</DIV></TD>
<TD ROWSPAN=2>Chart</TO>

</TR>
<TR ONCLICK="sort();">

<TD CLASS=thd><DI¥ ID=VoTume>Volume</DIV></TD>
<TD CLASS=thd><DIV ID=Type>Type</DIV></TD>

</TR>
</THEAD>

<TBODY>
<TR>

<TD ALIGN=left ROWSPAN=2>

</TD>
<TD ALIGN=right>

<DIV DATAFLD="Last"></DIV>
</TD>
<TD ALIGN=right>

</TD>
<TD ALIGN=Teft ROWSPAN=2>

</TD>

</TR>
<TR>

<TD ALIGN=right>
<DIY DATAFLD="Volume"></DIV>

</TD>

(continued)

433

226

PART IV: DOCUMENT CONTENTS AND DATA BINDINGeT

<TD ALIGN=center>
<SELECT DATAFLD="Type"™>

<OPTION VALUE=L>Long
<OPTION VALUE=S>Short

</SELECT>
</TD>

</TR>
</TBODY>

</TABLE>

A few of the conceptsillustrated here may notbe obvious. First, you can
use multiple bindings in a single cell of a table; the first cell contains an An-
chor and a Span element, each ofwhich are boundtodifferentfields, Remem-
berthat the Table elementis simply a containerfor repetition; the specification
ofthe template can include any elementor control with or withoutdata bind-
ing, as long as the template obeys the rules of HTML.

Figure 15-3 shows the revised stock table.

299000,

79,81

54692001

Figure 15-3.
Basic repeated table binding.

434

226

FIFTEEN: Data Binding with HTML

Notealso that this example uses the TDC (Tabular Data Control) asits
data source. The TDCis a data source object included with the minimal con-
figuration of Internet Explorer4.0. It uses a URL to retrieve data in a delim-
ited text format. Thedata set used in the examplesin this section hasthefields
shown in the following table.
—_—_—

 Field Data Type
Symbol text
Last float

Change float
ChangeF text
Volume int

% Change float
DateUpdated text
High float
Low float
Open float
Close float

J2WeekHigh float
52WeekLow float
PERatio float
CompanyName text
Shares int
Website text
Chart text

Type text
ExDiv text

Paged Table Binding
In the preceding example, the table was repeated for each and every record
in the dataset. This repetition can result in large tables that are neither pleas-
ing to view norefficient to display. To solve this problem, the conceptof table
paging wasintroduced. Table paging allows the Web authorto specify the exact
numberof records to be displayed in a repeated table at a given time. This
technique lets the Web authorlimit how large the pagewill become asa result
ofrepeating the table’s template.It also allows the Web author to constrain the

435

227

PART IV: DOCUMENT CONTENTSAND DATA BINDING

436

table to a specific region of the page andto place other page elements around
the table without having to worry about elements belowthe table being moved
out of view.

To enable table paging, the DATAPAGESIZEattribute is specified on a
repeated table. DATAPAGESIZEtakes an integer argumentthat defines the
numberofrecords fromthe data set, and correspondingly the numberofin-
stancesof the table template, to repeatin the table at any one time. (Display
ofpartial templatesis not supported.)

Building on the preceding example, the only change necessary to enable
table pagingis to include the DATAPAGESIZEattribute on the Table element:
<TABLE ID="stocktb1™ DATASRC="#stocklist” DATAPAGESIZE=4 BORDER=1>

</TABLE>

This code displays the data from four records in thetableat a time.
Figure 15-4 shows the stock table example with table paging enabled.

Yeekeeee eeeee

Paged Table

~ hast fohanuel,
ae Volume [Type er19.1¢

14302800
St

a

293000,
79,81

5469200, WAa
104,75 !

44000800:

Figure 15-4.
Basic paged table binding.

227

FIFTEEN: Data Binding with HTML

But how can the user view the remainder of the data? Two methodsare

exposed on a paged, repeated table to showadditional records fromthe data
set: nextPage, which displays the next page ofdatain thetable, and previousPage,
which displays the previous page of data. Using these methods, the Web author
can include HTMLelementsthat invokescripts to display additional pages of
data. The Next and Previous buttons, shown in Figure 15-4,call the nextPage
and previousPage methods on the repeated table. These buttons are defined as
follows:
<INPUT TYPE=BUTTON VALUE=" Previous “

ONCLICK="stocktbl.previousPage();">
<INPUT TYPE=BUTTON VALUE=" Next "

ONCLICK="stocktbl.nextPage();">

Boundary conditions are worth noting. If nextPage is invoked when there
is less than a page of records remainingin thedataset, the table displays only
the remaining records. Thereafter, nextPagefails silently. If previousPageis in-
voked when the current recordis less than a page of records from thefirst
record in the dataset, a full page of records beginning with thefirst recordis
shown. Thereatter, previousPagefails silently. Finally, when records arc dynami-
cally addedordeleted, the data displayedwill be adjusted accordingly. In that
case, the record displayed at the top ofthe table remainsat the top unlessitisdeleted.

Writing Scripts Using Data Binding
The precedingsection showed you howto write bindings using HTML.Tn this
section, you'll learn how to combine script code with data binding to create
actual data-access applications that can run in Internet Explorer 4.0. The dis-
cussion begins by introducing ADO (ActiveX Data Objects) and then proceeds
to the events provided by Internet Explorer 4.0 on data-bound elements and
data source objects.

ADO-Recordset Version

The current record-binding example presented earlier in this chapter uscd
HTML. button controls to move the current record pointer forward and back
ward. The script usedfor the onclick event wasstocklist.recordset. MoveNext(). This
code referencesthe recordset object from the data source object stockist and then
invokes the MoveNext method on the recordset object.

The recordset object. in this case is ADO-Recordset version, referred to here
as ADOR,which includes only the recordset and field objects from thefull ver-
sion of ADO provided with various other Microsoft products, such as Active

437

228

PART I¥: DOCUMENT CONTENTS AND DATABINDING

438

Server Pages. Internet Explorer4.0 supplies ADORto all data source objects
on a Web page. As shown in the preceding example, the recordset object is ac-
cessible from the recordset property of the data source object.

You can access the data in an ADORrecordset using scripts. Through
scripts you can change which record is current and perform calculations,vali-
dation, or any other function that requires access to the data. The data used
in the ADORrecordset need not be bound to any HTMLelementsonthepage.
You can use the ADORrecordsetsolely for programmatic access to data from
a data source object.

The specifics of using ADORare beyondthe scope ofthis chapter. How-
ever, the following sections touch ontwo key areas offunctionality commonly
used by Web pages: move methods and field objects.

Move Methods

The move methodsallow you to change which recordis current, thereby chang-
ing the values displayed in any bound elements. The methods used to move
the current record pointer are: Move, MoveNext, MovePrevious, MoveFirst, and
MoveLast. The Move method takes an argument to move the current record
pointerto the specified position in the recordset. The functions ofthe other
move methodsareself-explanatory.

ADORallows you to move the current record pointer before the first
record in the data set (BOF, or beginningoffile) or after the last record in the
data set (EOF, or end offile). Because these positions have no data associated
with them, movingto these positions will result in all bindings on the page
having null values, which usually means nothingis displayed. This problem can
be avoided by checking the currentposition in the recordset prior to moving
the pointer. The following code checks whether the current record is the last
record in the recordset prior to advancing the current record pointer:
<SCRIPT LANGUAGE="JavaScript" FOR=NextButton EVENT=onclick>

if (stocklist.recordset.AbsolutePosition <
stocklist.recordset.RecordCount)

stocklist.recordset.MoveNext();
else

aTert("Already at last record.”);
</SCRIPT>

NOTE: The current record position can also be changed byset-
ting the AbsolutePosition property on the recordset.

228

FIFTEEN: Data Binding with HTML

Thefields Collection/The field Object
Thefields collection providesasetoffield objects for a recordset.Afield object
corresponds directly to a single columnofdata. Thefield objectis used to readdata values from the columnfor the current record of the recordset. For ex-

ample, the data for the current record in a column namedLast could be ob-
tained using the followinglines of code, all of which return the samevalue:
stocklist. recordset. Fields({"Last"). value
stocklist. recordset. Fields({"Last")
stocklist.recordset(“Last")

Assigning a value to the Value property of the field object modifies the
value. The following codesets the last stock price in the current recordto 103.0:
stocklist.recordset("Last") = 183.8;

Again, any of the three equivalent forms could be used to write this statement.
For moredetails about ADOR,consult the Internet Client SDK (Software

DevelopmentKit), available from the Microsoft Website at www.microsoft.com/
msdn/sdk/inetsdk.

Script Events
Internet Explorer 4.0 provides a rich event set to enable Web authorsto write
scripts in response to user actions on data-bound pages. The event set can be
divided into two categories. One category of events fires on data-consuming
elements, These events (onbeforeupdate, anafterupdate, and onerrorupdate) pro-
vide for validation of user input. The second category of events (onrowexil,
onrowenter, ondatasetchanged, ondataavailable, and ondatasetcomplete) fires on data
source objects to enable validation and processing when a new record becomes
currentorin response to data being asynchronously transmittedto theclient.
An additional event, onbeforeunload, is not specific to data binding butis par-
ticularly useful in data-binding applications. The following sections describe
these events in greater detail.

NOTE: Aswith all events in the Dynamic HTML object model,
the events described in this section bubble up the containment
hierarchy. Handlers for them can be written at any level of the hier
archy. If multiple data source objects are present on the page, the
Web authorcan include a single handler for any event in a common
container to process the event.

439

229

PART IV: DOCUMENT CONTENTS AND DATA BINDING

440

The onbeforeupdate Event
The ondeforeupdate eventfires on HTMLelementsthat support data updating.
(See Table 15-1 earlier in this chapterfora list of data consumersthat support
updating.) The onbeforeupdate eventfires when the user movesthe focus from
an element whosevalue has been updated and before the updateddatais trans-
mitted to the data source object by the binding agent. The previous value of
the data can be obtained from the data source object using the ADORrecord-
set. The onbeforeupdate event can be used by the Web authortoperform vali-
dation. If the Web authorcancels the event, the focus remains on the element
and the datais not transmitted to the data source object.

The following code demonstrates a handlerfor the onbeforeupdate event.
In this example,the value in the HTMLtext boxis verified to be in the range
5 through 15. If the valueis outside the range, an error messageis displayedand the eventis canceled.

<SCRIPT LANGUAGE="JavaScript™ FOR=textboxl EVENT=onbeforeupdate>
if (textboxl.value < 5 [| textboxl.value > 15){

alert("Number must be in the range 5 through 15.");
returnValue = false;

I
</SCRIPT>

The onafterupdate Event
The onafterupdate eventis also fired on HTML elements that support updat-
ing; however,it fires immediately after the data is transmitted from the element
to the data source object. The onafterupdate event is not fired if the onbefore-
updaie eventis canceled, and onafterupdaie itself is not cancelable.

Oneuseof onafterupdateis for updating the value of a calculated amount.
For example, suppose the userisfilling out an order form,has selected an item,
and is now selecting the quantity. When the quantity is entered, you want to
calculate theline item total based on the price of the item and the quantity
requested. You can accomplish this in the handler for the onafterupdate event
of the text box in which the quantity is entered:
<SCRIPT LANGUAGE="JavaScript”™ FOR=quant_tbox EVENT=onafterupdate>

line_total.value = quant_tbox.value * item_price.value;</SCRIPT>

The onerrorupdate Event
The onbeforeupdate and onafterupdate events span the transfer of data from the
HTMLelementto the data source object. But these two events don’t cover the

229

FIFTEEN: Data Binding with HTMLEEE

rare case in which the transfer of the datafails. In this case, the onerrorupdate
event fires.

The onerrorupdate and onafierupdate events are mutually exclusive—that
is, onafterupdate fires only if the data transfer succeeds, and onerrorupdate fires
only when the data transfer fails. The onerrorupdate event provides the Web
author with an opportunity to display a sensible error message to the user whenthe data transferfails.

NOTE: A data transfer occurs when the binding andrepetition
agentnotices that the value in a bound elementhas changed. But
the binding and repetition agent might not notice the change in
value immediately after the change takes place. For example,if a
boundvalue is changed througha script, the binding and repetition
agent won't notice the change until the current record pointeris
movedorthe page is unloaded.

Additionally, because an object or appletis not requiredto fire
notifications when thevalueofone ofits bound properties changes,
the binding and repetition agent automatically transfers data from
an object or applet when the currentrecord pointeris movedor the
pageis unloaded, even if the value has not changed.

The onrowexit Event
The onrowexit eventis the first of the set of events thatfire on the data source

object. Recall that each data source object has one record that is the current
record. A different record can be made current by using the move methods in
ADOR.The onrowewit event fires on the data source object to signify that the
current record pointer is about to be moved.

A numberofsteps must take place before onrowexit is fired. First the cur-
rent record pointer must be requested to move, generally by the execution of
a move method on the ADORrecordset. Once the request is received, the
binding agent examines each bound HTMLelementto determine whether any
data items from the current record have been modified.It does this by com-

paringthe value in the elementto the value in the column of the data source
object. If the columnsdiffer, the binding agentfires the onbeforeupdate event
on that element. If the eventis canceled, the sequence is terminated and the
current record pointer remains unmoved.If ondeforeupdate is not canceled, the
onafterupdateeventis fired on the element. This process is repeated for each
bound HTMLelement. Afterall elements have been synchronized, the onrow-
exit eventis fired on the data source object.

441

230

——

PART IV: DOCUMENT CONTENTS AND DATA BINDING

442

The onrowexit event is cancelable, When the Web authorcancels the event,
the current record pointer remains in place. The onrowexit eventis useful for
performing record-level validation or for recalculating columnsof the data
source object that are not bound butare based on thevalues in other columns.

The following example shows an onrowexit handler:
<SCRIPT LANGUAGE="JavaScript">

function myrowexit() {
if (stocklist.recordset("Last") * stocklist.recordset("Shares”)

> my_cash_balance) {
alert("Purchase exceeds cash position in your account.");
return¥alue = false;

}
3 -

</SCRIPT> °

The onrowenter Event
Asits name implies, the onrewenter event fires immediately after the current
record pointer has been moved. Whenitfires, all data from the new current
record will be present in the HTML elements boundto the data source object.

The onrowenter event is not cancelable because the data from the new
current record is already displayed to the user. The onrewenter eventis useful
for calculating fields based on the data elements in a row. The following ex-
ample demonstrates how to use onrowenter:
<SCRIPT LANGUAGE="JavaScript">

function myrowenter() {
total_value.text =

stocklist.recordset("Price") * stocklist.recordset("Shares");
}

</SCRIPT>

The ondatasetchanged Event
Webauthors need to know whenthe data source objectis ready to supply data,
andthe ondatasetchanged eventis the first of three events available to help. The
ondatasetchanged eventfires on the data source object as soon as datais avail
able, signifying that the ADORrecordset can now be obtained from the data
source object. The ondatasetchanged eventis not cancelable.

In addition to firing when an HTMLpageisinitially displayed, ondata-
setchanged fires when data source objects perform data manipulations. This
manipulation can be in response to a reordering of the data set caused by
sorting or to a change in the underlying structure of the data set (numberof
rows or coluinns, or column names) causedbyfiltering.

230

FIFTEEN: Data Binding with HTMLdEEEE

The ondataavailable Event
Web authorscan be notified when more data from a data source object has
arrived by handling the ondataavailable event. The ondataavailable eventfires
when data from a data source object has been received by the browser; ondata-
available is not cancelable.

The data source object determinesthe firing frequencyof ondataavailable.
For performance reasons, most data source objects don'tfire ondataavailable
for each record displayed. Instead, data source objects will collect a number
of rows as a block andfire ondataavailable for the block of rows. The ondata-
available event does not, however, indicate the numberof rows available nor
doesit indicate their position within the data set. This information must be
determined directly from the ADORrecordset.

The ondataavailable event can be used to calculate a running total of
recordsas they are received or to performscript operationsas data arrives inthe browser:

<SCRIPT LANGUAGE="JavaScript">
var count;
function myondataavailable() {

total_stocks.value = stocklist.recordset.RecordCount;
}

</SCRIPT>

The ondatasetcomplete Event
Roundingoutthe set of asynchronouseventsis the ondatasetcomplete event.
Probably the most useful asynchronousevent, ondatasetcomplete notifies the Web
author that asynchronous transmission is complete and the entire datasetisavailable.

The ondatasetcomplete eventsets the reason property on the event object to
inform the Web authorofthe status of the transmission. The following table
lists the three possible values for the reason property.
eeSEEEEEIEIEEEEEESEEEEEEEEEEEEEel

Value Description

0 Transmission was completed withouterror.
i User aborted the transmission. Generally, this interruption occurs

when the user clicks the Stop button on the page.
2 Transmission generated an error. This is the catchall case for trans-

mission failures ofall sorts, including the inability to contact the
host or a dropped connection.

443

231

PART IV: DOCUMENT CONTENTS AND DATA BINDINGoH

The onbeforeunioad Event

The onbeforeuntoad eventis notspecific to data binding, but handlingit can be
useful for avoiding data loss on data-bound pages. Some data source objects
can cache updates to the data they supply on the client until a methodis in-
vokedonthe objectto save the updatedvaluesto the server. Because these values
can be cached, the user can attempt to navigate away from the page prior to
saving the updated values. The onbeforeuntoad event canbe used to prompt the
user to cancel the navigation, avoiding the loss of the changes.

The operation of the onbeforeunload event is somewhatdifferent from the
other events discussedso far, The ondeforeunload eventfires in response to a
request from the user to navigate to a new page—forexample, whenthe user
clicks on a hyperlink, clicks the Back or Forward button, or types a new URL
in the address bar. The ondeforewnload event fires on the window object prior
to the unload event on a page. Whenthe eventfires, the Web author can set
the return Value property on the event object to a string value, which will be
displayedto the user along with a standard message from the browser explain-

444

ing that the user has the optionto cancel the requested navigation. Generally,
Webauthors will return a message instructing the user that continuing with
the navigation will result in the cached changes being discarded. If the user
chooses to cancel the navigation, the page remainsvisible and the user can in-
teract withit asif the hyperlink or other navigation method was neverinvoked.
If the user continues the navigation, the page is unloaded and the changes tothe data are discarded.

Canceling the unioad Event Requires UserInteraction
Shouldn’t the author be able to simply cancelthe unload event without
prompting the user? The answer to this question is centered in oper-ating system security issues. If the Web author were able to cancel the
unload event,it would be possible to create a page that would never
unload—thatis, the unload event would always cancel the navigation.
Theonly way for the user to navigate away from the page would be to
kill the browser process, whichis a violation of basic operating system
integrity because the user should be in control ofhis or her local ma-
chine and processesat all times. Although onbeforeunload can be can-
celed,it is the user who choosesto cancel the unload event, not the Web
author. The Web authoronlyhastheability to provide the user with an
informational message.

231

FIFTEEN: Data Binding with HTML

Advanced Features

Now that you've learned the basics, you're ready for some of the advanced
features of data binding that enable the construction of more sophisticated,
application-like pages.

Data Update
A data source object can enable the user to update the data it supplies. When
the user updates the data in an element boundto the data source object, the
bindingagentwill store the modified value in the data source object. The data
source object can then save these changed valuesin the underlying data source.

Generally, data source objects support data updatesby allowingthe user
to modify data values stored within the local cache. The data source object can
then choose when to update the data in the underlying data source: data can
be updated immediately or in batch mode. Changestoasinglecell, toa single
row, orto the entire data set can be cached. Which mode the data source object
operates in will be based largely on whether a connection to the underlying
data source is maintained. Whenthe entire data set is cached, data source
objects usually expose a method that Web authors can call in orderto save thecached data.

RDSis an example of a data source object that providesthe ability to
update data. RDS works in conjunction with a server-side componentthat en-
ables access to ODBC (Online Database Connectivity) data sources. RDSstores
the entire data set (the result of a SQL query) in a local in-memorycache. In
addition to storing the data, RDS stores concurrency information to resolve
conflicts when multiple users modify the samedata values simultaneously. Data
changedby a useris sent with this concurrency information to a server com-
ponentthat performs the update to the database. RDS can be used to build
sophisticated client/server applications using HTMLandscripts.

NOTE: Examples of applications written using RDS can be found
on the Microsoft Web site at www.microsoft.com/data. The server
componentcan be obtained free at the same URL.Theclient compo-
nent of RDSis an integral part of the Internet Explorer 4.0 browser
andis installed with the minimal configuration of the browser,

The recordNumber Property
The recordNumberpropertyis available on all elements that are part of the tem-
plate of a repeated table, Recall that when repeated table bindingis used, the
contents of the table are used as a template and repeated once for each record

445

232

PART IV: DOCUMENT CONTENTS AND DATA BINDING

446

in the data set. Each instanceofthe repetitionis called a template instance. For
each elementin a template instance (including elements that are not data
bound, such as the <TR> and <TD>tags), recordNumber provides the record
numberfrom the data set that generated the element.

The recordNumber property correspondsdirectly to the AbsolutePosition
property of the ADORrecordset. By using recordNumber to set AbsolutePosition
on the recordset, the Web authorcan access additional data elements from the
same column of the data set. You need to set the AbsolutePosition property
because ADORallowsaccess only to fields in the current record.

The recordNumber property is not a bookmark; recordNumber changesas a
result of rows being inserted or deleted from thelocal client cache. Using
ADOR,however, the Web author can obtain a bookmark for the column by
using the recordNumber property:
<SCRIPT LANGUAGE="JavaScript">

var clone_rs = stocklist.recordset.clone{);
clone_rs .AbsolutePosition = textboxl.recordNumber;
var bkmk = clone_rs.Bookmark;

</SCRIPT>

This bookmark alwaysrefers to the same record in the recordset, regardlessof whether rows are inserted and deleted.

The recordNumber property can also be used to assist with navigating a
collection of elements in a repeated table. You can uniquely name an element
in HTMLbyinchading an IDattribute in the element’s tag. When you name
an elementin the template of a repeated table, however, the resultis a collec-
tion of elements with the same ID because the template is repeated for each
record of the data set. The recordNumber property can be used in conjunction
with a script to display details for the record correspondingto the selected
element.For example,say that instead ofviewingall ofyour stock data at once
you wantto view detailed data whenyou click on a particular stock. You can
includeselector buttonsin the table to select a stock and thenset the current

record to the selected stock to display the detailed data using the followingHTML:

<BODY TOPMARGIN=@ LEFTMARGIN=40 BGCOLOR="#FFFFFF™>

<H2>Record Number</H2>

<TABLE>
<TR>

<TD YALIGN=top>
<TABLE ID="stocktb1" DATASRC="#stocklist™ BORDER=1>

<THEAD>

FIFTEEN: Data Binding with HTML

<TR ONCLICK="sort(};">
<TD>
<TD CLASS=thd><DI¥ ID=Symbo1>Symbol</DLV></TD>
<TD CLASS=thd><DIV ID=Last>Shares</DIV></TD>
<TD CLASS=thd><DIV ID=Volume>Volume</DIV></TD>

</TR>
</THEAD>
<TBODY>

<TR>
<TD>

<BUTTON CLASS=sb ONCLICK="setrn(this);">
show

</BUTTON>
</TD>
<TD> '

</TD>
<TD ALIGN=right><DIV¥ DATAFLD="Shares”></DIV></TD>
<TD ALIGN=right>

| </TO>
</TR>

</TBODY>
</TABLE>

</TD>
<TD VALIGN=top>

Company Name:

Last Updated: |

|
|
Open:

</SPAND

High:

</SPAND

Low:

(continued)

447

232

233

PART I¥:; DOCUMENT CONTENTS AND DATA BINDING

448

<BOPE Ratio:

Chart:

</SPAND

</TR>
</TABLE>

<SCRIPT LANGUAGE="JavaScript">
function setrn(button) { -

stocklist.recordset.AbsolutePosition = button.recordNumber;}
</SCRIPT>

</BODY>

Figure 15-5 shows how the details are displayed next to the table.

Last Updated: 8/2/97 8:35 AM

f show jaapl)| 4302809] Open: 92.75Ci 5 High: 94.31
[grow Jaren __=50c] 299000} BOD! So's
[stow]/csco || 5469200|PE Ratio: 24.45

—_ ‘Symbol Volume |COmpany Name: INTEL CORP.

[iiss]/re=| 2000;z1646700
[now] | S000] 7364100
[__190]1768800)

200] 4345400|"—
/aoa]5014000-700

= ——————) Chart:

[show]4000800| is

Figure 15-5.
Using the recordNumberproperty to display details from a single record in
a repeated table.

233

FIFTEEN: Data Binding with HTML

Modifying Binding Attributes

Dynamic HTML, exposes properties that correspond to the attributes andstyles
onthe tags for HTML elements. The data-bindingattributes are no exception.
The Web authorhasthe full capability to add, delete, and modify the data-
binding properties on HTMLelements after the page has been rendered.
Moreover, using Dynamic HTML the Web authorcan also add data source
objects to and delete data source objects from the page.

The onecaveat to this correspondenceis that the DATASRC, DATAFLD,
and DATAFORMATASattributes cannot be modified on elements within a

repeated table. You can get aroundthis limitation by changing the table to a
standard HTMLtable. First remove the DATASRCattribute from the table.

The table reduces to a nonrepeatedstate and includes only the template. The
elements within the template, although not bound, can then be modified.
DATASRCcan then be added backto thetable to reinstate the repetition. Using
the multimedia extensions of Internet Explorer 4.0, the Web authorcan also
suspend redisplay of the table so thatthis series of steps occurs without mul-
tiple redraws.

NOTE: Additional information about data binding can be ob-
tained from the Internet Explorer 4.6 section of the Microsoft Web
site at www.microsoft.com. Examples can also be foundat the samelocation.

449

234

INDEX

SPECIAL CHARACTERS
<> (angle brackets), 375
* (apostrophe), 38
* (asterisk), 183, 262, 270
: (colon), 18, 95
/ (forward slash), 38
- (hyphen), 27, 289
© (parentheses), 65
(poundsign), 230
3 (semicolon), 126, 158
(] (square brackets), 50, 169
_ (underscore), 118
32-bit integers, 192-96

A
<A> tag, 6, 18, 216-22
About buttou, 121
About dialog hox, 121
AbsolutePosition property, 425, 438
absolute values, 332
accessibility enhancements,4, 5, 6-10
ACCESSKEYattribute, 8
access keys, adding, 6-8
action property, 258
activeborder keyword, 25
activecuption keyword, 25
ActiveX controls, ix, xii, 5, 45, 257, 496-27

ADO, 417, 437-43
ADO-Recordset version, 437-39, 446

adaptive layout techniques, 311-16
addImport method, 305
add method, 235, 273
address bar dialog box feature, 124, 125
Address clement, 29
addRule method, 303-4, 306

ADO (ActiveX Data Objects), 417, 437-43
ADO-Recordset version, 437-39, 446
advisorytext, adding, 8-9
<A HREF>tag, 174
Alert dialog boxes, 254, 265
alert method, 117, 119
aliases, 162
ALIGNattribute, xiv, 195
alignElements funcuion, 264-65
alinkColor property, 151
all collection, 143, 168, 169, 173-74, 176-78, 181,

183-86, 189, 197-99, 208, 214, 216, 233, 296
all object, 34
alternate mode, 237
altHTML property, 240
aliKey parameter, 73
aliKey property, 79
<A NAME>tag, 174
Anchorelement, 207, 216-22, 258, 889, 425-26
anchors ¥

pseudo-classes for, 221
removing, 222

anchors collection, 174, 216, 222
anchors object, 34, 233
angle brackets (<>), 375
animation

image maps and, 226-27
Marquee element and, 237-39
text, 325-27, 351-52
usingtimersfor, 107

ANSIkeys, 79
anyDocument.htm, 142
apostrophe ('), 38
appCodeName property, 108-9

451

—.|

234

235

INSIDE DYNAMIC HTML

Appletelement, 173, 333, 426-27
applets collection, 174
applets object, 34
<APPLET>tag, 174, 416
appMinorVersion property, 112
appName property, 108-9
appVersion property, 108-10
appworkspace keyword, 25
Area element, 27-28, 201, 229-37
areas collection, 201, 233, 235
<AREA> tag, 28, 174
arrays

arguments array, 52
of name-value pairs, 158-59

ASCII (American Standard Code for Information
Interchange), 264, 375

asterisk (*), 133, 262, 270
ATL (Application Transaction Language), 419
!ATTLISTkeyword, 38
attributes. See also attributes (listed by name)

accessing, 189, 192-96
data types for, 192-96
defining, 28
determining the existence of, 202-3
naming conventions for, 194
reflecting, as properties, 154
unrecognized, 196

attributes(listed by name). See also attributes
ACCESSKEYattribute, 8
ALIGNattribute, xiv, 195
background attribute, 287, 289
BORDERattribute, 134, 226
BORDERCOLORattribute, 134
child attribute, 318
CLASSattribute, 18, 23, 37, 190-91, 194,

267-68, 288, 292-95
COLSattribute, 131, 133, 214
DATAFLDattribute, 420, 422, 426, 427, 432, 449
DATAFORMATAS attribute, 420, 422, 426, 449
DATAPAGESIZEattribute, 420-21, 436

452

attributes (listed by name), continued
DATASRCattribute, 419-20, 422, 427-28,

431-32, 449
DEFERattribute, 43, 44
DISABLEDattribute, 9-10, 297
dragEnabled attribute, 348-51
ERRORattribute, 262
EVENTattribute, 62, 63, 69
float attribute, 337
FORattribute, 6, 62, 63, 69, 88, 194, 426
FRAMEBORDERattribute, 134
FRAMESPACINGattribute, 134
HEIGHTattribute, 227, 238
HEREFattribute, 425-26
HIDDENattribute, 260, 26]
HREFattribute, 17, 60, 64, 216, 218, 233
ID attribute, 23, 62, 169-73, 190, 191, 203, 288
increments attribute, 356
ISMAP attribute, 299
LANGUAGEattribute, 38, 39, 61, 64
media attribute, 302
mtarget attribute, 220
MULTIPLEattribute, 272, 424
name attribute, 169-73, 422, 427
NORESIZEattribute, 133-34
ONCLICKattribute, 61
order attribute, 356
outline attribute, 202, 319
position attribute, 339
READONLYattribute, 9-10, 257
RELattribute, 17, 222
required attribute, 266, 267
Rev attribute, 222
ROWSattribute, 131, 133, 214
ROWSPAN attribute, 243-44, 431
SCROLLINGattribute, 133-34
SIZEattribute, 194, 272, 424
speed attribute, 356
SRCattribute, 40, 201, 226, 227, 425
STYLEattribute, 15, 61, 291-92

235

attributes (listed by name), continued
TABINDEXattribute, 9
TARGETattribute, 92, 118
TITLE attribute, 8, 9, 239, 300, 381, 386-87
TYPEattribute, 16, 17, 23, 38, 203-4, 281, 356
USEMAP attribute, 229
VALUEattribute, 193, 203, 272, 422, 424
WIDTHattribute, 227, 238

auto value, 337
availHeight property, 96
availWidth property, 96

B
 tag, xiii, 3, 183, 398, 401-2
Back button,55, 94, 144, 444
background attribute, 287, 289
backgroundColor property, 290
backgroundImage property, 290
background keyword, 25
bachgroundPosition property, 290
background property, 289-90, 340
backgroundRepeat property, 290
backgroundScroll property, 290
back method, 94
<BAR> tag, 182
Base element, 179
<BASE> tag, 425
behavior property, 237
igColor property, 151, 152
<BINDEVENT> tag, 87, 88
blur method, 99
Body element, 27-28, 79, 162, 167, 175, 179,

207-16, 351, 357, 373-87
body object, 34, 212
bedy property, 115, 208-9
<BODY>tag, 64, 101-2, 131, 151-52, 154, 179,

209, 212
Bold element, xiv, 401
boldface font, 398, 410
bookmarks, 389-90, 408-9

Index

Boolean data type, 111, 192-96, 279
BORDERattribute, 134, 226
BORDERCOLORatiribute, 134
bouncingball example, 342-43
brackets {[]), 50, 169
browser(s). See also Internet Explorer browser;

Netscape Navigator browser
creating simple, with framesets, 143-44
error handling and, 100-101
support, checking for, 53
supportfor older, 35-36
window, 89-112

browserLanguage property, 112
bulletedlists, 19-20, 185-86
buttons. See also buttons(listed by name)

Button element and, 11~12, 14, 255, 280-83,
333, 426

history buttons, 93-94
rules for, 256-57

Button Demonstration Web page, 11-12
buttonface keyword, 25
buttonhighlight keyword, 25
button parameter, 73
buttons(listed by name). See also buttons

Aboutbutton, 121
Back button, 55, 94, 144, 444
Cancel button, 13, 281
Close button, 119
Default button, 13, 281
Forward button, 55, 94, 144, 444
Go button, 144
Next button, 437
Previous button, 437
Refresh button, 144
Reset button, 13, 28]
Settings button, 47
Submit button, 13, 956-57, 281

buttonshadow keyword, 25
<BUTTONs>tag, 12, 282
butiontext keyword, 25

453

236

INSIDE DYNAMIC HTML

c
C++ (programming language), x, xi, 49
calendars, 245-49
cancelBubble property, 70
Cancel button, 13, 281
Caption element, 29, 358
caption keyword, 26
captiontext keyword, 25
case-sensitivity

data types and, 190, 191, 194-95
JavaScript and, 50-51

cells
collection, 245-49
forms that span multiple, 186-87

CGI (Common Gateway Interface), 95
check boxes

Label elementand, 6-8
programminglists with, 252, 277-80
tules for, 256
using, for smalllists, 275-76

checked property, 275, 279-80
child attribute, 318
children collection, 197
children property, 178
CLASSattribute, 18, 23, 37, 190-91, 194, 267-68,

288, 292-95
CLASSID parameter,5
className property, 37, 190, 191, 194, 292, 295
clearLinks method, 223, 225
clear method, 166
elich event, 71
click method, 202
clientHeight property, 210
clientInformation object, 34
clientInformation property, 90, 108-12
client object, 108, 111
client-side redirection, 48
clientWidth property, 210-11
client window, 210-12

454

clientX property, 72, 351
clientY property, 72, 351
clipping regions, 336-37
clip property, 330, 336, 343-46
clocks, ticking, 106-7, 376
Close button, 119
closed property, 127
close method, 127-29, 164, 165-66
code

evaluating strings as, 92
immediately executed, 40-42

CODEBASEparameter, 5
Col element, 29, 241
ColGroup element, 29, 241
collapsed class, 318
collapse method, 403
collections (listed by name)

all collection, 143, 168, 169, 173-74, 176-78,
181, 183-86, 189, 197-99, 208, 214, 216,
233, 296

anchors collection, 174, 216, 222
applets collection, 174
areas collection, 201, 233, 235
cells collection, 245-49
children collection, 197
elements collection, 167-87, 255-56, 260
embeds collection, 174
fields collection, 439
forms collection, 167, 174, 254-56
frames collection, 113, 128, 138-43, 162, 174,

210, 216, 255
image collection, 174
imports collection, 304, 305
links collection, 174, 216, 222, 235
options collection, 201, 273, 275
rows collection, 241-49
rules collection, 303
seripts collection, 174
stylesheets collection, 149, 288, 296, 309
windows collection, 128

236

colon (:}, 18, 95
color

background, 267-68
document, 149, 151-54
frame border, 134 .
keywords, available in Internet Explorer, 24-25
RGBhex values for, 152
selector, 152-54
system, 24-25
valid values for, 152

colorDepth property, 96
COLSattribute, 131, 133, 214
colSpan property, 245
columns, 4, 5
comma-delimited text, 29, 131
command (s)

button elements, 252, 280-83
executing, 395-96, 410-12

comments, 38, 45-47
compareEndPoints method, 407-8
complete state, 162, 163
compoundproperties, 289-90
confirm method, 117, 119
constants, 203-4
containers, 197-98, 205
contains method, 197-98
contents.htm, 137, 225-26, 308-9
ControlRange object, 410
cookicEnabled property, 111-12
cookie property, 158-59
cookies

deleting, 160
description of, 55, 158-62
expiration dates for, 159, 160
using, 160-61
writing, 159-60

cool.css, 305
coolstuffclass, 190, 191
coordinate systems, 115, 334-36

Index

epuClass property, 112
createCaption method, 241
createElement method, 190, 228, 235, 273
createRange method, 409
createTextRange method, 263, 282, 396, 599, 402
createTFoot method, 241
createTHead method, 24]
createWindow method, 128-29
CSS (Cascading Style Sheets), x—xii, xiv. See also

style sheet(s)
adaptive layout techniques, 311-16
anchors and, 221
cascading order and, 18-19
color values and, 152
cursor property, 22-23, 78, 317
data display techniques, 321, 825
defining, 17-19
description of, 3-4, 14-29
dynamic positioning and, $29, 330-56
dynamic styles and, 287, 288-89
features, 19-26
id attribute and, 170
imported style rules and, 305
intrinsic controls and, 260
modaldialog boxes and, 126-27 1
object models and, 37
pseudo-classes and, 221
specification (CSS1), 14, 18, 19 |
tables and, 245 |text animation and, 326 |

CSS Positioning (CSS-P) working draft, 26, 329-56
essText property, 290, 302
cirlKey property, 73, 79 |
current record binding, 415-16, 431-33
cursor property, 22-23, 78, 317cursors

controlling, 22-23
highlighting contents using, 317-18

455

237

INSIDE DYNAMIC HTML

D
databases, 445
data binding

advanced features, 415, 445-49
architecture, 414, 416-421
building basic pages using, 414, 431-37
current record binding, 415-16, 431-33
description of, 413-49
extensions, 418-19
Tepeated table binding, 415-16, 428-31, 433-35
twostyles of, 415-16
writing scripts using, 415, 437-44

data display techniques
description of, 316-25
expandable tables of contents, 320-25
expanding/collapsing outlines, 318-20
hiding and showing data, 317-18
highlighting contents using cursors, 317

data source objects, 416-18
data types

basic description of, 192-96
Boolean data type, 111, 192-96, 279
enumerated, 195-96

DATAFLDatribute, 420, 422, 426, 427, 432, 449
DATAFORMATASattribute, 420, 422, 426, 449
DATAPAGESIZEattribute, 420-21, 436
DATASRCattribute, 419-20, 422, 427-28,

431-32, 449
dates, properties for, 156-57
DefaultBind flag, 427
Default button, 13, 281
defauliChecked property, 260
defaultSelected property, 260
defuuliStatus property, 93, 94
defaultValue property, 260
DEFERattribute, 43, 44
deleteCaption method, 241
deleteCell method, 243
deleteRow method, 241, 245
deleteTFoot method, 241

456

deleteTHead method, 241
deleting

anchors, 222
rows, 241
table sections, 241

dialogArguments property, 120
dialog boxes

browsable modal, 123
creating, 119-27
custom, 119-23
displaying, 120 .
modal, 119, 122-23
passing information to/from, 120
size/position of, 123

dialogHeight property, 123
dialogLeft property, 123
dialogTop property, 123
dialogWidth property, 123
direction property, 238
directories feature, 124, 125
DISABLEDattribute, 9-10, 297
Disabled Element Demonstration Web page, 10
disabled elements, 10, 257, 261-62
“disabledError” message, 261-62
displayFN function, 381
display:none value, 325
display property, 21-22, 260, 291, 341
DIV element, 152, 154, 211, 333-37, 339, 357,

360, 388, 422, 424
<DIV> tag, 12, 26
document.frames object, 34
document object, 34-35, 41-42, 51, 91, 112, 410

body property and, 208-9
dynamic positioning and, 363-64
elements collections and, 167-87
manipulating text/backgroundcolorwith, 149,151-54
meta information and, 149-50, 155-64
modifying the HTML stream and, 150, 164-66
referencing, 149, 15]

237

Document Object Model working group,xti-xili
document pane, 130
document property, 91, 149, 200
documents. See also document object; DTD

(documenttype definition)
accessing the contents of, 385-87
availability of, 162-64
contents of, representing, 400-402
creating, using the open and close methods,165-66
loading, four states associated with, 162-64
logical size of, 210-12
physicalsize of, 210-11
reflowing, 36-37documentstate events
load events, 97
unload events, 97-98

document.write method, 42, 107, 245-49,
371, 387-94

dot (.) notation, 50
dragEnabled attribute, 348-31
DTD (documenttype definition), xiv,

373-74, 401-2
<BODY> tag and, 209
data types and, 192
description of, 4, 26-29
element collections and, 177-87
Input elements and, 12
invalid HTML and, 185-87
LI elements and, 185-86
obtaining, 29
<TITLE>tag and, 42
unrecognized elements and, 180-81

duplicate method, 407
dynamic contents

contents manipulation and, 371, 372-73
coordinate systems and, 334-36
description of, 371-94
document.write method and, 371, 387-94

dynamic positioning
absolute positioning, 340-51, 357, 360

Index

dynamic positioning, continued
automatic sizing and, 335
clipping regions and, 336-37
description of, 829-67
relative positioning, 351-56, 357, 360, 362, 364-67

dynamic reflow, 36-37
dynamicstyles, 14, 287-327

E
ECMA, (European Computer Manufacturers

Association), x, 48
editing aperations, 395-412
effect property, 295
element(s). See also specific elements

accessing, 169-73
adding advisory text to, 8-9
attributes of, accessing, 189, 192-96
child, accessing, 197
collections and,distinguishing between, 172-73
contained within other elements, 197-98
creating new, 190, 200-201
customizing, 190, 201-5
data binding and, 414, 421, 422-31
in DTDs, 27-28
identifying, 189, 190-92
implied, 178-79
named, 170, 173
overlapping, 183-84
referencing, 170, 173
scripting, 207-49
synthesized, 29
unrecognized/unknown, 173, 180-82
user-defined, 205-4

elements collections, 167-87, 255-56, 260
accessing elements in, 169-73
HTMLstructure and, 168, 177-87
returning, with the item method, 170-72
using, 168-76

elementFromPoint method, 73, 363-64
ELEMENTkeyword, 27

457

238

INSIDE DYNAMIC HTMLTThv

embeddedobjects, 4, 37, 174, 409
embeds collection, 174
<EMBED>tag, 174
EM element, 183, 360
tag, 17, 18
end tags, 179-80, 183
end-ofline characters, 165
EndToEnd value, 408
EndToStart value, 408
Enterkey, 281
entities

defining, 28-29
description of, 28

ERRORattribute, 262
errors

event model and,58
handling, 100-101, 385-86
naming conventions and, 53
objectavailability and, 43
Script element and, 43

escape function, 159
escape sequences, 159
evat method, 92
event(s)

attributes, 61
binding (see event binding)
bubbling (see event bubbling)
examples, 58, 80-88
handlers, shared, 69
image maps and, 229-30
as properties, 64-65
support, generic, 62-63

EVENTattribute, 62, 63, 69
event binding, 58, 60-69
Event Broadcaster, 58, 84-88
event bubbling, 57, 59-60, 70, 79, 81-83, 218
event model, 57-88
event object, 34, 67, 69-73, 91, 144, 912
event property, 91

458

Event Tutor, 58, 80-83, 145
exeCommand method, 411-12
expandableclass, 318
expand method, 403
externalscriptfile support, 40
extralnformation field, 108-9

F
features parameter, 118, 123-27
features string, 126
JfgColor property, 151, 152
field object, 439 ~
fields collection, 439
Fieldset element, 12-13, 252, 283, 333, 358
file(s)

created/modified dates, 156-56
size of, displaying, 155

fileCreatedDate property, 156
fileModifiedDate property, 156-57
JileSize property, 155
JileUpatedDate property, 156, 157
File Upload element, 263
filter property, 26
filtets, 26
Find dialog box, 37, 407
findText method, 403, 406-7
firewalls, 55
float attribute, 337
Sloat property, 20, 289
focus events, 80, 98-99
focus method, 99
font(s)

CSS and, 24
custom, 24
for dialog boxes, 125, 126
embedding, 24
italic font, 898
keywords, 26
system, 26

+

238

font-family property, 24
FontName parameter, 411
font property, 24, 126
font-size property, 126
font-style property, 126
<FONT?tag, 3
Jont-weight property, 126
FOO element, 181-82
foo function, 68
<FOO>tag, 181-82
footers, 4, 5
footnotes, 381-82
FORattribute, 6, 62, 53, 69, 88, 194, 426
for...in loops, 51
form(s), 4, 5, 6-10

contents, resetting, 260
description of, 251-62
scoping, 253-54
submissions, 257-60, 266-67

form abject, 34, 255, 259
form property, 255
forms collection, 167, 174, 254-56
Forms element, 175, 186-87, 251-62
<FORM>tag, 174, 259
Forward button, 55, 94, 144, 444
forward method, 94
forward slash (/), 38
frame(s)

automatically sliding, 214-15
customizinglinks to, 219-21
managementof, 113-45

FRAMEBORDERattribute, 134
Frame element, 176, 213, 214, 216, 427-28
frame object, 35, 140
frames collection, 113, 128, 138-43, 162, 174, 210,216, 255
frameset (s), 4, 5

authoring, 131-32
borderless, 134

Index

frameset(s), continued
creating simple browsers with, 143-44
defining frame contents and, 141
down-level browsers and, 134-36
downloading frames and, 143
focus events and, 99
hierarchy, 142-43
inline frames and, 136
manipulating, 113, 130-44
nesting, 132-33
resizing, 133-34
scripting, 138-48
scrolling, 133-34
searching for, 138

Frameset element, 137, 162, 176, 207-16, 427-28
<FRAMESET>tag, 131, 134, 176, 212
FRAMESPACINGattribute, 134
frames property, 141, 162
<FRAME>tag, 151, 141
FTP (File Transfer Protoco]), 416
function(s)

naming conventionsfor, 53
pointers, 51-52, 192-96

function object, 193
Furman,Scott, 329

G
getAttribute method, 194, 195
getBookmark methad, 408-9
GET method, 257-58, 427
GIF (Graphics Interchange Format)files, ix-x,

326, 418
globalstyle sheets, 15, 16, 245, 288, 292, 295-311
global variables, 91-92
GMT (Greenwich Mean Time), 160
Go button, 144
go method, 94
graytext keyword, 25

459

239

INSIDE DYNAMIC HTML

H
<Hi>...<H6> tags,xiii, 18, 179-80, 292, 303, 374-75
hash property, 95, 217
Head element, 163, 167, 179
headers, 4, 5, 397-89
<HEAD>tag, 155, 179
HEIGHTattribute, 227, 238
height property, 96, 127, 245, 330, 334-35, 340
Hello, World! program, 41, 218
help, 80, 125
help event, 80
Help menu, 80
HIDDENaitribute, 260, 261
hidden.htm, 132
hiding/showing

data, 317-18
frames, 132
intrinsic controls, 260-61

highlightborder keyword, 25
highlight keyword, 25
history buttons, 93-94
history list, 144
history object, 34, 55, 94
HLP (Windows Help)files, 80
hostnames, in URLs, 95
host property, 217
HREFattribute, 17, 60, 64, 216, 218, 233,

425-26
hrefproperty, 95, 155, 216-18
HTML (Hypertext Markup Language)

containership, determining, 197-98
documents, description of, 149-66
elements collections and, 167-87
invalid, 184-87
properties, vs. text properties, 374-75
stream, 150, 164-66
version 4.0, 3-29

htmiFor property, 194
HTMLtags (listed by name)

<A> tag, 6, 18, 216-22
<A HREF> tag, 174

460

HTMLtags(listed by name), continued
<A NAME>tag, 174
<APPLET>tag, 174, 416
<AREA> tag, 28, 174
 tag, xiii, 3, 183, 398, 401-2
<BAR> tag, 182
<BASE>tag, 425
<BINDEVENT>tag, 87, 88
<BODY>tag, 64, 101-2, 181, 151-52, 154, 179,

209, 212
<BUTTON?>tag,12, 282
<DIV>tag, 12, 20.
<EMBED>tag, 174
tag, 17,18
<FONT? tag, 3
<FOO>tag, 181-82
<FORM>tag, 174, 259
<FRAMESET>tag, 131, 134, 176, 212
<FRAME>tag, 131, 141
<H1>...<H6> tags, xiii, 18, 179-80, 292, 303,

374-75
<HEAD>tag, 155, 179
<I> tag, xiii, 398
<IFRAME>tag, 174
tag, 174
<INPUT>tag, 11, 61, 282
<INPUT TYPE=BUTTON?>tag, 282
<INPUT TYPE=FILE>tag, 262, 263
<INPUT TYPE=PASSWORD>tag, 262
<INPUT TYPE=TEXT>tag, 262
<LABEL> tag, 6, 8-9
<LINK> tag, 17, 217
<NOFRAMES>tag, 134
<NOSCRIPT>tag, 46, 47
<OBJECT>tag, 136, 174, 416-17
<OPTION>tag, 272
<P> tag, 17, 18, 179, 184, 240
<PARAM>tag, 426-27
<SCRIPT>tag, 37, 40, 43, 45-46, 62, 166, 174
<SEQUENCE>tag, 356
tag, 8, 20

a

239

HTMLtags(listed by name), continued
tag, xiii-xiv
<STYLE>tag, 16
<TD> tag, 185
<TEXTAREA> tag, 262
<TITLE>tag, 42

hemiText property, 400-401
HTTP (Hypertext Transfer Protocol), 109, 416
hyphen (-), 27, 289

I
<I> tag, xiii, 398
icon keyword, 26
ID attribute, 23, 62, 169-73, 190, 191, 203, 288
id property, 190, 191, 239
IFrame element, 4, 123, 136, 210, 333, 427-28
<IFRAME>tag, 174
if statement, 63
image(s). See also image maps; IMG element

collection, 174
error handling, 385-86
GIF, ix—x, 326, 413
sequencing, 227-28

image maps
accessing, 230-32
events and, 229-30
programming, 226-37

IMGelement,164, 173, 201, 205, 207, 226-37,
333, 425

tag, 174
imports collection, 304, 805
inactivecaption keyword, 25
inactivecaptiontext keyword, 25
increments attribute, 356
indeterminate property, 279
indeterminatestate, 279-80
indexes, enhanced, 389-94
infobackground keyword, 25
information field, 109
information pane, 130

index

infotext keyword, 25
inlinestyle sheets, 15, 288, 291-92
innerHTML property, 373-74, 389
innerText property, 263, 282, 373-75, 376
Input element, 23, 260-61, 280-83, 333, 422-23
<INPUT>tag, 11, 61, 282
<INPUT TYPE=BUTTON>tag, 282
<INPUT TYPE=FILE> tag, 262, 263
<INPUT TYPE=PASSWORD>tag, 262
<INPUT TYPE=TEXT> tag, 262
inRange method, 407
insertAdjacentHTML method, 373-74, 381-85, 398
insertAdjacentText method, 373-74, 381-85, 398
insertCell method, 243
insertRow method, 241, 243
Inside Dynamic HTML Website, xvi
integers, 192-96
interactive state, 162, 163
Internet

Client SDK (Software DevelopmentKit),
xvi, 439

slowtraffic on, 413
Internet Explorer browser,ix, xi-xii, xiv. See

also browser(s)
Button element and, 280
CSS and,xi, 16, 19-26
cleay method in, 166
client property and, 108
cookies and, 112, 158
copyof, on the companion CD, xvi
data binding and, 417, 419, 422, 437,

489-45, 449
data display techniques and, 317, 825
documentstructure and, 155-56, 158, 166-67,

182, 185
dynamic positioning and, 329, 332, 339
dynamic styles and, 289, 301
event modeland, 63, 64
FOO elementand, 182
framesets and, 130, 131, 134, 136, 144
image maps and,226, 228

461

240

INSIDE DYNAMIC HTML

Internet Explorer browser, continued
JScript and, 48
lastModified property and, 156
Link element and, 222
lists and, 185
Marquee elementand, 237
navigator object and, 108-9
new HTMLfeatures and, 3, 4-5, 6, 8, 13
object models, 31~55
opener property and, 127
security and, 270
setInierval method and, 103
tables and, 240
text animation and, 326
title property and, 155

intLeft variable, 104
intrinsic controls

description of, 6, 251-83
disabled, interacting with, 261-62
hiding/displaying, 260-61

invalid HTML
description of, 184-87
overlapping elements as, 183-84

invoice forms, 12-13
isEqual method, 407
Isindex element, 179
ISMAP attribute, 229
isTexiEdit property, 400
italic font, 398
item method, 169, 170-72, 174-75, 255

J
JASS (JavaScript Accessible Style Sheets), 287, 325
Java, x, xi

data binding and, 416, 419, 426-27
navigator object and, 111

JavaBeans, 419, 427
javaEnabled method, 111
JScript, ix—xi, xv—xvi

advanced techniques, 32, 50-54

462

JScript, continued
case sensitivity and, 190, 191, 194
converting to GMT using, 160
data types and, 193
event modeland, 57, 58, 61-69, 84, 87
framesets and, 140-44
function pointers, 51-52, 57, 58, 64-65, 68, 84.144-45
image maps and, 228
LANGUAGEattribute and, 38-39
length property and, 172
line breaks in, 119
specifying a script for, 38
unrecognized attributes and, 196
VBScript vs., 32, 48-49
Website, xvi

K
keyboard events, 79
keyCode property, 79
heydown event, 263
key information, 73
keypress event, 263
keyup event, 263

L
Label Demonstration Web page, 7-8, 11
Label element, 6-8, 11, 252, 283, 426
<LABEL>tag, 6, 8-9
LANGUAGEattribute, 38, 39, 61, 64
lastModified property, 156-57
left property, 330, 382, 334-35, 340, 364
length property, 94, 169, 171
letler-spacing property, 326
line breaks, 119, 232
link(s). See also Anchor element; URL (Uniform

Resource Locator}
customizing, to target frames, 219-21
defining, to the next document, 225-26
indexes, 389-90

240

linkColor property, 151, 152
linked style sheets, 15, 16-17, 292, 304
Link element, 207, 217, 222-26, 295, 297, 302
link object, 34
links collection, 174, 216, 222, 233
links.htm, 223-24
<LINK> tag, 17, 217
list boxes. See aso lists

adding/removingitems from, 273-74
addingstyles to, 272
creating custom, 382-85
defining, 271-72
multiple-select, 275-76

lists. See also list boxes
bulleted lists, 19-20, 185-86
invalid HTML and, 185-86
programming, with check boxes and radio

buttons, 277-80
list-style property, 19
load events, 97
loadingstate, 162, 163
location object, 34, 95, 155, 233
location property, 95-96, 155
logos, 340-42
loop property, 238

M
Mapelement, 27, 207, 226-37, 358, 364
margin-top property, 289
Marquee element, 13-14, 116, 206, 237-39, 358
media attribute, 302
menu keyword, 25, 26
menubar dialog box feature, 124, 125, 126menus

creating, 346-48
pop-up, 346-48

menutext keyword, 25
messagebox keyword, 26
meta information, 149-50, 155-64

Index

methods(listed by name),
add method, 235, 273
addRule method, 303-4, 306
alert method, 117, 119
back method, 94
blur method, 99
clearLinks method, 223, 225
clear method, 166
click method, 202
close method, 127-29, 164, 165-66
collapse method, 403
compareEndPoints method, 407-8
confirm method, 117, 119
contains method, 197-98
createCaption method, 241
createElement method, 190, 228, 235, 273
createRange method, 409
createTextRange method, 263, 282, 396, 399, 402
createTFoot method, 241
createTHead method, 241
createWindow method, 128-29
deleteCaption method, 241
deleteCeti method, 243
deleteRow method, 241, 243
deleteTFoot method, 241
deleteTHead method, 241
document.write method, 42, 107, 245-49, 371,

~ 387-94
duplicate method, 407
elementFromPoint method, 73, 363-64
eval method, 92
exeCommand method, 411-12
expand method, 403
findText method, 403, 406-7
focus method, 99
forward method, 94
getAttribute method, 194, 195
geiBookmark method, 408-9
GET method, 257-58, 427
go method, 94

463

241

INSIDE DYNAMIC HTML

methods(listed by name), continued
inRange method, 407
insertAdjacentHTML method, 373-74,

381-85, 398
insertA djacentText method, 378-74, 881-85, 398
insertCell method, 243
insertRow method, 241, 243
isEqual method, 407
item methad, 169, 170-72, 174-75, 255
javaEnabled method, 111
moveBy method, 114
moveEnd method, 403, 404-6
MoveFirst method, 425, 438
MoveLast method, 438
move method, 403, 404-5, 438
MoveNext method, 437, 488
MovePrevious method, 4388
moveStart method, 403, 404-6
moveTo method, 114
moveToBookmark method, 408-9
moveToElementText method, 403, 404
moveToPoint method, 403, 406
nextPage method, 437
open method,117-19, 123, 124, 125, 126, 128,

151, 164-66
pasteHTML method, 400-402, 405, 409
POST method, 257-58, 270
previousPage method, 437
prompt method, 117, 119, 121-93
queryCommandEnabled method, 411

s

queryCommandIndeterm method, 411
queryCommandState method, 411
queryCommandSupported method, 411
queryCommandTexi method, 411
queryCommandValue method, 411, 412
rangeFromPoint method, 73
reload method, 95
removeAitribute method, 194-95
removelmport method, 305
remove method, 235

464

methods(listed by name), continued
removeRule method, 303-4
replace method, 95
resizeBy method, 114
resizeTo method, 114
scrollBy method, 114
scrollinie View method, 363, 408
scroll method, 114, 115, 116, 211
serollTop method, 115
sendEndPoint method, 407-8
setAtiribute method, 194-95
seiInteroal method, 103
setmethod, 427
setTimeout method, 102
showHelp method, 80
showModalDialog method, 117, 119-21, 123,124, 126-27
start method, 239
stop method, 239
submit method, 260
tags method, 174-76, 255
toGMTSiring method, 160
window. open method, 124
writeln method, 42, 164, 165, 372
write method, 41, 42, 164, 165, 372

MFC (Microsoft Foundation Classes), 419
Microsoft Website, xvi, 5, 29, 205, 229, 417,

439, 449
MIME(Multipurpose Internet Mail Extension)

types, 5, 16-17, 165
framesets and, 137
returning, 158

mimeType property, 158
modem speed, 413
mouse events, 74-77

mousedoum event, 71
onclich event, 61, 63, 71, 74-77, 202, 212, 218-19,

278, 280, 281, 283, 437
ondblelick event, 74-75, 218
ondragstart event, 74, 77-78

241

Index

mouse events, continued Netscape Navigator browser, continued
onmoausedown event, 69, 71, 74-77, 218 Form element and, 260
onmousemove event, 62-63, 74-77, 78, 218 framesets and, 130, 131, 134, 136, 144
onmouseout event, 74, 76-77, 87-88, 94, 198, image maps and, 226, 228

218, 226, 298 JASS and, $25
onmouseover event, 74, 76-77, 87-88, 94, 198, lastModified property and, 156

218, 223, 292-93 _ lists and, 185
onmouseup event, 74-77, 218 nameattribute and, 170
onselect event, 74, 78-79 navigator object and, 108-9
onselecistart event, 74, 78-79, 317 new operators and, 201

moveBy method, 114 object models, 31-55
moveEnd method, 403, 404-6 security and, 270
MoveFisst method,425, 458 setinterval method and, 108
MoveLast method, 438 title property and, 155
move method, 403, 404-5, 438 Netscape Website, 825
MoveNext method, 437, 438 newCalendar function, 248
MovePrevious method, 438 new operator, 58, 201, 228
moveStart method, 403, 404-6 New Option element, 201
moveTo method, 114 Next button, 437
moveToBookmark method, 408-9 nextPage method, 437
moveToElementText method, 403, 404 NoFrameselement, 134-35, 176
moveToPoint method, 403, 406 <NOFRAMES>tag, 134
miarget attribute, 220 nonbreaking spaces, 5, 375
MULTIPLEattribute, 272, 424 NORESIZEattribute, 138-34

NoScript element, 46
N <NOSCRIPT> tag, 46, 47
\n (escape character), 119 null values, 172, 193, 273, 304, 364
name attribute, 169-73, 422, 427
name property, 91, 92, 190, 191, 216 oO
name-value pairs, 158-59 Object element, 4, 5-6, 164, 206, 239-40, 257,
navigation bars, 225 333, 426-27
navigation.htm, 225 object hierarchy
navigator object, 34, 89-90, 108-12 description of, 31, 32-37
navigator property, 108-12 evolution of, 34
nesting framesets, 132-33 for the window object, 90-92
Netscape Navigator browser, x-xi, 62-63. See also object models

browser(s) description of, 37-48
cookies and, 112, 158 event model and, 60
dynamic positioning and, 329 object hierarchy and,31, 32-37
dynamic styles and, 288 object property, 239

465

242

INSIDE DYNAMIC HTML
SSa8

<OBJECT> tag, 136, 174, 416-17
ODBC (Open Database Connectivity), 445
offsetHeight property, 210-11, 357, 363
offsetLeft property, 357, 362, 364
offsetParent property, 357, 358, 364
offsetTop property, 357, 362, 364
offsetWidth property, 210-11, 357, 363
offsetX property, 72
offsetY property, 72
offWidth property, 211
OLE (Object Linking and Embedding), 419OLE-DB, 419
onabort event, 386
onafterupdate event, 439, 440
onbeforeunload event, 97-98, 439, 444-45
onbeforeupdate event, 439, 440, 441
onblur event, 80, 98-99, 218, 264
onbounce event, 238
onchange event, 264
ONCLICKattribute, 61
onclick event, 61, 63, 71, 74-77, 202, 212, 218-19,

278, 280, 281, 283, 437
ondataavailable event, 439, 443
ondatasetchanged event, 439, 442
ondatasetcomplete event, 439, 448-44.
ondbiclick event, 74-75, 218
ondragstart event, 74, 77-78
onerror event, 100-101, 385
onerrorupdate event, 439, 440
onfinish event, 238
onjocus event, 80, 98-99, 216
onhelp event, 80
onkeydoum event, 79
oni ss event, 79
onheyup event, 79
onLine property, 112
onload event, 66, 67, 97, 143, 164, 204, 212, 213,309-11, 425
onmousedown event, 69, 71, 74~77, 218
onmousemove event, 62-63, 74-77, 78, 218

466

onmouseout event, 74, 76-77, 87-88, 94, 198, 218,226, 293

onmouseover event, 74, 76-77, 87-88, 94, 198, 218,225, 292-93
onmouseup event, 74-77, 218
oureadystatechange event, 66, 67, 97, 148, 162,

163-64, 309, 310
onreset event, 260, 281
onvesize event, 101, 213, 245
onrowenter event, 489, 442
onrowexit event, 489, 441-42
onscript event, 79°
onscroll event, 101, 115, 213-14
onselect event, 74, 78-79
onselectstart event, 74, 78-79, 317
onstart event, 238
onsubmit event, 258, 259, 281
onunload event, 97-98, 103
open class, 321
open method, 117-19, 128, 124, 125, 126, 128,151, 164-66
Option element, 272, 273, 424
options collection, 201, 278, 275
options parameter, 195
<OPTION>tag, 272
order attribute, 356
OSP (OLE-DB Simple Provider), 419
outerHTML property, 222, 373-74, 376
outerText property, 222, 873-75, 400
outline attribute, 202, 319
outlines, expanding/collapsing, 318-20
overflow property, 211, 330, 337-38
overlapping elements, 183~84
ouningElement property, 296

P
<P> tag, 17, 18, 179, 184, 240
page navigation, automatic, 103-4
Paragraph element, 167, 178, 179-80, 240, 360

242

Index
a

parameters
accessing, through the event object, 71
aliKey parameter, 73
button parameter, 73
CLASSID parameter, 5
CODEBASE parameter, 5
ctrlKey parameter, 73
features parameter, 118, 123-27
FontName parameter, 411
options parameter, 195
replace parameter, 118
shiftKey parameter, 73
url parameter, 118

<PARAM>tag, 426-27
parentElement property, 178, 197, 242, 358, 402
parentheses[()1, 65
parent property, 140, 216
parentStyleSheet property, 304
parentTextEdit property, 399-400
parentWindow property, 161-62
parseCookie function, | 60
parsing information, 189, 196-200

constructing parsing trees, 198-200
determining HTML containership and, 197-98

parseInt function, 193
password input, 262, 270
PASSWORD Inputelement, 262
pasteHTML method, 400-402, 405, 409
pathname property, 217
pathnames, in URLs, 95
pixels, 123, 340
platform field, 108
port property, 95, 217
position attribute, 339
position property, 291, 330, 332
POSTmethod, 257-58, 270
pound sign (#), 230
PRE element, 165, 401

presentation effects, 352-56
presentation rules, 17
Previous button, 437
previousPage method, 437
print media, 301-2
prompt method, 117, 119, 121-28
properties

compound, 289-90
conflicts between, 239-40
events as, 64-65
HTMLvs. text, 374-75
modifying, 291
naming conventions for, 53
reflecting HTMLattributesas, 154
user-defined, 91-92

protocols
FTP(File Transfer Protocol), 416
HTTP (Hypertext Transfer Protocol), 109, 416
in URLs, 95

pseudo-classes, 18, 221
pulsating elements, 326-27

queryCommandEnabled method, 411
queryCommandIndeterm method, 411
queryCommandState method, 411
queryCommandSupporied method, 411
queryCommandText method, 411
queryCommandValue method, 411, 412

R
radio buttons

Label element and, 6-8

programminglists with, 252, 277-80
tules for, 256
scoping forms and, 253-54

rangeFromPoint method, 73
RDS (Remote Data Service), 417, 419, 445

467

243

INSIDE DYNAMIC HTML

———_14pr

a

READONLYattribute, 9-10, 257
read-only elements, 257
read/write attributes

COLSattribute, 131, 133, 214
ROWSattribute, 131, 133, 214

read/write Properties, 123, 127, 155
readyState property, 143, 162, 163, 309, 385reason property, 443
recordNumber property, 425, 445-48
recordset abject, 437-38
Yecordset property, 438
Refresh button, 144
REL attribute, 17, 292
reload method, 95
remove method, 235
TemoveAltribute method, 194-95
removelmport method, 305
removeRule method, 303-4
rendering context, 330, 356-67
repeated table binding, 415~16, 428-31, 433-35replace method, 95
replace parameter, 118
required attribute, 266, 267
Reset button, 13, 281
vesizeBy method, 114
Resize tab dialog box feature, 124, 125resizeTo method, 114
return keyword, 70
return Value property, 70, 98, 120, 258
Rev attribute, 292

RGB (Red-Green-Blue) color model, 152
rowlndex property, 242Tows

collection, 241-49

forms that span multiple, 186-87
ROWSattribute, 131, 133, 214
ROWSPAN attribute, 243-44, 431
rowSpan property, 245
rules collection, 303

468

sandbox model, 55
sans-serif font, 24
scope, 67-68, 253-54

of influence, 178
invalid, 402

screen media, 301-2
sereen abject, 34, 96-97
screenX property, 72
Screen¥ property, 72

Script element, 4, 37-39, 44, 46, 66, 162, 165
scripting. See alsoscripts

fundamentals, 31-55
languages, choosing, 32, 48-49
languages, multiple, 44-45
languages, specifying, in event attributes, 64Websecurity and, 32, 55

script libraries, 39-40
Script property, 162
script object, 34
scripts. See also scripting

disabling, through security settings, 46-47elements and, 189-205
hiding, from down-level browsers, 45-47
locationsof, in documents, 49~43
scopingof, 67-68
writing, into the HTML stream, 166

scripts collection, 174

<SCRIPT> tag, 37, 40, 43, 45-46, 62, 166, 174
serollA mount property, 238
Scrollbar keyword, 25
scraliBy method, 114
scrollDelay property, 238
Scroll events, 79
scrollHeight property, 211, 388
scrolling, 79, 124-95, 337-39

framesets and, 133-34
status Bar text, 104-6
timer events and, 104-6

243

SCROLLINGattribute, 133-34
scrollintoView method, 363, 408
sorollLeft property, 115, 211, 212, 262, 351
scroll method, 114, 115, 116, 211
scrolTop method, 115
scrolTop property, 115, 211, 212, 262
scrollWidth property, 211, 262
SDK (Software DevelopmentKit), xvi, 439
search engines, 14
search property, 95, 217
sectionRowIndex property, 242-43
security, 32, 270

disabling scripts and, 46-47
firewalls, 55
unload events and, 98

ecurity tab, 47
select clemens 23, 251-52, 270-76, 333, 424-25
selection object, 34, 409-10
selection operations, 395-412
selectors

contextual, 16, 17-18, 19
description of, 16
simple, 16, 17-18

selectorText property, 303
self property, 91
semicolon (;), 126, 158
sendEndPoint method, 407-8
<SEQUENCE>tag, 356
setAltribute method, 194-95
setInterval method, 103
set method, 427
set property, 140
setTimeout method, 102
Settings button, 47
setupLinks function, 223, 225
SGML (Standard Generalized Markup Language),

xiii, 3, 26
HTMLstreamsand, 165
XML markup language and,205

Index

shifiKey property, 73, 79
showHelp method, 80
showModalDialog method, 117, 119-21, 128, 124,

126-27
sidebars, 20-21
SIZE attribute, 194, 272, 424
size property, 194, 195
slide mode, 237
smallcaption keyword, 26
sourcelndex property, 198, 242
source locations, 156
spaces

nonbreaking, 5, 375
white space, 401

Span element, 106-7, 333-34, 381, 422, 424,
426, 434

tag, 8, 20
speed attribute, 356
square brackets ([]), 50, 169
SRC attribute, 40, 201, 226, 227, 425
srcElement property, 67, 70, 77, 212
standard user events, 58, 74-80
start method, 239
StartToEnd value, 408
StartToStart value, 408
State field, 265
static value, 332
status bar, 26, 93-94, 104-6
statusbar keyword, 26
status messages, 93
status property, 93
stop method, 239
strings

data type for, 192-96
evaluating, as code, 92

Strong element, xiv, 18-19, 178, 183
tag, xiii-xiv
STYLEattribute, 15, 61, 291-92
Style element, 165, 295, 297, 302
styleFloat property, 291

469

244

INSIDE DYNAMIC HTML Index
—_—_—SSS

style property, 303
tagName property, 190, 191, 210 tags (listed by name), continued timereventsstyle sheet(s), See also CSS (Cascading StyleSheets)

adding new, 305-9
alternative, providinga list of, 299-301
globalstyle sheets, 15, 16, 245, 288, 292,295-311
imported, 304-5
inline style sheets, 15, 288, 291-99
JASS, 287, 325
linkedstyle sheets, 15, 16-17, 292, 304
media-dependent, 301-2
multiple, selecting from, 299-300
Properties, 289-9]
randomly applying, 301
referencing, 296-97
tules, 303-6

Stylesheets collection, 149, 288, 296, 309
styleSheet object, 34, 296-305, 309-11
styles.htm, 307-8
<STYLE> tag, 16
stylizer.htm, 306-7
Submit button, 13, 256-57, 281
submit method, 260
systemLanguage property, 112

T
tabbing order, 9
TABINDEXattribute, 9
Table element, 29, 206, 240-49, 333, 358, 421,428-31, 434
table object, 241-45
table of contents, 130, 320-25

dynamic contents and, 389-94
enhanced, 389-94

tables
Form elements in, 186-87
paging, 435-37

lagless contents, 184
tag method, 255

470

tags (listed by name)
<A> tag, 6, 18, 216-22
<A HREF>tag, 174
<A NAME>tag, 174
<APPLET>tag, 174, 416
<AREA> tag, 28, 174
 tag,xiii, 3, 183, 398, 401-29
<BAR> tag, 182
<BASE>tag, 425
<BINDEVENT> Jag, 87, 88
<BODY>tag, 64,-101-2, 131, 151-52, 154, 179,209, 212
<BUTTON:tag, 12, 282
<DIV>tag, 12, 20
<EMBED>tag, 174
tag, 17, 18
<FONT? tag, 3
<FOO>tag, 181-82
<FORM:tag, 174, 259
<FRAMESET> tag, 131, 134, 176, 212
<FRAME> tag, 131, 141
<HI>...<H6> tags, xiii, 18, 179-80, 292, 308,374-75
<HEAD>tag, 155, 179
<I>tag,xiii, 398
<IFRAME>tag, 174
tag, 174
<INPUT>tag, 11, 61, 282
<INPUT TYPE=-BUTTON> tag, 282
<INPUT TYPE=FILE>tag, 262, 263
<INPUT TYPE=PASSWORD> tag, 262
<INPUT TYPE=TEXT> tag, 262
<LABEL>tag, 6, 8-9
<LINK> tag, 17, 217
<NOFRAMES>tag, 134
<NOSCRIPT> tag, 46, 47
<OBJECT> tag, 136, 174, 416-17
<OPTION>tag, 272
<P> tag, 17, 18, 179, 184, 240

244

<PARAM?tag, 426-27
<SCRIPT> tag, 37, 40, 48, 45-46, 62, 166, 174
<SEQUENCE>tag, 356
tag, 8, 20
tag,xiii-xiv
<STYLE>tag, 16
<TD>tag, 185
<TEXTAREA> tag, 262
<TITLE>tag, 42

tags method, 174-76
TARGETattribute, 92, 118
target property, 258
TBody element, 29, 240-41
<TD> tag, 185
TDC (Tabular Data Control), 435
template instances, 446
temporary status string, 94text

animation techniques, 325-27, 351-52
elastic, 326
flying, 351-52
justification of, 19
properties, vs. HTML properties, 374-75
pulsating, 326-27

text-align property, 19
TextArea element,211, 282, 333, 423-24
<TEXTAREA> tag, 262
Text Input elements, 251, 262-70
text property, 272, 400-401
TextRange object, xiii, 164, 149, 222, 263, 372,395-409
TFoot clement, 29, 240-41, 428
THead element, 29, 240-41, 428
this keyword, 67
this pointer, 67-68, 77
ticking clock example, 106-7, 376
Tic-Tac-Toe example, 376-80

addingticking clocks using, 106-7
automatic page navigation with, 103-4
description of, 102-7
precision of, 107
scrolling status bar text with, 104-6

TITLEattribute, 8, 9, 239, 300, 381, 386-87
Tide element, 167
title property, 49, 50, 155
<TITLE>tag, 42
toElement property, 76
toGMTSiring method, 160
toolbar dialog box feature, 124, 125
ToolTip Demonstration Web page, 9
ToolTips, 8-9, 239, 381, 387
lop property, 115, 140, 330, 332, 334-35, 340, 364
transition effects, 26
trueSpeed property, 238
TYPEattribute, 16, 17, 23, 38, 203-4, 281, 356
type property, 71, 409

u
underscore (_}, 118
unescape function, 159
uninitialized state, 162
unload event, 97-98, 444
url parameter, 118
URL property, 155
URL (Uniform Resource Locator), 17, 111, 118.

See also link(s)
absolute, 425
Anchor elementand, 216-22
data binding and, 417, 425-28, 435, 444-45
dynamicstyles and, 289, 290
form submissions and, 257-58
framesets and, 141, 144
location object and, 95-96
pop-up menusand, 346-48

USEMAP attribute, 229

471

245

INSIDE DYNAMIC HTMLee eeeeEESESSSSSSSSeSFsSsFsFeseseseF

useMap property, 230
user(s)

events, 58, 74-80, 101
input, formatting, 268-70
input,validating, 263-68
selections, accessing, 395, 409-10
settings, 24-26, 111-12

userAgent property, 108-9
user-defined properties, 91-92
UserInfo.htm, 122
userLanguage property, 112

Vv
VALUEattribute, 193, 203, 272, 422, 494
value property, 55, 193, 263, 270, 275, 282, 439variables

global, 91-92
naming conventionsfor, 53

VBScript, ix-x, xv, 173
elementcollections and, 169, 173, 175
event modeland, 60, 63-64, 66, 67, 69, 84
framesets and, 141
item method and, 169
readyState property and, 163
specifying a scriptfor, 38

views

determining whether elements are within,362-63
providing multiple, 297-99
scrolling ranges into, 408

visibility property, 21-22, 260, 330, 335
Visual Basic, 416, 419
Visual C++, 416, 419
ulinkColor property, 151, 152

w
W3C (World Wide Web Consortium), 3, xii,

xiv, 418 .
CSSPositioning (CSS-P) working draft, 26,329-56
Website, 5, 14, 29, 205

472

waikStyles fanction, 295
Web browser(s). Sze browser(s); Internet

Explorer browser; Netscape Navigatorbrowser
Web pages/sites

Button Demonstration Web page, 11-12
Disabled Element Demonstration

Webpage, 10
Inside Dynamic HTML Website, xvi
Label Demonstration Web page, 7-8, 11
Microsoft Website, xvi, 5, 29, 205, 299, 417,

4389, 449
Netscape Web Site, 325
ToolTip Demonstration Web page, 9

white space, 401
WIDTHattribute, 227, 238
undth property, 96, 127, 245, 330, 334-35, 340
window(s). See also window object

auto-scrolling, 116
closing, 127-29
creating new, 113, 116-29
events, 97-102, 212-14
features, specifying, 128-27
management, 113-45
modal/modeless, 116-17
naming, 92
parent, 161-62
scrolling, 115-16

uindowframe keyword, 25
window.frames object, 34
window keyword, 25
window object, 83-34, 40, 51, 54, 69, 444

creating new windowsand, 113, 116-29
description of, 89-102
document object and, 151
error handling and, 100-101
manipulating framesets and, 113, 180-44
manipulating windows and, 118, 114-16
onscroli event and, 214
referencing, 91

245

window.open method, 124
windows collection, 128
windowtext keyword, 25
wipeeffects, 343-46
writen method,42, 164, 165, 372
wnite method,41, 42, 164, 165, 372

x
XML(Extensible Markup Language), 205, 417
XMPelement, 165, 401
xycoordinates, 115, 334-36

z
z-index property, 330, 336, 342-43
zoom function, 233

Index

473

246

246

Scott Isaacs

Scott Isaacs is a Microsoft program manager working
on Internet Explorer. He has worked on the design of
Dynamic HTML from the beginning and frequently pre-
sents the technology at industry conferences. Scott also
represents Microsoft on working groups of the World
Wide Web Consortium (W3C) for standardizing HTML,
CSS, and the documentobject model. Independently,
Scott maintains a Web site, www.insideDHTML.com,
that covers the latest Dynamic HTML developments.

247

247

T he manuscript for this book was preparedand submitted to Microsoft Press in electronic
form. Text files were prepared using Microsoft Word.
97. Pages were composed by Microsoft Press using
Adobe PageMaker6.5 for Windows, with text in New
Baskerville and display type in Helvetica bold. Com-
posed pageswere deliveredto the printer as electronic
prepressfiles.

Cover Graphic Designer
Tim Girvin Design

Cover Ilustrator
Glenn Mitsui-

Interior Graphic Designer
Pamela Hidaka

Interior Graphic Artist
Joel Panchot

Principal Composttor
Elizabeth Hansford

Principal Proofreader
Roger LeBlanc

Indexer

Liz Cunningham

