Scott Isaacs

Microsoft Fress

Exhibit 1035
Samsung v. DoDots
IPR2023-00701

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1997 by Scott Isaacs

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Isaacs, Scott, 1971-
Inside Dynamic HTML / Scott Isaacs.
p. cm,
Includes index.
ISBN 1-57231-686-1
1. HTML (Document markup language) 1. Title.
QA76.76.H94183 1997
005.7'2--dc21 97-33678
CIp

Printed and bound in the United States of America.
123456789 QMQM 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada
Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at

Java is a trademark of Sun Microsystems, Inc, Microsoft, Microsoft Press, the Microsoft Press logo,
Visual Basic, Visual C++, Windows, Windows NT, and the Windows logo are registered trade-
marks and ActiveX, JScript, and the Microsoft Internet Explorer logo are trademarks of
Microsoft Corporation. Other product and company names mentioned herein may be the
trademarks of their respective owners.

Acquisitions Editor: Eric Stroo

Project Editor: Patricia Draher

Manuscript Editor: Jennifer Harris

Technical Editors: Gary Nelson and Kurt Meyer

CONTENTS

Acknowledgments....... s sissaai Vil
introduction

PART 1: HTML AND SCRIPTING

CHAPTER ONE

Overview of HTML. and CSS 3
New HTML Features
Cascading Style Sheets
Examining an HTML DTD

CHAPTER TWO

Fundamentals of HTML Scripting 31

Dynamic HTML Object Hierarchyco...oooevoin oo 32
Authoring Scripts .
Choosing a Scripting Language: JavaScript vs. VBSeript
Advanced JavaScript Techniques ...,
Scripting and Web Security ...,

CHAPTER THREE

Dynamic HTML Event Model 57
General Event Model
Event Binding
The event Object
Programming Standard User Events
Event Examples

INSIDE DYNAMIC HTML

CHAPTER FOUR

The Browser Window 89
The window Object ... 90

The Window Environment .. = 92
Window Events s 97
Timer Events ... 102
The clientinformation or navigator Property 108
CHAPTER FIVE
Window and Frame Management 113
Manipulating the Window ..., 114
Creating New Windows ... v 116
Manipulating Framesets 130
Special Event Considerations s 1 44
ParT 11: DOCUMENT STRUCTURE
CHAPTER SIX
The HTML Document 149
Referencing the document Object .. el
Changing the Document’s Colors ... 151
Accessing Meta Information About the Document 155

Modifying the HTML Stream ...

CHAPTER SEVEN

Document Element Collections 167
Using the Collectionsc..o iR 168
The HTML Structure and Collectionsc.ccceccvvunmiiiissninns 177

CHAPTER EIGHT

Scripts and Elements 189
Identifying Elements
Accessing an Element’s Attributes
Parsing Information.................... -
Creating New Elements...
Customizing Elements ...

Contents

CHAPTER NINE

Scripting Individual Elements 207

Programming the Body and Frameset Elements
Programming the Anchor Element
Programming the Link Element
Programming the IMG and Map Elements .
Programming the Marquee Element .
Programming the Object Element .
Programming the Table Element....

CHAPTER TEN

Forms and Intrinsic Controls 251
HTML FOrMS ..o it 252
Programming Text Input Elements ... 262
Programming List Elements 270
Programming Lists Using Radio Buttons and Check Boxes .. 277
Programming Command Button Elements

Programming Label and Fieldset Elements

PART 111: DOCUMENT STYLE AND ANIMATION

CHAPTER ELEVEN

Dynamic Styles 287

Dynamic Styles and CSS ... 288
Style Sheet Properties ...
Inline Styles
Changing the ciass Attribute
Global Style Sheets

31

Adaptive Layout Techniques ..,
Data Display Techniques ...316
Text Animation Techniquesc.coooooviiviiciiiiee. 325

CHAPTER TWELVE

Dynamic Positioning 329
CSS Positioning .
Scripting CSS Positioning .
The Rendering Context ...

.. 339
.. 356

INSIDE DYNAMIC HTML

parT 1v: DOCUMENT CONTENTS AND
DATA BINDING

CHAPTER THIRTEEN
Dynamic Contents 371
Contents Manipulation ... 372
Dynamic Contents Properties
Dynamic Contents and document.write ...

CHAPTER FOURTEEN

User Selection and Editing Operations 395
Introducing the TextRange Object
Programming the TextRange Object .
Accessing the User’s Selection ..
Executing Commands

396

... 399
... 409
.. 410

CHAPTER FIFTEEN

Data Binding with HTML 413

What Is Data Binding?............................ 415
Data-Binding Architecture
Data Consumers: HTML Elements .. T
Building Basic Pages Using Data Binding ..
Writing Scripts Using Data Binding
Advanced Features ...

vi

ACKNOWLEDGMENTS

The foundations for this book were built from presentations I've made on Dy-
namic HTML. The issues and questions raised served as the basis for this book’s
organization and samples. To everyone who has heard me speak and asked a
question, thank you.

To the entire Microsoft Internet Explorer 4.0 team—especially the Tri-
dent team—without your hard work, the vision of Dynamic HTML would never
have been achieved. Thanks to all the individuals at Microsoft, too numerous
to list, who previewed and helped improve the book.

To Richard Rollman, a special thanks for all his help with the chapter
“Data Binding with HTML My thanks also go to the Microsoft Press team for
producing the book and the companion CD.

And finally, thanks to my wonderful wife, Jocelyn. Without her patience
and support, this book would never have been written or finished.

vii

._".{:

i
18y

g _E?:-'_{ﬂ:l'v_':'"{“.g'f_:' N4
tgdior . app¥ersio

INTRODUCTION

The ‘World Wide Web ignited a computer revolution by enabling anyone to
publish HTML documents. Until recently, the information in these documents
was mostly static, requiring the server to respond to user interactions. With the
introduction of Dynamic HTML, the Web paradigm has shifted away from
requiring server interactions to creating interactive Web sites and Web appli-
cations. Because Dynamic HTML allows HTML documents to interact with the
user and change completely on the client, you can create rich Web applications.

Dynamic HTML is built on an object model that extends the traditional
static HTML document. This book introduces you, the Web developer, to Dy-
namic HTML and teaches you how to create pages that are live and interac-
tive on the client. This book assumes a working knowledge of HTML and basic
programming principles. It does not teach you HTML or show you how to
program in JavaScript, JScript, or VBScript; instead, these languages are used
as tools for dynamically manipulating the page.

Near the end of this introduction, you'll find a description of the four
parts of this book. Before continuing, read this overview to get a feel for how
Dynamic HTML will be presented here through a series of building blocks. By
the end of this book, all the pieces for creating live and interactive Web pages
will be in place.

Creating Interactive Pages

The concept of creating interactive Web pages is not new—Microsoft and
Netscape initially defined a simple object model that was presented as a way
of creating interactive pages. On closer inspection, the object model was found
to be efficient only for basic form validation. Dynamic documents were mostly
a myth prior to Microsoft Internet Explorer 4.0 because the only time a page
could change was during its creation. Interactive documents were simulated
by completely reloading the page or by embedding objects in the page. Many
of these Java applets, ActiveX controls, and even animated GIFs were designed
to perform textlike manipulation, which provided a way to work around the
static nature of HTML. However, using objects as a replacement for style and
contents control is a poor solution.

INSIDE DYNAMIC HTML

After examining many of the scenarios for these objects and animated
GIFs, Internet Explorer developers realized the need for a more powerful APT
(application programming interface) for manipulating documents. With an
object model that provides full access to the document, authors can take advan-
tage of the layout abilities built into HTML and GSS (Cascading Style Sheets).
This object model greatly improves performance by reducing the need for
downloading large animated GIFs and applets. Information becomes instan-
taneously accessible because it is no longer hidden within images or objects.

Dynamic HTML provides the API necessary for complete control over the
HTML document. No longer does a page need to be defined while it is load-
ing. After loading, any portion of the page can be dynamically and immedi-
ately changed. For example, you can create an application that has expanding
and collapsing outlines. When the user expands or collapses the outline, the
contents are displayed or hidden instantaneously. Imagine being able to cre-
ate pages that can automatically change and tailor themselves to the user. All
this and more is possible with Dynamic HTML..

The ability to modify a document and have the document automatically
reflow itself is the underlying innovation used throughout Dynamic HTML.
Traditional browsers were basically document navigation tools that displayed
a document and then waited for the user to point to a new document. When
a change to the document was needed, either a request was sent to the server
for a new page or an entire new page was generated on the client.

Programming Languages

A programming language is used to manipulate the Dynamic HTML object
model, but Dynamic HTML is designed to be platform independent and lan-
guage neutral. Therefore,]avaScript,JScript, VBScript, C++, Java, or any other
programming language can be used as the language of choice.

This book uses primarily JScript for accessing the document object model.
JScript.is Microsoft’s implementation of the ECMA262 (European Computer
Manufacturers Association) standard designed by Microsoft, Netscape, and other
organizations. This standard formalizes the language constructs of JavaScript
and JScript so that interoperable implementations can be created. It is impor-
tant to remember that this standard defines only the constructs of the lan-
guage. Even though the language is often associated with the object model,
this standard does not define the object model. Therefore, when you are de-
termining whether a browser supports a version of JavaScript or JScript, you
must be careful to distinguish whether an object model or a language feature
is being discussed. The JScript in Internet Explorer 4.0 is compliant with the
ECMA standard, but the implementation of JavaScript 1.2 in Netscape 4.0is not.

Introduction

NOTE: The terms favaScript and JScript can generally be used
interchangeably to refer to the programming language. JavaScript
is used thronghout this book because it is more widely recognized.

Applets and objects on the page can also communicate with the page. For
example, in Internet Explorer, an object written in Java, G++, or some other
language can communicate with the page through the object model. The tech-
nique for creating applets that use Dynamic HTML is beyond the scope of this
book. However, this book does provide a foundation for understanding the
Dynamic HTML capabilities available to such objects.

If you are familiar with the existing JavaScript language and existing ob-
Jjectmodel, youw'll find that the extensions for the Dynamic HTML object model
are a fully compatible superset. Any pages written for past versions of Internet
Explorer or for Netscape Navigator 3.0 will continue to run in Internet Ex-
plorer 4.0. This compatibility allows Web developers to take advantage of their
existing skills as they learn about these new innovations. If you are new to
JavaScript, learning how to program the HTML page allows you to extend and
enhance your pages and your users’ experience in ways never before possible.

New Features

Dynamic HTML removes all restrictions on access to the document. Dynamic
HTML in Internet Explorer 4.0 empowers developers with a number of new
features, which are discussed in the following sections.

E HTML 4.0 and advanced CSS support Internet Explorer 4.0 sup-
ports the latest HTML 4.0 standard, €SS1, and many of the new CSS
enhancements. These HTML and CSS standards define what is ex-
posed by the Dynamic HTML object model.

B Full access to the document’s structure All elements in the docu-
ment are available through the Dynamic HTML object model. You
are no longer limited to scripting the form elements. The style and
contents of any element can be dynamically changed, and these
changes will be immediately reflected in the document.

In addition, the intrinsic controls have been enhanced to better
support HTML and CS8S, which allows the Web author to manipu-
late the appearance of these controls—including setting the text
color, background color, and font—on buttons and text controls.
The object model behind the intrinsic controls is similar to the ob-
ject model behind the document and allows easy access to the style
and contents.

Xi

INSIDE DYNAMIC HTML

B Dynamic style The document’s GSS style sheets can be changed at
any time. The document does not need to reload from the cache or
communicate with the server. The object model is designed to allow
a page to display any changes immediately. For example, the appear-
ance of an element can change as the user moves the mouse or
clicks on it.

Dynamic contents The object model allows the contents of the
document to be accessed and changed. Again, no server communica-
tions are involved, and the response is intended to be instantaneous.
For example, you can write a ticking clock utility in standard HTML.
You no longer need Java applets or ActiveX controls to change
contents.

B Instant user response Dynamic HTML provides a powerful new
event model that exposes all user actions to the page. Scripts in a
document can respond to all the user’s actions within the browser.
Based on the user’s actions, any aspect of the document’s contents
or style can be dynamically changed.

Client/server web pages Internet Explorer 4.0 adds extensions to
HTML elements to create data-bound tables and single-record forms
and reports. Data is asynchronously downloaded and rendered in
the document using a few basic HTML extensions. The data can be
cached locally, allowing clientside searching and sorting without
requiring assistance from the server. For exarnple, search engines
don’t need to provide only a few matches at a time. Instead, a search
engine can send responses to the client, where they are rendered as
they are received. The user can immediately sort and further filter
the data entirely on the client, without sending subsequent requests
to the server.

B Multimedia and animation effects Internet Explorer 4.0 tightly in-
tegrates multimedia and animation effects with the document’s con-
tents. These effects include filters that can simulate light sources
and shadows and other effects that operate directly on text or con-
trols. Transition effects between images and text, and even between
pages, can also be added.

All of these features are based on current discussion within the working
groups of the W3C (World Wide Web Consortium). The Dynamic HTML object
model is being reviewed by the Document Object Model working group. The

Introduction

goal of this group is to define an object model that is language independent
and platform neutral and that meets a set of requirements for structured docu-
ments. The object model defined in Internet Explorer 4.0 meets most of the
requirements outlined by the Document Object Model working group.

Defining an HTML Document

HTML is an application SGML (Standard Generalized Markup Language). In
an SGML/HTML document, tags add structure to the document’s contents.
A traditional SGML document has three distinct aspects: structure, style, and
contents. With the introduction of Dynamic HTML, HTML now includes a
fourth component: behavior. The term behavior refers to the interaction be-
tween the HTML page and the user. This book’s primary focus is on creating
HTML-based applications by manipulating the different components of the
document. Structure is exposed through a set of element collections; style is
exposed on each element and through a style sheets collection; and contents
are exposed through each element and through a 7TextRange object. Scripts
manipulate structure, style, and contents in response to events to produce a
document’s behavior.

Structure and Style

Structure provides context for the information contained within a document.
For example, the Header elements H1 through H6 are meant to define vari-
ous headers and their relative importance. An H1 element might be followed
by another H1 or an H2 but should not be followed by an H3 element. As
HTML quickly evolved, however, the separation between structure and presen-
tation was often ignored. Authors used HTML tags not as a way to provide
structure but as a way to define style. The H1 element was often used to mean
big, bold text rather than to indicate top-level headers. As a further deviation
from SGML, stylistic tags were invented. For example, the and <I> tags were
introduced to mark bold and italic text.

When viewing a page, the user (and many times the author) usually does
not care about structure. The author’s goal is to create an interesting page that
will hopefully increase the number of hits, or visits, the Web site receives. This
desire for originality was the justification for many of the stylistic tags that were
created.

Abusing style does have consequences, however. For one, tools hecome
less powerful. If an author correctly uses structure, an indexing tool can more
intelligently index the document’s contents. If the <STRONG:> tag is used to

xiii

INSIDE DYNAMIC HTML

xiv

indicate that a word is of importance, an index tool can assign a greater weight.
However, many authors use simply to display words in boldface,
rather than to indicate they have greater importance, invalidating the usefulness
of the tag.

A more important reason for properly structuring your page is to improve
accessibility to the underlying information. Imagine a browser that speaks the
information rather than displays it—perhaps a browser for visually impaired
users or even a voice-based browser in your car. This browser needs to be able
to extract various connotations from the text. Strong words should be spoken
with greater emphasis, and headers should provide an outline of information
on the page. If a document used markup for presentation only, the voice-based
browser would not be able to properly deliver the document.

HTML also defines a set of rules representing the proper structure of the
document. A DTD (document type definition) describes which elements can
be contained within other elements. It is important to understand that not all
HTML elements should be included anywhere within a document. Usually,
when a Web page renders poorly across browsers, it is due to HTML that fails
to conform to the DTD. Unfortunately, many of the pages on the Web do not
conform to any HTML DTD, and rather than force users to define correct
documents, browsers have evolved a lax set of rules for parsing the document
that attempt to interpret the author’s intent—often with less than ideal results.

Until mid-1996, style in HTML was controlled quite simply by using tags
and stylistic attributes, such as ALIGN. Under these conditions, HTML was
failing to be a true SGML language, in which structure and style are defined
separately. In a true SGML language, a document can have an associated style
sheet that defines how the structural elements are rendered. SGML provides
a number of languages for defining a style sheet.

In mid-1996, a new language named Cascading Style Sheets was intro-
duced for specifying style in HTML. The CSS specification was coauthored by
Bert Bos and Hikon Lie of the W3C, with input from many W3C members, and
has been adopted by the major browser implementations. Basically, with CSS
a Strong element (and even a Bold element, for that matter) no longer indi-
cates boldface text. Instead, the Strong element retains its traditional purpose,
to indicate an important word. A style sheet now specifies that Strong element
text should be rendered in boldface:

STRONG {fant-weight:bold}

To take full advantage of Dynamic HTML, your document should prop-
erly separate the contents and structure from the presentation. Dynamic HTML
is easier to use and works more predictably with valid HTML documents. And

Introduction

as the following chapters will show, manipulating invalid HTML is more dif-
ficult and might create unpredictable behavior.

The Organization of This Book

Part I:

Part Il

Learning to program interactive pages is a cumulative process. This book be-
gins by explaining basic concepts and then builds on these concepts to teach
you how to access the different components of the browser and the document.
The following sections provide an outline of the four parts of this book.

HTML and Scripting

Chapters 1 through 5 introduce the relationship between scripting and the
HTML document, describe the browser window, and show you how to use the
Dynamic HTML event model. This book assumes a working knowledge of HTML
and programming in either JavaScript or VBScript.

Part I introduces the object hierarchy, which exposes the four aspects of
the document: structure, style, contents, and behavior. These aspects are dis-
cussed in detail in Parts IT through IV, and since these areas are closely related,
the explanations overlap somewhat.

: Document Structure

In Dynamic HTML, all elements and their attributes are available program-
matically. Part IT shows you how to access and take advantage of the document
element collections and how to manipulate the individual elements within the
document. This part also demonstrates how to create rich, interactive forms that
can process information on the client without requiring round-trips to the server.

Part Ill: Document Style and Animation

Tightly coupled with individual elements is the concept of style, the topic of
Part III. Using style sheets, the Web author can specify the document’s appear-
ance, spacing, colors, and so on.

Part III also shows you how to add basic animation to an HTML page.
Dynamic HTML exposes a set of member functions that enable an HTML
element to float and move over the HTML page, allowing the creation of simple
presentation-like effects. In addition, Dynamic HTML includes a set of pow-
erful extensions that let you add real multimedia animation and transition
effects to your Web page. With these enhancements, the HTML contents can
be animated using only a few lines of code.

Xv

INSIDE DYNAMIG HTML

Part IV: Document Contents and Data Binding

Part IV demonstrates how Dynamic HTML allows pages to dynamically reshape
themselves. The contents are exposed through properties on each element
and through a text object model. With dynamic contents, HTML text and
unformatted text can be easily accessed and changed.

Chapter 15, “Data Binding with HTML,” shows you how to use Dynamic
HTML to create client/server Web pages, including binding an HTML table
to a set of data that can be locally manipulated. This feature allows you to
create high-speed data-aware pages that can be sorted, filtered, and bulk-
edited—all on the client,

Companion CD

The companion CD includes the sample code from the book, together with an
indexing page that contains links to all the samples and can sort and filter the
links to help you find particular programs quickly.

Also on the CD are copies of Microsoft Internet Explorer 4.0 and the
Microsoft Internet Client Software Development Kit. The documentation in
the SDK includes a complete reference to Dynamic HTML as well as other
helpful information.

The author’s personal Web site (www.insideDHTML.com) is a great
source for additional information about Dynamic HTML. Microsoft main-
tains several Web sites related to Dynamic HTML, including the Site Builder
(www.microsoft.com/sitebuilder) and JScript (www.microsoft.com/JScript)
sites.

Support

Every effort has been made 1o ensure the accuracy of this book and the con-
tents of the companion CD. Microsoft Press provides corrections for books
through the World Wide Web at mspress.microsoft.com/mspress /support/ If
you have comments, questions, or ideas regarding this book or the compan-
ion CD, please send them to Microsoft Press using postal mail or e-mail:
Microsoft Press

Atin: Inside Dynamic HTML Editor

One Microsoft Way

Redmond, WA 98052-6399

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses.

HTML AND
SCRIPTING

¥
|
i}
%
H

T : i

2

Overview of HTML and CSS

=33

Ay
!‘t\l
i

HTML (Hypertext Markup Language) is continually evolving. Within the past
year and a half, two major innovations have extended HTML.: an entirely new
language for controlling style, and an object model for adding behavior and
dynamism to documents. Dynamic IITML in Microsoft Internct Explorer 4.0
encompasses not only the object model for manipulating the document, but
also many of the latest HTML and CS8 (Cascading Style Sheets) recommen-
dations and working drafts from the W3C (World Wide Web Consortium).

This chapter introduces some of the recent innovations to HTMIL and CSS
supported by Microsoft Internct Explorer 4.0. The combination of existing
HTML features and these new innovations with the Dynamic HTML object
model allows you to create interactive Weh pages and Web applications. This
chapter is not a comprchensive review of HI'ML and CSS—the effective use
of HTML and GSS is a topic for an cntire book. Rather, this chapter lets you,
the Web author, familiarize yourself with the latest work in these arcas.

The following topics are covered in this chapter:

! ¥
- %jj‘iw‘w;*

M New HTML features This scction introduces some of the new fea-
tures that will be included in the next version of HTML. This next
version of HTML, HHITML 4.0, is being designed by the W3C and its
members. By the time you read this book, the HTML 4.0 recom-
mendation by W3C will probably be final. This section also intro-
duces HTML features supported by Internet Explorer 4.0 that go
beyond HTML 4.0.

W Cascading Style Sheets The intent of SGML (Standard General-
ized Markup Language), and thercfore of HTML, is to scparate
contents from presentation. This separation was not possible before
the introduction of CSS, when tags such as and were
incorporated in HTML to indicatc how content was to be pre-
sented. These tags violate the fundamentals of a structured docu-
ment by allowing the presentation to be embedded in the contents.

10

PART

I: HTML AND SCRIPTING

This section introduces the CSS language and its relationship to
the recent scripting additions. CSS is a static representation for add-
ing style to a document, but through the object model extensions,
that style can be dynamically changed. For example, the style of
text can be changed based on the user’s environment.

Examining an HTML DTD HTML is a structured language with a
formal definition. This section discusses the importance of the DTD
(document type definition) that defines HTML. The HTML DTD is
the SGML declaration of the HTML language. A DTD defines the
supported set of elements and their attributes and specifies whether
an element can contain other elements. Unfortunately, the majority
of pages on the Web violate the HTML DTD. With the addition of
an object model that exposes the entire page to scripting, ensuring
consistent and rational behavior by creating properly structured
documents takes on greater importance. In this section, you'll learn
how to read a DTD and use it to create valid HTML documents.

New HTML Features

Internet Explorer 4.0 adds full support for HTML 4.0, the next version of
HTML to be embodied as a W3C recommendation. This section introduces the
features newly incorporated into HTML 4.0. (Some of these features were
available in Internet Explorer 3.0 but are only now being incorporated into a
W3C recommendation.} At the time this book was written, HTML 4.0 was to
include the following new features:

Frameset and [Frame elements

Form and accessibility enhancements

Table enhancements for headers, footers, and columns

Object element for embedding custom objects

Script element for embedding scripts

File upload capabilities for submitting files to the server

Enhanced set of named entities

Framesets and IFrames, table enhancements, and the Object and Script
elements have all been supported since Internet Explorer 3.0, Internet

11

ONE: Overview of HTML and CSS

Explorer 4.0 expands on the earlier version by providing support for the rest
of the features in the preceding list. For information about HTML 4.0 and
these features, check out the W3C Web site (www.w3.org) and Microsoft’s Web
site (www.microsoft.com). The scripting of these new elements and attributes
is discussed throughout this book.

The rest of this section introduces the HTML syntax for the Object ele-
ment, form and accessibility enhancements, and a few other HTML features
supported by Internet Explorer 4.0 that go beyond HTML 4.0.

Chapter 2, “Fundamentals of HTML Scripting,” focuses on the Script
element, the primary mechanism for embedding scripts in the document.
Framesets are introduced in Chapter 5, “Window and Frame Management”

The table enhancements are not discussed in detail in this book. These
enhancements include specifying table headers, footers, and bodies as well as
providing greater control over columns. More information about the table
enhancements can be found at the Microsoft Web site.

A named entity consists of predefined characters that can be embedded
in the document using &name;. For example, a commonly used named entity
is the nonbreaking space (), which inserts a space that won't wrap at a
line break in the document.

Embedding Custom Objects

The Object element is used to embed custom objects in an HTML document.
This element was initially supported in Internet Explorer 3.0. The Object ele-
ment is used to extend HTML by embedding Java applets, ActiveX controls,
and supported MIME types in Internet Explorer. Supported MIME types in-
clude HTML files and the various image formats, such as GIF, JPEG, and PNG.
The syntax for the Object element is generally as follows:

<OBJECT CLASSID="ActiveX UUID" WIDTH="pixels" HEIGHT="pixels">
<PARAM NAME="property" VALUE="propertyValue">

</OBJECT>
In addition to specifying the CLASSID, an optional CODEBASE parameter can
be specified to provide a location from which to download the object. Param-
eters can be specified through one or more Param elements contained within
the Object element.

The only valid contents within an Object element are Param elements.
Browsers that support the Object element ignore all other HTML within the

PART

1: HTML AND SCRIPTING

Object block. This feature can be used to provide contents for down-level
browsers that do not support the Object element, as shown here:

<OBJECT CODE="myClass.class” WIDTH=200 HEIGHT=20@>
<PARAM NAME="color" VALUE="red">
<PARAM NAME="background™ YALUE="green">
<P>Your browser does not support the Object element and
cannot view the application.</P>
</0BJECT>

Form and Accessibility Enhancements

HTML forms were initially limited to requesting basic information from the
user. The interface was limited to plain-text containers, radio buttons, and check
boxes. Forms in HTML are evolving to provide more of the power and flexihil-
ity that existing form and database packages permit. In addition, many of the
enhancements related to forms also greatly improve accessibility, allowing users
with disabilities to better access a page with their browsers.

NOTE: Throughout this book, the term intrinsic controls is used
to refer to the built-in controls in HTML. Intrinsic controls include
all elements the user directly interacts with for input and output,
such as the image, text, button, and marquee controls.

The set of form enhancements in HTML 4.0 allows you to add labels and
access keys, add advisory text to all elements, control tabbing order, disable
controls, and group related controls. In addition, Internet Explorer 4.0 en-
hances the intrinsic form elements with support for style sheets and for defauit
and cancel buttons. Buttons and text boxes can be created using different fonts
and colors based on style sheets. The use of style sheets is introduced in the
section “Cascading Style Sheets” later in this chapter.

Adding Labels and Access Keys

The new Label element is an inline text container that can associate contents
with a specified control. Label elements are to controls what links are to book:
marks: just as links bring a bookmark into view, when the user clicks a label
the associated control is brought into view and given the focus. For radio
buttons and check boxes, clicking on the label also clicks the associated but-
ton, changing its value.

Just as the <A> tag that defines a link references a bookmark, the
<LABEL> tag references an associated control element using a FOR attribute.
The FOR attribute contains the unique ID of a control on the page. The fol-
lowing code creates labels for a check box and a text box:

12

ONE: Overview of HTML and CSS

<HTML>
<HEAD>
<TITLE>Label Demonstration</TITLE>
</HEAD>
<BODY>
<Hl>Label Demonstration</H1>
<TABLE>
<TR>
<TD NOWRAP>
<LABEL FOR="Info">Send Information: </LABEL>
</TD>
<TD>
<INPUT TYPE=CHECKBOX ID="Info" VALUE="Information">
</TD>
</TR>
<TR>
<TD NOWRAP>
<LABEL FOR="Email">E-Mail Address: </LABEL>
</TD>
<TD>
<INPUT TYPE=TEXT ID="Email" SIZE=30>
</TD>
<ITR>
</TABLE>
</BODY>
</HTMLY

Figure 1-1 shows this label demonstration in action. When a buttonlike
control is activated, its label is drawn with a dashed border around it. The label
itself can also be clicked on to activate the control.

Figure 1-1.
The Label Demonstration Web page.

PART I: HTML AND SCRIPTING

The Label element adds the capability to associate contents with a con-
trol. To help improve the accessibility of the Label element, HTML 4.0 also
provides an ACCESSKEY attribute. The ACCESSKEY attribute contains a single
character that can be used as a shortcut for referencing the control: pressing
the Alt key followed by the access key character accesses the shortcut. (The
access key is not case sensitive.)

The following code creates a label with an access key:

<1-- Label with an access key -->
<LABEL FOR="txtl" ACCESSKEY="U">

CSPAN CLASS="accesskey">User Name:
</LABEL>
<INPUT TYPE=TEXT ID="txtl" SIZE=3@>
The purpose of the tag in this example is to use a global style that
defines how the access key in the label’s text should be rendered. Microsoft
Windows traditionally underlines access keys. This underlining can be accom-
plished in HTML by adding the following global style and wrapping the access
key in the label’s text with tags:
<STYLE TYPE="text/css">

.accesskey {text-decoration:underline}
</STYLE>

The U element could be used as an alternative to the global style to force
an underline. However, that technique does not provide the benefits of style
sheets. Using a global style makes it easy to change the appearance of all ac-
cess keys in the document.

Labels degrade gracefully in browsers that do not support them. Because
the <LABEL:> tag is ignored by down-level browsers, those browsers render the
label as plain text. (Browsers that understand style sheets underline the access
key letter) The Label element significantly improves usability and accessibility
and is highly recommended wherever controls are used.

Adding Advisory Text to an Element

All HTML elements now support the TITLE attribute, an advisory string that
is rendered in Internet Explorer 4.0 as a ToolTip. A ToolTip is a small window
of text that is displayed when the mouse pointer hovers over an element. A
ToolTip can be associated with any element, allowing everything from a con-
trol to a heading to display extra information. Changing the input check box
created earlier to include a TITLE atiribute displays a ToolTip when the mouse
pointer hovers over the check box:

<INPUT TYPE=CHECKBOX ID="Info" VALUE="Information”
TITLE="Check here and enter your user name for more information.">

13

ONE: Overview of HTML and CSS

Figure 1-2 shows the ToolTip Demonstration application in action.

£ ToolTip Demonstiation - Microsoft Inteinet Explorer

| Fle E View o Famiss Hep

ToolTip Demonstration

Send Information: [7]
E-Mail Address: | (o o wd sty o v o i o]

=
= [T [y G 4

Figure 1-2.
The ToolTip Demonstration Web page.

As with the <LABEL> tag, the TITLE attribute raises no down-level
browser issues because the attribute is ignored. Therefore, using this attribute
is recommended when extra information might be helpful. The most common
uses of the TITLE attribute are on links, for extra informarion ahout the link,
and on controls, for information about the contents of the control.

Controlling Tabbing Order
A TABINDEX attribute was added in HTML 4.0 to all the input controls on
the document. This attribute lets the Web author explicitly control the tab-
bing order. By default, the tabbing order of all elements on the page matches
the order in which they are defined in the HTML source. The TABINDEX
attribute lets the author control the tabbing order among elements, indepen-
dent of the source order of the document. Supplying a negative TABINDEX
value in an element causes the element to be skipped in the tabbing order.
‘While elements within a form belong to the form, the TABINDEX at-
tribute applies to the entire document. Therefore, only one element in the
document should have a tab index of a particular value. The source order
resolves any conflicts in which multiple elernents share the same tab index value.

Disabling Controls

Disabled controls are controls that cannot be activated or whose contents can-
not be changed. In HTML 4.0, two attributes are exposed that prevent the
contents from being edited: READONLY and DISABLED. The DISABLED
attribute makes the element unable to receive the focus, and hence unable to
receive any events. DISABLED should be used when a control is not applicable

PART [: HTML AND SCRIPTING

to the current context. For example, if prerequisite information must be en-
tered before a control can be used, that control can be disabled until the cor-
rect information or state is reached. Disabling a control is a simple process:

<!-- Disabled Control -->
CINPUT TYPE=SUBMIT 1D="btnSubmit" VALUE="Submit Data" DISABLED>

When appropriate data is entered that makes the submission valid, the Sub-
mit Data button can be enabled through a script. Examples of dynamically
manipulating form elements with the object model are presented in Chapter
10, “Forms and Intrinsic Gontrols.” .

The READONLY attribute is used when the control is applicable to the
context but the contents of the control are not editable. Unlike a disabled
control, a read-only control can receive the focus and its contents can be se-
lected. However, its contents cannot be changed. The READONLY attribute
is applicable only for elements the user can enter data in. For example, But-
ton elements are never editable, so supplying a READONLY attribute for a
button control would be redundant.

A read-only control does not appear different from a control that is
editable; a disabled control in Windows, however, appears grayed. The follow-
ing code demonstrates how to make the E-Mail Address field from Figure 1-1
disabled:

CINPUT TYPE=TEXT ID="Email” SIZE=38 VALUE="UserName@com”
TITLE="To enter an e-mail address, first check the Send
Information check box.”
DISABLED>

Figure 1-3 demonstrates a disabled text box. A script can enable the text
box when the user checks the Send Information check box.

abled Element Demonstiation - Microsoft Intermnet. . R

Disabled Element
Demonstration

Send Information: [
E-Mail Address: [UseiName@com [|

| TOMmmmﬁadu;mS;dlm
g- check b _|

Figure 1-3.
The Disabled Element Demonstration Web page.

14

ONE: Overview of HTML and CSS

The New Button Element

HTML 4.0 provides a powerful new Button element that enables rich HTML
contents to be displayed as a button. For instance, the following Button ele-
ment can be added to the Label Demonstration example:

<!-- HTML-based button -->

<BUTTON STYLE="font-family:Arial; font-size:16pt; color:navy">
Send Me

Informationl
</BUTTON>
Figure 1-4 shows the Button Demonstration application in action.

[Bulton Bemonstiation - Microsaft Internet Explorer

I

Button Demonstration

Send Information: [
E-Mail Address. |UserName@:am

- T

Figure 1-4.
The Button. Demonstration Web page.

Buttons can be created with all the flexibility available in HTML and style
sheets. The only disadvantage to the Button element is that down-level brows-
ers render the contents not as a button but as normal HTML text. Therefore,
for down-level browsers, you must define another button within the Button
element by using an <INPUT> tag:

<BUTTON STYLE="background:URL(cooT.gif) yellow; font-weight:bold">
<P ALIGN="Center">Calculate</P>
<P ALIGN="Center™ STYLE="font-style:italic">Now</P>

<l-- The following button is for older browsers. -->
<INPUT TYPE=BUTTON VALUE="Calculate Now">
</BUTTON>

In browsers that support the Button element, the <INPUT> tag is ignored, and
in downilevel browsers that do not support the Button element, the HTML is
still rendered, plus a button is also displayed.

PART 1: HTML AND SCRIPTING

NOTE: This technique, in which the up-level browser ignores the
alternative HTML, actually creates an invalid document because
the DTD that defines HTML prohibits Input elements within a But-
ton element. However, this technique is demonstrated here because
it is currently the only way to use a Button element effectively with
down-level browsers that do not support the <BUTTON> tag.

The Fieldset Element

The Fieldset element is used to group form controls, similar to the way <DIV>
tags are used to group related HTML contents. The Fieldset element was de-
signed mostly for accessibility, allowing pages to clearly group s.etsAnf controls.
For example, an invoice form may contain three fieldsets: a shipping add-ress,
an order section, and billing information. If you specifically group the fields
using a Fieldset element, a browser can easily distinguish the three groups. The
Fieldsct element is rendered by Internet Explorer 4.0 to look similar to group
boxes in dialog boxes:

<l-- Grouping related controls -->

<FIELDSET>
<LEGEND>Size</LEGEND>
<INPUT TYPE=RADIO VALUE="Big"™ NAME="SIZE" ID="BIG">
<LABEL FOR="BIG">Big</LABEL>
<INPUT TYPE=RADIO VALUE="Small™ NAME="SIZE™ ID="SMALL">
<LABEL FOR="SMALL">Sma17</LABEL>

</FIELDSET>

Figure 1-5 shows an exarople Fieldset element.

oft Internat Explorer

I [Fieldset Demons

30

Figure 1-5.
Fieldset element containing a group of related contyols.

15

ONE: OQverview of HTML and CSS

The fieldset can contain a single legend displayed on the fieldset’s bor-
der. The legend can be followed by any HTML contents. The fieldset works
fairly well on down-level browsers and is recommended for grouping related
fields, but <DIV> tags should still be used to group related HTML contents.

The Default and Cancel Buttons

Internet Explorer 4.0 adds two simple usability enhancements: The Submit
button now acts as the default button for a form, meaning that the button is
activated when the user presses Enter within a form. The Reset button acts as
the cancel button for a form, meaning that the button is activated when the
user presses Esc within a form.

The default and cancel buttons work within the scope of the currently
active form. Therefore, if a document has multiple forms, the current default
and cancel buttons depend on the form the user is interacting with, The Sub-
mit and Reset buttons can also work outside the scope of the form as the de-
fault and cancel buttons but without any default behavior. Outside a form,
scripts are required to define a behavior for the buttons.

Figure 1-6 shows the default and cancel buttons. Default buttons speci-
fied using TYPE=SUBMIT have an extra border.

oft Intemet Expl

Figure 1-6.
The default and cancel buttons.

The Improved Marquee Element

The Marquee element is not new to Internet Explorer 4.0—it first shipped in
Internet Explorer 3.0—but it is currently specific to Internet Explorer and is
not a part of HTML 4.0. In Internet Explorer 4.0, the Marquee element has
been extended to display HTML text and now includes the capability to scroll

PART I: HTML AND SCRIPTING

contents up and down in addition to lef and right. The Marquee elemen} is
as rich as, and in some ways richer than, the Button element described earlier,
Marquees can be created that contain controls and even tables, and all the
event handlers for elements within a Marquee element fire appropriately. In
addition, the marquee is now represented by a powerful object in the objAect
model. Chapter 9, “Scripting Individual Elements,” provides examples of using
the Marquee element’s object. The following code demonstrates an upward-
scrolling marquee:
<l-- HTML marquee -->
<MARQUEE STYLE="height:15@px" DIRECTION="Up">
<TABLE>
CCAPTION>Stock Ticker</CAPTLON>
<TR><TD>AAAAL/TD><TD>188</TD></TR>
CTRYKTD>ZZFDL/TO><TD>45</TD></TR>
</TABLE>
</MARQUEE>

Data-Binding Enhancements

Internet Explorer 4.0 introduced the capability to bind an HTML page to a
data source on the server and to bind different HTML elements to fields and
data from that data source. When the page is loaded, the data is also sent from
the server and asynchronously appears on the page. At a high level, this allows
client/server Weh pages to be created on which all the data is manipulated by
the client. For example, a search engine can return a list of sites that can all be
filtered and sorted by the client, without having to go back to the server. The d‘ata
is instantly displayed on the page without reloading. The HTML data-binding
enhancements are discussed in detail in Chapter 15, “Data Binding with HTML”

Cascading Style Sheets

CSS is a language with a set of properties for defining the appearance of a
document. The CSS specification (CSS1) defines properties and a declarative
language for associating those properties with elements in the document.
Internet Explorer 3.0 provided initial support for GSS; this support has -be'en
expanded and improved in Internet Explorer 4.0. Understanding CSS is im-
portant for adding dynamic style to a page. (Dynamic styleis the modification
of the style sheet associated with the document through a script.) The W3C Web
site (www.w3.0rg) contains the latest information about the innovations and
features supported by CSS.))
Style sheets are an abstraction in which the style of a document is defined
separately from either the contents or the structure. There are essentially three

16

ONE: Overview of HTML and CSS

Inline

techniques available to the Web author for adding style sheets to a document—
in general, each level of complexity offers greater benefits while increasing the
level of abstraction necessary. The first technique is to use an inline style sheet.
Inline styles are simple: the style is defined directly on the element. The sec-
ond technique is to use a global style sheet to define the style for a document
at the beginning of the document. The third and most abstract and powerful
technique is to use a linked style sheet to define the style separately in another
document.

Inline styles are not much different from traditional HTML. With inline
styles, the appearance of the document cannot be easily changed. The advan-
tage is that the amount of markup is usually significantly reduced, and HTML
can be used more appropriately to provide additional context rather than just
presentation. Using a global style sheet better separates the presentation from
the contents and allows the style and rendering of the document to be quickly
and independently modified. Using a linked style sheet provides the greatest
benefit by allowing the appearance of a set of pages or an entire Web site to
be defined through a single file.

The term cascading in CSS refers to the ability to merge multiple style
sheets to form a single style definition for an element or for the entire docu-
ment. This feature allows the Web site’s style sheet to be merged in a predict-
able way with the style sheet in the document, and even with an inline style.

Styles

An inline style is basically a style sheet for a single instance of an element and
is specified in line in the element’s begin tag. The inline style sheet is defined
using the STYLE attribute, and the data for the attribute is specified using the
style sheet language. For example, the following code makes a paragraph’s
contents larger and centered on a yellow background:

<P STYLE="font-size:120%: text-align:center; background:yellow">
This creates a yellow, centered paragraph with a larger font.
/P>

Inline styles can help you learn the style sheet language or quickly change
asingle instance of an element. However, inline styles are not in keeping with
the true spirit of a structured document and do not work well when you are
trying to change the appearance of a set of elements in a document where
the presentation and contents are not completely separate. To separate the
documents style from its structure, the style sheet should be specified either
in the document’s head or as a separate file that is linked to the document.

PART I1: HTML AND SCRIPTING

Global Style Sheets

The <STYLE> tag is used to add a global style sheet to a document and is usually
contained within the document’s header. Centralizing all the document’s style
in a single location makes it easy to modify how the document is rendered. The
following style sheet defines the rendering for all paragraphs in a document.
To change the rendering of all paragraphs, only this single entry needs to be
modified. If inline styles were used, every paragraph in the document would
need to be changed.

<HTML>
<HEAD>
<STYLE TYPE="text/css">
P {font-size:128%; text-align:center; background:yellow}
</STYLE>
</HEAD>
<BODY>
<P>A11 paragraphs are now larger and centered on a yellow
background.</P>
</BODY>
</HTML>

The TYPE attribute of the <STYLE> tag defines the language for the style
sheet as a MIME type. Internet Explorer 4.0 supports only CSS and therefore
parses only style sheets of type text/css. If a different type is specified that is not
supported by the browser, the contents of the style block are ignored. Omit-
ting the TYPE attribute causes the language to default to text/css. Although
setting the TYPE attribute is optional, doing so is still recommended to more
clearly document your source code.

A selectoris used to associate a style with a particular element. In the pre-
ceding example, a simple selector was created that associated a style with all
paragraphs. More powerful contextual selectors can also be defined; these selec-
tors are introduced in the section “Defining a Style Sheet” later in this chapter.

Linked Style Sheets

A linked style sheet is a style sheet that is supplied in an external file. The
advantage of using a linked style sheet is that all the rules and styles can be
defined and encapsulated in a single file that can be shared across multiple pages
or even across the entire Web site. With a linked style sheet, the rendering of all
the paragraphs on an entire Web site can be changed through a single docu-
ment. A linked style sheet can also improve performance because it is cached
locally on the client, separate from the document, so each document is smaller
and the style information needs to be downloaded only once.

16

17

ONE: Overview of HTML and CSS

To define a linked style sheet, the <LINK> tag is used in the head of the
document:

<HTML>
<HEAD>
<LINK REL="stylesheet” TYPE="text/css" HREF="fancy.css">
</HEAD>
<BODY>

<P>This document uses the styles specified in fancy.css.</P>
</BODY>
</HTML>

The REL attribute is used to specify that the linked file is a style sheet, and the
TYPE attribute specifies the style sheet MIME type. The HREF attribute is a URL
pointing to the external style sheet. The contents of a linked style sheet must
be only contextual rules and style definitions and must not include any HTML.

Defining a Style Sheet

You use the same syntax to create a style sheet within the document that you
use to create a linked style sheet. This section introduces the components of
the CSS language. The CSS language consists of selectors and prasentation rules.
Selectors specify the elements that are associated with a particular rule, and
presentation rules specify how those elements are to be rendered.

CSS provides two types of selectors: simple and contextual. The simple
selector associates an element based on its attributes or type, without regard
to its contextual position within other elements. Contextual selectors are more
powerful in that they can associate a rule with a particular element’s
containership—for example, all tags inside <P> tags.

In its most basic form, a simple selector can be created that associates a
particular element, class of elements, or ID with a specific style. The follow-
ing code demonstrates a number of simple selectors and their presentation rules:

<STYLE TYPE="text/css">
/+ Change all Hls to red. =/
H1 {color:red}

/* Make a1l elements with CLASS="special" boldface. #/
.special {font-weight:bold}

/* Give the element with ID="special™ a yellow background. =/
#special {background:yellow}

/% Give the H1 elements with CLASS="cool" wider Jetter spacing. */
Hl.cool {letter-spacing:2px}
</STYLE>

PART

I: HTML AND SCRIPTING

Selectors can also be grouped in a comma-delimited list, which allows
multiple selectors to share the same declaration:

/* Make all headers share the same rule. =/
H1, H2, H3, H4, H5, H6 {color:red; background:yellow}

Contextual selectors specify a containership hierarchy with which to asso-
ciate the style. The containership is specified by a space-delimited list. For
example, the following code defines a rule for all EM elements contained in
a P element:

P EM {color:blue}

Each selector can reference the CLASS, the ID, or the element type. Here is
a more complex version of a contextual selector:

/* Any element of CLASS="cool™ that is contained within an
LI element of CLASS="special” and further contained within
a UL element will get this style. */
UL LI.special .cool{font-weight:bolder; font-size:120%}
All elements of a contextual selector are case insensitive—for example, .cool is
the same as .cOoL.

Pseudo-Classes
A pseudo-class consists of elements of a single type that meet a certain contex-
tual criterion. For example, Anchor elements that have been visited constitute
a pseudo-class named wvisited, and active anchors and unvisited anchors consti-
tute the active and link pseudo-classes, respectively.

The pseudo-class is specified in a style sheet using a colon () as the
delimiter:

A:link {color:green}

:Tink {color:green}

The second example omits the element name (A) because only anchors have
a link pseudo-class. The pseudo-class can be used in the same manner as the
class or ID specifier and is also case insensitive. CSS1 defines pseudo-elements,
which are similar to pseudo-classes, for the first line and first letter in an element,
but Internet Explorer 4.0 currently supports only the anchor pseudo-classes.

Cascading Order

More than one selector can refer to the same elements. CSS defines a cascad-
ing order that is used to resolve any selector and rule overlaps. The cascading
order merges all the rules applicable to an element by sorting them based on
their specificity. For example, a Strong element contained within an H1 ele-
ment might have presentation rules defined by an H1 selector, by a STRONG

18

ONE: Overview of HTML and CSS

selector, and by a contextual selector for Strong elements inside H1 elements.
The cascading aspect of GSS defines how those three rules will be merged. In
general, a rule for a more specific contextual selector overrides a less specific
one, and rules defined later in the source of the style sheet or document have
higher precedence.

CSS Features

This section provides a sampling of some of the interesting new features of CS$
supported by Internet Explorer 4.0. Some of these features can be used to
replace common layout tricks that are currently performed using tables to align
contents. These features are mostly contained in supplemental working drafts
and proposals, not in the core GSS1 specification.

Text Justification

Internet Explorer 4.0 provides full support for left, right, and full justification
of text. Full justification is new to Internet Explorer 4.0 and allows contents
to be aligned at both the left and right margins. Justification is specified us-
ing the CSS text-align property:

<P STYLE="text-align:justify">
This paragraph is justified using the CSS text-align property.
B>

Custom Bulleted Lists

Using the list-style property, you can override builtin bullets in lists by using
custom bullets as specified by a GIF. Bullets can be specified for the list itself or
for individual list items. This technique degrades well on down-level browsers,
where the list will be displayed using the standard bullet rather than the custom
bullet. The following code demonstrates how o replace the standard bullet:

<HTML>
<HEAD>
CTITLE>Custom Bulleted List</TITLE>
<STYLE TYPE="text/css">
/= Display coel.gif instead of default bullet symbol. */
UL {1ist-style-image:URL(cool.gif)}
</STYLE>
</HEAD>
<BODY>

The bullet is replaced with coot.gif.

</BODY>
<HTML>

PART 1: HTML AND SCRIPTING

Figure 1-7 shows a list using custom bullets.

i £ List Bullets - Microsoft Intemnet Ex.

HTML 4.0 consists of

® Tzble enhancements
@ Form enhancerments
® Script element

Figure 1-7.
A bulleted list using custom bullets.

Creating Sidebars

Sidebars were traditionally created using tables, but with the GSS float prop-
erty, tables are no longer required. Text contents can be assigned a class by
using a or <DIV> tag, and the float property can then be set in a style
rule for that class. Using the float property, you can easily create two types
of sidebars:

H Sidebars that are aligned along the left or right edge and that are
surrounded by text, similar to images.

B Sidebars that appear outside the margins of the flow of the docu-
ment. Creating this type of sidebar requires manipulating the mar-
gins of the element.

The following code demonstrates how to create these two types of sidebars:

<HTML>
<HEAD>
<TITLE>Sidebar Example</TITLE>
<STYLE TYPE="text/css">
BODY {margin-left:15@pt; margin-right:0pt}
.outflow, .inflow {float:left; width:15@pt: color:navy}
.outflow {margin-left:-150pt; width:158pt)
</STYLE>
</HEAD>

20

19

ONE: Overview of HTML and CSS

<BODY>
<H1>Sidebar Example</H1>
<DIV CLASS="inflow">
Notice that the text wraps around this sidebar.
</DIV>
<P>This example demonstrates a sidebar that exists within the
flow of the document. The contents wrap around the sidebar
and continue below it.
/P>
<DIV CLASS="outflow">
This sidebar appears in the Teft margin of the document.
</DIV>
<P>This example demonstrates how to manipulate a document's
margins to force a sidebar to float in the margin. By
adjusting the margins, you can make the sidebar overlay the
flow of the contents.
</P>
</BODY>
</HTML>

Figure 1-8 illustrates the two types of sidebars.

[Sidebar Example - Miesnantt Inkeenel Eapioies

Sidebar Example

Notice that the text wraps This example demonstrates a
around this sidebar. sidebar that exdsts within the flow
ofthe document. The contents wrap arcund the sidebar and
contins below it.

This sidebar appears in the left This example demonstrates how to manipulate a document's
fnargin of the document rmargins to force a sidebar to float in the margin By adjusting the
marging, you can make the sidebar overlay the flow of the contents

Figure 1-8.
A sidebar with text wrapping around it, and a sidebar set in the left margin.

The visibility Property vs. the display Property

The CSS1 specification defines the display property for removing elements
from the presentation of the document. The working draft on CSS$ position-
ing exposes an additional property, visibility, that allows elements to become
transparent in the document’s flow. You use these two properties to achieve

21

PART

1: HTML AND SCRIPTING

22

different presentation effects in the rendering and flow of the document. Set-
ting the visibility property to hidden causes the contents to be rendered entirely
transparently. The contents are still in position in the flow, but they are not
visible. Setting the display property to none causes an element to be ignored by
the rendering engine, as if the element never appeared in the document.

Figure 1-9 shows the effects of the visibility and display properties. The
right column shows the contents either with visibility:hidden or display:none, and
the left column shows the contents fully displayed. With display:none, the con-
tents that are not displayed take up no space in the document’s flow.

vs. Tlisplap + Microsaft inl

B £8 Sew fn fpoie

el Fupinres

visibility vs. display
Using the CSS visibility Property
This is the contents before. This is the contents befors

This is the contents inside.

This is the conteats after. This is the contents after.

Using the CSS display Property
‘This is the contents before This is the contents before

This is the contents inside, This is the contents after

=
4

‘This is the contents after.

I [0 [(s Comeuae

Figure 1-9.
The effects of setting the visibility and display properties.

Controlling the Cursor
The CSS cursor property is used to customize the mouse pointer when the user
moves the mouse over an element. This property is especially useful when
traditional text elements have script associated with them. For example, using
a traditional I-beam cursor with text that the user is supposed to click like a button
will be confusing. Instead, an arrow or other relevant cursor should be used.
The following table lists the settings for the cursor property currently
specified by CSS. Examples of these cursors can be found with the Chapter 1
examples on the companion CD.

20

ONE: Overview of HTML and CSS

Value Description

auto The browser determines which cursor to display
based on the current context.

crosshair Simple crosshair cursor.

default Usually an arrow; the platform-dependent default
Cursor.

hand Hand cursor; used to represent a region on the screen
that is clickable.

text Usually an I-beam; used to indicate editable text.

help Usually a question mark or a balloon; indicates that

help is available for the object under the cursor.
e-Tesize, ne-resize, Various arrow-shaped cursors; used to represent a
nw-resize, n-resize, resize operation—for example, when the user clicks on
Se-resize, Sw-resize, the border of a window to resize the window.
S-Tesize, Ww-resize
move Used to indicate that the element can be moved.
wail Usually a watch or an hourglass; indicates that the
program is busy and the user should wait.

CSS Support for Intrinsic Controls
In Internet Explorer 4.0, the text, button, and marquee controls fully support
style sheets. The Select element has limited support for style sheets. To prevent
problems on earlier browser implementations, intrinsic controls do not inherit
style sheets from parent elements. Instead, style rules must be associated with
specific elements through their element type or their CLASS or ID attributes.

The following simple style sheet formats all Input elements in a class
named fext as green boldface text:
<STYLE TYPE="text/css™>

INPUT.text {color:green; font-weight:bold}

</STYLE>
<INPUT CLASS="text" TYPE=TEXT VALUE="Green Bold Text">
Using the CLASS attribute ensures that only Input elements marked with the
text class are changed. This technique requires a little redundancy between
the TYPE and CLASS attributes because the selector in CSS that associates
elements with styles currently does not recognize arbitrary attributes; CSS is
limited to associating styles with elements based only on the CLASS or ID
attribute or the element type.

23

PART

1: HTML AND SCRIPTING

24

Embedding Custom Fonts

Before Internet Explorer 4.0, Web authors had to use the built-in fonts of the
browser or guess what fonts might be available on the system. Internet Ex-
plorer 4.0 provides the Web author with the ability to specify fonts that are
downloaded with the Web page, ensuring that the page is rendered correctly.
The downloadable font is specified using enhancements to the CSS syntax. The
syntax for specifying a downloadable font in a style sheet is shown here:

@font-face {font-family: fontName; src:url(filename.eot)}

The fontName value is a user-defined name that is later referenced by the foni-
Jamily CSS property. Here is a complete example:
¢STYLE TYPE="text/css">
@font-face {
font-family:demoFont;
src:url(http://somewhere.com/coolFont.eot)}
H1 {font-family:demoFont, Arial, sans-serif}
</STYLE>
<H1>This text is displayed using the downloaded demoFont.</H1>
Once a new font is specified, it can be used as a valid font name for font-
family. The font-family property can take a list of fonts so that if the first font
could not be downloaded, the browser can try a different font or a different
font family until one works. In this example, the last font specified is sans-serif;
which allows the browser to use any sans serif font to render the element.

User Settings

Internet Explorer 4.0 supports the ability to create Web pages that automati-
cally adapt to the look and feel of the user’s system. A set of new color and font
keywords is available for specifying the user’s system settings. A demo page that
displays text formatted with your system settings is included with the Chapter
1 examples on the companion CD.

Table 1-1 lists the set of new color keywords available in Internet Ex-
plorer 4.0. (Existing colors that can be specified for any CSS color attribute
are not listed.) A complete list of named colors as well as a demo page that
displays each of these colors can be found on the companion CD.

Table 1-2 on page 26 lists the font keywords that represent the current user
systemn settings. These values can be used only for the font property; they cannot
be used with the font-family property because the font-family property is already
automatically based on the user’s system setrings.

21

ONE: Overview of HTML and CSS

Color Values

Keyword Description

activeborder Active window border color

activecaption Active window caption color

appuorkspace Background color of multiple document interface
(MDI) applications

background Desktop background color

buttonface Face color for buttons

buttonhighlight Highlight color for buttons

buttonshadow Shadow color for buttons

buttontext Text color on buttons

captiontext Text color in caption, the window sizing box, and
scrollbar arrow buttons

graytext Grayed (disabled) text color; set to ¢if the current
display driver does not support a solid gray color

highlight Color of item(s) selected in a control

highlighttext Text color of item(s) selected in a control

inactiveborder Inactive window border color

inactivecaption Inactive window caption color

inactivecaptiontext Text color in an inactive caption

infobackground Background color for ToolTip

infotext Text color for ToolTip

menit Menu background cotor

menutext Text color in menus

scrolibar Color of scrollbar background

threeddarkshadow Dark shadow color for three-dimensional display
elements

threedface Face color for three-dimensional display elements

threedhighlight Highlight color for three-dimensional display elements

threedlightshadow Light shadow color for three-dimensional display
elements

threedshadow Shadow color for three-dimensional display elements

window Window background color

windowframe ‘Window frame color

windowtext Text color in windows

Table 1-1.

New system color keywords in Internet Explorer 4.0,

25

PART

I: HTML AND SCRIPTING

Font Values
Keyword Description
caption Font used for captioned controls (buttons, drop-down lists,
and so on)
won Font used to label icons
meniy Font used in menus
messagebox Font used in dialog boxes
smallcaption Font used for labeling small controls
statusbar Font used in window status bars

Table 1-2.
New system font keywords in Internet Explorer 4.0.

CSS Positioning

Internet Explorer 4.0 also supports a new CSS draft, GSS-P, that provides greater
control over the positioning of elements. Combining these new extensions with
scripting allows elements to be animated and moved around on the page. This
feature provides the Web author with complete control over the document’s
layout and the ability to control the position of and relationship between ele-
ments. Chapter 12, “Dynamic Positioning,” introduces the syntax for position-
ing elements with CSS as well as the support for scripting positioned elements.

Filters and Transition Effects

Internet Explorer 4.0 also supports a set of filters and transitions that can be
associated with the HTML contents. Filters can be directly applied to text in
the document. Transitions allow presentation-like effects such as dissolves
and slides to be added to the document or to elements in the document. For
example, you can make text shadowed or semitransparent, and you can make
pages fade in or out when the user enters or exits them. This functionality is
supported through the new CS8S filter property.

Examining an HTML DTD

286

HTML s an application of SGML, so it allows the creation of structured docu-
ments. Unfortunately, a recent scan of the Web shows that most Web pages are
not true HTML documents. Browser implementations are partly to blame for
this laxity because they are very lenient when parsing documents and often at-
tempt to decipher the Web author’s intent, rather than reject invalid documents.

With the introduction of Dynamic HTML and CSS, structure takes on
greater importance. Pages that are properly structured will interact better and

22

ONE: Overview of HTML and C8S

be more reliable across multiple browsers. Scripts will run much more predict-
ably because there is no ambiguity in the document’s description. The event
architecture exposed by Dynamic HTML also relies heavily on the document’s
structure.

Understanding how to create a proper HTML document requires the
ability to read a DTD (document type definition). The DTD defines the set of
valid elements, identifies which elements can be properly contained by other
elements, and specifies the valid attributes for each element. This section intro-
duces you to the basics of reading and understanding a DTD; it is not intended
to teach you how to author and create custom DTDs. Explaining all aspects of
an SGML DTD would require an entire book—of which many are available.

Defining an Element

An element in the DTD is defined using the ELEMENT keyword. The element’s
definition specifies whether the element contains anything and whether the
begin and end tags are optional or required. The following code demonstrates
a prototype for defining an element:

<!ELEMENT elementName beginTag endTug contentModel>

The beginTag and endTuag placeholders can be either a hyphen (-) or an 0. A
hyphen indicates that the tag is required, and an O indicates that the tag is
optional. The contentModel placeholder can be EMPTY, which indicates that
the element cannot contain anything, or it can be a specification of the valid
contents for the element. The following code defines a Body element, in which
the begin and end tags are optional:
<!ELEMENT BQGDY O 0 %body.content

-- Begin and end tags are optional, containing body.content. -->
‘While there are many elements in HTML that support optional begin and end
tags, it is still good practice to always explicitly provide them. Doing so helps
make the document much more readable and reusable, especially to those who
do not understand the intricacies of HTML. When these delimiters are not
supplied, the browser will infer their location based on the contents.

The preceding Body element definition specifies that the element can con-
tain %body.content. The % in this specifier indicates that the contents are defined
through a macro (called an entity in SGML). The <!ENTITY % hody.conient...>
definition specilies the elements that can be contained within 2 Body element.
Such macros are useful because they allow contents models to be reused by
multiple elements, making the DTD more compact and easier to use. Contents
models can also be defined directly in line. For example, the code on the fol-
lowing page defines the Map element, which can contain only Area elements.

27

PART

I: HTML AND SCRIPTING

<YELEMENT MAP - - (AREA)*>

The set of valid elements in the contents model is specified using a simple regu-
lar expression language. The * qualifier following the (AREA) tag indicates that
any number of Area elements can be contained within a Map element.

Defining Attributes

Attributes are defined in a manner similar to elements. Attribute lists are
defined using the !ATTLIST keyword. The attributes for the Body element are
defined as follows:

<IATTLIST BODY
%attrs; -- id, class, style, lang, dir, events --
%focus; :
background %URL #IMPLIED -- texture tile for document background --
topmargin;: CDATA #IMPLIED
Teftmargin; CDATA #IMPLIED
%body-color-attrs; -- bgcolor, text, link, vlink, alink --
onlLoad %script #IMPLIED -- intrinsic event --
anUnload %script #IMPLIED -- intrinsic event --
>

The first tag following the !ATTLIST keyword specifies the element the at-
tributes are associated with and is followed by the attribute list. Fach attribute
is either a macro pointing to another list of attributes or a definition of the data
type that indicates whether the attribute is required or implied. A macro can
be used to associate a group of attributes with the clement or even to specify
the data type.

Defining an Entity

28

An entity is a macro that can be reused elsewhere in the DTD. The attrs entity
used by the Body element is shown below along with the style entity. Notice
that the atirs entity points to additional entities: style, i18n (internationaliza-
tion), and events.

<IENTITY % attrs "%style %i18n %events™>
<IENTITY % style

"id D #IMPLIED -- document-wide unique id --
class CDATA #IMPLIED -- comma Tist of class values --
style CDATA #IMPLIED -- associated style info --
title CDATA #IMPLIED -- advisory text --

>

The body.content entity is also defined using other entities:

23

ONE: Overview of HTML and CSS

<VENTITY % body.content “(%heading | %text | %block | ADDRESS)#">

This definition indicates that the body can contain any number of the elements
specified by the %heading, %text, and %block entities and any number of Ad-
dress elements.

One of the most complex elements in HTML is the Table element. Here
is the definition for the Table element:
<IELEMENT table - -

(caption?, (col#|colgroup*), thead?, tfoot?, tbody+)>
<IELEMENT caption - - (%text:)+>

<!ELEMENT thead -0 (tr+)>
<!ELEMENT tfoot -0 (tr+)>
<!ELEMENT tbody 00 (tr+)>
<IELEMENT colgroup - 0 (col*)>
<!ELEMENT cal - 0 EMPTY>
<IELEMENT tr - 0 (th|td)+>
<IELEMENT (th]|td) - 0 %body.content>

The table’s contents can begin with a single optional caption, followed by any
number of Col or ColGroup elements, followed by a single optional THead
element and an optional TFoot element, followed by one or more TBody ele-
ments. The comma delimiter defines the ordering of the elements. Therefore,
the Caption element, if supplied, must be the first element contained within
the table.

It may seem odd that the table does not allow a TR element to exist im-
mediately below the table. This does not mean that aimost all tables on the Web
are invalid. The TBody element is defined as having an optional begin tag and
an optional end tag. Therefore, a TR outside of a THead or TFoot implicitly
falls into the TBody. This relationship is further maintained in the object
model, where the TBody element is always synthesized. A synthesized element
in the object model represents an element that implicitly belongs to all docu-
ments, regardless of whether it is explicitly defined. For example, all documents
are considered to have HTML, Head, and Body elements exposed in the ob-
jectmodel. Synthesized elements in the object model are discussed in greater
detail in Chapter 7, “Document Element Collections.”

This concludes your brief introduction into the world of SGML DTDs. You
should now be able to read an HTML DTD and create valid HTML documents.
For more information about HTML and to obtain valid DTDs for all veisions
of HTML, see the W3C Web site (www.w3.org). To see the DTD used in Inter-
net Explorer 4.0, see the Microsoft Web site (www.microsofi.comy).

28

"'.»!ﬂ?

e
it
] T

24

Fundamentals of
HTML Scripting

The Dynamic HTML object model has evolved from the object models that
were included in Microsoft Internet Explorer 3.0 and Netscape Navigator 3.0.
This chapter provides a historical perspective, comparing the old object models
with the one provided by Dynamic HTML and demonstrating the level of
support provided by the different versions of the browsers.

Scripting languages have evolved alongside the HTML object models. By
embedding scripts in your documents, you can access the HTML ohjects to
manipulate the elements on your Web pages. This chapter introduces this
powerful programming technique.

The following topics are covered in this chapter:

¥ Dynamic HTML object hierarchy The Dynamic HTML object hier-
archy is the API for creating live and interactive pages. The ob-
jects in the hierarchy represent the browser and the elements of
the HTML page. In this section, the objcct models supported by
Internet Explorer 3.0 and Netscape Navigator 3.0 and 4.0 are dis-
cussed and compared to the Dynamic HTML object model sup-
ported by Internet Explorer 4.0.

B Authoring scripts The Dynamic HTML object model is accessed
by writing scripts and associating them with the HTML document.
A script is associated with the HTMI. document by using a Script
element, which contains executable code in a specified language.
The Script element can also be used to associate external script li-
braries with the document.

31

PART 1: HTML AND SCRIPTING

B Choosing a scripting language: JavaScript vs. VBScript The two
primary programming languages used on the Web are JavaScript
and VBScript. Both languages can fully manipulate the Dynamic
HTML objects. This section helps you determine which language to
use for specific circumstances.

Advanced JavaScript techniques This section discusses some of
the JavaScript techniques used throughout this book. It is not meant
to provide a language tutorial, but rather to familiarize you with
some of the interesting features of the JavaScript language and
their relationship to Dynamic HTML.

Scripting and Web security Security is a widespread concern on
the Web. A programming language imposes limitations in order to
ensure the clients’ security, and a programmer must understand
these limitations. This section introduces the security model for Dy-
namic HTML. Additional security issues are addressed throughout
this book.

NOTE: This chapter uses elements of the Dynamic HTML object
model to demonstrate various techniques. For each such use, you
will find a reference to the chapter in which the feature is discussed
in detail.

Dynamic HTML Object Hierarchy

32

A minimal HTML object model was first introduced as part of Netscape
Navigator 2.0's JavaScript implementation. The original implementation ex-
posed only a relatively small number of document aspects to manipulation by
a scripting language. However, it did lay the groundwork for the object mod-
els that followed.

Internet Explorer 3.0 separated the original object model for describing
the document from the language implementation. This laid the foundation for
the language-independence requirement of Dynamic HTML. Internet Ex-
plorer 4.0 built on this object model to completely expose all aspects of the
document.

Figure 2-1 shows the object model supported by Internet Explorer 4.0.

25

TWO:

Fundamentals of HTML Scripting

applets

selection

styleSheets

Figure 2-1.
The Internet Explorer 4.0 object model.

33

PART 1: HTML AND SCRIPTING

34

The Evolution of the Dynamic HTML Hierarchy

The following lists outline the evolution of object support through the
different browsers.

Internet Explorer 3.0 supports the following objects:

B anchors W links

B document W location

B document. frames W navigator

W clements B window

B forms B window.frames
B history

Netscape Navigator 3.0 supports the same set of objects as Internet
Explorer 3.0 except for document. frames and adds the following objects:

B applets B images

Internet Explorer 4.0 supports the same set of objects as Internet Ex-
plorer 3.0 and Netscape Navigator 3.0 and adds the following ohjects:

u all B screen

B body W scripts

B clientInformation W selection
W cuent B styleSheets

4 These lists are useful when you are comparing the level of func-
tionality desired with the specified set of browsers. For Internet Ex-
plorer 3.0 compatibility, either your scripts must be limited to Internet
Explorer 3.0 support or your code must conditionally check the version
and brand of the browser to ensure graceful degradation.

) The window object is the top-level object in the HTML object model. The
window ohject is the frame for the document object. All interactions with the
docs‘.unent occur through the window. The window object also exposes infor-
mation about the current document’s URL, previous URLS the client has vis-
ited, and the current document’s type.

26

TWO: Fundamentals of HTML Scripting

The window can contain different types of documents depending on the
MIME type. There are two types of HTML documents: a traditional HTML
document and an HTMI. frameset. For both types, the contents of the docu-
ment are exposed through the document object. Because framesets divide the
screen into multiple frames, each individual frame is also exposed through the
window’s frames collection. Fach frave in this collection actually represents
another window object—and potentially another document, or another frames
collection, and so on. Framesets are discussed in detail in Chapter 5, “Window
and Frame Management.”

Dynamic HTML Evolution (or Revolution)
Netscape Navigator 2.0 and Internet Explorer 3.0 introduced basic object
models for HTML documents. However, the level of support was mostly lim-
ited to conditional logic during page loading and form validation. No changes
were permitted that would alter the shape or rendering of the document.
Internet Explorer 4.0 has overcome this limitation by providing an object
model that exposes the entire document.

Rather than define an entirely new object model, developers designed the
Dynamic HTML object model as a superset of the existing model. In addition,
the Dynamic HTML object model is consistent with current programming
paradigms, allowing developers to leverage existing knowledge. If you are
familiar with scripting for Internet Explorer 3.0 or Netscape Navigator 3.0, you
already have the basis for learning Dynamic HTML.

Support for Older Browsers

While graceful degradation is intrinsic to HTML, it is not possible with script-
ing languages. When a parser does not recognize an HTML tag, it is supposed
to ignore the tag. Asaresult, the presentation of the corresponding element’s
contents may be slightly different than intended. [gnoring statements is not
feasible for scripts—ignoring a line in a script can be fatal to the rest of the
code, as each line of code may create or change the existing state of the docu-
ment. Therefore, when you are authoring scripts for multiple browsers and
versions, degradation is not something that you can ignore; instead, you must
carefully plan for it in the engineering and design of your page.

Dynamic HTML intrinsically provides power and flexibility not available
in earlier versions of HTML. You can author your pages to use many of Dynamic
HTML features and still work well across all browsers. Throughout this book,
techniques are provided to help you write code that can degrade gracefully.

35

PART 1: HTML AND SCRIPTING

In some cases, the code is merely providing a visual cue or effect, and degra-
dation is usually trivial. In other cases, depending on the purpose of the script,
the only solution is to create an alternative page that prevides similar function-
ality in a different manner. In general, the more dynamic a page is, the more
forethought is required to ensure that the page runs on down-level (less ca-
pable) browsers. Figure 2-2 shows a page enhanced for Dynamic HTML run-
ning in two browsers: Internet Explorer 3.0 on the left, and Internet
Explorer 4.0 on the right. The Internet Explorer 8.0 version displays an ex-
panded, flat table of contents pane, while the Internet Explorer 4.0 version
contains an outline and a fancy table of contents.

Contenrs Inenre Cxplones
B Farwine

* Overview of HTML and CSS ‘B0verview of HTML and CSS
HTML 40
HTML 40 i CSS Features
CSS Features l ;i,si"sm:“’"&
P Gl Pandamentals of HTML
o . Seripting
S8 Posttioning i i JTML Evesd Medel
System Settings - (EThe Browser Window
B Windaw and Frame Management
Seroling Wiadow
+ Fundamentals of HTML Seripting %"n i:‘fﬁ"“
anager
Suppartad Langneges ?’m': g"mhy
rameset Browser
Naming Conventions

Figure 2-2.
A Dynamic HTML page as displayed by Tnternet Explorer 3.0 (on the left)
and Internet Explorer 4.0.

Remember too that there may be bugs and inconsistencies in the existing
implementations. Therefore, even if a page designed to run across browsers and
Yersions uses a common set of objects and members (propérties and methods),
it should still be tested against all targeted platforms,

Dynamic Reflow

36

The ability to access and change any aspect of a page demonstrates one of the
key innovations enabled by Dynamic HTML. Past browsers, while allowing
some document changes, were not capable of causing the document to reflow
itself without complicated scripts that reconstructed entirely new documents.
Dynamic HTML breaks free from these restrictions. Whenever a script manipu-
lates and changes an attribute of an element or a style sheet or modifies the

27

TWO: Fundamentals of HTML Seripting

contents, the document intelligently recalculates and repaints the page with
the new information.

Dynamic HTML was designed to take advantage of the existing HTML
and CSS (Cascading Style Sheets) recommendations and working drafts.
Rather than require Web developers to learn a new model for representing a
page, the Dynamic HTML object model exposes a reflection of the document
to the scripting language. For example, a script can change the CLASS at-
tribute of any HTML element. In the scripting language, the CLASS attribute,
like all attributes, is exposed as a property of the element—in this case, the
className property. Modifying any attribute is internally consistent with the
user opening the file in an editor and changing the attribute in the source
file. This model ensures that as HTML and CSS evolve, the object model natu-
rally follows.

Authoring Scripts

Scripts are not the only way to access the Dynamic HTML object model; the
Dynamic HTML object model can be accessed in the following three ways:

® Through scripts within or referenced by an HTML page. These
scripts can access the contents of the current document or docu-
ments from the same domain in other frames or windows.

® Through embedded applets and controls that reside on the page.

® Through hosts that sit outside or alongside the browser. For ex-
ample, the Find dialog box in Internet Explorer 4.0 was created us-
ing Dynamic HTML.

All three methods manipulate Dynamic HTML in similar ways. This book
concentrates on the first approach, accessing the object model through scripts
that are associated with an HTML document. However, all the concepts and tech-
niques presented in this book can also be applied to the other two methods.

The Script Element

Scripts behind the page can be associated with the document using one of
three techniques. The most common technique is to enclose code within a
Script element. (The other two techniques are to put the code in a separate
file and reference it with a <SGRIPT> tag or to put the code in an event at-
tribute in another tag.) The Script element is a container for code written in
aspecific programming language. A Script element can either contain the code

37

PART I: HTML AND SCRIPTING

38

in line inside the document or refer to an external file. Scripts contained within
a Script element can be associated with an element through code, through spe-
cial attributes on the Script element, or through lang uage-dependent mecha-
nisms. Individual elements can have scripts associated directly with them
through event attributes exposed in the element itself.

The syntax for the Script element is as follows:

<SCRIPT LANGUAGE="languageNams" [TYPE="MIMEtype']
[SRC="aptionalFile"] [DEFER]>
Script statements
</SCRIPT>

The scripting language is specified using the LANGUAGE attribute. The
following code demonstrates how to specify a script for both VBScript and
JavaScript:
<SCRIPT LANGUAGE="VBScript”>

' VBScript code
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
/1 JavaScripi code
</SCRIPT>

NOTE: InVBScript, comments are denoted by an apostrophe (');
in JavaScript, comments are denoted by either a // (which makes the
rest of the line a comment) or /* contents */ (which makes contents
a comment, even if it spans multiple lines). The scripting engine ig-
nores all comment text.

For historical reasons, omitting a LANGUAGE attribute causes the script
to be parsed as JavaScript. Rather than rely on the default language, you
should always specify the LANGUAGE attribute in order to document the
script’s context.

NOTE: The Script element’s LANGUAGE attribute is deprecated
in HTML 4.0 in favor of using the TYPE attribute. The TYPE at-
tribute takes a MIME type for the language: for JavaScript you use
text/JavaScript, and for VBScript you use text/ VBSeript. However, be-
cause down-level browsers will not recognize the TYPE attribute, we
recommend that you continue to use LANGUAGF or use both LAN-
GUAGE and TYPE. Note that specifying a TYPE attribute, when
recognized, overrides any LANGUAGE setting.

28

TWO: Fundamentals of HTML Scripting

‘With the introduction of Netscape Navigator 3.0, Netscape started to
append a version number to the JavaScript language string. Therefore, to write
code that executes only in Netscape Navigator 8.0 and Microsoft Internet
Explorer 4.0 and later, set the LANGUAGE attribute to JavaSeriptLl. This
technique works because if the browser does not recognize the specified lan-
guage, the code is not executed and the script block is skipped. For code that
demonstrates how to determine what scripting languages the client supports
without having to check the browser version or type, see the section “Multiple
Scripting Languages” later in this chapter.

Scripts contained within a Script element can execute code in two con-
texts: during the parsing of the page and as the result of an event. The follow-
ing script demonstrates both types of code. Code that is included directly in
the Script element but not contained within a function is executed immediately
when it is parsed. Code that is contained within a function can execute only
when the function is called, either directly or because of an event. Events are
notifications that occur when the user interacts with the page or when the state
of the document changes—for example, when the user clicks on the document,
or when the document is loaded. The event model is introduced in detail in
Chapter 3, “Dynamic HTML Event Model”

<HTML>
<HEAD>
<TITLE>Execution of Code</TITLE>
<SCRIPT LANGUAGE="JavaScript">
/7 The following alert occurs while the page is being loaded.
alert('Hello. World!');

function helloWorld() {
// This code executes only when the helloWorld function
// is called.
alert{'Hello, World Too!");

}
</SCRIPT>
</HEAD>
</HTML>

Script Libraries

Scripts may be contained in an external file and associated with any number
of HTML documents. This arrangement serves several purposes, the most
apparent of which is that it allows generic script libraries to be written that are
shared by multiple pages. Depending on the browser, these script pages can

39

PART 1: HTML AND SCRIPTING

become cached, thus increasing performance, as common functionality does
not have to be written into every page. Another purpose depends on how pages
are authored. If there are separate authors for scripts and contents, both do
not need access to the same file simultaneously. Instead, the script author can
write the scripts in one file, while the contents author writes the contents in
another file. This is consistent with the separation of presentation and contents
already available with style sheets.

Referencing of an external script is done using the SRC attribute, as in
this example:

<SCRIPT LANGUAGE="JavaScript" SRC="genericFile.js">
/+ Optionally write code here for browsers that don't
support the SRC attribute. */
// The closing SCRIPT tag is always required.
</SCRIPT>

Even when the S8RC attribute is supplied, the <SCRIPT> tag must still have an
end tag. Browsers that support the SRC attribute ignore the contents of the
Script element. Browsers that do not recognize the SRC attribute execute the
contents of the Script element as the code.

External script file support is available only in Netscape Navigator 3.0 and
Internet Explorer 4.0 and later. Therefore, if you use external script files, take
care to make provisions for the prior versions of these browsers.

Immediately Executed Code

As mentioned, Dynamic HTML lets you create code that can execute during
the parsing of a page. This code is written outside the scope of any event han-
dler, subroutine, or function. Such code can serve two main purposes:

B Adding properties to the window object and initializing their state

® Outputting contents into the document’s stream

The first purpose is similar to declaring what might normally be considered
global variables. In all current scripting languages, variables that are scoped to

the window object are added directly to the window object as properties. For
example, here the variable x is added as a property to the window:

<SCRIPT LANGUAGE="JavaScripi™>

var x = @; // Create property and initialize to 6.
alert{window.x); // Output 8, the value of x.
</SCRIPT>

40

29

TWO: Fundamentals of HTML Scripting

To better understand the preceding code, consider the following, more
elaborate example:

<SCRIPT LANGUAGE="JavaScript">
// Create property x and initialize to 1@.
var x = 10;

function fool) {
// This code is not executed unless explicitly called.
/* Create an instance variable, y, that Tives only as
long as the function is being executed. */

var y = @;)
alert(x); // Output 1@; x is a property of the window.

}

// €all foo while loading the page.

foo():)

window.foo(); // €all the foo function again because the foo

// function is added to the window.
</SCRIPT>

This code demonstrates that immediately executed code and functions can be
interspersed. Code that calls a function while the page is loading must have
the function declared in advance.)
The second purpose of code that executes when the page loads is to write
contents into the document. This is done using the document object’s write
method. Here is a simple program that writes Hello, World! inte the HTML

document:

<HTML>
<HEAD>
<TITLE>He1lo, World!</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript™>
// ¥rite the string “Hello, World!™ into the document.
document.write("<H1>Hello, World!</H1>")
</SCRIPT>
</BODY>
</HTML>

The write method can be called only during the loading of the page, to
insert contents into the parsing of the document. To manipulate and ch‘ange
the contents once the page is loaded, you must use a different technique.

4

PART

I: HTML AND SCRIPTING

Dynamically adding contents to the document during the loading process is
discussed in Chapter 6, “The HTML Document,” and manipulating the con-
tents is discussed in Chapter 13, “Dynamic Contents”

Locations of Scripts in the Document

42

A document may contain any number of Script elements. A Script element can
live in either the head or the body of the document. For most purposes, the
location of the script is not important in relation to the design of the page.
However, scripts that perform initialization are usually more convenient and
more readable when placed in the document’s head.

The location of a Script element is more important if the element is ac-
tually writing contents into the stream or is referencing an element in the docu-
ment. Writing into the stream is done using the write or writeln method of the
document object, as in the following example:

<HTML>
<SCRIPT LANGUAGE="JavaScript">
// Generate an entire document from this script.
document.write("<HEAD>XTITLE>My Document</TITLE></HEAD>"):
document.write("<BODY><H1>This is my page.</H1></BODY>"):
</SCRIPT>
</HTML>
This code creates and renders the following HTML:
<HTML>
<HEAD>
<TITLE>My Document</TITLE>
</HEAD>
<BODY>
<H1>This is my page.</H1>
</BODY>
</HTML>

If you are writing head contents, it is important to put the script within
the head. For example, a script placed in the middle of the page should not
output HTML text that sets the document’s title. Any time the write methods
are called, the contents are placed into the stream at the current location. For
example, inserting a <TTTLE> tag in the wrong place may violate the HTML
DTD (document type definition) and have unpredictable results.

The use of the write methods is discussed in detail in Chapter 6, “The
HTML Document.” Generating pages using document.write is not always an
ideal technique because it masks the contents from editing and indexing tools,

30

TWO: Fundamentals of HTML Scripting

which might not be able to interpret scripts. Without executing the script
behind the page, the actual contents are unknown.

Object Availability

Scripts that execute during the parsing of the page and that reference elements
on the page need to be positioned carefully. For these scripts, only the elements
that have been previously loaded are available for scripting because no for-
ward declarations of elements are possible. The same holds true for any func-
tions or variables that may be called—they must always be specified prior to
the call.

Attempting to access anything in the HTML source code that follows the
Script element during immediately executing code will generate an error. For
example, scripts that execute in the head of the document while the page is
downloading cannot reference any of the forms or other elements that exist
in the body.

This rule is true only for scripts that execute during the downloading of
a page. Scripts that execute in response to events are not required to follow
the referenced element. Once the document is entirely parsed, all aspects of
the document are considered fully accessible. However, it is possible for event
handlers to be called before the document is entirely loaded. Before referenc-
ing an element that might not yet be loaded, you should test for the existence
of the element:

<SCRIPT FOR="document” EVENT="onclick{)" LANGUAGE="JavaScript">
/7 This code executes whenever the user clicks in the document.

// ¥Verify that the element exists.
if (null 1= document.all.myElement) {
// Do something.
)]
alse
alert("The document is not entirely loaded yet!"):
</SCRIPT>

Event binding is discussed in Chapter 3, “Dynamic HTML Event Model”

Deferring Script Execution

Internet Explorer 4.0 can provide improved performance for scripts that do
not contain immediately executed code. If the Script element contains only
function declarations, supplying the DEFER attribute in the <SCRIPT> tag
notifies the browser that it does not have to wait for the entire script to be

43

=]

PART

1: HTML AND SCRIPTING

parsed and interpreted. Instead, the browser can continue to load and display
the page. This attribute should be used only when the Script element contains
nothing but function declarations and when any subsequent scripts that are
immediately executed do not call these functions. Immediately executed code
defined within a deferred Script element can react unpredictably. When used
appropriately, the DEFER attribute has no adverse effect on browsers that do
not recognize it. Those browsers ignore the attribute and perform the tradi-
tional blocking until the script is parsed.

Multiple Scripting Languages

44

Similar to its ability to specify multiple Script elements, a single document can
also contain and execute multiple scripting languages. All currently available
scripting languages will execute on the page, assuming that the browser sup-
ports them. For example, using Internet Explorer, a page can be authored
containing both JavaScript and VBScript code. Furthermore, it is possible for
one language to call the functions defined by another language, as demon-
strated in the following code. Calling a function scripted in another language
is possible because all functions and variables are added as methods and prop-
erties of the window object.

<SCRIPT LANGUAGE="VBScript">
' Simple subroutine that pops up a2 message box
sub MyATert(str)
msgBox(str)
end sub
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript™>
/7 Call the VBScript subroutine, MyAlert, defined above.
MyAlert(™"Hello, Worldi"™);
window.MyAlert("MyAlert is a method of the window object.”);
</SCRIPT>

The fact that multiple languages can be used together makes possible an
easy technique to determine what languages the browser supports. The follow-
ing code demonstrates this technique:

<SCRIPT LANGUAGE="JavaScriptl.l">
<l--
window.jsil = true; // Set flag for JavaScript 1.1.
1 esE)
</SCRIPT>

31

TWO: Fundamentals of HTML Scripting

<SCRIPT LANGUAGE="VBScript">

<l--
vbSupport = True ' Set flag for VBScript.
t-
</SCRIPT
<SCRIPT LANGUAGE="JavaScript">
<1-- --><H1>Your browser does not support scripting.</H1>
<t--

/# In this example, JavaScript is considered the lowest common
denominator. This example can be modified to use a different
language for the final testing. #/

document.write("JavaScript is supported.
");

if (null != window.jsll)
document.write("JavaScript 1.1 is supported.
");

if (null != window.vbSupport)
document.write("VBScript is supported.
");

-
</SCRIPT>

Hiding Scripts from Down-Level Browsers

Unless you take some precautions, browsers that do not support scripting will
render the script code as part of the document’s contents. This occurs because
the down-level browser will ignore the <SCRIPT> tag and process the contents
as HTML text. This is consistent with how HTML handles unrecognized tags
and is necessary in the evolution of HTML. To hide scripts from a down-level
browser, create an HTML comment that wraps the code:

<SCRIPT LANGUAGE="VBScript">

Qll==

' V¥BScript code

* The next Tine ends the HTML comment.
v
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
G =a
// JdavaScript code

11 -->
</SCRIPT>

Both languages interpret the opening HTML string for creating a com-
ment, <! -, as the beginning of a single-line comment, so the line is ignored
by the language parser. The close comment must be preceded by the language-

45

PART

I: HTML AND SCRIPTING

46

specific comment delineator (' in VBScript, // in JavaScript). This causes all
code within the Script element to be treated as a comment and not rendered
by a down-level browser.

When using the commenting scheme, be careful not to output the open-
ing or closing comment delimiter in any strings anywhere in the code. If out-
putting the string is necessary, be sure to break it into multiple parts:

<SCRIPT LANGUAGE="JavaScript™>

<t--
/* The close comment tag being written into the document
is broken into two strings. */
document.write(”<" + "1-- This is a comment to write into the " +
“stream. --" + ">");
rho-->
</SCRIPT>

Using HTML comment tags inside a script hides the script from down-
level browsers, but it does nothing to help warn the user that the page relies
on scripting. Therefore, to supply text to a browser that does not support script-
ing, a special <NOSCRIPT> tag is exposed. The contents of a NoScript element
are ignored by browsers that support scripting.
<l-- Contents for browsers without scripting support -->
<NOSCRIPT>

<HI>This page requires scripting support.</H1>
<H2>Please obtain the latest version of Internet Explorer

to properly view this page.</H2>
</NOSCRIPT>

This technique works in a down-level browser because the down-level
browser ignores the <NOSCRIPT> tag just as it ignores the <SCRIPT> tag and
outputs the contents. A scriptable browser knows that when it encounters a
<NOSCRIPT> tag, it should not render anything until after the </ NOSCRIPT>
tag ends the element.

The user of a scriptable browser can disable scripting support. When
scripting support is disabled, the browser acts like a down-level browser and
outputs the NoScript element’s contents.

Internet Explorer 4.0 allows you to disable scripts through its security
settings. Internet Explorer 4.0 has a powerful security model that can be cus-
tomized for different “zones” of Web content; each zone represents the entire
Web, the intranet, or a particular set of pages. The following steps disable script-
ing for a particular zone:

32

TWO: Fundamentals of HTML Scripting

1. From the View menu, choose Internet Options to display an Internet
Options dialog box.

2. Select the Security tab from the list of pages.

3. Select the zone to customize. Select Custom, and click the Settings
button.

4. In the Scripting category, select the Disable option for Active
Scripting.
5. Click OK or Apply to save these settings.

Netscape Navigator 2.0 does not support the <NOSCRIPT> tag. You must
use another technique to warn the user that the page requires scripting. This
involves writing a trivial script in the document that uses an enhancement of
the commenting trick to force output on down-level clients:

<l-- Alternative technique for providing down-level contents -->
<SCRIPT LANGUAGE="JavaScript™>
¢l-- -->Your browser fails to recognize scripts. <I--
// Write your code.
2>
</SCRIPT>

The commenting technique has the following disadvantage: when you
disable scripts, the contents of the Script element are ignored, and the contents
of the NoScript element are displayed. Therefore, the text for the comment
is not displayed when scripting is disabled.

‘While the NoScript technique covers browsers that do not support script-
ing, it does nothing to differentiate vendor implementations. Different vendors
will be implementing different versions of Dynamic HTML as it evolves. A script
may or may not run on different browsers. There is unfortunately no easy
solution to this problem. Some Web authors may choose to create multiple
pages and send different pages based on the client’s identity. This redirection
can be done on the client. An example of this redirection is provided in the
following section.

NOTE: Inorder to highlight the features of Dynamic HTML they
demonstrate, most code samples in this book will not include any
provisions for down-level browsers.

47

=

PART I: HTML AND SCRIPTING

Client-Side Redirection

One method for handling different software versions is to redirect the user to
different pages based on the client’s browser, as shown in the following code.
Glzcnt-side redirection oceurs when a script behind the page conditionally
switches the browser 1o a different document, By conditionally testing the
version of the browser, an alternative version of the page can be loaded. When
thig tc:chnique is used, the base page should be the page that targets your
most important audience because the redirection will have performance
implications. When the redirection occurs, it will result in two pages being
downloaded.

<SCRIPT LANGUAGE:"JBVBSCP'ipt">
var M§ = navigator.appVersion.indexOf("MSIE");
// Check whether this is IE4.
window.isIE4 = (MS > 9) &&
(par‘seInt(navigator.appVersion.substring(MS + 5, MS + 6)) >= 4);
if (1isIE4) // If not IE4, get non-dynamic page. '
window.1ocation="down1eve'lpage.htm";
</SCRIPT>

To avoid the performance implications of client-side redirection, you can
perform the check on the server-side and send down only the correct page.
However, depending on the server’s privileges, this may not be a viable option.

Choosing a Scripting
Language: JavaScript vs. VBScript

As mentioned, the Dynamic HTML object model is language neutral and can
be scripted in any available programming language. Therefore, the choice of
language depends on the preference of the Web author and the intended
audience for the page.

T':Il’.‘ﬂ_' are currently two primary languages for scripting pages on the Web:
JavaScript and VBScript. A committee of the ECMA (European Computer
Manufacturers Association), with representatives from Netscape, Microsoft, and
other vendors, has approved a standardization of the JavaScript language.
Mlcrosoft’s]Script implementation in Internet Explorer 4.0 is fully compliant
with the new standard.

For creating Web pages on the Internet for which maximum exposure is
necessary, JavaScript provides the most potential, as it is currently supported
!’}’ hoth Netscape’s and Microsoft's browsers, (This also assumes that your code
is targeting the set of features shared across the different implementations.)

48

33

TWO: Fundamentals of HTML Scripting

In addition, the syntax for controlling program flow in JavaScript is very simi-
lar to the syntax in Java and G++, languages familiar to many Web authors.

Although both Microsoft and Netscape support JavaScript, the compa-
nies are at different stages of implementing the features in Dynamic HTML.
Therefore, if you want cross-browser interoperability, exercise caution when
you are authoring dynamic pages. Throughout this book, techniques will be
offered to help you construct intelligent and interoperable pages.

For intranets in which only one type of browser is used, the scripting
language becomes a secondary issue. In this case, the language choice should
be based on what browser is the standard for the company and what knowledge
the Web developers have. If the Web development staff is widely versed in
Microsoft Visual Basic, and Microsoft Internet Explorer is the browser of choice,
it may be cheaper to develop in VBScript than to retrain and use JavaScript.

This Book Uses JavaScript
This book separates the concept of the object model from the programming
language. However, without a programming language Dynamic HTML would
need to be presented very abstractly, so for the sake of clarity this book uses
the JavaScript language for all examples.

Certain JavaScript objects are not a part of the Dynamic HTML object
model and are specific to the language. For example, the date, math, number,
and other data types are all specific to the language. It is up to the language
implementation to expose compatible data types. For example, VBScript ex-
poses a string data type, but in VBScript the string is not an object with its own
interface. Instead, string manipulations are performed separately using func-
tions. The following code compares a string manipulation of the title property
using VBScript and JavaScript:

<!-- Simple comparison between VBScript and JavaScript
string functions -->
<SCRIPT LANGUAGE="YBScript™>
dim s ' Declare the string variable.
s = document.title ' Initialize.
msgBox(len(s)) ' Qutput the length of s.
msgBox(left(s, 1)) ' Output the first character of s.
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
var s = document.title; // Can initialize at declaration time.
alert(s.length); // Output the length of s.
alert(s.charAt(@)); // Qutput the first character of s.
</SCRIPT>

49

PART

1: HTML AND SCRIPTING

Advanced JavaScript Techniques

This section introduces some of the advanced JavaScript concepts used through-
out this book. This section is not meant to teach JavaScript, but rather to en-
sure familiarity with some of the more powerful but less common aspects of
the language.

Adding Properties to Objects

50

Arrays and objects in JavaScript provide two techniques for accessing their
contents: directly referencing the contents as a property using dot (.) notation,
or referencing an index into the array using bracket ([index]) notation. An
index into a JavaScript array can be a string value that represents the property
name. Dot notation allows direct access to a property when the property name
is known in advance. When the property being accessed needs to be a variable,
it can be accessed late-bound using a string identifier:

<SCRIPT LANGUAGE="JavaScript">
var prop = "title":
alert(document.title); // Access the title using dot notation.
alert{document[propl); // Access the property referenced by
// the prop variable.

// Arrays and built-in objects work alike.
var ar = new Array;
ar.myProperty = "Demo";
alert(ar.myProperty):
alert(ar["myProperty"]);

</SCRIPT>

Objects in JavaScript are unique in their ability to automatically expand.
You can add a new property to an object simply by assigning it a value. This
feature comes at the expense of making debugging more difficult.
JavaScript is case sensitive, as demonstrated here:

<SCRIPT LANGUAGE="JavaScript">

alert(decument.title): // Output the title of the document.

document.TitTe = "Not the real title"; // Add a Title property.

alert(document.Title); // Output the new Title property.
</SCRIPT>

In this example, the two alert statements are actually different. Furthermore,
the second line generates no error; instead, Title is added as a property of
document. Therefore, you must be careful when writing JavaScript code. Debug-
ging a large amount of script may be quite difficult.

34

TWO: Fundamentals of HTML Scripting

NOTE: Internet Explorer 3.0 did not enforce these case-sensitivity
rules. Internet Explorer 4.0 and all Netscape Navigator releases
enforce strict case sensitivity.

To help alleviate this debugging problem, Internet Explorer 4.0 exposes
a property on the document, the expando property, that can be used to disable
the implicit property addition feature of JavaScript, as shown in this code:

<SCRIPT LANGUAGE="JavaScript">
/# Internet Explorer 4.8 supports the ability tc turn off the
associative array nature of built-in objects. #/
document.expando = false:
document.Title = "Not the real title"; // Error--no such property
</SCRIPT>

The expando property does not disable the explicit addition of properties to the
window through variable declarations, but it does disable the implicit addition,
as in the following example:

<SCRIPT LANGUAGE="JavaScript">
document.expando = false;

var x = @; /! No error

alert(window.x); // x explicitly added.

window.y = 18; // Error--no y property
</SCRIPT>

NOTE: Internet Explorer 4.0 is the first browser that supports the
expandoe property to control the associative array characteristic of
objects. Netscape Navigator 4.0 and earlier versions of Internet
Explorer do not recognize this property. When the expando property
is not recognized, referencing it will automatically cause it to be
added to the document object.

Because any object may contain any number of properties, JavaScript
exposes a convenient operator for accessing them. With a for...in loop, you can
execute a statement for each exposed property in an object without knowing
what the properties are. For example, the following code outputs all the prop-
erties exposed on the window object:
<SCRIPT LANGUAGE="JavaScript™>

// Display an alert with all the properties of the window and
// their values,

var sProps = "Window Properties\n";
for (praps in window)

sProps += props + “: " + window[props] + "\n";
alert(sProps);

» </SCRIPT>

51

PART 1: HTML AND SCRIPTING

Function Pointers

Any function can be assigned to and manipulated as a property. This fact al-
lows a function to be dynamically added as a method that can be invoked or
to be dynamically associated with an event handler.

Function pointers are extremely powerful in that they let you reuse func-
tions as methods of an object, as in this example:

<SCRIPT LANGUAGE="JavaScript">
// Define a simple function named test.
function test() {
alert("Function has been invoked.™):

}

// Assign the onclick handler to be test.
// This causes the function test to be called when the document
// is clicked.
document.onclick = test;
</SCRIPT>

In addition, when a function is called, it has access to an arguments array
containing any parameters that were passed into the function. JavaScript au-
tomatically populates the arguments array at the time the function is invoked.
The following code demonstrates how a function can access the arguments array:

<SCRIPT LANGUAGE="JavaScript">
function testArgs() (

/* A function in JavaScript can access an arguments array.
This array contains all parameters that were passed into the
function. #/

alert(arguments.length + " arguments”): // Qutput the number of

// arguments.

// Output each argument.

for (var i = 8; i < arguments.length; i++)
alert(“argument " + i + ™ - " + arguments[il);

}
testArgs(l, 2, 3, 4); // Call testArgs with four arguments.
</SCRIPT>

The arguments array allows a function to be written to which a variable
number of arguments can be passed. Based on the arguments that were passed,
different actions can occur. A simple demonstration of where to use this ca-
pability is a summation routine:

<SCRIPT LANGUAGE="JavaScript">
function Sum() {
// Sum up all the arguments passed in and return the result.

52

35

TWO: Fundamentals of HTML Scripting

var intSum = @;

for (var intloop = @; intloop < arguments.length; intLoop++)
intSum += arguments[intLoop];

return intSum;

alert(Sum(1, 1, 1, 2)}; // Add the four values.
</SCRIPT>

Functions can also be dynamically created using the new operator. The
new operator allows a new function routine to be constructed on the fly. A
function is created as follows:

var functionname = new Function{args1, ..., argsn, body);

Any number of args may be supplied, including 0. The last argument to the
Function constructor is always the code to execute. For example, the follow-
ing code creates a simple function that returns the difference between two
numbers:

var Difference = new Function("x","y".,"return x - y:");

This example is contrived, as it would be simpler to either perform the opera-
tion directly or encapsulate the code in a real function. The value in this code
is that a temporary function can be created and discarded, or the code pro-
vides a simple way to dynamically construct a function call. Creating func-
tions to dynamically create event handlers is demonstrated in several examples
in this book.

Checking for Support

JavaScript offers a flexible way to test whether a particular property or method

is supported by the browser. This technique can be used to predetermine
whether the code is going to succeed and possibly to run alternative code if
the feature is unavailable. For example, the following code checks whether the
all collection on the document is supported:

<SCRIPT LANGUAGE="JavaScript">
if (null == document.all) {
// The all collection is not supported: run alternative code.
}
else {
// Do something with the all collection.
3 o
</SCRIPT>

53

PART

I's HTML AND SCRIPTING

Property and Function Naming Conventions

54

The ability to add variables and functions to any object in JavaScript is very
powerful. However, with this power comes risk as Dynamic HTML evolves.
Every time a developer dynamically adds a property to an object, a potential
conflict is created between that property and a future enhancement to the
object model. Here are a few guidelines that can minimize the risk of future
conflicts:

M Begin all variables with a capital lettex, prefix them with the data
type, or prefix them with an underscore (for example, Counter,
intCounter, or _counter).

® Do not use the name of a tag as a variable name, regardless of how
it is capitalized. This will prevent potential conflict with elements
that use or may eventually use the new construct (for example, new
Image).

Do not prefix any variables or functions with html, css, or style. These
prefixes may have more widespread use in the future.

Perhaps the best technique for avoiding any conflict is to add only a single
member object to any built-in object and then add all the new custom mem-
bers to this object. This technique isolates the potential conflict to a single
property, but it requires a little forethought: you must predefine the single
property to ensure that no syntax errors are generated in the code. Here is an
example of this technique being used on the window object, in which all cus-
tom merbers are added to a property named _Custom:

<SCRIPT LANGUAGE="JavaScript">
// Before using the _Custom object, initialize it as a property of
// the window cbject.
if (null == window._Custom)
window._Custom = new Object;

// Add properties to _Custom.

window. Custom.special = true:

window. Custom.top = self:
</SCRIPT>
The initializing statement is necessary before any properties can be added to
the _Custom object because JavaScript can add only one member fo an object
at a time. If _Customwas not first initialized, an error would have occurred when
the special property was accessed.

36

TWO: Fundamentals of HTML Scripting

Scripting and Web Security

With the introduction of scripting, Internet security has become an extremely
important issue. Currently, browsers create a sandbox around the scripted page
so that it can access only a well-defined set of information. There is no way in
Dynamic HTML to access the client’s machine and hard disk beyond a very well-
controlled mechanism known as cookies. Cookies are discussed in Chapter 6,
“The HTML Document.”

Even without accessing the user’s machine, however, the ability to access
the contents and manipulate a page could have been a security risk. For ex-
ample, a page outside a firewall should not be able to access the contents of a
page that is within the firewall. An unauthorized page could access the text
of the page and send it back to the server. The sandbox model requires the
pages to be from the same domain before permitting unlimited access to the
contents. This restriction prevents a document in one frame from accessing a
document in another frame if the documents come from different sites.

To further guarantee security, the object model is limited in a number of
cases. For example, the file upload object allows a user to upload files to the
server. To ensure that the page does not have access to the user’s file system,
the value property representing the file to be uploaded is read-only. The his-
tory object that allows Forward and Back buttons to be created does not expose
any information about the URL that is about to be displayed. Additional se-
curity restrictions are pointed out throughout this book.

For those who are very concerned about security, the browser allows us-
ers to turn on and off different features, including Java applets and ActiveX
controls, cookies, and even scripting. The object model can access limited infor-
mation that helps it determine the state of the browser and react accordingly.

55

C HAPTEHR T HREE

Dynamic HTML Event Model

Events are notifications that occur as a result of user actions or state changes
within a document or window. Dynamic HTML exposes a set of events that
allows the Web author to respond to most intcractions between the user and
the document. By responding to events, the author can create completely
inleractive pages.

In this chapter, you'll be introduced to techniques for handling events.
The chapter concludes by demonstrating an application that combines the
built-in support features of Dynamic HTML with the power of JavaScript func-
tion pointers to create a customized event binding mechanism.

The following topics are covered in this chapter:

® General event model Dynamic HTML provides a powerful event
model that is closely related to the document’s underlying struc-
ture. By understanding and taking advantage of this model, you
can write efficient, maintainable code. The Dynamic HTML event
model is based on two powerful new features for controlling the
document’s behavior: event bubbling and default actions.

Event bubbling is the event model feature that observes
the document’s structural hierarchy in the processing of event
notifications. All events can be responded to by each parent ele-
ment in the containership hicrarchy as well as by the element the
event occurred within. In other words, every action occurs on the
element, its parent clement, and so on until the body and eventu-
ally the document itself receive the event notification. The event
can be processed at each level, enabling you to write compact ge-
neric code.

Default actions represent the browsers’ built-in handling of
the event. Many events allow the default action to be overridden
for custom handling or to be augmented with complementary
processing.

57

37

PART [: HTML AND SCRIPTING

Understanding the event model is crucial to understanding how
to harness the power of Dynamic HTML to create interactive docu-
ments. This section introduces the event architecture; later chapters
will cover techniques and operations in detail.

B Event binding Euvent binding is the association of a script with an
event on the document or window, or with an event on an element
in the document. This section discusses the different techniques
available in Dynamic HTML for binding scripts to events.

W The event object The event object exposes the information related
to an event to the script. The event object is a language-independent
mechanism for passing parameters and for controlling different as-
pects of the event model. For example, on a mouse event, the cur-
rent mouse location and button state information are exposed
through properties of the event object.

Programming standard user events Standard user events include
the mouse, keyboard, focus, and help events that are available on
almost every element in the document. This section introduces the
interactions between these events and the event object. Additional
events are supported by certain elements and objects and are dis-
cussed throughout this book with their respective objects.

B Event examples The chapter concludes with two examples of
event binding. The first example consists of an Event Tutor that can
be used to learn about the event model. In this example, events on
a document can be tracked individually or as a group. The second
example, Event Broadcaster, is a powerful demonstration of
JavaScript function pointers and events. In this example, you'll
learn how to write a custom event-binding mechanism that allows
multiple functions to be easily associated with a single event.

General Event Model

58

When the user interacts with the page or when the documents state is about
to change, an event is fired. The user generates events by moving the mouse,
clicking a mouse button, or typing on the keyboard within a document. Docu-
ment state changes that can fire events include the loading of the document,
images, or objects; the occurrence of an error on the page; and the changing
of focus from one element to another.

38

THRE E: Dynamic HTML Event Model

Event Bubbling

HTML documents are structured documents with a defined containership
hierarchy. Event bubbling is the generic capability for all actions to follow this
structural hierarchy. When an event occurs, it fires first on the source element
and then on the source’s parent element, and it continues to fire on successive
parent elements until it reaches the document element.

Event bubbling did not exist in earlier versions of the HTML object model
because it was not necessary. In the past, browser implementers considered only
a few elements interesting enough to fire events. With the introduction of
Dynamic HTML, however, all elements now fire events. This means that now
all elements on the page—every P, H1, and so on—can and do fire events. The
extension of events to all elements could have made scripting a lot more
complex. But with event bubbling, the reverse happens—scripts can be more
powerful and better written.

In the following code, the body, the anchor, and the image all have events
associated with them:

<HTML>
<HEAD>
<TITLE>Go Home!</TITLE>
</HEAD>
<BODY>
Go Home
</BODY>
</HTML>

Without event bubbling, trying to write an event handler for all click events
that occur on the anchor would be complex. The same event handler would
need to be written twice, once for the image and once for the anchor. This
redundancy would be necessary because if the user clicks on the image, the
image receives the event, and if the user clicks on the following text, the an-
chor receives the event. Event bubbling solves this problem. With event bub-
bling, clicking on the image first fires the click event on the image. The event
then automatically fires on the anchor. After the event fires on the anchor, it
fires on the body and finally on the document. Event bubbling allows an event
to be handled at any level of the containership hierarchy. In the preceding
code, a single event handler for clicks on the anchor will also handle clicks on
the image.

59

PART 1: HTML AND SCRIPTING THREE: Dynamic HTML Event Model

Default Actions Event Attributes

In addition to event bubbling, many events have default actions. A default
action is what the browser normally does as a result of the event. For example,
the default action of clicking on a link <A HREF-"..."> is to follow the speci-
fied HREF and load the page.

With the Dynamic HTML object model, it is possible to override an ex-
isting default action with custom behavior. If an event does not have a default
action and custom behavior is being written, it still is a good idea to cancel the
potential default action. This ensures that the code will continue to execute
correctly if a default action is later supported by a browser.

The default action is not always defined by the source of the event—it may
be defined by a parent elernent. In the preceding example, when the user clicks
on the image the default action of following the link is defined by the Anchor
element that contains the image. However, if the image cancels an event’s
default action, the default action of the anchor will no longer apply, because
the default action can be canceled by any element during the event chain. Once
an event handler specifies that it is canceling the default action, the default
action for the entire event chain is canceled.

Event bubbling and default actions are different concepts and can be
controlled independently. For example, if the image stopped the event from
bubbling up to the anchor but did not cancel the default action, the anchor’s
default action would still apply to the event, and the link would still be followed.
The reverse also holds true: if neither the anchor nor the image cancel the
default action, but instead when the event reaches the Body element the de-
fault action is canceled, the link will not be followed. The properties for can-
celing the default action or stopping the event from bubbling are introduced
in the section “The event Object” later in this chapter.

Event Binding

60

Event binding is the association between a specific event and a script. Dynamic
HTML supports a number of language-independent ways to bind scripts to
events. In addition, the scripting engines themselves can expose further cus-
tom ways to support event binding.

The language-independent mechanisms bind events through attributes
on the Script element, through special HTML attributes associated directly
with a specific element, and through the object model itself. VBScript also
offers the Visual Basic-style binding mechanism, which involves naming the
handler subroutines in a specific way.

39

In Dynamic HTML, all the elements within the document have been extended
to support keyboard and mouse events, These events are exposed as attributes
directly on each element, allowing a direct association between the element
and the behavior. This association is similar to the one between an element and
its inline style using the STYLE attribute. For example, you can bind the onclick
event of a button to a function using an attribute as follows:

<I-- When the user clicks the button,

the foo() function is called. -->

<INPUT TYPE=BUTTON VALUE="Click Here"
ONCLICK="foo{);™ LANGUAGE="JavaScript">

The ONCLICK attribute can either call a function or immediately execute one
or more lines of code. In this example, when the user clicks the button, the foo
routine is called. The LANGUAGE attribute specifies in which language the
inline code is written. Omitting the LANGUAGE attribute defaults to the lan-
guage specified in the first script on the page, or to JavaScript in the absence
of any prior scripts. The following example demonstrates two inline statements
being executed when the user clicks the button:

<!-- When the button is clicked, display the alert and
then call the function foo(}. -->
<INPUT TYPE=BUTTON VALUE="Click Here"
ONCLICK="alert('The user clicked here.’); foo();"
LANGUAGE="JavaScript™>

The button first outputs the alert box, and then it calls the foo function.

All HTML attributes are case insensitive, so case sensitivity is not an is-
sue when you use attributes such as ONCLICK to bind handlers to events. Gase
sensitivity can be important when you use other event-binding mechanisms,
however. Event binding with HTML attributes is convenient, but it has a num-
ber of disadvantages: The first is that the HTML language needs to be extended
every time a new event is invented. For example, the preceding onclick event
requires the DTD (document type definition) for the <INPUT> tag to be ex-
tended to include an ONCLICK attribute. This makes it much more difficult
to add events in a standard way because HTML evolves slowly. Furthermore,
objects or applications that expose arbitrary events also need to extend the
language or expose their own custom event-binding techniques. Therefore, this
approach is used only for a small set of built-in events. If an arbitrary object is
embedded on the page, its events are exposed in a more generic way.

81

PART 1: HTML AND SCRIPTING

Generic Event Support

62

A second binding mechanism overcomes these disadvantages. It uses a few
Script element extensions—namely, a FOR attribute and an EVENT attribute—
to bind functions to events. The EVENT attribute refers to the event and any
parameters that may be passed in, and the FOR attribute specifies the name
or ID of the element the event is being written for. For example, an enmousemove
event is exposed on the document. You can use the following <SCRIPT> tag
to bind to this event:

<SCRIPT FOR="document™ EVENT="onmousemove()}" LANGUAGE="JavaScript">
// This event handler is called whenever the mouse moves on the
// document.

</SCRIPT>

NOTE: JavaScript is case sensitive for both the EVENT and the
FOR attribute values on the <SCRIPT> tag. Be careful to ensure that
all event names are supplied in lowercase for built-in events and in
the appropriate case for any embedded objects. Also, if you specify
an ID in the FOR attribute, you must type it exactly as it appears in
the ID attribute of the element itself. Whenever an event appears to
not be firing, always verify that the spelling and case are correct in
the <SCRIPT> tag.

There is one caveat to the preceding syntax. Netscape Navigator ignores
the FOR and EVENT attributes and will atternpt to execute the code immedi-
ately. Here’s a potential trick for working around this restriction:

<SCRIPT LANGUAGE="JavaScript™>
// Assume that the browser supports the FOR attribute.
var ForSupport = true;

</SCRIPT>

<SCRIPT FOR="fakeObject™ EVENT="foo" LANGUAGE="JavaScript™>
// This event does not exist.
/7 1f FOR and EVENT are supported, this code will never execute.
FarSupport = false:;

</SCRIPT>

<SCRIPT FOR="document" EVENT="onmousemove" LANGUAGE="JavaScript™>
if (ForSupport) {
// Write actual event handler.
}
else
alert("Your browser does not support the required event
syntax.");
</SCRIPT>

40

THREE: Dynamic HTML Event Model

Another way to ensure that the script code is not executed is to specify
the language as JScript. JScript is Microsoft’s implementation of JavaScript.
Because Microsoft Internet Explorer is the only browser that supports JScript,
the script does not require an ifstatement in order to be ignored by Netscape.

<SCRIPT FOR="document” EVENT="onmousemove()" LANGUAGE="JScript™>
// This event handler is called whenever the mouse moves over
// the document if the browser supports the JScript language
// engine.

</SCRIPT>

NOTE: When you specify the event name, the parentheses are
optional. For example, the above event could have been specified
as EVENT="onmousemove".

Visual Basic—Style Event Binding

In addition to the techniques already discussed, VBScript also supports the
Visual Basic—style mechanism for binding scripts to events. Visual Basic tradi-
tionally binds code to an event using a specially named subroutine. If the sub-
routine is written in the Visual Basic-style format, the Visual Basic engine
knows which event to bind the script to. For example, the following code binds
to an onmousemove event and an onclick event on the document:

<SCRIPT LANGUAGE="VBScript">
Sub document_onMouseMove()
' Event handler for the mouse moving over the document
End Sub

Sub document_onClick()
' Event handler for the user clicking on the document
End Sub
</SCRIPT>

NOTE: Microsoft Internet Explorer 3.0 also supported the pre-
ceding syntax in JScript, but this syntax is not supported by Netscape
Navigator or by Internet Explorer 4.0. Therefore, this technique
should not be used with JavaScript.

In'VBScript, an advantage to using this model is that multiple event hand-
lers can be written within a single script block. The major disadvantage is that
external tools cannot easily determine what events have event handlers writ-
ten for them, Using the Script element’s FOR and EVENT attributes syntax
or the inline HTML event attribute syntax allows a tool to easily scan a docu-
ment and determine what events have code associated with them. The Visual
Basic—style event-binding model won't be understood by any tool that is not
specially written.

63

PART I: HTML AND SCRIPTING

Itis possible to bind to the same event in multiple languages. In this case,
the event will fire in each language when it occurs, but the order is undefined.
In general, avoid using this approach, as the results may be unpredictable.

Specifying Scripting Languages in Event Attributes

You can specify different languages for each inline HTML event attribute. The
LANGUAGE attribute used with the inline HTML event attributes specifies the
default language for interpreting the code. This default can be overridden by
specifying a language identifier in the event attribute value. The format is as
follows:

<Element EventName="Langunge:Code">

Languageis a case-insensitive string that specifies the scripting language
for the Codethat follows. The languages supported by Internet Explorer 4.0 are
IScript, JavaScript, JavaScript 1.1, and VBScript. JScript, JavaScript, and
JavaScript 1.1 run the same language engine. The onclick handler and the
onmousedown handler in the following <BODY> tag are specified in different
scripting languages:
<BODY ONCLICK="JavaScript:dothis(this);"

ONMOUSEDOWN="VBScript:dothat{me)">

Netscape Navigator does not support specifying languages within the
event attribute value. Netscape Navigator and Internet Explorer both support
specifying a langunage on the HREF attribute of anchors, which allows you to
create JavaScript or VBScript code that will run when the user clicks on an
anchor. However, Netscape Navigator recognizes only JavaScript and will at-
tempt to navigate to an invalid page if any other language is specified.

Events as Properties

64

All events are also exposed as properties in the Dynamic HTML object model.
The property names are entirely in lowercase and begin with the prefix on. The
purpose of exposing both events and event properties is to enable events to
be dynamically bound to functions at run time. All event properties can be
assigned a function pointer.

Whether function pointers are supported depends on the scripting lan-
guage. JavaScript supports function pointers, but VBScript does not. There-
fore, VBScript cannot generate an event handler dynamically. (However, you
can use VBScript code to assign a JavaScript function to an event.) When the
event occurs, the function specified by the property is invoked.

41

THREE: Dynamic HTML Event Model

<HTML>
<HEAD>
¢TITLE>Function Pointer Example</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON ID="myButton" VALUE="Click here">
<SCRIPT LANGUAGE="JavaScript”>
// Attach a function pointer to myButton.
/¢ When myButton is clicked, an alert box is displayed.
document.all.myButton.onclick =

new Function("alert('Hello");");
</SCRIPT>
</BODY>
</HTML>

To assign 2 function pointer, assign the name of the function directly to the
property.
<HTML>
<HEAD>
<TITLE>Function Pointer Assignment</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// Define a function named clicked.
function clicked() {
alert("Clicked");
}
</SCRIPT>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON iD="myButton™ VALUE="(lick here™
<SCRIPT LANGUAGE="JavaScript">
// Assign the clicked function to the onclick handler.
document.all.myButton.onclick = clicked:
</SCRIPT>
</BODY>
</HTML>

NOTE: When assigning a function pointer, use only the name of
the function. Do not supply parentheses or specify any parameters.
Doing so will cause the function to be executed, resulting in the
function’s return value, rather than a pointer to the function itself,
being assigned to the property.

65

PART 1: HTML AND SCRIPTING

Timing of Event Binding

66

The point at which event handlers are bound to elements depends on the
scripting language. JavaScript hooks up events asynchronously while the page
is being loaded. Each Script element and event attribute is hooked up as it is
parsed from the document. VBScript, on the other hand, does not bind events
until the entire page is parsed, all external scripts are downloaded, and em-
bedded objects have begun loading.

For JavaScript, this means that events can start firing in response to user
or other actions before the page is entirely downloaded. Therefore, you should
take care that your event handlers don’t try to access any elements that might
not have downloaded yet.

You can write code that first checks for the presence of the element or,
more generically, simply checks whether the entire page is parsed. Checking
whether the page is completely parsed is the simplest method and should be
compatible across scripting languages and browsers:

<HTML>
<HEAD>
<TITLE>Parsing Example</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function doClick() {
if (isloaded) {
// Run event handler.

1
else {
alert("Please wait for the document to finish
Toading.");
}
}
</SCRIPT>
</HEAD>

<BODY>
<INPUT TYPE=BUTTON ID="myInput” VALUE="Click here"
ONCLICK="deClick()™>
<SCRIPT LANGUAGE="JavaScript">
// This should be the last element parsed in the document.
isLoaded = true:
</SCRIPT>
</BODY>
</HTML>

You can also use an event handler to check whether the entire page has
been parsed. Two events can be used for this purpose: the onload event on the
window, and the onreadystatechange event on the document. The onload event
fires when the entire document is parsed and all elements are loaded. The more

42

THRE E: Dynamic HTML Event Model

powerful onreadystatechange event on the document, which is supported only
in Internet Explorer 4.0, fires several times as the document passes through
several loading states and fires for the last time when the document is fully
loaded. The onload and enreadystatechange events are discussed in detail in
Chapter 4, “The Browser Window,” and Chapter 6, “The HTML Document”

Scoping of Scripts

All event handlers are scoped to the element to which the handler is bound.
This element is exposed to the scripting language in JavaScript using the #his
property and in VBScript using the me property.

The event’s scope is not necessarily the element that firstfired the event.
The element that first fired the event is exposed through the srcElement prop-
erty on the event object. The event object is discussed in more detail in the
section “The event Object” later in this chapter.

Controlling the this Pointer
The following code demonstrates the three different ways you can bind a
handler to an event. All three handlers are effectively equivalent to each other.

<INPUT NAME="myBtn™ TYPE=BUTTON VALUE="My Button"
ONCLICK="alert(this.name):" LANGUAGE="JavaScript”>

or

<SCRIPT FOR="myBtn" EVENT="onclick()" LANGUAGE="JavaScript">
alert(this.name);
</SCRIPT>

or

<SCRIPT LANGUAGE="JavaScript™
myBtn.onclick = new Function("alert(this.name)");
</SCRIPT>

In these three examples, this.namereturns myBin because the element is
referenced directly in the inline code or script. If you want to reference the
element in a subroutine called by an event handler, you need to pass the ele-
ment to the subroutine using the thiskeyword. For example, the following code
will display an empty string rather than the text myBtn because the ¢his pointer
in the foo function refers to the function itself instead of the element that gen-
erated the event:

<SCRIPT LANGUAGE="JavaScript">
function foo() {

(continued)

67

PART I: HTML AND SCRIPTING

68

// The this pointer does not refer to the button.
alert{this.name):
}
</SCRIPT>
<INPUT TYPE=BUTTON NAME="myBtn' VALUE="My Button™
ONCLICK="foo():" LANGUAGE="JavaScript">

Instead, you should pass a reference to the myBtn element to the foo function
using the this keyword:

<SCRIPT LANGUAGE="JavaScript">
function foo(b) (
// The b argument refers to the button because it was passed in
// by the event handler.
alert(b.name):
1
</SCRIPT>
<INPUT TYPE=BUTTON NAME="myBtn'" VALUE="My Button”
ONCLICK="foo(this);" LANGUAGE="JavaScript">

The this pointer is also automatically set when an event handler is assigned
as a function pointer:

<H1 ID="myH1">This is a header.</H1l>
<SCRIPT LANGUAGE="JavaScript">
function clickHandler(} {
// The this property points to the element
// to which the handler is bound.
alert(this.tagName)
}
// Function pointer assignments do not need to pass the
// this pointer.
document.all.myHl.onclick = clickHandler;
</SCRIPT>

Names in inline code are resolved by searching members of the object
model in the following order:
1. All properties of the current element
2. All elements exposed for the name space—for example, in a form,
the controls on the form

3. The properties of the element containing the name space—for ex-
ample, the form’s properties for elements within the form

4. The properties on the document

43

THREE: Dynamic HTML Event Model

Shared Event Handlers

JavaScript supports the creation of a shared event handler. In JavaScript, any
elements that share the same name can also share the same event handlers by
using the Script element’s FOR and EVENT attributes syntax:

<SCRIPT FOR="gender" EVENT="onclick()" LANGUAGE="JavaScript">
// This event handler executes whenever any element with the name
// or 1D "gender" is clicked.

</SCRIPT>

<INPUT TYPE=RADID NAME="gender™ VALUE="Male">

<INPUT TYPE=RADID NAME="gender™ VALUE="Female">

This technique works only in JavaScript. VBScript can fire an event handler
this way only on the basis of an element’s unique ID, not its NAME. If this code
were rewritten in VBScript, the radio buttons would need to be supplied with
unique ID values, and separate handlers would need to be written for each one.

An alternative for VBScript that also works for any scripting language is
to use event bubbling and track the event from a parent container:

<SCRIPT FOR="GenderGroup™ EVENT="onclick()" LANGUAGE="VBScript">
' This event handler executes whenever any element within
' the GenderGroup block is clicked.
1f "gender” = window.event.srcElement.name Then
' User clicked a radio button.
End If
</SCRIPT>
<DIV ID="GenderGroup™>
<INPUT TYPE=RADIO NAME="gender" VALUE="Male">
<INPUT TYPE=RADIO NAME="gender" VALUE="Female">
</DIV>

The event Object

Most events by themselves are not very interesting without some additional
information. For example, the onmousedown event is not very useful unless you
know which mouse buttons are pressed and possibly where the mouse is posi-
tioned. Keyboard events are useless unless you know which key is pressed.

Dynamic HTML exposes a language-independent mechanism for access-
ing information related to an event and controlling whether the event hubbles
and whether the default action occurs. This information is exposed through
an event object, which is a property of the window object.

69

PART

I: HTML AND SCRIPTING

70

Before an event is fired, this event object is initialized with the current state
of the keyboard and mouse. The event object gives access to the event param-
eters and provides control over event bubbling and the default action, The event
object always exposes at minimum the following set of properties for identi-
fying the element that originated the event sequence and for controlling event
bubbling and the default action:

B cvent.srcElement
B cvent.cancelBubble

B cvent.returnValue

The srcElement property returns the element that first generated the event.
For example, when you click on the home.gif image in the HTML sample at
the beginning of this chapter, the image is the srcElement property while the
event bubbles through the anchor, the body, and the document.

The cancelBubble property is used to stop an event from bubbling up the
hierarchy. By default, this property is false and the event bubbles up. Assign-
ing true to this property stops the current event from bubbling. Setting this
property to true stops only the current instance of the event from bubbling,
however; it does not prevent future events from bubbling.

The returnVatue property is used primarily to override the default action
of an event. Not all events have default actions. However, if you write code that
adds behavior because of an event, always cancel the default so that if a default
action is added to the event in the future, the page’s behavior will not change.
To cancel the default action, this property should be set to false.

The returnValue property is used most often to override the default action
of the event, but some events use the returnValue property differently. This
again reinforces the separation of event bubbling and default actions.

NOTE: JavaScript supports returning values directly to an event
handler using the return keyword. The return keyword updates the
returnValue property of the event object when the event handler re-
turns control to the browser.

The event ohject is established at each event sequence. Therefore, any
assignments to the event object apply only to that instance of the event se-
quence. The next time an event occurs, the event object is reset. Canceling a
default action, for example, cancels only the default action for the current

44

THREE: Dynamic HTML Event Model

event, not for all subsequent events. For this reason, an event handler—not the
code that immediately executes during the download of the page—should
access the event object.

Determining the Event

The event object exposes the type of the event through the type property. The
type property returns the event name in all lowercase without the on prefix. For
example, onmousedown is returned as mousedown, onclick as click, and so on. The
advantage in knowing the type of event is that a single event handler can dis-
tinguish among and process multiple events:

function handlekEvent() {
// Run common event handler.
switch (event.type) {
case "click":
// HandTe onciick event.
break;
case "mousedown™:
// Handle onmousedown event.
break;
}
)]
// Hook up events to handleEvent event handler.
document.onclick = handleEvent;
document.onmousedown = handleEvent;

Accessing Parameters Through the event Object

The event object exposes all parameters of the built-in events as properties. For
example, information about the current mouse pointer position is available to
all events. Some information is available only during a particular event. Mouse
events also provide access to the current state of the mouse buttons. These
parameters are initialized and updated prior to the firing of the event. This
example shows how to access event parameters:

<SCRIPT FOR="document™ EVENT="onmousedown{)}" LANGUAGE="JavaScript">
// Output the state of the mouse button whenever it is pressed.
alert(™x:" + event.clientX};
alert("y:™ + event.clientY):
alert("button:™ + event.button);
alert("Source Element:” + event.srcElement.tagName);

</SCRIPT>

71

11 HTML AND SCRIPTING

Mouse Coordinates

The event object exposes properties that represent the mouse pointer location
based on different coordinate systems. The following table lists these mouse
event properties.

Property Description

clientX, clientY The horizontal and vertical coordinatcs of the mouse
pointer relative to the client area of the window.

offsetX, offsetY The horizontal and vertical coordinates of the mouse

pointer relative to the rendering context.

screenX, sereenY The horizontal and vertical coordinates of the mouse
pointer relative to the screen.

Figure 3-1 illustrates the relationship between the different coordinates.
The creation of coordinate systems and rendering contexts is discussed in
Chapter 12, “Dynamic Positioning.” The values of these properties are constant
through any event firing sequence, and these coordinates are established for
all events, not just mouse events.

Origin for screenX, screeny:

Qrigin for clientX, chiant'

Mouse coordinates

Origin for offsetX, offselY:

V1SSl frritisond siemment

Figure 3-1.
Coordinale system origins for the event object’s mouse position properties.

45

THREE: Dynamic HTML Event Model

Key and Button Information

The event ohject also exposes properties that represent the current keys and
mouse buttons that are pressed at the time of the event.

Parameter Value

button The current set of mouse buttons pressed:

0 No buttons pressed

1 Left button pressed

2 Right button pressed

4 Middle button pressed

The button parameter represents the combined state of ail
the mouse buttons. For example, if the right and the left
buttons are pressed, button returns 3.

ctriKey A Boolean value that indicates whether the Ctrl key
is pressed.

altKey A Boolean value that indicates whether the Alt key
is pressed.

shiftKey A Boolean value that indicates whether the Shift key
is pressed.

These properties are useful when you are writing a global event handier
for the document. Using the mouse coordinates with the elementFromPoint or
rangeFromPoint method on the document, you can check whether the mouse
pointer is on a specific element or text:

<SCRIPT EVENT="onkeypress()" FOR="document” LANGUAGE="JavaScript">
// Determine the element the mouse is on when & key is pressed.
// The fromPoint methods are based on client coordinates.
var e = document.elementFromPeint(event.clientX, event.clientY);
if ("H1" == e.tagName) {
// Do something when a key is pressed while the mouse pointer
// is on an H1 element.
}
</SCRIPT>

73

PART

I: HTML AND SCRIPTING

Programming Standard User Events

Standard user events are the set of events shared by all elements in response
to user interactions. These are events for tracking the mouse and the keyboard,
focusing elements, and scrolling any scrollable region. Many elements expose
events specific to the purpose of the element. For example, form elements have
onsubmit and onreset events, These additional events are discussed with their
respective elements in Chapters 8 through 10.

Mouse Events

74

The Dynamic HTML object model exposes events for tracking the different
states of the mouse, including every time the mouse is moved into and out of
elements, as well as when mouse buttons are pressed. The following table lists
the mouse events.

Event Description

onmousedown Mouse button was pressed.

onmousemove Mouse was moved or is being moved.

onmouseup Mouse button was released.

onclick Left mouse button was clicked, or the default action
of an element was invoked.

ondblclick Left mouse button was double-clicked.

onmouseover Mouse pointer entered the scope of an element.

onmouseout Mouse pointer exited the scope of an element.

ondragstart A drag-and-drop operation was initiated.

onselectstart A new selection was initiated over an element using
the mouse.

onselect A selection is occurring.

The onclick and ondblclick Events
The onclick event is more a semantic event than a physical event. While an
onclick event usually occurs when the left mouse button is pressed and released,
it can also occur as the result of an action that simulates a click. For example,
the onclick event fires when the user presses the Enter key while a buttonlike
control has the focus. The ondbiclick event fires when the user clicks the left
mouse button twice within a systern-defined amount of time.

When an element is clicked, the onclick event is fired after the onmousedown
and onmouseup events fire. The onclick event is not required to fire on the same

46

THREE: Dynamic HTML Event Model

element the onmousedown and onmouseup events occurred on. Suppose, for
example, that you have the following HTML code:
<HTML>
<HEAD>
<TITLE>CTick Rules</TITLE>
</HEAD>
<BODY>
<HLl>Welcome to My Home Page</Hl>
<H2>Providing the Latest Dynamic HTML Information</HZ>
</BODY>
</HTML>
If the mouse button is pressed and released on the H1 element, the
onmousedown, onmouseup, and onclick events are all fired on that element. If the
mouse button is pressed on the H1 element and released on the H2 element,
however, the onmousedown event is fired on the H1 element and the onmouseup
event is fired on the H2 element. The onclick event is fired on the body, as is
any subsequent ondblclick event that may fire as part of this sequence, because
the body is the common element the mouse pointer is on when the mouse
button is released. The onmouseup event is fired on the H2 element and not on
the HI element because the mouse is not captured by any textual contents.

HTML elements that accept user input do capture the mouse event. If
the mouse button is pressed on a user input element and released on a tex-
tual element, the onmousedown event is fired on the user input element, the
onmouseup event is fired on the textual element, but no onclick event is fired on
any element. The onclick event occurs on a user input element only when the
mouse button is pressed and released on the same element.

Because onclick and ondblclick can be fired on the element that is common
to the elements on which the mouse button is pressed and released, these two
events can initiate on elements that are not leaf nodes in the document’s tree.
Leaf nodes are the deepest nodes of the document and actually contain the con-
tents. The onclick and ondblclick events are unusual among user events, With a
few exceptions introduced in later chapters, all the other mouse and keyboard
events always start at a leaf node and bubble upward through the hierarchy.

Here is the event-ordering relationship between the onmouse and onclick
events:

1. onmousedown
2. onmouseup

3. onclick

75

PART

1: HTML AND SCRIPTING

76

If a double click occurs, the event sequence continues as follows:

4. onmouseup

5. ondblclick

The onmouseover and onmouseout Events

The and events occur when the mouse pointer enters
or leaves an element on the page. These mouse events expose the same param-
eters as the onmousedown and onmouseup events. They fire only once on the leaf
nodes of the document and bubble upward, rather than firing on every bound-
ary crossing. For example, suppose you have the following HTML code:

<HTML>
<HEAD>
CTITLE>Over and Out Boundaries</TITLE>
</HEAD>
<BODY>
<H1>This is a header.</HI>
<DIV>
<P>Welcome te my page.</P>
</DIV>
</BODY>
</HTML>

In this HTML page, when the mouse moves from the body into the boldface
text in the paragraph, a single onmouseout event is fired on the Body element
and an onmouseover event is fired on the B element. Because the event bubbles,
all elements whose boundaries are crossed receive an event notification.

‘When the mouse crosses from the boldface text into the nonboldface text
in the paragraph, an enmouseout event is fired on the element and bubbles
through the paragraph. This is important to note because the paragraph may
receive an onmouseout event even while the mouse pointer is still contained
within it.

To accurately test whether the mouse was moved off an element, use the
element’s contains method along with the toElement property of the onmouseout
event, which indicates the new element to which the mouse has moved. The
contains method indicates whether one element js contained within another
element. With some simple code, you can test the destination element to see
whether it is contained within the element on which the event fired. If it is, the
mouse pointer is still on the firing element. In this example of an onmouseout
event handler, the event handler would be attached to the onmouseout event of
an element to test whether the mouse pointer is still within it:

47

THREE: Dynamic HTML Event Model

<SCRIPT LANGUAGE="JavaScript™>
function testexit(src) {
// Test whether the mouse really left an element,
if (lsrc.contains(event.toElement)) {
// Mouse exited the element.
3
}
</SCRIPT>
<HL ONMOUSEQUT="testexit(this);">Some text</H1>

In this example, the this pointer, which represents the element on which
the event was fired, must be passed in. The srcElement property of the event
object cannot be used instead; it might be a child element. For example, when
the mouse moves over the emphasized text in the preceding header, the em-
phasized text, not the HI itself, would be the srcElement.

The same method works when the mouse is entering an element—almost
identical code works for the onmouseover event. The only change is that the
fromElement property needs to be tested using the contains method:

function testenter(src) {
1f (lsrc.contains{event.fromElement)) {
// Mouse entered the element.
}

The onmouseover event fires when the mouse pointer is first moved over
an element. The event-ordering relationship between the onmouseover, onmouse-
move, and onmouseout events when the mouse pointer crosses a boundary is as
follows:

1. onmouseout
2. onmousemove (May occur many times)

3. onmouseover

The ondragstart Event

Currently, Dynamic HTML offers limited built-in support for implementing
drag-and-drop operations. A single drag-related event is exposed in the object
model for overriding the default drag behavior of the browser. When the user
clicks and holds down the mouse button and drags over certain elements on
the document such as images and anchors, those elements take part in a drag-
and-drop operation.

There may be times when this behavior will interfere with the author’s
intentions. To prevent the built-in dragging behavior from being initiated, the
ondragstart event is exposed. This event essentially serves the single purpose
of allowing the developer to cancel the event by returning a value of false.

77

PART

1: HTML AND SCRIPTING

78

There is a close relationship between canceling the onmousemove event and
the ondragstart event. To prevent a user from initiating a builtin drag-and-
drop operation on an element, cancel the ondragstart event. To author your own
drag operation on an element, you usually need to also cancel the onmousemove
event,

An example in Chapter 12, “Dynamic Positioning,” simulates drag-and-
drop behavior by using the onmousemove event to move positioned elements
around the screen. This technique works well for providing drag-and-drop
support within a page. Dynamic HTML does not yet allow you to program ge-
neric drag-and-drop behavior across frames or across windows.

The onselectstart and onselect Events
Dynamic HTML exposes two events for completely tracking the user’s selec-
tion anywhere in the document: onselectstart and onselect, fired in that order.
Similar to the ondragstart event, an onselectstart event is fired only when
a selection is about to be initiated, usually by the user clicking on some con-
tents in 2 document. The purpose of this event is to allow you to prevent a re-
gion of the document from being selected. It is important to recognize that this
only prevents the initiation of the selection. For example, in the following
document if the user clicks on the text Scott’s Page and tries to make a selec-
tion, no selection occurs:

<HTML>
<HEAD>
<TITLE>onselectstart Example</TITLE>
</HEAD>
<BODY>
<Hl>Welcome to
<EM STYLE="cursor:hand"
ONSELECTSTART="event.returnValue=false;”>Scott's Page

</H1>
</BODY>
</HTML>

However, if the user clicks on the text outside of Scott’s Page and drags the
mouse across Scoit’s Page, the text will be selected because only the initiation
of the selection can be canceled.

The CSS cursor property is used to change the mouse pointer to a hand
icon to signify that the contents can be clicked. By adding an onclick event
handler, you can specify a custom action to take place when the user clicks on
Scott’s Page. The combination of the cursor property and the onselectstart event
handler provides the same level of control as is available by default with anchors.

48

THREE: Dynamic HTML Event Model

The onselectstart event bubbles up through the document. Therefore, it
is possible to catch this event on the document and always return false. Doing
50 prevents the user from selecting any text in the document. The onselectstart
event should be limited to situations in which the built-in text selection might
cause problems with the intended user interface of the page.

The onselect event follows the onselectstart event and occurs while the se-
lection is being made. It fires multiple times as the user extends or collapses
the selection. The onselect event does not bubble. Instead, it occurs on the sec-
tion of the document the selection is occurring within: either the document’s
Body element for textual contents or the input controls.

Keyboard Events

Dynamic HTML provides three events for tracking the user’s keystrokes: onkey-
down, onkeyup, and onkeypress, fired in that order. The onkeydown and onkeyup
events fire whenever any key on the keyboard is pressed and released. The
onkeypress event fires after any ANSI key is pressed.

The event object exposes four properties for determining the state of the
keyboard when these events occur. The shiftKey, altKey, and ctrlKey properties
are the same as those exposed for the mouse events.

Property Value

keyCode The ASCII value of the key pressed. Setting this property
to 0in an onkeypress event handler cancels the event. Setting
it to a positive value replaces the key pressed with a different

ASCII key.
shiftKey State of the Shift key (irue/false).
altKey State of the Alt key (true/false).
ctriKey State of the Ctrl key (true/false).

Scroll Event

The Body element, as well as many other elements, can have scrollbars. When-
ever one of these elements or its scrollbar is scrolled, the onscroll event fires.
Scrolling occurs when the user explicitly scrolls the scrollbar or implicitly scrolls
the element through another action. For example, clicking on a link to a book-
mark fires the onscroll event if the document needs to scroll to bring the ele-
ment into view. The onseroll event cannot cancel the scrolling because it is fired
after the scrolling is complete. This event occurs only on the scrolled element
(for example, the Body element) and does not bubble.

79

1: HTML AND SCRIPTING

Focus Events

Dynamic HTML provides two events related to focus: onfocus and onblur. The
onfocus event is fired when an element is activated either by clicking on it or
through the keyboard. The element the user has just left receives an onblur
event. Only user input elements and the body can receive the focus. Therefore,
clicking on HTML contents causes the body to receive the onfocus event, not
the actual contents.

The onblurevent is also fired whenever another application or window is
activated over the current frame or application. Therefore, when you switch
windows, the current element fires an onblur event. When you return to the
window, the onfocus event is fired on that element.

The timing of these events in relationship to the window has some com-
plexities that are introduced in Chapter 5, “Window and Frame Management”

Help Event

The document exposes an onkelp event that fires whenever the user requests
a help file for the document using the Microsoft Windows keyboard shortcut
(F1). This event does not fire when the user selects Help from the Help menu.
The onhelp event first occurs on the element with the focus and bubbles up-
ward. The default action for this event is to display the built-in help file, but
this event can be overridden to display a custom help file.

The onhelp event also fires in modal dialog boxes that support context-
sensitive help through a Help icon available on the title bar. By clicking the
Help icon, the user can change the cursor to a special help cursor. When the
user clicks on an element using this cursor, an onkelp event fires on the element
and then bubbles to each parent element.

An event handler for the onhelp event typically displays a custom help file.
The handler can call the showHelp method to display a Windows help (HLP)
file or the open method to display an HTML file. showHelp and open are both
methods of the window object. The showHelp method can also display HTML
files, but the open method is supported by more browsers and offers more con-
trol over the display window. Chapter 5, “Window and Frame Management,”
describes the open method.

Event Examples

The two sample programs in this section illustrate the power of the event ar-
chitecture explained in this chapter. With the first example, the Event Tutor,
you can test any page and see the events that fire when you interact with it.

49

THREE: Dynamic HTML Event Model

Code in the second example, the Event Broadcaster, provides a general mecha-
nism for hooking up several handlers to each event.

Event Tutor

To help you learn more about event bubbling, the Chapter 3 samples on the com-
panion CD include an HTML document named tutor.htm that can report all
events as they occur on a page. Figure 3-2 shows the Event Tutor application.

Event Tutor
F MouseDown [Select

I3 MouseOver I SelectStart ‘Tz page demonsirates how eveat bubbling works. Ln the panel to the lef,
[MouseMove & Click select the evenls you want tracked Every time one of the specified pvents

" MouseOut T DbiClick occurs in this Frame, it will be reported in the text box in the Jeft Fame.
 MoweUp [Tocus Remember that cvents bubble, o a large manber of events may be seported.
[ReyDown [Bhr (Tty mousemove for sn example)

O Resbess [Change

The source code for this document has 6o event handlers. Al he hard work is
done by the document n the other frame, so you can easily expecizent with
sy sample dovumens

Sample Controls

TewBox,

© Radio Buton 1
€ Radio Button 2

17 Check Box

Figure 3-2,
The Event Tutor application.

This example allows you to select which events to track in the document
contained within the right frame. When a selected event occurs on any element
in the right frame, it is reported in the text box in the left frame. Playing with
this example will clearly demonstrate for you how events bubble up through
the hierarchy.

Following is the source code from events.htm used to create the Event
Tutor. This code demonstrates tracking events across frames—a technique
discussed in detail in Chapter 5, “Window and Frame Management.” This code
also takes advantage of JavaScript’s model for exposing objects as associative
arrays and the ability to create custom functions.

81

PART 1: HTML AND SCRIPTING

<HTML>
<HEAD>
<TITLE>Event Tutor</TITLE>
<STYLE TYPE="text/css"™>
caption {font-weight:bolder; color:navy}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function outputEvent(src, eventName) {
// Append event name to text area control.
document.all.txtEvents.value += eventName + "
src.tagName + "\n";

function setupEvents() {
// The user clicked on a check box.
// Hook up or remove event handlers.
if ("checkbox™ event.srcElement.type) {
var handier = event.srcElement.checked ?
new Function{"outputEvent(this, '" +
event.srcElement.id + "")™)
null;
var allSample = parent.frames.sample.document.all:
// Add custom event handler to all elements in
// the other frame,
for (var intloop=@; intlLoop < allSample.length;
intLoop++) {
/1 Accesses the event property that matches
// the ID of the check box that was clicked.
allSamplelintLoopIlevent.srcElement.id] = handler;

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="EVENTS">
<TABLE WIDTH=180% ONCLICK="setupEvents()" CELLPADDING=4>
<CAPTION>Events</CAPTION>
<TR VALIGN="Top"><TD NOWRAP>
<!-- Notice the naming convention used below.
To add more events, the ID should specify
the event name. -->
<INPUT TYPE=CHECKBOX ID=onmousedown>
<LABEL FOR=cnmousedown>MouseDown</LABEL>

<INPUT TYPE=CHECKBOX ID=onmouseover>

82

50

THREE: Dynamic HTML Event Model

<LABEL FOR=onmouseover>MouseOver</LABEL>

<INPUT TYPE=CHECKBOX ID=onmousemove>
<LABEL FOR=onmousemove>MouseMove</LABEL>

<INPUT TYPE=CHECKBGX ID=onmouseout>
<LABEL FOR=onmouseout>MouseOut</LABEL>

<INPUT TYPE=CHECKBOX L[D=onmouseup>
<LABEL FOR=onmouseup>Mouselp</LABEL>

<INPUT TYPE=CHECKBOX ID=onkeydown>
<LABEL FOR=cnkeydown>KeyDown</LABEL>

<INPUT TYPE=CHECKBOX ID=onkeypress>
<LABEL FOR=onkeypress>KeyPress</LABEL>

<INPUT TYPE=CHECKBOX ID=onkeyup>
<LABEL FOR=onkeyup>KeyUp</LABEL>
</TD><TD NOWRAP>
<INPUT TYPE=CHECKBOX ID=onselectd>
<LABEL FOR=onselect>Select</LABEL>

<INPUT TYPE=CHECKBOX ID=onselectstart>
<LABEL FOR=onselectstart>SelectStart</LABEL>

<INPUT TYPE=CHECKBOX ID=onclick>
<LABEL FOR=onclick>C11ick</LABEL>

<INPUT TYPE=CHECKBOX ID=ondblclick>
<LABEL FOR=ondblc1lick>Db1C11ck</LABEL>

<INPUT TYPE=CKECKBOX ID=onfocus>
<LABEL FOR=onfocus>Focus</LABEL>

<INPUT TYPE=CHECKBOX ID=onblur>
<LABEL FOR=onblur>Blur</LABEL>

<INPUT TYPE=CHECKBOX ID=onchange>
<LABEL FOR=onchange>Change</LABEL>

<INPUT TYPE=CHECKBOX ID=ondragstart>
<LABEL FOR=ondragstart>DragStart</LABEL>
</TDX</TR>

</TABLE>

<l-- TextArea to output event sequence -->

<TEXTAREA ID="txtEvents™ STYLE="width:95%" ROWS=14>

</TEXTAREA>

</FORM>
</BODY>
</HTML>

You can experiment with this code on any document by copying it from
the CD to your hard drive. Replace the sample.htm file with any file of your
choosing. You can also run the example on the CD by opening the tutor.htm
file, which uses both the sample.htm and the events.htm files.

83

PART

I: HTML AND SGRIPTING

Event Broadcaster

84

The event model exposed by Dynamic HTML is generally limited to a one-to-
one relationship between event and event handler. However, as is demonstrated
throughout this book, there will be many times when you need to associate
multiple actions with a single event. This association can be accomplished by
writing a routine for the event that calls each action in sequence, or this whole
process can be automated by taking advantage of JavaScript’s function pointers.

The Event Broadcaster generalizes the event binding used by Dynamic
HTML to support a registration mechanism that can be used to bind multiple
actions to a single event. This program provides a small, reusable set of func-
tions that allow multiple actions to be bound to each event. Each of these
actions can also execute conditionally.

By taking advantage of this code, you can write reusable event handlers
that can be easily plugged into any Web page without having to rewire any other
code. This technique works by using a registering model to allow functional-
ity to register an element with a particular action. The registry takes the place
of the developer manually hooking up event code.

While this mechanism greatly simplifies the writing of reusable code
snippets, you must still be careful that multiple actions on a single event han-
dler or document do not collide. There is no algorithmic way for you to pro-
vide this protection other than to be careful when adding new functionality.
To be most effective, interactions between registered functions for the same
event should be avoided.

The follawing code represents the entirety of the Event Broadcaster reg-
istry. This code can be written only in languages that support the dynamic
creation of functions—therefore, this functionality cannot be implemented in
VBScript. However, this code does not prevent you from supplying an action
and registering an event handler written in VBScript.

<SCRIPT LANGUAGE="JavaScript">
// Event Broadcaster Registry Code
// This code generically binds multiple event handlers to
// a single event.

function runHandler(eventName, eventSrc) {
// This is a generic event handler. For any event, this function
// validates the condition and runs the appropriate code.

var src = event.srcElement;

51

THREE: Dynamic HTML Event Model

// First check the srcElement property.
for (var intloop = 9;
intloop < eventSrc.manager[eventName].length; intLoop++)
if {eventSrc.manager[eventName]l[intLoopl.condition(src))
eventSrc.manager[eventNamel[intLoop]l.doAction(src):

src = src.parentElement;
// Walk the tree; stop at the scurce element for the event.
/7 tagName is null for the document; walk up entire tree.
var top = (this.tagName == null) ? "HTML" : this.tagName;
while (top 1= src.tagName) {
for (var intLoop = @;
intLoop < eventSrc.manager[eventName].length;
intLoop++)
if {(eventSrc.manager[eventNamel[intLoop]l.condition(src) &&
eventSrc.manager[eventName]l[intLoop].doTree)
eventSrc,manager[eventName]l[intLoop].doAction(src);
src = src,parentElement:

function setupHandler(eventName. eventSrc) {

/1 Create a new function handler for the event.
eventSrcleventName] =
new Function("runHandler('" + eventName + “*, this);

function alwaysTrue() {

// Use this function when you don't want to check any cenditien.
return true;

function register(eventName, action) {

/f/ This is the generic routine to register the event.
// Parameters (in order):
/1 eventName - Event to bind to

// action - Code to run when the event occurs

// condition (optional) - Condition to test to perform the

I action; defaults to true

// doTree {optional) - Determines whether to walk up all

1 nodes of the tree; defaults to false
// eventSrc (optional) - Element the event is associated with;
I defaults to the document

// Determine the source element,
var eventSrc = (null != arguments[4])} ?
document.alT[arguments[41] : document:

(cwntinued)

85

PART 1I:

HTML AND SCRIPTING

</s

86

// Check whether an event manager exists on the object.

if (null == eventSrc.manager)
eventSrc.manager = new Object;

// Check whelher an event manager exists for the specific event.

if (nul) == eventSrc.manager[eventName]) {
eventSrc.manager[eventName] = new Object:
eventSrc.manager[eventName].length = 9;
setupHandler(eventName, eventSrc);

}

// Add the event handler.
var ct = eventSrc.manager[eventName].length++;
eventSrc.manager[eventName]{ct] = new Object;
eventSrc.manager[eventName][ct].doAction = action:
/1 Check whether condition is supplied. If not, use alwaysTrue.
eventSrc.manager[eventNamel[ct].condition =

(nulT != argumentsf2]) ? arguments[2] : alwaysTrue;
// Check whether the tree is to be walked. Default to false.
eventSrc.manager[eventName][ct].doTree =

(null != arguments[31) ? arguments[3] : false;

}

function hookupEvents() {
var bindings = document.all.tags("BINDEVENT™):
for (var intlLoop = 8; intloop < bindings.length; intLoop+) {
var bind = bindings[intLoopl;
if ((nulT I= bind.getAttribute("event™)) &&
{null I= bind.getAttribute("action"))) {
var bEvent = bind.getAttribute("event");
var bAction = new Function("return " +
bind.getAttribute("action") +
"(arguments[01)");
var bCondition =
(null == bind.getAttribute("condition"}) ?
null
new Function("return " +
bind.getAttribute("condition") +
"(arguments[81)");
var bTree = ("walk” == bind.getAttribute("tree”)):
var bSrc = bind.getAttribute(*for");
register(bEvent, bAction, bConditien, bTree, bSrc):

window.onload = hookupEvents:
CRIPT>

52

THREE: Dynamic HTML Event Model

This code takes advantage of many of the features of Dynamic HTML and
JavaScript. All the techniques used in this example are covered in later chap-
ters. For example, HTML does not define or support the <BINDEVENT> tag.
Instead, Dynamic HTML exposes unrecognized elements in the object model.
You can use this feature to associate information and extend scripts without
having to modify any code.

To use this code, write an action function and register it with an event of
a particular object on the page. The following code demonstrates how dynamic
effects can be added to and registered in the preceding binding service. Dy-
namically changing the style of an element is discussed in Chapter 11, “Dynamic
Styles”

<SCRIPT LANGUAGE="JavaScript™>
// Dynamic style mouseover effect

function swapEffects(src) {
/7 1f an effect is supplied, swap it with className.
if (null != src.getAttribute("effect™)) {
var tempClass = src.className:
src.className = src.getAttribute("effect"”):
src.setAttribute("effect”, tempClass):

)]

function checkEffect(src) {
// Condition to check for before swapping the effect
return (src.getAttribute{"effect”) != null);

}
</SCRIPT>

This script defines the action and condition for swapping effects with the class
attribute. The following HTML binds this code to the onmouseover and
onmouseout events of the document:

<BINDEVENT event="onmouseover” actio
condition="checkEffect" tree="walk"

<BINDEVENT event="onmouseout" action="swapEffects"
condition="checkEffect” tree="walk">

"swapEffects"

The custom event binding is powerful in that the author does not need
to understand how to hook up code. Instead, the author can simply paste the
code into the page. With easy-to-use HTML, the code can be associated with
any event of any object. The real power of this model is revealed if the user tries
to hook up another action to the onmouseover or onmouseout event. Normally,

87

PART {: HTML AND SCRIPTING

88

this would require writing custom or event handlers
to call the different actions in sequence. With the method demonstrated here,
all that is necessary is to paste the new function to be executed into the docu-
ment and to hook it up to the event using another <BINDEVENT> tag. The
registry code automatically manages the correct sets of event handlers and
ensures that they are fired for each event.

An extra for attribute is supported on the <BINDEVENT: tag for asso-
ciating the event directly with a specific element. By default, the event is at-
tached to the document. The for attribute takes the ID of the element that the
event is being bound to.

53

C HAPTEHR F OUR

The Browser Window

In this chapter, youw'll learn how to program the browser window, the top-level
object in the Dynamic HTML object model. Through the window object, in-
formation about the browser and the contained document can be accessed. Two
types of HTML documents can be displayed inside a window: a frameset docu-
ment and a standard HTML document. Frameset documents partition a single
window into multiple, independently accessible frames. Chapter 5, “Window
and Frame Management,” and Chapter 6, “The HTML Document,” discuss the
two types of documents in detail.

The window object exposes document information (including informa-
tion about the frames on the page and the URL for the current document) and
provides access to information about the browser itself (including the client
brand, version, and features supported, through a navigator object), access to
event information, and most important, access to the document object that
exposes the HTML document itself, The window object also lets you move
forward and backward through the history, customize the browser’s appear-
ance, and move and relocate the window.

This chapter and Chapter 5 teach you how to manipulate the browser and
the contained document using the window object. This chapter focuses on the
members for manipulating the current window; Chapter 5 continues the dis-
cussion by showing you how to manipulate framesets and multiple browser
instances.

The following topics are covered in this chapter:

W The window object This section provides a brief introduction to
the window object and its relationship to other objects, including its
unique relationship to global variables, which act as public mem-
bers of the window object.

B The window environment This section shows you how to manipu-
late the browser environment—including the browser’s status bar,
the location of the document, the history list, and the user’s
screen resolution.

89

PART

1: HTML AND SCRIPTING

The

20

B Window events The window object exposes changes in the docu-
ment’s state through several events. For example, these events can
help you determine when the document has finished loading and
whether the document is currently active.

B Timer events The window object also exposes methods for creating
timers. Timers are events that execute code after a specified amount
of time.

H The clic fon or ig property The navigator object
exposes specific information about the client. This information in-
cludes the brand, version, and user options, allowing scripts to deter-
mine the capabilities of the client and to adjust the page accordingly.

window Object

As mentioned, the window object is the top-level object in Dynamic HTML. The
easiest way to understand the window object is to think of it as a container for
a document or for other windows. A window containing other windows is the
basis of a frameset. Figure 4-1 shows the window object hierarchy.

Figure 4-1.
The object hierarchy for the window object.

54

FOUR: The Browser Window

The window object maintains information about the browser and exists as long
as the browser’s application window exists. This means that as the user browses
from page to page, the window object remains available, even though the cur-
rent document changes. ‘

Referencing the window Object

Because the window object is the top-level object in the HTML object model,
it does not have to be explicitly referenced when you are accessing the prop-
erties of the window. For example, the following two lines of code are effec-
tively the same:

window.location.URL // Explicitly reference the window object.
Tocation.URL // The window cbject is implicitly referenced.

In addition, the window object exposes a self property that actually returns the
window. Therefore, the following five lines of code reference the same name
property:

name

self.name

window.self.name

window.self.window.name

window.window.name

Implicit window references work only for code that references the current
window. To reference other, noncurrent windows or frames, the particular
window objects must be explicitly referenced.

The document and event Properties

The document property returns a document object representing the page con-
tained within the window. Through the document property, the style, structure,
and contents of the contained document can be accessed.

As mentioned in Chapter 3, “Dynamic HTML Event Model,” the event
property of the window object returns an event object, which provides infor-
mation about the current event. The event object is accessible only during an
event sequence and returns null at all other times. It is possible to respond to
events that occur in other windows or documents; Chapter 5, “Window and
Frame Management,” explains how.

Global Variables and User-Defined Properties

As mentioned in Chapter 2, “Fundamentals of HTML Scripting,” no global
variables are available when you are scripting in Dynamic HTML. Instead, all
variables declared outside the scope of a function or an event handler are

91

PART [: HTML AND SCRIPTING

automatically added as user-defined properties of the window object. When the
user exits a page, variables that were added by the page are removed from the
window. This is done for a number of reasons: so that a new page can be cer-
tain that no properties yet exist on the page, and for security purposes, o that
another page does not come along and attempt to read the state of the prior page.

Therefore, the lifetime of the user-defined properties of the window object
is the same as the lifetime of the script, even though the window object exists
until the application window is destroyed. When a new page is loaded, the only
exposed window object properties are the builtin properties defined by Dy-
namic HTML.

Naming the Window

Each window is created without a name. You can name a window by assigning
astring to its name property. You can supply a name for a frame when you create
it as part of a frameset.

The name property designates the target for a link anchor or form results.
By default, all pages are targeted to the current frame or to the frame or win-
dow specified by the <BASE TARGET=windowName> tag. You can override this
target by supplying a TARGET attribute to a link anchor or Form element,
specifying which named window the document should appear in.

The window object’s name property is retained by the browser as the user
navigates to a page in order to ensure that frame targeting is maintained.

Evaluating Strings as Code

The window object exposes an evalmethod that can evaluate a passed-in string
as code and return the result. The code is executed in the context of the cur-
rently executing scripting language.

The Window Environment

This section discusses how to manipulate the browser’s window and surround-
ing environment. The browser window consists of a number of areas that can
be controlled through scripting, including the location of the currently dis-
played document, status bar text, history, and screen resolution. Figure 4-2
shows the various window features.

92

FOUR: The Browser Window

History buttons
Current document location

Window environment

defaul and status message:
Figure 4-2.
The window features that can be controlled by the window object.
Status Bar

The status bar text is usually displayed along the bottom of the browser. Access
to the message is available through two properties: defaultStatus and status. Both
properties are read /write strings. The difference is that the status property is
used for a message that is displayed temporarily, and the defaultStatus property
displays a message until the defauitStatus property is changed or the user ex-
its the browser window, as shown here:

<HTML>
<HEAD>
<TITLE>Status Text</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function setStatus() {
// Status message to display
window.defaultStatus = “Default status™;
// Temporary message to display
window.status = "Temporary status”;
}
</SCRIPT>
</HEAD>

(continued)

93

55

PART I: HTML AND SCRIPTING

<BODY>
<FORM>
<INPUT TYPE=BUTTON VALUE
ONCLICK="setStatus():
</FORM>
</BODY>
</HTML>

hange Status"

When the Change Status button is clicked, the status bar displays the string
Temporary status. Once the mouse is moved, the message will change to Default
status. When the user exits a page, the status bar text is reset to the browser’s
default message.

By using the onmouseoverand onmouseout events on an element, you can very
easily display a special status message when the mouse pointer is on the element:

<A ONMOUSEOVER="window.status="Go Home'" ONMOUSEOUT="window.status="""
HREF="home.htm">
Top Page
<IA>

Sample code for creating scrolling status bar text that takes advantage of the
status property and timers is presented in the section “Scrolling Status Bar Text”
later in this chapter.

History Buttons

94

Dynamic HTML provides methods for creating custom history buttons. Al-
though accessing the actual URLs visited by the user is not possible, the his-
tory object exposes three methods that simulate clicking the history buttons on
the toolbar: the go, forward, and back methods. The length property exposes the
number of elements in the history list. The following code creates simple Back
and Forward buttons:

<HTML>
<HEAD>
TITLE>History Buttons</TITLE>
</HEAD>
<BODY>
<FORM NAME="Browse">
<INPUT TYPE=BUTTON VALUE="Back"
ONCLICK="history.back();">
<INPUT TYPE=BUTTON VALUE="Forward”
ONCLICK="history.forward();">
</FORM>
</BODY>
</HTML>

56

FOUR: The Browser Window

Window Location

The address of the page in the window is exposed through the location prop-
erty, which references an object that identifies the URL, parsed into easy-
to-use properties. These components make the URL easier to retrieve and
manipulate.

The location Object Properties
Most of the properties of the location object break the URL into easy-to-use
components. The properties that relate to the URL are listed here:

protocol:// hostname:port/ pathname?searchithash

Almost all URLs have a protocol, a hostname, and a pathname. The port, search,
and hash properties might not have values associated with them. The search
property represents the search string usually supplied for server-side CGI (Com-
mon Gateway Interface) scripts. The hash property represents the bookmark on
the page.

In addition, the location object exposes a few extra properties that con-
catenate the properties mentioned. For example, the host property simply
returns the hostname followed by a colon and the port. The href property is the
entire URL exposed as a single string.

Assigning a value to any of these properties causes the browser to imme-
diately try to navigate to the new page. For most operations, the Aref property
is the one you should set to load a new page; you can also use the replace method,
discussed next.

The location Object Methods
Two of the methods exposed on the location object are reload([force]) and
replace(url). Calling the reload method is analogous to clicking the Refresh
button on the browser—both actions force the entire page to reload if it has
changed. By supplying true as the force parameter, you can force the page to
reload, even if the server claims that the page has not changed.

The replace method navigates to a new page. It works similar to assigning
a value to the href property, except that the replace method does not add the
current page to the history list. The replacemethod is useful for client-side URL
redirection, as shown in the following example:

<HTML>
<HEAD>
<TITLE>Browser Detectign</TITLE>
<SCRIPT LANGUAGE="JavaScript">

(continued)

95

PART I: HTML AND SCRIPTING

// Load a different version of the page for Netscape users.
if ("Netscape" == navigator.appName)
location.replace("nsversion.htm");
</SCRIPT>
</HEAD>
<BODY>
<l-- Page for other browsers -->
</BODY>
</HTML>

Screen Information

96

.The screen object exposes information about the current user’s display, includ-
ing the screen resolution and color depth. This information lets your code
analyze the user’s visual support and update the display accordingly. The fol-
lowing table lists the properties available on the screen object.

Property Description

width Horizontal resolution of the screen in pixels
height Vertical resolution of the screen in pixels
colorDepth Bits per pixel used by the display or buffer
availHeight Screen height inside docked windows
availWidth Screen width inside docked windows

The availHeight and availWidth properties give the dimensions of the portion
of the user’s screen that is available for windows—that is, the space not taken
up by any docked tool bars.

This information can also be used at load time to determine how the
document should be presented: either different style sheets can be applied, or
an entirely different document can be loaded. The following code demon-
strates how to redirect users with low-resolution screens to an alternative docu-
ment and how to disable a style sheet intended only for users with a specific
color depth:

<HTML>
CHEAD>

<TITLE>Screen-Based Pages</TITLE>

<LINK REL="styleSheet" TYPE="text/css” HREF="256color.css">

<SCRIPT LANGUAGE="JavaScript">
if ((648 >= screen.width) || (480 >= screen.height))

window.Tocation.replace("Towres.htm");

document.styleSheets[8].disabled = (screen.colorDepth < 8):

57

FOUR: The Browser Window

</SCRIPT>
</HEAD>
<BODY>
<1-- Document’s contents -->
</BODY>
</HTML>

Window Events

The window object exposes events that allow control over the current state of
the window. These events are useful for determining whether the document
is loaded and for responding when it receives or loses the focus or when an
EITOr occurs,

Document State Events

Events are available for tracking the loading and unloading of a document.
Handlers for these events should always be written in the document’s head to
ensure that they are hooked up as early as possible in the document’s loading
process. If the events are written in the middle of the document’s contents, the
code might never run if, for example, the user leaves the document before the
unloading code is even parsed.

Load Events

The two events related to the loading of the document are onload and onready-
statechange. Both events help you determine when the entire document has
been parsed and all elements have been loaded. The onreadystatechange event
is 2 new event that occurs on the document, not on the window; onreadystate-
change is discussed in detail in Chapter 6, “The HTML Document.”

The onload event fires when the entire document is parsed but does not
necessarily signal that all objects on the document are completely downloaded.
This event is also supported by the Netscape Navigator 3.0 and Microsoft Inter-
net Explorer 3.0 object models.

Unload Events

Two events relate to the unloading of the document: onbeforeunload and on-
unload. The onbeforeunload event is fired immediately before the onunload event.
The onbeforeunload event gives the Web author a chance to verify that the user
really wants to exit the document. This confirmation is useful when exiting the
document would cause information to be lost because the user failed to sub-
mit data to the server. For example, in a data-binding scenario in which the user
batches many changes on the client, exiting the document without submitting

97

PART

I: HTML AND SCRIPTING

Focus

98

the data would cause the changes to be unintentionally lost. (Data binding is
covered in detail in Chapter 15, “Data Binding with HTML?)

The onbeforeunioad event can display a predefined dialog box that presents
the developer’s text and asks whether the user wants to exit the document. To
display this query, set the returnValue property to a string, as shown in the fol-
lowing code. If you don't set the returnValue property using a string value, the
window simply unloads the document without displaying a dialog box.
<SCRIPT LANGUAGE="JavaScript” EVENT="onbeforeunload()" FOR="window">

event.returnValue = "Your input will be Tost if you leave.";
</SCRIPT>

) Figure 4-3 shows this custom message displayed by Internet Explorer 4.0
in response to the onbeforeunioad event.

Figure 4-3.
Custom message displayed in a special dialog box by the onbeforeunload event.

For security reasous, a document cannot prevent the window from unload-
ing it without the user’s intervention. This restriction prevents a document from
lf)cking the system and requiring the user to either end the browser applica-
tion or reboot.

Immediately before the document is unloaded, the onunload event fires.
At this point, there is no way to stop the process or ask the user not to leave
the document. Rather, this is where any cleanup code for the document should

be written—it is the last opportunity for scripts to access the document and its
contents.

Events

The term focus refers to the window or element that is active and receives user
notifications such as keyboard and mouse events. To allow you to determine
when the window receives and loses the focus, the window exposes the onblur
and onfocus events. In general, the onblur event fires when the window loses

58

FOUR: The Browser Window

the focus to an element within the window or to another window, and the
onfocus event fires when the window receives the focus.

The document that is loaded by the browser initially has the focus but does
not fire an onfocus event. When the window has the focus, every user interac-
tion with the window will cause the onblur and onfocus event sequence to oc-
cur. For example, clicking on the focusable window’s document fires the onblur
event on the window, followed by the onfocus event, even if the window already
has the focus.

If the initial document is a frameset, the frameset itself has the initial
focus. As with traditional HTML documents, loading the frameset does not fire
an initial onfocus event. However, once the user clicks on or navigates to an
instance of a frame in the frameset, an onblur event fires on the frameset and
an onfacus event fires on the corresponding frame. This leads to the first rule
of focus events:

B In any browser instance, only one item can have the focus at a time.

This one item can be a window object, a frameset, or an element within the
document such as an input control or embedded object. Whenever the focus
changes, an onblur event fires on a window or an element and an onfocus event
fires on some other element.

A document may contain any number of focusable elements, including
the input controls that take part in a form, embedded controls, and applets.
Whenever one of these elements receives the focus, an onblur event fires on the
prior window or element and an onfocus event fires on the focusable element.
This leads to the second rule of focus events:

Every change in focus occurs symmetrically, with an onblur event
firing on the element losing the focus and an onfocus event firing
on the element receiving the focus.

The focus and blur Methods

You can force a window or an element to receive or lose the focus by calling
its focus or blur method. Calling one of these methods causes the associated
event handler to be executed only if a change of state is required. For example,
a window that already has the focus will not fire the onfocus event if its focus
method is called. However, if the window does not have the focus and then
receives the focus through the focus method, the onfocus event will be fired. This
distinction is important to recognize because you cannot rely on code being
executed in response to all focus or blur method calls.

99

PART I: HTML AND SCRIPTING

Error Handling

The window object exposes an onerror event that is fired whenever a scripting
error occurs on the page. When errors occur in a script, the user is usually
presented with a cryptic message and the page fails to execute., Using an onerror
event handler, the page can override the builtin dialog box and display a more
explanatory message.

The onerror event also makes it possible to override the builtin dialog box
and fail silently, as shown in the following code. While this is easy to accomplish,.
it is probably not advisable. If a scripting error occurs on the page, the page
might enter an unpredictable state, causing the document to no longer function.

<SCRIPT LANGUAGE="JavaScript">
function stopAllErrors() {
/7 No scripting errors will ever display a message.
return true; // A value of true prevents the dialog box

// from appearing,
}

wir;dow.onerrur = stopAllErrors; // Hook up onerror event handler.
thisBadCode.Wi11Not.GenerateAnError(); // Syntax error
</SCRIPT>

Unlike most events in the Dynamic HTML object model, returning trueto the
onerror event forces the dialog box to not appear. For all other events, return-
ing Jalseprevents the event from performing its default action. This difference
is necessary in order to maintain compatibility with the onerror event in Net-
scape Navigator 3.0.

You can use the onerror event to gracefully handle errors in user input.
In the following example, the user types a color name that is applied to the
document’s text box. If the user types an invalid color name, a custom dialog
box warns the user that the color name is invalid.

<SCRIPT LANGUAGE="JavaScript">
function doError() {
if (arguments[8] == “"runtime error 388") {
alert("Invalid Color Name");
return trye:
}
1]
window.onerror = doError;
</SCRIPT>
Coler:
<INPUT TYPE=TEXT ONCHANGE="this.style.color = this.value;™
VALUE="Black">

100

59

FOUR: The Browser Window

The onerror event passes the event handler three arguments: an error
description, the name of the file in which the error occurred, and the line
number of the error. Error handlers should not use the line number param-
eter because if the source is edited, the line numbers will be updated and the
error handlers will no longer work.

User Events

User events are events that fire when the user interacts with the window—for
exarnple, when the user resizes or scrolls the window. These events fire after
the actions have been completed, so event handlers can’t cancel the actions.
Chapter 5, “Window and Frame Management,” introduces methods that scripts
can use to resize or scroll the window.

Using CSS (Cascading Style Sheets), you can create containers within the
document that support scrolling and resizing. These actions fire the same
events on the containers as they do on the window.

The onresize Event

Every time the user resizes a window, an onzesizeevent fires on the window. This
event lets you write code that rearranges the contents or even other windows
in relation to the current size of the document.

The onscroll Event

The onscrollevent is fired each time the document is scrolled, either by the user
manually moving the scrollbar or by an action that results in the document
being scrolled—for example, navigating to a bookmark or using the arrow keys.
The properties for determining the current scrollbar’s position are exposed
through the body object on the document itself. Interacting with these prop-
erties is demonstrated in Chapter 5; a complete discussion of these properties
is presented in Chapter 9, “Scripting Individual Elements.”

Specifying Window Events
All the window events—including onblur, onfocus, onload, onunload, and onbefore-
unload—can be specified as attributes of the <BODY> tag in an HTML page,
which allows you to bind these events to a handler using attributes rather than
scripts, as shown in the following code:
<HTML>

<HEAD>
<TITLE>Hooking Up Event Handlers</TITLE>

(continued)

101

PART 1: HTML AND SCRIPTING

<SCRIPT LANGUAGE="JavaScript">
function doload() {
// Do something when document is Joaded.
}

function doUnload() {
// Do something when document is about to be unloaded.
}
window.onload = doload: // Hook up event handler in script,
</SCRIPT>
</HEAD>
<I-- Hook up event handler using a Body element attribute. -->
<BODY ONUNLOAD="doUnload();™>
</BODY>
</HTML>

Timer Events

102

Timers fire events after a specified amount of time, rather than as the result
of a user action. They are useful for animating objects in the browser or for
forcing code to execute after a fixed amount of time. The window object can
create two types of timers:

& Timers that execute the code once after the specified time elapses

W Timers that automatically cycle and execute the code each time the
specified interval elapses

Timers can be added to the window only through code; they cannot be
specified as attributes of any element. The setTimeout method creates a timer
that executes only once, and the setIntervalmethod creates a timer that repeat-
edly executes. Both methods take the same set of parameters:

var timerRef = window.setTimeout(script, time)
var timerRef = window.setlnterval(script, time)

You can use a one-time timer to repeatedly execute a handler if you re-
set the timer in the handler, as shown here:

<SCRIPT LANGUAGE="JavaScript™>
var timeEveryl@®;
function Everyl@9() {
// Write code to be executed here.
d8 cao
// Reset the timer.
timeEveryl6@ = setTimeout("Everyl00();", 10@);

60

FOUR: The Browser Window

/1 Make first call.
timeEveryl8® = setTimeout(”EverylB@();", 108);

// When user exits the page, remove timer.
window.cnunload = new Function{"clearTimeout(timeEveryl@@);™):
</SCRIPT>

If you use setInterval instead of setTimeout, you don’t need to reset the timer in
the handler.

NOTE: The setInterval method was introduced in Netscape Navi-
gator 4.0 and Internet Explorer 4.0 as a convenience. If you are writ-
ing code to run on down-level browsers, use the setTimeout method
instead of the setInterval method.

You can pass parameters to the handler by building the function call string
manually. The following code builds a function call with three parameters:

var tm = setTimeout{"doThis(" + argl + ™, 23, " + arg3 + ");", 108@);

Timers are created using a setTimeout or setInterval method and can be
removed at any point using the corresponding clear method: clearTimeout or
clearInterval. Both clear methods take as a parameter the timerRef value re-
turned by the set method. Therefore, when you are setting up a timer, the
returned value should be saved in a variable.

In the preceding script example, the timer is cleared in the onunload event
when the user exits the page. The onunload event is fired right when the page
is about to be removed from memory. This step is optional, but it is good pro-
gramming practice because it ensures that the browser releases the timer from
memory.

Using Timers

This section provides three examples that use timers. The first example dem-
onstrates a timer that navigates to a new page after a specified interval; it uses
the setTimeout method because the code is intended to execute a finite number
of times. The next two examples use the setfntervalmethod. The second example
creates scrolling status bar text using Dynamic HTML to improve on the typical
implementation of this common device. The third example creates a ticking
clock. Timers are used in many examples throughout this book to create in-
teresting effects.

Automatic Page Navigation

The code on the following page demonstrates a simple timer that navigates to
a new page after a specified amount of time. It also gives you a brief glimpse
into dynamic contents by displaying an updated countdown.

103

PART I1: HTML AND SCRIPTING

<HTML>
<HEAD>
<TITLE>Countdown</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var intleft = 5; // Seconds until navigation occurs

function TeavePage() {
if (8 == intleft) // Time is up--navigate
document.location = "home,htm";
else {
// Count down and output updated time by
// changing the contents of the element.
intleft -= 1;
document.all.countdown.innerText = intLeft + " ";
// Wait another second.
setTimeout("leavePage()”, 1064);
}
}
</SCRIPT>
</HEAD>
<BODY ONLOAD="setTimecut('TeavePage()', 1088)">
Navigation to home.htm will occur in

<!-- Output initial amount of time. -->
<SCRIPT LANGUAGE="JavaScript™>
document.write(intLeft);
</SCRIPT>

seconds,
</BODY>
</HTML>

The number of seconds the timer takes to navigate is controlled by the intLeft
variable. Changing the initial value of the intLeft variable also automatically

updates the initial value in the contents because of the simple script in the
document’s body.

Scrolling Status Bar Text
The following code creates status bar text that scrolls from right to left. This
example will run only in Internet Explorer 4.0 because the Body element is
customized with a user-defined attribute to store the message. This technique
of adding attributes to elements to define new behavior is introduced in Chap-
ter 8, “Scripts and Elements.”

104

61

FOUR: The Browser Window

<HTML>
<HEAD>
<TITLE>Scrolling Status Bar Text</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function spacer(pos) {
// Simple routine to generate spaces
var space
for (var i i < pos; i++)
space += " ";

return space;

function scrollStatus() {
// Verify that there is a message to scroll.
if (null != message) {
with (message) {
// Restart message.
if (position < -text.length)
position = maxSpace;
/1 Scroll words off Teft edge.
if (position < 0) {
position--;
window.status = text.substring(-position);
}
else {
// Qutput preliminary spaces.
window.status = spacer(position--) + text;
}

function initMessage() {
// Constructor for message object
// Message to display is a required argument.
this.text = document.bedy.getAttribute("message”);
/! The speed is optional.
if (null != arguments(@])
this.speed = arguments[8];
else
this.speed = 18;
// Initial number of prefix spaces
this.maxSpace = 138;
this.pesition = maxSpace;
/7 Start timer.
this.timer = setInterval{“scrollStatus()". this.speed}:

(continued)

105

PART 1: HTML AND SCRIPTING

106

return this;
1
</SCRIPT>
</HEAD>
<BODY ONLOAD="message = initMessage(19);"
message="Demo String to Scroll™>
Deme Message Page
</BODY>
</HTML>

Ticking Clock

Before Dynamic HTML, ticking clocks could be added to documents only
through applets, images with complex code, or related tricks. This example
demonstrates how to create a ticking clock that exists directly within the HTML
document. The following code specifies that the output for the clock be placed
inside a Span element with the ID clock. After each tick, the contents of the
Span element are replaced with the new time.

<HTML>
<HEAD>
<TITLE>Ticking Clock</TITLE>
<STYLE TYPE="text/css">
#clock {color:blue; font-size:120%} /+ Format the clock. */
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>
// Check whether IE4 or later.
var M5 = navigator.appVersion.indexQf{("MSIE");
window.isIE4 = (MS > 8) &&
(parselnt(navigator.appVersicn.substring(MS + 5, MS + 6))
>=4);

function lead@(val) (

// Add leading @s when necessary.

return (val < 18) ? "@" + val.toString() : val;
}

function buildTime() {

var time = new Date();

var ampm = "AM";

var h = time.getHours():

// Fix military time and determine ampm.

if (h>12) {
h=h-12;
ampm = " PM";

}

return Tead@(h) + ":" + lead@(time.getMinutes()) + ":" +
Tead@(time.getSeconds(}) + ampm;

62

FOUR: The Browser Window

function tick() {
// Replace the clock’'s time with the current time.
document.all.clock.innerText = buildTime();
}
</SCRIPT>
</HEAD>
<l-- Start up the timer only if the browser is IE4. -->
<l-- When unloading. remove the timer if it exists. -->
<BODY ONUNLOAD="1f (null != window.tmr} clearInterval(window.tmr);"
ONLOAD="1f (window.isIE4)
window.tmr = setInterval{ tick()", 999);">
<H1>Below is a live, ticking clock programmed entirely in HTML.
</H1>
<P>The current time is:

<SCRIPT LANGUAGE="JavaScript">
// Down-level script support;
// output an initial static time.
document.write{buildTime(});
</SCRIPT>
.
</BODY>
</HTML>

This code runs acceptably on down-level browsers that support scripting.
The trick here is the document.write method contained within the body of the
document to output the current time in the appropriate position in the stream.
In browsers that support Dynamic HTML, the clock will continue to be up-
dated with the correct time. In nondynamic browsers, only the time at which
the page was loaded is displayed.

Timer Precision

Timer events cannot be relied on to occur with precise regularity—a
timer event designed to fire once per second may not actually do so.
Depending on the operating system, the timer may not fire until an-
other application or process yields to the browser.

Irregularity can be visible in a timer that is used for animation.
The animation might appear to stop momentarily, rather than move
smoothly. This hesitation is probably due to a delay in the timer’s exe-
cution caused by some other process or by the browser itself.

107

PART 1: HTML AND SCRIPTING

The clientinformation or navigator Property

The clientInformation and navigator properties reference an object containing in-
formation about the client. The clientInformation property was added to Internet
Explorer 4.0 as an alias for navigator to separate any implied relationship between
the object model and a particular browser. However, because the clientInformation
property is currently supported only by Internet Explorer 4.0, you should use
the navigator property when you are targeting multiple browsers. Both proper-
ties return the same information, including the name and version of the client.

NOTE: Throughout this section, the clientInformation and navi-
gaior properties and objects are used interchangeably. In all cases,
both properties and objects provide exactly the same information.

Using the clientInformation or navigator object, code can be executed con-
ditionally based on the browser brand or version number. If you are simply cre-
ating code to work around a bug or a small unsupported feature in one browser,
client-side checking works well. But client-side negotiation that results in new
pages being downloaded requires multiple hits to the server. If you want to
provide different pages for each brand of browser, you can get better perfor-
mance by transmitting the correct page initially, based on the header that is
submitted.

Client Brand Information

The following four properties on the navigator object expose the client version
and name:

W appCodeName

 appName

m appVersion

B userAgent

Both Internet Explorer and Netscape Navigator follow the same general

format for the appVersion property. The appVersion property returns the version
of the client in the following format:

clientVersion (platform; information [; extrainformation])

In Netscape Navigator, the platform field indicates which platform the browser
is running on. In Internet Explorer versions 3.0 and 4.0, the string compatible
is returned as the platform, and the actual platform is indicated in the
extralnformation field.

63

FOUR: The Browser Window

In Netscape Navigator, the information field indicates the product’s en-
cryption level. For example, 7 is returned for the international release, which
provides a weaker level of security than the U.S. version in order to comply with
U.S. export restrictions. The U.S. release returns U in this field.. Internet Ex-
plorer returns a version number in the information field.

The extralnformation field may return the platform or the build number
of the required operating system, Internet Explorer uses this field to return
detailed platform information. Depending on the platform, this field may or
may not be used by Netscape Navigator.

In general, the fields in the appVersion property follow a consistent for-
mat. Your code can distinguish between the different clients by parsing the
value of this property. The following table lists the values returned by Internet
Explorer and Netscape Navigator on the Microsoft Windows platform for the
appCodeName, appName, and appVersion properties.

Browser appCodeName appName appVersion
Microsoft Internet ~ Mozilla Microsofi 2.0 (compatible;
Explorer 3.0 Internet Explorer MSIE 3.0A;
Windows 95)
Microsofi Internet ~ Mozilla Microsoft 4.0 (compatible;
Explorer 4.0 Internet Explorer MSIE 4.0;
Windows 95)
Netscape Mozilla Netscape 2.01 (Win95; 1)
Navigator 2.01
Netscape Mozilla Netscape 3.0 (Win95; I)
Navigator 3.0
Netscape Mozilla Netscape 4.0 (Win95; I)

Navigator 4.0

The userAgent property contains the HTTP (Hypertext Transfer Proto-
col) user-agent string that was specified in the HTTP request. The user-agent
string is just the concatenation of the appCodeName property and the appVersion
property, separated by a slash: appCodeName/appVersion.

Parsing appVersion

The code on the following page parses the appVersion property into its basic
components. The individual elements of appVersion are then added to the navi-
gator object as properties.

109

PART I: HTML AND SCRIPTING

<HTML>
<HEAD>
<TITLE>Application Version</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// Initialize version.
function getVersionInfo() {
var version = navigator.appVersion;

/1 Locate the opening (.
var iParen = version.index0f("(", 8);:

// The client version is the string before the (.
navigator.clientVersion =

version.substring(g, iParen - 1);
var information = new Array();

// Automatically split the remaining values inta an array.

information = version.substring{iParen + 1,
version.Tength - 1}.split(";");

// First value is the platform.
navigator.platforminfo = information[2];

// Second value is the information field.
navigator.information = information[1]:

/% Third value is extra information, which may be null
depending on the browser and platform. */
navigator.extralnformation = information[2];
}
getVersionInfo();
</SCRIPT>
</HEAD>
<BODY>
<H1>Client Information</H1>
<SCRIPT LANGUAGE="JavaScript">
// Output the information.
document.write("Platform: " + navigator.platforminfo +
"
™):
document.write("Client Version: " + navigator.clientVersion +
"
"});
document.write("Information: ™ + navigator.information +
"
");
document.write("Extra Info: " + navigator.extralnformation +
"
"):
</SCRIPT>
</B0DY>
</HTML>

110

64

FOUR: The Browser Window

Multiple Windows and the navigator Object

The navigator object is not shared between all loaded instances of the window.
Instead, each window has its own instance of the nawvigator object. While in
almost all cases the information exposed by the navigator object is the same for
each window, this isolation is important. For security reasons, if an instance
of a page customizes the navigator object, only that instance is allowed to
access it.

The preceding code parses the client information into multiple proper-
ties that are added directly to the navigator object. These properties are avail-
able only on the navigator object of the associated window. Referencing these
user-defined properties of the navigaior object on another window will return
undefined values, as they do not exist.

User Settings

The navigator object provides access to information about whether Java and
cookies are enabled or disabled on the user’s browser.

Java Support
To determine whether Java is enabled on the client, the navigatorobject exposes
a javaEnabled method. This method returns a Boolean value that specifies
whether the client can display Java applets.

Using the javaEnabled method, you can write a script that either inserts
the applet or displays a message to the user:

<SCRIPT LANGUAGE="JavaScript™
if (navigator.javaEnabled(}}
document.write("<APPLET NAME=demo CODE=demo.class ™ +
"WIDTH=58 HEIGHT=5@></APPLET>");
else
document.write("This page cannot run with Java disabled." +
"</BX");
</SCRIPT>

Cookie Support

Internet Explorer 4.0 exposes a property, cookieEnabled, that specifies whether
the client supports cookies. Cookies allow a small piece of information that
is associated with the current URL or domain to be retained on the client’s
machine. Some users do not want pages to retain any information on their hard
drives and so disable this browser feature. The cookieEnabled property contains
a Boolean value that indicates whether the user has deactivated this support.
Using this property, you can write custom behavior that does not rely on the
client-side cookie if it is unavailable.

111

PART

I: HTML AND SCRIPTING

Unfortunately, Internet Explorer 3.0 and Netscape Navigator 4.0 do not
support the cookieEnabled property. Therefore, this method cannot always be
relied on for determining whether cookies are enabled on the client machine.

New navigator Object Properties

112

The navigator object supports a number of new properties that you can use to
adapt your document to different users. The following table summarizes these

properties.

Property Description

cpuClass The type of CPU. The value for a Pentium machine
is x86.

systemLanguage The default language for the system. For American
English the value is en-us.

userLanguage The user’s default language. For American English the
value is en-us.

platform The user’s current operating system. For Microsoft
‘Windows 95 the value is win32.

appMinorVersion The minor version of the browser application. The
value for Internet Explorer 4.0 is 0.

onLine A Boolean value indicating whether the user is reading

the page online.

65

Window and
Frame Management

This chapter shows you how to create, manage, and navigate between mul-

tiple windows, modal dialog boxes, and framesets. With Dynamic HTML, your

scripts can move, resize, and scroll windows. Your code can open HTML docu-

ments in their own windows in several different ways and manipulate the mul-

tiple browser instances created. It can also partition the window into multiple

regions called frames and manipulate each frame as an independent window.
The following topics are covered in this chapter:

Manipulating the window Chapter 4, “The Browser Window,” in-
troduced events that fire when the user interacts with the window.
This section discusses the methods provided by the window object
for moving, resizing, and scrolling the document.

Creating new windows This section discusses how to write code
to manipulate multiple windows. The window object can be used to
create new instances of the browser window, thus creating new
window objects. In addition, the window object exposes methods
that let you display a variety of dialog boxes and HTML-based help
windows. These dialog boxes are useful for providing notifications
to the user, requesting simple strings, and asking yes/no questions.
You can also create custom modal dialog boxes and help files whose
contents are located in other HTML documents.

Manipulating framesets This section presents the HTML code for
creating a frameset and introduces the frames collection, which pro-
vides access to the individual frames. Each frame is an instance of
the window object, so the object model for windows is also appli-
cable to each frame. All the techniques available for manipulating
windows can also be used for manipulating frames.

113

PART

1: HTML AND SCRIPTING

B Special event considerations This section introduces techniques
for cross-frame and cross-window event handling and demonstrates
how to write an event handler in one window that handles events in
another window.

Manipulating the Window

114

The window object exposes methods for moving, resizing, and scrolling the
window. All three operations can be performed relative to the current window
state or to a new absolute position through a pair of methods for each opera-
tion. The following table lists these methods and their actions.

Method Manipulates Description

moveBy(offsetTop, offsetLeft) Window Moves the window by the
specified offsets (measured in
pixels)

moveTo(top, left) Window Moves the window so that its
top left corner is at the
specified location (measured
in pixels)

resizeBy(offset Width, Window Resizes the window by the

offsetHeight} specified offsets (measured
in pixels)

resizeTo(width, height) ‘Window Resizes the window to the
specified size (in pixels)

scrollBy(offsetHorizontal, Document Scrolls the document by the

offsetVertical) specified offsets (measured
in pixels)

serollTo(horizontal, vertical) Document Scrolls the document to the

or scroll(horizontal, vertical) specified position (measured
in pixels; serollTo and scroll

are aliases for each other)

The Manipulates column specifies whether the method applies to the
physical window or to the current document. Normally, window methods called
within a frame apply to the current frame, but the moving and resizing meth-
ods are exceptions. These methods always apply to the containing window.
Therefore, an invocation of any of these four methods is the same as calling
the method on the topmost window, as shown here:

FIVE: Window and Frame Management

66

top.methodName

The top propenrty is described in the section “Manipulating Framesets” later
in this chapter. This property of a window object always returns the topmost
window in the document hierarchy. The moving and resizing methods have
restrictions preventing them from moving the window off the screen or siz-
ing it too small to be seen. The scrolling methods manipulate the document
in the window the method is invoked on. The scrolling methods correspond
to the scrollTop and scrollLeft properties exposed on the dody property of the
document, which are introduced in Chapter 9, “Scripting Individual Ele-
ments.” Calling the scrollTo method is the same as assigning new pixel values
to these properties.

Scrolling the Window

The scroll method (and the equivalent scroliTy method) can be used to scroll
the document to a specified location using xy-coordinates. The xy-coordinates
are specified in pixels relative to the document’s top left corner—this means
that scroll(0, 0) always scrolls the top left corner of the document onto the
screen.

The serollmethod will not scroll past the end of the document. If you pass
a vertical argument that is too large, for example, the seroll method will not re-
turn an error; it will simply scroll the bottom of the document to the bottom
of the screen. You cannot write code that will scroll the last line of the docu-
ment off the screen.

‘Whenever the document is scrolled, an onscroll event is fired on the win-
dow. This event fires regardless of whether the scrolling is the result of the scroll
method or the user manually scrolling the document.

In general, you should not write code that relies on the position of the
scrollbar, even if the width and height of the document are taken into account,
because different resolutions and different platforms may render fonts larger
or smaller or calculate the size of the document differently. Instead, you should
write more generic code that checks for specific state changes. For example,
in response to the onscroll event, you can write code that directly checks whether
an element is on the screen rather than trying to infer the location from the
scroll position.

More browsers support the seroll method than the equivalent seroliTo
method. The scroliTo method was introduced to allow naming consistency with
the moving and resizing methods.

115

PART 1: HTML AND SCRIPTING

Creating an Auto-Scrolling Window

The following code shows you how to use a timer to create a document that
automatically scrolls. This code demonstrates how to use the scrollmethod and
take into account the document’s size. This example produces scrolling text
similar to that produced by the builtin Marquee element.

<HTML>
<HEAD>
<TITLE>Automatically Scrolling Window</TITLE>»
<SCRIPT LANGUAGE="JavaScript">
var tScroll;
var curPos = 9;

function runTimer() (
curPos = document.body.scrollTop + 3;
window.scrol1(@, curPos):
// Start over when end of document is reached.
if (curPos > document.body.scrollHeight -
document .body.clientHeight)
window.scroll(e, @);
tScroll = window.setTimeout("runTimer();™, 108);
1

window.onload = runTimer;
window.onunload = new Function(”clearTimeout(tScroll)");
</SCRIPT>
</HEAD>
<I-- The margin-bottom style attribute adds white space
following the last line of text. -->
<BODY STYLE="margin-bottom:35@pt">
Contents to scroll
</BODY>
</HTML>

Creating New Windows

Dynamic HTML exposes five methods on the window for creating different
types of windows. These methods provide a set of predefined window types as
well as custom HTML-based windows and dialog boxes.

The two styles of windows that can be created are modal and modeless.
A modal window, normally a dialog box, is 2 window that the user must respond
to before the application can continue. When a modal dialog box is displayed,
the script in the original window stops and waits for the dialog box to be closed.
Modeless windows are windows that operate independently of the current
window; the code in modeless dialog boxes executes independently from the

67

FIVE: Window and Frame Management

other windows. Using modeless windows you can create multiwindowed HTML
applications.

The following table lists the methods available for creating modal and
modeless windows.

Method Description

Modal. Displays a simple modal dialog box
containing a supplied message and a single OK
button. The alert method should be reserved pri-
marily for displaying error messages.

Modal. Similar to alerz but used to ask the user a
question. This dialog box displays the text along
with OK and Cancel buttons. Clicking OK re-
turns frue, and clicking Cancel returns false.

alert(message)

confirm(message)

open({url [, name Modeless. Opens a new instance of the browser
[, features [, replace]]]}) with the specified URL. The open method allows
different window features to be turned on or off.
Modal. Displays a dialog box that requests a
string from the user. The optional defaultText
parameter is used to provide a default value for
the text box. If the user fails to enter a string and
clicks OK, an empty string is returned. If the
user clicks the Cancel button or the Close box, a
value of nullis returned.

showModalDialog (url Modal. Similar to the gpen method but displays a

{, arguments [, features]]) modal dialog box containing the supplied URL.
The script can pass arguments into the dialog
box, and because modal dialog boxes block the
flow of the creating script, the dialog box can
specify a return value.

prompit(message
[, defaultText])

The following sections discuss the use of these methods in detail.

Modeless Windows

The window object exposes an open method that lets you create a new modeless
window. The new window is simply another instance of the browser; it has its
own history and it navigates independently of the creating window.

The open method has the following syntax:

[windowObject =] window.open([url [, name [, features [, replacel]]1])

117

PART

I: HTML AND SCRIPTING

118

All parameters to the open method are optional. The url parameter specifies
the initial page to load. Omitting this value opens an instance of the browser
with a blank document, which is useful when the document is being generated
from script.

The name parameter assigns a name to the window to be used when the
window is a target for subsequent documents. Targeting indicates where a
document will be displayed when the user follows a link. The TARGET attribute
on the anchor can specify a window name. If no window exists for a specified
target, the document is displayed in a new window. If no target is specified, the
new document is displayed in the current window. The name parameter, and
therefore the TARGET attribute, can contain only alphanumeric characters
and underscores (_).

The features parameter consists of a string that specifies the window fea-
tures to display in the newly created window, thereby turning on or off the
menus, toolbars, and scrollbars and specifying an initial size for the window.
These features are discussed in detail in the section “Window Features” later
in this chapter.

The replace parameter specifies how the new URL will be handled in its
window’s history list. If you omit the replace parameter or pass a value of false,
the URL will be added to the end of the list as usual. If you pass a value of
true, the URL will replace the current URL in the list if there is one; otherwise,
it will not be added at all. The rgplace parameter is useful primarily for windows
that have already been opened.

Manipulating the New Window

The open method returns a reference to the newly created window. By assign-
ing the return value to a variable, you can call methods on the window later
in your code. If the supplied window name refers to a window that already
exists, another window with the same name is not created; rather, the new URL
is displayed in the existing window. If you do not assign the return value to
a variable, you cannot call the new window’s methods from code. You can,
however, get a reference to the window later by reopening it, as shown in the
following example:

// Open a new window, but do not save a reference to it.
window.open("myPlace.htm”, "myPlace");

/* Load a new document in the window "myPlace"
and save a reference to it. %/
myPlace = window.open("myPlace2.htm™, "myPlace"):

68

FIVE: Window and Frame Management

This code creates only one new window instance. This technique is similar to
targeting the window with a new document.

Modal and Custom HTML Dialog Boxes

As mentioned, modal dialog boxes require a response from the user before
interaction with the browser can continue. The window object exposes four
methods that let you prompt the user with a modal dialog box. Three meth-
ods display simple built-in dialog boxes, and the fourth method lets you create
custom HTML dialog boxes. The companion CD contains a file that demon-
strates how to create the different types of modal dialog boxes.

The methods for built-in dialog boxes—alert, confirm, and prompe—take
message strings as arguments. In JavaScript, these strings can contain line
breaks, indicated by the \n escape character. (VBScript uses chr(13) to specify
line breaks.) Here is an example of a multiple-line alert message string:

alert("You entered invalid values on fields:\nName\nUser");

The showModalDialog method is used to create custom dialog boxes that
can display HTML files. Inside the dialog box, the object model is slightly
different from the traditional window object model because the dialog box is
not a full instance of the browser, but rather a viewer for the HTML document.
A modal dialog box differs from a standard browser window as follows:

= No navigation can occur. (Clicking a link will open the URL in a
new instance of the browser.)

B The contents within the dialog box are not selectable.

Modal dialog boxes are intended for displaying messages that require a re-
sponse and for requesting information from the user. Like the built-in prompt
and confirm methods, custom modal dialog boxes can return information to
the browser.
‘When you display a custom modal dialog box, you should always supply
a close button. If you omit the close button, the dialog box can be dismissed
only by clicking on the Close box in the upper right corner of the window. To
create a close button, use the Submit button type so that the button acts as
the default button. The following code creates an OK button that closes the
dialog box:
<INPUT TYPE=SUBMIT VALUE="OK" STYLE="Width:5em"
ONCLICK="window.close():

119

PART 1: HTML AND SCRIPTING

120

Displaying Custom Dialog Boxes
The first and last arguments of the showModalDialogmethod are essentially the
same as those of the open method. The first argument specifies the URL to
display, and the last argument specifies the set of window features to display.
The second argument is different. Rather than take a name, the second argu-
ment can take any variable, including an array, and pass it into the dialog box.
This argument allows an application to pass information into the dialog box.
You can specify a return value for the showModalDialogmethod by setting
a special property on the dialog box. This property can take any type of vari-
able, which is returned to the calling application.

Passing Information to and from the Dialog Box

The information passed to and returned from the dialog box is exposed in the
object model of the dialog box. A copy of the variable specified as the second
argument of the showModalDialog method is exposed in the dialog box as the
dialogArguments property. The returnValue property is exposed for passing in-
formation back to the calling application. When the dialog box is closed, the
value of this property is used as the return value for the dialog box. The fol-
lowing code demonstrates how to access arguments passed into and return
arguments from a dialog box:

<HTML>
<HEAD>
<TITLE>Passing Variables</TITLE>
</HEAD>
<l-- When the dialog box is unloaded,
the value in the text box is returned. -->
<BODY ONUNLOAD="window.returnValue = document.all.ret.value;">
<P>You passed in the following value:</P>
<P ALIGN=CENTER>
<SCRIPT LANGUAGE="JavaScript">
document.write(window.dialogArguments);
</SCRIPT>
<P>Enter a value to return to the application:</p>
<P ALIGN=CENTER>
<INPUT TYPE=TEXT ID="ret" VALUE="Return">
<INPUT STYLE="width:5em™ TYPE=SUBMIT VALUE="0K"
ONCLICK="window.cJose()">
</BODY>
</HTHL>

This dialog box could be invoked using the following command:

showModalDialog("pass.htm”. “Pass this string to the dialog box."):

69

FIVE: Window and Frame Management

Creating an About Dialog Box

With the alert method, you can create a simple About dialog box. With the
showModalDialog method, you can create an HTML-enhanced About dialog
box. The following code displays a custom About dialog box. The first docu-
ment contains an About button to click to display the About dialog box.

<HTML>
<HEAD>
<TITLE>About Demo</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function about{() {
// Display About dialog box.
event.srcElement.blur():
window.showModalDialog(™about.htm™, ™",
“dialogWidth:25em;: dialogHeight:13em™)

1
</SCRIPT>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON VALUE="About™ ONCLICK="about():">
</BODY>
</HTML>

The About dialog box code is in the file about.htm:

<HTML>
<HEAD>
<TITLE>About Inside Dynamic HTML</TITLE>
</HEAD>
<BODY STYLE="text-align:center; font-size:75%;
background:1ightgrey™>
<H2>Companion CD-ROM Version 1.8</H2>
<H3>By Scott Isaacs</H3>
<H4 STYLE="font-style:italic™>
Demonstrating the Powar of Dynamic HTML!
</H4>
<t-- Submit button is the default button. -->
<INPUT TYPE=SUBMIT STYLE="Width:5em" VALUE="O0K"
ONCLICK="window.close()">
</BODY>
</HTML>

Creating Custom Input Dialog Boxes

The prompt method is useful for requesting simple information from the user.
However, if multiple pieces of information are required, the prompt method
is not sufficient. To pass multiple values back and forth between the dialog box

121

PART I: HTML AND SCRIPTING

and the creating window, you can use an array or an object. The following code
denfonstrates how to request multiple fields of information and pass the infor-
mation back to the application:

<HTML>
<HEAD>
<TITLE>User Information</TITLE>
<STYLE TYPE="text/css">
BODY {margin-left:1@pt; background:menu}
</STYLE>
<SCRIPT LANGUAGE="yavaScript™>
function savevalues() (
// Build an array of return values.
var retVal = new Array:
for (var intloop = 8; intLoop < document.UserInfo.length;
intLoop++)
with (document.UserInfolintLoop])
if (name 1= ")
retVallname] = value;
window.returnValue = retVal:
event.returnValue = false;
window.close();
}
</SCRIPT>
</HEADY
<BODY>
<!I-- This form is used to group the contained controls in an
easy-to-access array. -->
<FORM NAME="UserInfo">
<FIELDSET>
<LEGEND>User Information</LEGEND>
<P>User Name: <INPUT TYPE=TEXT NAME="User">
<P>Address: <TEXTAREA ROWS="3" = .
Jrieipane 3" NAME="Address”></TEXTAREA>
</FORM>
<P STYLE="text-align:center™>
<INPUT TYPE=SUBMIT STYLE="width:5em" ONCLICK="saveValues();"
VALUE="0K"> '
<INPUT TYPE=RESET ON ="wi g™ =" "
- CLICK="window.close();" VALUE="Cance]">
</HTML>

If the preceding code is in a file named UserInfo.htm, the following script

will display the code in a modal dialog box and then loop through and report
the return values:

122

70

———

FIVE: Window and Frame Management

<SCRIPT LANGUAGE="JavaScript">
var vals = new Array();
vals = window.showModalDialog("UserInfo.htm");
if (vals != null) (

strOut = "Returned values:";
for (name in vals)
strout += "\n" + name + " = " + vals[name];
alert(strout);
}
</SCRIPT>

The companion CD contains a complete set of these modal dialog box
examples, listed together to allow easy comparison of the different dialog box

types.

Size and Position of the Dialog Box
The size and position of the dialog box are exposed as four properties of the
dialog box’s window:

W dialogleft
u dialogTop
B dialogWidth
B dialogHeight

These properties are specified in pixels and are read/write. In no case can the
dialog box be sized smaller than 100-by-100 pixels or positioned off screen.

Creating Browsable Modali Dialog Boxes

A technique that can be used to work around the limitation that modal dia-
log boxes cannot be navigated is to display a quasidocument containing an
IFrame element that references the real document to be displayed. The IFrame
element creates a full instance of a browser. While this technique works, it
should be used cautiously. It is not the purpose of a modal dialog box to per-
mit the user to navigate out into the Web.

Window Features
When creating a new window using the open or showModalDialog method, you
can specify a set of window features using the optional third parameter, features.
The features string is a delimited list of values that turn on or off different as-
pects of the window. These values control the visual appearance of the window.
The following two tables list the features available for these two methods.

123

PART

I: HTML AND SCRIPTING

124

The following features are available to the window.open method.

Feature

Values

Description

directories
height
loft

location

menubar

resizable
serollbars

status

toolbar

iop

width

[yeslne]I[210]
pixels
pixels

[yeslnoli[110]
(yeslno]I[110]

[yeslnolI[210]
[yeslnoll[210]
[yeslno] I 2101

[yeslnoll [110]
pixels

pixels

Displays a directories bar that provides
quick links to various Web pages

Indicates the initial height of the browser
window

Indicates the distance between the browser
window and the left edge of the desktop

Displays the address bar

Displays the default menus {custom menus
cannot currently be defined)

Indicates whether the window is resizeable
Displays the scroilbars for the document

Displays the status bar at the bottom of
the screen

Displays the toolbar

Indicates the distance between the browser
window and the top of the desktop
Indicates the initial width of the browser
window

The window.showModalDialog method supports a slightly different set of
features for customizing the modal dialog box.

Feature Values Description
border [thickl thin] Specifies the thickness of the dialog
2 box border
center [yeslnoll[1101 Centers the dialog box
dialngHeight CSs Indicates the initial height of the
measuremernt dialog box
dialogLeft Css Indicates the left position of the dialog box
measurement
dialogTop GSSs Indicates the top position of the dialog box
measurement
dialogWidth CSS Indicates the initial width of the dialog box
measurement

(continued}

71

FIVE: Window and Frame Management

Feature Values Description
Jfont C88 font Defines the default font for the dialog box
Jont-family CSS Defines the default typeface for the
Jfontfamily dialog box
Jont-size CS8 font-size Defines the default font size for the
dialog box
Sfont-style CSS font-style Defines the default font style for the
dialog box
Sfont-variant CSs Defines the default font variant for the
Sfont-variant dialog box
Jfont-weight C8s Defines the default font weight for the
foni-weight dialog box
eslno] I[210] Specifies whether to display a help icon on
help [yesino] IL210] %
the title bar
maximize [yeslnolV [110] Specifies whether to display a maximize
window button on the title bar
minimize [yeslno]1{ 1101 Specifies whether to display 2 minimize

window button on the title bar

Figure 5-1 illustrates some of the features available when you create a

window using the open method.

Directories bar
Address bar
Toclbar

Menu bar

Serollbar

Status bar Resize tab

Figure 5-1.
Optional features of a window created using the open method.

125

PART

1: HTML AND SCRIPTING

126

The features String
Specifying a semicolon-delimited list of feature-value pairs creates the features
string:

[feature = value [; feature2 = value2... [; featuren = valuen]]]"

To create a window that does not display several of the browser features, use
the following code:
window.open("example.htm”, “example",

"toolbar=no; location=no: menubar=no; status=no; directories=no");
For features that can be enabled or disabled, you can specify yes or noor 1 or
0, or simply supply the parameter to turn on the feature. For example, all of
the following statements turn on the menubar feature:

window.aopen("
window.open(”
window.open(”.

. "menubar=yes");
., "menubar=1"};
. "menubar"};

NOTE: If compatibility with existing browsers is required, use a
comma-delimited list for the open method’s features string. Semico-
lons are supported only by Internet Explorer 4.0.

Default Values

If you create a window with the ¢pen method but provide no features string, a
default set of features is automatically provided. Ifyou provide a features string
that does not specify all of the features, unspecified features don’t use the
same defaults; rather, they use the settings on the original window. The
showModalDialog method does not support any of the browser features such as
toolbars and menu bars because the modal dialog box itself is not an instance
of the browser. By default, modal dialog boxes are displayed with only a title
bar, a status bar, a Close box, and a help icon.

Modal Dialog Box Features and CSS
Many of the features for the modal dialog box are closely related to GSS prop-
erties. This relationship is possible because a modal dialog box, unlike a
modeless browser window, displays a single document that cannot be navigated.
The font, font-size, font-weight, font-family, foni-variant, and font-style prop-
erties support the same values as the GSS properties of the same names. These
properties and the dialog box position and size properties correspond directly
to style sheet properties, and their values can be overridden by the document’s
style sheet.
For example, the size of the dialog box can be specified either by the page
calling showModalDialog or by the HTML document displayed in the dialog box.

72

FIVE: Window and Frame Management

The page calling showModalDialog can use the features string to specify the size.
The HTML document displayed in the dialog box can specify the size using
the CSS width and height properties. This size overrides any size specified by
the showModalDialog method. To create a dialog box that specifies its own size
as 10-by-10 ems, use the style sheet shown in the following HTML page:

<HTML>
<HEAD>
<TITLE>1@-by-10-Em Dialog Box</TITLE>
<STYLE TYPE="text/css">
HTML {width:18em; height:1@em}
</STYLE>
</HEAD>
<BODY>
This example creates a 10-by-16-em dialog box. Ems are a
relative unit that adapts well to different font sizes.
</BODY>
</HTML>

The opener Property

‘When a window creates another window, the second window can access the first
through its opener property. This property is read /write in Internet Explorer 4.0
and can be reassigned to another top-level window. This property was read-only
in Internet Explorer 3.0. The opener property is useful for calling methods
exposed by the window that created the new browser instance.

Closing a Window .

‘Windows created using code can be closed using the object model. For secu-
rity reasons, the user will be prompted if the code attempts to close the initial
browser window. The close method is used to close the associated window:

window.close(); // Close the current window.

A user might close one window that is accessed or manipulated by a script
in another window. For that reason, a closed window is not entirely destroyed;
its closed property is still accessible to the user and to scripts. When you write
code for one window that uses properties or methods of a second window, you
should first check whether the second window still exists, as shown here:

// Check whether myWindow is closed.

if (ImyWindow.closed) {
// Code that executes if the window is open

1
else {

// Error handler code if necessary
3

127

PART 1: HTML AND SCRIPTING

Creating a Window Manager

‘When a document in a browser creates another window, the only reference to
the window is the variable returned by the apen method. The object model does
not expose a collection of open windows. Such a collection would be useful,
for example, if you wanted to query for the existence of a particular window
or to change the URL of a window.

The following code shows you how to implement your own windows col-
lection containing references to all the windows your document has opened.
This collection is analogous to the window’s frames collection, which is discussed
in the next section. However, due to the way variables work, the windows col-
lection is accessible only for the lifetime of the document and is automatically
cleared when the user navigates away from the page.

The code defines a method named createWindow that opens a window and
adds a reference to it in the windows collection. Through this collection, you
can query whether a window is open, change the contents, or close the window.
‘When the document is unloaded, all windows created using createWindow are
automatically closed.

<HTML>
<HEAD>

<TITLE>Window Manager</TITLE>

<SCRIPT LANGUAGE="JavaScript™>
/1 Create an array to hold references to the child windows.
/+ Each member of this array will be a window object created

using the createWindow method below. */

var windows = new Array();

function newWindow(ur?, wname) {

// Constructor for the window

/# This function should be called only by the createWindow
function below. */

var features = "";

if (null != arguments[2])
features = arguments[2]:

return window.open(url, wname, features);

function createWindow(url, wname) {
// Add a window to the windows collection.
var features = arguments[2] == null ? "" : arguments[2];
windows[wname] = new newWindow(url, wname, features):

128

73

FIVE: Window and Frame Management

function closeWindows() {
// Close all windows opened by addWindow.
/# To close an individual window,
its close method is called. #/
/% This function should be called during the onunload
event to automatically close all open windows. #/
for (w in windows)
if (lwindows[w].closed)
windows[w].close():

}

/* The following two functions demonstrate using the
createWindow and closeWindows methods. +/

function listWindows() {
// List the windows and their current states.
var swin = "Window List\n";
for (w in windows)
swin +=w + ":" +
((windows[w].closed) ? "Closed” : "Open™) + "\n";
alert(swin);
}

function openSampieWindows() {
// Open two windows.
createWindow("closeme.htm™, "ChildWindowl™):
createWindow("closeme.htm”, "ChildWindow2"):
1
</SCRIPT>
</HEAD>
<BODY ONUNLOAD="closeWindows();">
<H1>Window Manager</H1>
<FORM>
CINPUT TYPE=BUTTON ONCLICKX="cpenSampleWindows();"
VALUE="Add Windows">
<INPUT TYPE=BUTTON ONCLICK="listWindows(};"
VALUE="List Windows">
<INPUT TYPE=BUTTON ONCLICK="closeWindows(};"
VALUE="Close Windows™">
</FORM>
</BODY>
</HTML>

This window manager works well for named windows. If you create several

windows using the createWindow method but pass empty strings for their names,
the window manager will lose track of all but the most recently created window.

129

PART

1: HTML AND SCRIPTING

Manipulating Framesets

130

Framesets were first supported in Netscape Navigator 2.0 and Microsoft
Internet Explorer 3.0. Framesets are a special type of HTML document used
to divide a browser window into multiple regions called frames. Framesets are
most commonly used to display a menu or other navigation mechanism in one
frame and a document in another or to provide a nonscrollable header at the
top of the page.

Figure 5-2 shows a frameset that displays four panes: a table of contents
pane with information panes above and below it, and a document pane. The
table of contents pane contains a list of anchors representing documents.
When an anchor is clicked, the corresponding document is displayed in the
right frame.

HTMI.
Tgb!e of Contents

T i o

£ o

Figure 5-2.
Frameset with three frames on the left, including a table of contents, and a
frame on the right containing @ document.

This section first introduces the HTML elements for creating frameset
documents and then describes the object model for manipulating them. Each
frame is a distinct window object that can be accessed and referenced by other
frames.

74

FIVE: Window and Frame Management

Authoring Framesets

The first step in creating a frameset is to determine the layout requirements.
A frameset can divide a screen into any number of rectangular regions; each
region contains its own HTML document.

The <FRAMESET> tag replaces the <BODY> tag in the HTML document
and is used to split the screen. Within the Frameset element are <FRAME> tags
that point each region to the individual document. Framesets can be nested
1o easily divide the screen into horizontal and vertical columns.

NOTE: Internet Explorer 3.0 mixed the concepts of a frameset
and a document with body contents even though these were in-
tended to be independent concepts. In Internet Explorer 3.0, when
a page consists of both a frameset and a body, the body is rendered
as a frame behind the frameset. This behavior is no longer supported
in Internet Explorer 4.0 and was never supported by Netscape Navi-
gator and therefore should not be used.

The syntax for a frameset is shown here:

<FRAMESET COLS="..." ROWS="
<FRAME SRC="..." NAME=
</FRAMESET>>
The COLS and ROWS attributes take comma-delimited lists of measurements
that are used to divide the screen. For example, the following frameset divides
the screen into four equal regions:

<FRAMESET COLS="50%, 50%" ROWS="50%, 50%">
</FRAMESET>
‘When these measurements are not specified, the frameset contains one row
and one column that take up the entire window.

To fill the regions with contents, the <FRAME> tag is used. The number
of frames specified should be equal to the number of rows multiplied by the
number of columns. In this example, the frameset should have four frames:

CFRAMESET COLS="50%, 50%" ROWS="50%, 50%">
<FRAME SRC="fl.htm">

<FRAME SRC="f2.htm">

<FRAME § 3.htm">

<FRAME SRC="f4.htm">
</FRAMESET>

131

PART

1: HTML AND SCRIPTING

132

Frames in a frameset are populated across and then down. The preced-
ing HTML code divides the browser into four regions containing HTML files,
as shown in Figure 5-3.

9] '
| flo E@ Vew Go Favw

The file f1.htm
contains this
document

f3.htm f4.htm

N ol i el T

Figure 5-3.
Frameset with four frames.

There is no requirement that the number of frames match the specified num-
ber of rows and columns. If you provide too many Frame elements, the extra
ones will be downloaded, but they will not be visible, If you provide oo few
Frame elements, some panes will appear without documents,

The following code demonstrates a technique that allows an extra frame
to be supplied but not displayed. This frame can contain contents that are
manipulated by custom code.

<FRAMESET COLS="50%, 58%">

<FRAME SRC="fl.htm">
<FRAME SRC="f2.htm">
<FRAME SRC="hidden.htm">

</FRAMFSET>

The frame containing hidden.htm is not displayed on the screen because the
first two frames take up 100 percent of the screen real estate. Scripts or other
contents that are being used for scripting purposes only might exist in
hidden.htm.

Framesects can also be nested using two techniques: a single cell can be
further subdivided into extra rows and columns by specifying another frameset,

75

FIVE: Window and Frame Management

or a document loaded into a frame can itself contain a frameset that further
divides the screen. To use the first technique in the example in Figure 5-3 to
split the lower right region into two columns, create the following HTML code:

<FRAMESET COLS="50%, 58%" ROWS="50%, 50%">
<FRAME SRC="f1.htm"™ NAME=f1>
<FRAME SRC="f2.htm" NAME=2>
<FRAME SRC="f3.htm" NAME=f3>
<FRAMESET COLS="5@%, 50%">

CFRAME SRC="f4.htm" NAME=f4>
<FRAME SRC="fh.htm" NAME=f5>
</FRAMESET>
</FRAMESET>

In this example, any one of the documents (fl.htm through f5.htm) can con-
tain another frameset that further divides the window. When a document in-
side a frame contains another frameset, you can change the number and
arrangement of your, frames just by changing that document. This technique
will be examined in more detail in the section “Targeting Frames” later in this
chapter. With nested framesets, you can’t change the arrangement of the frames
as easily.

To create only rows or only columns, you need to supply only the ROWS
or only the COLS attribute, More sophisticated control over the layout beyond
percentage values for ROWS and COLS is also supported. The values supplied
for each row or column can be a pixel measurement or an asterisk (*). The #*
is used to distribute the remaining space. To create a frameset in which the first
column is 50 percent of the width of the screen, the second column is one-third
of the remaining space, and the third column is the rest of the space, use the
following code:

<FRAMESET COLS="50%, *, 2">
<FRAME SRC="fl.htm" NAME=f1>
<FRAME SRC="f2.htm™ NAME=f2>
<FRAME SRC="f3.htm" NAME=f3>
</FRAMESET>

Fixing the Size and Scrollbars

By default, frames can be resized and have full support for scrolling. Two at-
tributes can be added to a frame that fix the size and disable the scrollbars for
the document: NORESIZE and SCROLLING. Specifying NORESIZE fixes the
current size of the frame; SCROLLING has three valid values, as listed in the
table on the following page.

133

PART

1: HTML AND SCRIPTING

134

Value Description

auto Displays scrollbars only if necessary

yes Always displays scrollbars

no Never displays scrollbars, even if the contents are clipped

The following code demonstrates a few of the different combinations
available with the SCROLLING and NORESIZE attributes:

<FRAMESET COLS="50%. 50%" ROWS="58%, 50%™>

<FRAME SRC="f1.htm" NORESIZE>
<FRAME SRC="f2.htm" SCROLLING="yes">
<FRAME SRC="f3.htm" SCROLLING="no" NORESIZE>

<FRAME SRC="f4.htm” SCROLLING="auto">
</FRAMESET>

Borderless Frames

Internet Explorer 3.0 and Netscape Navigator 3.0 introduced the ability to
create borderless frames. Borderless frames seamlessly display multiple pages
without any visual elements dividing the screen. This technique allows visually
appealing documents to be easily constructed.

The BORDER attribute specifies the thickness of a border. Borderless
frames are created by setting the BORDER attribute of the <FRAMESET> tag
to 0 to make the borders invisible.

Three additional properties are available on the frameset that provide
greater control over the borders. The FRAMEBORDER attribute specifies
whether the border, if present, will be drawn as a three-dimensional frame. The
FRAMESPACING attribute, like the BORDER attribute, sets the border thick-
ness. The resulting border thickness will be the value of the FRAMESPACING
attribute plus the thicknesses of the three-dimensional edges, if any. The
BORDERCOLOR attribute defines the color of the frame border.

Supporting Down-Level Browsers

Browsers that do not support framesets will display an empty document when
they attempt to load the page. To provide contents to an older client, HTML 4.0
defines the <NOFRAMES> tag. The NoFrames element can contain any valid
body contents that will be ignored by frames-enabled browsers and displayed
on any older clients. This technique works because the older clients do not
understand the <FRAMESET>, <FRAME>, and <NOFRAMES> tags; they
simply ignore these tags and display the contents of the NoFrames element.

76

FIVE: Window and Frame Management

Browsers that support framesets know to ignore the contents when they parse
the NoFrames element. An example frameset document is shown here:

<HTML>
<HEAD>
<TITLE>Frameset Example</TITLE>
</HEAD>
<FRAMESET COLS="50%, 50%" ROWS="50%, 50%">
<FRAME SRC="f1.htm"> S

<FRAME SRC="f2.htm">
<FRAME SRC="f3.htm">
<FRAME SRC="f4.htm">
</FRAMESET>
<NOFRAMES>

To view this Web site, please use a frames-enabled browser or
click here for a no-frames version.
</NOFRAMES>
</HTML>

Itis a good idea to always provide no-frames comments in frameset docu-
ments. They can be as simple as the statement in the preceding code or as
complex as an entire alternative Web page. The contents supplied in a
NoFrames element can include anchors and any other valid HTML code. A
minimal statement should be provided so that the user understands why the
‘Web site is not working. Otherwise, a user with an older browser who sees no
contents may choose to not come back to the Web site.

Another use of the NoFrames element is in the bodies of documents. For
example, a frameset might provide a navigation bar next to a main document,
but clients that do not support framesets will not display the bar when they
display the main document. You can provide a simpler navigation bar in a
NoFrames element in the main document, as shown in this example:

<HTML>
<HEAD>
<TITLE>Navigation Example</TITLE>
</HEAD>
<BODY>
<NOFRAMES>
<1-- These contents are displayed only in browsers without
frameset support. Embed an alternative navigation bar
below. -->
<P>
Home Page
Search Page
</P>
</NOFRAMES>
(continued)
135

PART [: HTML AND SCRIPTING
Document's contents go here,
<NOFRAMES>
<I-- Add a message at the end of the document. -->
<P>
This page is best viewed with a frames-enabled browser.
</NQOFRAMES>
</BODY>
</HTMLY

136

This technique works correctly in Internet Explorer versions 3.0 and later, It
does not work in Netscape Navigator because Navigator currently displays the
contents of the NoFrames element when they exist in the body of the document.

Inline Frames
Internet Explorer versions 3.0 and later support the ability to create inline
frames. An inline frame is contained within the body of a document instead
of within a frameset and allows a single document to contain other, indepen-
dent documents within the flow of the page. The inline frame is functionally
similar to a frame in a frameset. It supports targeting and allows users to navi-
gate within the frame, independent of the parent document.

Using an inline frame is similar to embedding an object using the <OB-
JECT> tag. The following two HTML statements both embed a document:
<IFRAME SRC="banner.htm"” WIDTH=50@ HEIGHT=500></IFRAME>

<OBJECT TYPE="text/htmi™ DATA="banner.htm" WIDTH=568 HEIGHT=500>
</OBJECT>

The primary difference between the two statements is that the IFrame element
can later be targeted similar to a frame in a frameset. In general, the IFrame
element should be used to define the navigable user interface within a page,
and the Object element should be used to include contents. The two elements
both embed banner.htm in the document, but only the IFrame element allows
navigation within its own window.

The IFrame element is a container whose contents are ignored by brows-
ers that support [Frame. Therefore, Jjustas you can use the NoFrames element
for non-frames-enabled browsers, you can specify alternative contents inside
the IFrame element for browsers that do not support IFrame:
<IFRAME SRC="banner.htm" WIDTH=50@ HEIGHT=508>

<P>Your browser does not support IFrame.</P>
</TFRAME>

77

FIVE: Window and Frame Management

Adding Script Elements

Scripts in a frameset document must be defined in the Head element of the
document prior to the first Frameset element, as shown below. Browsers may
ignore scripts that appear within or after a Frameset element.

<HTML>
<HEAD>
<TITLE>With Framesets, Script Location Is Important</TITLE>
<SCRIPT LANGUAGE="JavaScript™
/% This script will execute because it occurs before the
Frameset element. #/
</SERIPT>
</HEAD>
<FRAMESET ROWS="*">
<FRAME SRC="foo.htm">
<SCRIPT LANGUAGE="JavaScript">
// Scripts following the <FRAMESET> tag are ignored.
</SCRIPT>
</FRAMESET>
</HTML>

Targeting Frames

Naming a frame is similar to naming a window; the name is used to specify a
target for a link. When an anchor targets a frame or window, it replaces the
current contents of the frame or window with the new document. Only indi-
vidual frames, including the frame containing the frameset itself, can be tar-
geted. The replacement document can have any MIME type supported by the
browser, including a frameset that further divides the screen. This provides a
technique that gives the appearance that multiple frames are being updated
simultaneously.

The simple frameset shown here divides the screen into two frames:

<HTML>
<HEAD>
<TITLE>Main Document</TITLE>
<BASE TARGET="fContent">

</HEAD>
<FRAMESET COLS="300, *">
<FRAME SRC="menu.htm" NAME="fMenu">
<FRAME SRC="contents.htm” NAME="fContent">
</FRAMESET>
</HTMLY

The file contents.htm, shown next, appears in the right column and can itself
be another frameset. When the user navigates, the right frame can be updated
with a new document or an entirely new frameset definition.

137

PART

1: HTML AND SCRIPTING

<HTML>
<HEAD>
<TITLE>Contents</TITLE>
</HEAD>
<FRAMESET ROWS="20%, *">
<FRAME SR elcome,htm"”>
<FRAME SRC="home.htm">
</FRAMESET>
</HTML>

Searching for a Targeted Frame
‘When you target a frameset, a specific algorithm is used to determine the result-
ing window for the document. This algorithm is important because multiple
frames might share the same name. The location of a document with a speci-
fied target is determined by searching the set of named windows and frames.
If any of the predefined target keywords are specified, the document is
displayed in that frame. For example, _TOPreplaces the window with the new
document, _PARENT replaces the parent frame, and _SELFreplaces the cur-
rent document. For any other target name, all frames, inline frames, and win-
dows are searched in the following order:

1. The current frame

2. All subframes of the current frame, then all subframes of those
subframes, and so on

3. The immediate parent of the current frame and then its subframes,
the subframes of those subframes, and so on

4. The next immediate parent and all its subframes, and so on up the
chain to the top-level window and its subframes

5. The named windows opened by the current window in an arbitrary
order

If no match is found, a new window is opened as the target for the URL.

Scripting Framesets

138

Framesets are accessed and scripted through a frames collection that contains
each frame defined by a frameset. The frames collection on a window contains
all the child frames of the document. Each frame is a window object that ex-
poses the same object model as a stand-alone window.

The frames collection is constructed based on the document hierarchy,
not the visual hierarchy. Therefore, the visual hierarchy cannot be explicitly

78

FIVE: Window and Frame Management

determined using the collection itself. For example, this HTML document
divides the screen into two rows: the top row is a single frame, and the bottom
row is divided into two columns.

<HTML>
<HEAD>
<TITLE>Nested Framesets in a Single Document</TITLE>
</HEAD>
<FRAMESET ROWS="50%, 50%">
<FRAME SRC="top.htm"” NAME="tcpRow">
<FRAMESET CQOLS="58%, 50%">

<FRAME SRC="bleft.htm" NAME="bottomLeft">
<FRAME SRC="bright.htm” NAME="bottomRight">
</FRAMESET>
</FRAMESET>
</HTML>

The frames collection exposed for the window containing the preceding docu-
ment orders the frames as follows:

topRow
bottomLeft
bottomRight

Even though the framesets are nested, the frames collection flattens them into
source order.

If one of the documents referenced by a frameset contains another
frameset, a document hierarchy results; each document defines its own chil-
dren and each child window may further define more children. For example,
suppose top.htm is a frameset document:

<HTML>
<HEAD>
<TITLE>Nested Document That Is a Frameset</TITLE>
</HEAD>
<FRAMESET COLS="40%, =">
<FRAME SRC=tleft.htm NAME="nestLeft">
<FRAME SRC=tright.htm NAME="nestRight">
</FRAMESET>
</HTML>

The collections are now hierarchical because the document in the frame topRow
contains a subsequent frameset that in turn contains two more documents:

topRow
nestLeft
nestRight

bottomLeft

bottomRight

139

PART

I: HTML AND SCRIPTING

140

The collection of the topmost document is still the same. However, drilling into
the top frame returns a nested collection:

top.frames.length // 3 frames: topRow, bottomLeft, bottomRight
top.frames["topRow"].frames.length // 2 frames: nestleft and nestRight

top.frames[“topRow"].frames["nestLeft"].1ength // 8: no children of
/1 nestleft

Frames as window Objects

Each frame in the frames collection is actually a window object. The set of prop-
erties exposed on each frame is the same as the set exposed by the top-level
window. The window properties discussed in the rest of this section are there-
fore properties of frames.

Dynamic HTML exposes three related properties for referencing a win-
dow: self, parent, and top. The self property always returns the current window.
The parent property returns the parent window in a frameset hierarchy. The
top property returns a reference to the topmost window in the browser.

When the window is the topmost window, the parent property returns the
current window. Therefore, when you write a loop that walks up the frameset
hierarchy, the break case is when the current window equals the parent win-
dow, not when the parent window is null. The following code walks up the
frameset hierarchy until the topmost window is reached:

var fParent = self;
while (fParent = fParent.parent) {
fParent = fParent.parent;

}

Similar code determines whether the current window is the topmost win-
dow in the object hierarchy:

if (self == top) {
// Top window; do something.

3
else {

// Document is in a frameset; do something else.
}

The Implicit frames Collection
While the frames collection is exposed on the window object, it is not actually
a distinct property. Instead, the frames object and the window object represent
a single object. The existence of a frames property simplifies and helps disam-
biguate code.

The lack of distinction between objects is important. In JavaScript, when-
ever a property is added to the window object, it is also available through the

79

FIVE: Window and Frame Management

frames collection and vice versa. Therefore, referencing the frames property is
not required. For example, the following pairs of statements are equivalent:

// Specify number of frames.
window.length:
window.frames.length;

// Access the topRow frame.
window.topRow;
window.frames.topRow;

// Access the first frame in the collection.
window[8];
window.frames[@1;

Although there is no real distinction between objects, it is good coding
practice to use the frames collection when you explicitly refer to frame-related
members and the window property when you are using properties on the cur-
rent window. This practice helps self-document your code.

Defining Frame Contents

The contents of a frame are usually defined by a separate HTML document.
The SRC attribute of a frame can contain literal HTML code. The advantage
of putting HTML in 2 <FRAME> tag is that header frames can be defined
inline, as shown here, without requiring an external URL. This technique is
valuable in that it reduces the number of round-trips required to and from
the server.

<HTML>

<HEAD>

<TITLE>JavaScript-Generated Frame</TITLE>

</HEAD>
80, ">
JavaScript:'<H1>Welcome to My Home Page</H1>'"
header™>
content.htm™>

</FRAMESET>
</THTML>
Supplying the initial contents for a frame has no effect on its ability to
act as a target. This technique can be further generalized to most attributes
that use an URL. For example, Chapter 9, “Scripting Individual Elements,”
demonstrates how to use JavaScript for the HREF attribute of an anchor. Al-
ternatively, the VBScript: prefix can define the contents using VBScript.

141

PART I: HTML AND SCRIPTING

142

Traversing the Frameset Hierarchy

The following code visually demonstrates the document hierarchy for any
frameset. This code walks the window hierarchy in a specified browser instance
and outputs the document containership hierarchy.

<HTML>
<HEAD>
<TITLE>Frameset Hierarchy</TITLE>
</HEAD>
<FRAMESET ROWS="60., *">
<FRAME SRC="frames.htm">
<FRAME SRC="anyDocument.htm” NAME="hierarchy”>
</FRAMESET>
</HTML>

The precedingfile is a top-level frameset. In the bottom frame, it displays
the document to be analyzed (anyDocument.htm, but you can substitute any
document you want). In the top frame, it displays the document frames.htm,
listed next, which consists of a button and JavaScript code. When you click the
button, the code creates a separate window showing the document hierarchy.
This example is included on the companion CD.

<HTML>
<HEAD>
<TITLE>Frameset Hierarchy Generator</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function drillFrames{doc, w) {
doc.write("<TR><TD>Name: " + w.name + "
");
doc.,write("Location: " + w.location.href};
for (var i = 8; i < w.frames.length; i++) {
doc.write("<TABLE BORDER WIDTH=10@% CELLPADDING=3>"};
drillFrames{doc, w.frames(il]);
doc.write("</TABLE>");
}
doc.write("</TD></TR>");
}

function outputFrames() {
var doc = window.open().document;
doc.open();
doc.write("<Hl>Frameset Hierarchy</H1>"};
doc.write("<TABLE BORDER CELLPADDING=3>");
// Start at the sibling frame in the hierarchy.
drillFrames(doc, parent.hierarchy):
doc.write("</TABLE>");
doc.close();

80

FIVE: Window and Frame Management

</SCRIPT>

</HEAD>

<BODY>
<FORM>

<INPUT TYPE=BUTTON VALUE="Walk" ONCLICK="outputFrames();"™>

</FORM>

</BODY>

</HTML>

Determining the Layout of the Frameset

The frames collection exposes the document hierarchy in the browser; it does
not expose the physical divisions of each frameset. This information is exposed
through the document object. The document object has an all collection, which
represents every element in the document. Using the all collection, you can
determine the order of the framesets and frames. The document object and the
all collection are discussed in Part II. Programming the Frameset element is
discussed in Chapter 9, “Scripting Individual Elements.”

Determining Whether All Frames Have Been Downloaded
Framesets also expose an onload event on the frameset window. The onload
event occurs when all the frames within the frameset finish loading. Therefore,
any initialization that requires communicating across the frames in the
frameset should be written in this event handler.

In addition, the frameset document exposes a property that can be used
to query the current state of each frame and window: readyState. While each
frame is being loaded, this property’s value is interactive, and when all the frames
have been downloaded, its value is complete. The readyState property can be used
as a flag to verify that all the frames have been downloaded. The readyState
property and the related onreadystatechange event are discussed in detail in
Chapter 6, “The HTML Document.”

Simulating a Browser

The code in this section shows how to create a very simple browser using
framesets. This HTML document sets up the frameset:

<HTML>
<TITLE>Frameset Browser Demo</TITLE>
68, ">
browser™ SRC="browser.htm™>
<FRAME NAME="content™ SRC="">
</FRAMESET>
</HTML>

143

PART 1: HTML AND SCRIPTING

The following document represents the browser.htm file that is rendered
in the top frame. The top frame contains Go and Refresh buttons and a text
box in which the user types the URL. A Forward and a Back button are in-
cluded for moving through the history list. These buttons simulate the same
functionality found on most browsers’ toolbars:

<HTML>
<HEAD>
<TITLE>Browser Bar</TITLE>
</HEAD>
<BODY>
<FORM NAME="BrowseBar" ONSUBMIT="parent.content,location.href =
this.txtGo.value; return false;">
<INPUT TYPE=BUTTON VALUE="Back™
DNCLICK="parent.ccntent.history.back():">
<INPUT TYPE=BUTTON VALUE="Forward”
0NCLICK="parent.content‘history.forward():">
<INPUT TYPE=BUTTON VALUE="Refresh”
ONCLICK="parent.content.location.reload();">
<INPUT TYPE=SUBMIT VALUE="Go">
<INPUT TYPE=TEXT NAME="txtGo">
</FORM>
</BODY>
</HTHL>

NOTE: Browser security restrictions might prevent the Forward
and Back buttons in this code from navigating if the documents in-
volved are in different domains.

In this example, the controls are placed within a Form element to ensure
compatibility with Netscape Navigator 2.0 and 8.0, which fail to render any
controls that are not inside Form elements. Internet Explorer versions 3.0 and
later do not have this limitation and can display and script controls even if they
exist outside of forms.

Special Event Considerations

Using JavaScript function pointers, you can assign an event handler in one [rame
or a browser to an event property in another. This powerful technique allows
casy sharing of code between documents; however, it also adds complexity.
The event object is tightly related to the window that fired the event.
Therefore, even though an event handler might be located in a document in

81

FIVE: Window and Frame Management

another frame, the event object of the frame that generated the event must be
used, which requires walking the object hierarchy from the element that gen-
erated the event to the event object.

While this technique allows you to write flexible and powerful code, it is
limited by the security model in the browser. For example, a page cannot as-
sign event handlers to the events of a frame or browser window that contains
a document from another domain. Without this restriction, a rogue page could
hook the keyboard events and track the entry of confidential information.
Furthermore, once the user navigates away from a page, all the event handlers
are detached. This is consistent with the Dynamic HTML object model, in
which a new page is always provided with an entirely fresh state.

The function assignment method is the most efficient way to hook events
in another frame; it does not require the creation of an extra function handler.
However, this technique allows access only to the element generating the event:

<SCRIPT LANGUAGE="JavaScript™>
function doClick() {

/+ This is the event handler for the click event of the
document in window2, */

/* The event object cannot be dccessed directly using
the current window's event object. Instead,
window2's event object must be accessed.

The this pointer passed in points to the document
that generated the event. */

with (this.document.parentWindow.event) {

/1 Use the event object.

)]

var window? = window.open("sample.htm");
/+ Bind the event handler of window2 to the
doCiick function in this document. x/
window2.body.onclick = doClick;
</SCRIPT>
Scripting events across frames is the basis of the Event Tutor example in
Chapter 3, “Dynamic HTML Event Model.” The Event Tutor works by dynami-
cally hooking the events of the sample document and outputting strings in the
current window.

145

82

DOCUMENT
STRUCTURE

-

prict -3
B R A
#

A
Al

83

CHAPTEHR s I X

The HTML Document

Thc structure, contents, and style of an HTML document are exposed
through the document property on the window. The docuinent property refer-
ences an object that encapsulates all the information about the document. The
document object is the most important and powerful object of the Dynamic
HTML object model. Through this object, all elements contained in the docu-
ment can fire events and can be accessed and modified by scripts, allowing you
to create a dynamic document,

The elements in the HTML document are exposed through the collee-
tions on the document object. The contents of the document are accessible
through these elements and through a 7éxtRange object. Both techniques al-
low you to access and change the contents. The style of the document is exposed
through the styleSheets collection, which provides access to the global and linked
style sheets associated with the document.

Qur discussion of these issues will span several chapters. This chapter
begins the discussion by covering the following topics:

= Referencing the document ohject The document object is a prop-
erty of the window. This section shows you how to access the HTML
document contained within the current window as well as docu-
ments displayed in other windows.

® Changing the document’s colors The document object exposes
propertics for manipulating the color of the text and background
on the page. These properties are compatible with the existing ob-
ject model implementations in Netscape Navigator and Microsoft
Internet Explorer 3.0.

B Accessing meta information about the document Information de-
rived while the document is downloaded is exposcd to the object
model. This meta information includes the initial file size of the

149

PART 1i: DOCUMENT STRUCTURE

150

document and the dates when the file was created and last modi-
fied. In addition, any cookies associated with the document can be
retrieved or assigned.

® Modifying the HTML stream The document object exposes methods
for manipulating the HTML stream while the page is loading.
These methods work only while a page is rendering and are not
used to modify a page once it is loaded—separate objects and meth-
ods are exposed for this purpose.

Figure 6-1 shows the document object and the collections it contains. Next
to each collection is the tag for the HTML elements it contains.

all elements

applets <APPLET>, <OBJECT>
images

<FORM>
frames <IFRAME>

, <AREA HREF=...>

<SCRIPT>

style sheet objects

Figure 6-1.
The document object’s collections and the corresponding HTML. elements.

84

S1X: The HTML Document

Referencing the document Object

The document object is referenced as a property of the window object. If you
reference a document without specifying which window it is in, you get the
current document. Each of the following examples references a document to
get its title:
document.title // Current document‘s title
window.document.title // Same as above but explicitiy references

// current window
myPlace.document.title // Title of document in the window myPlace

The myPlace reference in this example must be a window reference returned
by the apen method or the name of a frame in the current frameset hierarchy.

Regardless of whether the current window contains a frameset or an
HTML document, the document object is fully exposed. For security reasons,
some properties may not be accessible across domains. For example, the con-
tents of a document are accessible only to pages that share the document’s
domain.

Changing the Document’s Colors

One of the simplest operations you can perform on a document is to change
the colors of the background and the text. The document object exposes prop-
erties that define the colors of the background, the text, and the links.

The color properties available on the document are alinkColor, bgColor,
fgColor, linkColor, and wvlinkColor. The bgColor property controls the color of
the document’s background, and the fgColor property controls the default color
of the text.

The three link color properties represent the colors of the active, visited,
and unvisited links. Link is an ambiguous term—in this case, it refers to an
Anchor element that has an HREF attribute set:

This is a link.

The active link is the link that has the focus and is normally indicated by a
change in color combined with a pale dotted border. A visited link is a link that
the user has recently visited, and an unvisited link is a link that has not yet been
followed.

Setting the document’s properties directly is only one way to control the
document’s colors. You can also set the colors using attributes in the <BODY>
tag or style sheets. If you use the <BODY?> tag or style sheet attributes, your code
will be more encapsulated, but the color properties on the document object are
supported by more browsers.

151

PART I1: DOCUMENT STRUCTURE

The following table lists the color properties and their corresponding
<BODY> tag attributes.

Property Attribute
alinkColor ALINK
bgColor BGCOLOR
fgColor TEXT
linkColor LINK
vlinkColor VLINK

Style sheets have a higher priority in setting colors than the document’s
properties or the <BODY> tag’s attributes. The document’s properties will
always reflect the colors shown on the screen. If the color is set using a style
sheet, assignments to the document’s color properties will be ignored.

Valid Color Values

All the color properties, including those exposed on elements, take a literal
string representing the color name or an RGB hex value. A list of the valid string
names and their hexadecimal equivalents can be found on the companion CD.
RGB hex values are specified in the following format:

#RRGGBB

R, G, and Bstand for the red, green, and blue channels; each channel accepts
a valid hexadecimal value in the range 0 through #FF.

‘When you access the value of one of these properties on the document
or on an HTML element, you always get a hexadecimal number, even if you
initially supplied a string. For example, a property set with the string Red
returns #FF0000. However, the CSS (Cascading Style Sheets) properties retain
values as supplied, so a style property set to red returns red.

Scenario: Color Selector

152

A large number of color names are now available in HTML. The colors that
these names represent are often difficult to decipher, and determining what
colors go well together can be a complex task. The following code helps by
providing a color selector that sets the background and text colors. All aspects
of the color selector are encapsulated in the Div element, so the color selec-
tor and its scripts can easily be moved and run unchanged in other HTML
documents.

85

S1X: The HTML Document

<HTML>
<HEAD>
<TITLE>HTML-Based Color Selector</TITLE>
{STYLE TYPE="text/css">
TABLE {background:white}
/% Make all cells a uniform size. */
TD (width:3@pt: height:3@pt; cursor:default}
</STYLE>
</HEAD>
<BODY>
<H1>Color Selector</HI1>

<l-- When the user clicks on the cell, the screen is redrawn
with the corresponding background or text color. -->
<DIV ONCLIGK="colorSelector{()">
<SCRIPT LANGUAGE="JavaScript">
function colorSelector() {
// Based on the table, change to the correct color.
// srcElement is the element the user clicked on.
if ("TD" == event.srcElement.tagName)
if (document.all.Text.contains(event.srcElement))
document.fgColor = event.srcElement.bgColor;
else if (document;a11.Backgraund.cuntainﬂ
event.srcElement))
document.bgColor = event.srcElement.bgColor;

}
</SCRIPT>

<1-- To extend these tables, add cells to the background
and/or the text color tables. Each cell consists of a
packground color only, set appropriately. -->
<TABLE ID="Background™ BORDER>
<CAPTION>Background Color</CAPTICON>
<TR>
<TD BGCOLOR=Black></TD><TD BGCOLOR=Red></TD>
<TD BGCOLOR=Green></TD><TD BGCOLOR=LightBlue></TD>
<TD BGCOLOR=Yellow></TD>
</TR>
<TR>
<TD BGCOLOR=YellowGreen></TD><TD BGCOLOR=Qrange></TD>
<TD BGCOLOR=Navy></TD><TD BGCOLOR=Magenta></TD>
<TD BGCOLOR=Brown></TD>
STR>
<TR>
<TD BGCOLOR=Black></TD><TD BGCOLOR=B1ue></TD>
<TD BGCOLOR=Burlywood></TD><TD BGCOLOR=Go1d></TD>
<TD BGCOLOR=Cyan></TD>

=]

(continued)

153

PART I1: DOCUMENT STRUCTURE

</TR>
</TABLE>
<TABLE ID="Text™ BORDER>
<CAPTION>Text Color</CAPTION>
<TR>
<TD BGCOLOR=Black></TD><TD BGCOLOR=Red></TD>
<TD B&COLOR=Green></TD><TD BGCOLOR=LightBlue></TD>
<TD BGCOLOR=Brown></TD>
</TR>
<TR>
<TD BGCOLOR=White></TD><TD BGCOLOR=BTue></TD>
<TD BGCOLOR=Burlywood></TD><TD BGCOLOR=Gold></TD>
<TD BGCOLOR=Cyan></TD>
</TR>
</TABLE>
</DIV>
</BODY>
</HTML>

The color selector works by enclosing the two tables in a DIV element and
using event bubbling to detect all click events. When the user clicks in the
DIV element, the click event handler checks whether the click occurred in a
cell of one of the two tables. If the click occurred in a cell, the event handler
first determines whether the cell is in the background table or text table and
then changes the corresponding document color to match the color of the
clicked cell.

The preceding code contains only a subset of the available colors, but the
selection can easily be expanded by simply adding extra cells to either the
background color or the text color table.

Reflecting HTML Attributes as Properties

154

The attributes of all HTML elements in a document are exposed as proper-
ties in the object model. You can set an attribute in an HTML tag, or you can
set the corresponding property. If you do both, the assignment specified
through script is the one that is displayed. For example, the script in the fol-
lowing code sets the background color to Red; subsequently setting the corre-
sponding attribute in the <BODY> tag to Blue fails to change the color:

<HTML>
<SCRIPT LANGUAGE="JavaScript">
document.bgColor = "Red";
</SCRIPT>
<BODY BGCOLOR="Blue">
The page background is red.
</BODY>
</HTML>

86

SI1X: The HTML Document

Accessing Meta Information About the Document

In addition to providing access to the contents of the document, Dynamic
HTML exposes information that is derived from the document while it is
downloading. This meta information includes the initial file size of the docu-
ment and the dates it was created, last modified, and last cached. Date infor-
mation can be used to determine the age of the document to enable scripts
to warn the user if the contents are out of date.

The document also exposes information about the client’s cookies. Cook
ies are somewhat controversial because they allow a Web site to store a small
piece of information on the client’s machine that can later be referenced and
updated by the site. This infermation is restricted in that the data can be ac-
cessed only by the Web sites that created the data.

While not really meta information, information about the state of any
embedded object—including whether the downloading of the document or
object is complete—is also exposed by the document. This in formation is essen-
tial when you are writing scripts that might execute before the page is com-
pletely available.

File Size

Title

The document exposes a fileSize property that returns the initial size of the
document in kilobytes. The returned value represents the number of bytes in
the file that was downloaded and doesn’t reflect any changes that scripts might
have made to the document.

The title property of the document is assigned a value in the HTML Head ele-
ment as follows:

<HTML>

<HEAD>

<TITLE>Document Title</TITLE>

</HEAD>
</HTML>
The title contains standard text; it cannot contain HTML. The document’s title
property returns the contents of the Title element as a string, You can assign
a new value to this string to change the title displayed in the title bar. On win-
dowed systems, the title is usually rendered as the window caption.

NOTE: Netscape Navigator 3.0 and Internet Explorer 3.0 gener-
ate an error when a page attempts to assign a value to the title prop-
erty. Internet Explorer 4.0 exposes this property as read/write.

155

PART 1I: DOCUMENT STRUCTURE

Source Location

Date

156

The document exposes two properties that represent the source location for
the page: location and URL. The location property on the document is an alias
for the window’s location property—both return objects that expose the same
set of properties. Chapter 4, “The Browser Window,” discusses the window’s
location property in detail.

The document’s URL property is an alias to the Aref property on the lo-
cation object. It is exposed for compatibility with earlier browsers. The location
property on the window or document is useful for determining and changing
the currently displayed page.

Three dates are relevant for any document: the date the document was initially
created, the date the document was last updated by the author, and the date
the document was last downloaded into the cache. This information is exposed
through the following properties on the document:

W fileCreatedDate
W fileModifiedDate or lastModified
u fileUpdatedDate

The fileCreatedDate property is self-explanatory, The remaining properties are
described in the sections that follow.

The fileModifiedDate and lastModified Properties

The fileModifiedDate and lastModified properties both contain the date the docu-
ment was last modified. The value of either property can be combined with
information stored in the cookie property to check whether the document has
changed since the user’s last visit. Internet Explorer 3.0 and Netscape Navigator
support the lastModified property, but they do not support fileModifiedDate.
Internet Explorer 4.0 supports the new variation to maintain name consistency
with the other meta information that is newly exposed in Dynamic HTML,

The following code outputs the date a file was last modified:

<HTML>
<HEAD>
<TITLE>Last Modified Date</TITLE>
</HEAD>
<BODY>
<P>Last Modified:
<SCRIPT LANGUAGE="JavaScript">
document.write(document.lastModified);

87

s

X: The HTML Document

</SCRIPT>
<Py
</BODY>
</HTML>

The write method is used to write into the stream of the document while the
page is loaded. This technique is discussed in greater detail in the section
“Writing HTML into the Stream” later in this chapter.

The fileUpdatedDate Property

During browsing, files may become cached on the local user’s machine. The
fileUpdatedDate property returns the date the file was last updated from the
server. Using this property, you can write code that notifies the user if he or
she is using a page that has existed in the cache for more than a specified
amount of time:

<HTML>
<HEAD>
<TITLE>fileUpdatedDate Example<d/TITLE>
<SCRIPT LANGUAGE="JavaScript™>
/+ Number of days that can elapse before
a new page is requested. */
var intAge = 7;

// Be sure there is an updated date.
if (™" 1= document.fileUpdatedDate) (

var dCreate = new Date(document.filelpdatedDate);

var dToday = new Date();

/+ Calculate number of days elapsed. getTime
returns the number of milliseconds between
midnight (GMT) on 1/1/19790 and the supplied
date and time. =/

var intDays = Math.floor((dToday.getTime()

- dCreate.getTime()) / (1800 * 6@ * 60 * 24));
if (intAge < intDays)
if (confirm("Your cached page is " + intDays +
" day(s) old.\n"
+ "Do you want to download a new page?”))
// Force a relead from the server.
Tocation.reload(true);
}
</SCRIPT>
</HEAD>
<BODY>
Document contents
</BODY>
</HTHML>

157

PART 11: DOCUMENT STRUCTURE

MIME Type

The mimeType property returns the document’s MIME type. For all HTML
documents (including framesets), the mimeType property returns the value
Internet Document (HTML).

Cookies

158

An HTML page has the ability to save a small amount of information in a
special file on the client’s machine. This information is called a cookie. Many
people consider cookies to be a potential security risk because cookies allow
a page to write to the hard disk; browsers offer a way to disable this function-
ality. For this reason, no page should be written with the assumption that
cookies are available. When they are supported, however, cookies are useful
for maintaining state information used by multiple pages on the same site.

Assigning a value to a cookie is different from retriéving the value. This
section shows you how to use cookies and provides helper functions for manipu-
lating them. At the end of the section is a demonstration of using a cookie to
create a client-side visit counter.

NOTE: Internet Explorer 3.0 did not allow cookies to be modi-
fied when the page was accessed using the file: protocol. This limi-
tation was removed in Internet Explorer 4.0.

Reading the Cookie

Multiple cookies can be associated with a single document or domain. When
the cookie property is read, all the cookies associated with the document are
returned as a semicolon-delimited list of name-value pairs. Therefore, a rou-
tine is needed that can parse a list of cookies. JavaScript exposes some useful
methods for easily splitting delimited lists into arrays. The following function
uses these methods to parse the cookie string and return it as an array of name-
value pairs:

<SCRIPT LANGUAGE="JavaScript">
function parseCookie() {
// Separate each cookie.
var cookielist = document.cookie.split(": "):
// Array for each cookie in cookielist
var cookieArray = new Array();
for (var i = @: i < cookielist.length; i++) {
/! Separate name-value pairs.
var name = cookielist[i]l.split("=");
// Decode and add to cookie array.
- cookieArray[unescape(name[8]1)] = unescape(name[1]};
1
return cookieArray;

88

S1X: The HTML Document

}
</SCRIPT>
The following code demonstrates how to use the cookie array that parseCookie
returns:
var cookie;
var cookies = parseCookie(}:
// Output each cookie.
for (cookie in cookies)
alert(cookie + "=" + cookies[cookiel):
/1 Check whether a cookie named foo exists.
if (null == cookies.foo) {
/7 Ne cookie named foo
}

The name-value pairs you assign to cookies cannot contain white spaces,
commas, or semicolons. Any such characters must be replaced with appropriate
escape sequences. JavaScript provides two convenient functions that handle
escape sequences for you: escape, for replacing characters by escape sequences
in a string before assigning it to a cookie, and unescape, for reversing the op-
eration when retrieving the cookie.

A stored cookie also contains expiration date, path, domain, and security
information. You can supply this information when you create a cookie, but
you can't retrieve it. This is one of the differences between assigning values to
a cookie and retrieving the cookie.

Writing a Cookie
The cookie property takes a string value in the following format:

name=value; [expires=date; [path=path; [domain=domain [secure;]111

The name-value pair is the only required parameter when you assign informa-
tion to the cookie. The name can be any valid string with which to associate a
value. Supplying a2 name-value pair without any of the additional information
creates a cookie that lasts only for the length of the current browser session.
For example, the following code creates a simple cookie that stores the time
and date a page was loaded:
<SCRIPT LANGUAGE="JavaScript">

var strLoaded = new Date();

document.cookie = "Loaded=" + escape(striLoaded);
</SCRIPT>

Assigning another value to the cookie does not necessarily overvrite the

cookie—it overwrites the cookie only if you use the same name. In the preced-
ing example, the name Loaded would be reused each time the page was loaded.
In the following example, adding a new name adds a new entry to the cookie.

159

PART I1: DOCUMENT STRUCTURE

180

<SCRIPT LANGUAGE="JavaScript™>
document.cookie = "First=Hello;";
document.cookie = "Second=Hello;";
alert{document.cookie); /7 First=Hello; Second=Hello
</SCRIPT>

To force a cookie to be deleted, you must specify an expiration date. To
delete a cookie, create a new cookie using an existing name and any arbitrary
value, but assign an expiration date that has already passed. When you use this
technique, the cookie might not be immediately removed—it might remain
until the current instance of the browser is shut down.

The expiration date must be specified in GMT in the following format:

whkd, day Mon Year hh:mm:ss GMT
For example, the following date has this format:
Sat, 28 Sep 1998 19:81:05 GMT

In JavaScript, the easiest way to convert to GMT is to use the toGMTSiring
method exposed on the Date object.

If you set an expiration date in the future, the cookie will remain on the
client’s machine until it expires. There is no guarantee that supplying an ex-
piration date will keep the cookie around because there is a limit to how many
cookies the client can store and the user may at any time delete the cookie file.

By default, all cookies are saved with a path and domain, even if these
settings are not specified explicitly. This is how security is maintained on the
cookie. A cookie is accessible only to the path and domain that created it.
Furthermore, when you create a cookie, you cannot specify an arbitrary do-
main. This restriction eliminates the possibility of secretly transferring infor-
mation from one domain to another. However, multiple pages from the same
domain can share a single cookie.

Using the Cookie

A cookie can be used to create custom pages for the user. The following code
demonstrates how to use a cookie to count the number of times the user
has visited a2 Web page. The code uses the parseCookie function introduced
earlier.

<HTML>
<HEAD>
<TITLE>Cookie Counter</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
// This code requires the parseCookie function.

)

89

S1X: The HTML Documant

function setCookie(visits) {

/* This routine sets up the cockie by setting its value
to the number of visits and setting its expiration date
to 1 year From now. */

var expireDate = new Date();

var today = new Date();

// Set an expiration date in the future.

expireDate.setDate(365 + expireDate.getDate()):

// Save the number of visits.
document.cookie = "Visits=" + visits + “; expires=" +
expireDate.toGMTSEring() + ;"

// Save today's time and date as the last visit.
document.cookie = "LastVisit=" +
escape(today.toGMTString()) +
"; expires=" + expireDate.to@MTString() + ":";

T
if ("" == document.cookie) {
// Initialize the cookie.
setCookie(1);
document.write("<H2>This is your first visit to our " +
"humble home page.</H2>™);
}
else {
// Parse the cookie.
var cookies = parseCookie(};
// Output the Welcome Back message, and increment the
// visit counter.
document.write("<H2>Welcome Back! You have visited us " +
cockies.Visits++ + " time(s)!</H2>"):
document.write("<H3>Your last visit was on " +
cookies.last¥isit + ".</H3>T):
// Replace existing cookie with an updated one.
setCookie(cookies.Visits);
}
</SCRIPT>
</BODY>

</HTML>

Parent Window

Just as you can navigate from the window to the document, you can navigate
from the document back to its containing window. The window containing the
document is exposed through the pareniWindow property. This property is

161

PART 1I: DOCUMENT STRUCTURE

useful for determining the containing object when only the document object is
available.

Two additional properties are available for accessing the window from the
document: Seriptand frames. The Script property is exposed for backward com-
patibility with Internet Explorer 3.0 and should no longer be used. The frames
property returns a collection of inline frames in the document. This frames
collection returns the window because it is an alias to the window’s frames col-
lection, which in turn is an alias to the window object. Manipulating collections
is discussed in more detail in Chapter 7, “Document Element Collections.” To
clarify the relationships between these properties, the following code demon-
strates several ways of returning the same window object:
window == self == window.frames == frames ==

window.document.parentWindow == window.document.Script ==
window.document. frames

Document Availability

As it loads, a document or an embedded object progresses through four states:
uninitialized, loading, interactive, and complete. The object’s readyState prop-
erty contains the object’s current state. When the ohject changes state, it fires
an onreadystatechange event. By using these tools in your scripts, you can make
your page behave appropriately for the states of the document and embedded
objects and react to changes in states. Most important, your code can avoid
accessing objects that haven't completely downloaded.

The following table describes the states that the document and embed-
ded objects progress through,

State Description

uninitialized The page or object is not yet initialized. Once it starts
loading, it immediately progresses to the loading state.

loading The page or object is currently being loaded.

interactive The user can interact with the page or object even though

it is still loading—for example, anchors may be live and
loaded elements may begin to fire events.

complete The page or object is entirely loaded.

When the document begins loading, it immediately progresses to the
loading state. It progresses to the interactive state when the browser encoun-
ters the first Script, Body, or Frameset element. The document progresses to

90

S1X: The HTML Document

the complete state when the entire document is parsed and all embedded
objects are loaded.

The readyState Property

The document’s rzadyState property contains the current state of the document
as a string. Each embedded object has its own readyState property reflecting its
own status.

Because a document will be in the interactive state before any of its scripts
execute, the only readyState values its scripts will obtain are interactive and
complete. A seript in another frame or window might obtain a value of loading;
this will happen if the script accesses the document’s readyState property dur-
ing the parsing of the document’s Head element and before any scripts in the
Head element have been encountered. Any script might obtain any of the four
values as the radyState of an embedded object.

JavaScript event handlers are hooked up asynchronously during the
parsing of the page. Such a handler might execute before the entire page is
loaded. If the handler performs operations that require the page to be fully
downloaded, it can test the document’s readyState property before proceeding,
as shown in the following example:

<SCRIPT LANGUAGE="JavaScript"” EVENT="cnclick" FOR="window">
if (“"complete” == document.readyState) {
// Handle the event.
}
else
alert("This action is not available until the document " +
“finishes downloading.”);
</SCRIPT>

Alternatively, the handler can test the readyState properties of only those ele-
ments it needs to access.

VBScript event handlers are hooked up as a last step before the document
progresses to the complete state. Therefore, handlers written in VBScript don't
need to test the document’s readyState—except, of course, if a handler accesses
elements in another document.

The onreadystatechange Event

The onreadystatechange event fires whenever the state of the document or of an
embedded object changes. Each of these events can fire multiple times dur-
ing the downloading of a document or an element.

If you bind a handler to the document’s onreadystatechange event, the
handler will not be hooked up until the document is already in the interactive
state. Your handler will be ealled only once—namely, for the document’s tran-
sition to the complete state. In this situation, the onreadystatechange event is

163

PART

1I: DOCUMENT STRUCTURE

essentially an alias for the window’s onload event, and the two can be used
interchangeably. Because Internet Explorer 4.0 is the only browser currently
supporting enreadystatechange, you can use this event if you want to exclude other
browsers; you can use the onload event if you want cross-browser execution.

Embedded ohjects in the document also fire the onreadystatechange event.
For example, the Object and IMG ¢elements have onreadystatechange events. For
these elements, your code can receive the event for several state transitions,
depending on when the event handler is hooked up. In general, however, you
should not write code that depends on any state transition to occur other than
the transition to the complete state.

Modifying the HTML Stream

164

Originally, the object model in Internet Explorer 3.0 did not allow the docu-
ment contents to be changed once the page was rendered. Since then, a num-
ber of methods have becn exposed for outputting HTML into the document’s
stream while the page is being loaded or for generating an entirely new HTML
document in another frame or browser instance. The example earlier in this
chapter that outputs the source file’s last modified date illustrates how to add
HTML to the stream of a downloading document. The example in Chapter 5,
“Window and Frame Management,” that creates a diagram of a document’s
frameset hicrarchy shows how to generate complete documents.

The available methods for adding contents to an HTML stream as it is
being parsed and for generating complete documents are as follows:

| write
W writeln
B open

w close

Even though the object model now provides access to the stream, these meth-
ods are still very useful for generating contents as the page loads. Your scripts
can generate different HTML code in response to the different conditions they
encounter.

NOTE: One of the innovations in Dynamic HTML is the ability
to modify the document’s contents after the page is loaded. You
can modify a document using properties and methods of the Body
element and its child elements, or using a new object named Text-
Range. Modifying the contents of the document is discussed in
detail in Part IV.

91

S1X: The HTML Document

Marked Sections

If you are familiar with SGML marked sections, you will see that scripts
that write to the HTMI. stream are similar to marked sections. Marked
sections allow a browser to use different contents, depending on a spe-
cific condition. For example, a Java applet, a plug-in, or maybe an image
can be output to the screen, depending on the feature support of the
browser. However, generating contents through scripts has a significant
disadvantage in that the contents of the document cannot be predeter-
mined and indexed using tools without evaluating the scripts on the page.

Writing HTML into the Stream

The writeand writeln methods allow you to write HTML into the current stream
while the document is loading or into another stream that has been opened
using the open method. The write method is used in quite a few examples in
this book to output HTML into the stream while loading. Arguments passed
to the writemethod are always converted to strings before they are output into
the document. S

The writeln method is similar to the write method, but it appends an end-
of-line character to the end of the line. Whether you use wrile or writeln ravely
matters because most end-of-line characters are ignored in the HTML stream.
End-ofline characters and spaces are important in only three instances:

® PRE and XMP elements, in which end-ofline characters are
retained

® Elements that do not contain HTML, such as Script and Style
M Streams to a MIME type other than HTML
You should not use the writeand writeln methods on the current document

after the document has finished loading unless you first call the open method,
which clears the current document’s window and erases all variables.

Creating Documents Using the open and close Methods

The document methods open and close allow you to create new documents in
other frames or windows. These documents do not even have to be written in
HTML because the open method takes a MIME-type identifier. Therefore, if
you know the format for an image or other document type, the image or docu-
ment type can be output directly into a window.

165

PART 11: DOCUMENT STRUCTURE

The following code demonstrates using the open and close methods to
output document information for a specified window into another window:

function docInfo(win) {

/% Create an About dialog box. */

var aboutWindow = window.open(”", "Info",
"toolbar=no; location=no; directories=no: width=375; " +
"height=258; status=no; menubar=no: resizable=no");

var prop;

// Open a stream on the new window.

aboutWindow.document.open();

// Output document information.
aboutWindow.document.write("<H1>Document Information</H1>"}:
for (prop in win.location)
aboutWindow.document.write(prop + ": " + self.locationlprop]l +
"
");
// Close the siream on the new window.
aboutWindow.document.close():

NOTE: The clear method was exposed in Internet Explorer 3.0
for clearing the document’s contents. This method should no longer
be used because its future support is questionable and it acts unpre-
dictably on different browsers. Instead, the open and close methods
are sufficient for clearing and generating new documents.

Writing Scripts into the Stream

Your script can insert additional scripts into the stream. When you use this
technique, be careful how your script closes the Script element it is inserting.
Your script must insert the </SCRIPT> tag as two strings to be concatenated,
as shown in the following code. Otherwise, the HTML parser will assume that
the tag ends the script you are writing rather than the script it is inserting.

<SCRIPT LANGUAGE="JavaScript™>
// Example of dynamically generating a script
document .write("<SCRIPT LANGUAGE='JavaScript’'> x = @; <" +
"/SCRIPT>"):
</SCRIPT>

92

CHAPTEHR $ EV EN

Document Element Collections

The Dynamic HTML object model represents the document’ structure through
a set of collections exposed on the document object. These collections provide
access to all HTML elements contained within the document. Understanding
how these collections relate to the HTML source code and how to access these
collections is the first step to programming the HTML document. This chap-
ter shows you how to manipulate the document element collections as well as
how Microsoft Internet Explorer 4.0 parses the document.
Consider the following short HTML document:

<HTML> =
<HEAD>
<TITLE>Document Structure</TITLE>
</HEAD>
<BODY>
<HI>Overview</HL>
<P>Examining an HTML document</P>
</BODY>
</HTML>

The object model provides a way to access the HTML, Head, Title, Body, H1,
and Paragraph elements and thereby modify their attributes. The markup, like
all aspects of the document, is accessed using the document object introduced
in Chapter 6, “The HTML Document.” The document object exposes an all
collection that represents every element in the document and several filtered
collections that represent a subset of the document’s elements. For example,
the forms collection contains only the Form elements. In addition, developers
can create their own custom collections of document elements.

The ability to access any element in the document is a key innovation in
Dynamic HTML. Until Dynamic HTML, scripts could manipulate only the set
of elements deemed interesting by vendors developing the browsers. Now Web
developers have complete control over the page and can decide for themselves

167

PART

11: DOCUMENT STRUCTURE

what is interesting. They can filter the all collection and manipulate any set of
elements as a group, removing all limitations and providing universal access
to the document.

The following topics are covered in this chapter:

B Using the collections Every collection in Dynamic HTML shares
the same set of operations. This section shows you how to access the
elements within each collection, as well as how to create custom
collections of elements. Because every collection in the HTML ob-
ject model follows the same rules, this section provides a solid basis
for manipulating and using the collections. The rest of Part IT
builds on this information by showing you how to manipulate the
individual elements within the collections.

The HTML structure and collections This section describes how
the HTML document is parsed and exposed by the underlying col-
lections. This discussion also covers how invalid HTML documents
are parsed and surfaced in the object model, which is important to
understand when you are scripting generic pages in which control
over the document’s structure is not available.

Using the Collections

This section focuses on using the all collection to access the elements on the
page. The all collection in the document object represents every element in
the HTML file. It is manipulated using a set of properties and methods that
all the element collections support. These properties and methods specify how
many elements are in the collection, provide access to the individual elements,
and provide the ability to filter the collection based on element type.

NOTE: Because all the collections share a common set of prop-
erties and methods, all the members discussed here can be used with
any element collection in the document.

Collection Size

168

The first and most fundamental operation on a collection is determining the
number of elements in the collection. The number of elements is returned by
the length property. For example, the sample document at the beginning of this
chapter has six elements:

alert(document.all.length); // 6 elements

93

SEVEN: Document Element Collections

Accessing Elements

Elements in collections are accessed using the item method. The ifem method
takes either an ordinal position or a string identifier representing the nameor
id attribute of an element. When you are supplying an ordinal position, keep
in mind that all collections are zero-based. Therefore, the following code enu-
merates the elements in the all collection:

// Display the tag name for each element.
for (var i = 8, i < document.all.length, i++)
alert(document.all.item(i).tagName);
NOTE: Inaloop like this that accesses the elements of a collec-
tion, the conditional expression must test that the index is less than
the length of the collection. Because the collection is zero-based, it
has no element whose index equals the collection’s length.

In VBScript, item is the default method on collections; specifying the item
method is optional when you are accessing elements. In JavaScript, default
methods are not supported; however, all objects are associative arrays, allow-
ing all named elements to be accessed using the array lookup notation. For col-
lections, this means that all elements in the collection are also exposed as
properties on the object, which allows the elements to be accessed by their
ordinal position in the underlying array or by their string name or ID. The
preceding code fragment can be rewritten as follows:

// Display the tag name for each element.
for (var i = @, i < document.all.length, i++}
alert(document.all[i].tagName);
NOTE: InJavaScript, referencing into an array is done using square
brackets ([1). In VBScript, because the default method is used in-
stead of an array, the reference uses parentheses:

msgbox(document.all(i).id) ' VBScript

The id and name Atiributes

Up to now, only referencing the item by ordinal position has been demon-
strated. Referencing elements can also be done directly by using the id or name
attribute. There are a few distinctions between id and name. The id attribute
is supposed to uniquely identify an element within the document. The name
attribute can be shared by multiple elements; it is exposed only by certain
elements and usually has a specific meaning. For example, on an element in
a form block, the name attribute is used as the submit name, and on multiple
radio buttons, the name attribute is used to group the buttons.

169

PART [1: DOCUMENT STRUCTURE

170

‘When you are assigning names for programmatic access, the id attribute
should be used. The nameattribute should be reserved for its intended behavior
based on the element’s context. You may need to use name if you are writing
code to run on Netscape Navigator, as it currently does not recognize the id
attribute on any element other than elements positioned with CSS (Cascad-
ing Style Sheets) positioning. The name attribute is supported in Netscape
Navigator to access the Form element, frames, and all built-in controls.

NOTE: To simplify terminology, from here on the term named
element refers to an element that has either the idor name attribute set.

Referencing Named Elements

In JavaScript, you can use a name or an id to reference an element in three ways:
using the collection’s item method, directly as a property of the collection, or
indirectly as an array lookup. The following examples illustrate the three ways
to reference an clement whose name or id is myElement:

document.all.item("myElement™) o
document.all.myElement
document.all["myElement"]

‘When you are referencing elements using the item method or an array
index on the gl collection, you can query for an element by passing a variable.
This technique is useful because the id or name attribute does not have to be
known in advance and hard-coded. You can write generic code with a variable
that contains the id attribute, as shown here:

// Get the tag name for the element with the specified id.

var retValue = window.prompt("Enter an ID:");

if (retValue != nutl)
alert(document.all[retValue].tagName};

Using the ifem Method to Return a Collection
An element’s name does not have 1o be unique in a document. Radio buttons
in a group typically share the same name, as in the following example:

<HTML>
<HEAD>
<TITLE>Radio Button Group</TITLE>
</HEAD>
<BODY>
<FORM>
Name: <INPUT TYPESTEXT NAME="YourName">

<INPUT TYPE=RADIO NAME="Gender" VALUE="Male">Male

94

SEVEN: Document Element Collections

<INPUT TYPE=RADIQ NAME="Gender" VALUE="Female”>Female
</FORM>
</BODY>

</HTHL>

Because name need not be unique, a name string you use to look up a
collection element can match more than one element. When more than one
element matches, the result of the lookup is a new subcollection containing
all the elements with the given name. The following examples access named
elements in the preceding code:

document.all["YourName"] // Input box (not a collection)
document.all["Gender”] // Collection of two elements
document.alli["Gender"].length // 2
document.all["Gender"].item(®) // Male radio button

The subcollection follows the same rules as all other collections; in par-
ticular it exposes a length property and an item method. Its elements are in the
same order as they are in the original collection, :

‘When the item method returns a subcollection, you can pass a second
parameter to select an element in the subcollection. For example, the Male
radio button can be accessed this way:

document.all.item("Gender"”, @) -

VBScript and JavaScript each support a shortcut for accessing elements
in a subcollection without using the item method. For example, the following
code fragments both access the Male radio button:

* In VBScript, item is the default method.
document.all("Gender", @)

// JavaScript uses array access.
document.all["Gender™1[8]

Documents with duplicate ids are technically invalid, but nothing stops
a developer from authoring them, and your scripts that access unknown docu-
ments in other frames or windows may encounter them. The following example
code contains several elements with the id fest:

<HTML>
<HEAD>
<TITLE>Duplicate IDs</TITLE>
</HEAD>
<BODY>
<Hl 1D="test">Header 1</H1>
(continued)
171

PART 11: DOCUMENT STRUCTURE
<P ID="test">This is a paragraph.
<P ID="test">This is another paragraph.
<INPUT 1D="test" NAME="foo">This is a named Input box.
</BODY>
</HTML>

Duplicate ids are handled just like duplicate names. If 2 script looks up
an element by an i and more than one element matches the id, all of the
elements are returned as a collection. The following expressions access ele-
ments in the preceding code that have the id fest:
document.all[“test"].length /1 4
document.all.test.length /1 4 (Took up directly by id}
document.all.test.tags("P").length /12
document.all.test.item{("test").length // 4 (redundant code)

The Input box in the preceding code is an interesting element. It is part
of the collection returned by item(“test”) and is exposed individually as dtem("foo”).
The Input box can also be accessed through the collection of elements
with id test:
document.all.test.item("foo"),tagName // INPUT
document.all.foo.tagName /1 Also INPUT

If an element’s name and id attributes have the same value, it nonetheless
appears only once in a collection of elements with that aame or id. An clement
can exist only once in any collection.

Distinguishing Between a Collection and an Element

When your code accesses an element by its name or id, either a collection or
an element may be returned. Therefore, your code might need to distinguish
whether the returned object is an element or a collection, In JavaScript, the
length property returns null for single elements and the numbers of elements
for collections. The length property returns null for a single element because
it does not actually exist on the object—JavaScript automatically adds the length
property to the object with the default value of null.

The following code demonstrates how to check whether a collection or
a single element is returned:

// Using length

if (null == document.al1["Gender”].length) {
// Single element

}

else {
// Collection

)

172

95

SEVEN: Document Element Collections

NOTE: You cannot use length in VBScript to differentiate indi-
vidual elements from collections. If you do, VBScript generates an
error because the property does not exist on the element object.

Referencing Unknown Element Names
If the item method is called using a name or an id attribute that does not exist
in the document or that has not loaded yet, the method returns a null object:

var el = document.all.item("foo");
if (null == el)

alert("Please try again when the page is loaded.™);
else {

// Do something with the element named foo.

i

Directly Accessing Named Elements

In addition to being accessible through collections, some named elements are
also properties of the document or the window. These elements are added to
the document and the window purely for backward compatibility; the recom-
mended way to access them is to use the all collection.

Elements of the following types are added directly to the document if they
have a nameor an id attribute: Form, IMG, and Apptlet. In addition, all elements
with an #d attribute except input elements in a form are added directly to the
window, which allows you to access them without going through the document’s
all collection:

<H1 ID="myH1">Welcome to My Page</H1>

<FORM ID="form 1">
<INPUT TYPE=TEXT ID="textl">

</FORM>

<SCRIPT LANGUAGE="JavaScript">
// Access myHl as a window property.
alert(myHl.id}; // Qutput the id.
// Access myHl through the all collection.
alert(document.all.myHl.id);
/7 Input elements within a form are available through the form.
alert(forml.textl.id);

</SCRIPT>

Built-In Collections

The document exposes a number of predefined colleetions, which all follow
the set of rules introduced earlier in this chapter. These collections are pro-
vided for compatibility with older browsers. The following table lists the col-
lections and the tags of the elements contained within them.

173

PART

11: DOCUMENT STRUCTURE

Collection Tags Description
all All tags Every element in the document, in
source order.
anchors Bookmarks.
applets <APPLET>; Embedded objects and Java applets.
<OBJECT>
Sforms <FORM> Forms.
Sframes <IFRAME> Inline frames.
images Images.
links ; Links. If an Anchor element contains
<AREA> both a NAME and an HREF attribute,
it will be exposed in both the links
and the anchors collections.
scripts <SCRIPT> Scripts.

Rather than extend this list for arbitrary tags, collections expose the tags method
for creating a new collection filtered by a specified tag. The tags method elimi-
nates the need to chatter the object model with a collection for every element
type and lets the developer determine which elements are interesting.

The tags Method

174

In addition to the item method, all document element collections expose a tags
method. The tags method takes a parameter representing the tag as a string
and returns a collection of all elements with that tag, as shown in the follow-
ing code:

<HTML>
<BODY>
<H1>My Header</H1>
<P>This is strong text and more
strong text.</P>
<H1>Another Header 1</H1>
</BODY>
</HTML>

The following expressions use the tzgsmethod to create collections of elements
from the preceding code:

document.all.tags{"H1") // Collection of both Hl elements
document.all.tags{"STRONG") // Collection of both Strong elements

document.all.tags("STRONG")[@] // First Strong element
document.all.tags("P").length /71

96

S EVEN: Document Element Collections

Unlike the item method, the tags method always returns a collection, even
if only a single element exists on the page. For example, calling the tags method
on the Body element still réturns a collection, even though only a single Body
element can exist:

document.all.tags("BODY") // A collection with one Body element
document.all.tags("BODY")[@] // The first element in the collection

The tags method always returns a collection because it was designed with a
single purpose, to filter a collection to a smaller collection. The item method
returns the single element that matches the identifier—and where there are
duplicate matches, a collection rather than an error is returned.

Empty Collections
If the tags method is called to query for a tag that does not exist in the docu-
ment, an empty collection with zero elements is returned:

if (@ == document.all.tags{"H1").length)

alert("There are no Hl elements in this document."};
In order to ensure that even unknown elements can be queried and filtered
for, the tags method does not return an error when passed to an invalid tag.

Custom Collections

Most of the document’s builtin collections are the same as collections you can
create using the tags method with the all collection. For example, the forms
collection is the same as the collection created by calling the tags method and
supplying form as the parameter. The following code creates a collection
equivalent to the forms collection:

document.myforms = document.all.tags{"form");

You can create custom collections and add them to the document object using
a similar technique, as shown here:

// Create a tables collecticn on the document.
document.tables = document.all.tags("TABLE");

This technique relies on a language feature supported by JavaScript, so this
code cannot run in VBScript and might not be capable of running under other
languages. In VBScript, you must create a variable to hold the collection.
The preceding code demonstrates that multiple collections often refer
to the same set of elements. Therefore, referencing an element in any of the
collections is the same as referencing that element in the ail collection. For

175

PART tl: DOCUMENT STRUCTURE

example, the following code fragment returns #rue because the same object is
being referenced through two different collections:

// Both expressions point to the same object.
document.forms[8] == document.all.tags("FORM")[0];

The all Collection in a Frameset Document

176

A document that contains a frameset also supports the document object and
exposes the same all collection. The Frameset element replaces the Body ele-
ment in the el collection because a document can contain traditional body
contents or a frameset, but not both. All the Frameset and Frame elements in
the document are exposed in source code order, as shown here, which is use-
ful for determining the visual layout of the frames on the screen:

<HTML>
<HEAD>
<TITLE>Frameset Demo</TITLE>
</HEAD>
<FRAMESET ROWS="68, »">
<FRAME SRC="a.htm">
<FRAME SRC="b.htm">
</FRAMESET>
</HTML>

The all collection for this document exposes the elements in the following
order: HTML, Head, Title, Frameset, Frame, Frame.

In addition, all attributes of the Frameset and Frame elements are ex-
posed through the all collection. Most of the attributes can be assigned a new
value, but in some cases that value is not reevaluated—for example, the bor-
der of the frameset cannot be modified once the frameset is rendered. How-
ever, a frameset will update correctly if you change its row or col attribute, or
if you change the src or name attribute of one of the frames.

Collections in frameset documents differ from those in other documents
with respect to their inclusion of unrecognized elements. Only unrecognized
elements that appear before the first <FRAMESET> tag are exposed in the
object model. Once a <FRAMESET?> tag is encountered, all elements other
than Frameset and Frame are ignored and are not surfaced in the object model.
Even NoFrames elements are ignored. If a NoFrames element appears before
the Frameset element, it is exposed in the all collection, but the contents of the
element are not available. This limitation may be removed by a future version
of Internet Explorer.

97

SEVEN: Document Element Collections

The HTML Structure and Collections

This section focuses on how the document’s collections are constructed while
the document is parsed. HTML documents are supposed to satisfy the rules
defined by the HTML DTD (document type definition). The HTML object
model relies on these rules and some real-world exceptions to ensure that the
document’s structure is properly maintained. This section introduces the re-
lationship between the DTD and the collections exposed on the document.

Building the all Collection

The all collection of elements correlates directly to the HTML document’s tree.
The following simple HTML document demonstrates this relationship:

<HTML>
<HEAD>
<TITLE>My Document</TITLE>
</HEAD>
<BODY> N
<H1>Welcome to My Page</H1>
<P>This is an important decument.</P>
</BODY>
</HTML>

Figure 711 displays the containment relationships between the elements
in this document.

Figure 7-1.
Containment relationships between the elements in an HTML document.

177

PART

11: DOCUMENT STRUCTURE

The document’s al collection, which contains every element in the docu-
ment, represents this tree; it contains the elements in the tree in the order
found in the source code. The parser creates the afl collection by performing
an operation known as a preorder traversal of the tree. In this example, the
contents and order 'of the all collection are initially as follows: HTML, Head,
Title, Body, H1, Paragraph, Strong.

The all collection always represents the current state of the document.
You can change the elements in the all collection by dynamically manipulat-
ing the document’s contents, but the all collection always maintains the order
of the elements, even when scripts modify the contents. Dynamic contents
manipulation is discussed in detail in Chapter 13, “Dynamic Contents.”

Scope of Influence

The HTML tree contains information not immediately apparent from the all
collection—namely, the scope of each element. The scope of an element is the
set of elements it contains. For example, in the preceding document the Para-
graph element contains the Strong element, so the Strong element is within
the scope of the Paragraph element. You can determine the scope of an ele-
ment by analyzing the parentElement and children properties of each element in
the all collection, a process described in Chapter 8, “Scripts and Elements.”

NOTE: The all collection, as do all the element collections, rep-
resents the element as a single object. The elements, rather than
individual begin and end tags, are sufficient for manipulating the
document’s structure. Because elements are represented rather than
individual tags, fewer complexities are involved in understanding
and working with the collections. The exception to this rule is for
unrecognized tags. In this case, any unrecognized tag, whether a
begin or an end tag, is added to the collection. Unrecognized tags
have no scope of influence over any children. This limitation is dis-
cussed in greater detail in the section “Unrecognized Elements” later
in this chapter.

Implied Elements

178

The DTD for HTML specifies that tags for the HTML, Head, Body, and TBody
elemenits are optional in the HTML document because these elements can be
inferred from the content, as shown here:

<KTITLE>Welcome to My Document</TITLE>

<H1>Welcome to My Page</H1>
<P>This is an important document.</P>

98

SEVEN: Document Element Collections

This document is equivalent to the preceding document. The trees, and there-
tfore the contents of the all collections, are the same. The il collection always
exposes the HTML, Head, and Body elements for every document, regardless
of whether you explicitly authored them.

Differentiating the Head from the Body

In a document without <HEAD:> and <BODY> tags, the split between head and
body is determined by the rules of HTML as defined by the DTD. The Head
element contains a specific set of elements that are different from the set in
the Body element. Therefore, when the first Body element is encountered (for
example, H1), the scope automatically changes from the head to the body.

The following code fragment represents the DTD for the head of the
document. By examining this DTD, you can more clearly see the distinction
between head and body:

<IENTITY % head.misc "SCRIPT|STYLE|META|LINK"

-- repeatable head elements -->
<!ENTITY % head.content "TITLE & ISINDEX? & BASE?™>
<!ELEMENT HEAD 0 0 (%head.content) +(%head.misc)>

This code shows that there can be at most one IsIndex element and one Base
element, that there must be exactly one Title element, and that there can be
any number of elements specified by the head.misc entity. With two exceptions,
the Style and Script elements, the entities available in the head are mutually
exclusive from the entities available in the body. Therefore, it is quite easy for
a parser to determine when the scope has switched from the head to the body.

The Style and Script elements are ambiguous cases because they can exist
in both the head and the body. If a Style or Script element is encountered
before any body contents, the element is considered contents of the head. This
rule has no impact on the rendering or behavior of the document, but it is
important to understand because it affects the scope of influence of the Head
and Body elements.

Optional End Tags

A few elements in HTML do not require an end tag. For example, a <P> tag
does not require a </P> to end its scope of influence. To determine when a
Paragraph or other element ends, the DTD is used. When an element that
cannot be contained within the current scope is encountered, the prior scope
is considered to be terminated. As shown in the following example, if a <P>
tag is followed by an <H2> tag, the Paragraph element ends with the <H2> tag
because an H2 element cannot be a child of a Paragraph element.

179

PART

11: DOCUMENT STRUCTURE

<HTML>

<H1>Scott's Home Page</H1>

<P>Welcome to my page.<H2>New Cool Stuff</HZ>
</HTML>

The tree in Figure 7-2 represents this HTML document. Notice that the
H2 element is a child element of the Body element, not the Paragraph element.

| | 1

| H1 [Paragraph‘ | H2 ‘
Figure 7-2.

Tree diagram of a document with an implied end tag.

In general, documents are more readable and maintainable when end
tags are explicitly defined. Without end tags, anyone viewing the source must
have knowledge of the HTML DTD to ascertain the relationship between
various elements.

Unrecognized Elements

180

Parsing of unrecognized elements in the HTML document is an important
consideration as HTML and browsers evolve. Imagine the introduction of an
<H7> tag. New browsers will understand how to interpret <H7> as a block
container tag, but down-level browsers will not recognize it. In accordance with
the rules of HTML, the <H7> begin and end tags are ignored when the docu-
ment is rendered by this hypothetical down-level browser because for unrec-
ognized tags DTD information is unavailable to determine the rules and scope
of the tag.

Because there is no DTD for unrecognized elements, the unrecognized
begin and end tags are exposed in the allcollection. Unlike the rules of HTML
specifying that unrecognized elements should be ignored, the object model
includes unrecognized tags, in order to provide complete information about
the document to the developer.

99

SEVEN: Document Element Colléctions

The unrecognized end tag is also exposed because there is no way to
accurately determine whether the element is a container. Even if a begin and
end tag appear in sequence in the document, there are no assurances that their
use would be in conformance with a DTD rule if one did exist for the element.
For example, the element might not be defined in the DTD as a container
element. Therefore, both unrecognized begin and end tags are always exposed
as leaf nodes in the tree:
<HTML>

<P>Welcome to my <FQ0>co01 document.</FO0></P>
</HTML>

The tree in Figure 7-3 demonstrates how the internal parser represents
this document with unrecognized elements.

Paragraph

<F00> <IF00>
Figure 7-3.

Tree diagram of a document with unrecognized begin and end <FOO> tags.

The all collection in the preceding example contains the following ele-
ments: HTML, Head, Body, Paragraph, <FOO>, Bold, </FOO>. Notice that
the Bold element is not considered a child of the Foo element, but rather a child
of the Paragraph element. Because DTD information about Foo is unavailable,
there is no way to reliably determine whether the Foo element is a container.
For unrecognized elements, exposing both the begin and end tags allows the
developer to calculate the scope of the element by manually walking through
the all collection.

181

PART (t: DOCUMENT STRUCTURE

182

If in a future version of Internet Explorer Foo becomes a valid HTML
element that can contain text, the document’s tree will change. Figure 7-4
demonstrates this new tree.

Figure 7-4.
Tree diagram that would result if the browser recognized <FOO> tags.

While the ordering will be consistent across implementations, the number of
elements and the document’s tree may vary depending on whether the Foo
element is supported. This difference might cause problems if your code re-
lies on ordinal positions of elements in the collection because the number of
elements exposed can change from browser to browser. Instead, code that
accesses a specific element should always use an ID or identify the element in
a more explicit context.

All unrecognized end tags are also exposed in the object model because
the object model makes no attempt to associate invalid begin and end tags and
accepts them into the collection as specified in the document. Therefore, if a
</BAR> end tag is floating in the middle of the document, it will be repre-
sented in the all collection, even if no <BAR> begin tag was ever encountered.

From the point of view of the DTD, all unrecognized begin and end tags
are considered to have no contents. Any attributes and style sheet information
found on an unrecognized tag will have no effect on the document’s render-
ing but will be represented in the object model.

100

SEVEN: Document Element Collections

Unmatched End Tags

‘When an unmatched end tag that is recognized by the parser is encountered,
HTML specifies that the end tag should be ignored. However, as with unrec-
ognized tags, unmatched end tags are exposed in the all collection. In the
following example, the end tag is exposed in the object model:

<HTML>
This is not bold.
</HTML>
The end tag is exposed because the object model attempts to maintain an
accurate representation of the document.

Overlapping Elements

Overlapping elements occur when a true containership hierarchy is not fol-
lowed by the document. The following example demonstrates an everlap of
Strong and EM elements:

<HTML>
<BODY>
<P>This is a demonstraticn of
overlapping elements.</P>
</BODY>
</HTML>

Even though elements overlap, they do not affect the composition or ordering
of the allcollection. The all collection consists of the following elements in this
order: HTML, Head, Body, Paragraph, Strong, EM. The tree for this document,
shown in Figure 7-5, does not represent the overlapping of elements or the true
scope of influence for each element.

Overlapping elements are actually invalid HTML. To achieve the desired
behavior without using overlapping tags, you should create the document with
a clean containership hierarchy:

<HTML>
<BODY>
<P>This is a demonstration of
overTapping elements.
</P>
</BODY>
</HTML>

Overlapping elements have little effect on most collections, but an element’s
children collection may be inaccurate. The relationship between overlapping
elements and the document’s contents is a strong one, and is discussed in
Chapter 13, “Dynamic Contents.”

183

PART II: DOCUMENT STRUCTURE

Figure 7-5.
Tree diagram of a document with overlapping elements.

Tagless Contents

Tagless contents—text that is not contained within any element—often occurs
within the body:

<HTML>
<BODY>
These contents are without a tag.
<P>These contents are within a Paragraph element.</P>
These contents follow a Paragraph element without a tag.
</BODY>
</HTML>

This HTML document would have only HTML, Head, Body, and Paragraph
elements in its a/l collection. There is no element that represents text outside
of containers. In strict HTML, this text is defined to be within a Paragraph
element. However, a <P> tag cannot be synthesized in this case because explic-
itly defined paragraphs have a slightly different rendering scheme from implicit
paragraphs.

Invalid HTML

Dynamic HTML is designed to work with valid HTML. Therefore, tags that are
placed outside of their proper scope are usually parsed as unrecognized ele-
ments. This rule is not fixed, however, and in some cases the HTML may be

184

101

S EVEN: Document Element Collections

cleaned up automatically during parsing. For example, imagine the following
invalid definition of a table:
<HTML>
<BODY>
<TD>This is a table cell outside of a table.</TD>
</BODY>
</HTML>

In this document, a table cell appears where it doesn’t belong—namely, out-
side the scope of a table. When the document is parsed, the table cell is not
recognized and is parsed as an unrecognized element. Therefore, both the
begin and end tags are considered invalid by the parser. The all collection
exposes the elements of this HTML document in the following order: HTML,
Head, Body, <ID>, </TD>.

You should not write documents to rely on this behavior. Browsers may
choose to clean up the HTML or may choose to not do any cleanup and ignore
the invalidly scoped elements. The only way to ensure that the element collec-
tion is built consistently is to create valid HTML documents.

There are a couple of known exceptions for which the document’s tree
will not conform to the HTML DTD. These exceptions exist because they
appear in a large number of documents on the Internet. The exceptions dis-
cussed here are by no means the only exceptions, but they are ones that occur
commonly in HTML documents.

Lists

Lists are one of the few areas in which the HTML is not cleaned up by the
parser. To ensure compatibility, the object model recognizes two cases of in-
valid HTML as valid markup:

® L] elements can exist outside of UL and OL list containers.

B A list container can directly contain other list containers.

The first exception was allowed in Netscape Navigator 2.0 for creating bulleted
items that are not indented; the second exception came about through the
common, illegal practice of nesting lists.

When the first exception occurs, Netscape Navigator 2.0, whose imple-
mentation was followed by Internet Explorer 3.0, renders the list item without
indenting it. Even though the DTD for LI elements prohibits them from ex-
isting outside of lists, the DTD used to create the tree, shown in the following
code, is lax and will not automatically wrap these LI elements.

185

PART (1: DOCUMENT STRUCTURE

<HTML>
<BODY>
This is an LI element outside of a Tist.
</BODY>
</HTML>

The all collection for this document is ordered as follows: HTML, Head, Body, L.
The second exception, in which nested lists are used entirely for increas-
ing the amount of indentation for bullets, is shown here:

<HTML>
<BODY>
<UL»

This is a deeply indented bulleted list item.

</BODY>
</HTML>

This HTML violates the DTD because UL elements can only contain LI ele-
ments, not other ULs. When this situation is encountered, no cleanup occurs.

The ordering for the all collection for this document is as follows: HTML, Head,
Body, UL, UL, LI

Form Elements in Tables
Another common practice is to use forms in tables (outside of cells) to create
a form that spans multiple rows or cells, as shown here:

<HTML>
<HEAD>
<TITLE>Ferms in Tables</TITLE>
</HEAD>
<BODY>
<TABLE>
<FORM NAME="Forml™>
<TR>{TD>Forml-related fields</TD></TR>
<TR><TD>More Forml-related fields</TD></TR>
</FORM>
<FORM NAME="Formz">
<TR><TD>Form2-related fields</TD></TR>
</FORM>
</TABLE>
</BODY>
</HTML>

102

SEVEN: Document Element Collections

In this document, the forms will be maintained with the correct scope inside
the table.
The tree for this document is represented by Figure 7-6.

][]

Figure 7-6.
Tree diagram for a document with Form elements inside a Table element.

There are probably other exceptions to the DTD. In general, invalid
HTML may result in an unpredictable tree that may not be consistent in each
browser release. Therefore, you should be careful to write HTML that corre-
sponds to the DTD. Doing so not only makes the object model more consistent,
butit also improves the likelihood that different browsers will render the docu-
roent the same way.

187

C HAPTEHR EI GHT

Scripts and Elements

This chapter shows you how to program and manipulate the clements of an
HTML document. All elements share a common set of information for iden-
tifying the element, accessing the attributes on the element, and defining
the relationships between the element and other elements in the document.
In addition, many elements provide custom properties, methods, and events,
giving you increased control of your documents. A sampling of these elements
is discussed in Chapter 9, “Scripting Individual Elements,” and in Chapter 10,
“Forms and Intrinsic Controls.”
The following topics are covered in this chapter:

B Identifying elements This section shows you how to distinguish
between the different elements in the document. HTML exposes
a set of attributes that are useful for identifying and grouping
clements, including the tag name itself and the ID, CLASS, and
NAME attributes.

B Accessing an element’s attributes All element objects encapsulate
information about their attributes and c¢ven provide access to in-
valid attributes and values that may be specitied on an element.
This section shows you how to access and use this information.

® Parsing information Chapter 7, “Document Element Collections,”
described how the document’s afl collection is construcied and ac-
cessed. The all collection provides access to the individual elements,
and each element exposes its relationships with other elements,
including information about the parsing and rendering of the
document. The parsing information represents the underlying
HTML source, and the rendering information represents calculated
information determined during the creation of the document. This
section reviews the relationships between elements in the parsing
tree and shows how these relationships are exposcd by the individual
elements.

189

103

PART I1I: DOCUMENT STRUCTURE

| Creating new elements This section shows how elements can be
added to the document using the createElement method. There are
two techniques for controlling the document’s structure: creating
elements in memory, and modifying the HTML contents directly.
Dynamic HTML currently supports the creation of elements in
memory for only a few elements.

Customizing elements This section demonstrates techniques for
customizing existing elements and for creating new user-defined
elements. Customization is similar to subclassing an element and
takes advantage of Dynamic HTML' ability to expose unrecognized
attributes to the scripting language. Custom elements can also be
defined by accessing and using unrecognized elements in the object
model. These user-defined elements can contain extra meta infor-
mation about the document that can be-accessed and manipulated
through the object model. i

Identifying Elements

190

‘When you write scripts and style sheets, you may want your code to apply to
one particular element, to all elements of the same type, or to a heterogeneous
set of elements that you specify. Element objects have several properties that
make them easy to identify in these various ways. An object’s id and ¢lassName
properties contain the values of the corresponding element’s ID and CLASS
attributes, respectively, and its tagName property contains the name of the
element’s tag. Your code can use the id property to reference a single element,
the tagName property to reference all elements of the same type, or the class-
Name property to reference any set you define.

Elements that have a NAME attribute also have a name property that
contains the attribute’s value. You can use the name property to identify a single
element or a group of related elements (such as radio buttons) in your code.
But the name property isn’t as widely applicable as the id property, for example,
and the object model includes it mainly for backward compatibility.

Values of the tagName property are stored in all uppercase letters. The id,
name, and className properties are case sensitive. The value coolstuff, for ex-
ample, represents a different class than the value cQOIStuff in a case-sensitive
language like JavaScript. Style sheets, however, are associated to elements
without regard to capitalization.

The following table summarizes information about the four properties
that identify elements.

104

EIGHT: Scripts and Elements

Attribute Property Case-Sensitive? Applicable Elements

(None) tagName Always uppercase All, including comments
1D id Yes All, except comments
CLASS className Yes All, except commerits
NAME name Yes Anchor, Applet, Button,

Form, IMG, Input, Map,
Meta, Object, Select, and
TextArea

Using properties to identify elements, you can write a single script that
performs the same action for all the elements in whatever set you choose. The
click event handler in the following sample code responds differently to mouse
clicks on the element with an idvalue of f123, on elements in the class coolstuff,
and on H1 elements. In each case, the handler changes the inline style of the
element to alter the element’s appearance.

<HTML>
<HEAD>

<TITLE>Identifying Elements</TITLE>

<SCRIPT FOR="document” EVENT="onclick()" LANGUAGE="JavaScripi">
// The click event is fired on the document regardless of
// where the user clicks.
// The style property gives access to the inline style.
var curtlement = event.srcElement:

if ("F123" == curElement.id.toUpperCase()) (
// Toggle element color between red and blue.
if ("red” == curklement.styie.color)
curElement.style.color = "blue";
else
curElement.style.color = "red";
}
if ("COOLSTUFF™ == curElement.className.toUpperCase()) {

// Make text bigger or smaller when clicked.
if ("" == curElement.style.fontSize}
curElement.style.fontSize = "15@%";
else
curElement.style.fontSize =

}

1f ("H1" == curETement.tagName) {
// Toggle the header between centered and Teft-aligned.
if ("center" == curElement.align)

curElement.align =

(continued)

191

PART 11: DOCUMENT STRUCTURE

else
curElement.align = "center™;

)
</SCRIPT>
</HEAD>
<BODY>
<P ID="f123" STYLE="color:red">
This paragraph has & unique ID.</P>
<H1»Clicking on an H1 element changes its alignment.</H1>
<P>This paragraph contains
<STRONG CLASS="caolstuff">cool stuff.
</P>
<H1 CLASS="coolstuff”>
This header is also cool stuff.
</HL>
</BODY>
</HTHML>

In the preceding code, the className and id values are converted to up-

percase before making comparisons; these values are thus treated on a case-
insensitive basis.

Accessing an Element’s Attributes

Every element object exposes its attributes, style, and contents to scripting
languages. This information is obtained from the underlying source code for
the document. This section shows how attributes are exposed. Chapter 11,
“Dynamic Styles,” discusses accessing an element’s §tyle, and Chapter 13, “Dyna-
mic Contents,” discusses accessing an element’s contents.

Data Types

In HTML, an attribute always takes one of the following data types: number,
string, string from a predefined list, or compact value. (Compact values are
values that are trueor false) The DTD (document type definition) specifies the
data type for each attribute.

In the Dynamic HTML object model, each attribute is exposed as a prop-
erty. Such a property has one of the following four data types:

m 32-bit integer for number values

B Boolean for compact values

m String for arbitrary or defined strings

® Function pointer for event attributes

192

105

EIGHT: Scripts and Elements

The script in the following HTML document uses the four data types:

<HTML>
<HEAD>
<TITLE>Programming Attributes--Data Types</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=TEXT SIZE=35 ID="txt1" DISABLED>
<H1 ALIGN="Left" ID="hdl™ ONCLICK="alert{'Clicked!"}">
This is a left-aligned header.
</H1>
<SCRIPT LANGUAGE="JavaScript">
alert{document.all.txtl.disabled); // Boolean true

alert(document.all.hdl.align); /7 String left
alert(document.all.txtl.size): // 32-bit integer 35
alert(document.all.hdl.onclick); // Function pointer
</SCRIPT>
</BODY>

</HTML>

A property is exposed for every defined attribute in HTML, even if the at-
tribute is not explicitly defined in the document. For example, the Input ele-
ment in the preceding code does not have the VALUE attribute specified, but
in the object model all Input elements always expose the value property. The
value of a property corresponding to an unspecified attribute depends on its
data type. String properties contain empty strings; number properties contain
the default values for the corresponding attributes; compact properties con-
tain false; and function pointers contain nuil.

An event attribute contains code that executes as the result of a specified
action. When the code string is parsed, a function object is created. Rather than
expose the string defining the function, a property representing such an event
contains a pointer to the function.

If you try to assign a value of one data type to a property of another, the
results will vary depending on the scripting language. Either the value will be
coerced into the property’s data type or an error will occur. For example, ifyou
assign a number to a string property in JavaScript, the interpreter will trans-
late the number into its string representation before making the assignment.
If the language supports explicit casting from one type to another, you should
explicitly cast values to ensure predictable results. The parse/nt function in
JavaScript, for example, changes a string representation of a2 number into an
actual number:

document.myText.size = parselnt(”100"); // 188

193

PART 11;: DOCUMENT STRUCTURE

194

Naming Conventions

While HTML allows attributes to be defined insensitive of case, JavaScript is
case sensitive. To simplify programming with case-sensitive languages, the
object model defines all properties using a consistent naming convention,
which allows you to determine the property name for any existing attribute
without having to look it up in a reference.

Following this naming convention, all properties—not just properties
representing attributes—have names beginning in lowercase; each appended
keyword begins with a capital letter—for example, tagName. Because most
attributes consist of a single keyword, the corresponding properties are gen-
erally all lowercase.

For each attribute, the corresponding property has the same name as the
attribute, except in two cases: the className property represents the CLASS
attribute, and the htmiFor property represents the FOR attribute (used with
Label and Script elements). These exceptions are necessary because for and class
are reserved words in many programming languages.

Access to Original Values

Because HTML is text based, there are times when an attribute might contain
avalue that is not compatible with the data type of the exposed property. For
example, the SIZE attribute represents the integer size of a text box. However,
if the HTML. source contains a string rather than a number, the size property
still returns the default size because the data type for the value is predeter-
mined. The Dynamic HTML object model is designed to ensure that even
invalid attributes and values are accessible to scripts. All elements expose the fol-
lowing methods to provide access to the untouched value from the original
document.

B getAttribute(propertyName [, options])
B setAttribute(propertyName, Value [, options])
B removeAttribute(propertyName [, options])

The getAttribute method takes the property name as a string and returns
the value as it appears in the source code. If the source file sets the SIZE at-
tribute to the string big, for example, the size property returns the default size
20. But getAttribute("size") returns the string bigbecause the getAttribute method
always returns the untouched value from the source code.

The setAttribute method lets the developer control the reverse operation,
whereby a string can be inserted into the HTML stream, even if the property

106

E1GHT: Scripts and Elements

value is a number. For example, setAttribute("size”, "small”) puts the string value

smallinto the SIZE attribute. The size property on the element still returns 20.

The removeAttribute method is used to remove an attribute from the object.

The three attribute methods expose an aptions parameter that controls
how the lookup is performed. Currently, the parameter controls only case
sensitivity. With the default options value of false, the lookup is case insensitive.
With an options value of true, the lookup is case sensitive, using the internal
capitalization of the attribute for known attributes and the capitalization de-
fined in the source code for unrecognized attributes.

In general, case-sensitive lookups are not necessary and the attribute
methods can be invoked without the optional flag. For multiple properties that
are capitalized differently, the property that is returned is the first match found
in the properties list. The main purpose of the options parameter is to locate
a property when the same property name exists mulciple times with different
capitalizations.

NOTE: While the designers of the object model were careful to
avoid collisions between common reserved words, there may be cases
in which an existing attribute collides with a reserved word in the
programming language. If this occurs, the three attribute methods
can be used to access any property value on the element instead of
accessing the attribute directly using the exposed property.

Enumerated Data Types

Many other object models expose value lists as enumerated data types. Usually,
the enumerated data type is an integer or other number and a variety of con-
stants are defined to represent its allowed values. To ensure language neutral-
ity, integer-based enumeration is not used in the Dynamic HTML object
model. Instead, all value lists are exposed as string values. For example, the
ALIGN attribute stores a string that is supposed to be one of the three string
values: left, right, and center.

An attribute can be assigned a string capitalized in any manner, and it
will be properly evaluated. For example, the ALIGN attribute in HTML or the
corresponding align property can be assigned the value left or LeFT, or any
other combination of uppercase and lowercase. However, when you retrieve
the value, it is always returned all lowercase.

Enumerated string values are convertéd to lowercase at parse time or
assignment time; the original case of these values is not accessible. The
getAttribute, setAttribute, and removeAttribute methods will not respect the origi-
nal capitalization of the enumerated strings and will return them lowercased.

195

PART 11: DOCUMENT STRUCTURE

Unrecognized Attributes

Chapter 7, “Document Element Collections,” demonstrated how unrecognized
elements are handled in the object model. Dynamic HTML also accurately
represents unrecognized attributes on any element. The attribute methods
provide access to attributes specified in the document that are not recognized
by Microsoft Internet Explorer 4.0. Using these methods, unrecognized at-
tributes can be added and removed from any element. With JavaScript, this
access is taken one step further—all unrecognized attributes are also exposed
as properties of the element, as shown here:

<H1 ID=myH1 badAttribute=Test>

JavaScript can access a property named badAttribute on this H1 object. This
property is accessed in the same manner as any other property on the element:

alert(document.all.myHl.badAttribute) ’ /7 Test
alert{document.all.myHl, getAttribute("badAttribute™)) // Test

Unrecognized attributes are exposed as properties with the same capi-
talization they have in the original document. For recognized attributes, the
capitalization of the attribute in the document has no relation to its capitali-
zation in the object model. To perform case-insensitive lookups, the attribute
methods should be used. In general, these methods should be used instead of
accessing unrecognized attributes directly. This technique also eliminates the
potential for problems caused by typographical errors in the capitalization of
attribute names. In the section “Customizing Existing Elements” later in this
chapter, techniques are demonstrated for intelligently using unrecognized
attributes,

Parsing Information

196

Every element exposes information about itself and its relationship to other
elements. The exposed information falls into two categories: parsing informa-
tion and rendering information. The parsing information relates directly to
the attributes, styles, and contents defined by the document. The rendering
information represents the information calculated by the browser before dis-
playing the element.

The parsing information includes the identifying properties discussed
earlier, all the specified known and unknown HTML attributes, the inline style
sheet, and the element’s relationship to other elements as defined by the docu-
ment. The inline style sheet is parsing information, not rendering information,
because it is defined explicitly in the document’s source, rather than calculated
at render time.

107

EIGHT: Scripts and Elements

The rendering information is information that is calculated by the
browser during the composition of the document. Rendering information
includes the position and size of the element in relation to its rendering con-
text—that is, who drew the element, which rendering context the element
belongs to, and the positions of any scrollbars. Rendering contexts and the
resulting rendering tree are discussed in detail in Chapter 12, “Dynamic Posi-
tioning.” The remainder of this section focuses on accessing and using the
parsing tree.

Determining HTML Containership

A couple of techniques are available for determining what elements are con-
tained within other elements. As mentioned, the parent element of an element
can be determined using the parentElement property. The child elements con-
tained within an element are enumerated by a children collection and an all
collection on the element. The children collection represents the immediate
child elements, while the ali collection represents all the contained elements.

Accessing Child Elements

The all collection on the document represents all the HTML elements con-
tained by the document. This containership concept is carried through to
every element object. Every element object also exposes an all collection that
represents all the elements contained within that element. In addition, a chil-
dren collection is exposed representing the elements that are immediate chil-
dren of the current element. These collections work in the same manner as the
document element collections introduced in Chapter 7, “Document Element
Collections.” Using these collections, you can create a highly customized col-
lection. Here are a few examples:

// AT the H1 elements that are children of the body
document.body.children.tags(™H1")

// A11 LI elements in the third UL element on the page
document.all.tags("UL")[2].children.tags("LI")

// A11 Paragraph elements contained anywhere within the first DIV

// element, even in a nested DIV or Table element
document.all.tags("DIV")[@].a11.tags("P")

Determining Whether One Element Is Contained Within Another
As mentioned in Chapter 3, “Dynamic HTML Event Model,” every element
exposes a contains method that can be used to quickly determine whether
another element is within its scope. The contains method takes an elementand
returns a value of frueif the element is a child element, a child of a child, and
so forth.

197

PART I11: DOCUMENT STRUCTURE

The contains method was introduced to simplify writing onmouseover and
onmouseout event handlers. Code in Chapter 3, “Dynamic HTML Event Model,”
demonstrates how to use the contains method to check whether the mouse cur-
sor has entered or exited the element on which the event fired and hasn’t only
entered or exited a child element.

The sourcelndex Property

All elements expose a read-only 32-bit integer sourcelndex property that contains
the element’s ordinal position in the document’s afl collection. This position
is also the position of the element in the parsing tree if the tree were flattened
into a list. The sourcelndex property can be used to determine the relative lo-
cation of an element and its relationship to other elements in the document.

Do not rely on the sourcelndex property to return the same value; the index-
ing can change if more elements are created for-the document in the future.
For example, do not expect two elements’ sourcelndex values to always be a fixed
distance apart. If you use the sourcelndex property, make comparisons by ge-
nerically locating an element in a loop.

Constructing a Parsing Tree

198

One of the best ways to understand the containment relationships in an HTML
document is to construct the parsing tree using the document’s all collection,
The following document contains code that automatically outputs a nested
table representing the containership hierarchy of each element in the document.
This code fragment can be placed in any document to get a quick tree view.

<HTML>
<HEAD>
<TITLE>Tree Builder</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function buildTree() (
var intParents = @;
var intIndent = @;
/7 strStruct stores the HTML string that
/7 will represent the document.
var strStruct = "<HTML>KTITLE>Document Tree</TITLE>" +
"<BODY><TABLE BORDER CELLPADDING=5><TR>";
var elParent:
// Walk through every element in the document.
for (var intloop = 8; intLoop < document.all.length:
intLoop++) {
elParent = document.all[intLoop];
// Determine depth of the element.

108

EIGHT: Scripts and Elements

while (elParent.tagName != "HTML") (
intParentis++;
elParent = elParent.parentElement;

}

/7 Nest or close nesting based on new depth.

if (intParents > intIndent)

strétruct +=
"<TABLE BORDER WIDTH=100% CELLPADDING=5><TR>":
else if (intParents < intIndent) {
for (var intClose = intParents;
intClose < intIndent; intCloset+)
strStruct += "</TABLE>™:

}

intIndent = intParents:

intParents = 8;

str$truct += "<TD>" +

document.all[intLoop].tagName;

}

// Close any remaining scopes.

for (var intClose = intParents; intClose < intIndent:
intCloset++)

strStruct += "</TD></TR></TABLE>";
strStruct += "</BODY></HTML>";

// Output the new document in a new window.
var w = window.open("", "tree™);
w.document.open():
w.document.write{strStruct);
w.document.close();

}
window.onload = buildTree;
</SCRIPT>
</HEAD>
<BODY>
<H1>Tree Builder</H1>

Test Item 1

Subitem 1

Subitem 2

Test Item 2

<DIV>
<P>This is ceol.</P>

</DIV>

</BODY>
</HTML>

199

PART

11: DOCUMENT STRUCTURE

This code constructs the tree by enumerating the document’s afl collection
and calculating the depth of each element using the parentElement property.
This routine could be rewritten recursively using the children collection on each
element.

Figure 8-1 shows the containership hierarchy generated by this code. The
nested tables show what elements are scoped within what other elements.

HTML

BODY
| UL |
HEAD LI [1B
P
TITLE | SCRIPT H1
[= ‘
V|
] L 7

Figure 8-1.
The containership hierarchy for an HTML document.

The document Property

Each element exposes a document property that represents the document the
element belongs to. This property allows generic scripts to determine what
document—and from the document, what window—an arbitrary element
originated from. For example, the following expression references the window
containing the element:

myElement.document.parentWindow // The window for an element.

Creating New Elements

Elements can be added to the document using one of two techniques: creating
a new element in memory and associating it with the document, or directly
modifying the underlying HTML contents. The direct modification of the

109

EIGHT: Scripts and Elements

underlying HTML contents is discussed in Chapter 13, “Dynamic Contents.”
This section demonstrates the first technique, creating elements in memory.
Some elements can be created by using the createElement method on the
document or by using the new operator on the window. Both methods perform
the same action and return a new element object. The createElement method is
alanguage-independent mechanism for constructing elements; the new opera-
tor is provided for compatibility with Netscape Navigator. The newly created
element object is not maintained in memory and is not associated with the
document until it is explicitly added to the document. The following code
demonstrates using both techniques to create an IMG element:

var img = new Image():

var img = document.createElement("IMG");

Internet Explorer 4.0 allows the creation of only three elements in this fash-
ion: IMG, Option, and Area.

You can dynamically add new Option and Area elements to list boxes and

image maps, respectively. The construction of images is currently limited to
allowing images to preload into the cache. The IMG element itself cannot be
added to the document. Instead, because the construction forces an image to
download into the cache, simply assigning the URL of the image to the sr¢
attribute of an existing image causes the new image to display, as shown here:
var img = new Image():
img.src = "cool.gif": // Download the image in the background.
document.all.myImage.src = “cool.gif”; // Use downloaded image.
New Option and Area elements can be added to the document. The Select
element exposes an options collection of the Option elements it contains, and
the Map element exposes an areas collection of the Area elements it contains.
These collections allow additional Option or Arca elements to be dynamically
added or removed.

The technique for adding and removing these elements plus examples
of how to take advantage of preloading images are discussed in the next two
chapters. All other contents in the document’s Body element can be modi-
fied by directly changing the HTML, as discussed in Chapter 13, “Dynamic
Contents.”

Customizing Elements

Dynamic HTML exposes all information about the document, including un-
recognized elements and attributes. This feature can be used to create user-
defined behavior based on custom elements and attributes. For example, you

201

PART

11: DOCUMENT STRUCTURE

can write code that causes any UL element that is specified with the custom
outline attribute to be expandable and collapsible. And you can define a new
tag for defining constants and other behaviors in the document.

The benefit of these techniques is that code becomes much more gener-
alized. No longer must a content author understand scripting to add complex
behavior to elements. Developers can now write their code more intelligently
and document how the content author can use this new functionality that
custom attributes and elements offer.

Element Default Actions

All elements in the Body element of the document expose a ¢lick method.
Scripts can use the click method to simulate a user clicking the element. The
method fires the onclick event on the element, and then invokes any action the
element takes by default when clicked. Because the onclick event is fired prior
to the default action occurring, the developer can override the default action
in an onclick event handler.

Customizing Existing Elements

202

Because the object model exposes unrecognized attributes and their values,
extra information can be easily attached to the element and manipulated using
scripts. By adding unrecognized attributes, you'can provide existing elements
with additional behavior. For example, you can add an outline attribute to a list
clement to specify that the list can be expanded and collapsed. The code checks
whether the user has clicked in a list that has the outline attribute defined and
performs the appropriate action.

Using unrecognized attributes is a powerful way to simulate subclassing
of an element. The behavior of the element can be completely customized and
even overridden by using unrecognized attributes with event bubbling.

Determining the Existence of an Attribute

Custom attributes can be used to modify an element’s behavior just by the
attribute’s presence. Code can check an element to see whether it has the at-
tribute and perform an action if it does:

<H1 ID="headerl">Test</H1>
<SCRIPT LANGUAGE="JavaScript">
alert(document.all.imagel.getAttribute(™dragEnabled”) == null):
// false
alert(document.all.headerl.getAttribute(”dragEnabled™) == null);
// true
</SCRIPT>

110

EIGHT: Scripts and Elements

This example demonstrates adding custom attributes and simply checking for
their existence. Code in Chapter 12, “Dynamic Positioning,” extends this ex-
ample by enabling any element with the dragEnabled attribute to be dragged
around the document.

A custom attribute used in this way differs from a compact value in an im-
portant respect. The custom attribute signals a behavior just by its presence,
unlike a compact value, which signals a behavior by having the value #rue. To
turn off the drag ability of an element in the preceding example, code must
remove the dragEnabled attribute using removeAttribute, not simply change its
value to false.

User-Defined Elements

Because unrecognized elements are exposed in the object model, you can add
elements to the document that contain meta information or other processing
information in a well-defined structured manner. For example, an unrecog-
nized element such as <LASTEDITBY name="Scott Isaacs”>, containing the
name of the person who last edited the document, can be added to the docu-
ment. This element can now be referenced through code:

// First instance of the LastEditBy element
document.all,tags("LASTEDITBY")[@]1.getAttribute("name”)

All attributes of unrecognized elements and recognized elements can also
be accessed in the object model. This technique can be used to define new
behavior for a document, without modifying the scripts. For example, if a con-
stant requires frequent changing by a nondeveloper, supplying it in an element
or as an unknown attribute on an existing tag may be an appropriate approach.
Or you could use a custom Sequence element to define a sequence of presen-
tation effects to perform on the document.

This technique is extremely powerful for adding behavior to the docu-
ment, but be careful when you are using invalid HTML to store information.
In the future, if a custom-defined element becomes a valid element in HTML,
there is potential for the page to no longer function properly.

HTML-Based Constants
By taking advantage of Dynamic HTML's ability to expose unrecognized ele-
ments, you can declare constants using HTML rather than within the code. The
advantage to this approach is that constants can be edited without the need
to modify or understand scripting.

The following code uses an unrecognized element, HTMLConstant, to
store any necessary constants. HTMLConstant supports three attributes: id,
value, and type. The idand valueattributes are required; they specify the name

203

PART

11: DOCUMENT STRUCTURE

204

of the constant and the default value. The #ypeattribute is optional because all
constants default to strings. If an integer or a floating constant is required, the
type attribute must be specified.

<HTML>
<HEAD>
<TITLE>HTML-Based Constants</TITLE>
<HTMLCONSTANT 1 startPosition"” valu integer">
<HTMLCONSTANT id="endPosition” value= "float">
<HTMLCONSTANT id="defaultUser" value="Scott" type="string">

<SCRIPT LANGUAGE="JavaScript">
function setupConstants() {
// Get all constants.
var Constants = document.all.tags("HTMLCONSTANT");
document._Constants = new Object();
for (var intlLoop = @; intlLoop < Constant$.length;
intLoop+t) { j
var temp = Constants[intLeopl;
// Determine data type.
if ("integer” == temp.type)
document._Constants[temp.id] = parselnt(temp.value);
else if ("float" == temp.type)
document._Constants[temp.id] =
parseFloat(temp.value);
else
// String is default.
document._Constants[temp.id] = temp.value;

}
1
</SCRIPT>
</HEAD>

<BODY ONLOAD="setupConstants(}">
<H1>HTML-Based Constants</H1>
</BODY>
</HTML>

All constants are exposed on a subobject on the document, _Constants.
Constants can be referenced as follows:

document._Constants. constantID

In the preceding document, constants are not available until the document is
loaded because the onload event triggers the initialization of constants, allow-
ing constants to be declared anywhere within the document. If access to the
constants is required before the document is loaded, this function should be
called during the parsing of the page. All constants must be defined before
the script’s location in the source.

111

EIGHT: Scripts and Elements

Custom Content Containers

As demonstrated earlier, unrecognized tags can be used to add more contextual
information to the document. This technique works well for creating
contentless elements. Contentless elements do not have an end tag; they contain
all their relevant information in attributes (similar to the IMG element).

The object model is not highly suited for creating custom content con-
tainers because of the way the elements are handled in the parsing tree. Un-
recognized tags cannot have any children and therefore cannot have any text
associated with them. Managing and associating contents with an unrecognized
tag, while possible, is extremely difficult. This difficulty is not so much a short-
coming in the object model as a shortcoming in the design of HTML. There
is no precise way to specify that an unrecognized element is a container and
that an end tag should exist. Furthermore, the contents of the container will
be rendered by any and all browsers because the element will not be recognized
and therefore cannot have a style associated with it.

Although it is beyond the scope of this book, there is a markup language,
called XML (Extensible Markup Language), that is designed for handling user-
extensible elements. XML uses a syntax based on SGML and similar to HTML
that can describe whether the element is a container or an empty element. For
more information about XML, see the World Wide Web Consortium (W3C)
Web site (www.w3.org) or Microsoft’s Web site (www.microsoft.com).

C HAPTEHR N I N E

Scripting Individual Elements

Chapter 8, “Scripts and Elements,” introduced scripting elements in Dynamic
HTML. While cvery element in an IITML document is accessible to scripts,
this chapter focuses on techniques for programming a few of the elements that
appear most commonly in scripts. Chapter 10, “Forms and Intrinsic Controls,”
describes techniques for programming elements in forms.

The following topics are covered in this chapter:

B Programming the Body and Frameset elements HTML declines
two types of documents: documents with Body elements for display-
ing contents, and documents with Frameset elements for dividing
the screen into frames for loading other documents. This section
introduces techniques for manipulating these clements.

= Programming the Anchor element Anchor elements serve a dual
purpose in HTML: as links that navigate to new pages, and as book-
marks that act as destinations. This section discusses how to manipu-
late both types of Anchor elements and how to add custom behavior
to them,

= Programming the Link element The Link element is used to
define relationships between documents. Microsoft Internet
Explorer 4.0 supports the Link element for specifying linked style
sheets. This section shows you how to define and take advantage of
custom relationships between documents.

B Programming the IMG and Map elements Dynamic HTML
cxposcs a rich object model for manipulating images and image
maps. New images can be loaded in the background so that they
can be displayed instantly, and image maps can be dynamically
modified and scaled.

207

112

PART

11: DOCUMENT STRUCTURE

® Programming the Marquee element The Marquee element is
currently an Internet Explorer—specific feature used to automati-
cally scroll a block of text. The Marquee element can be custom-
ized and manipulated using the Dynamic HTML object model.

® Programming the Object element The Object element is used
to embed custom contents, including ActiveX controls and Java
applets, in the HTML document. The custom contents can expose
a customized object model alongside that of the Object element.
This section shows you how to access this object model.

H Programming the Table element Tables are used for two pur-
poses: displaying tabular data in a gridlike format, and creating
a sophisticated layout. This section discusses the relationship be-
tween the underlying HTML for the table and the object model
representation.

Programming the Body and Frameset Elements

An HTML document can contain either of two types of contents: body con-
tents or a frameset definition. The first Body or Frameset element appearing
in the document defines the document’s type. A similar object model is exposed
for the document in both cases.

The body Property

The document object exposes a body property thaf represents the root of the
document’s contents. The name of this property is ambiguous because the body
property can represent either a Frameset or a Body element, depending on the
document type. As explained in Chapter 7, “Document Element Collections,”
every document has a Body or Frameset element, regardless of whether it is
explicitly declared. If a document’s frameset nests other Frameset elements, the
body property represents the outermost Frameset element in the document.

The Body or Frameset element is also contained in the document’s all
collection. Thus, the body property can be accessed directly from the document
as follows:

// Returns “BODY" or "FRAMESET" depending on the type of document
document.body.tagName;

Or it can be accessed through the all collection:

// Far documents with a Body element

document.all.tags{"Body").item(@).tagName: // Returns "BODY"

113

NINE: Scripting Individual Elements

/+ Displays "true"; demonstrates that the two elements are the
same */
alert(document.all.tags("Body").item(8) == document.body);

// For documents with a Frameset element
document.all.tags("Frameset").item(®).tagName: // Returns “FRAMESET"
/% Displays "true"; demonstrates that the two elements are the

same */
alert(document.all.tags("Frameset™).item(@) == document.body);

In the preceding code, the tagsmethod returns a collection consisting of
the Body or the Frameset elements. If the document has a Body element, the
HTML DTD (document type definition) limits it to a single Body element, and
the parser ignores any extra ones. If the document has a Frameset element, it
can have multiple Frameset elements; the tags method returns all of them,
beginning with the outermost one. In either case, the first element in the
collection returned by the tags method is the element contained in the body
property. The code uses item to access this element.

Availability of the body Property

The object model is constructed and exposed simultaneously during the pars-
ing of the document. Before the parser encounters the body or frameset of the
document, the body property is not available, and therefore the body property
returns null. The following code illustrates the availability of the body property:

<HTML>
<SCRIPT LANGUAGE="JavaScript">
alert(document.body == null);
</SCRIPT>
<BODY>
<SCRIPT LANGUAGE="JavaScript™>
alert(document.body == null); // false--follows <BODY> tag
</SCRIPT>
</BODY>
</HTML>

// true--precedes <BODY> tag

For documents with body contents, the <BODY> tag does not have to
appear explicitly in the document to be accessible. Instead, the Body element
is implicitly created once the document contains an element—or simply some
text—that must be a part of the body. The elements that make up body con-
tents are defined by the HTML DTD. Chapter 1, “Overview of HTML and CSS,”
explains how to read a DTD, and more information about how the document
is parsed is provided in Chapter 7, “Document Element Collections.”

209

PART 11: DOCUMENT STRUCTURE

Distinguishing Between Body and Frameset Contents

You can use the tagName property to determine whether a document contains
a body or a frameset. The following code displays an alert box reporting its
document type—in this case, a frameset:

<HTML>
<HEAD>
<TITLE>Frameset Exposed as the Body</TITLE>
</HEAD>
<FRAMESET ROWS="100%" ONLOAD="alert(document.body.tagName):">
<FRAME SRC="foo.htm">
</FRAMESET>
</HTML>

Checking the length of the frames collection on the window is not an ac-
curate way to determine whether a document is a frameset. A document with
a Body element may contain IFrame elements, which would be included in the
frames collection.

Client Window and Document Size

210

The width and height of the client window are exposed as properties of the
Body and Frame elements. The physical size of the document is the size of the
client area— that is, the amount of space the document occupies on the screen.
The logical size of the document is the size of the contents. For document con-
tents that are larger than the window, scrollbars are usually displayed. Fig-
ure 9-1 illustrates the properties that represent the physical and logical size of
the document, and the subsequent sections describe them. Other elements in
the document can expose the same properties for determining their size. The
special relationship these properties share with other elements in the document
is discussed in Chapter 12, “Dynamic Positioning.”

Physical Size
The physical width and height of the document (frameset or body type) are
exposed through the offsetWidth and offsetHeight properties of the Frameset
or Body element. The physical width and height measure the area of the cur-
rently visible window including the scrollbars. The clientWidth and clientHeight
properties are exposed to determine the size of the client area—the physical
size as defined by the offsetWidth and offsetHeight properties less the size of the
scrollbars and surrounding borders. These properties are read-only and can-
not be used to change the size of the window.

In Figure 9-1, no horizontal scrollbar is displayed, so the offsetHeight
and clientHeight properties would be the same if the border was set to 0. However,

114

NINE: Scripting Individual Elements

o
g

chantt

-

4

Figure 9-1.
Properties for determining the window and document size.

a vertical scrollbar is displayed, so the offsetWidth and clientWidth properties
represent distinct values.

Logical Size

The Body element exposes four properties for determining the logical size of
the document and the position of the user’s view into the document: scrollWidth,
scrollHeight, scrollTop, and scrollLeft. The logical size of the document represents
the total height and width of the document, not the size of the browser win-
dow that provides a view into the document. These properties are not available
or necessary on frameset documents because the logical size of the frameset
is equivalent to its physical size.

The scrollWidth and scrollHeight properties represent the logical size of
the document in pixels. These properties are read-only and are calculated by
the browser based on the document contents. You can change the scrollWidth
and scrollHeight properties by dynamically adding or removing elements or
by resizing the window. Resizing the window usually affects both properties
because the contents rewrap to the new width.

The scrollTop and scrollLeft properties represent the scroll offsets of the
logical document. They represent the point in the document that is displayed
in the upper-left corner of the window. When the horizontal and vertical
scrollbars are scrolled all the way to the left and top edges of the document,
serollLeft and scrollTop both equal 0. These properties are read/write and can
be modified to immediately scroll the document to a particular pixel position.

211

PART 11: DOCUMENT STRUCTURE

If you need to set scroliLeft and scrollTop at the same time, the scroll method
on the window is a2 more convenient mechanism because it takes both new co-
ordinates, horizontal and vertical, as arguments.

As a group, these properties provide information for determining the
visible portion of the screen. The currently viewable area of the document can
be easily calculated using the size properties, as shown here:

upperLeftX = document.body.scrollleft;
upperLeftY = document.bedy.scrollTop;
TowerRightX = upperlLeftX + document.body.clientWidth;
TowerRightY = upperleftY + document.body.clientHeight;

The scrolling-related properties are also exposed on any other scrolling
element. For example, you can give a Div element scrollbars using the CSS
(Cascading Style Sheets) overflow 3 property, and the TextArea element displays
scrollbars by default. When these elements have scrollbars, they expose the
scrolling-related properties for determining the scrolled regions of their con-
tents. The TextArea element is discussed in detail in Chapter 10, “Forms and
Intrinsic Controls,” and the CSS overflow property is discussed in Chapter 12,
“Dynamic Positioning.”

Window Events

212

The Body and Frameset elements expose attributes corresponding to all
window-level events. For example, the following code in a document with a
Body element specifies an ONLOAD event handler for the window:

<BODY ONLDAD="doThis();">
The code for a frameset document is similar:
<FRAMESET ONLOAD="doThis();" ROWS="x">

Even when you use the <BODY> or <FRAMESET> tag to specify the
handler for a window event, the event is scoped to the window object, not to
the body object. This distinction is important when you use the this pointer in
the event handler. In a body-level event handler, ¢is points to the body object;
in a window event handler, #4is points to the window object, even if you specify
the handler in the <BODY> tag. The following code illustrates how this point-
ers work for a window event (onload) and a body event (onclick):
<BODY ONLOAD="alert{this == document.body); // false"

ONCLICK="alert(this document.body); /1 true">
</BODY>

Furthermore, for window events, the srcElement property of the event object
contains null.

115

NINE: Scripting Individual Elements

While a document can have multiple framesets, it can have only one
handler for each window event. If several Frameset elements in the document
define handlers for an event, only the last handler’s code is executed. In the
following example, only the second onload event handler executes, displaying
the alert 4. The event does not fire until the entire document is loaded.

<HTML>
<HEAD>
<TITLE>Frameset onload Event</TITLE>
</HEAD>
<FRAMESET ONLOAD="alert{('a'):" ROWS="198, »">
<FRAMESET ONLOAD="alert('b’);" COLS="#.x">
<FRAME SRC="a.htm">
<FRAME SRC="b.htm">
</FRAMESET>
<FRAME SRC="c.htm">
</FRAMESET>
</HTML>

Because you can define only one handler per window event, you cannot
specify a handler on a Frame or nested Frameset element that works only for
that particular element. To protect against this behavior possibly changing in
the future, window event handlers should be specified only on the first Frameset
element.

The onresize Event
The onresize event is fired whenever the size of the physical window changes,
not the size of the contents within the body or frameset document. Therefore,
this event is actually a window event when defined on the Body element. The
onresize event is also exposed on elements within the document that have a
defined size. In those cases, the event fires only when the physical size of the
element changes.

‘When a document is first loaded into a2 new window, the onresize event does
not fire. Therefore, if code is being used to lay out the document based on the
initial window size, the code should be called from the onload event.

Programming Body Contents

Documents that contain a Body element have a few additional features not
available to frameset documents, including access to the HTML and textual
contents contained within the body and an onscroll event that fires when the
window is scrolled.

You can write scripts to manipulate the text in the Body element or any
element in the body. The techniques are discussed in Chapter 13, “Dynamic
Contents.”

213

PART

11: DOCUMENT STRUCTURE

The onscroll Event

The window object exposes an onscroll event that fires whenever the win-
dow is scrolled either explicitly by the user or through code. This event occurs
only in documents with Body elements and not in frameset docurnents because
they do not display scrollbars.

Programming Frameset Contents

214

Because the frameset document is another type of HTML document, it sup-
ports the document object model. The frameset document exposes an all col-
lection that provides direct access to all the elements in the document. Through
the all collection, the individual attributes of each Frameset and Frame element
can be accessed and in many cases dynamically modified.

While the number of frames in the frameset is static and cannot be
modified without creating a new document, a number of the attributes of the
Frameset element can be changed. For example, the ROWS and COLS
attributes are read /write attributes, which allows you to change the layout of
the frameset dynamically. This flexibility can be used to add custom behavior
to a traditional frameset.

The following code creates a custom layout that allows the user to select
from a set of pages: This example turns off the resizing capability of each frame
and instead automatically expands the frame the user clicks on. This layout
model requires a small amount of code behind the frameset and each document.

<HTML>
<HEAD>
<TITLE>STiding Frames</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var defSize = 25;
if (f == _current) return; // check if already active
_current = f;
function display(f) {
var newRows = "";
// Get all the Frame elements.
var elFrame = document.all.tags("FRAME™);
for (var intFrames = @: intFrames < frames.length;
intFrames++) {
var curfF = frames[intFrames].document;
if (curF.body == f.document.body) {
// Give selected frame all the space.
newRows += ", “;
/* Make the header much bigger., */
curF.all.header.style.fontSize = "200%";
/+ Turn on scrollbars for the active frame
by accessing the Frame element

116

NINE: Scripting Individual Elements

elFrame[intFrames].scrolling = "yes";

}
else {
// Set to default size.
newRows += defSize.toString() + ™, ™;
// Reset header font size.
curfF.all.header.style.fontSize = "";
/7 Turn off scrolling.
elfFrame[intFrames].scrolling = "no";
}
1
document .body.rows = newRows;
}
</SCRIPT>
</HEAD>

*, 25, 25">
="home.htm" NORESIZE>

<FRAME SRC="news.htm” NORESIZE SCROLLING="No">
<FRAME SRC="1info.htm" NORESIZE SCROLLING="No">
</FRAMESET>
</HTHL>

Figure 9-2 demonstrates this code in action. When the user clicks on the
News or Information heading, the other frames automatically shrink and the
selected frame expands to take up the remaining view.

| I Shiding Frames - Microsolt Internet Explo

Figure 9-2.
An example of automatically sliding frames.

215

PART 11: DOCUMENT STRUCTURE

In each document in the frameset, the onfocus event handler must call the
display routine. The parent property on the document must be referenced to
call the function:
<!-- The onfocus event must be defined for each document in the

frameset. -->
<BODY ONFOCUS="parent.display(this):">

Also in each document in the frameset, the ID of the first paragraph must have
the value header. The text in this paragraph will be enlarged when the docu-
ment has the focus.

This example demonstrates modifying the attributes of individual frames.
The Frame element in the all collection of the document is different from
the contents of the window’s frames collection. The frames collection on the
window returns the window instance created based on the document’s source.
The Frame element in the all collection represents the frame as defined by the
HTML source and is used to create the window. Modifying the Frame element
can modify the window and its contents—for example, scrollbars can be manu-
ally turned on and off. Scrollbars have been turned off in our example so that
they do not clutter the collapsed heading view of the document.

Programming the Anchor Element

The HTML Anchor element serves a dual purpose: to specify links for navi-
gating to URLs and to specify bookmarks within the document. An Anchor
element acts as a link if its HREF attribute is defined, and it acts as a bookmark
if its NAME attribute is defined:

<!-- Link -->
<!-- Bookmark -->

The document’s all collection references all of the Anchor elements. The
document has two additional collections that separately reference the links
and the bookmarks. Links are exposed through the Zinks collection, and book-
marks are exposed through the anchors collection. A single Anchor element
can appear in both collections if both 2 NAME and an HREF attribute are
specified.

Both the Arefand the name properties can be changed through code, so
the anchor object can dynamically switch collections. For example, if an anchor
with an empty hrefis assigned a string, it is automatically added to the links
collection and is also automatically rendered as a link on the screen. Regard-
less of the type of anchor and the collections it is in, the anchor object exposes
the same set of properties, methods, and events.

216

117

NINE: Scripting Individual Elements

NOTE: From here on, anchors specified as are re-
ferred to as bookmarks and anchors specified as are
referred to as links to disambiguate the two types of anchors. These
links are different from the Link element discussed in the section
“Programming the Link Element” later in this chapter. The <LINK>
tag defines the Link element.

The href Property

The anchor object has a number of properties that contain portions of the URL
exposed by the href property. The protocol, hostname, port, pathname, search, and
hash properties reference the individual parts of the URL, and the Aost prop-
erty contains both host name and port information. These properties, which
also belong to the location object, are described in Chapter 4, “The Browser
Window.”

Anchors and the Base HREF

An interesting relationship exists between relatively specified HREF values and
the object model. A relative HREF is a URL that does not start explicitly with
// (for example, href="goHere.htm"). All relative HREFs are prefixed with a
default location. Unless otherwise specified, the default location is the loca-
tion of the current document. You can use the Base element to change the
default location. For relative URLSs assigned to attributes, the default location
is added when the document is parsed. For relative URLs assigned to proper-
ties by scripts, the default location is not added until the URL is referenced.
The following code illustrates these points:

<HTML>
<HEAD>
<TITLE>Base HREF Demo</TITLE>
<BASE HREF="http://scotti/">
</HEAD> -
<BODY>
page 1
page 2
<SCRIPT LANGUAGE="JavaScript">
alert(document.linksf@].href); // http://scotti/pagel.htm
alert(document.links[1]).href); 7/ htt /ji/page2.htm
document.1links[@]).href = "newpage.htm";
alert(document.links[@].href); // newpage.htm
</SCRIPT>
</BODY>
</HTML>

217

PART I11: DOCUMENT STRUCTURE

Script-Specified HREF Attribute

The HREF attribute of an Anchor element may be alternatively specified as a
line of code to execute rather than as 2 URL. This technique is useful when a
frame is to contain a short string because it reduces the number of necessary
round-trips with the server. For example, when the user clicks on the follow-
ing anchor, a simple document that displays the string Hello, world! is created:

The protocol is the language name followed by a colon, and the pathname is
the rest of the string. The Arefproperty itself contains the entire string with ap-
propriate escape sequences (such as %20 for each space).

Script-specified HREF attributes execute after the onclick event stops
firing. Also, since the HREF attribute is not an event, the event object is not
available at the time the script-specified HREF executes,

NOTE: Take care when using VBScript for script-specified HREF
attributes. Netscape Navigator recognizes only the JavaScript lan-
guage and will display a navigation error if VBScript is specified.

Events on the Anchor Element

218

The Anchor element supports a set of standard events that indicate when the

user clicks on, moves the mouse over, or types in an anchor. The events that
can originate with the Anchor element depend on whether the anchor is a link

or a bookmark. If the Anchor element cannot act as a source for the event,
it will never be defined as srcElement if the event bubbles.

Event Source
onblur Link anchors
onclick All anchors
ondblclick All anchors
onfocus Link anchors
onkeydouwn Link anchors
onkeypress Link anchors
onkeyup Link anchors
onmousedown All anchors
onmousemove All anchors
onmouseout All anchors
onmouseover All anchors
onmouseup All anchors

118

NINE: Scripting Individual Elements

However, through event bubbling, the Anchor element can receive the event
from a child event (such as an image in the anchor) even if it does not explic-
itly support it. The preceding table lists the events for which each type of anchor
can act as the source. All events can be defined as attributes on the element,
through the <SCRIPT FOR= EVENT= > syntax or through properties of the
Anchor element. To be a source for focus and keyboard events, an element
must be able to receive the focus. Anchors that are links can receive the focus;
bookmarks cannot.

The default result of clicking on a link is a jump to the anchor. This ac-
tion can be overridden to customize how a page handles a link. The following
code cancels the default action of a specific link:

If you want compatibility with other browsers, return the value directly:

More generically, anchors can be overridden at the document level by
handling the document’s onclick event, as shown in the following code. This
technique works because the standard events, except ondlur and onfocus, bubble
up the document’s hierarchy chain.

<SCRIPT FOR="document™ EVENT="onclick()" LANGUAGE="JavaScript">
// Event object contains global information for the event handler.
if ("A" == event.srcElement.tagName) {
event.returnvalue = false;
// Write custom handler code for the anchor.
}
</SCRIPT>

The event sequence defines the ondblclick event to follow the onclick event.
The only way to determine whether a link received a double click is to over-
ride the default action of the single click because the event sequence is fixed.
There is no way to write an event handler for a link that performs a default
action for a click event and a different action for the double click because the
link already navigates to the targeted link before the ondblclick event fires,
Therefore, the usefulness of an ondblclick event on a link is fairly limited, and
most interactions with anchors are accomplished using the onclick event.

Customizing Links to Target Multiple Frames

One technique for adding custom behavior to an anchor is to define a few new
attributes on the Anchor element. This technigque for simulating subclassing
was introduced in Chapter 8, “Scripts and Elements.” This section demonstrates

219

PART 1l: DOCUMENT STRUCTURE

220

how to augment the traditional behavior of anchors. The simple example
presented here implements the basics for a much-requested feature of HTML
and framesets—the ability to target multiple frames with a single anchor. This
example demonstrates how authors can add their own functionality to a page,
without having to wait for the browser to add the support.

The following code adds two user-defined attributes to the Anchor ele-
ment: mhref and miarget. Both attributes take a semicolon-delimited list of
values—for mhref, a list of URLs, and for mtarget, a list of destinations for these
URLs. When the user clicks on an anchor, the code first checks whether the
anchor has these special attributes and, if it does, the code overrides the de-
fault behavior of following a single link with the custom linking code.

<HTML>
<HEAD>
<TITLE>Targeting Multiple Frames</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function checkElementTree(el, strTag) {
/* This simple function walks up the tree from the element

el and Tooks for any element with the tag strTag.
The first matching element found is returned. #/

while ("HTML" != el.tagName) {
if {strTag == el.tagName)
return el;

el = el.parentElement;
1
return null;
1

function multidump() {
// Find the anchor.
var el = checkElementTree(event.srcElement, “A");
if (null !=el) { // Found an anchor,
// Check whether it is a multitarget anchor.
if ((null 1= el.getAttribute("mhref")) &&
(null != el.getAttribute("mtarget™))) (
event.returnValue = false;
var mhref = new Array();
var mtarget = new Array();
// Parse attributes into arrays.
mhref = el.getAttribute("mhref").split(™; ");
mtarget =
el.getAttribute("mtarget"™).split(": ");
/+ Be sure there are an equal number
of targets and URLs. */
if (mtarget.length == mhref.length)

119

NINE: Scripting Individual Elements

for (var intlLoop = @; intLoop < mtarget.length;
intLoop++)
if (null != parent[mtarget[intLocpll)
parent[mtarget[intLoop]].location.href =

mhref(intloop]:
}
1
}
</SCRIPT>
</HEAD>
<BODY ONCLICK="multidump{);">
<A HREF="
mhref="http://www.microsoft.com; http://www.netscape.com"

mtarget="1eft; right">
Browser Web sites

</BODY>
</HTML>

This code works only for frames that are siblings to the frame containing
it. To make this code work for frames that exist anywhere in the frameset
hierarchy, you must write code that simulates the searching algorithm used by
the browser to search the hierarchy of windows.

Subclassing elements with user-defined attributes is one of the most
powerful ways to take advantage of Dynamic HTML. It lets you easily custom-
ize elements, without having to hard-code the customizations into HTML or
the scripting language. Custom attributes can be defined for identifying new
behavior, and the code can look for these identifiers and process the elements
accordingly.

Pseudo-Classes for Anchors

Style sheets provide a technique for defining styles for the three states of a link:
visited, not visited, and active. These states can each have a different style, which
you set using pseudo-classes in CSS. Pseudo-classes provide a technique for
improving user interactivity without requiring any code. See Chapter 1, “Over-
view of HTML and CS8S;” or the CSS specification at the W3C Web site for more
information about pseudo-classes and the CSS language.

Beyond using the pseudo-class, no property is currently exposed to the
scripting language for directly determining whether a link has been visited.
Therefore, there is no simple way to conditionally script links based on whether
they have been visited.

221

PART (1: DOCUMENT STRUCTURE

Removing Anchors

Simply assigning an empty string to either the href or the name property does
not remove an Anchor element from the document. However, this technique
will remove the element from the links or anchors collection, respectively. (The
element will always remain in the all collection.)

An Anchor element and its contents can be completely removed from the
document by using the outerHTML or the outerText property. To remove the in-
fluence of the anchor but leave the contents, the TextRange object can be used.
The following code demonstrates how to manipulate TextRange. Don't worry
if you do not understand this code. The TextRange object and its methods are
discussed in detail in Chapter 14, “User Selection and Editing Operations”

<SCRIPT LANGUAGE="JavaScript™>
function removeAnchor(aElement)} {
// The anchor to remove is passed as an argument.
// Create a TextRange object.
var tr = aElement.parentTextEdit.createTextRange();
// Locate the Anchor element in the TextRange.
tr.moveToETementText{aElement);
// Execute a command to remove the Anchor element.
tr.execCommand("Uniink", false}:
1
</SCRIPT>

Programming the Link Element

The previous section showed you how to program an Anchor element that is
either a bookmark or a link. HTML also provides a Link element that can be
used to define relationships between different types of documents. This
section focuses on a technique for defining relationships between documents
using the Link element and the REL and HREF attributes, which can be ac-
cessed from scripts.

At the time of this writing, Internet Explorer uses link relationships for
style sheets. However, by writing some simple scripts, you can use the REL
attribute to define other relationships. Defining relationships not only can
make your Web site more manageable, but it also can make the Web site acces-
sible to tools that analyze Web sites.

The following example demonstrates how to create a navigation bar that
reads each document’s Link element to ascertain the next and previous docu-
ments. A navigation bar is useful when a sequence of documents is being
presented. The navigation bar and contents panes are defined through a

222

120

NINE: Scripting Individual Elements

simple frameset. Whenever a new document is loaded, the document calls
afunction on the frameset to update the navigation buttons based on the new
document’s links.

Figure 9-3 shows the navigation bar in action. The availability of the
buttons in the top pane and their destination when clicked are defined by Link
relationships.

3 Link Relationships - Microsoft Internet Explarer

Table of Contents

The destinations of the navigation buttons are defined in Link
1 in the displayed. Buttons are disabled if
their destinations are not defined in the current document For
example, the Previous butten is disabled because no
document exists sequentially before the table of contents.

Figure 9-3.
A navigation bar based on Link elemenis.

The links.htm Document

The links.htm document, shown in the following code, defines the frameset
and contains the core code for managing the relationship between the links
" on the page and the navigation bar. Each document displayed in the contents

frame must call the setupLinks function after it loads in order to update the
navigation bar of the navigation pane. When the page unloads, the clearLinks
method must be called in order to disable all the relationship buttons, thereby
ensuring that the links are appropriate if the user navigates to a page that does
not define any relationships.

223

[—

PART 11: DOCUMENT STRUCTURE

<HTML>
<HEAD>
CTITLE>Link Relationships</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function setButton(b, dis, title, href) {
b.disabled = dis;
b.title = title;
b.href = href;
1

function clearLinks() {
var navDoc = window.navigation.document.all;
// Initialize buttons by disabling them
// and removing their titles.
with {navDoc) (
setButton(previous, true
setButton(next, true,

wa gy

oy

H

function setuplLinks{doc) {
// The calling document needs to be passed in.
/7 Get all the Link elements. .
var links = doc.all.tags("LINK");
var navDoc = navigation.document.all:
clearLinks();
for (var intLink = B:; intLink < 1inks.length; intLink++)
var el = Tinks[intLink];
if ("previcus™ == el.rel) {
/= If a previous relationship is defined, update
the buttons. */
setButton{navDoc.previous, false, el.title,
el.href);
)
if (“next"™ == el.rel) {
/+ 1f a next relationship is defined, update
the buttons. */
setButton(navDoc.next, false, el.title, el.href);

1

</SCRIPT>

</HEAD>

<FRAMESET ROWS="28, *" BORDER=8>
<FRAME SRC="navigate.htm" NAME="navigation" SCROLLING=NO>
<FRAME SRC="contents.htm" NAME="contents">

</FRAMESET>

</HTML>

224

121

NINE: Scripting Individual Elements

The navigate.htm Document
This code creates the navigation bar:

<HTML>
<HEAD>
<TITLE>Navigation Bar</TITLE>
<STYLE TYPE="text/css">
body {margin-top:2pt; margin-left:2pt; background:gray}
input {font-weight:bold)
</STYLE>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON VALUE="TOC" TITLE="Table of Centents"
ONCLICK="top.contents.location = 'contents.htm';">
<INPUT TYPE=BUTTON ID="previous” VALUE=" < "
ONCLICK="parent.contents.location = this.href:">
CINPUT TYPE=BUTTON ID="next" VALUE=" > "
ONCLICK="parent.contents.location = this.href;">
</BODY>
</HTML>

NOTE: The buttons in this example are drawn with extra spaces
between them because carriage returns separate their tags in the
code. To close the gap between the buttons, remove the carriage
returns and all spaces between the Input elements.

The contents.htm Document
The following code is a sample contents file that defines a link relationship to
the next document in the sequence. ‘When this document loads, it must call the
setupLinks function to update the available links, and when it unloads it must
call clearLinks.

<HTML>
<HEAD>
<TITLE>Contents</TITLE>
<1-- Only a next relationship is defined. The Previous button

will be disabled for this document. -->

<LINK REL="next" HREF="chapterl.htm" TITLE="Chapter 1">
</HEAD>
<BODY ONLOAD="parent.setupLinks(window.document};"

ONUNLOAD="parent.clearLinks{);">

<H1>Table of Contents</H1>

</B0ODY>
</HTML>

225

PART

11: DOCUMENT STRUCTURE

This example demonstrates two simple relationships, but it can be easily ex-
tended with more relationships to provide an enhanced toolbar in the navi-
gation pane.

Programming the IMG and Map Elements

Images and image maps are fully programmable in Internet Explorer 4.0. You
can now change the SRC attribute and size of an image and modify, add, and
remove Area elements from an image map. The object model also allows new
images to be asynchronously downloaded in the background while the user
interacts with the page. This section presents techniques for downloading
images and for manipulating the IMG element and associated image maps.

Image Animation

226

One common technique for animating images is to change the image as the
mouse enters and exits the element. In Internet Explorer 4.0, this task is
trivial—you use the onmouseover and onmouseout events on the IMG element
itself:

<IMG SRC="start.gif"
ONMOUSEOVER="this.src = 'over.gif';"
ONMOUSEQUT="this.src = 'start.gif';

>

Netscape Navigator will ignore this code because it does not currently
support ormouseover and onmouseout events on the IMG element. Netscape
Navigator does support these events on the Anchor element, however. There-
fore, with a little forethought it is possible to re-create the preceding scenario
in a more compatible way. By wrapping the IMG element in an Anchor
element, both Netscape Navigator 3.0 or later and Internet Explorer 4.0 will
properly change the image:
<A HREF=""

ONMOUSEQVER="document.myImage.src = 'over.gif ;™
ONMOUSEOUT="document.myImage.src = 'start.gif

<IA>

>

The BORDER=0 attribute must be added so that the default anchor bor-
der is not drawn around the image. And while this technique does provide simi-
lar support in both Netscape Navigator and Internet Explorer, there is still one
key difference. Because no size is supplied to the image, in Internet
Explorer the container of the image is automatically resized to match the
image and the surrounding contents are reflowed. In Netscape Navigator,

122

NINE: Scripting individual Elements

the size of the image is fixed when the first image is loaded, so the next im-
age is scaled to fit. To work around this discrepancy, either ensure that the
images are the same size or provide width and height attributes on the IMG
element.

While the preceding code works, a noticeable delay might occur when the
second image is initially downloaded. Dynamic HTML supports the ability to
preload an image behind the page so that it is immediately available for use.

Image Sequencing

Timer events can be used instead of user-generated events to change an im-
age. Dynamic HTML makes it simple to create an image sequencer that rotates
images after a specified amount of time. Images can be preloaded using a
special image constructor, and the IMG element’s SRC attribute can be dynami-
cally changed.

The following code shows the application of this technique, a client-side
billboard that cycles through images after a specified amount of time. This
scenario uses unrecognized elements to define the list of advertisements. The
advantages of this model are that new ads can be added and outdated ads can
be removed without having to modify any code. Another technique used in this
example is to preload the images before assigning the SRC attribute to ensure
a smooth transition from image to image. An error recovery mechanism is
included to skip an image if it fails to download.

<HTML>
<HEAD>

<TITLE>Ad Sequencing</TITLE>

<l-- More ads can be added simply by extending this list. -->

<ADLIST src="adl.gif" duration=3008>

<ADLIST sre¢="ad2.gif" duration=5008>

<ADLIST sre="ad3.gif">

<ADLIST src="ad4.gif" duration=1020>

<SCRIPT LANGUAGE="JavaScript">
var adSet = document.all.tags("ADLIST"):
adSet.current = 9;
var nextImage = document.createElement("IMG"):

function preload() {
// Get next image.
// 1f an error occurs, skip to the next image.
/+ Always set up image event handlers before assigning the
SRC attribute to ensure that no events are missed. */
nextImage.onerror = preload:

{continued)

227

PART 11: DOCUMENT STRUCTURE

228

nextImage.src =
adSet[adSet.current].getAttribute("src™);

// The duration attribute specifies how long the image is

// displayed.

nextImage.duration =
adSet[adSet.current].getAttribute("duration™);

if (null == nextImage.duration) // If not specified, use
nextImage.duration = 2006; // default 2 seconds.

if (+radSet.current == adSet.length)
adSet.current = @; // Start over.

]

function skipImage() {
// Check whether next image has been downloaded
if (nextImage.complete) {
document.all.ad.src = nextImage.src;
var duration = nextImage.duration:
preload(); 3
window.tm = setTimeout('skipImage()', duration):

else // Quickly iterate until image is available.
window.tm = setTimeout('skipImage()', 18};
}
preload():
</SCRIPT>
</HEAD>
<BODY ONLOAD="window.tm = setTimeout('skipImage{)"', 1};"
ONUNLOAD="clearTimeout{window.tm);">

</BODY>
</HTML>

Internet Explorer 4.0 also supports the construction of new images for
background downloading using the new operator in addition to the createFlement
method. This operator is supported for compatibility with Netscape Navigator’s
JavaScript implementation. The new operator is a language-dependent tech-
nique for creating new elements. For example, in the preceding code, the line

nextImage = document.createElement{"IMG"):
can also be written as
nextImage = new Image();

However, because Netscape Navigator does not expose custom elements to
scripts, the code for sequencing advertisements requires further modifications
in order to run in Netscape Navigator: the information about the ad graphics

123

NINE: Scripting Individual Elements

needs to be stored by the script, most likely in an array, rather than in custom
AdList elements.

Image Maps

Image maps specify different click regions on an image. The most common use
for image maps is to create visual navigation maps. When the user clicks in a
particular area of the image, the default action is to navigate the user to a
specified page. Using the event model, you can override the default action with
an alternative action.

Defining an Image Map

HTML provides two types of image maps: server-side and client-side. A server-
side image map is specified simply by adding an ISMAP attribute to the image
and creating an image map file on the server. When the user clicks on the
image, the xy-coordinates are submitted to the server. The server-side image
map has two inherent disadvantages: it generally requires a server round-trip,
and it is not easily accessible because the click regions are not known to the
browser or to scripts.

Client-side image maps use the Map element and have the advantage of
not requiring a round-trip to the server. They also allow browsers to intelligently
map and outline the click regions of the image. The Map element contains a
set of Area elements that define the coordinates for each click region.

Map elements must be named in order to be associated with an image.
Once the Map element is named, any number of images can be associated with
it through the images’ USEMAP attribute. The value for USEMAP must be
specified as a link reference, For example, the following code associates an
image with an image map named diagram:

Client-side image maps and their syntax are demonstrated in the follow-
ing examples. However, the complete syntax for defining a server-side or client-
side image map is beyond the scope of this book. For details about image
map syntax, refer to an HTML reference book or the Microsoft Web site
{(www.microsoft.com).

Image Maps and Events

You can place an image map anywhere in the document, independent of the
image the map is associated with. Because multiple images can share a single
image map, the Dynamic HTML object model maintains a special relationship
between the image and its image map when firing events.

229

PART

10: DOCUMENT STRUCTURE

230

When an event is fired on an image map, the Area element receives the
event, followed by the Map element, followed by the IMG element the user
clicked on. After the image receives the event, the event continues to bubble up
through the image’s parent elements. Thus, a single image map and events can
be shared, or depending on the circumstances, the image itself can override
or add its own behavior to the image map. Elements that contain the image
map in the HTML source may never receive the events that originate in the
image map.

Accessing the Image Map

An IMG element’s useMap property contains the name of the associated image
map, prefixed with a # character. By removing the leading # character from
the useMap property, you can access the image map. The useMap property is
read/write, so it allows image maps to be dynamically associated with the im-
age. The following code demonstrates a simple function for obtaining the
associated image map from an IMG element:

function getMap(ellmage) {
// Be sure that a map is specified for the image.
if (nu11 1= ellmage.useMap) {
// Remgve the leading # from the bookmark.
var strMap = ellmage.useMap.substring(1);
// Return the element with the specified name.
return document.all[strMapl:
1
else
return nuil:

A useful application of dynamically changing an image map is to provide
a different level of granularity in a complex image or geographic map. Figure
9-4 shows how a set of items—in this case, cities and states—can be made more
manageable by letting the user first define a subset of items of interest. This
filtering technique becomes even more powerful when used to distinguish
between multiple overlapping regions.

Because the cities in this image overlap the states, the user might find it
difficult to make a selection. By allowing the user to decide between cities and
states, selection becomes much simpler. This filtering is easily implemented by
toggling between two image maps for the image, depending on the user’s se-
lection, as shown in the following code.

124

NINE: Scripting Individual Elements

Setect From.
€ States
& Cities

Figure 9-4.
An image that can use two different image maps.

<HTML>
<HEAD>
TITLE>Switching Image Maps</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function setMap{mapName) {
document.all.mapImage.useMap = mapName:
}
</SCRIPT>
</HEAD>
<BODY>
<P>Select From:

<INPUT TYPE=RADIO NAME="feature" ID="States" Value="#States”
ONCLICK="setMap(this.value);" CHECKED>
<LABEL FOR="States"»>States</LABEL>

<INPUT TYPE=RADIO NAME="feature” ID="Cities" Value="#Cities"”
ONCLICK="setMap(this.value};">

(continued)

231

PART Il: DOCUMENT STRUCTURE

<LABEL FOR="Cities”>Cities</LABEL></P>
<P><IMG ID="mapImage" SRC="places.gif" BORDER=0
WIDTH=197 HEIGHT=448 USEMAP="#States"></P>
<MAP NAME="Cities™>
<AREA SHAPE="POLYGON" HREF="Tla.htm"
COORDS="108, 408, 164, 487, 165, 388, 111. 387.
189, 361, 86, 361, 73, 394, 94, 411">
<AREA SHAPE="POLYGON" HREF="sanfran.htm”
COORDS="12, 301, 58, 275. 75, 305, 8@, 3@1, 87, 314,
92, 326, 119, 329, 121, 340, 45, 341, 44, 328,
9. 328™>
<AREA SHAPE="POLYGON" HREF="portTland.htm"
COORDS="34, 120. 47, 120, 48, 115, 68, 115, 69, 123,
86, 127, 86, 131, 146, 131, 137, 144, 86, 145,
91, 162, 22, 166, 22, 148, 26, 144™>
<AREA SHAPE="POLYGON" HREF="seattle.htm"
COORDS="73, 86, 93, 84, 92, 73, 125, 73, 123, 59,
92, 57, 87, 43, 93, 22, 82, 2, 71, 21, 79, 45">
</MAP>
<MAP NAME="States">
<AREA SHAPE="POLYGON" HREF="california.htm”
COORDS="14, 2e4, 18, 20¢, 83, 209, 79, 278, 166, 386,
171, 4e3, 167, 489, 166, 419, 163, 423, 164, 430,
166, 436, 161, 439, 11b, 438, 112, 433, 118, 420,
87, 409, 92, 481, 82, 399, 77. 392, 56, 385, 54
369, 46, 357, 46. 352, 34, 338, 39, 327, 35, 322,
32, 309, 34, 297. 25, 297, 24, 288, 14, 273, 15,
255, 9, 235, 12, 224, 12, 221, 16, 216">
CAREA SHAPE="POLYGON" HREF="oregon.htm"
COORDS="16, 199, 136, 216, 148, 178, 143, 171,
138, 164, 153, 132, 147, 122, 193, 12¢, B8, 123,
72, 121, 55, 121, 51, 109, 37, 185, 22, 163,
23, 166, 18, 173, 14, 189">
<AREA SHAPE="POLYGON" HREF="washingtcn.htm"
COORDS="33, 50, &4, 64, 57, 74, 57, 86, 63, 81,
70, 65, 66, 41, 152, 55, 147, 123, 109, 119,
86, 124, 74, 1ze, 56, 119, 51, 198, 40, 194,
36. 99, 43, 93, 37, 87, 41, 84, 36, 80>
</MAP>
</BODY>
</HTML>

NOTE: The coordinate lists in the Area elements cannot be bro-
ken onto multiple lines or the code will not run correctly. The lists
are broken in the preceding code in order to fit them on the page;
artificial line break symbols (=) indicate line breaks that shouldn’t
appear in the actual code.

232

dd

4

44 ddddgl

4

125

NINE: Scripting Individual Elements

Accessing Area Elements
Dynamic HTML exposes the Area elements through the following collections:

B The links collection on the document
B The all collection on the document

B The areas collection on the Map element containing the Area
elements

Scripts can access the attributes of the Area element in any of these three ways
in order to dynamically modify them. The Area element has an HREF attribute
that contains a URL, and it exposes the same properties containing parts of
that URL that the location and anchor objects expose. The areas collection pro-
vides the extra functionality of allowing new Area elements to be added and
removed from the image map.

Dynamically modifying the coordinates and shapes within an image map
is supported, but it is usually easier and more maintainable to define multiple
image maps in the document and switch between them. The exception is when
you can calculate the new click regions from the old by a simple transforma-
tion. For example, if an image can be scaled, it is easier to scale both the
image and the image map. If a zeom function is supported on an image, any
associated image map also needs to be zoomed with the image:

<HTML>
<HEAD>
<TITLE>Dynamically Scaling Image Maps</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function getMap(elImage) {
// Be sure that a map is specified for the image.
if (null f= ellmage.useMap) {
// Remove the Teading # from the bookmark
var strMap = ellImage.useMap.substring(l);
// Return the element with the specified name.
return document.all[strMapl;
1
else
return null:
}

function zoomImage{elImage, amount) {
// Expand the image the specified amount.
var elMap = getMap(ellmage);
elImage.width *= amount;

(continued,

233

PART (1: DOCUMENT STRUCTURE

elImage.height *= amount;
/7 If an image map is available, scale 1t too.
if (null I= elMap) (

for (var intloop = @; intLoop < elMap.areas.length;

intLoop++) {
var elArea = elMap.areas[intLoopl;

// Break the coordinates string into an array.

var coards = elArea.coords.split(",");
var scaledCoords = "";

// Rebuild the new scaled string.

for (coord in coords) {

scaledCoords += (coords[coord] * amount) + “,";

}

// Put the scaled coordinates back into the map.

elArea.coords = scaledCoords;

}

function swapButtons(bl, b2) {
// Swap the enabled/disabled buttons.
document.all[bl].disabled = true;
document.all1[b2].disabted = false;
1
</SCRIPT>
</HEAD>
<BODY>
<p>
<INPUT TYPE=BUTTON VALUE="Zocm In"
ONCLICK="zoomImage(document.all.imgl, 2);
swapButtons('zoomin', ‘zoomout');"
ID="zoomin">
<INPUT TYPE=BUTTON VALUE="Zoom Out"
ONCLICK="zoomImage(document.ail.imgl, .5);
swapButtons(’zoomout®, 'zoomin®};"
ID="zoomout™ DISABLED>
</P>
<P>
<IMG SRC="1mg@81.gif" WIDTH=28@ HEIGHT=200
ID="1imgl" USEMAP="#mapl™>
<MAP NAME="mapl">
<AREA SHAPE="POLYGON"
COORDS="92. 140, 126, 114, 155, 139, 124, 163"
HREF="home.htm">

<AREA SHAPE="CIRCLE" COORDS="3@, 185, 38" HREF="cool.htm">

234

126

NINE: Scripting Individual Elements

<AREA SHAPE="RECT" COORDS="62, 28, 20@, 79"
HREF="dhtm1.htm">
</MAP>
/P>
</BODY>
</HTML>

Adding and Removing Area Elements

Using the areas collection, Dynamic HTML supports the ability to dynamically
add and remove Area elemenis from an image map. The technique for creat-
ing a new Area element is the same as for creating a new image. The primary
difference is that this new Area element can be added directly to an existing
map’s areas collection, whereas a new image object cannot be added to the
document.

The areas collection exposes add and remove methods. The add method
takes an Area element ¢reated with the createElement method and adds it to the
areas collection. The remove method is used to remove an existing Area element
from the image map. The following example is a simple image map editor
written entirely in HTML:

<HTML>
<HEAD>
<TITLE>Image Map Editor</TITLE>
<SCRIPT LANGUAGE="JavaScript™
var curFocus = null;

function areaFocus() {
// Track the Tast Area element selected.
if ("AREA" == event.srcElement.tagName)
curFocus = event.srcElement;
}

function removeArea() (
// Remove an Area element.
var coll = document.all.dynaMap.areas;
if (null != curFocus) // Make sure one is selected.
// Loop over Area elements and find the one selected.
for (var intLoop = @; intloop < coll.length; intlLoop++)
1f (curFocus == coll[intLoop]) {
document.all.dynaMap.areas.remove{intLoop):
return; .
)
alert{"No Area element is selected.™):

(continued)

235

.,

PART

11: DOGUMENT STRUCTURE

236

function addArea(f) {
/* Be sure that coordinates are specified. This code does
not perform any extra validation for the coordinates. */
if (" 1= f.coordinates.value) (
var elArea = document.createElement(™AREA™);
elArea.coords = f.coordinates.value:
// Determine shape selected.
for (var intloop = @; intLoop < f.shape.length;
intLoop++)
if (f.shape[intLoop].checked)
elArea.shape = f.shape[intLoopl.id;
document.all.dynaMap.areas.add(elArea);
}
else
alert(”You need to enter a Coords value.");
event.returnvalue = false;
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Image Map Editor</H1>
<H2>Select a Shape</H2>
<FORM NAME="area">
<i-- The ID is used to determine the shape attribute. -->
<P>
<INPUT TYPE=RADIO NAME="shape" ID="rect” CHECKED>
<LABEL FOR="rect">Rect</LABEL>

<INPUT TYPE=RADIQ NAME="shape" ID="polygon">
<LABEL FOR="polygon">Polygon</LABEL>

<INPUT TYPE=RADIO NAME="shape" ID="circle"”>
<LABEL FOR="circle">{ircle</LABEL>

<LABEL FOR="coords">Coords</LABEL>
<INPUT TYPE=TEXT ID="coords" NAME="coordinates">
</P>
<P>
<INPUT TYPE=SUBMIT VALUE="Add Area"”
ONCLICK="addArea(this.form)">
<INPUT TYPE=BUTTON VALUE="Remove Area"
ONCLICK="removeArea()">
<P
</FORM>

127

NINE: Scripting Individual Elements

<MAP NAME="dynaMap™ ONCLICK="areaFocus{)">
</MAP>
</BODY>
</HTML>

Programming the Marquee Element

Internet Explorer 3.0 supported a simple Marquee element for scrolling text
horizontally. In Internet Explorer 4.0, the Marquee element was enhanced with
a complete object model plus the ability to support and render any HTML code.
This new Marquee control can even contain controls, which respond appro-
priately to mouse clicks and keyboard input as they move by. Other enhance-
ments include the ability to scroll in any direction—left, right, up, or down.

A marquee can display one of three behaviors: alternate, scroll, and slide.
In alternatemode, the marquee’s contents move back and forth or up and down,
always remaining on the screen. In seroll and slide modes, the contents move
in one direction. They may appear from the right marquee border, for example,
and move left across the screen. In seroll mode, the motion does not repeat until
after all of the contents have scrolled onto and off the marquee. In slidemode,
the motion repeats sooner, after the last of the contents have scrolled onto the
marquee. With any of these three behaviors, you can specify a finite number
of repetitions or allow the marquee to continue animating until the user jumps
to another page.

Marquee Animation Properties

The marquee attributes are exposed as properties that can be dynamically
modified. For some of these properties, assigning a new value while the mar-
quee is running causes the marquee to restart its animation; with others, it
does not. The following table describes the attributes and how changing them
affects the marquee.

Attribute/Property Restarts Marquee? Description

behavior Yes Specifies the aliernate, scroll, or
slide behavior for the marquee. The
default value is scroll.

direction No Specifies the direction of motion.
All four directions are supported:
left, right, up, and down. The default
value is right.

(continued)

237

PART Il: DOCUMENT STRUCTURE

Attribute/Property Restarts Marquee? Description

height Yes Specifies the physical height of the
marquee.
loop Yes Specifies the number of times for

the animation to repeat. The default
value is énfinite.
scrollAmount No Specifies the number of pixels to
move each time the contents are
redrawn. The default value is 6.
scroliDelay Neo Specifies the number of milliseconds
between times the contents are re-
drawn. The default value is 85.
trueSpeed No Specifies whether the marquee
should catch up with any skipped
cycles. The default value is false,
which causes the marguee to act as
it does in Internet Explorer 3.0.
width Yes Specifies the physical width of the
marquee.

Marquee Events

238

The Marquee element supports all the standard mouse and keyboard events.
All elements contained within the marquee also continue to fire their respec-
tive events. The following table describes the events that the marquee exposes
during the animation.

Event Description

onstart The marquee is about to begin scrolling. For a marquee in scroll or
slide mode, this event fires each time a new animation sequence is
about to be initiated. For a marquee in alternate mode, this event
fires once at the beginning of the animation.

onbounce The marquee animation has reached the end and will reverse it-
self. This event fires when the Marquee’s behauvior property is set to
alternate.

onfinish The marquee has finished scrolling.

128

NINE: Scripting Individual Elements

Marquee Methods

The Marquee element exposes two methods for starting and stopping the
animation: start and stop. These methods can be used to manually control the
scrolling of a marquee.

Using the stop and start methods, the following code allows the user to
stop and start a marquee by holding down and releasing the mouse button over
the marquee. By stopping the marquee, the user can read its contents more
easily, The marquee’s #itle attribute is displayed as a ToolTip when the mouse
is held over the Marquee element.

<HTML>
<HEAD>
<TITLE>Marquee stop and start Methods</TITLE>
</HEAD>
<BODY>
<MARQUEE TITLE="Hold down the mouse button to stop the marquee.”
ONMOUSEDOWN="this.stop{);"
ONMOUSEUP="this.start();">
<H1>Test Marquee</H1>
<P>Clicking the mouse button and holding it down
stops the marquee from scrolling.</P>
<INPUT TYPE=BUTTON VALUE="Demo Button"
ONCLICK="alert("clicked");™>
</MARQUEE>
</BODY>
<SHTML>

Programming the Object Element

The Object element allows you to include controls and applets that extend the
browser. For example, you can create objects to embed graphs or even other
documents directly into the document. An object may have its own properties,
methods, and events, which the Object element exposes to scripts in the same
way that it exposes its own members.

Handling Property Conflicts

A conflict can occur between the object’s members and the members of
a generic Object element. For example, if the object exposes an #d property,
it will collide with the id property exposed on the Object element. When this
conflict occurs, referencing the 4d property references the element’s version,
not the object’s. For referencing the object’s version of the id property, all object
elements expose an object property. This property returns access to the embed-
ded object’s members, as shown in the following code. '

239

PART

11: DOCUMENT STRUCTURE

document.all.myObject.id // HTML element's id property
document.all.myObject.object.id // Embedded object's id property

Alternative HTML

The Object element can contain HTML code that is displayed in browsers that
do not support the Object element. The down-level contents are exposed as
an a{tHTML property of the Object element in HTML.

The altHTMI. property can be used to provide contents to the user if the
object fails to install. If the object fails to install, the alternative contents re-
place the ohject on the page. In the following code, the value of the Object
element’s altHTML property is the Paragraph element (the <P> and </P> tags
and the text between):

<OBJECT CLASSID="java:myClass">
<PARAM NAME="color" VALUE="red">
<P>
Either your browser does not support the Object element or an
error aoccurred while downlcading the object.
/P>
</0BJECT>

Object Events

An object can fire its own custom events. You can bind a handler to such an
event using the <SCRIPT FOR= EVENT= > syntax or a language-dependent
mechanism, but not using an attribute in the element’s tag. The Object element
exposes attributes for only those events that are predefined, not for events that
the embedded object may fire.

Objects that expose standard events such as mouse and keyboard events
can also take part in event bubbling. The object itself fires its standard event,
followed by the browser firing the event on every parent element. Generic event
handlers for standard events can test whether they originated in an object.

Programming the Table Element

240

Tables are used in HTML for displaying tabular data and to provide greater
control over the layout and position of elements in the document. Tables consist
of rows; each row contains any number of cells, Dynamic HTML exposes a
custom object model on tables that provides easy access to the underlying rows
and cells within the table.

Tables were greatly enhanced in Internet Explorer 3.0 to support features
that are now included in HTML 4.0. The THead, TBody, and TFoot elements

~—

129

NINE: Scripting Individual Elements

were added to define the header, body, and footer sections of the table, and
the Col and ColGroup elements provide greater control over columns. When
used appropriately, these elements can improve the performance of the table,
especially by defining the widths of the columns and providing more control
over the rendering of borders. The Table element exposes a powerful object
model for dynamically manipulating tables.

The table Object

Every Table element exposes rich information about its contents. The table
object provides access to the three different sections of the table: THead,
TBody, and TFoot. A table can have only one THead and TFoot but any num-
ber of TBody elements. Therefore, the object model exposes a single tHead
and tFoet property and a tBodies collection. If a table does not explicitly define
any sections, an implicit TBody element is created and added to the tBodies
collection.

If the table happens to contain multiple THead or TFoot sections, the
properties reference the first section encountered, and all remaining sections
are exposed by the tBodies collection.

The table object exposes methods for creating and deleting THead, TFoot,
and Caption elements. (There is currently no method to insert additional
TBody elements into the table.) These methods are listed in the following table.

Method Description

createTHead(), Creates and returns the specified section if one does

createTFoot(), not exist. If the section already exists, rather than cre-

createCaption() ate another, the method returns the existing section.

deleteTHead(), Deletes the specified section and its rows from the

deleteTFoot(), table if the section exists.

deleteCaption(}

insertRow([index]) Inserts a row into the table before the specified index.
The row is added to the same section as the row cur-
rently specified by the index. If no index is specified,
the row is added to the end of the table in the same
section as the existing last row. This method returns
the row that was inserted.

deleteRow(index) Deletes the row at the specified index from the table.

The table object also exposes a rows collection. This rouws collection rep-
resents every row in the table, independent of what section contains them.

241

PART I11: DOCUMENT STRUCTURE

To determine what section contains a row, you can examine the parentElement
property of the individual row. In addition, each section exposes a rows collec-
tion that represents the rows contained in that section.

The rows and cells Collections

242

The table object exposes the relationships between the table’s rows and cells.
As mentioned, the rows collection on the fable object contains every TR element
in the table, and the rows collections on the tHead, tBody, and tFoot objects
contain the TR elements in their respective sections. Each row subsequently
exposes a cells collection that references the TD or TH elements within the row.
The rows and cells collections expose the same tags and item methods that are
available on the other element collections. You can use an element’s id prop-
erty to look it up directly in a rows or cells collection.

Programming the rows Collection

The rows collection on the table object ignores whether a row is in the head,
body, or foot of the table, but the TR element’s relationship to its parent ele-
ment is still maintained:

<TABLE ID="myTable">
<THEAD>
<TR ID="header"><TH>City</TH><TH>State</TH></TR>
</THREAD>
<TBODY>
<TR><TD>Issaquah</TD><TD>Washington</TD></TR>
<TR><TD>Seattled/TO><TD>Washington</TO></TR>
</TBODY>
</TABLE>

In this example, the rows collection of myTable contains the three rows in the
table. The parentElement property of an individual row can be examined to
determine whether the row is inside 2 TBody or a THead element:

document.all.myTable.rows.length /73
document.all.myTable.THead.rows.length /71
document.all.myTable.rows[@].parentElement.tagName // THEAD
document.all.myTable.rows[1].parentElement.tagName // TBGDY

You can easily determine any row’s position in the table. Three of the row’s
properties represent the row’s zero-based index in the entire document, in the
table, and in a section. The sourcelndex property represents the element’s lo-
cation in the document. This property, which all elements expose, is described
in Chapter 8, “Scripts and Elements.” The rowlndex property represents the in-
dex of the row in the entire table, and the sectionRowlndex property represents

130

NINE: Scripting Individual Elements

the index of the row in its section. In the previous example, the row contain-
ing Seattle has a rowlIndexvalue of 2 and a sectionRowIndex of 1. (Its sourcelndex
value depends on where the table appears in the document.)

Each row also provides access to its cells through a cells collection. The
insertCell and deleteCell methods add and remove cells in the row. These meth-
ods work in the same manner as the insertRow and deleteRow methods. The
insertCell method takes an optional parameter, the index of the cell before
which the new cell is to be inserted, and returns the inserted cell. The deleteCell
method takes the index of the cell to delete. The following code shows how to
access and manipulate cells in the previous table:

document.all.myTable.rows[@].cells.length // 2 cells
document.all.header.cells.length // 2 cells, accessed through the 1D
document.all.header.deleteCel1(@): // Delete first cell in header row.

Each cell has a sourcelndex and a cellIndex property. The celllndex property rep-
resents the index of the cell in the row.

The ROWSPAN and COLSPAN Attributes

The rows collections correspond to the HTML structure that defines the table.
Therefore, even if a cell spans multiple rows, it is exposed only on the row that
defines the cell. The following code demonstrates this relationship by flatten-
ing out access to a table that has a number of cells spanning multiple columns
and rows:

<HTML>
<HEAD>
<TITLE>HTML Rows and Cells</TITLE>
</HEAD>
<BODY>
<TABLE BORDER ID="tb11">
<CAPTION>Sample Table</CAPTION>
<TR><TD ROWSPAN=3>8, 0</TD>
<TD COLSPAN=2>8. 1</TD>XTD>8, 2</TD></TR>
<TR>TD>1, @</TD><TD ROWSPAN=2 COLSPAN=2>1, 1</TD></TR>
<TRX<TD>2, @</TD></TR>
</TABLE>
<SCRIPT LANGUAGE="JavaScript">
// Gutput information about the table above.
document.write("<H2>Table Information</H2>");
with (document.all.tb11) {
for (var intRows=8; intRows < rows.length; intRows++)
document.write("Row " + intRows + " has " +
rows[intRows].cells.length + " cell(s).
");

(continued)

243

PART I1: DOCUMENT STRUCTURE

244

document.write("<P>Here is the same table without " +
"any cells spanning multiple rows or columns:"):
document.write("<TABLE BORDER>"};
for (var intRows = @; intRows < rows.length; intRows++) {
document.write("<TR>");
for (var intlells = @;
intCells < rows[intRows].cells.length:
intCells++)
document.write("<TD>" + intRows + “," + intCells +
/TR ;
document.write("</TR>");
}
document.write("</TABLE>");
;
</SCRIPT>
</BODY>
</HTML>

Figure 9-5 displays the HTML representation of this table. The rows and
cells are defined by the underlying source, independent of how the table is
actually rendered, The numbers in a cell represent the index of its row in the
rows collection, followed by the index of its cells in the cells collection. The sec-
ond table provides a view of the table with the ROWSPAN and COLSPAN attri-
butes removed. The corresponding cells have the same indexes in both tables.

Sample Table
o

Table Information

Row 0 has 3 cel(s)
Row 1 has 2 cels)
Row 2 has 1 cel(s)

Here is the same table without any cells spanning
smitiple 7ows or colunas:

p.3 fo.t o2
1.9] [1.1]

Figure 9-5.
Spanning cells and the collections that coniain them.

131

NINE: Scripting Individual Elements

You can modify the colSpan and rowSpan properties to dynamically change
the table’s layout. Changing these properties does not cause the rows or cells
collections to change. The only way to affect the collections is to explicitly add
or remove sections, rows, or cells from the table using the insert and delete
methods.

The onresize Event

The table exposes an onresize event that is fired whenever the table is resized.
This event fires when any cell changes in size. A script can change the size of
a cell by changing its height or width property or by changing its contents. No
matter how many cells may change in size due to a single action, the onresize
event is fired only once on the table itself.

Global Style Sheets

In general, CSS is not inherited by the contents of a table cell. This fact fol-
lows from historical practice with regard to HTML formatting elements. For
example, specifying a Font element around a table does not cause that font to
be used by the table contents. When style sheets were introduced, this rule
needed to be carried forward to ensure that existing pages did not break.
Therefore, when style sheets are required on a table, they should be specified
on the table or table cells directly to ensure that they are applied to the contents.

Creating a Calendar

The following code example demonstrates how to manipulate a table using
the rows and cells collections. A script generates most of the document us-
ing the document.write method.

<HTML>
<HEAD>
<TITLE>Calendar</TITLE>
<STYLE TYPE="text/css">
.today {color:navy; font-weight:bold}
.days {font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Initialize arrays.
var months = new Array("Jdanuary”, “February". "March",
"Apri1T, “May™, “June", "July", "August", “September™,
“October™, "November", “December”);
var daysInMonth = new Array(31, 28, 31, 3e, 31, 38, 31, 31,
3e, 31, 38, 31);

(continued)

245

PART I1: DOCUMENT STRUGTURE

var days = new Array("Sunday". "Monday™. "Tuesday",
"Wednesday". "Thursday", "Friday". "Saturday"):

function getDays(month, year) {
// Test for Teap year when February is selected.
if (1 == month)
return ((8 == year % 4) && (0 != (year % 108))) ||
(@ == year % 460) ? 29 : 28;
else
return daysInMonth[monthl;
}

function getToday() (
// Generate today's date.
this.now = new Date();
this.year = this.now.getYear() + 1908; // Relative
/7 to 1900
this.month = this.now.getMonth();
this.day = this.now.getDate();
}

/7 Start with a calendar for today.
today = new getToday();

function newCalendar() {
today = new getToday():
var parseYear = parselnt(document.all.year
[document.all.year.selectedIndex].text) - 1868
var newCal = new Date(parseYear,
document.all.month.selectedIndex, 1);
var day = -1;
var startDay = newCal.getDay();
var daily = 8;
if ((today.year == newCal.getYear() + 1968) &&
{today.month == newCal.getMonth()))
day = today.day; !
// Cache the table's tBody element named daylist.
var tableCal = document.all.calendar.tBodies.dayList;
var intDaysInMonth =
getDays{newCal.getMonth{). newCal.getYear() + 1909);
for (var intWeek = @; intWeek < tableCal.rows.length:
intHeek++)
for (var intDay = @;
intDay < tableCal.rows[intWeek].cells.length:
intDay++) {
var cell = tableCal.rows[intWeek].cells[intDayl;

246

132

NINE: Scripting Individual Elements

// Start counting days.
if ((intDay == startDay) && (0 == daily))
daily =

// Highlight the current day.
cell.className = (day == daily) ? "today” :

/7 Output the day number into the cell.

if {((daily > 8} && (daily <= intDaysInMonth))
cell.innerText = daily++;

else
cell.innerText =

}

function getDate() {
// This code executes when the user clicks on a day
// in the calendar.
if ("TD" == event.srcElement.tagName)
// Test whether day is valid.
if (™" != event.srcElement.innerText)
alert(event.srcElement.innerText);
1
</SCRIPT>
</HEAD>
<BODY ONLOAD="newCalendar(}">
<TABLE ID="calendar">
<THEAD>
<TR>
<TD COLSPAN=7 ALIGN=CENTER>
<!-- Month combo box -->
<SELECT ID="month" ONCHANGE="newCalendar(}">
<SCRIPT LANGUAGE="JavaScript™
// Output months into the document.
// Select current month.

for (var intleop = @: intlLoop < months.length:

intLoap++)
document.write("<OPTION ™ +
{today.month == intLoop ?
"Selected™ : "") + X" +
months[intLoopl);
</SCRIPT>
</SELECT>

<l-- Year combo box -->
<SELECT ID="year" ONCHANGE="newCalendar{)">
<SCRIPT LANGUAGE="JavaScript™>

(continued)

247

PART 018: DOCUMENT STRUCTURE

248

// Gutput years into the document.
// Select current year.
for (var intloop = 1995; intloop < 2009;
intLoop++)
document.write("<QPTION " +

(today.year intlLoop ?
“Selected™ : "") + ">" +
intLoop);
</SCRIPT>
</SELECT>
</TD>
</TR>
<TR CLASS="days">
<!-- Generate column for each day. -->

<SCRIPT LANGUAGE="JavaScript">
// Output days.
for (var intloop = @: intloop < days.length;
intLoap++)
document.write("<TD>" + days[intLoop] + "</TD>"};
</SCRIPT>
</TR>
</THEAD>
<TBODY ID="dayList" ALIGN=CENTER ONCLICK="getDate()">
<!-- Generate grid for individual days. -->
<SCRIPT LANGUAGE="JavaScript™>
for (var intWeeks = @: intWeeks < 6: intWeeks++) {
document . write("<TR>");
for {var intDays = @: intDays < days.length;
intDays++)
document.write("<TD></TD>");
document.write{"</TR>"):
}
</SCRIPT>
</TBODY>
</TABLE>
</BODY>
</HTML>

The contents of the two combo boxes that provide the month and year
lists are generated through script from internal arrays that track the months
and days available to the calendar. The code also ensures that the current
month and year are initially selected when the document loads. The table that
defines the calendar is itself generated by a script that generates the 42 cells
using two nested loops. Once the page is loaded, the newCalendar function is
called and automatically walks through and fills in the cells of the table’s tBody
element with the current month’s calendar.

133

NINE: Scripting Individual Elements

Figure 9-6 shows the calendar example in action.

Jamory B [1998 8
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
3

10
17
24
3

Figure 9-6.
A Dynamic HTML calendar.

This example also includes a simple click event handler that executes
when the user clicks on any date in the calendar. Currently the handler does
nothing more than display the date the user clicked, but it demonstrates how
the calendar can be easily extended to be more interactive and useful to an
application,

249

. f—*'-itft:- g

i

i

i
1

h*:.%‘;i o
.

134

C HAPTEHR T EN

Forms and
Intrinsic Controls

This chapter shows you how to script user interfaces that request and process
input from the user. HTML. supports both controls that can take user input
and an element that provides a form model for grouping contents and submit-
ting them back to the server. These controls arc known as inirinsic conirols
because they are built into HTML. The functionality of the intrinsic controls
is still fairly limited when compared to most forms and database packages.
Validation and formatting are not yet directly supported, but you can easily
add this behavior using the object model. This chapter presents techniques for
manipulating forms and intrinsic controls within a document; it presents the
intrinsic controls in functional categories and shows you how to extend HTMI.
forms to be on a par with powerful forms packages.
The following topics are covered in this chapter:

M HTML forms Forms are used to group related input from the user
and submit it back to the server. Forms are tully accessible to scripts
and thus can also be used for client-side processing. This section
provides an introduction to HTML forms and Input elements.

H Programming text Input elements Text Input elements create a
text box for requesting information from the user. Four types of text
boxes are defined by HTML.: 4 single-line text box, a multiple-line
text box, a password text box, and a filename text box. This section
focuses on techniques for using cvents and the object model to vali-
date and format the user’s input.

® Programming Select (list) elements Select elements are used to
provide the user with a defined list of options. Two styles of lists can
be created using intrinsic controls: list boxes and combo boxes. For

251

PART 110: DOCUMENT STRUCTURE

both styles of lists, the programming model is the same. This section
focuses on techniques for scripting lists and for dynamically adding
and removing list iterns.

Programming lists using radio buttons and check boxes An alter-
native way to allow the user to select from a list of elements is to
provide a set of check boxes or radio buttons, Check boxes are
useful for simple yes/no questions; radio buttons are used for select-
ing a single item from a list. This section discusses the benefits of
using lists with buttons vs. using a list box style and provides scripting
techniques.

Programming command button elements Four types of command
buttons can be created in HTML: plain-text buttons, rich HTML
buttons, submit buttons, and reset buttons. Submit and reset but-
tons have a defined behavior when used in forms and also act as the
Default and Cancel buttons. The Default button is indicated by an
extra border and is the button that receives the click event when
the user presses Enter; the Cancel button is clicked when the user
presses Esc. The other types of command buttons’ behavior must be
defined through a script. This section shows you how to take advan-
tage of command buttons.

Programming Label and Fieldset elements Labels and fieldsets
are a new addition to HTML and are necessary to create rich forms.
The Label element is used to define the relationship between the
Input element and some contents, and the Fieldset element is used
to define the relationships among groups of controls.

HTML Forms

252

The Form element is used to logically group related intrinsic controls. These
controls can optionally submit their values back to a server or be processed
entirely on the client. When the contents of a form are submitted, the name
and value of each input control within the form are enumerated and sent back
to the server. The server then processes the information and usually returns
anew page. The following HTML document demonstrates a form that requests
information about the user:

<HTML>
<HEAD>
<TITLE>User Information</TITLE>
</HEAD>

135

TEN: Forms and Intrinsic Gontrols

<BODY>
<FORM NAME="UserInfo">
<LABEL FOR="USER">User Name: </LABEL>
<INPUT TYPE=TEXT NAME="USER" VALUE="User Name" I1D="USER">
<LABEL FOR="ADDRESS">Address: </LABEL>
<TEXTAREA ROWS=2 COLS=58 NAME="ADDRESS" ID="ADDRESS">
Enter Address
</TEXTAREA>
<INPUT TYPE=SUBMIT VALUE="Submit Information">
</FORM>
</BODY>
</HTML>

This section focuses on how data is packaged for submission and how you
can manipulate the Form element and intrinsic controls on the client, A dis-
cussion of the actual processing of the form on the server side is beyond the
scope of this book.

Scoping Forms

Each form defines a separate scope for the elements within it. In addition, every
element outside of a form shares its scope with the document. This scoping of
Input elements is important because a single page can contain any number of
forms, each of which operates independently. The Form element should not
be contained within other Form elements, so the scope of an element should
always be unambiguous to someone looking at your code.

Scoping separates the name spaces available to the elements. For example,
if two forms both contain an element named User, the two elements will op-
erate independently. This is especially important for radio button groups in
which grouping is determined by each element’s name. Radio buttons provide
the easiest way to demonstrate the separation of scopes. For example, if two
forms on the same page have a radio button group named State, the radio
buttons will be mutually exclusive only within their respective forms. The fol-
lowing document defines two separate radio button groups that share the same
name:

<HTML>
<HEAD>
<TITLE>Radio Button Scoping Demonstration</TITLE>
</HEAD>
<BODY>
<l-- Radio buttons outside the form are scoped together, --i

<INPUT TYPE=RADIO NAME="State™ VALUE="NJ">NJ

(continued)

253

PART 11: DOCUMENT STRUCTURE

<INPUT TYPE=RADIO NAME="State" VALUE="NY">NY

<FORM STYLE="margin-left: 25pt">
<!-- The two radio buttons are mutually exclusive

and are independent of buttons outside this form. -->

<INPUT TYPE=RADIO NAME="State" VALUE="WA">MWA
<INPUT TYPE=RADIO NAME="State" VALUE="CA">CA

</FORM>

<INPUT TYPE=RADIO NAME="State™ VALUE="MA">MA

</BODY>
</HTMLY>

In this example, all five radio buttons share the same name, State, but not
the same scope. The first two radio buttons ("NJ", "NY") and the last radio
button ("MA") are within the same global scope and are mutually exclusive.
The two radio buttons inside the form ("WA", "CA") are in their own form
scope and are mutually exclusive only of each other. Therefore, the user can
select one value from within each radio button group.

Scripting the Form Element

Forms and the intrinsic controls within their scope have a rich programming
model. Through the form object itself, you can submit and reset the form, as
well as access and manipulate the individual controls.

The forms Collection

Forms in a document are exposed through the all collection and the forms col-
lection. In addition, named forms have a special relationship with the docu-
ment and can be accessed directly as properties of the document itself. The
following code demonstrates a few of the ways to access Form elements using
the object model. The comments show what will be displayed by the Alert dialog
boxes.

<HTML>
<HEAD>
<TITLE>Forms in the Object Model</TITLE>
</HEAD>
<BODY>
<FORM NAME="forml">
</FORM>
<FORM NAME="formz2">
</FORM>
<SCRIPT LANGUAGE="JavaScript">
alert(document.forms.length): 17 2
alert(document.forms[@].name); // forml
alert(document.forms.form2.name); /1 formz

136

TEN: Forms and Intrinsic Controls

alert(document.forml.name); /1 forml
alert(document.all.formZ.name); /1 formz
alert(document.forms["forml"].name): // forml
</SCRIPT>
. </BODY>

</HTML>

The elements Collection

A special relationship is maintained between the form and its intrinsic controls.
All the intrinsic controls contained within a form are exposed through prop-
erties of the form object as well as through an elements collection, which allows
direct access to any intrinsic contro] that exists on a form. The elements collec-
tion of the form object works similarly to the frames collection of the window
object, in which the collection is exposed simply to enhance code readability.
As with the frames collection, the elements collection actually returns a reference
to the form object. For example, the following two lines of code are the same:

document.forms[@8].1ength // Number of elements on the first form
document.forms[@].elements.length

And the following three references are equivalent:

document. forms[@]

document . forms[@].elements

document.forms[8].elements.elements

The elements collection works like all other collections in the object model and
provides access to the individual intrinsic controls on the form. The elements
collection also contains all the images within the scope of the form.

The rules presented in Chapter 7, “Document Element Collections,” can
be used to access the contents of the elements collection of the form object. If
any elements within a form share the same name, they are exposed as a sub-
collection. The tags and item methods are also available. For example, the fol-
lowing code can be used to quickly access all the Button elements in the first
form and to access the third element in the collection:

// Return a collection of buttons in the first form.
document.forms[@].elements.tags("BUTTON")

// Access the third intrinsic control on the form.
document.forms[@].elements[2]

In addition, all the intrinsic controls on the form expose a form property
that returns the form they belong to. This fact is useful if you need to access
the parent form from a generic intrinsic control during an event handler, as
shown in the following code.

255

PART 11: DOCUMENT STRUCTURE

<FORM NAME="User">
<l-- Pass the current form to the event handler. The this
proparty references the intrinsic control, and the form
property references the form the control is scoped to. -->
<INPUT TYPE=TEXT ONCHANGE="doClick(this.form);">
</FORM>

NOTE: Ifan intrinsic control is outside the scope of a form, the
form property returns null.

Submitting a Form’s Contents

As mentioned, forms can be used for client-side processing or to submit data
back to the server. When a form is submitted to the server, the name and value
of each of the form’s controls are appended onto a single string and submit-
ted to the server. The string is created as an escaped ampersand-delimited
string of name-value pairs. All elements scoped within the form are enumer-
ated, and the string is built by concatenating the name and value of all elements
that have a name. For example, for the user information form at the beginning
of this chapter, the submitted string would be the following:

?USER=SCOTT+ISAACSEADDRESS=1+Somewhere+Street+HA
The submitted string is fully escaped, so spaces are represented by a plus
sign (+).

Button Values
Buttons are submitted in a slightly different way from the standard text con-
trols. The following table lists the rules for the different types of buttons.

Buttoen Type Description

Radio Only the value of the selected button in a radio button
group is submitted with the form. If no value is specified,
the value defaults to ON.

Check box Check boxes submit their name-value pairs only when they
are checked. If no value s specified, the value defaults to
ON.

Submit More than one Submit button can be specified on a form.

If the Submit button has a name, its name-value pair is
submitted with the form.

137

TEN: Forms and Intrinsic Controls

Shared Element Names

The rules for determining what is submitted with a form are simple: the intrin-
sic control must have a name, and for buttons the button must be checked.
Because only one radio button in a group can be checked ata time, only a single
radio button value is submitted for each group. There is no restriction that the
names in the submitted string be unique, however. For example, if multiple
check boxes share the same name, the name-value pairs of all the checked
check boxes with that name are submitted. And in multiple-select list boxes,
a name-value pair is submitted for each selected item.

Submit command buttons also follow this rule. However, because only
one command button can be selected at a time, only the Submit button that
is selected is submitted. This technique can be useful for distinguishing be-
tween multiple Submit buttons on a single form. Most of the time, however,
submitting a value for the Submit button is not necessary and a name need not
be assigned to the button.

Disabled and Read-Only Elements

Flements can be disabled either through script or through HTML. Disabled
elements cannot receive the focus, and they appear grayed in the Microsoft
Internet Explorer window. Because a disabled element is not considered ap-
plicable to the current context of the form, its value is omitted during a form
submission.

The contents of read-only elements cannot be edited. By default, buttons
are read-only, and all other intrinsic controls are editable. Although there is
1o way to make a button editable, the other intrinsic controls can be made un-
editable using the HTML readOnly attribute or the corresponding object model
property. Unlike disabled elements, read-only elements are included in the
form submission.

Obiject Values

Internet Explorer 4.0 supports submitting an Object element with the form if
the object is given a name and has a default value that can be submitted. This
allows applets or ActiveX controls to take part in the form’s submission just as
intrinsic controls do.

Where Do Form Submissions Go?

By default, the submitted string is sent back to the current URL. Two methods
for submitting data are available: GET and POST. You specify which method
to use by setting the method property of the form. The default is GET, which
causes the submit string to be appended to the URL and then opened as though

257

PART

1'1: DOCUMENT STRUCTURE

258

the resulting string were a new anchor. The submit method that should be used
depends on the particular application being run on the server,

Instead of submitting the form back to the URL of the page, you can
specify a custom location for the form using the action property of the form.
The action property holds the URL of the server program that accepts the data
sent by the form. This property can be dynamically changed through a script
to conditionally submit data to different locations.

Where Do Form Results Return To?

While the action property defines the server destination for the data, the tar-
get property defines the client destination for any returned information. The
target property works the same as the target property of the Anchor element and
is used to specify what frame or window the contents are to be displayed in.
This property can be used to create a clean user interface in which the entire
screen is not constantly updated. For example, if two frames are displayed, one
frame can request information from the user and the other frame can display
the returned result.

Canceling a Form Submission

Scripts can be used to dynamically force a submission or to prevent a submis-
sion from occurring. You can prevent a form submission by returning false to
the onsubmit event handler. To do so, either set the return Value property of the
event object to false or return fulse directly to the event. A common mistake when
returning the value to the event handler is to return the value only to a line
of code in the event handler rather than to the event handler itself, as shown
here:

<HTML>
<HEAD>
<TITLE>Canceling Form Submission--Wrong Way</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function doSubmit(f) {
return false;
}
</SCRIPT>
</HEAD>
<BODY>
<l-- The form's submission is NOT canceled. -->
<FORM ONSUBMIT="doSubmit(this);">
<INPUT TYPE=CHECKBOX NAME="Info">
<INPUT TYPE=SUBMIT>
</FORM>
</BODY>
</HTML>

TEN: Forms and Intrinsic Controls

In this example, the form submission is not canceled even though faise is re-
turned by the called function because the return value is not subsequently
returned to the onsubmit event handler.

The correct way to cancel the form submission is to return the value re-
turned by the called function. Here is the correct way to define the <FORM>
tag:
<FORM ONSUBMIT="return doSubmit{this);">

Now when the onsubmit event handler executes, the value returned by the func-
tion is correctly returned to the event handler.

Forcing a Form Submission '
The form object exposes a submit method that results in the form’s data being
submitted. Calling the submit method does not fire an onsubmit event. There-
fore, if validation is necessary, the onsubmit’s event handler must be manually
invoked before the submit method is called, as shown in the following code.
When you use this technique, the return valqe of the onsubmit event handler
should always be checked.

<HTML>
<HEAD>
<TITLE>Manual Form Submission</TITLE>
<SCRIPT LANGUAGE="JavaScript”>
function doSubmit(f) {
// Write conditional code that determines
// whether to submit.
return f.Info.checked;
}

function manualSubmit(f) {
var isSubmit = f.onsubmit():
7/ Submit if no value or true is returned.
if ((isSubmit) || (null==isSubmit))
f.osubmit(); // Submit the form.
}
</SCRIPT>
</HEAD>
<BODY>
<FORM ONSUBMIT="return doSubmit(this)
// Must return the value of the event handler.">
<INPUT TYPE=CHECKBOX NAME="Info">
<INPUT TYPE=BUTTON ONCLICK="manualSubmit(this.form)™
VALUE="Submit">
</FORM>
</BODY>
</HTMLY

259

138

[E———

PART 11: DOCUMENT STRUCTURE

Resetting a Form’s Contents

‘When a page is first loaded, the initial settings of the controls are cached in
special default properties. For text controls, the default property is defaultValue;
for command buttons or radio buttons, the default property is ’defaultChecked;
and for the list controls, the default property for each item is defaultSelected.
When the form is reset, the values from these properties are copied back into
the values of the controls.

The Reset button provides a built-in way for a user to reset a form to the
original values. The same action can be simulated on the form by calling the
reset method on the form itself. Similar to the form’s submit method, the onreset
event is not fired when the 7eset method is invoked. The technique demon-
strated in the preceding section for the submit method can also be used to force
the reset method after first calling the onreset event handler.

Determining Whether to Use a Form Element

The Form element is generally required when the user is expected to submit
results to the server. With Dynamic HTML, controls can be used solely for
client-side interactions. In this case, the Form element is optional and the con-
trols can be embedded directly on the page.

Using the Form element for client-side manipulation has no adverse effects
and offers a number of benefits. Using a Form element provides Input element
grouping within the elements collection and name space scoping for radio but-
tons. Also, with Netscape Navigator, controls are displayed and accessible from
scripts only when they are contained within a form block. If compatibility with
Netscape Navigator is required, the controls must always be contained within
a Form element.

Hiding and Showing Intrinsic Controls

Dynamic HTML supports a special type of intrinsic control that is always hid-
den. Because this control cannot be accessed or manipulated by the user, it is
used primarily as a placeholder for a calculated value that is to be submitted
with the form. An Input element with its TYPE attribute set to HIDDEN can-
not be made visible. Therefore, if you need to dynamically manipulate the visi-
bility of a control, you should use a standard intrinsic control with its CSS
(Cascading Style Sheets) display property set to none or its visibility property set
to hidden. Later, by changing the wvisibility or display property, the control can
be displayed. Like a HIDDEN Input element, invisible intrinsic controls are
submitted with the form's contents. The following code makes an initially in-
visible control visible. If the intrinsic control was a HIDDEN Input element,
the display property would have no effect on it.

260

139

TEN: Forms and Intrinsic Controls

<INPUT TYPE=TEXT STYLE="display:none™ ID="myTextbox">
<SCRIPT LANGUAGE="JavaScript™>
// Make the text box visible.
document.all.myTextbox.style.display =
</SCRIPT>

Using HIDDEN Input Elements

HIDDEN Input elements are useful mostly for submitting calculated
data with a form. Another use of HIDDEN Input elements is to work
around a shortcoming in Netscape Navigator that causes script variables
to be reinitialized every time the window is resized—by storing the vari-
ables in hidden fields, you don’t have to worry about the user resizing
the window. A hidden field exposes the same object model as the text
box without the events related to user interactions,

Interacting with Disabled Intrinsic Controls

Disabled elements appear grayed. However, if a disabled text box contains no
contents, the user might not easily recoguize that the element is disabled. By
checking whether the user interacts with a disabled control using event bu.b-
bling, you can provide an explanation to users when they try to click on a dis-
abled control.

Disabled elements do not themselves fire events. Instead, events are fired
on the first parent element that is enabled. The following code demonstrates
adding a special “disabledError” message to an intrinsic control and then gen-
erically testing for it:

<HTML>
<HEAD>
<TITLE>Disabled Demonstration</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function checkControl() {
/# If the user clicks on a disabled contrel, this code
displays an error message if one exists. */
var el = event.srcElement;
if (el.disabled) {
var msg = el.getAttribute{"disabledError”);
if (null != msg)
alert(msg);

(continued)

261

PART I11: DOCUMENT STRUCTURE

else
alert("You clicked on a disabled element.”):
}
}
</SCRIPT>
</HEAD>
<BODY ONCLICK="checkControl()">
<INPUT TYPE=BUTTON DISABLED VALUE="Demo™
disabledError = "This element is disabled because,..™>
</BODY>
</HTML>

NOTE: Early HTML drafts proposed an ERROR attribute for the
intrinsic controls. You should avoid adding a custom attribute named
error to ensure that no conflict arises if this attribute becomes part
of the HTML recommendation in the future.

Programming Text Input Elements

262

HTML supports the following four types of text controls for requesting input
from the user:

B <INPUT TYPE=TEXT>

B <INPUT TYPE=PASSWORD>

B <INPUT TYPE=FILE>

B <TEXTAREA>..</TEXTAREA>

The TEXT Input element creates a single-line text box, and the TextArea
element creates a multiple-line text box. The PASSWORD Input element is a
special single-line text box in which the user’s input is visually masked on the
screen—cach character the user types is displayed as an asterisk (*). The FILE
Input element displays a text box and button with which the user can select a
local file. When the form is submitted, the contents of the selected file are sent
back to the server.

NOTE: The TextArea element, as with any element that displays
scrollbars in Dynamic HTML, exposes scrollTop, scrollLeft, scrollWidth,
and scrollHeight properties. These properties provide full access to
the size of the contents and the extent of the contents currently being
viewed. For more information about these four properties, see Chap-
ter 9, “Scripting Individual Elements”

140

TEN: Forms and Intrinsic Contrals

The various text Input elements in HTML currently do not have built-in
functionality for validating and formatting user input. Prior to scripting, such
functionality had to be performed on the server, often creating unnecessary
round-trips. By writing client-side scripts and using Dynamic HTML, you can
format and validate input instantly on the client. This section focuses on tech-
niques for testing user input.

Accessing the Control’s Contents

The contents of the text Input elements are exposed through two techniques:
the value or innerText property for direct access to the contents as a string, and
the createTextRangemethod for rich access to the contents as characters, words,
or sentences. The innerText property is an alias for the value property; the two
can be used interchangeably. Text manipulation using the 7extRange object is
discussed in Chapter 14, “User Selection and Editing Operations.” This chap-
ter focuses on using the value property for manipulating the contents of the
control.

The File Upload Element
The <INPUT TYPE=FILE> tag allows the contents of the file specified in the
text box to be uploaded to the server, For security reasons, the File Upload
element has a limited object model. The File Upload element is supported by
Netscape Navigator 3.0 and later and by Internet Explorer 3.02 and later. Its
value property is read-only and represents the filename and path, not the file’s
contents, Events are supported on the File Upload element, but their use is
fairly limited since you cannot manipulate the user’s input. When required,
you can use the events and the value property to check that a file is selected.

Validating User Input
Validating user input prior to processing improves the usability of your Web
site. This section presents four techniques that can be used with any text in-
put from the user.

Validating While the User Types

Validation can be performed on each character the user types by tracking
keyboard events: keypress, keydown, and keyup. The keypress event is the best event
to use for tracking keyboard input because the default action of the keypress
event is to process the typed character. Returning a value of false to this
event prevents the character from being processed, so the character won't be
appended to the user input. The following example demonstrates how to limit
a text box to numeric input.

263

PART

11: DOCUMENT STRUCTURE

264

<HTML>
<HEAD>
<TITLE>Validating While the User Types</TITLE>
</HEAD>
<BODY>
<LABEL FOR="age">Age</LABEL>
<INPUT ID="age" TYPE=TEXT SIZE=3
ONKEYPRESS="if ((event.keyCode < 48) ||
{event.keyCode > 57)) event.returnValue = false:">
</BODY>
</HTML>

This text box allows only ASCII values from 48 to 57, which represents the
numerals 0 through 9 on the keyboard. Any other character typed by the user
is ignored.

Validating When the User Exits the Control

Immediate validation is most useful for filtering user input. A more common
approach is to validate the input at the time the user completes entering a new
value. When an invalid value is entered, the user should be notified using at
least one of the following two techniques:

B Modifying the appearance of an element to reflect invalid values

W Asking the user to correct an invalid value when he or she exits the
field

Both techniques take advantage of the onchange event, which is fired at the time
the user exits an input control after changing the value. The onchange event
is fired on the element immediately prior to the onblur event. It can be used
to validate the user’s entry and then to display a dialog box or change the form’s
appearance based on the entry. Canceling the onchange event prevents the user
from exiting the control when navigating within the page. If the user is navi-
gating to a new page, canceling this event does not stop the navigation.

The following code demonstrates changing the style of an element based
on the entered value. This technique is described in detail in Chapter 11, “Dy-
namic Styles” Dynamically changing the style is useful for providing the user
with clear feedback.

<HTML>
<HEAD>
<TITLE>Validating When Exiting a Control--Technique 1</TITLE>
<STYLE TYPE="text/css">

141

TEN: Forms and Intrinsic Controls

.badvalue {background:red; color:white}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function validateNumber() {
// Get the source element.
var el = event.srcElement;
// ¥alid numbers
var num = “@123456789";
event.returnvalue = true;
/* Loop over contents. If any character is not a number,
set the return value to false. =/
for (var intloop = @:
intLoap < el.value.length; intLoop++)
if (-1 == num.indexOf(el.value.charAt(intLoop)}))
event.returnValue=false;
if (levent.returnValue) // Bad value
el.className = "badValue™; // Change class.
else
// Clear class to use default rendering.
el.className="";
}
</SCRIPT>
</HEAD>
<BODY>
<LABEL FOR="Age">Age:</LABEL>
<INPUT ID="Age" TYPE=TEXT SIZE=3 TITLE="Enter your age"
ONCHANGE="validateNumber{);">
</BODY>
<K/HTMLD

Instead of changing the style of the element, you can warn the user with
an Alert dialog box when an invalid value is entered. The following code dem-
onstrates how to alert the user if he or she enters an invalid value in a State field.
In addition, this code performs rudimentary formatting by making the user’s
input uppercase.

<HTML>
<HEAD>
<TITLE>Validating When Exiting a Control--Technique 2</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function checkState(check) {
var states = "ALAKAZARCACOCTDEDCFLGAHIIDILINIAKS";
states += "KYLAMEMDMAMIMSMNMOMTNENMNVNHNJINMNY®
states += "NCNDOHOKORPARISCSDTNTXUTYTVAWAWVWIWY™:

{continued)

PART 11: DOCUMENT STRUCTURE

/7 Include the following to test for Canadian praovinces.
/+ Canadian provinces included only if

a second parameter is supplied and is set to true. =/
(arguments[1])

states += "ABBCMBNBNFNSONPEPQSK™;

If the string is found in an even position, the state
is valid. */

return (@ == (states.indexOf(check) % 2));

s

P

/

}
</SCRIPT>
</HEAD>
<BODY>
<LABEL FOR="state">State:</LABEL>
<INPUT ID="state" TYPE=TEXT S$I1ZE=2 MAXLENGTH=2
ONCHANGE="this.value = this.value.toUpperCase():
if (lcheckState(this.value)){
alert('Invalid State’);
return false;}">

</BODY>
</HTML>

Validating When the User Submits the Form

You can use submit-time validation to determine whether related information
is valid or to ensure that all required information is supplied. For example, if
the user indicates that he or she is married, the spouse’s name or other infor-
mation might also be required. The following code demonstrates how to ex-
tend the intrinsic text box control with a required attribute to ensure that it is
filled in by the user:

<HTML>
<HEAD>
<TITLE>Validating When the User Submits the Form</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function isEmpty(str) {
/7 Check whether string is empty.
for (var intloop = @; intlLoop < str.length; intloop++)
if (" " I= str.charAt{intLoop))
return false;
return true;

function checkRequired(f) {
var strError =
for (var intlLoop

; intLoop<f.elements.length: intlLoop++}

266

142

TEN: Forms and Intrinsic Controls

if (nultl=f.elements[intLoopl.getAttribute(“required”})
if (isEmpty(f.elements[intLoopl.value))
strError += " " + f.elements[intLoopl.name + “\n";
if (™" 1= strerror) {
alert{"Required data is missing:\n" + strError);
return false;

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="demo™ ONSUBMIT="return checkRequired(this);">
User Name:
<INPUT TYPE=TEXT NAME="User Name" required>

E-Mail Address:
<INPUT TYPE=TEXT NAME="£-Mail Address" required>

Age (optional):
<INPUT TYPE=TEXT NAME="Age">

<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM>
</BODY>
</HTML>

Representing Required Information

An extension of the preceding example, demonstrated in the following code,
is to initially display required fields with a different background c Jlor. As the
user fills in those fields, the background color changes back to the default,
which helps the user recognize which fields must be completed before submit-
ting the form.

<HTML>
<HEAD>
<TITLE>Representing Required Information</TITLE>
<STYLE TYPE="text/css">
.required {background: red}
</STYLE>
<SCRIPT LANGUAGE="JavaScript™
function isEmpty(str) {
for (var intLoop = @: intlLoop<str.length; intLoap++)
if (" " I= str.charAt(intLoop))
return false;
return true;

(continued)

267

PART

11: DOCUMENT STRUCTURE

function checkRequired(f) {
for (var intloop = @;
intLoop<f.elements.length; intLoop++)
if ("required"==f.elements{intLoopl.className) {
alert("A11 red fields are required.");
return false;

}

function fixUp(el} {
el.className = isEmpty(el.value) ? "required” : ™";
}

function checkChar(el} {
if (32 1= event.keyCode)
el.className = "";

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="demo™ ONSUBMIT="return checkRequired{this);">
User Name:
<INPUT TYPE=TEXT CLASS="required"
ONKEYPRESS="checkChar{this):"
ONCHANGE="fixUp(this};">

E-Mail Address:
<INPUT TYPE=TEXT CLASS="required"
ONKEYPRESS="checkChar(this);"
ONCHANGE="fixUp(this);">

Age (optional):
<INPUT TYPE=TEXT SIZE=3>

<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM>
</BODY>
</HTML>

In this example, the CLASS attribute is used instead of the user-defined
required attribute to identify required fields.

Formatting User Input

268

Just as validation can improve the user’s experience by warning of invalid input,
formatting user input can make data more usable and readable. The same
techniques used to validate data can also be used to format data. Formatting
user input can be done while the user types or when the user exits the field.
This section shows you how to extend the built-in input controls to add format-
ting information directly to an element using two custom attributes.

143

TEN: Forms and Intrinsic Controls

The following code demonstrates a minimal implementation that includes
the numbervalidating routine used earlier plus some simple formatting code
to change the style if the number is positive or negative. Although this example
only changes the style, a formatter can also be written that customizes the
value—for example, by adding digit separators or any other custom format.

<HTML>
<HEAD>

<TITLE>Formatting User Input</TITLE>
<STYLE TYPE="text/css">

.positive {color:green}

.negative {calor:red}

.badValue {background:red; color:white}
</STYLE>
<SCRIPT LANGUAGE="dJavaScript™>

function formatNumber() {

with (event.srcElement)
className =
parselnt(value) >= @ ? “positive” : “negative";

function validateNumber() {
// Get the source element.
var el = event.srcElement; .
var num = “@123456789"; // Valid numbers
event,returnvalue = true;
// Check first character for negative number.
event.returnValue = ("-" == el.value.charAt(@)) ||
(-1 != num.index0f(el.value.charAt(@)));
/* Loop over remaining contents. If any character
is not a number, set the return value to false. #/
for (var intloop = 1; intloop < el.value.length;
intLoop++)
if (-1 == num.index0f(el.value.charAt(intLoop}))
event.returnvValue = false;

if (levent.returnvalue) // Bad value
el.className = "badValue”; // Change class.
else
// Clear class to use default rendering.
el.className = “";

}

function checkFormat() {
event.returnValue = true;
if (null != event.srcElement.validate)
(continued)

269

PART 11: DOCUMENT STRUCTURE

if ("number" == event.srcElement.validate)
validateNumber(); // Sets event.returnValue
if ((null != event.srcElement.getAttribute("format™)) &&

(event.returnvalue))
if ("number™ ==
event.srcElement.getAttribute("format™))
formatNumber();
3
</SCRIPT>
</HEAD>
<BODY>
<INPUT TYPE=TEXT ONCHANGE="checkFormat():" format="number"
validate="number">
</BODY>
</HTML>

Using Password Input Controls

A Password field is a text box in which the entire user input is masked with
asterisk (*) characters. This xrasking is useful when the user is typing sensi-
tive information. For security, scripts running under Internet Explorer 4.0
cannot access the true value of the control. Instead, the value property always
returns an * for each character the user types. The asterisks allow client-side
code to verify that a password has been entered or that the password has a
specific number of characters. Key-related events also always return * for all
keypresses.

‘When using Password fields, you should use the POST method to submit
the data. Otherwise, the password’s value will be displayed as the search value
in the form’s submission. In either case, the value is not encrypted. Furthermore,
Netscape Navigator currently exposes the real value entered, rather than aster-
isks, so Password fields should be used carefully in security-sensitive situations.

Programming List Elements

The Select element is used to present a list of options to the user. There are
two styles of lists: combo boxes (drop-down lists) and list boxes. These two list
styles are generally interchangeable, and their scripting model is identical. The
only exception is that the list box style can be used to create a multiple-select
list box, which lets the user select multiple list items. Figure 10-1 shows the three
types of lists.

270

144

TEN: Forms and Intrinsic Controls

Combo Box: | Computer 'a.
Book Stare
List Box: |Mail Order
%.
Multiple-Select List Box:

SRR

Figure 10-1.
The three types of lists available using the Select element.

Defining a List Box

You create a list box using the Select element. The Select element contains
Option elements representing each list item. The three types of list boxes can
be created as shown in the following code:

<HTML>
<HEAD>
<TITLE>List Types</TITLE>
</HEAD>
<BODY>
<FORM NAME="Tists">
<SELECT NAME="combostore">
<OPTION VALUE="Computer" SELECTED>Computer</QPTION>
<OPTION VALU ockstore">Book Store</0PTION>
<OPTION VALUE="MailOrder">Mail Order</0PTION>
</SELECT>
<SELECT NAME="liststore" SIZE=3>
<OPTION VALUE="Computer"™ SELECTED>Computer</OPTION>
<OPTION VALU aokstore”>Book Store</OPTION>
<OPTION VALUE="MailOrder">Mail Order</OPTION>
</SELECT>
<SELECT NAME="multistore” SIZE=3 MULTIPLE>
<OPTION VALUE="Computer"™ SELECTED>Computer</OPTION>
<OPTION VALU ookstore”>Book Store</OPTION>
<OPTION VALUE="MailOrder™ SELECTED>Mail Order</OPTION>
</SELECT>
</FORM>
</BODY>
</HTML>

271

PART

11: DOCUMENT STRUCTURE

Specifying a SIZE attribute results in a list box instead of a combo box.
The value of the SIZE attribute determines the number of rows displayed. To
create a multiple-select list box, you specify the MULTIPLE attribute. When
the MULTTPLE attribute is supplied without a SIZE attribute, a list box with
a default size of four rows is automatically created.

Adding Styles to List Boxes

Limited style sheet support is provided for list boxes. The color and background
color of each option can be modified using style sheets, which allows you to
create visually interesting list boxes or even a color selector:

<HTML>
<HEAD>
<TITLE>Calor Selector</TITLE>
</HEAD>
<BODY>
<SELECT STYLE="width:75pt">
<OPTION STYLE="background:red; color:white” VALUE="RED">
Red
</OPTION>
<OPTION STYLE="background:navy; color:white" VALUE="NAVY">
Navy
</QPTION>
<OPTION STYLE="background:black: color:white" VALUE="BLACK">
Black
</0PTION>
<OPTION STYLE="background:white; color:black”™ VALUE="WHITE">
White
</OPTION>
</SELECT>
</BODY>
</HTML>

The style for selected items in the list in this example does not change, however.

Relating List Contents to the Submitted Value

272

The contents of an Option element are displayed on the screen, but this dis-
played value is not submitted back to the server, Instead, the value attribute is
submitted and must also be specified in the <OPTION> tag. In general, when
you are using a Select element inside a submittable form, each option should
have a value attribute. For lists that are manipulated from script and are not
displayed on a form, the value attribute can be used optionally or scripts can
rely on the text property directly.

145

TEN: Forms and Intrinsic Controls

Scripting the List Contents

The options collection exposes the Option elements contained in a Select ele-
ment. Each option in the collection exposes its attributes as well as the con-
tents between the start and end tags of the Option element, which are exposed
through the fext property.

Option Elements

The Option elements in the document are an exception in the Dynamic HTML
object model because they are not exposed in the document’s all collection.
Also, the Option element does not expose any extra events or properties be-
yond its standard sets of attributes and the text property. Instead, the Option
clement is exposed only through its parent Select element because the Select
element owns all the interactions with the list, including events.

Adding and Removing List Elements

You can dynamically add items to or remove items from list boxes. This tech-
nique allows the list to be customized in response to user input. To add values
to or remove values from a list box, you can use the technique introduced in
Chapter 9, “Scripting Individual Elements,” for adding and removing image
map areas. This section presents a more appropriate alternative.

The options collection supports the ability to dynamically add or remove
elements. Elements are created using the createElement method or through the
new operator, as shown here:
var elOption = createElement("CPTION™);

/1 or .
var el0Option = new Option; // Netscape Navigator supports
// this method.

Options are then added to the list box using the add method on the options
collection or removed using the remove method on the options collection. Op-
tions can also be added or removed by assigning an option directly to an ar-
ray index or by setting an existing option to null. This technique is supported
for Netscape Navigator compatibility. The following code compares using the
two techniques on list items in a list box named /4 on a form named demo:

var elOption = new Option{);

// Add and remove using methods.
document.demo.1b.options.add(elOption, 8); // Add as first item.
document.demo.1b.options.remove(2); // Remove third item,

/! Add and remove using Netscape Navigator-compatible technique.

document.demo.1b.options[@] = elOption; /7 Add as first item,
document.demo.1b.options[2] = null; // Remove third item,

273

PART

11: DOCUMENT STRUCTURE

The following code demonstrates how to dynamically generate a list box
that lists all the bookmarks on the page. When the user selects an item from
the list, the document automatically scrolls the bookmark into view.

CHTML>
<HEAD>
<TITLE>Bookmark List</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function addNew(text, value) {
// Add a new option.
var el = document.createElement("OPTION");
el.text = text;
el.value = value;
document.all.bm.options.add(el);
1

function buildList() {

/+ When adding & new 1ist item, the text is-the contents
of the anchor and the value is the name of the
bookmark. The value is used to scroll the element into
view. */

for (var intLoop = @; intLoop < document.anchors.length:

intLoop++)
addNew(document.anchers[intLoopl.innerText,
document.anchors[intLoopl.name);
1

function scrollit(where) {
/7 Scroll the specified bookmark into view.
document.ali[where.valuel.scrollIntoView();
// Reset 11st box.
where.value = null:
}
</SCRIPT>
</HEAD>
<BODY ONLOAD="buildList();">
<LABEL FOR="bm">Bookmarks:
<SELECT ID=bm STYLE="width:10@pt" ONCHANGE="scroliit(this);">
</SELECT>
<H1>Contents<H1>
Table of Contents
<H2>Abstract</H2>
About this document
<H2>Chapter 1<{/H2>
Chapter 1

146

TEN: Forms and Intrinsic Controls

<H2>Summary</H2>
Summary contents
</BODY>
</HTHML>

Scripting Multiple-Select List Boxes

Multiple-select list boxes allow the user to select more than one item from a
list. In a multiple-select list box, the valueproperty returns only the first selected
item. To determine all the selected items, the entire list of options must be
enumerated using a script. The following function demonstrates how to build
an array of selected items for any list box. (If you use this function with a single-
select list box, the resulting array will contain only a single value.)

<SCRIPT LANGUAGE="JavaScript">
function getSelected(opt) {
var selected = new Array():
var index = &;
for (var intLoep=0; intLoop < opt.iength; intLoop+t+t) {
if (optlintLoopl.selected) {
index = selected.length:
selected[index] = new Object:
selected[index].value = opt[intLoopl.value;
selected[index].index = intLoop:

}
1
return selected;
}
</SCRIPT>

Using Check Boxes for Small Lists

If the number of options is small, it might make more sense to use a set of check
boxes instead of a multiple-select list box. By sharing the same name across
each check box in the set, the check boxes will have the same submit behav-
ior as the multiple-select list box. The preceding function can be rewritten as
shown in the following code to determine which check boxes are selected.
Rather than enumerating the options collection contained in the Select ele-
ment, however, you must enumerate the Form elements with a given name.
Instead of passing an aptions collection to the function, the collection of check
boxes is used. Another distinction is that check boxes expose a checked prop-
erty for determining whether they are selected, while the list box uses the se-
lected property, so the conditional logic in the function tests for either selected
or checked.

275

PART

DOCUMENT STRUCTURE

<HTML>
<HEAD>
KTITLE>Multiple-Select Check Boxes</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function getSelected(opt) {
var selected = new Array();
var index = &;
for (var intlLoop = @; intLoop < opt.length; intLoop++) [
if ({optlintLoopl.selected) ||
(optlintLoop]l.checked)) {
index = selected.length:
selected{index] = new Object:
selected[index].value = opt[intLoop].value:
selected[index].index = intlLoop;

}
return selected;
)]

function outputSelected(opt) {
var sel = getSelected(opt):
var strSel = "7,
for (var item in sel}
strSel += sel[item].value + ™\n";
alert("Selected Items:\n" + strSel):
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="ColorSelector">
<INPUT TYPE=CHECKBOX NAME="calor" VALUE="Red">Red
olor™ VALUE="Navy" CHECKED>Navy
alor®™ VALUE="Black">Black &
<INPUT TYPE=CHECKBOX NAME="color®™ VALUE="White" CHECKED>White
BUTTON VALUE="Selected Check Box Items™
outputSelected{this.form.color});">

<SELECT NAME="multistore"” SIZE=3 MULTIPLE>
<OPTION VALUE="Computer™ SELECTED>Computer</OPTION>
<OPTION VALUE="Bookstore">Book Store</OPTION>
<OPTION VALUE="MailCrder™ SELECTED>Mail Order</OPTION>

</SELECT>

<INPUT TYPE=BUTTON VALUE="Selected List Items”
ONCLICK="outputSeTected(this.form.multistore.options)">

</FORM>
</BODY>
</HTML>

276

147

TEN: Forms and Intrinsic Controls

Programming Lists Using
Radio Buttons and Check Boxes

Radio buttons and check boxes are rendered similarly but serve distinct pur-
poses. Radio buttons are used to represent a set of two or more mutually
exclusive items. Check boxes are used to specify a decision with two or more
independent choices.

Radio buttons are similar to the single-select list boxes introduced earlier
in this chapter. Radio buttons can be used interchangeably with a single-select
list, but they are most effective when a small number of options are available,
For example, to specify a person’s gender, a radio button group would be more
effective than a single-select list box.

Radio buttons are more difficult to use than a list box if you are building
the set of options dynamically. For this scenario, the list box is more appropriate
because items in a list box can easily be manipulated as a group, whereas each
radio button is actually a separate control that needs to be manipulated in-
dependently, and adding or removing radio buttons requires manipulating the
contents of the document directly.

Radio Buttons

Radio buttons are exposed as a group similar to the options in a single-select
list box. As mentioned, specifying the same name for buttons within the same
scope creates a group, Mutual exclusion based on name is supported only for
radio buttons. When the submission of a form with a radio button group oc-
curs, of all the radio buttons in a group only the value for the selected radio
button is submitted. Assigning the same name to any other type of control does
not cause any special submission behavior. When multiple controls that are not
radio buttons share the same name, all name-value pairs are appropriately sub-
mitted depending on the rules for each control—for example, named check
boxes are submitted only if they are checked, and all named text boxes are
submitted.

Supporting Custom List Values

Radio buttons are useful for providing a list of possible responses in a survey.
Sometimes you might want to allow a user-entered value as a last resort if none
of the list options are valid. The following code demonstrates a simple way to
provide a text box for a custom response if the user’s choice is not listed—the
text control is enabled only when the user selects Other.

277

5 &

PART I11: DOGUMENT STRUCTURE

<HTML>
<HEAD>
<TITLE>Custom Entry</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function checkRadio(f) {
f.Custom.disabled = !f.Q1["Other”].checked;
if ("0ther" == event.srcElement.id)
f.Custom.focus();
)
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="Demo™ ONCLICK="checkRadioc(this);">
<FIELDSET>
{LEGEND>Where did you buy this book?</LEGEND>
<P><INPUT ID="BStore" TYPE=RADIO NAME="Q1"
VALUE="Bookstore">
<LABEL FQR="BStore"> Bookstore</LABEL>
<P><INPUT ID="MOrder" TYPE=RADIO NAME="Q1"
VALUE="Mail Order">
<LABEL FOR="MOrder*> Mail Order</LABEL>
<P><INPUT ID="CStore" TYPE=RADIO NAME="Q1"
VALUE="Comp Store">
<LABEL FOR="CStore"> Computer Store</LABEL>
<P>INPUT ID="0ther" TYPE=RADIO NAME="0Q1">
<LABEL FOR="0ther"> Other: </LABEL>
<INPUT ID="Custem" NAME="Other™ TYPE=TEXT DISABLED>
</FIELDSET>
</FORM>
</BODY>
</HTHML>

This code works properly regardless of whether the user clicks on the label
for Other or on the radio button itself because when a user clicks on the la-
bel the onclick event is first fired with srcElement as the label and then again with
srcElement as the radio button. The onclick event handler also fires if the radio
button is selected using the keyboard because the event is not tied to the mouse
but rather to the operation of changing the value of the control. For this rea-
son, a single onclick event handler for the radio button itself is sufficient to catch
any potential change.

Check Boxes

Check boxes are useful for asking yes/no questions. In many cases, text boxes
are used to specify other relevant information when necessary. By writing some
simple code, you can make a check box enable or disable the relevant fields

278

148

TEN: Forms and Intrinsic Controls

on a form. In the following code, if users request more information, they must
enter their e-mail name and address. If they don’t request additional informa-
tion, the two fields are not used.

<HTML>
<HEAD>
<TITLE>Enabling Entry Fields</TITLE>
</HEAD>
<BODY>
<FORM NAME="Info">
<LABEL FOR=INF0>Send Info:</LABEL>
<INPUT ID=INFO TYPE=CHECKBOX
ONCLICK="this.form.email.disabled = !this.checked;
this.form.snailMail.disabled = !this.checked;™>

<FIELDSET NAME="address">
<LEGEND>Address Information</LEGEND>
<LABEL FOR="ematl">E-mail Address</LABEL>
<INPUT TYPE=TEXT NAME="email" DISABLED>
<LABEL FOR="snailMail">Street Address:</LABEL>
<TEXTAREA ROWS=3 COLS=48 NAME="snailMail™

DISABLED></TEXTAREA>
</FIELDSET>
</FORM>
</BODY>
</HTML>

NOTE: There is currently no technique you can use to override
the default rendering for disabled controls.

The Indeterminate State

Check boxes support an indeterminate state, which allows a check box to rep-
resent three states: on, off, and unknown. For example, suppose you use a check
box to indicate whether selected text is boldface. The unknown state would
apply when the user selects some text that is part boldface and part not bold-
face. The unknown state can be set only through the object model, using the
indeterminate property on the check box. The indeterminate property is a Bool-
ean value—when this property is set to true, the check box is displayed in the
indeterminate state.

The checked property of an indeterminate check box returns the value of
the check box before it became indeterminate, even though an indcterminate
check box always appears the same in the user interface. The check box is
submitted depending on the checked property, regardless of whether the check

279

PART 11: DOCUMENT STRUCTURE

box is indeterminate, Figure 10-2 shows the different check box states as dis-
played in Microsoft Windows:

I Not Checked

2 Checked

¥ Indeterminate

I Not Checked Disabled
8 Checked and Disabled

! H
T [Tameta 7

Figure 10-2.
The different check box states.

The indeterminate check box looks the same as the checked and disabled check
box. The difference between the two is that you cannot click a disabled check
box to change its value, but you can click an indeterminate check box.

The onclick Event

For radio buttons and check boxes, the onclick event has a slightly different
behavior than it has for other elements. The onclick event fires prior to the
execution of the default action, providing the Web author an opportunity to
override it. For check boxes, the default action is to select or deselect the item,
and for radio buttons the default action is to select the item. When the onclick
event fires for these controls, the control’s value already represents the new
value of the element. Canceling the default action causes the value to revert
to the previous value. This process is different from other elements, for which
the state of the element does not change until after the event.

Programming Command Button Elements

Command buttons are created using either the standard Input element or the
Button element. The Input element supports three types of command buttons:
submit, reset, and plain-text buttons, The Button element is new in Internet
Explorer 4.0 and provides the ability to create rich HTML buttons.

149

TEN: Forms and Intrinsic Controls

Defining Default and Cancel Buttons

The submit and reset buttons act as the Default and Cancel buttons within the
context of a form or the scope of the document. The Default button is origi-
nally displayed with an extra border and signifies the default action that oc-
curs if the user presses the Enter key. The Cancel button signifies the action
that occurs if the user presses the Esc key.

Within the scope of a form, the submit and reset buttons are command
buttons with the predefined behavior of submitting the form or resetting the
contents of the form. Outside a form, these buttons act as standard command
buttons, behaving as the Default or Cancel button. In all cases, invoking the
Default or Cancel button behavior from the keyboard fires a click event on the
appropriate button element.

Submit and reset buttons are defined using the TYPE attribute on the
Input or Button element, as shown here:
<FORM NAME="User'>

<INPUT TYPE=TEXT NAME="User" -VALUE="User Name'>

<INPUT TYPE=RESET VALUE="Reset the Form">

<INPUT TYPE=SUBMIT VALUE="Submit the Form">

<BUTTON TYPE=SUBMIT>Submit the Form</BUTTON>
</FORM>
There can only be one Default and one Cancel button per form or document
scope. When more than one Default or Cancel button is specified within a
single scope (that is, more than one submit or reset button), the first button
of each type specified in the HTML source is the one that will be used within
that scope.

Button Events and Form Events

If you need code that executes for the submit or reset behavior of a form, you
should write the code on the form’s onsubmit and onreset events and not on the
onelick event of the submit and reset buttons because there are cases in which
the form can be submitted or reset without the buttons ever receiving an onclick
event. For example, if the form has only one text box, a submit button, and a
reset button, pressing Enter while the cursor is in the text box automatically
submits the value, but the submit button does not receive an onclick event. Simi-
larly, if the user presses Esc, the reset button does not receive the onclick event,
but the onreset event is fired.

281

PART 11: DOCUMENT STRUCTURE

Creating Buttons Using the Button Element

282

You can create a button in HTML using <INPUT TYPE=BUTTONS> or the
more general <BUTTON>...</BUTTON> tags. The following code creates rich
submit and reset buttons:

<FORM NAME="test">
<BUTTON TYPE=SUBMIT>
<H1>Submit this form.</H1>
</BUTTON>
<BUTTON TYPE=RESET>
<H2>Reset this form.</H2>
</BUTTON>
</FORM>

Because you can place HTML in the Button element, you can create interest-
ing effects in a button. Although any HTML and style can be defined for the
contents, the event model for the contents is limited compared to the rest of
Dynamic HTML.

Button Events :
As shown in the following code, the Button element supports rich HTML, but
the elements within the button do not fire events. Therefore, event handlers
cannot be written for any of the elements that exist within the button.
<1-- The event handlers defined in this button do not fire. -->
<BUTTON>

<H1 ONCLICK="alert('clicked!’);">Click Me!</H1>

<HZ ONMOUSEQVER="this.styla.color = 'red':">Turn red.</H2>
</BUTTON>

Instead, all events on items within the Button element are routed directly to
the button itself.

Button Contents

The contents of the button are exposed differently depending on whether the
button is defined using the <INPUT> tag or the <BUTTON> tag. The contents
ofabutton created using the <INPUT> tag are exposed through the valueand
innerText properties, similar to the other Input types. The contents of a but-
ton created using the <BUTTON> tag are exposed through the innerZext and
inner TML properties, but not through the value property. Like the TextArea
element, a button created using a <BUTTON> tag also exposes richer access
to the contents through the ¢reateTextRange method.

150

TEN: Forms and Intrinsic Controls

Programming Label and Fieldset Elements

Labels are used to associate HTML contents with an Input element, and field-
sets are used to group multiple controls. The Label and Fieldset elements are
currently supported only by Internet Explorer 4.0.

The Fieldset element is useful for grouping different input controls within
a single form—for example, to group the shipping address and the receiving
address on a single form. The Fieldset element does not expose anything ex-
tra to the object model beyond the standard events and its attributes. However,
with event bubbling Fieldset elements can be used to provide custom behav-
ior to groups of controls.

Label elements are especially useful with check boxes and radio buttons.
Before Label elements, when a radio button or check box was used, it had to
be clicked on directly. Now a label associated with a button can also be used
to select and deselect the button. The advantage to using Label elements is that
they also provide a focus rectangle for the controls, making it clear what the
purpose and contents of the control are and providing an extra click region
that can be used to select the control. This feature can be added riskfree to
any Web page, as down-level browsers ignore the Label element.

The Label Element and onclick Events

The Label element has an interesting effect on the event model. The default
action of clicking on a Label element is that the associated control receives the
focus. Therefore, when the user clicks on a Label element, the Label and all
its parent elements receive the onclick event. If the default action is not over-
ridden, the referenced control is given the focus. If the referenced control is
a check box or radio button, the onclick event is then bubbled again from that
control. This second bubbling is what allows clicking on the label for a radio
button or check hox to change the value.

Unless you need to distinguish between the user clicking on the label and
the user clicking on the control itself, attach your event handler to the control,
not the label.

283

DOCUMENT STYLE
AND ANIMATION

151

152

C HAPTEHR ELEV EN

Dynamic Styles

Dynamic styles are an integral component of interactive Weh pages. The docu-
ment’s appearance is defined using style sheets and HTML. Dynamic styles use
the object model to modify the document’s CSS (Cascading Style Sheets) in
order to change the appearance of the document. The syntax for declaring a
CSS was introduced in Chapter 1, “Overview of HTML and CSS.” This chapter
focuses on modifying style sheets using scripts in order to alter the document’s
appedrance.

By applying dynamic styles, you can transform existing documents into
more cxciting documents without a loss of contents on down-level browsers.
On a down-level browser, the document appears static, but when Dynamic
HTML is supported the document comes to lifc. Because the easiest and most
effective way to learn about dynamic styles is to study and review codc samples,
this chapter provides a large number of Plug and Play code modules. The
purpose of these examples is to demonstrate how to apply various techniques
for creating more interactive documents.

The following topics are covered in this chapter:

W Dynamic styles and CSS This section introduces the refationship
between CSS and dynamic styles and compares the relationship be-
tween dynamic styles applied to CSS and procedural style sheet lan-
guages such as JavaScript Accessible Style Sheets (JASS) included
in Netscape Navigator 4.0.

H Style sheet properties This section describes how style sheet
properties are exposed by the object model. CSS properties do not
always translate easily into object model properties because a single
attribute may contain many properties. For example, the background
attribute contains background color, image, and repeat information.

287

PART [101: DOCUMENT STYLE AND ANIMATION

B Inline styles This section shows you how to program the inline style
of an element, the simplest technique for adding dynamic styles. A
style property that provides access to all the CSS-related properties
is exposed on every element.

® Changing the class attribute A simple and elegant technique for
creating dynamic styles is to write code that modifies the class or id
attribute to associate an element with a different contextual rule.
This section provides reusable examples that illustrate this technique.

B Global style sheets Changing the inline style and the class attribute
are direct modifications of an element. The document object exposes
a styleSheets collection that represents all the Style elements and
linked style sheets in the document. This collection lets you modify
the individual style sheets directly and thereby apply formatting to
the entire document.

® Techniques This chapter concludes with three sections that de-
scribe techniques for taking advantage of the features introduced
throughout the chapter, The section "Adaptive Layout Techniques”
shows you how to make a document change in response to the envi-
ronment. “Data Display Techniques” demonstrates hiding and
showing data in response to the user. “Text Animation Techniques”
shows you how to change styles in response to a timer.

The samples demonstrating these techniques are included on

the companion CD.

Dynamic Styles and CSS

288

CS8S defines how particular elements within the document are to be rendered.
The objeci model for manipulating the properties of the style sheet is based
on the CSS recommendation. When an attribute or rule is modified through
script, the static style sheet is updated and the page is immediately updated.

This dynamic style model is different from the JASS model supported by
Netscape Navigator 4.0. JASS is a procedural model for defining a style sheet
for the document at parse time rather than a programming model for manipu-
lating a document’s style. For example, JASS can be used to write conditional
code that applies a different style sheet depending on the size of the screen
during the loading of the document. JASS can’t be used to change the style of
an element in response to an event without reloading or requesting a new page
from the server.

153

ELEVEN: Dynamic Styles

In Microsoft Internet Explorer 4.0, dynamic styles are not a procedural
style sheet language, but they can accomplish all aspects of JASS and much
more. Rather than define an alternative style sheet language, dynamic styles
in Internet Explorer modify the document’s CSS-defined style sheet by allowing
you to define inline style properties on every element, enable and disable all
global and linked style sheets, and add rules to and change rules onan existing
style sheet.

Style Sheet Properties

Style sheets expose a number of properties that control the appearance of an
element’s contents. In the object model, these properties are exposed using a
consistent naming convention. Most properties in CSS separate keywords using’
a hyphen (-) character. Because the hyphen is interpreted as an operator in
most language constructs, it cannot be part of any CSS property names as ex-
posed in the object model. Furthermore, for case-sensitive Janguages such as
JavaScript, each GSS property is exposed consistent with other properties—
that is, the first keyword is lowercased, and all subsequent keywords are capi-
talized. For example, the CSS margin-top property is exposed in the object
model as marginTop.

NOTE: While this rule is simple and can be applied generally,

one exception is necessary in order to avoid a keyword conflict with

scripting languages. The CSS float property specifies whether an

element should be aligned at the left or right edge with subsequent

contents wrapping the element. Because float js a common data type

in many languages, the GSS float property is exposed as siyleFloatin

the object model.

Compound Properties

Many style sheet properties are defined as compound properties. For example,
the CSS background attribute contains information about the background
image, URL, position, and so on. The following code shows the background
attribute defined for the Body element:

body {background:red URL(cool.gif)}

These compound properties can be difficult to manipulate through
script. To script the background property, a developer would have to parse the
CSS property into its core components. This parsing is simplified in the CS§

289

PART I1F1: DOCUMENT STYLE AND ANIMATION

objfect model by decomposing compound GSS properties into multiple prop-
Crtl(?s, e-ach representing an aspect of the property. The following table lists
the individual properties of the background property.

Property Description

backgroundColor String color name or RGB value

bachgroundimage URL to the background image

backgroundPosition Position of the background image

backgroundRepeat Wlufther the background image repeats horizontally,
vertically, or both

backgroundSeroll Whether the background image scrolls with the

document or acts as a static watermark

The cssText Property

Tt}e ¢ssText property contains an element’s style in the form of a string. Using
this property, you can set an element’s entire style or copy a style from one
element to another. The following code gives paragraph p2 the same style as
p1. The section “Style Sheet Painter” later in this chapter provides a detailed
example of defining and sharing style rules across an entire document.

<HTML>
<HEAD>
<TITLE>Sharing the cssText Property</TITLE>
</HEAD>
<BODY>
<P ID="p1™ STYLE="text-indent:.5in; color:red™>
This paragraph is red with a half-inch indent.
</e>
<P ID="p2">
This paragraph has a default appearance. Click
<INPUT TYPE=BUTTON VALUE="here"
ONCLICK="document.all.p2.style.cssText =
document.all.pl.style.cssText;">
to make this paragraph Took 1ike the first paragraph.
/P>
</BODY>
</HTML>

¥

154

ELEVEN: Dynamic Styles

Modifying Properties
Most of the style sheet properties supported by Internet Explorer 4.0 can be
dynamically modified, but a few properties cannot be dynamically changed:

B The display property can only be switched between none and the de-
fault value. Therefore, elements cannot be switched between block
and inline formats. Assigning a value other than none or the default
value displays the document’s contents using the default value.

8 The styleFloat property is not fully dynamic on text elements such as
Span and DIV. For text clements, the styleFloat property can only be
changed from left to right or vice versa. If a text element was not
originally floating to the left or to the right, it cannot be changed
following the loading of the document. For input elements (Select,
Button, Input, and so on), the styleFloat property can be dynamically
modified between all the valid values.

The position property is read-only and cannot be dynamically
changed on any element.

Inline Styles

An inline style is assigned to an element using the STYLE attribute. The STYLE
attribute lets you assign GSS properties directly to an instance of the element.
For example, using the STYLE attribute, you can make a paragraph blue:

<P STYLE="color:blue">This is a blue paragraph.</P>

This technique improves on the existing HTML-based model for specifying
text color. Prior to style sheets, the paragraph would be made blue using the
Font element:

<P>This is a blue paragraph.</P>

The advantages of using the inline style over the stylistic HTML elements
and attributes are as follows:

B Creates more compact HTML code

W Creates a smaller parsing tree, which leads to better performance

B Better separates the concepts of style and structure

291

PART

111: DOCUMENT STYLE AND ANIMATION

Even inline styles are not in the true spirit of separating presentation from
content. The true definition of separating presentation from content is to de-
fine all the styles outside the markup—for this, global or linked style sheets
are more appropriate.

The inline style sheet does provide some conveniences for creating dy-
namic documents. For example, the style of an element can be quickly changed
when the mouse moves over it:

<H1 ONMOUSEQVER="this.style.backgroundColor = Tyellow';"
ONMOUSEDUT="this.style.backgroundColor = '*;">
This element turns yellow when the mouse moves over it.
</HI>

This code works by accessing the inline style for the H1 element and assign-
ing a new value to the CSS backgroundColor property. The document’s display is
immediately updated to reflect the change to the style sheet. The inline style
is represented on every element through the style property: style is an object-
valued property through which scripts can access all the GSS properties.

Changing the class Attribute

292

Changing the inline style is useful, but it can be a burdensome technique when
multiple property values need to be modified. A more effective way to change
styles is to define styles for two or more classes in a global style sheet and dy-
namically change the class attribute of an element. The class attribute of an
element is exposed through the className property. This property can be
changed through script to associate a different style rule with the element. For
example, the following code rewrites the simple onmouseover color change tech-
nique from the previous section to take advantage of global style sheets:
<HTML>
<HEAD>

<TITLE>Changing the class Attribute</TITLE>

<l-- Create a global style sheet. -->

<STYLE TYPE="text/css">

.yeTlow {background:yellow; font-weight:bolder}

</STYLE>
</HEAD>
<BODY>
<H1 ONMOUSEQVER="this.className = 'yellow';:"
ONMOUSEOUT="this.className = '*;">

155

ELEVEN: Dynamic Styles

This element changes its class attribute
when the mouse moves over it.
</HL>
</BODY>
</HTML>
In this example, when the mouse passes over the H1 element, the value of the
CLASS attribute is changed to yellow. This causes the style specified for yellow
to be immediately applied. In this case, the background becomes yellow and
the text is made bold. The technique of changing class names offers two ad-
vantages: multiple parts of the style can be changed with a single line of code,
and changing the style sheet rather than changing the code can modify the
effect itself. This technique is extremely useful when you want a predefined
effect, especially when the effect is to be shared across multiple elements.
You can make controls dynamic by using the same technique. Code in the

following example changes the style sheet associated with a button in response
to four mouse events: the mouse moving over and leaving the element and the
left mouse button being clicked and being released.

<HTML>
<HEAD>
<TITLE>Animated Buttons</TITLE>
<STYLE TYPE="text/css™>
.over {color:yellow; background:navy}
.down (color:yellow; background:navy; font-style:italic}

</STYLE>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON VALUE="Demo Button"
ONMOUSEOYER="this.className = ‘over';"
ONMOUSEOUT="this.className = *';"
ONMOUSEDOWN="this.className = 'down':"

ONMOUSEUP="this.className = ‘over’;">

</BODY>

</HTML>
This example can be extended for other events and other elements and can
also be written generically by placing the event handlers in the Body element.

Ifyou give the button in the previous example 2 new default style by assign-
ing it a class name, you have to be careful to reassign that class name in response
to the onmouseout event. Code in the next example automatically keeps track
of elements’ original class names. It demonsirates a reusable architecture for
assigning different onmouseover effects to different elements, including nested
elements, with only a small amount of code for each element.

293

PART F11: DOCUMENT STYLE AND ANIMATION

<HTML>
<HEAD>

<TITLE>Exploding Effects</TITLE>

<STYLE TYPE="text/css™>
.explode {color:red; letter-spacing:5px}
.header {color:green}
/% To add effects, simply define new rules and associate them

with elements in the document. */
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function walkStyles(src) {
/+ Walk up the tree; for every element with an effect
property, swap the values of its effect and className
properties. The tree walk is necessary to ensure that
any nested effects are handled. #/
while ("HTML™ != src.tagName) {
if (null I= src.getAttribute(“effect", false)) {
var tempClass = src.className; R
src.className = src.getAttribute(“effect™, false):
src.setAttribute(“effect”, tempClass, false);

} B

src = src.parentElement;

function setupEffect() {
// Entering an element
walkStyles(event.toETement):
}

function cleanupEffect() {
// Exiting an element
walkStyles(event.fromElement);
1

// Hook up event handiers.
document.onmouseover = setupEffect;
document.onmouseout = cleanupEffect;
</SCRIPT>
</HEAD>
<BODY>
<H1 CLASS="header” effect="explode">
This element will explode when the mouse moves over it.
</H1>
</BODY>
</HTML>

294

156

ELEVEN: Dynamic Styles

In the preceding code, the H1 element has a user-defined attribute
named ¢ffect that contains a class name for use when the mouse is over the
element. When the mouse is over the element, the walkStyles function swaps
the values of the element’s className and effect properties, thereby changing its
style. When the mouse moves off the element, the same function swaps the
values back.

You can add new elements with their own effects to this code quite easily.
Simply define new classes in the style sheet and assign them to an element’s
builtin CLASS and custom effect attributes. The CLASS attribute specifies the
default rendering of the element, and the ¢ffect attribute specifies the render-
ing of the element when the mouse moves over it.

The techniques sections at the end of this chapter use dynamic class
changes to create interactive and fun Web pages. The code is similar to this
example, allowing these techniques to be easily reused in existing Web pages.

Global Style Sheets

The previous two techniques involve changing the style of a single instance of
an element at a time. By manipulating global style sheets, a script can change
the style of many elements all at once. The global style sheet object model
provides complete access to the global style sheets defined both within a docu-
ment and in external files. Global style sheets contained within the page are
associated with the document through the Style element; the Link element is
used to associate an external style sheet file with the page. With the global style
sheet object model, any style sheet can be completely customized, style sheets
can be turned on and off, rules within the style sheet can be accessed and
changed, and new rules can be added to quickly change the style of the entire
document.

Dynamically modifying the global style sheet is an extremely powerful
operation, but it can also be costly. Every time a new rule is added or removed
or a style is changed in the global style sheet, the entire document is recalcu-
lated. Therefore, take care to minimize the number of operations you perform
on the style sheet. When multiple changes to the document are necessary, an
efficient technique is to define multiple style sheets and enable and disable
them. This technique is introduced in the section “Providing a List of Alter-
native Style Sheets” later in this chapter.

295

R

PART 111: DOCUMENT STYLE AND ANIMATION

The styleSheets Collection

The document exposes the st of style sheets associated with it through a style-
Sheets collection. The styleSheets collection contains all the global style sheets,
whether they are contained in the document or linked from an external file.
In the styleSheets collection, as in all other collections in Dynamic HTML, abjects
appear in the same order in which they appear in the document.

The styleSheets collection contains styleSheet objects, not element objects.

There is a relationship between the styleSheet objects in the styleSheets collection
and the styleand link objects in the all collection. Each styleSheet object exposes
an owningElement property that returns the style or link object that defined the
style sheet. Each style and each Link element that associates a style exposes a
styleSheet property that returns the styleSheet object.

Referencing a Style Sheet

296

All elements in the document support the ID attribute. The ID attribute in the
Style and Link elements serves a dual purpose: it provides the index value to
directly access the element through the alf collection, and it provides the index
value to directly access the styleSheet object in the styleSheets collection. It is
important to recognize that in the all collection, a particular ID attribute
references an actual style or link object, while in the styleSheets collection, it
references the associated styleSheet object. The following example shows how to
reference a style object and its associated styleSheet object using an ID, and how
to reference each of those objects from the other:

<HTML>

<HEAD>
<TITLE>styleSheet Object vs. Style Element</TITLE>
<STYLE ID="demo" TYPE="text/css">
BODY {color:red)
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Return the style object.
var styleElement = document.all["demo”];
// Return a styleSheet object.
var styleSheetObject = document.styleSheets["demo™];

// Access each of these objects from the other.

// Both alert boxes disptay true.
alert(styleSheetObject.owningElement == styleElement);
alert(styleElement.styleSheet == styleSheetObject):

157

ELEVEN: Dynamic Styles

</SCRIPT>
</HEAD>
<BODY>
Contents
</BODY>
</HTML>

Providing a List of Alternative Style Sheets

The styleSheets collection can be used to enumerate all the style sheets in the
document. Each style sheet can be individually enabled or disabled, turning
on or off the application of the style sheet to the document. This technique
enables a page to expose multiple styles for the user to select from; it can also
be used to provide multiple views of the data.

Providing alternative style sheets has several advantages over dynamically
modifying a single style sheet through code. Updating and maintaining alter-
native style sheets is easier than updating and maintaining scripts that modify
asingle style sheet. Also, code to switch between alternative style sheets is more
efficient than code to modify a style sheet, especially if the code has to change
a large number of styles. When you switch style sheets, the document is recal-
culated and displayed twice, once when the current style sheet is disabled and
asecond time when the new style sheet is enabled. In contrast, when you modify
a single style sheet, the document is recalculated after each style is changed.

The DISABLED Attribute

The Style and Link elements support the DISABLED attribute, which initially
disables a style sheet. You can use this attribute to contrel which style sheets
are initially applied to the document. Scripts can later reset the Style and Link
elements’ corresponding disabled properties to change which style sheets are
applied to the document. The examples that follow use this technique.

Providing Multiple Views

The following Web page allows the user to switch between different views of
the same data. This technique is useful for providing several levels of detail at
which to view the underlying data without requiring multiple pages to be down-
loaded. This example requires the user to explicitly choose between views. Your
code can also change the view in response to other factors—for example, the
size of the browser—as shown in the “Adaptive Layout Techniques” section later
in this chapter.

297

PART I111: DOCUMENT STYLE AND ANIMATION

<HTML>
<HEAD>
<TITLE>Multiple Views</TITLE>
<STYLE ID="all" TYPE="text/css">
#headOnly {display:none}
#al1Text {color:red: cursor:default)}
</STYLE>
<STYLE ID="headers" TYPE="text/css" DISABLED>
#al1Text {display:none}
#headOnly {color:navy; cursor:default}
DIV (display:none}
</STYLE>
</HEAD>
<BODY>
<H1> Demonstration of Multiple Views</H1>
<P ID="all1Text"
ONCLICK="document.styleSheets["headers'].disabled = faise;
document.styleSheets['all'].disabled = true;">
You are viewing an entirely expanded version of the
document. Click on this paragraph to switch views.</P>
<P ID="headOnly" !
ONCLICK="document.styleSheets['headers’].disabled = true;
document.styleSheets(*all"].disabled = false;">
You are viewing only the headers of the document.
Click on this paragraph to switch views.</P>
<H2>MuTtiple VYiews</H2>
<DIV>Using the CSS object madel, you can provide multiple views
of the data,
</DIV>
<H2>Swapping Data</H2>
<DIV>You can also swap data displays. You can include
predefined data in the document and selectively hide and
display it.
</DIV>
</BODY>
</HTML>

Figure 11-1 demonstrates the two views of the document, with the two
different style sheets applied. When the user clicks on the first paragraph, the
style is automatically switched and different information is shown or hidden.

208

158

ELEVEN: Dynamic Styles

Demonstration of Demonstration of

Multiple Views Multiple Views
rded Y ou are viewing only the headers of the.
v document. Click on this paragraph to

2 ¥ switch views.

Multiple Views Multiple Views

Using the CS5 object model you can Swapping Data

provide muliple views of the data
Swapping Data

You can also swap data displays. You can
inchide predefined data in the dovument
and selectively hide and display it

il e —

Figure 11-1.
Two views of a document obtained by alternating between style sheets
contained within the document.

Selecting from Multiple Style Sheets

In the preceding example, the user clicks on a paragraph to change the dis-
play option. The following code takes an alternative approach; it provides a
drop-down list from which the user can select a display option:

<HTML>
<HEAD>

<TITLE>Listing Style Sheets</TITLE>

<STYLE ID="all" TITLE="Entire Document" TYPE="text/css">
#headOnly {display:inone}
#al1Text {color:red; cursor:default}

</STYLE>

<STYLE ID="headers™ TITLE="Headers Only" TYPE="text/css"

DISABLED>

#al1Text {display:none}
#headOnty {color:navy: cursor:default}
DIV {display:none}

</STYLE>

<SCRIPT LANGUAGE="JavaScript">

(continued)

299

PART 111: DOCUMENT STYLE AND ANIMATION

function selectSheet(s) {
for (var intloop = @;
intlLoop < document.styleSheets.length; intLoop++)
document.styleSheets[intLoopl.disabled =
(s.selectedIndex != intLoop);
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Listing Alternative Style Sheets</H1>
<P>Select a View:
<SELECT ONCHANGE="selectSheet(this);">
<{SCRIPT LANGUAGE="JavaScript™>
// Dynamically build list of options.
for (var intloop = 8;
intloop < document.styleSheets.length;
intLoop++)
document.write("<OPTION>" +
document.styleSheets[intLoopl.title):
</SCRIPT>
</SELECT> '
<P ID="allText">
You are viewing an entirely expanded version of the document.
</P>
<P ID="headOnly">
You are viewing only the headers of the document.
<IP>
<H2>Multiple Views</H2>
<DIV>Using the CSS object model, you can provide multiple views
of the data.
</DIV>
<H2>Swapping Data</HZ>
<DIV>You can also swap data displays. You can include
predefined data in the document and selectively hide and
display it.
</BODY>
</HTML>

The drop-down list displays the TITLE attributes of the style sheets. TITLE
attributes are available on all elements; they are used here to give the style
sheets useful names. When the user selects an item from the list, the style sheet
with the corresponding TITLE attribute is applied to the document.

Figure 11-2 shows the two available views for this document. Additional
views can be added simply by defining additional style sheets.

300

159

ELEVEN: Dynamic Styles

=it

Listing Alternative Listing Alternative

Style Sheets Style Sheets
Select a view: [Erire Documet % Select a view: [Headers Only %]
[Evie Documezt 1
igodurs On d You are new the
ot document
Multiple Views Multiple Views
sing the C5S object model you can Swapping Data

provide multiple views of the data
Swapping Data
You can also swap data displays. You can

include predefined data in the document
and selectively hide and display it

P T Tt _—;-ﬂ T e — —_aﬂ

Figure 11-2.
Comparison of the two different views available for this document.

Randomly Applying Style Sheets

The previous example demonstrates a technique that lets the user manually
select style sheets, but there is no requirement that this selection be done by
the user. You can write code that automatically applies a random style sheet so
that each visit to the page displays the same contents in a different way. This
simple technique makes a Web site appear more interesting and dynamic with-
out having to continually change the contents.

The section “Adaptive Layout Techniques” later in this chapter demon-
strates a technique for changing the appearance of a page based on the user’s
environment. In general, any event—whether user initiated, the result of some
action, or even the result of a timer—can be used to modify the appearance
of the document.

Media-Dependent Style Sheets
HTML 4.0 defines a mechanism for associating different style sheets with dif-
ferent types of media. Internet Explorer 4.0 supports two types of media: screen
and print. You can define different style sheets that apply to the document when
itis displayed on screen or printed. The following code demonstrates how to

301

PART [11: DOCUMENT STYLE AND ANIMATION

define three style sheets, one for printing, one for viewing on screen, and one
for all views of the document:

<STYLE TYPE="text/css"™ MEDIA="screen">
/* Applies only when the document is viewed on screen */
H1 {color:navy; text-align:center}
P {margin-left:1@pt)
</STYLE>
<STYLE TYPE="text/css" MEDIA="print">
/% Applies only when the document is printed #/
H1 {color:black}
P {margin-left:5pt}
</STYLE>
<STYLE TYPE="text/css” MEDIA="screen, print">
/* Applies when the document is displayed on screen or printed =/
HZ (font-size:12pt}
</STYLE>

If the media attribute is omitted, the style sheet applies to all views of the
document, The media attribute is a property on the styleSheet object and on the
Style and Link elements. Yol can dynamically change this property to switch
the media the style sheet applies to, The next section contains sample code that
can determine which style sheets are currently being applied to the on-screen
view of the document.

The styleSheet Object’s cssText Property

302

The section “The cssTéxt Property” earlier in this chapter introduced the cssText
property as a style property that is exposed on each element. In addition, each
styleSheet abject exposes a read-only essText property, which represents the global
style sheet formatted as text. This property is very useful for quickly viewing
the style sheet associated with the page. The following code placed at the end
of a document outputs all the style sheets that are currently applied to the
document:

<SCRIPT LANGUAGE="JavaScript™>
var ss = document.styleSheets;
document.write("<PRE>"):
for (var intlLoop = @: intLoop < ss.length; intLoop++)
// Style sheet is for the screen and not disabled.
if ((("" == ss[intloop]l.media) |
(-1 ss[intlLoop].media.index0f("screen”))) &&
(lss[intLoop].disabled))
document.write(ss[intLoop).cssText);
document.write("</PRE>");
</SCRIPT>

160

ELEVEN: Dynamic Styles

The rules Collection

Every style sheet exposes its collection of rules. A rule is the combination of
the style declaration (for example, color:red) and its selector (for example, H1).
Using this collection, you can access and dynamically change the declaration.
The selector is read-only. If a new selector is necessary, you must remove the
rule and add a new rule to the style sheet. Rules are added and removed
through the addRule and removeRule methods on the styleSheet object.

Each rule in the rules collection represents a single selector and declara-
tion, regardless of how it was defined in the style sheet. The following example
demonstrates how a style sheet with grouped selectors is exposed by the rules
collection:

<STYLE TYPE="text/css">
H1, H2., P EM {color:green}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
var rules = document.styleSheets[@].rules;
for (var intLoop = @: intLoop < rules.length; intlLoop++)
document.write{"Rule: " + rules[intLoop].selectorText +
", Style: " + rules[intLoopl.style.cssText + "
");
</SCRIPT>

The preceding code outputs three separate rules because the grouping
is separated in the object model so that the individual styles can be accessed
and changed more easily. This code also demonstrates two of the three
properties available on each rule. The selectorTent is a read-only property that
represents the selector portion of the rule. The style property works the same
as the style property exposed on the individual elements; it allows the style for
the selector to be modified.

Adding and Removing Rules

The addRule method adds a new rule to the style sheet; the removeRule method
rerhoves an existing rule from the style sheet. By default, new rules are added
to the end of the style sheet, taking precedence over all rules defined earlier.
Because each style sheetis merged independently, a new rule added to the first
style sheet has higher precedence than all the rules in that sheet, but it has
lower precedence than the rules in any style sheets that follow. Therefore, to
ensure that the rule takes precedence over existing rules, you must add the rule
to the last style sheet specified in the document, as shown here:

var int$S = document.styleSheets.length;
if (B < intSS) // Be sure there is a style sheet to add the rule to.
document.styleSheets[intSS - 1].addRule("H1",
"color:red; font-size:18pt"):

303

PART 111: DOCUMENT STYLE AND ANIMATION

When you need more control over the position of the rule in the style
sheet, you can add the rule to the rules collection at a specified position by sup-
plying an index as the last parameter to the method. This code adds a rule to
the beginning of the style sheet:

var intSS = dacument.styleSheets.length;
if (8 < intSS) // Be sure there is a style sheet to add the rule to.
document.styleSheets[intSS - 1].addRule("H1",
"color:red; font-size;18pt™. @); // Add before the first rule.

In all cases, the addRulemethod returns an index representing where the rule
was added into the rules collection. In this example, where the index is explicitly
defined, the addRule method returns 0.

The removeRule method performs the reverse operation and returns the
index of the rule removed. The following code demonstrates how to remove
the first rule from the last style sheet:

var intSS = document.styleSheets.length;
if (@ < intS$) // Be sure there is a style sheet to remove
/7 the rule from.
document.styleSheets[int55 - 1].removeRule(B):

Linked Style Sheets and Rules

All style sheets expose a readOnly property, which indicates whether the style
sheet can be modified. For linked style sheets, this property returns true.
However, linked style sheets allow rules to be added and modified. Changing
a linked style sheet affects only the currently displayed instance of the docu-
ment. Adding a rule to alinked style sheet does not cause the other documents
that share that style sheet to update with the same rule. There is currently no
way, short of adding the rule to each document, to dynamically change a style
sheet shared by multiple documents.

Imported Style Sheets

304

You can use the @import statement in your style sheet to import another style
sheet. Through the object model, you can dynamically access, add, and remove
imported style sheets.

The imports contained within a style sheet are exposed by the imports
collection, each element of which is another styleSheet object. An imported style
sheet can further import another style sheet. Therefore, to allow you to deter-
mine what style sheet the import is contained within, the styleSheet object exposes
a parentStyleSheet property, which returns the styleSheet object that defined the
import. For top-level style sheets, this property returns a value of null.

161

ELEVEN: Dynamic Styles

The addImport method on the styleSheet object takes a string value repre-
senting the URL. According to the CSS specification, imported style rules
always exist at the beginning of the style sheet and therefore at the beginning
of the cascading order. Thus, any rules in imported style sheets have lower
precedence than the rules already in the style sheet. The following code
imports a style sheet named cool.css into the first style sheet in the styleSheets
collection:

document.styleSheets{@].addImport("URL('cool.css');™);

Use the removelmport method to remove the import at the specified
position in the imports collection. The following code removes the first import
from the style sheet:

document.styleSheets{@].removelmport(@);

Adding New Style Sheets

Style sheets can be added to the document by using the createStyleSheet method
on the document. By default, the createSiyleSheet method adds a new style sheet
to the end of the styleSheets collection. To add a new linked style sheet, supply a
URL as the first argument; to specify where to insert the style sheet, supply an
index as the second argument. If you need to create a nonlinked style sheet
and insert it at a particular position in the styleSheets collection, pass nuil for
the first argument.

Style Sheet Painter

The following example demonstrates how to dynamically modify the global
style sheet of a document to quickly change the appearance of all elements of
the same type. This demonstration uses a frameset in which the left frame
contains a set of styles and the right frame contains contents to apply the styles
to. The user selects a style from the left frame and then clicks on an element
in the right frame; all elements of the same type as the one clicked on are
immediately updated. The tag name of the element to which the style will be
applied is displayed in the status bar. This example uses three files. The
stylizer.htm file contains a frameset and most of the core code to transfer a style
from the style frame to the contents frame. The styles.htm file contains a table
of styles to choose from, and the contents.htm file contains the contents to
apply the styles to.

305

PART 111: DOCUMENT STYLE AND ANIMATION

306

This example uses the following techniques:

B Event handlers for the style and contents documents are written in
the frameset.

® The style of a cell in the styles document’s table is changed by
changing its class name. A selected cell’s inline style sheet specifies
the colors and font size that are to be applied to elements clicked in
the contents document. So the cell's border, which indicates that it
is selected, cannot be part of its inline style; instead the border is
defined in a global style sheet.

B The addRule method is used to add new rules to the contents
document.

B The status bar is updated hased on the position of the mouse.

Figure 11-3 shows the style painter application as defined by the code
examples that follow.

Select a style and
ok oathe commens | 17€MO Contents

to apply it
Here are some demo contents to test the stylizer on
Smal White and
Black Select a style Fom the left pane, and click on [[L]
Blp Red and in this pane. The clement you click end al elements of

the same type wil to match that style

This technique 2dds new rules to the style sheet for
this document,

Figure 11-3.
The style painter application in action.

The stylizer.htm file The following frameset document divides the screen
into two frames: the left pane displays a list of style options, and the right pane
displays the document to apply the styles to. The code that handles commu-
nications between the two other documents is contained within this document.

162

ELEVEN: Dynamic Styles

<HTML>
<HEAD>
<TITLE>The Stylizer</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
window.curStyle = null;
function selectStyle() {
/7 Highlight the currently selected style cell.
var el = this.parentWindow.event.srcElement;
if ("TD" == el.tagName) (
if (null != cursStyle)
curStyle.className =
curStyle = el;
curStyle.className = "selected";

}

function addStyle() {
// Add a new rule to the document for the selected style.
if (null != curStyle) {
var srcWin = this.parentWindow:
var tag = srcWin.event.srcElement.tagName;
srcHin.document.styleSheets[@].addRule(tag,
curStyle.style.cssText);

}

function hookupEvents{() {
/+ Bind each frame's click events to the appropriate
function in this document. */
window.styles.document.onclick = selectStyle;
_ window.content.document.onclick = addStyle:
}
</SCRIPT>
</HEAD>
<FRAMESET ONLOAD="hookupEvents(} CoLs="178, *“>
<FRAME 5RC="styles.htm" NAME="styles">
<FRAME SRC="content.htm” NAME="content">
</FRAMESET>
</HTML>

The styles.htm file The following document contains a table of styles that
the user can select and apply to the contents document. Adding more table cells
to the table can extend the list of styles.

307

PART 111: DOCUMENT STYLE AND ANIMATION

<HTML>
<HEAD>
<TITLE>Style List</TITLE>
<STYLE TYPE="text/css">
/% This style is used to highlight the user's selection. =/
.selected {border:2px black solid}
</STYLE>
</HEAD>
<BODY>
<P>Select a style and click on the document to apply it.</P>
<1-- A cell's inline style specifies the style that can be
applied in the contents document when the cell is selected.
The style is simply copied over. -->
<TABLE> .
<TR>
<TD STYLE="background:white; color:black; font-size:12pt">
Small White and Black
</TD>
<ITROSTR>
<TD STYLE="background:red: color:white; font-size:18pt">
Big Red and White
</TD>
</TR>STR>
<TD STYLE="background:navy; color:yellow; font-size:14pt">
Medium Navy and Yellow
/T
</TR>
</TABLE>
</BODY>
</HTML>

The content.htm file The following sample document contains contents to
which the selected styles are applied. The small script in this document is used
to display the tag name of the element to which the style is to be applied in
the status bar.

<HTML>
<HEAD>
<TITLE>Demo Contents</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function updateStatus() {
/# Display the name of the element the mouse is over.
This is the element type to which the new style will
be applied. #/
window.defaultStatus = event.srcElement.tagName;
}
</SCRIPT>

308

163

ELEVEN: Dynamic Styles

<STYLE TYPE="text/css">
/* Style block to add rules to =/
</STYLE>
</HEAD>
<BODY ONMOUSEOVER="updateStatus();">
<H1>Demec Contents</H1>
<P>Here are some demc contents to test the
stylizer on.</P>
<P>Select a style from the left pane, and click on
text in this pane. The element you click
and all elements of the same type will
change to match that style.
<P>This technique adds new rules to the style sheet for
this document.
</BODY>
</HTML>

Style Sheet Events

A styleSheet object is not created and added to the styleSheets collection until the
entire style sheet is loaded, including the complete downloading of any linked
or imported style sheets. For tracking the status of a style sheet, the Style and
Link elements expose an onreadystatechangeand an onload event. The readyState
property returns a string that represents the current state of the element. These
events and the readyState property are similar to the members of the same names
on the document and window.

While a style sheet is being parsed, its readyStatevalue is loading. Once the
entire style sheet has been loaded, readyState changes to complete. Immediately
prior to complete, the styleSheet object is created and added to the styleSheets col-
lection. The onreadystatechange or onload event can be used to track when the style
sheet becomes available. The onload event always occurs immediately follow-
ing the onreadystatechange event, firing when the style sheet reaches the complete
state. The following document demonstrates the ordering sequence:

<HTML>
<HEAD>
<TITLE>Style Sheet Events</TITLE>
<STYLE TYPE="text/css"
ONREADYSTATECHANGE=
"alert('readyState: ' + this.readyState);”
ONLOAD="alert("Tcad event');">
H1 {color:red}
</STYLE>
</HEAD>

(continued)

309

PART

111: DOCUMENT STYLE AND ANIMATION

310

<BODY>
<H1>Heading</H1>
</BODY>
</HTML>

Alert boxes display the following messages in the order shown:

1. readyState: loading
2. readyState: complete

3. load event

The style sheet is loaded synchronously into the document; while the style
sheet is being loaded, the rest of the document is not parsed or rendered. One
use for the onreadystatechangeand onload events is to provide the user with status
bar notifications of the status of the document, as shown here:

<HTML>
<HEAD>
<TITLE>readyState oﬁ the Document</TITLE>
<SCRIPT LANGUAGE="JavaScript™>
function updateStatus(msg) {
window.defaultStatus = msg;
}
</SCRIPT>
<l-- Provide an update of the downloading
of the style sheet. -->
<LINK REL="styleSheet™ TYPE="text/css"
HREF="dhtml.css™ TITLE="Default Sheet™
ONREADYSTATECHANGE="updateStatus('StyleSheet[* +
this.title + ']J: ' + this.readyState);">
<SCRIPT LANGUAGE="JavaScript">
// Let the user know the document is still parsing.
updateStatus(”Parsing: " + document.title);
</SCRIPT>
</HEAD>
<BODY ONLOAD="updateStatus('');">
<H1>Status Tracking</HKI>
</BODY>
</HTML>

If the style sheet fails to load because the server times out or the file does
not exist, neither the onload or the final onreadystatechange event that signifies
the download is complete is fired. Gurrently, no error is generated and no
explicit error event is available to track whether the linked style sheet failed

164

ELEVEN: Dynamic Styles

to download. One workaround to solve this problem is to set a flag in the onload
event handler. If this flag is not set, an error must have occurred during
downloading of the style sheet:

<CHTML>
<HEAD>
<TITLE>Tracking Download Errors</TITLE>
<LINK REL="styleSheet” TYPE="text/css" HREF="dhtml.css"
TITLE="Default Styles" ID="ssl"
ONLOAD="this.downloaded = true; // Success!™>
<SCRIPT LANGUAGE="JavaScript™>
/+ If the property does not exist, an error occurred.
The property would be added to the element, not to the
styleSheet object. =/
3f (null == document.all.ssl.downloaded)
alert("Error downloading style sheet."):;
</SCRIPT>
</HEAD>
<BODY>
<H1>Error Tracking</H1>
</BODY>
</HTML>

Adaptive Layout Techniques

The GSS object model enables documents to adapt to the user’s environment.
Most of the examples in this chapter use dynamic styles to add effects or to allow
the user to manually select alternative style sheets. The document’s layout can
also be changed based on the display resolution, window screen size, or other
values intrinsic to the system. The following are a few high-level techniques you
can use to create pages that adapt to the user’s system:

B Declare an initial static style using style sheets. When appropriate,
use the system settings for color and font values.

B Declare alternative style sheets for the different environments. Add
script that establishes the initial style based on the environment.

B Bind to the rzsize event of the Body or other elements to dynamically
change the enabled style sheets based on the size of the window.

® For more complex systems, construct rules dynamically, associate
them with the document and change styles algorithmically.

311

PART 111: DOCUMENT STYLE AND ANIMATION

312

The first three techniques are simple to add to a document. All the styles are
def.‘}amd using CSS, and scripting is used only to turn on and off the appro-
priate style sheet. Using the last technique, you can create pages that change
inamuch more procedural manner by directly manipulating the existing rules
and adding new rules using the methods described earlier,

The following example uses the first three adaptive layout techniques
T'he document alternates between three main style sheets, depending on lhe‘
window size. These three layout scenarios are merged with one of the two color
schemes, based on the number of colors available. In addition, the navigation
bar at the top of the window uses the color scheme of the system menus. All
the style sheets are included within the document. Alternatively, they could
have been defined as a linked style sheet and shared across an entire Web site.

Figure 11-4 shows two of the document’s alternative layouts.

Bl Adapirve Layout Exampl

Figure 11-4,

quouts of an adaptive document in narrow-width and medium-width
windows.

) Figure 11-4 displays part of the document in narrow-width and medium-
width views. The most obwious difference between the views is the margins. The
box. appears above the text in the narrowest view and floats to the side of the
text in the wider views, and the text changes to reflect the box’s position.

Here is a full listing of the code for this example:
<HTML>
<HEAD>
<TITLE>Adaptive Layout Example</TITLE>
<STYLE TYPE="text/css" ID="default">

/* Default style sheet that is always applied to the
document */

165

ELEVEN: Dynamic Styles

/* Define the menu bar to match the built-in menus on
the user's system. */
.menu A.highlight {background:highlight; color:highlighttext}
.menu (background:menu}
.menu P {margin-left:5pt; margin-right:5pt}
.menu A {color:menutext: text-decoration:nene; font:menu}

/* Define default margins. */

body {margin-top:8pt; margin-left:@pt}

.centerIndent {margin-left:5pt; margin-right:5pt)

.leftIndent {margin-left:5pt: margin-right:5pt}

.rightIndent (margin-Teft:5pt; margin-right:5pt}

H1 {text-align:center}

Joutline {border:1pt solid gray: margin:2pt 2pt Zpt 2pt}
</STYLE>

(STYLE TYPE="text/css” ID="narrowScreen”>
/+ Additional style rules for narrow screen;
all contents for wide screens are hidden. %/
.wide {display:none}
</STYLED

<STYLE TYPE="text/css" ID="midScreen">
/% Rules for middle-size screen; hide narrow contents. */
.narrow {display:none}
.floatlLeft {margin-left:@; width:15@; float:left}
</STYLE>

<STYLE TYPE="text/css" ID="wideScreen">
/+ Nicest layout on the widest screen #/
_centerIndent {margin-left:15%; margin-right:15%}
.leftIndent {margin-left:35%: margin-right:5%}
.rightIndent {margin-left:5%; margin-right:35%}
floatLeft {margin-left:-154; width:15@; float:left}
.narrow {display:none}

</STYLE>

<STYLE TYPE="text/css" ID="4bit">
/* Color depth of 4 or less =*/
BODY (color:red: background:white}
</ISTYLE>

<STYLE TYPE="text/css™ ID="8bit">
/% Style sheets for 8 or more bits */
BODY {background:URL(fancy.gif)}

(continued)

313

s DOCUMENT STYLE AND ANIMATION

H1 {color:purple}
HZ {color:navy}
</STYLE>

<SCRIPT LANGUAGE="JavaScript™>
// Select the style sheet for the available color depth.
var ss = document.styleSheets:

ss["4bit"].disabled = (screen.colorDepth >= B):
ss["8bit"].disabled = !(ss["4bit"].disabled);

function updatelayout() {
// Change style sheet based on available screen width.
var ss = document.styleSheets;
ss["wideScreen"].disabled =
(450 > document.body.offsetWidth);
ss["midScreen™].disabled =
(!ss["wideScreen"T.disabled ||
300 > document.body.offsetWidth);
ss["narrowScreen”].disabled =
I(ss["wideStreen"].disabled &&
ss["midScreen"].disabled);
1

function highlight() {
// Highlight the Anchor element in the menu.
if ("A™ == event.toElement.tagName)
event.toETement.className = “highlight";

function cleanup() {
// Clear the class.
if ("A™ == event.fromElement.tagName) {
event.fromElement.className = "";

)
</SCRIPT>
</HEAD>
<BODY ONRESIZE="updateLlayout();">
<SCRIPT LANGUAGE="JavaScript">
/* This call is in the body because updatelayout relies
on the Body element being available, #/
updatelayout();
</SCRIPT>

<1-- Dutput a menu bar using the user's settings for menus. -->
<DIV CLASS="menu" ONMOUSEDVER="highlight()"
ONMOUSEOUT="cleanup()™>

314

166

ELEVEN: Dynamic Styles

<P»Home :
Search : :
About</P>
</DIV>

<H1>Adaptive Layout</H1>

<DIY CLASS="centerIndent">
This example demonstrates how to use dynamic styles to create
a page that adapts to the surrounding environment. The menu
bar uses the system settings for colors. For systems
with poor color support, the document uses only black and
white rather than colorful headers. The layout will change
depending on the size of the window. The contents are
also slightly modified when the environment changes.

</DIV>

<DIV CLASS="leftIndent">
<H2>Floating Elements</H2>
<TABLE ID="tleft" CLASS="floatlLeft">
<TR>
<TD CLASS="outline" VALIGN="Top">
Adaptive Layout and

Dynamic HTML!
<P>Resize the window

for an example.
</TD>
<ITR>
</TABLE>

<i-- The reference to the floating element is changed
depending on the size of the screen. -->
<P>The figure
to the Teft
above
demonstrates that elements can move into and out of the
flow based on the window size.
/P> '
<P>The rendering of the page changes based on the window size
and the number of colors supported. The text and the
floating element are repositioned to optimize the amount
of real estate available on the screen.
/P>
</DIV>
<DIY CLASS="rightIndent">
<H2>Conditional Data</H2>

(continued)

315

PART

111: DOCUMENT STYLE AND ANIMATION

<P>
Different data can be displayed in response to the
environment.
</P>
<P CLASS="wide" STYLE="color:red">
You are viewing a wider version of this document.
</P>
<P CLASS="narrow" STYLE="color:red">
The document has a different style because your window is
narrow.
</P>
</DIV>
<DIV STYLE="display:none">
<l-- This message is displayed only if the style sheet
is not supported. -->
This page is best viewed with a browser that supports CSS
and Dynamic HTML.
</DIV>
</BODY>
</HTML>

'

This document independently adapts to the user’s environment; it can be
combined with user interactions that also change the display. When an adap-
tive layout document responds to user-initiated changes, the user-initiated styles
should take precedence over the automatically applied styles. For example, if
the user is explicitly hiding or showing data, the layout changes should respect
the user’s choices. The easiest way to give precedence to user-initiated styles
is to put them in inline style sheets or the last global style sheet while using
global style sheets for the adaptive layout styles.

Data Display Techniques

316

The adaptive layout technique changed the document automatically based on
the user’s environment. Data display techniques focus on the user interacting
with the document to change the display of data. They allow the user to focus
on the most important data on the page. For example, rather than present the
user with a large document, you might initially display only headers and other
relevant information. The user can then click on a header or other text to
display or hide any related information, and by doing so will have a highly
interactive experience. These techniques also adapt well to down-level brows-
ers on which the document is displayed entirely expanded, without the extra
interactivity.

167

ELEVEN: Dynamic Styles

Using Cursors to Highlight Contents

When you make a document dynamic, you turn various elements into click
regions or give them other special behavior. In order to use these elements, the
user has to know which ones they are. By displaying different cursors when the
mouse is on different elements, you can help the user discover them.

By default, the mouse cursor over an informational element is an I-beam
that indicates that the text is selectable. Over behavioral elements—for ex-
ample, all links in the document—the cursor is a hand that indicates that the
elements can be clicked.

Internet Explorer 4.0 provides the Web author control over the cursor
through a new CSS cursor property. The cursor property allows the author to
define the cursor to display when the mouse is on the element. For example,
when you create a click region, a hand cursor or other pointer is more appro-
priate than an I-beam cursor. Chapter 1, “Overview of HTML and CS88,” pro-
vides a table of all the types of cursors supported through the cursor property.

The following code demonstrates displaying a hand cursor when the mouse
is on an H1 element:
<H1 STYLE="cursor:hand" ONCLICK="alert('clicked’);"

ONSELECTSTART="event.returnValue = false;">
When on this header, the mouse pointer is a hand.
</HL>

The onselectstart event is handled to disable the initiation of text selection in-
side the header. Canceling this event by returning false prevents the user from
starting a selection within the header; it does not prevent the text from being
selected. Selections can start outside the header and be extended through the
header contents. This behavior is the default behavior for links.

Hiding and Showing Data

The following example contains generic code that dynamically displays and
hides existing data. :

<HTML>
<HEAD>

<TITLE>Displaying and Hiding Data</TITLE>

<STYLE TYPE="text/css">
body fbackground:white}
.expandable {color:blue; cursor:hand}
.expanded {color:black; font-size:"12pt"}
.collapsed {display:none}

</STYLE>

(continued)

317

PART [11: DOCUMENT STYLE AND ANIMATION

<SCRIPT LANGUAGE="JavaScript">
// Generic display code
function outliner() {
/1 Get child element.
var child =
document.al1[event.srcElement.getAttribute("child",
false)1s
/7 1f child element exists. expand or collapse it.
if (null I= child)
child.className = child.className == "collapsed" ?
"expanded” : "collapsed™;

}
</SCRIPT>
</HEAD>
<BODY ONCLICK="outliner();™>
<H1 CLASS="expandable™ child="info">
Click here for more information.
</HL1>
<DIY 1D="info" CLASS="collapsed">
These contents are'not displayed initially. Clicking on the
header above displays them.
</DIV>
</BODY>
</HTML>

With this code, any element can act as the click source for displaying or
hiding other information. To make an element act as a click source, assign it
a class name of expandable and give it a custom attribute named child.

The expandable class defines the mouse pointer to be a hand when it is
over an element of the class. The expandable class only standardizes the appear-
ance of click sources, so using it is optional. You can modify the class to fur-
ther standardize the appearance of expandable items.

The custom child attribute must contain the ID of the data that is to be
displayed or hidden. Clicking on the expandable item causes the data’s class
name to be changed from collapsed to expanded or vice versa, depending on
whether it is currently hidden or displayed. You should initialize the data’s class
name to collapsed or expanded to specify its initial appearance.

Expanding and Collapsing Outlines
The previous example demonstrates how to generically display and hide contents.
The code can be extended to generically create an expanding and collapsing
outline. The following scenario demonstrates how to subclass the list container

318

168

ELEVEN: Dynamic Styles

(UL or OL) elements to support outlining. When this code is on the page, lists
on the page support expanding and collapsing.

<HTML>
<HEAD>
<TITLE>Expanding and Collapsing Outline</TITLE>
<STYLE TYPE="text/css">
/% Qutline style sheet */
UL {cursor:hand; color:navy}
UL UL {display:none; margin-left:5pt}
.leaf {cursor:text; color:black}
</STYLE>
<SCRIPT LANGUAGE="JavaScript"™>
function checkParent(src, dest) {
// Search for a specific parent of the current element.
while (src != null) {
if (src.tagName == dest)
return src:
src = src.parentElement;
}
return null;
1

function outline() {
// Expand or collapse if a Tist item is clicked.
var open = event.srcElement;
// Be sure the click was inside an LI element, This test
// allows rich HTML inside 1ists.
var el = checkParent{open. "LI"};:
if (null = el) {
var pos = 9;
// Search for a nested list.
for (pos = @; pos < el.children.length: pos++)
el.children[pos].tagName)

if (pos == el.children.length)

return:
1
else
return;

el = el.children[pos];

if ("UL" == el.tagName) (
(continued)

319

PART

Pl I: DOCUMENT STYLE AND ANIMATION

/{ Expand or collapse nested 1ist.

if (™" == el.style.display)
el.style.display = "block™;
else
el.style.display = "";
1]
event.cancelBubble = true;
}
document.onclick = outline;
</SCRIPT>
</HEAD>
<BODY>
 .
Item 1

<LI CLASS="leaf">Subitem 1
Subitem 2

<LI CLASS="Teaf">Subsubitem 1
 ¢

<L1 CLASS="leaf">Item 2

</BODY>

</HTML>

Creating an Expandable Table of Contents

Combining an expanding and collapsing outline with the mouse effects intro-
duced earlier in this chapter can create a highly interactive menu. The HTML
used to create this document is the standard HTML for creating nested lists.
Style sheets and code bring the standard HTML alive as an interactive outline.
Because a standard list is used, this page degrades gracefully on browsers that
do not support Dynamic HTML—for example, Internet Explorer 3.0 displays

) the document as a standard bulleted list,

The code for this example can be found on the companion CD. To cre-

ate an expandable menu, follow these steps:

320

1. Create a bulleted list to represent the expandable items, but to
make the list more userfriendly, replace the standard bullets with
images. With Dynamic HTML, these images are changed to repre-
sent the expanded and collapsed state of each item. The two states

169

ELEVEN: Dynamic Styles

are defined using style sheets, as shown in the following code frag-
ment. A special class, open, is specified to represent the expanded
state. Because addi;lg the open class gives the CSS style rule a higher
precedence than the default case, the open.gif file is displayed.

/* GIFs of an open and a closed folder to use in
place of the standard bullets x/

UL.toe LI {list-style-image:url(close.gif)}

UL.toc LI.open {list-style-image:url(open.gif)}

/* Colors for highlighted menu options and for the selected
Tink. */

.toc A:active, UL.toc A.select {color:white;
background:blue}

UL.toc .over {color:red} /+ Highlight color =/

u

S

. Contain the child elements of all list items within a nested list for

each item. The code for this example requires the nested UL to im-
mediately follow the Anchor element representing the topic header,
as shown in the following code fragment. Therefore, rich HTML
cannot be used within the top-level link. If rich HTML is desired, the
provided script can be extended to walk forward and skip over any
of the extra elements.

Qverview of HTML and CSS5

HTHML "4.@"

CSS Features

€SS Positioning

System Settings
<UL

3. Combine this layout with the appropriate script to create a com-

pletely expandable outline.

The complete document and the script necessary to create the expanding
outline are shown in the following code. This example can be extended with more
topics and children simply by adding more HTML—no extra code is necessary.

321

PART

111: DOCUMENT STYLE AND ANIMATION

322

<HTML>
<HEAD>
<TITLE>Contents</TITLE>
<STYLE TYPE="text/css">
BODY {background:navy; color:white}

UL.toc {cursor:hand}

“/* Set image for the bulleted Tist. */

UL.toc LT {1ist-style-image:urliclose.gif)}
UL.toc LI.cpen {list-style-image:url(open.gif)}
UL.toc UL {Tist-style:none}

/# Hide the child elements by default. =/
UL.toc UL {dispTay:none}

/= Display the child elements, #/

UL.toc UL.expanded {display:block}

UL.toc LT A {text-decoration:none; color:yellow;
font-weight:bold}
UL.toc LI UL A {color:white}
UL.toc A:active, UL.toc A.select
{color:white; background:blue}
UL.toc .over (color:red} /+ Highlight color #/
UL.toc UL P (margin-top:®; margin-bottom:0}
</STYLE>
<STYLE TYPE="text/JavaScript">
/% Technique to display the outline in Netscape
Navigator 4.9. */
/% Define an alternative style for "UL.toc UL™. %/
contextual(ciasses.toc.UL, tags.UL).display = "block":
</STYLE>
<BASE TARGET="DEMO">
<SCRIPT LANGUAGE="JavaScript">
// Generic display code

// This technique allows you to write generic code that
// automatically causes related contents to be either
// displayed or hidden.

var curSelection = null;

function setStyle(src, toClass) {
// Format the element to the specified class,
if (null 1= src)
src.className = toClass;

170

]

ELEVEN: Dynamic Styles

function mouseEnters() {
// Be sure the element is not the current selection and
// that it is an anchor.
if ((curSelection != event.toElement) &&
("A" == event.toElement.tagName))
setStyle(event.toElement,"over”);
}

function mouseleaves() {
// Again, be sure the element is not the current selection
// and that it is an anchor.
if ((curSelection != event.fromElement) &&
("A" == event.fromElement.tagName))
setStyle(event.fromElement, "");
}

function outliner() {

var child = null, el = null;

/% Assumes that the DIV containing the child
elements immediately follows the heading ancher. =/

switch (event.srcElement.tagName) {

case "
el = event.srcElement.parentElement;
child = document.all[event.srcElement.sourcelndex + 11;
break:

case "LI":
el = event.srcElement:
child = document.all[event.srcElement.sourcelndex + 2];
break;

Be sure the child element exists and that it is the
child LI. =/
((null = child) && ("UL" == child.tagName} &&
L child.parentElement.tagName)) {
if (" == child.className) {
// Collapse the item.
child.className = “expanded";
el.className = “open™:

-~
*

=

}

else {
// Expand the item.
child.className = "";
el.className = “closed™:

(continued)}

323

PART 1i1: DOCUMENT STYLE AND ANIMATION

if (A" == event.srcElement.tagName) {
if (null != curSelection)
setStyle(curSelection, ""):
/7 Save and highlight new selection.
curSelection = event.srcElement;
setStyle(curSelection, “select");

}
}
</SCRIPT>
</HEAD>
<BODY>

<UL CLASS="toc” ONCLICK="outliner();™
ONSELECTSTART="return false;" ONMOUSEOVER="mouseEnters();"
ONMOUSEDUT="mouseLeaves();">

HTML and CSS Overview

HTML “4.8"
 '

€SS Features

€SS Positioning

<A HREF="chl/settings.htm"
TITLE="System Settings">
System Settings

</LT>

Fundamentals of HTML Scripting

<A HREF="ch2/1angs.htm”
TITLE="Supported Languages">
Supported Languages
<L

324

171

ELEVEN: Dynamic Styles

<A HREF="ch2/guidelns.htm"
TITLE="Variable Naming Guidelines">
Naming Conventions

<1-- New options can be added simply by adding
more list items. -->

</BODY>

L/HTHL>

This example demonstrates how to write generic reusable code. The menu is
completely encapsulated based on style sheets and scripts that are associated
directly with the table of contents list. This example can be used in any docu-
ment without modification to the document or this seript.

While this page downgrades gracefully in browsers that do not support
style sheets and with the style sheet support in Internet Explorer 3.0, it uses
special code to display correctly in Netscape Navigator 4.0. As of that release,
the display:none value is recognized and the child elements are not displayed.
Because Netscape Navigator does not support dynamic style manipulation, the
outline cannot be dynamically expanded to display the nested data. To display
correctly in Netscape Navigator, this document uses the following JASS style
sheet script. This style sheet is recognized only by Netscape Navigator 4.0 and
is used to redisplay the hidden contents. The JASS style sheet follows the CSS-
defined style sheet in the document.
<STYLE TYPE="text/JavaScript">

/+ Define an alternative style for “UL.toc UL". #/
contextual{classes.toc.UL, tags.UL).display = "block™;
</STYLE>
This technique for defining a JASS style sheet is useful for tweaking the ren-
dering between Internet Explorer 4.0 and Netscape Navigator 4.0. You can
define other styles for use in Netscape Navigator using JASS; for more infor-
mation, refer to the Netscape Web site (www.netscape.com).

Text Animation Techniques

Changing the style of an element in response to a timer can animate text.
Scripts can modify one or more styles on every signal from a timer. The fol-
lowing two examples demonstrate changing the appearance of an element over

325

PART

111: DOCUMENT STYLE AND ANIMATION

326

time. These examples can be modified to change any CSS property of the
element.

Modifying a document’s appearance using a timer is useful for drawing
attention to information on the document. The technique can be used in lien
of using large animated GIFs; animating text with a few lines of script always
yields better performance than downloading GIFs that serve the same purpose.

As written, these samples will not work on down-level browsers, but you
can easily add code to test what browser is running the page, and start and stop
the timer only if the browser is Internet Explorer 4.0.

Elastic Text

The following simple demonstration ‘changes the CSS letter-spacing property of
an element in response to a timer. This technique can be used to add an inter-
esting effect to headers or other contents.

<HTML>
<HEAD>
<TITLE>Elastic Text</TITLE>
<SCRIPT LANGUAGE="JaVaSchpt")
// Array of sizes to cycle over
var sizes = new Array("@px", "lpx", "2px"., “4px”, "8px"}:
sizes.pos = @:

function rubberBand{) {
var el = document.all.elastic:
if (null == el.direction)
el.direction = 1;
else if ({sizes.pas > sizes.length - 2) ||
) sizes.pos))
el.direction == -1;
el.style.letterSpacing = sizes[sizes.pos += el.direction];

}
</SCRIPT>
</HEAD>
<BODY ONLOAD="window.tm = setInterval(‘rubberBand(}", 100);"
ONUNLOAD="clearInterval{window,tm);">
<H1 ID="elastic” ALIGN="Center”>This Is Elastic Text</H1>
</BODY>
</HTML>

Pulsating Elements

The following code extends the previous example by modifying multiple
elements on each tick of the timer and by using a new class to specify the
alternative style:

172

ELEVEN: Dynamic Styles

<HTML>

<HEAD>
<TITLE>Pulsating Buttons</TITLE>
<STYLE TYPE="text/css">

.pulsate {letter-spacing:2; font-weight:bolder; color:blue}

</STYLE>

<SCRIPT LANGUAGE="JavaScript™>

function pulsate() {
// Get all elements with the pulsate name or ID.
var pkl = document.all.pulsate;
if (null == pEl.length) // Only one element
pEl.className = pEl.className == “pulsate™ ?
" "pulsate":
else // Iterate over all pulsate elements.
for (var i = @: i < pEl.length: i++)
with (pE1Ti1)

className = className == "pulsate" ?
"t "pulsate":
}
</SCRIPT>
</HEAD>

<BODY ONLOAD="window.tm = setInterval('pulsate()', 1508):"

<INPUT TYPE=BUTTON NAME="pulsate” VALUE

ONUNLOAD="clearInterval(window.tm);">
lick Mel™>

<INPUT TYPE=BUTTON NAME="pulsate” VALUE="Click Me Too!™>
</BODY>

</HTML>

327

173

Dynamic Positioning

CSS (Cascading Style Sheets) provides the syntax for specifying the precise
positions of HTML elements. Dynamic positioning uscs the object model to
access and manipulate the positions of elements in the document through
the CSS object model and through the rendered positions of the elements
on the screen.

Precise control over positioning elements with HTML was pioneered in
Microsoft Internet Explorer 3.0 using the HTML Layout control. The HTML
Layout control was designed as an ActiveX control that interpreted an early
version of the CSS positioning syntax. An ActiveX control was used rather than
embedding the support directly into the browser to give the W3C (World Wide
Web Consortium) more time to define and finalize a positioning syntax. In late
1996, a syntax was agreed upon in the W3C CSS Positioning (CSS-P) working
draft. Scott Furman, a representative of Netscape, and [, as Microsoft’s repre-
sentative, cowrote the draft. Internet Explorer 4.0 and Netscape Navigator
4.0 both support the CSS-P working draft for positioning elements, so pages
authored using CSS-P have a fair degree of interoperability between browscrs.
There are still some minor differences between browsers, however, in the exact
rendering of an element’s size and position.

The CSS-P working draft specifies the CSS syntax for defining the initial
placement of elements on the page; it does not define the scripting model. The
object model exposed in Netscape Navigator 4.0 for moving positioned ele-
ments is different from the model exposed in Internct Explorer 4.0. Netscape
Navigator’s model provides a subset of the functionality available in Internet
Explorer.

"The CSS-P working draft defines threc types of positioning: static, abso-
lute, and relative. Static positioning is the default and corresponds to the tradi-
tional way HTMI documents are laid out. In absolute positioning, an element
is taken out of the normal flow of the document and positioned according to
the parent coordinate system. The absolutely positioned element has no effect
on any of its surrounding elements in the document. In relative positioning,

328

PART

111: DOCUMENT STYLE AND ANIMATION

Css

330

an element stays in the flow of the document and is positioned relative to its
normal position in the flow. When the document is resized, a relatively posi-
tioned element may move and even change in shape as the document is
reflowed. Absolutely and relatively positioned elements create coordinate sys-
tems for positioning any child elements they might have.

This chapter introduces the G8S-P properties and the scripting model for
controlling the location of any element. The following topics are covered in
this chapter:

B CSS positioning This section discusses the CSS enhancements
for controlling the positions of elements. CSS positioning sup-
ports two new ways to position an element: relative, which posi-
tions an element relative to the element’s normal location in the
document’s flow, and absclute, which moves the element outside
the flow, where it can be positioned with precise accuracy. This
section introduces the CSS positioning properties and the rela-
tionship between these two positioning models.

W Scripting CSS positioning €SS positioning properties can be
dynamically manipulated through the Dynamic HTML object
model. This section shows you how to animate text and graphics
by using timers and how to respond to user events to enable
drag-and-drop operations.

[The rendering context This section demonstrates the relationship
between an element’s position and its surrounding elements and
introduces the rendering relationship between elements, which
defines how an element’s position is determined in the document.

Positioning

The CSS-P working draft defines extensions to style sheets to provide increased
positioning control over HTML elements. Absolute and relative positioning
allow the Web author to precisely control the location and size of an element
and to overlap elements. Combining these enhancements with scripting allows
the animation of elements. This section provides a brief introduction to using
the CSS positioning enhancements.

e

174

TWELVE: Dynamic Positioning

CSS Positioning Properties

The CSS-P working draft defines new CSS properties supported by both Internet
Explorer 4.0 and Netscape Navigator 4.0. The following table lists these prop-
erties; the default value for each property is shown in boldface.

Allowable
Property Values Applies To Description
position static | absolute | All elements Specifies whether the
relative element is positioned
normally in the flow
(static), relative to its
normal position in the
flow (relative), or outside
the flow (absolute).
top, left auto | <length> | All elements Define the top and left

width, height

clip

z-index

visibility

overflow

<perceniage>

auto | <length> |
<percentage>

auto | rect(top
right bottom left)

auto | number

inherit | visible |
hidden

visible | hidden |
auto | scroll

with position
set to absolute
or relative

All block ele-
ments, replaced
elements (for
example, IMG
elements and
intrinsic controls),
and elements
with position set
to absolute

All elements
with position

set to absolute
All elements
with position

set to absolute
or relative

All elements

All elements with
position set to
absolute and all
block elements

positions of the element
relative to its parent
rendering context.
Define the width and
height of the element.
Percentages are relative
to the parent rendering
context.

Defines the clipping
region for the element.

Specifies an element’s
position overlapping or
being overlapped by
other elements.
Specifies whether the
element is visible. A
hidden element is not
removed from the
document’s flow.

Specifies whether
scrollbars are displayed
if the contents do not
fit in the element.

331

PART 111: DOCUMENT STYLE AND ANIMATION

Positioning Elements

332

Traditionally, most elements in HTML are positioned relative to previous ele-
ments in the flow of the document. One exception to this rule is the ability to
align images and other objects and have text wrap around them. With the
introduction of CSS positioning, elements can now be positioned on a fixed
plane separate from the document’s flow or offset from their traditional posi-
tion in the document. CSS positioning allows elements to overlap and provides
‘Web authors with more precise control over the layout than was previously
possible.

As mentioned, the CSS position property takes one of three values: static,
absolute, or relative. Static positioning, the default, has no effect on the tradi-
tional layout of the HTML document.

Relative positioning is used to offset an element from its normal position
in the flow. Setting an element’s position value to relative does not by itself change
the layout, but if you also set the top or left property, the element is offset from
its normal position in the flow. In the text in Figure 12-1, one word is relatively
positioned with offsets of 10 pixels in both the x and y directions. Notice that
the rest of the document is laid out just as it would be if the word wasn’t off-
set. Relative positioning is especially useful when you are animating elements
such as images near their normal positions in the document.

[Relative Pasitioning - Micros

oft Internet Explorer

L= (Olx]

|2

| He ER Ve

An element can either be positioned § go its
location in the document's flow or be posgmed at an
absolute location in the docurment,

= |
| e | R T

Figure 12-1.
A relatively positioned element,

175

TWELVE: Dynamic Positioning

Absolute positioning is used to specify a fixed location for the element
outside the flow of the document. In the text in Figure 12-2, one word is ab-
solutely positioned near the upper left corner. Notice that no space is set aside
for this word in the flow.

ing - Microsoft Intemet Explorer I I3 |

AbsEBHEAt can cither be positioned relative to fts
location in the document’s flow or be positioned at an
location in the document.

Figure 12-2.
An absolultely positioned element.

Because absolutely positioned elements are positioned outside the flow, the
location of the element within the document’s source becomes less important.
The element should be placed in the source in a location that would provide
reasonable results on down-level browsers that do not recognize the position-
ing enhancements and therefore display the image in the flow of the document.

In Internet Explorer 4.0, all elements in the body of the document sup-
port static and relative positioning. However, only the following elements
support absolute positioning:

m Applet = Input

= Button B Object
u DIV M Select

m Fieldset ® Span

H [Frame B Table

B IMG B TextArea

333

PART 111: DOCUMENT STYLE AND ANIMATION

To absolutely position text, you should use a Span or DIV element. In general,
the Span and DIV elements can be used interchangeably, but when you are
deciding whether to use Span or DIV, consider the expected appearance of the
element in down-level browsers. If the text requires a break before it and a break
after it, a DIV element should be used; if the text can appear in the flow of the
paragraph, a Span element should be used. The document should always be
tested on all target platforms to ensure that it displays adequately.

Defining Coordinate Systems

334

Every element that is absolutely or relatively positioned must be positioned
relative to another element or position in the document. The location from
which the element is offset is called the oot of the element’s coordinate system.
By default, relatively positioned elements have their root based on their nor-
mal flow position in the document. Therefore, if the document is reflowed, the
root of the coordinate system as well as all child elements within that coordi-
nate system will move.

Absolutely positioned elements are positioned with respect to some con-
taining elements coordinate systerm. The upper left corner of the docurnent
defines the default coordinate system for all absolutely positioned elements.
‘Whenever an element is relatively or absolutely positioned, a new coordinate
system is defined for all elements it contains.

Size and Position Properties

When an element is positioned either absolutely or relatively, its top and left
properties specify the offset of the element from the upper left corner of the
coordinate system. The width and height properties define the physical width
and height of the element as it is rendered on the screen. When you are using
relative sizes, the widthand height properties are interpreted relative to the size
of the element defining the coordinate system. The top, left, width, and height
properties can be specified as a percentage or in any of the units (for example,
points, pixels, and ems) defined by CS8. Figure 12-3 shows the top, left, width,
and height properties of two nested DIV elements.

—

176

TWELVE: Dynamic Positioning

top: 50 pixels;
Jaft: 50 pixels

2
S
2
3
o
8
&
En
2

width: 225 pixel
solutely positioned DIV element;
fcrkates a coordinate system

top: 100 pixels;
left: 40 pixels

e width: 160 pixels —»
[Absalutely positioned
element inside the DIV
felernent

height: 100 pixels

Figure 12-3.
Nested coordinate systems defining the roots for the positions and sizes of
elements.

Automatic Sizing

For the top and left properties, the default guto value is the element’s normal
position in the flow. With top and left both set to auto, a relatively posi-
tioned element is displayed the same as a static element, and an absolutely
positioned element is displayed outside the flow but anchored at the position
it would have as a static element. If the width or keight property is omitted, the
element is automatically sized based on its contents.

The visibility Property

By default, an element is visible based on whether its parent element is visible.
For example, hiding the Body element by setting the wvisibility property to hid-
den also hides all the contents in the document. You can override this inheri-
tance by explicitly setting an element’s visibility property to hidden or visible,
rather than the default, inkerit. When the visibility property is explicitly set, the
element overrides any inherited value and is displayed or hidden appropriately.

335

PART 111J: DOCUMENT STYLE AND ANIMATION

The z-index Property

The z-index property defines the graphical z-order, or overlapping, of elements
in relation to other elements. Every coordinate system defines a new z-ordering
space for the rendered elements, thereby making the z-ordering hierarchical.
For example, if a DIV element is absolutely positioned on top of the body’s
contents, the contents of the DIV element cannot appear behind the text in
the body. All the elements within the DIV element can only be positioned
relative to the DIV element’s coordinate system.

By default, all elements that define a coordinate system, including the
Body element, are positioned with a z-index of 0. Other elements can be posi-
tioned behind the text by having a negative z-index value. Elements whose z-
index values are not specified are implicitly assigned z-index values according
to their order in the source document. Therefore, an element that is positioned
later in the document is displayed above any elements positioned earlier.

Clipping Regions

336

Each absolutely positioned element has a clipping region associated with it. The
purpose of this clipping region is to define the portion of the document avail-
able for displaying the element and its contents. Anything outside that portion
is clipped, or not displayed, by the document,

The clipping region can be viewed in terms of an opaque piece of paper
that covers the physical area of the absolutely positioned element. In this piece
of paper is a rectangular hole that defines the visible area of the element.
Everything not visible through the hole in the paper is clipped and becomes
invisible.

Figure 12-4 illustrates how clipping regions work. The left side of the
figure shows a page with no clipping performed. The larger rectangle isa DIV
element. The smaller rectangle is contained in the DIV element but absolutely
positioned outside the DIV element’s borders. The right side of the figure shows
the same page with clipping performed.

The default value of the clip property is auto, which causes the contents
not to be clipped. You can set the ¢lip property value to be a rectangle:

clip:rect(lop right botlom left)

The top, right, bottom, and left settings define the clipping rectangle with respect
to the absolutely positioned element’s upper left corner. Each of the four
settings can be specified with any valid CSS length or can be set to auto to

177

TWELVE: Dynamic Positioning

prevent clipping in that direction. If the top and left settings are negative,
elements above and to the left of the absolutely positioned element can be
included within the clipping region.

[Clipping the Contents - Micraenft Inte 911+ F1 | =3

Yeu fn fpeie e o

L Clipping the Contents - Microsolt Inte

e E3 Yee fo favie e

IThe clip value can be
3sed to hide contents | [This element is
Fhat exist above and bsolutely L BigsL OVE unia -
elow this DIV. Notice rosmoncd with ow this DIV. Notice
e borders and the espect Lo the borders and the tipe
lement positionsd DIV element ment positioned t
-eyond the right yond the tight
frorder. Contents can rder. Contents can
ontinue beyond the atirme beyond the
specified clipping scified clivping
CION.

EEE | CErEw

Figure 12-4.
A DIV element with part of its contents outside its borders, with no clipping
(om the loft) and with a clipping rectangle defined (on the right).

The overflow Property

The overflow property controls how any contents that extend beyond the physi-
cal size of the element are handled. The overflow property takes one of four
values: visible, hidden, aulo, and scroll. With overflow set to visible, all contents are
displayed, even contents outside the specified height and width of the element.
With overflow set to hidden, only the contents within the element’s keight and
width are displayed; no contents flow beyond the specified boundaries.

The auto and scroll values are used for adding scrollbars if the contents
are larger than the height and width of the element. Scrollbars can be added
to any absolutely positioned element, to DIV elements with a defined height,
and to any element that supports the CSS float property. The overflow value
scroll always displays scrollbars, while the value auto displays them only when
they are required.

The following document demonstrates how to create a scrolling sidebar:

<HTML>
<HEAD>
<TITLE>Scrolling Sidebar</TITLE>
</HEAD>
(continued)
337

PART 1 Il: DOCUMENT STYLE AND ANIMATION
<BODY>
<DIY STYLE="overflow:scroll; float:left;
width:12@pt; height:120pt™>
<HI>Scrolling Sidebar</H1>
<P>This text appears in a scrolling window that is floating
to the left of the main contents.</P>
</DIV>
<P>These contents appear to the right of the scroliing DIV
element.
</BODY>
</HTML>
Figure 12-5 shows this document,
[Sciolling Sideba: - Microsoft Intemet Explorer [S[=] i1
S "- =1 These contents appear
cro l“g | to the right of the
» | scrolling DIV element.
Sidebar
This text appears in a
serollng window that is
floating to the left of the =1
i | 277
|
O - D |
Figure 12-5.
A document with a scrolling sidebar.

When scrollbars are specified for an element, they automatically extend
to include absolutely positioned child elements. This extension ensures that
the user can reach all child elements that are absolutely positioned. You can
create forms and complex layouts that are fully accessible. The exception to
this feature is any element that is positioned negatively. Under no circumstances
do the scrollbars extend into the negative coordinate space.

When scrollbars are displayed using the overflow property, clipping does
not affect absolutely positioned child elements; the user can still scroll to them,
and they will be visible. Instead, if the clipping region does not include the
entire element with scrollbars, the element itself will be clipped. Figure 12-6
demonstrates this relationship. In the screenshot on the right, the absolutely

338

178

TWELVE: Dynamic Positioning

positioned element is not visible because it is inside the DIV element with the
scrollbars,

£ Clipping the Contes Miciasoft Inte:

[e——
ow this DIV, Notice:
borders and the
ment pesitioned
sond the sight
rder. Contents can
atinue beyond the
cified clioving

Figure 12-6.
On the left, an element with a clipping region and without scrollbars; on the
right, the same element with the same clipping region and with scrollbars.

NOTE: Relatively positioned elements have no effect on the scroll-
bar. Only the element’s original space in the flow is used in the
scrollbar calculation because the relatively positioned element’s lo-
cation in the document is technically its position in the flow and the
offset is simply a manipulation of the rendering position. Further-
more, relatively positioned elements are most often used for anima-
tion. Including these elements in the scrollbar calculations would
interfere with the animation effect. For example, you should be able
to scroll text off the right edge of the screen; no scrollbar should ap-
pear that would allow the user to scroll the text back into view.

Scripting CSS Positioning

Any element predefined with absolute or relative positioning can be dynami-
cally moved and resized through scripting. This technique allows positioned
elements to be animated by repositioning, resizing, and dynamically changing
the clipping region of the elément. Manipulating an element’s position and
clipping region is done through the style sheet object models.

The CSS position property in Internet Explorer 4.0 is read-only. For a script
to move an element, the element must be defined to have relative or absolute

339

PART 111:; DOCUMENT STYLE AND ANIMATION

positioning when it is created, whether it is created from the source code or
inserted using dynamic contents, the topic of Chapter 13, “Dynamic Contents”
This rule holds true even if the style sheet is modified through the CSS object
model after the element is rendered.

CSS Positioning Properties

Each C8S size or position property is exposed through a set of properties that
make it more convenient and simpler to access and manipulate the element’s
size and location. Like the other CSS properties, fop, left, width, and height are
exposed through the styleproperty on the element. These properties are strings
and return the values and the specified units—for example, an element with
a top value of 20 points returns 20pt.

Manipulating this string can be fairly difficult, especially when your code
is trying to reposition an element on the screen. Therefore, in addition to the
string-value properties, four properties that represent just the specified value
are exposed: posTop, posLeft, posWidth, and posHeight. If the topvalue is the string
20pt, the posTop value is the number 20; as a number, it can be manipulated
more directly.

Because many measurements in the Dynamic HTML object model use
pixels, four additional properties are exposed that return the size and position
values converted to pixels: pixelTop, pixelLeft, pixelWidth, and pixelHeight, Assign-
ing a value to one of these properties causes the value to be converted back
to the originally specified units when it is exposed through the pos* and string-
value properties.

These twelve style sheet properties are determined when a document is
parsed. In the section “The Rendering Context” later in this chapter, proper-
ties for accessing the rendered size and position of the element are explained.
Together, these properties let you create completely custom layouts in which
the script controls the entire rendering of the document.

Absolute Positioning
The following examples demonstrate how to manipulate absolutely positioned

elements. Absolutely positioned elements are used to enable drag-and-drop
operations and to position elements at fixed locations on the screen.

Static Logo

Using the CSS background property, you can fix the position of the background
image to create a static logo that won't scroll with the window. For example,
this code fixes an image in the lower right corner of the client window:

340

179

TWELVE: Dynamic Positioning

BODY {background:URL(1cgo.gif) fixed bottom right no-repeat}

Using CSS alone, you cannot fix elements other than background images so
that they won’t scroll with the window. However, using absolute positioning and
a simple script you can add this behavior. This example creates static text that
always sits in a fixed position relative to the upper left corner of the current
window. The code for positioning the text tracks the onscroll events in order
to move the element when the document is scrolled.

This example text logo is similar to the television logos that appear ran-
domly throughout the broadcast of a show. Although this example displays the
logo constantly, it can easily be revised to cause the logo to disappear and
reappear after a scheduled amount of time by simply swapping the display
property between none and block using a timer. (If an element’s display prop-
erty is set to none by a global style sheet, a script cannot change its value to an
empty string to display the element. Instead, the script must explicitly set the
display property to block or inline, as appropriate for the element.)

The following code is the simplest implementation of a text logo. It places
the logo in the upper left corner of the screen, which requires only tracking
the seroll event and does not require any calculations to determine the logo’s
position. To display the logo in any of the other corners, you must also track
the onresize event. When the user resizes the page, the logo’s position must be
recalculated based on the new window size, and the width or height of the
element itself must be taken into consideration.

<HTML>
<HEAD>
<TITLE>Static Logo</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function resetlLogo() {
document.all.Logo.style.posTop = document.body.scrol1Top;
document.all.Llogo.style.posLeft =
document.body.scrollleft;
}
</SCRIPT>
</HEAD>
<BODY ONSCROLL="resetlogo(}">
<DIV ID="Logc™ SRC="logo.gif"
STYLE="position:absolute; z-index:-1; top:@px: left:@px;
color:gray">
Inside DHTML
</DIV>
<P>Add HTML document here.</P>
</BODY>
</HTHL>

341

PART 111: DOCUMENT STYLE AND ANIMATION

The logo works best with light-colored text; otherwise, it may obscure
relevant contents on the page. The logo can be positioned either behind
or on top of the contents by setting the z-index property: a —1 value positions
the logo behind the contents; I (the default) positions the logo on top of the
contents. The logo can fall either behind or on top of other elements depend-
ing on the other elements’ z-index values.

Bouncing Ball o

This example illustrates the relationship between the position properties and
the size of the window. The following code is an extension of the static logo
example—here an image moves around on the screen and bounces off the
edges of the window:

<HTML>
<HEAD>

<TITLE>Bouncing Ball</TITLE>

<SCRIPT LANGUAGE="JavaScript™>
var x = 8;
var y = ; N
var offsetx = 4;
var offsety = 4;

function bouncelt{) {
var el = document.all.bounce;
x += offsetx:
y += offsety:
if ((x + el.offsetWidth >= document.body.clientWidth +
document.body.scrollleft) ||
(x <= document.body.scrollLeft)) {
offsetx = -offsetx;
if (x <= document.body.scrollLeft)
x = document.body.scrollleft;
else
x = document.body.clientWidth - el.offsetWidth +
document.body.scrollLeft;

if ({y + el.offsetWidth >= document.body.clientHeight +
document.bedy.screl1Top) ||
{y <= document.body.scrol1Top)} {
offsety = -offsety;
if (y <= document.body.scrol1Top)
y = document.body.scrol1Top;
else
y = document.body.clientHeight - el.offsetHeight +
document.body.scrol1Top;

180

TWELVE: Dynamic Positioning

}
el.style.posLeft = x;
el.style.posTop =

3
</SCRIPT>
</HEAD>
<BODY ONLOAD="window.tm = setInterval('bouncelt()', 18);:"
ONUNLOAD="clearInterval(window.tm):">
<IMG SRC="ball.gif" ID="bounce"
STYLE="position:absolute; top:8; left:@; z-index:-1">
<H1>Bouncing Ball</H1>
<P>The ball bounces around and around under the text.</P>
<P>This page works even if you resize
or scroll the window.</P>
<P>This page takes advantage of:
<UL
Absolute positioning
Moving elements based on the timer
Z-indexing
C1ient size and scrollbar pesition properties

</BODY>
</HTML>

A timer controls the movement of the image on the screen. The image
moves behind the text because its z-index value is lower. This example animates
an image, but any HTML can be animated across the screen. For example, you
can replace this image with a DIV element, supply the DIV element with a
width, add some HTML contents, and animate it.

Wipe Effects

Scripting the CSS ¢lip property lets you create interesting wipe effects. For a
wipe-iu effect, the contents of an element gradually appear on the screen,
beginning with one edge and ending with the opposite edge. For a wipe-out
effect, the contents disappear in the same manner. The following document
provides a function for creating different vertical and horizontal wipe effects
on an absolutely positioned element as well as buttons for testing the wipe
effects:

<HTML>
<HEAD>
<TITLE>Wipe Effects</TITLE>
<STYLE TYPE="text/css">
BODY {text-align:center}

(continued)

343

PART 111:

DOCUMENT STYLE AND ANIMATION

#wipe {position:absolute; top:2@@pt; left:46%;
clip:rect(@ 100% 1@0% @); border:2pt navy solid:
width:100pt; background:white}

P (margin-top:@pt; margin-bottom:@ptl}

INPUT {width:1808%)

</STYLE>
<SCRIPT LANGUAGE="JavaScript" ID="WipeEffects">
function wipe(direction) {
var el = document.all.wipe;

/* The second argument is optional and specifies whether a

wipe-in or wipe-out occurs. The default 15 a
wipe-in. #/)

var into = true:

if (argumentsf1] 1= null)
into = argumentsf{1];

if (null == el.init) {
// Initialize effect.
// A1l wipe information is stored in the element.
el.init = true;
el.clipTop = @;
el.clipRight = @;
el.clipBottom = @;
el.clipLeft = @
el.inc = 4;

if (into) // Set up wipe-in.

switch (direction) (

case "clipBottom"
el.clipRight = "180%";
el.size = el.offsetHeight;
break;

case "clipRight”:
el.clipBottom = "100%";
el.size = el.offsetWidth;
break;

case "clipTop”:
el.clipBottom = "100%";
el.clipRight = "100%";
el.clipTop = el.offsetHeight;
el.inc *= -1;
el.size = @;
break:

case "clipLeft™:

TWELVE: Dynamic Positioning

el.size = 8;
break;

} 5

else // Set up wipe-out.

switch (direction) {

case "clipBottom":
el.clipRight = "100%";
el.clipBottom = el.offsetHeight;
el.size = @;
el,fnc = -1;
break;

case "clipRight”:
el.clipBottom = "1@@%";
el.clipRight = el.offsetWidth;
el.size = @;
el.inc *= -1;
break;

case “clipTop":
el.clipBottom =
el.clipRight =
el.clipHeight = el.offsetHeight;
el.size = el.offsetHeight;
break;

case “clipLeft”:
el.clipBottom = “"1@8@%";
el.clipRight = "1@@8%";
el.clipLeft = @;
el.size = el.offsetWidth;
break;

1
}
/7 Increment clip.
el[direction] += el.inc;
// Set clip.
el.style.clip = "rect(" + el.clipTop + ™ " +
el.clipRight + " " + el.clipBottom + ™ " +
el.clipleft + "
// Check whether finished.
if (((el.size >= el[direction]) && (el.inc > 8)) ||
((el[direction] »= @) && (el.inc < 8)))
setTimeout("wipe('" + direction + "', ™ + into + "}"
103:

else
el.init = null;

el.clipBottom = "100%"; }
el.clipRight = "10e%";
el.clipLeft = el.offsetWidth; YL
</HEAD>
el.inc »= -1;
(continued)
344 345

181

PART 111: DOCUMENT STYLE AND ANIMATICN

346

<BODY>
<H1>Wipe Effects</H1>
<P STYLE="padding-bottom:5pt">
<INPUT TYPE=BUTTON STYLE="width:26@pt" VALUE="Display”
ONCLICK=
"document.all.wipe.style.clip="rect(d 100% 100% @)'">
<FIELDSET STYLE="width:13@pt">
<LEGEND>Wipe-In Effects</LEGEND>
<P><INPUT TYPE=BUTTON VALUE="Wipe to Bottom"
ONCLICK="wipe('clipBottom’)">
<P><INPUT TYPE=BUTTON VALUE="Wipe to Right"
ONCLICK="wipe{'clipRight')">
<P><INPUT TYPE=BUTTON VALUE="Wipe to Top"
ONCLICK="wipe('clipTop")"
<P><INPUT TYPE=BUTTON VALUE="Wipe to Left”
ONCLICK="wipe('clipLeft')">
</FIELDSET>

<FIELDSET STYLE="width:138pt">
<LEGEND>Wipe-0ut Effects</LEGEND>
<P><INPUT TYPE=BUTTON VALUE="Wipe from Bottom"
ONCLICK="wipe('clipBottom', false)">
<P><INPUT TYPE=BUTTON VALUE="Wipe from Right"
ONCLICK="wipe('clipRight', false)">
<P><INPUT TYPE=BUTTON VALUE="Wipe from Top"
ONCLICK="wipe('clipTop', false)">
<P><INPUT TYPE=BUTTON VALUE="Wipe from Left”
ONCLICK="wipe(’cliplLeft’, false)">
</FIELDSET>
<DIV ID=wipe>
<P>Home
<P>News
<P>Info
<P>About
<P>Demo
</DIV>
</BODY>
</HTML>

Creating Pop-Up Menus

Using absolute positioning, you can create menus that are displayed when the
user clicks on a keyword or an HTML-defined menu bar. You can extend the
following code, which creates an expandable menu of URLs, for use in your
own documents. The pop-up menus can be easily enhanced to slide into view
using the wipe effects code in the preceding example.

182

TWELVE: Dynamic Positioning

<HTML>
<HEAD>
<KTITLE>Pop-Up Menu</TITLE>
<STYLE TYPE="text/css">

/* Make the menu float to the left of the text. */

#menu {float:left; width:50pt; background:lightgrey;
border:2px white outset; cursor:default}

/* Hide the pop-up menus initially. #/

#menu .popup {position:absotute; display:none;
background:1ightgrey; border:2px white outset;
width:135pt; margin:2pt)

#menu P {margin-top:@pt; margin-bottom:@pt}

.over {color:navy; font-weight:bold}

</STYLE>
<SCRIPT LANGUAGE="JavaScript™>
var curPop = null;

function clearCurrent() {
// Hide the pop-up menu that is currently displayed.
if (null != curPop)
curPop.style.display =
curPop = nulls

]

function popup() {
var el = event.srcElement;
clearCurrent():
// Display a new menu option.
if (("P" == el.tagName) &&
("menu” == el.parentElement.id)) [
// Position and display the pop-up menu.
var elpop = document.all[el.sourcelndex + 1]:
elpop.style.pixellLeft = document.all.menu.offsetleft +
document.all.menu.offsetWidth - 7;
elpop.style.pixelTop = el.offsetTop +
document.all.menu.offsetTop;
elpop.style.display = "block™;
curPop = elpop:

1

event.cancelBubble = true;

}

function highlight() {
// Highlight the menu options.
if (null != event.fromElement)
if ((event.fromElement.tagName == "P") &&

(continued)

347

PART 111: DOCUMENT STYLE AND ANIMATION

(event.fromElement.parentElement.id == "menu™))
event.fromtlement.className = "";
1f (null 1= event.toElement)
if ((event.toElement.tagName == "P") &&
(event.toElement.parentElement.id == "menu"})
event.toElement.className = “over":
}
</SCRIPT>
</HEAD>

<BODY ONCLICK="ctearCurrent(}">
<H1>Menu Example</H1>
<DIV ID="menu" ONCLICK="popup()" ONMOUSEOVER="highlight()"
ONMOUSEQUT="highlight()">

<P>Navigate
<DIV CLASS="popup™>
<P>Home
<P>Inside DHTML Information

<P>Tip of the Week
</DIV>
<P>News
<DIY CLASS="popup">
<P>Headlines
<P><A HRE nternet.htm">Internet News

<P>Rumor Mil1
</DIV>
</DIV>
<P>C1ick on a menu option in the box on the left.</P>
</BODY>
</HTML>

Adding Drag Support

By combining absolute positioning with the mouse events, you can simulate the
dragging and dropping of elements. A simple way to add drag-and-drop sup-
port is to write a script that looks for a dragEnabled attribute on any element.
The script in the following code automatically handles dragging for all ele-
ments that have this attribute, including nested positioned elements, so
the code doesn’t have to be modified every time you add another element to
drag. If the user holds down the mouse button on an element that has the
dragEnabled attribute and then moves the mouse, the element will follow.
An alternative technique is to use a special class name value instead of the
dragEnabled attribute.

348

183

TWELVE: Dynamic Positioning

<HTML>
<HEAD>
<TITLE>Adding Drag Support</TITLE>
<SCRIPT LANGUAGE="JavaScript">
/7 This code allaws any absolutely positioned element
// with the custom attribute dragEnabled to be dragged.
var elDragged = null // Element to drag

function doMouseMove() (
// Check whether mouse button is down and whether
// an element is being dragged.
if ((1 == event.button) && (elDragged != null)) {
/{ Move the element.
/7 Save mouse's position in the document.
var intTop = event.clientY + document.body.scroilTop:
var intLeft = event.clientX + document.body.scrollleft;
// Determine what element the mouse is really over.
var intlLessTop = @;
var intlLessLeft = 0;
var elCurrent = elDragged.offsetParent;
while (elCurrent.offsetParent I= null) {
intlessTop += elCurrent.offsetTop
intlessLeft += elCurrent.offsetleft;
elCurrent = elCurrent.offsetParent;
}
/! Set new position.
elbDragged.style.pixelTop =
intTop - intlessTop - elDragged.y;
ellragged.style.pixellLeft = .
intLeft - intLessLeft - elDragged.x;
event.returnvalue = false;

}

function checkDrag(elCheck) {
// Check whether the mouse is over an element
// that supports dragging.
while (elCheck != null) {
if (null != elCheck.getAttribute("dragEnabled"))
return elCheck:
elCheck = elCheck.parentElement;
3

return null;

(continued)

349

PART 111: DOCUMENT STYLE AND ANIMATION

function doMouseDown() {

// Store element to be dragged.

var eiCurrent = checkDrag(event.srcElement);

if (null != elCurrent) {
elDragged = elCurrent:
// Determine where the mouse is in the element.
elDragged.x = event.offsetX;
elDragged.y = event.offsetY:
var op = event.srcElement;
// Find real location with respect to element being

// dragged.
if ((elDragged != op.offsetParent) 2&
(elDragged != event.srcElement}) (

while (op != elDragged) {
elDragged.x += op.offsetleft;
elDragged.y += op.offsetTop;
op = op.offsetParent;

} .

functicn doSelectTest{) {
// Don't start text selections in dragged elements.
return (null == checkDrag{event.srcElement) &&
(elDraggedi=null));
}

// Hook up mouse event handlers.
document.onmousedown = doMouseDown;
document.onmousemove = doMouseMove;
// Reset element when mouse button is released.
document.onmouseup = new Function("elDragged = null;
document.ondragstart = doSelectTest:
document.onselectstart = doSelectTest;
</SCRIPT>
</HEAD>
<BODY>
<H1>Dragging Positioned Elements</H1>
<P>These contents are static and can't be dragged. The
following image can be dragged even though it is behind
this text.
<IMG SRC="ball.gif" dragEnabled
STYLE="position:absolute; top:18px; Jefi:2@px; cursor:hand;
z-index:-1;">
<DIV STYLE="position:absolute; top:15@px; left:28px;

350

184

TWELVE: Dynamic Positioning

border:2px navy solid; width:1€8; cursor:hand”
dragEnabled>
This text can be dragged.
</DIV>
</BODY>
</HTML>

To move an element, this code calculates the element’s new position relative
to the document based on the mouse’s position relative to the document. The
mouse’s position is calculated by adding the clientX and clientY properties to the
scrollTop and scrollLeft properties of the Body element. The element’s position
relative to the document is the sum of its offsets and the offsets of all of its offset
parents relative to their respective rendering contexts. The offset properties
are discussed in the section “The Rendering Context” later in this chapter.

Elements that are relatively positioned take up space in the normal flow of the
document. These elements are positioned offset from their normal flow posi-
tion. The primary function of this feature is to animate elements into their
correct location in the document.

The following two examples demonstrate animating text onto the screen.
The first example provides an introduction to animating text; the second
example is more comprehensive and provides a set of functions for creating a
sequence of presentation effects. An example in the section “Aligning Relatively
Positioned Elements” later in this chapter demonstrates how to cause all rela-
tively positioned elements to be animated from a single point on the screen.

Flying Text

In general, when you want text to fly in from beyond an edge of the screen,
the text should be invisible initially and then appear after a reasonable amount
of time. To create text that animates in from the edge of the screen, the best
technique is to start with the text off screen at a distant negative coordinate
and then set its initial position based on the state of the browser when the
animation is about to begin.

Because Dynamic HTML does not specify a concrete size for the contents
and because the user can scroll anywhere within the document, the initial
position of the element is very important. The initial position of the element must
take into account the physical size of the screen and the position of the scrollbars.
The following code demonstrates how to make text fly in from the right edge
of the screen. This example starts with the text somewhere in the negative

351

PART 11

: DOCUMENT STYLE AND ANIMATION

352

coordinate space so that the user cannot reach the text using the scrollbars.
At the time the animation is about to begin, the element is repositioned be-
yond the right edge of the screen. This way, regardless of where the user is in
the document, the element always appears to animate onto the page without
a long delay, and under no circumstances can the user accidentally view the
element before the animation.

<HTML>
<HEAD>
<TITLE>Flying Text</TITLE>
<STYLE TYPE="text/css">
Hl {text-align:center}
#tip {position:relative; Teft:-16@8px)
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>
function slideIn() (
var el = document.all.tip;
// Test whether element is off screen.
if {-1808 == el.style.pixelleft) {
el.style ntStyle = "italic";
// Reposition element beyond right edge of screen.
el.style.pixelleft = document.body.offsetWidth +
document.body.scrollLeft;

if (20 <= el.style.pixelieft) {
el.style.pixellLeft -= 20;
setTimeout("slideIn();™, 58);

}
else {
el.style.pixellLeft = 8;
el.style.fontStyle = "";
1
}
</SCRIPT>
</HEAD>

<BODY ONLOAD="slidelIn():">
<H1 ID="tip">Tip of the Week</HI>
<P>Animating text from off screen
</BODY>
</HTML>

Presentation Effects

By expanding on the preceding example, you can easily create presentation
style effects that animate text onto the page. This example demonstrates how
to add custom presentation behavior that can iterate through elements either

185

TWELVE: Dynamic Positioning

automatically or through the user clicking the mouse. The sequencing is de-
fined by taking advantage of Dynamic HTML ability to expose unrecognized
elements. A Sequence element defines a set of elements to animate and speci-
fies whether they should animate automatically or in response to mouse clicks.
Multiple sequences can be defined by specifying multiple Sequenice elements.

The following document demonstrates two sequences—the first sequence
occurs based on a timer, and then the second sequence occurs based on the
user clicking the mouse:

<HTML>
<HEAD>

<SEQUENCE order="Textl, Text2, Text3, Text4, Text5™ speed="20"
type="auto™ increments=15>

<SEQUENCE order="Text6, Text7" speed="28" type="click"
increments=16>

<TITLE>Presentation Effects</TITLE>

<SCRIPT LANGUAGE="JavaScript™>
var slideShow = new Object();

function initSequence(s) {
var sTemp = s.sequences[s.currentSequencel;
if {(null != sTemp) (
// Get list of element IDs to sequence.
s.sequencer = new Array{):
s.sequencer = sTemp.getAttribute("order™).split(”, ");
/7 Initialize sequence.
for {var intlLoop = @; intLoop < s.sequencer.length;
intLoop++)
if (null != document.all[s.sequencerlintLoopll) {
var el = document.all[s.sequencer[intLoopll;
el.initTop = el.style.posTop:
el.initLeft = el.style.posleft;
}
.speed = (null == sTemp.getAttribute("speed™)) ?
20 : sTemp.getAttribute{"speed™);

»

s.type = ("auto” == sTemp.getAttribute("type™));
s.increments =
(null == sTemp.getAttribute("increments™)) ?
15 : sTemp.getAttribute(™increments™):
s.inc = @;
g.position = -1;
}
(continued)
353

DOCUMENT STYLE AND ANIMATION

else {
s.position = null:
if (document.onclick == doFly)
document.onclick = new Function();

1

function nextSequence(s) {
/7 TIf sequence is available. run it.
if (null != s.position) {
// s.position represents an element in a sequence.
// Run until no more elements are found; then look for
// next sequence.
s.positiont++
if (s.position < s.sequencer.length) {
s.inc = @:
if (s.type) // Runs on a timer
window.setTimeout("doFly();", s.speed)
else // Runs on the click event
docgment,onc1ick = doFly;

}
else {
s.currentSequencet++;
initSequence(s):
nextSequence(s):
}
1
else {
s.position = null;
if (document.onclick == doFly)
document.onclick = null;
}

}

function slide() {

// Initialize sequencer--get all <SEQUENCE> tags.

s1ideShow.sequences = document.all.tags("SEQUENCE");

s1ideShow.sequencer = new Array():;

if (8 < slideShow.sequences.length) {
s1ideShow.currentSequence = @:
initSequence(s1ideShow); // Initialize.
nextSequence(slideShow); // Start first sequence,

}

function doFly() {
var dt, d1;

354

186

TWELVE: Dynamic Positioning

var el =
document.all[s1ideShow.sequencer[sTideShow.positionl];
document.onclick = null; // Stop click events
// until complete.
/4 Reposition the element.
slideShow.inct++;
dt = el.initTop / slideShow.increments;
dl = el.initleft / slideShow.increments;

el.style.posTop = el.style.posTop - dt;
et.style.posleft = el.style.posleft - dl:

if (slideShow.inc < slideShow.increments)
window.setTimeout("doFly(};", slideShow.speed)
else {
el.style.top = 9;
el.style.left = 8;
nextSequence(slideShow);
1
}
</SCRIPT>
<STYLE TYPE="text/css™>
BODY {color:white}
DIV {position:relative; width:180%; font-size:16pt:
height:48px}
H1 (text-align:center; font-size:18pt}
</STYLE>
</HEAD>
<BODY BACKGROUND="img@@1.gif" ONLOAD="slide();">
<H1>Inside Dynamic HTML</H1>
<DIV ID="Textl" STYLE="top:0px; left:-350px">
Overview of HTML and SS</DIV>
<DIV ID="Text2" STYLE="top:@px; left:-350px">
Fundamentals of HTML Scripting</DIV>
<DIV ID="Text3" STYLE="top:@px; left:-35@8px">
Dynamic HTML Event Model</DIVY>
<DIV ID="Text4™ STYLE="top:0px; Teft:-358px™>
Dynamic Styles</DIV>
<DIV ID="Text5" STYLE="top:@px; left:-35@px; color:yellow">
Click to Continue</DIV>
<DIV ID="Text6" STYLE="top:@px; left:-358px">
Dynamic Contents</DIV>
<DIY ID="Text7" STYLE="top:@px; left:-358px">
Dynamic Presentations!</DIV>
</BODY>
</HTML>

355

PART t11: DOCUMENT STYLE AND ANIMATION

The custom <SEQUENCE> tag, which should be defined in the head of
the document, supports the following attributes. The only required attribute
is order; the other attributes will be provided with default values if they are
omitted.

Attribute Name Description

arder Defines the element IDs that should be sequenced. Fach
item must be explicitly separated using a comma followed
by a space.

speed Defines how fast the items are animated in. This same

speed is used to determine the delay between elements
that are autosequenced.

type Specifies whether the sequence accurs automatically
through the timer (auto, the default) or manually in re-
sponse to clicks (click).

increments Specifies how many intermediate positions each image
will assume as it animates to its final position. More incre-
ments with faster speed can create a smoother animation.

The Rendering Context

356

‘While CSS positioning offers tremendous flexibility, it can often add a lot of
complexity to the page. The preceding examples demonstrate using CSS po-
sitioning on elements that are positioned independently. One of the key ad-
vantages of HTML is its ability to automatically reflow contents depending on
their size and the size of the window. If the Web author intends to position
elements in response to the size of the window and contents, the author must
write custom layout code with script rather than rely on HTML. In general, it
is easier to author and maintain documents that use dynamic styles to take
advantage of the automatic flow nature of HTML than to write custom layout
code, and writing a custom layout manager can require a large amount of script.

Dynamic HTML exposes the information—complex as it is—necessary
to create a powerful custom layout. For each element, this information includes
offset information and the identity of the element from which the offsets are
calculated. To write scripts that handle their own layout, you have to under-
stand these offset relationships.

187

TWELVE: Dynamic Positioning

Rendering information—the size and position of each element in the
body of a document—is recalculated by the browser each time the document
is reflowed. Rendering information is therefore much more transient than
parsing information, which includes the attributes, styles, and contents defined
for the elements in the source document. The distinction between the values
provided by the document and the rendering values calculated by the browser
is important to understand.

For example, an element might be defined as having a width value of 20%
and an unspecified height. The 20% value as well as its pixel equivalent are
exposed through the style property. However, the height value is not exposed
through the style property because it is not defined. When the browser renders
the element, it calculates a height and exposes it as a separate property. In
addition, the browser calculates and exposes the top and left positions of the
element; these values are not always the same as the {op and leftvalues defined
using CSS positioning.

Each element is drawn relative to another element, its offset parent. An
element’s offset parent provides the rendering context in which the element is
drawn, The Body element is the topmost offset parent. For many elements, the
Body element is the offset parent, and the browser calculates each element’s
position relative to the upper left corner of the document. But if an element
is inside an absolutely positioned DIV element, for example, its position is
calculated relative to the DIV element, which is its offset parent. An offset
parent provides the context in which an element is rendered; specifically, it
defines a root for the offsets that determine the element’s position.

Every element exposes its rendering information. An element’s offsetParent
property contains a reference to the element defining its rendering context,
and its offsetTop and offsetLeft properties contain jts coordinates with respect to
the origin defined by its offseiParent, In addition, rectangular elements generally
expose offsetWidth and offsetHeight properties, which represent the element’s size.

Only certain elements and elements of certain styles can define new
rendering contexts and become offset parents for other elements. The follow-
ing elements define new rendering contexts:

B Body element
® Elements with CSS position values of absolute

B Elements with CSS position values of relative (define new rendering
contexts only for absolutely positioned elements they contain)

357

PART (111: DOCUMENT STYLE AND ANIMATION

358

B Elements with CSS float values of left or right
B Elements given explicit width or height values

B Table, Caption, TR (table row), and TD and TH (table cell)
elements

B Fieldset and Legend elements
B Marquee elements

B Map elements

Each element has a single offset parent, and it might define a rendering
context for any number of child etements. In this regard, an element’s offset
parent is similar to its parent element in the parsing tree. But an element’s off-
set parent is not required to be the same as its parent in the parsing tree; its
offsetParent and parentElement properties can and often will reference different
elements. A diagram showing the offset parents for all elements in the docu-
ment is known as the rendering tree for the document.

Figure 127 shows both the parsing tree and the rendering tree for the fol-
lowing document.

<HTML>
<HEAD>
<TITLE>Parsing Tree vs. Rendering Tree</TITLE>
</HEAD>
<BODY>
<P>The parsing tree represents the
containership hierarchy
defined by the contents of the HTML document.</P>
<DIV ID=D1 STYLE="position:absolute; top:60; Teft:286">
<P>The rendering tree represents the relationship between
elements as they are rendered by the browser.</P>
<DIV ID=D2 STYLE="height:8@; width:180%: overflow:scroll”>
<P>This code creates a scrolling element. However, it does
not define a new coordinate system. The
following element is positioned based on the coordinate
system of the absolutely positicned DIV.</P>
<IMG STYLE="position:absolute: top:6@; left:48"
SRC="1mgl.gif">

</HTML>

188

TWELVE: Dynamic Positioning

Parsing Tree

[|
EN e
gl [

[

[]

Rendering Tree

Figure 12-7.
Parsing tree and rendering iree for a document.

359

PART

111: DOCUMENT STYLE AND ANIMATION

In this example, the Paragraph element, the EM element, and the first
DIV element are all children of the Body element. The EM element becomes
a rendering child of the body because its parent element, Paragraph, is not a
constrained element according to the preceding list. The first DIV element,
on the other hand, defines a new rendering context because it is absolutely
positioned. Therefore, all elements within this DIV element are children of this
rendering container unless another element creates a new rendering context
within the DIV element.

The second DIV element, D2, also creates a new rendering context be-
cause it is a constrained container. This is where things seem to get tricky. When
an element is positioned absolutely, it is taken out of the flow of the document
and positioned relative to the nearest coordinate system. A constrained con-
tainer does not necessarily define a new coordinate system. The scrolling DIV,
D2, does not create a new coordinate system because no absolute or relative
positioning is specified. Only elements with position values of absoluie or
relative create new coordinate systems. Therefore, the image inside D2 that
is absolutely positioned is actually positioned relative to the first DIV, D1. This
relationship is also maintained in the rendering relationship. D1 is the offset
parent for D2,

A Rendering Context Demonstration

360

The relationship between an element and its rendering context is best
understood by examining a sample HTML document. The following docu-
ment, included on the companion CD, reports the offsets of any element on
the page. The document also contains examples of several different ways in
which a rendering context can be created. Clicking on any element in the
document displays a list of offsets for each rendering context the element is
contained within.

<HTML>
<HEAD>
<TITLE>Offset Demonstration</TITLE>
<STYLE TYPE="text/css">
BODY, TD, DIV, CAPTION, FIELDSET, LEGEND {cursor:default}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function doClick() {
// Build a string of all the offsets, starting from the
// clicked element.
var el = event.srcElement;
var offset = "0ffsets\n";
while (el != null) {

189

TWELVE: Dynamic Positioning

affset += "\n" + ael.tagName + ": (" + el.offsetTop +
", "+ el.offsetleft + ™)
el = el.offsetParent;

}
alert(offset);
)]
document.onclick = doClick;
</SCRIPT>
</HEAD>
<BODY>
<H1>0ffset Demonstration</H1>
<P>Click on an element to see its rendering context and offset
relationship. This page helps demonstrate how an element
becomes constrained and creates a new rendering context for
the elements it contains.
<P>This is a standard paragraph containing
emphasized text.
<TABLE BORDER>
<CAPTION>Table Demo</CAPTION>
<TR><TD>Table Cell 1</TD>
<TD>Table Cell 2</TD></TR>
<TR><TD>Tabte Cell 3</TD><TD>Table Cell 4</TD></TR>
</TABLE>
<FIELDSET STYLE="width:288pt">
<LEGEND>Fieldset Demo</LEGEND>
<P>This is a fieldset.
<BUTTON><P>HTML Button</BUTTON>
</FIELDSET>
<P STYLE="position:relative; top:50; left:168pt">This is a
relatively positicned paragraph.</F>
<DIV STYLE="overflow:auto; height:50pt; width:158pt
border:1lpt gray solid">
<P>This DIV element has a constrained width and height and
may display scrollbars if the contents do not
fit.
</DIVY
<DIV STYLE="position:absolute; top:3@@pt; left:158pt;
width:18@pt; border:1pt gray solid">
<DIY STYLE="position:absolute; top:@pt; left:12@pt;
width:100pt; border:1pt gray solid">
<P>This is an absolutely positioned DIV element within
another absolutely positioned DIV element.
</DIV>
<P>This is an absolutely positioned DIV element.</P>
</DIV>
</BODY>
</HTML>

361

PART

111: DOCUMENT STYLE AND ANIMATION

The Offset Properties of
Relatively Positioned Elements

A relatively positioned element’s top and left style properties represent its
offsets from its normal position in the flow, but its offsetTop and offseileft
properties represent its position with respect to its offset parent. Figure 12-8
demonstrates the relationship between these style properties and rendered
position properties.

i example demonsirates the relationship between a
ly positioned element’s fop and Jeft style attributes

and its et Top and offsetLeft properies.

The follo is relatively positioned.
g 7§ pixels;
lafl: 25 pixels

offsetTop: 166 pixels;
offsetl eft: 160 pixels

e i

Figure 12-8.
A relatively positioned element’s top and left style properties and its
offsetTop and offsetLeft properties.

The offset properties are purely rendering properties that represent the
calculated positions of an element in the document.

Determining Whether an Element Is in View

362

The following function can determine whether the upper left corner of an
element is currently visible on the screen. This function returns faise if the
element’s upper left corner is not visible, even if the element is partially
on screen. The function works this way so that it can can be applied to any
element on the page.

function onScreen(e) (
/7 Test whether the supplied element is visible.
var rp = e,offsetParent;
if (rp == null)
return false;

190

TWELVE: Dynamic Positioning

var pleft = e.offsetleft:
var ptop = e.offsetTop:
while (true) (
if (L((pleft >= rp.scrollleft) &&
(pleft <= rp.scrollleft + rp.clientWidth) &&
(ptop >= rp.scrollTop) &&
(ptop <= rp.scrallTop + rp.clientHeight)))
return false;
pleft += rp.offsetleft - rp.scrollleft ;
ptop += rp.offsetTop - rp.scrollTop:
rp = rp.offsetParent;
if (rp == null)
return true;

1

This code can be easily enhanced to test whether an intrinsic control or a
constrained element is visible by factoring in the width and height of the ele-
ment, but this technique will not work for nonrectangular elements because
they do not expose offsetWidth and offsetHeight properties.

Scrolling to an Element

Any element in the body of a document can be brought into view using the
scrollIntoView method. The scrollfntoView method supports a single optional
parameter that specifies whether the element should appear as the first or last
line in the window. Omitting the parameter or supplying the value #ruescrolls
the element to the first line; a value of falsescrolls the element to the last line.
For example, the following code scrolls the first H1 element in the document
into view:

// Scroll element to the first line.
document.all.tags("H1").item(®).scrollIntoYiew()

// Scroll element to the last Tine.
document.all.tags("H1").item(@).scrollIntoView(false)

Identifying an Element at a Specified Position

The document object exposes the elementFromPoint method for identifying an
element at a particular xy-coordinate position on the screen. This method takes
an xy-pixel position relative to the window’s client area and returns the element
object at that position. The elementFromPoint method is useful for determining

363

PART 111: DOCUMENT STYLE AND ANIMATION

what element the mouse is on during an event handler. For example, the fol-
lowing code places the tag name of the element the mouse is on in a text box:

<HTML>
<HEAD>
<TITLE>Where Is the Mouse?</TITLE>
<SCRIPT FOR="document" EVENT="onmousemove()"
LANGUAGE="JavaScript”>
document.all.txtCurrent.value =
document.elementFromPoint(event.x, event.y).tagName;
</SCRIPT>
</HEAD>
<BODY>
<H1>This Is a Header.</H1>
<P>Current Element: <INPUT TYPE=TEXT ID="txtCurrent™ SIZE=28>
</P>
</80ODY>
</HTML>

The Map Element v

The Map element defines a special rendering context. Because a Map element
can be shared by multiple images, it is considered outside any rendering con-
text. Therefore, the Map element returns null for the offsetParent property and
0O for the ty"fs.etTo[z and offsetLeft properties. The Area elements within the Map
element return values for their offsetTop and offsetLeft properties relative to the
upper left corner of the containing Map element and return the Map element
as the offset parent. Therefore, to determine the position of an Area element
on the screen, you must take into account the particular image’s offsets.

Aligning Relatively Positioned Elements
Aligning elements horizontally or vertically can range from trivial, requiring
no code, to somewhat complex, requiring a fair amount of code. With two
absolutely positioned elements within the same coordinate system, aligning the
elements is as simple as providing the same top or left property. Because rela-
tively positioned elements are offset from their position in the flow, aligning
relatively positioned elements requires a few lines of code.

The following document demonstrates how to first stack all relatively
positioned elements on top of each other and then animate them back to their
normal positions in the document. The code that aligns the elements is
contained in the alignElements function. This function takes any relatively

364

TWELVE: Dynamic Positioning

positioned element and stacks it on top of the element with an ID of src. Alter-
natively, a fixed point on the screen can be used instead of another element.

<HTML>
<HEAD>
<TITLE>Animating from a Single Point</TITLE>
<STYLE TYPE="text/css">
.fly {position:relative; color:navy; visibility:hidden}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function alignElements(el) {

/+ Position the passed-in relatively positioned
element that is in the same coordinate system
on top of the element whose ID is src. */
.style.pixelTop
= document.all.src.offsetTop - el.offsetTop;

e

el.style.pixelleft
= document.all.src.offsetleft - el.offsetleft;
el.style.visibility = "visible™;

1

function moveln(el) (
// If the element is not at its positien in the flow,
// move it closer.
var moved = false;
if (el.style.pixelTop < 8) {
el.style.pixelTop += 8;
if (el.style.pixelTop > @)
el.style.pixelTop = @:
moved = true;

}
else {
if (el.style.pixelTop > @) {
el.style.pixelTop -= 8;
if (el.style.pixelTop < @)
el.style.pixelTop = @;
moved = true:
)]
1

if (el.style.pixelleft < @) {
el.style.pixelleft += B;
if {el.style.pixelleft > @)
el.style.pixelleft = 9;
moved = true;

(continued)

365

191

PART [11: DOCUMENT STYLE AND ANIMATION

else {
if (el.style.pixelTop > @) {
el.style.pixelleft -= 8;
if (el.style.pixelleft < 8)
el.style.pixelleft = @;
moved = true;
1

}

/% The move variable reflects whether the element has
moved. [f the element has already reached its pesition
in the flow, this function returns faise. =/

return moved;

}

function flyInTogether() {
var more = false:
// Animate into place all elements with class name fly.
for (var intloop = @; intLoop < document.all.length;
intLoop+t) {
if ("fly" == document.all[intLoopl.className)
more & moveIn(document.all[intLoopl) || more;
1
// Keep running until all elements reach their locations
/7 in the flow.
if (more)
setTimeout("flyInTogether()”, 18);
]

function setup() {
// Align all elements that are going to be animated.
for (var intLoop = @; intLoop < document.all.length:
intLoop++) {
if ("f1y" == document.all[intLoopl.className)
alignElements(document.all[intLocpl):
1
flyInTogether();
}

window.onload = setup;
</SCRIPT>
</HEAD>
<BODY>
<H1 ID=src>Animate from a Single Point</HL>
»
<LI CLASS="fly"><P>Create animated documents.</P>
<LI CLASS="fly"><P>AT1 elements start together
at a single point.</P>

366

192

TWELVE: Dynamic Positioning

<LI CLASS="f1y"><P>This example works using relative
pesitioning. </P>
<LI CLASS="fly"™><P>First align the elements, and then fly
them inte place.</P>
<LI CLASS="f1y"><P>Once the elements are in place, this is
a standard HTML document!</P>
<LI CLASS="fly"><P>Simply supplying a special class name
animates an element.</P>

<P STYLE="text-align:center">Not all text must be animated!
</BODY>
</HTML>

367

193

DOCUMENT
CONTENTS AND
DATA BINDING

Dynamic Contents

rI]le term dynamic contents refers to the ability to access and change a portion
of a document’s contents without requiring the downloading or construction
of an enlircly new page. A good example is a ticking clock that is automa-
tically updated in the HTML of the document. Once per second, the clock in
the document is updated with a new time—without having to generate a new
document.

Dynamic HTML provides direct access Lo the contents of a document, all
the way down to the individual characters. This access enables any portion of
the document to be quickly and immediately updated. Once the document is
updated, surrounding contents may reflow, depending on the size and posi-
tion of the new contents. Reflowing the document also often occurs with
dynamic styles when the size or display of an element is changed. Dynamic con-
tents extcnds this model o changing the text and HTML on the page.

Because the most effective route to understanding how to dynamically
manipulate the document’s contents is to review code, this chapter focuses on
code samples to demonstrate the different techniques. The [ollowing topics are
covered in this chapter:

) m Contents manipulation This section briefly introduces three con-

5 .é:é;u.t;—%:’.i'::i?j HaL 274l : tents manipulation techniques supported by Dynamic HTML.

EEE ® Dynamic contents properties The contents of an element are ex-
posed through four properties and two methods. These properties
provide the easiest and most direct way to access and change the
document’s contents. This section discusses how to use the proper-
ties to change an clement’s contents, as well as how these properties
interact with the document.

B Dynamic contents and document.write The document.write method
allows contents to be inserted into a page while the page is being
loaded; dynamic contents allows the manipulation of contents after

371

194

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

the page has been loaded. This section explores techniques for
combining these features to create interactive documents.

Contents Manipulation

372

Dynamic HTML exposes the following three techniques for manipulating the
contents of a document. The first technique is used to generate contents while
a page is loading, and the other two techniques are used to manipulate the
document after the page has finished loading.

B Writing contents into the stream during the loading of a page

B Manipulating the contents using properties and methods exposed
on all elements in the body of the document

B Programming the TextRange object, which exposes an object model
for the document's text

The first technique uses the write and writeln methods of the document
object. These methods can insert contents into the current document as it is
being downloaded, and they can construct new documents, but they cannot
change contents that have already been parsed. Chapter 6, “The HTML Docu-
ment,” discussed the document’s write methods. The wriie and writeln meth-
ods are supported in Netscape Navigator version 2.0 and later and Microsoft
Internet Explorer 3.0.

The latter two techniques constitute dynamic contents and are new with
Internet Explorer 4.0. All elements in the document’s body provide direct access
to the contained contents of any element by using four properties and two
methods. This chapter introduces these members, which are the simplest way
of accessing and changing the contents of the document.

The TextRange object exposes a custom text-based object model that pro-
vides arbitrary access to the underlying contents, giving you more control over
the document at the expense of predictability. This technique allows you to
manipulate contents as you would using a text editor. While many mani-
pulations are possible through the text-based model, it is not as precise as a
true top-down tree approach and has a number of limitations. Chapter 14,
“User Selection and Editing Operations,” reviews the TextRangeobject model’s
strengths and weaknesses.

195

THIRTEEN: Dynamic Contents

Dynamic Contents Properties

The Body element and all elements contained within it expose four properties
for accessing and modifying the HTML contents: innerHTML, innerText,
outerHTML, and outerText. An element’s innerH TML property exposes its con-
tents, including the HTML markup for any child elements. The innerfext prop-
erty exposes the contained text without any HTML tags. Assigning a new value
to one of an element’s inner properties replaces the contents of the element.
The outerHTML and outerText properties resemble the innerfITML and inner-
Text properties, but they reference the entire element rather than just its con-
tents. Assigning a value to one of an element’s outer properties replaces the
entire element. In the following example, clicking a button replaces the but-
ton with the boldface text Blown Awayk

<HTML>
<HEAD>
<TITLE>Disappearing Button</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=BUTTON VALUE="Blow me away!"
ONCLICK="this.outerHTML = 'Blown Away!'">
</BODY>
</HTML>

One limitation of these properties is that they can reference an element
or its contents only in their entirety; they cannot reference just a portion of
the contents. To use these properties to change the third character or word
within an element, for example, you would have to reconstruct the string and
reinsert it. The TextRange object provides an alternative technique that allows
any portion of the document to be manipulated directly.

The dynamic contents properties use fairly strict rules for determining
what HTML is valid. These rules are stricter than the rules used to originally
parse the page, but not as rigid as the HTML DTD (document type definition).
If you assign invalid HTML to one of these properties, an error can occur and
the new contents might not be inserted. While the properties accept some
invalid HTML, you should always supply syntactically valid HTML to ensure
predictable results.

In addition to these properties, every element in the body of a document
also exposes two methods for inserting contents before or after the begin or
end tag: insertAdjacentHTML and insertAdjacentText. These two methods are
useful for quickly inserting new paragraphs or list items into the document.

373

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

Figure 13-1 illustrates all the ways the contents of an element can be
manipulated.

Properties

innerHTML /innerText

<Hl>Welcome to My Home Page</H1>

outerHTML/outer Text

InsertAdjacentHTML/InsertAdjacentText Methods
<Hl>Welcome to My Home Page</H1>»

afterBegin beforeEnd
beforeBegin afterEnd
Figure 13-1.

All the places HTML and text can be accessed and modified.

HTML vs. Text Properties
The primary distinction between the innerHTML and outerf TML properties
on the one hand and the innerText and outerIext properties on the other hand
is that the HTML properties expose the entire markup while the text proper-
ties expose the contents without the markup. Consider the following HTML
fragment:

<H1>Welcome to Scott's Home Page</H1>

For the H1 element in this fragment, the following table lists the values of each
of the four properties.

Property Value

innerText Welcome to Scott’s Home Page

innerHHTML Welcome to Scott's Home Page

outerText Welcome ta Scott's Home Page

outerHTML <H1>Welcome to Scott's Home Page</H1>

374

196

THIRTEEN: Dynamic Contents

The innerText and outerText properties always return the same value but
behave differently when you assign new values to them. Assigning a value to
the innerText property replaces only the contents of the H1 element with new
contents. Assigning a value to the ouferText property replaces the HI element
and its contents with the new text. For example, assigning the value Thank you
Jor visiting to each of these properties has different results: When you assign
this value to the innerText property, the resulting HTML is <H1>Thank you
Sfor visiting</H1I>. I you use the outerText property instead, the resulting HTML
is Thank you for visiting; the <H1> tags are removed.

The markup in the values of the innerH TML and outerHTML properties
does not necessarily match the markup in the source code. Instead, extrane-
ous spaces are cleaned up and the attributes may be reordered. When you
assign values to the HTML-related properties, be sure to use proper escape
sequernces for any entities. The < and > angle brackets are interpreted as tag
delimiters; if the angle brackets are to be included in the contents and not
parsed as HTML, they must be specified as entities by using &If; and >.
When you assign values to the text properties, these brackets are automatically
converted to their escape sequence equivalents.

Nonbreaking Spaces

Nonbreaking spaces (spaces at which line breaks are prohibited) and ordinary
spaces are considered separate characters in the object model, where they are
represented by the ASCII values 160 and 32, respectively. Comparing the two
characters yields the value false, as in this example:

document.all.sl.innerText == " ” // false; not a space

To check whether a nonbreaking space is an element’s contents, either check
the ASCII value directly or compare the HTML property to the entity itself,
as shown here:
document.all.sl.innerHTML == " ™ // true

Any specified entity that matches a builtin entity value is converted to the
built-in name. The nonbreaking space entity can also be specitied as
instead of using its keyword identifier. Dynamic HTML recognizes that this
value is a nonbreaking space and converts it to .

Using the Dynamic Contents Properties

The easiest way to learn the differences between the dynamic contents prop-
erties on an element is through examples. The following sections present two
examples: the first is a review of the ticking clock example in Chapter 4, “The

375

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

376

Browser Window,” and the second is a tic-tac-toe game that demonstrates dy-
namically retrieving contents and assigning contents into a document.

A Ticking Clock

The ticking clock example in Chapter 4 uses the innerText property to update
the time. A Span element with the ID clock contains the text with the current
time. Every second, a script calls a function named buildTimeto create a string
with the current time, and then outputs the string into the Span element with
ID clock using this statement:

document.all.clock.innerText = buildTime():

Tic-Tac-Toe

The tic-tac-toe example creates an interactive game using dynamic contents.
A table provides the layout for the game board. Every time the user clicks in
a cell, the cell’s contents are replaced with an X or an O using the innerText
property. The size of the game board can be dynamically changed by insert-
ing a new table in the place of the existing one using the outerHTML property.

<HTML>
<HEAD>
CTITLE>Tic-Tac-Toe</TITLE>
<STYLE TYPE="text/css™>
TD {font-weight:boid}
#board TD {width:50px; height:58px: text-align:center;
font-size:18pt; cursor:hand}
.X {color:blue}
.0 {color:red}
.draw {coler:green}
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>
function TicTac() (
// Object for tracking the game
this.lastMove = true;
this.inProcess = true;
this.scores = new Object():
this.scores.xScore = @;
this.scores.oScore = 8;
this.scores.draws = @;
this.size = 3;
this.drawBoard = initBoard;

function buildTable() {
// Build the HTML table to be inserted into the document.

197

THIRTEEN: Dynamic Contents

var tb = "<TABLE BORDER ID=board
ONCLICK="doBoardClick(); >";

for (var intRow = @; intRow < game.size; intRow++) [

th += "CTRY™;

for (var intCell = 8; intCell < game.size; intCell++)

th += "CTD>&RDSP;</TO>";
th 4= "C/TRY";

;
th += "</TABLE>";
return tb;

}

function initBoard() (
document.all.board.outerHTML = buildTable();
game.inProcess = true;
game.lastMove = true;

}

function checkWinner(xCount, oCount) {
// Process results of the scan for a winner.
if (game.size xCount) {
alert("X Winsl"™);
game.scores.xScore+;
return false;

if (game.size == oCount) {
alert("0 Wins!");
game.scores.oScorett;
return false;
}
return true;

]

function checkGame() {
// Tests all the directions for a winner.
var xCount = @, oCount = @, totat = &;
var el = document.all.beard;
// Check horizontal direction.
for (var intRows = @; intRows < el.rows.length;
intRows++) {
xCount = @, oCount = 0;
for (var intCells = @;

intCells < el.rows[intRows].cells.length;

intCells+) {

var strCell = el.rows[intRows].cells[intCells]:

if ("X" == strCell.innerText)

(continued)

377

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

xCount++;
if (70" == strCell.innerText)
oCount++;
}
game.inProcess = checkWinner(xCount, oCount):
if (lgame.inProcess)
return;
total += xCount + oCount:
}
// Check vertical direction.
for (var intCells = @: intCells < el.rows.length;
intCells+) {
xCount = 8, oCount = 9;
for (var intRows = @;
intRows < el.rows[intCells].cells.length:
intRows++) |
var strCell = el.rows[intRowsl.cells[intCells]:
if ("X" == strCell.innerText)
xCount++;
if ("0" == strCell.innerText)
oCount+;
}
game.inProcess = checkWinner(xCount, oCount);
if (!game.inProcess} return;
}

/1 Check diagonal (upper left to Tower right).
xCount = @, oCount = @;
for (var intRows = @; intRows < el.rows.length:
intRows++) {
var strCell = el.rows[intRows].cells[intRows];

if ("X" == strCell.innerText)
xCount++;
if ("0™ == strCell.innerText)

oCount++;
)]
game. inProcess = checkWinner(xCount, oCount);
if (!game.inProcess) return;

/7 Check diagonal (Tower Teft to upper right).
xCount = @, oCount = @:
for (var intRows = @; intRows < el.rows.length;
intRows++) {
var strCell =
el.rows[game.size - intRows - 1].cells[intRows];
if ("X" == strCell.innerText)
xCount++;

378

198

THIRTEEN: Dynamic Contents

if ("0" == strCell.innerText)
oCount++;

}
game.inProcess = checkWinner(xCount, oCount);
if (lgame.inProcess)
return;
(total game.size * game.size) {
alert("draw”);
game.inProcess = false;
game.scores.draws+t;
return

=

}

function updateScore() {
// Output new score.
for (scores in game.scores)
document.all[scores].innerText = game.scores[scores];

function doBoardClick() {
if (game.inProcess) {
if ("TD" event.srcElement.tagName) {
var strCell = event.srcElement;
// Check whether the cell is available.
if (" " == strlell.innerHTML) {
strCell.innerText = (game.lastMove 7 "
event.srcElement.className =
game.lastMove 2 "X" : "0";
game.lastMove = !game.lastMove;

)

}

checkGame();

if (lgame.inProcess)
updateScore();

// Manages the game variables
var game = new TicTac;

</SCRIPT>

<SCRIPT FOR="size" EVENT="onclick()" LANGUAGE="JavaScript™>
// Shared event handler for the board-sizing radio buttons
game.size = parselnt(this.value);
game.drawBoard();

</SCRIPT>

(continued)

379

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

</HEAD>
<BODY>
<H1>Tic-Tac-Toe</H1>
<P>{INPUT TYPE=BUTTON VALUE="New Game"
ONCLICK="game.drawBoard(}:">
<P><INPUT NAME=size TYPE=RADIC VALUE=
<LABEL FOR="x3">3 x 3</LABEL>

<INPUT NAME=size TYPE=RADIO VALUE="4" ID="x4">
<LABEL FOR="x4">4 x 4</LABEL>

<INPUT NAM ize TYPE=RADIO VALUE="5" ID="x5">
<LABEL FOR="x5">5 x 5</LABEL>
<P>
<SCRIPT LANGUAGE="JavaScript">
document . write(buildTable());
</SCRIPT>
<TABLE>
<TR class=x><TD>X Wins:</TD><TD ID=xScore>@</TO></TR>
<TR class=0><TO>0 Wins:;</TD><TD ID=0Score>@</TD></TR>
<TR class=draw><TD>Draws:</TD><TD ID=draws>@</TD></TR>
</TABLE>
</BODY>
</HTML>

" ID="x3" checked>

Figure 13-2 shows the Tic-Tac-Toe program in action.

i

Tic-Tac-Toe

DT .VI
@ 33

©4x4
€555

Figure 13-2.
The Tic-Tac-Toe program game board.

THIRTEEN: Dynamic Contents

Using the Adjacent Methods

An element’s insertAdjacentHTML and insertAdjacentText methods insert HTML
and text before or after the start tag, or before or after the end tag. Both
methods take two arguments: the first argument represents where the contents
are being inserted, and the second argument represents the actual contents.

The four valid values for the first argument represent each of the four
insertion locations: beforeBegin, afterBegin, beforeEnd, and afterfnd, where Begin
represents the begin tag and End represents the end tag. These methods are
useful for insertions that do not affect any of the existing contents.

Generating Footnotes

This example demonstrates how to add pop-up footnotes to a page. The fol-
lowing code works by locating all elements that are specified as footnotes and
inserting footnote numbers in the document. The author designates a footnote
by adding a Span element with the class name footnote. The style sheet defines
these Span elements as invisible. An alert containing the footnote text is dis-
played when the user clicks on the inserted footnote number.

<HTML>
<HEAD>
<TITLE>Dynamic Footnotes</TITLE>
<STYLE TYPE="text/css">
SPAN {display:none}
SUP.FNID {color:blue; curscr:hand}
</STYLE>
<SCRIPT LANGUAGE="JavaScript™>
function setupFootnotes() {
// Get a collection of all the Span elements.
var spans = document.all.tags{"SPAN");
for (var i = @; i < spans.length; i++) (
var el = spans[i]:
// If element is a footnote, process it.
if ("footnote™ == el.className) {
// Add a superscripted footnote number.
| el.insertAdjacentHTML("beforeBegin”,
“¢SUP CLASS=FNID>™ + (i + 1) + " </SUP>");
// Link the footnote number to the Span element.
document.allf{el.sourcelndex - 1]1.1inkFN = el;

(continued)

381

199

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

382

function displayFN() {
// If the number is clicked on, display the footnote.
if ("FNID" event.srcElement.className)
if (null I= event.srcElement,]inkFN)
alert(event.srcElement.TinkFN.innerText);

}

window.onload = setupFootnotes:
document.onclick = displayFN;
</SCRIPT>
</HEAD>
<BODY>
<H1>Dynamic Footnotes

Copyright (C) 1997 by Scott Isaacs.

</H1>
<P>Dynamic HTML is a "powerful way of creating Web pages"
Scott Isaacs, "Inside Dynamic HTML."

and “"Soon Dynamic HTML will be used in most applications.”

Joe-Cool Developer, "The Future of the Web."

<P>This page automatically generates and numbers the footnotes
at load time. The footnotes are stored as hidden contents on
the page.</P>
</BODY>
</HTML>

You can display footnotes in ToolTips rather than in alert boxes by set-
ting the TITLE attribute of each footnote number to the text of the footnote.
Another alternative would be to display each footnote within the text when the
user clicks the footnote number; for this technique, customize the displayFN
function to change the display style attribute for the footnote text.

Creating Custom HTML List Boxes
This example uses HTML elements to simulate two list boxes whose items can
be selected and copied between the lists. A single custom list box can also be
used without the copying functionality to provide a rich selection list.

In the following code, two list boxes are created using scrolling DIV ele-
ments. Each item in the list boxes is a standard list item in a bulleted list. When
the user clicks on an item to select it, the background color changes. When the

200

THIRTEEN: Dynamic Contents

user double-clicks on the item or clicks one of the arrow buttons, the jtem is
removed from one list and inserted at the end of the other list using the
insertAdjacentH TML method.

<HTML>
<HEAD>
<TITLE>Custom HTML List Boxes</TITLE>
<STYLE TYPE="text/css">
.1ist {cursor:hand; overflow:auto: height:75pt; width:150pt;
border:1pt black solid}
list UL {Tist-style-type:none; margin-left:2pt;
margin-top:@pt; margin-bottom:@pt}
.1ist UL LI {margin-top:@pt; margin-bottom:apt}
.1ist UL LI.selected {background:navy; color:white}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
function checkParent(src, tag) {
while ("HTML" != src.tagName) {
if (tag == src.tagName)
return src;
src = src.parentElement:
}
return null;
}

function selectItem(1ist) (
var el = checkParent(event.srcElement, “LI");
if ("LI" == el.tagName) {
if (null != Tist.selected)
list.selected.className =
if (1ist.selected != el) {
el.className = "selected”;
Tist.selected = el;

)
else
Tist.selected = null;

}

function copy(src, dest) {
var elSrc = document.all[src];
var elDest = document.allldest];
if (elSrc.selected = null) (
elSrc.selected.className =

(continued)

383

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

elDest.insertAdjacentHTML("beforeEnd”,
elSrc.selected.outerHTML);

elSrc.selected.outerHTML = "";

elSrc.selected = null; // reset selection

}
¥
</SCRIPT>
</HEAD>
<BODY>

<H1>Custom HTML List Boxes</HI>
<P>The bulleted 1ists simulate rich HTML selection Tists.</P>
<TABLE>
<TR>
<TD>
<DIV CLASS="1ist">
<UL ID="src" ONCLICK="selectItem(this);"
ONDBLCLICK="copy('src', 'dest’);
Scott's Home Page
Parents' Home Page

<LI13Inside Dynamic HTML Home Page
Microsoft Home Paged/LI>
Item 6
Item 7

</DIV>
</TD><TD>
<P><INPUT TYPE=BUTTON VALUE="-->"
ONCLICK="copy{'src'. 'dest’):">
<P><INPUT TYPE=BUTTON VALUE="<--"
ONCLICK="copy{'dest"', 'src'):">
</TD><TD>
<DIV class="1ist">
<UL ID="dest™ ONCLICK="selectItem(this);"
ONDBLCLICK="copy{'dest"','src");">

</DIV>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Figure 13-3 illustrates these custom list boxes.

384

201

THIRTEEN: Dynamic Contents

Custom HTML List Boxes

The bulleted lists simutate rich HTML selection lists.

Microsoft Home Page

Figure 13-3.
Two list boxes created from existing HTML elements.

Accessing the Contents

The contents of a document cannot be accessed or manipulated until the
document is completely loaded. Therefore, be careful when a script or an event
handler attempts to access and manipulate the contents. If the code might
execute before the page is loaded, the code should first test the readyState prop-
erty of the document:
if ("complete” == document.readyState) {

// Manipulate the contents.
1
else (

// Display a warning or perform alternative actioen.
}

Image Error Handling

The next example demonstrates how to queue document changes until the
page is entirely loaded. This example replaces any images that fail to down-
load with error messages and the images’ titles. The trick here is to cnsure that
the document is loaded before accessing the contents because an image might
fail and fire the onerror event before the page is completely loaded.

The following code builds a collection of all the images that failed before
the page entirely loaded. Once the page is loaded, cach image in the queue
of bad images is replaced with the appropriate text. Any future errors are
handled immediately.

385

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

386

<HTML>
<HEAD>
<TITLE>Image Error Hand1ing</TITLE>
<STYLE TYPE="text/css">
SPAN.error {background:yellow; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
var Errors = new Array();
Errors[@] = 8;

function badImage(el) {

if (document.readyState != "complete”) {
Errors(0]++;
Errors(Errors(@]] = el;

}

else // The document is loaded; output error directly.
el.outerHTML =

"Error Loading Image: " +
el.title + "";

function reviewErrors() {
for (var 1 = 1; i <= Errors[8]; i++)
Errors[i].outerHTHML =
"Error Loading Image: " +
Errors[il.title + "™;
}

window.onload = reviewErrars;
</SCRIPT>
</HEAD>
<BODY>
<P><IMG SRC="bad.gif" ONERROR="badImage(this);"
TITLE="Cool Picture">
<P>
<IMG SRC="bad.gif" ONERROR="badImage(this):™
TITLE="Inside Dynamic HTML Web Site">

</BODY>
</HTMLY>

This code also works if an anchor wraps the image. The new text that replaces
the image is rendered within the anchor and properly jumps to the page when
the user clicks on the element. This code can be expanded to output a mes-
sage after an onabort event.

If replacing the image with text is considered too extreme, you can eas-
ily modify the titleattribute by adding a message that says an error has occurred.

202

THIRTEEN: Dynamic Contents

(The title attribute in Internet Explorer 4.0 is displayed as a ToolTip.) This
modification can be accomplished without all the hard work of creating the
error queue because attributes of elements can be modified before the page
is loaded. The following code demonstrates this feature added in line for an
image; it works without any other code:

<IMG SRC="bad.gif" TITLE="Cool Picture"
ONERROR="this.title = 'Error Loading: ' + this.title";>

Dynamic Contents and document.write

The dynamic contents model is a powerful tool for manipulating a loaded
document, but it does not completely eliminate the need for the documeni.write
method. In fact, these two features complement each other extremely well. In
the following examples, dynamic contents techniques are used to locate spe-
cific text that is then output into a new window using the document.write method.
The first scenario creates a banner frame when the document is contained
within a frameset, and the second scenario demonstrates two techniques for
indexing a page.

Creating a Header Bar

Web authors have long desired a feature whereby an HTML page can supply
a banner to be displayed in a header bar above it. In earlier browsers, this
feature could only be simulated by creating a frameset that loads two files at
a time, one file for the document and another file for its banner. Using two files
per document adds complexity, as the files need to be synchronized. The
following code simplifies matters by including the banner in the document'’s
contents. If the page is loaded outside a frameset, the code displays the ban-
ner inside the document, so no document fidelity is lost.

<HTML>
<HEAD>
<TITLE>Banner Document</TITLE>
<STYLE TYPE="text/css">
DIV#bannerContents {display:none}
<SSTYLE>
<SCRIPT LANGUAGE="JavaScript">
function outputBanner() {
if (null != parent.frames[81) [
parent. frames[@J.document.open();
parent.frames[@].document.write(
document.all.bannerContents.outerHTHL)

(continued)

387

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

parent.frames[@].document.close():

else // Not in a frameset; turn on the banner.
document.all.bannerContents.style.display = "block";
1

window.onload = outputBanner;
</SCRIPT>
</HEAD>
<BODY>
<DIV ID=bannerContents>
<H1>Inside Dynamic HTML</H1>
</DIV>
<P>Inside Dynamic HTML teaches the Web developer
how to create interactive and Tive Web pages.</P>
</BODY>
<THTML>

The contents of the banner DIV can be any HTML, including scripts. The
entire contents will be copied to the other frame,

To complete this example, the following frameset document contains
code that automatically sizes the frameset once the banner is loaded. This code
changes the dimensions of the rows by assigning the scrollHeight property of
the banner to the height of the frame so that the banner frame is appropri-
ately sized.

<HTML>
<HEAD>
<TITLE>Banner Frameset</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function fixup() {
// Auto-size banner frame.
document.all.FS.rows =
window. frames.Banner.document.body.scrollHeight +
woen,

}

window.onload = fixup;

</SCRIPT>

</HEAD>

<FRAMESET ROWS="10@, =" ID="FS" FRAMEBORDER=0>
<FRAME NAME: anner” SCROLLING=NO NORESIZE>
<FRAME SRC="Banner.htm">

</FRAMESET>

</HTML>

388

203

THIRTEEN: Dynamic Contents

This frameset code sizes the header bar for the first document that loads,
but it doesn’t automatically resize the header bar when the user navigates to
another page that has a different size banner. You can add code to such other
pages to call the parent window’s fixup function to resize the header bar.

Enhanced Indexes and Tables of Contents

The most common use of framesets is to display a list of document options in
one frame and the selected document in another frame. The following ex-
amples demonstrate more interesting uses of framesets. The first example
automatically generates an anchor index, and the second example automati-
cally generates a table of contents. The index or table of contents is best dis-
played in a sibling frame.

The first example includes custom code to determine where to display the
index. If the document is loaded inside a frameset and a sibling frame has the
ID menu, the document displays the index in that frame. Otherwise, the docu-
ment opens a new window to display the index. The second example includes
similar code to determine where to display the table of contents.

Link and Bookmark Indexes

The following quick indexer example creates an index window containing
copies of all the document’s Anchor elements. The code uses each anchor’s
innerHf TML property to copy its contents so that images can be appropriately
rendered in the index window.

<HTML>
<HEAD>
KTITLE>Auto Indexing</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function setupIndex() {
7/ Qpen new window.
var winlndex = null;

/+* If in a frameset and a menu frame exists, output to
that frame; otherwise, cutput to a new window. =/
(window.parent = self)
if (null != parent.menu)

winlndex = parent.menu:
if (null winlndex)

winlndex = window.open("", "Index",

"width=300: height=560");

// Start writing index document.
winIndex.document.open{);

o

(continued)

389

PART 1V: DOCUMENT CONTENTS AND DATA BINDING THIRTEEN: Dynamic Contents
winIndex.document .write("<HTMLO"); var el = document.anchors[i];
winIndex.document .write("<TITLE>Index</TITLE>"); if {"A" == el.tagName) {

var hText = el.innerHTML;

// Determine the base HREF and base target. winIndex.document.writeln(
var baseHREF = null: “<P>" + hText +
var baseTarget = null; "TAMY ‘
// Check whether any <BASE> tags are present in 1
// the document. 1
var base = document.all.tags("BASE");
for (var i = 8; i < base.length; i++) { winIndex.document.close();
// Retrieve the base HREF and target if specified. }
if (nuil != basel[i].href) window.onload = setupIndex;
baseHREF = base[i].href; - </SCRIPT>
if (null != base[i].target) - </HEAD>
baseTarget = base[1].target: <BODY>
3} ° <H1>Auto Indexing</H1>
<HZ>Link Demonstrations</H2>
// Set up window name to act as target if no base exists. <P>The following links will appear in the link index:</P>
if ((null baseTarget) || ("" == baseTarget)) { <P>Inside Dynamic HTML
if oo window.name) <P>Microsoft's Web Site
windowiname = "outputhere”; <P>Images also work:
baseTarget = window.name; <P>
} <P>Rich HTML anchors are automatically picked up
<P>Inside Dynamic
// If base HREF doesn't exist, set to current path. HTMLC/A>
if ((nul? == baseHREF) || ("” == baseHREF)) { </BODY>
baseHREF = location.protocol + Tocation.pathname; </HTML>

}

) . Table of Contents

v/v/ (IJu;:putdbase 1:1:0 b‘l;n?w'.KBASE eI This example, which is similar to the link indexing code, automatically num-
SRS e e T o bers all headers and creates links to them in a separate table of contents win-

"'" + baseTarget + "'" + "HREF='" + baseHREF + "">"); - N S
winlndex.document.writeTn("<H1>Links</HI>"); dow. Letting Dynamic HTML number the headers eliminates the need to

// innerHTML is used so that images and rich HTML renumber them by hand every time you insert a new one. If the table of con-
// are automatically retrieved. tents is in a separate window, the window closes when the user navigates away
// Enumerate all Ancher elements; skip image maps. from the page
for (var i = 6; i < document.links.length; i++} {
var el = document.links[1]; <HTML>
if ("A" == el.tagName) { <HEAD>
var hText = el.outerHTML; <TITLE>Manipulating Headings</TITLE>
winIndex.document.writeln("<P>" + hText); <SCRIPT LANGUAGE="JavaScript™>
} // Variable for the table of contents window
1 var winT0C = null;
winIndex.document.writein{"<H1>Bookmarks</H1>"); function setupHeaders() (
// Enumerate all bookmarks. var levels = new Object;
for (var i = 8: i < document.anchors.tength; i++) { var level = 8;
(continued)
380 391

204

PART 1V:

DOCUMENT CONTENTS AND DATA BINDING

392

if (window.parent != self)
if (null != parent.menu)
winT0C = parent.menu;
if (null == winT0C)
winTOC = window.open(”", "Index",
"width=300: height=50@");

winTOC.document.open();
winTOC.document.writa("<HTML>");

winTOC.document.writeIn("<TITLE>Contents</TITLE>");

// Write click event handler to scroll element into view.

winTOC.document.writeIn("<SCRIPT> function gotoHeader()" +
“{if (event.srcElement.linkTo != null)" +
“event.srcElement.linkTo.scrollIntoView(true)} </" +
"SCRIPT>");

winT0C.document.writeIn("<BODY ONCLICK='gotoHeader()'" +
“STYLE="cursor:hand'" +
“onmouseover="1f (event.srcETement.tagName ==" +
“&quat ; SPAN")" +
"event.srcElement.style.textDecorationUnderline " +

true' onmouseout = " +

‘event.srcElement.style.textDecorationUnderline " +
"= false'>"):

winTOC.document.writeln("<Hl>Contents</H1>");

var level = @&;

// Enumerate all elements for Heading elements.
for (var i = 8: i < document.all.length; i+) {
var el = document.all[i];
var charl = el,tagName.substring(@, 1);
var val2 = parselnt(el.tagName.substring(l, 2));:
if (("H" == charl) && (2 == el.tagName.length) &&
(val2z > 8) && (val2 < 7)) {
// Nest or unnest the 1ist.
if (valz > Tevel)
for (; level < val2; level+) {
if (Tevels[levell == null)
Tevels[levell = @;
winTOC.document.writeln("<DL>");
}
else if (level > val2)
for (; level > valz; level--) {
Tevels[Tevel - 1] = 8;
winTOC.document.writeln("</DL>");
3}
Tevels[level - 1]++;
var hText = document.all[i].innerText;

205

THIRTEEN: Dynamic Contents

winTOC.document.writeTn("<DT>");
var strum = "";
for (var i0ut = @; iQut < level: iCut++) {
winTOC.document.write(levels[10ut].toString() +
@D
strium += levels[iQut] + ".";

}
document.al1[i]
strum + *
winT0C.document . writeln(™ “ + hText + "");

insertAdjacentText("afterBegin”,

// Add a property with a reference to the header.
winTOC.document.al1[winTOC.document.all.length -
11.1inkTo = el;
}
}
winTOC.document.close():
3

window.onload = setupHeaders:
/! If outputting to a frame, remove this unload event
// handler.
window.onunload = new Function
("if (lwinTOC.closed} winTOC.close()");
</SCRIPT>
</HEAD>
<BODY ONLDAD="setupHeaders();">
<H1>Dynamic HTML Auto-Numbering</H1>
<P>A11 the headers are automatically numbered and
a table of contents is generated.</P>
<P>Below are sample headings to be numbered.
<HZ2>Finds all the headers.</H2>
<P>A11 done automatically!</P>
<H2>Automatically fills in a heading number.</H2>
<Hl>Better Performance and Less Maintenance</H1>
<H2>Just maintain the page.</H2>
<HZ>Don't worry about renumbering headings.</H2>
<H3>Test header 3</H3>
<H2>No need to maintain separate contents document.</KZ>
</BODY>
</HTHML>

Inserting code from this document into any long Web page makes the

page more interactive and easier to navigate. This example also demonstrates

why proper nesting of headers is valuable. While the code can handle incor
rectly nested headings, the results are more meaningful when the headers are
properly ordered.

393

PART

I'V: DOCUMENT CONTENTS AND DATA BINDING

394

Figure 13-4 shows the Table of Contents application in action, The table
of contents and numbered headers are automatically generated after the page
is loaded.

[Aulimadic: Table ot Cantenis - Mictosnft Inletnet Explorer

| B (% Vew Go Faoim b

Contents 1. Dynamic HTML
1. Do BTMI, At Auto Numbering I
Humbereg 2 -
1.1 Finds al the headers Al he headers are automatically numbered
12 Automatically fllsin a and a table of contents is generated.
‘heading number. -
2 Better Performance and Less Below are sample headings to be tumbersd
Maintenance
2.1, Just maintain the page
2.2 Don't worry about
renumbening headings
221 Test header 3
23, Mo nesd to maintain
separate contents document

1.1. Finds all the headers.
All done automatically!
1.2. Automatically fills in a

heading number. =
e Ipa== | = :,j

Figure 13-4.
A table of contents and numbered headers.

206

C HAPTEHR

F OURTETEN

User Selection and
Editing Operations

This chapter introduces the TextRange object, which is used to access and
manipulate the document’s contents. Dynamic HTML defines an object model
that can manipulate a document through script, sinilar to a text editor. The
TextRange object represents the editing capabilities of the browser and exposes
operations that constitute the editing model. Using the TzextRange object, you
can edit any text and you can access and manipulate the highlighted text that
the user has selected on the screen.
The following topics are covered in this chapter:

B Introducing the TextRange object This section introduces the
TextRange object, how it represents the text contents of the docu-
ment, and its relationship to the document’s structure. In addition,
some of the limitations and ambiguities of the TextRange object are
discussed.

H Programming the TextRange object This section shows you how to
navigate and modify a document’s contents using the TextRange
object’s properties and methods.

m Accessing the user’s selection This section shows you how to access
the user’s selection, one of the primary uses of the TextRange object.
Both plain text and HTML text selected by the user are accessible,
and the user’s current selection can be manipulated and changed.

m Executing commands Dynamic HTML exposes a set of editing-
related methods that are exposed both on the document and on
the TextRange object. This section shows you how to use these meth-
ods to query for information about the document and to manipulate

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

the appearance of the document. The methods that manipulate the
document are used to indirectly modify the HTML in order to obtain
desired effects—for example, to create an Anchor element from
arbitrary text.

Introducing the TextRange Object

396

Up to now, you've seen how to modify a document directly by manipulating the
individual elements or the style sheets. Just as global style sheets manipulate
a document’s style independent of its structure, the TextRange object manipu-
lates the document’s contents independent of both style and structure. This
object is intended to complement the inner and outer element properties for
manipulating document contents introduced in Chapter 13, “Dynamic Con-
tents” These element properties offer more robust results and should generally
be used instead of the TextRange object whenever possible.

The TextRange object provides access Lo the text as a long buffer of char-
acters. For example, consider the text in this simple document:

<HTML>
<BODY>
<H1>Welcome</H1>
<H2>Table of Contents</HZ>

Chapter 1
Chapter 2

</BODY>
<IHTML>

Figure 14-1 shows the text for this document, positioned below the parsing tree.
Characters belonging to a particular element in the tree are shown under that
element’s influence. For example, Chapter 1 is influenced by the first LI element.

TextRange objects can be created only by special elements that are con-
sidered text edit owners. A text edit owner is an element that can create a
TextRange object using the createTextRange method, thereby providing access to
the underlying buffer. Currently only two types of HTML elements can act as
text edit owners in Dynamic HTML: the Body element is the text edit owner
for all the rendered contents, and the input elements, such as Input, Button,
and TextArea, are text edit owners for their contents. For example, you can
create a TextRange object for the preceding document by calling the body object’s
createTextRange method:

var tr = document.body.createTextRange();

207

FOURTEEN: User Selection and Editing Operations

Once a TextRange object is created, any of the contents within the object can
be freely accessed.

Body
| H1 | | H2 | | Ll | ‘ LI]
R e e | Tlaeeghy med]
| Welcome Table of Ch. 1 Chap 2 i—Text range

Figure 14-1.
Relationship between the TextRange object and the document structure.

Initially, all the text influenced by the text edit owner is spanned by the
TextRange object. For example, the TextRange object in the preceding document
spans all the text in the Body element. You can use a TextRange object’s meth-
ods to reposition it to span different text. A TextRange object spans the text that
is being manipulated or changed. A script can replace the spanned text just
as a user can select old text and type in replacement text in a word: processor.
The section “Executing Commands” later in this chapter introduces methods
for manipulating the appearance of the document that are similar to a user
selecting a font or changing the style of text in a rich text editor.

The TextRange object is designed to be robust enough to automatically
accept arbitrary HTML embedded in the document. When new text is inserted
into a TextRange object, the HTML is also inserted into the document, just as
if the user had chosen Paste from an Edit menu and inserted arbitrary text.
These operations are powerful, but they are not intended to provide the de-
veloper with precise control over the document. Instead, the developer can use
these operations to modify the document on a high level without being con-
cerned about the specific HTML code that implements the modifications. The

397

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

rules governing the HTML code that these operations generate are likely to
change for the next release of Microsoft Internet Explorer. Therefore, the
TextRange object should not be used when the result of an operation requires
the HTML to have a particular shape. Instead, the inner and outer properties
should be used.

Spanning Text

398

A TextRange object does not specify the text that it spans in terms of the ordi-
nal indexes of the text range’s start and end characters. Rather, it specifies the
spanned text in a way that is more loosely bound to positions in the document
and can survive state changes to the document. For example, if the TextRange
object spans the entire contents of the document and the contents expand or
shrink through another process, the TextRange object automatically reflects this
change and continues to span the entire contents.

TextRange Limitations

The TextRange object currently is very closely tied to characters, which causes
ambiguities between the TextRange object and the document structure. In many
cases in HTML, a single character position cannot accurately represent how
the character is influenced by the HTML, as shown here:

<P>This is <I>bold and italic</I> text.</P>

In the TextRange object, these contents are represented as This is bold and italic
text. The parent of the letter bin the text buffer is the Italic element, and the
parent of the Italic element is the Bold element. No character in the word bold
or the preceding space has the Bold element as its immediate parent. Using
the TextRange object, you cannot insert boldface but not italic text before the
word bold. The TextRange object is currently based on a single insertion point
that can exist either before the letter & (which makes the text boldface and
italic) or in the space following the word is (which makes the text neither bold-
face nor italic). The TextRange object cannot insert text between the and
<> tags. To insert text between the and <I> tags, use the insertAdjacentText
and insertAdjacentHd TML methods, introduced in Chapter 13, “Dynamic Gon-
tents.” These methods can insert text before or after any begin or end tag in
the document’s body.

208

]

FOURTEEN: User Selection and Editing Operations

Programming the TexiRange Obiject

This section introduces the properties and methods available for manipulat-
ing the TextRange object. The methods allow scripts to manipulate the under-
lying text in much the same way as a person could edit it with a text edjtor,
selecting text and typing or pasting new text into the document. Viewing the
methods this way will help you understand how they work.

Creating a TextRange Object

Asmentioned, a TextRange object is created by calling the createTextRange method

on an element that is a text edit owner. Like the dynamic contents properties,

the TextRange object is not available until after the entire document is parsed.

During the parsing of the document, any attempt to create a TextRange object

using the createTextRange method fails. Therefore, ensure that the document

is entirely loaded before using any method that returns a TextRange object.
The TextRange object returned by the createTextRange method should al-

most always be assigned to a variable. Otherwise, the TextRange object created

in memory is immediately destroyed. Here is the right way to create a TextRange

object:

var tr = document.body.createTextRange();

And here is the wrong way:

document.body.createTextRange(); // This does nothing.

The only circumstance in which you don’t have to assign a new TextRange
object to a variable occurs when a sequence of operations can be performed
in a single step—for example, when you replace the HTML that the TexiRange
object represents:

// Replace the entire body’s HTML.
document.body.createTextRange().pasteHTML{"<H1>New Document</H1>"};

The parentTextEdit Property

Every element has a property named parentTexiEdii that references the text edit
owner responsible for the element’s contents. Using this property can give your
code compatibility with future versions of the object model. Currently the

398

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

parentTextEdit properties for most elements in a document reference the Body
element. Elements contained within a Button element are the only exceptions;
their text edit owner is the Button element. However, future versions of the
object model might support more elements as text edit owners. When you cre-
ate a TextRange object for an element, use its parentTextEdit property to iden-
tify its text edit owner, and your code should still work if the text edit owner
changes. The following code illustrates this technique:

/1 el represents an element object in the document.
var tr;
if (lel.isTextEdit)
tr = el.parentTextEdit.createTextRange();
else
tr = el.createTextRange();

Every element in the body of a document exposes the isTextEdit property,
which indicates whether the element is a text edit owner. The preceding code
uses the element ¢l to create a TextRange object if elis a text edit owner; other-
wise, the code uses the parent text edit owner of el. The following simple line
of code demonstrates that the Body element is a text edit owner:

alert(document.body.isTextEdit); // true; the Body element is a
/7 text edit owner.

Representing the Document’s Contents

400

The TextRange object has two properties, text and htmlTexi, that provide access
to the document’s unformatted and formatted text.

The text property represents the document’s text without any of the HTML
markup. This property is read /write and can be used to replace the unformatted
contents. The text property is similar to the outerText property on the element
objects in the way it exposes the document’s contents and in the types of val-
ues that can be assigned to it.

The htmlText property represents the text together with the HTML markup.
This property represents the HTML the same way the ouferHHTML property
represents it, but unlike the outerH TML property, the htmlText property is read-
only. To assign new HTML to the TextRange object, you must use the pasteHTML
method instead. Assigning new HTML is handled by a separate method be-
cause it is not symmetric with reading the current HTML. A value you insert
into a text range using the pasted TML method might not match the value that
is subsequently returned by the htmlText property; the TextRange object might
modify or clean up the HTML you insert, and the HTML might even influ-
ence contents beyond the boundaries of the TextRange object.

209

FOURTEEN: User Selection and Editing Operations

The pasteHTML method is designed to insert valid HTML. When you call
the pasteHTML method on a particular element, the fragment you paste will
be within the span of that element, and it should be valid HTML within that
span as defined by the DTD (document type definition). The browser will at-
tempt to clean up any HTML that doesn’t conform, and it can extend HTML
beyond the boundaries originally spanned by the TextRange object. When the
pasteHTML method returns, the TextRange object is updated to span the newly
inserted text.

text vs. himiText

The primary advantage of using the text property over htmiTextand pasteHTML
involves the handling of entities representing angle brackets. When you assign
a value to a text property, the value is parsed as unformatted HTML, so any
angle brackets are automatically replaced by the corresponding entities; for
example, <is replaced by ⁢. When you read a text property, entities are re-
turned as their literal vatues.

‘When you insert new text in a text range using the pasteH TML method,
the text is parsed as HTML, so any angle brackets are interpreted as parts of
HTML tags. If you want to embed an angle bracket in the text, you must sub-
stitute the appropriate entity yourself. When you use the itmiText property to
retrieve a text range, any angle brackets in the text appear as entities; for
example, <is returned as &Iz,

White Space
The text property of the TextRange object represents white space as it is rendered
on the screen, not as it is represented in the underlying document. In most
cases in HTML, extra white space is ignored. For example, if an HTML docu-
ment uses three spaces between each word, the text will be displayed with only
asingle space between each word. In addition, carriage returns inside an HTML
document are ignored; block tags determine line breaks.

The exception to these rules is in PRE and XMP elements. In these ele-
ments, the existing white space is preserved and any white space later inserted
is maintained.

Floating End Tags
You cannot force an existing element in the document to end earlier by insert-
ing a new end tag. For example, suppose a document has this Bold element:

This is bold text.

I you use a TextRange object to insert a new end tag between the words
bold and fext, the new tag will not become the end tag for the Bold element.

401

PART IV: DOCUMENT CONTENTS AND DATA BINDING

The pasteH TM L method does not insert a fragment literally into the tree. Instead,
the fragment is validated against the DTD, which specifies that any extra end
tags are ignored. So inserting the tag will have no effect on the text or
on the document tree.

Invalid Scope

Some HTML elements can validly appear only within the scope of other ele-
ments. For example, a TD element is supposed to be contained in a TR element
inside a Table element. Chapter 7, “Document Element Collections,” describes
the parser’s rules for handling elements in the source document that are not
within their valid scope. Many of the same rules also apply to HTML that is
inserted using a TextRange object. For example, the following code attempts
to replace the document’s body with a single TD element:

var tr = document.body.createTextRange();

tr.pasteHTML("<TD>Cell outside any table or row</TD>");

In this example, the contents are inserted into the document, but the surround-
ing <TD> tags are ignored because a valid table is not defined. This error
handling is not guaranteed to be maintained from version to version of Dy-
namic HTML; therefore, to ensure predictable results, be careful to supply a
proper HTML fragment.

Relating the TextRange Object to the Document’s Structure

The TextRange object has a parentElement method that reports the relationship
between the text range and the document’s structure. This method returns the
lowest element in the parsing tree that influences the entire range of text. As
illustrated in Figure 14-1 on page 397, every character in the text range is in-
fluenced by a leaf node (a node with no children). When a TextRange object rep-
resents a character, its parentElement method returns the leaf node influencing
the character. When a TextRange object represents a range of characters, its
parentElement is the node that influences the entire range. When a TextRange
object is first created on the Body element, it represents all of the text, so its
parentElement is usually the Body element itself.

Positioning the TextRange Object

When a TextRange object is first created, it encompasses all of the text influ-
enced by the text edit owner on which it was created. For example, calling the
createTextRange method on the Body element returns a text range that contains
all the contents of the body.

210

FOURTEEN: User Selection and Editing Operations

A set of TextRange object methods repositions the TextRange object to span
different text. The underlying architecture for the TextRange object is not tied
to the ordinal indexes of the characters it spans in the text buffer. You cannot
directly manipulate the endpoints of a text range, assigning them new char-
acter indexes. Instead, the TextRange object move methods reposition the ob-
jectin ways to facilitate operations on the text. They can position the TextRange
object to span any character, word, sentence, text edit owner, element, or point
on the screen. These methods do not cause any text to be moved around the
document. The following list enumerates the methods available for position-
ing a TextRange object:

expand(unit)
collapse(start)

moveToElement Text(element)

moveStart(unit, count)

L]

]

»

B move(unit, count)
| |

B moveEnd(unit, count)
B

moveToPoint(x, y)
® findText(string, count, flags)

Two additional methods are available for repositioning the TextRange object:
setEndPoint and moveToBookmark. The setEndPoint method complements the
compareEndPoints method. These methods are discussed in the sections “Manag-
ing TextRange Objects” and “Manipulating Bookmarks” later in this chapter.

The expand and collapse Methods

The expand method expands a TextRange object to fully encompass a charac-
ter, a word, a sentence, or the entire text of the text edit owner on which it was
created. For example, if the TextRange object spans a portion of a word, call-
ing its expand method with the parameter word causes it to span the entire word.
The expand method returns a Boolean value indicating whether the method
succeeded.

The collapse method performs the reverse operation, placing the TextRange
object’s begin and end markers together as an insertion point. An optional
parameter determines whether the insertion point is placed at the beginning
or end of the current range; the default value is frue, which places the inser-
tion point at the beginning.

403

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

404

The moveToElementText Method
The moveToElementText method positions the TextRange object to span the text
influenced by an element. Consistent with the behavior of the TextRange ob-
Jject, there is no guarantee that assigning a value to the TextRange object posi-
tioned using moveToElementTextwill change only the element’s contents. Instead,
if you need to change the contents of an element directly, you should use the
inner and outer properties, introduced in Chapter 13, “Dynamic Contents.”
The moveToElementText method is useful for navigating through the docu-
ment to perform subsequent manipulations such as analyzing the first word of
each header. The TéxtRange object can be easily moved to an element and then
repositioned to span just the first word of text in that element without having to
parse any strings. The next section focuses on the move methods that can do this.

The move, moveStart, and moveEnd Methods

The move, moveStart, and moveEnd methods reposition the TextRange object by
a specified amount. The moveStart and moveEnd methods reposition the begin
and end markers of the TextRange object. The move method repositions the
TextRange object’s begin marker by the specified amount and collapses the ob-
ject to an insertion point.

Each of the three methods takes the same two parameters. The first
parameter specifies whether to move by word, character, or sentence or to the
end of the text stream. The second parameter specifies how many units to
move. The second parameter can be either a positive or a negative value, which
indicates whether to move forward or backward. The first parameter can be
any of the following string values:

Unit Deiinition

character Moves by the specified number of characters

word Moves by the specified number of words

sentence Moves by the specified number of sentences

textedit Moves by the specified number of text edit elements

The move, moveStart, and moveEnd methods return the actual number of
units that were moved. For example, if you were trying to move 200 words in
a 100-word document, the move method would reposition the TextRange object
to the last word in the document and return the number of words moved. To
check whether an operation was successful, compare the return value with the
number of units moved:

211

FOURTEEN: User Selection and Editing Operations

if (260 == tr.move("word", 2080)) {
// Success!

3

else {
// Failed to move 20@ words.

3

The move method positions the TexiRange object as an insertion point
between two characters. For example, calling the move method to move forward
three words positions the TextRange object between the third and fourth words.
In this case, the text property would return an empty string. Assigning a value
to the text property or calling the pastel TML method would insert the text into
the document at that point.

The moveStart and moveEnd methods move the start and end character
positions. For example, this technique can be used to expand a selection of four
words to five words either by moving the start position backward or by moving
the end position forward. The following code demonstrates how to obtain the
first word of an element in the document:

function firstWord(myElement) {

// Obtain a TextRange object.

var tr = document.body.createTextRange();

// Move the TextRange cbject.

// myElement represents an element in the document.

tr.moveToETementText(myElement);

// Collapse the TextRange object to the beginning of the element.

tr.collapse();

if (tr.moveEnd("word”, 1))
return tr.text:

else
return

The following example demonstrates how to count the number of words
in a document. This code can be easily changed to count other units by chang-
ing the first parameter in the move method.

function countWords() {
var tr = document.body.createTextRange();
var intlount = @&;
// Collapse the TextRange object to the beginning of the document.
tr.collapse(true);
while (tr.move("word”, 1))
intCount++;
return intCount - 1; // Loop moves past last word

405

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

406

When moving by word or character units, all elements that represent an ob-
ject, including images, intrinsic controls, and so on, represent a single unit.,

NOTE: The ways these methods reposition the TextRange object
can be compared with the ways certain keystrokes move the cursor
or change text selection in popular word processors such as Microsoft
Word. For example, the move method repositions the TextRange
object as an insertion point the same way that the Right and Left
arrow keys reposition the cursor in a word processor. Pressing an
arrow key moves the cursor one character; holding down the Ctrl key
and pressing an arrow key moves the cursor one word. The moveStart
and moveEnd methods expand or contract the text spanned by a
TextRange object the same way that keystrokes expand or contract
selected text, Holding down the Shift key and pressing the Right or
Left arrow key causes a selection to expand or contract one charac-
ter in the specified direction. Holding down the Shift and Ctrl keys
causes the selection to expand or contract a word at a time.

The moveToPoint Method

The moveToPoint method takes a point in the client area of the screen as an
argument, determines what item in the document is rendered at that point on
the screen, and places the TextRange object as an insertion point by that item.
This method, when used in a mouse event handler to determine what text the
mouse is on, offers finer granularity than the srcElement property, which returns
the element the mouse pointer is in. The following mouse event handler code
displays in the status bar the word the mouse is on:

function doMouseMove() {
var tr = document.body.createTextRange():
tr.moveToPoint{event.clientX, event.clientY):
// Expand to the entire word under the mouse.
tr.expand("word™);
window.status = tr.text;

}

document.onmousemove = doMouseMove;

The findText Method
The findText method locates a specified string in the document. The browser’s
Find dialog boxes use the findText method and can demonstrate the flexibil-
ity provided by this method.

The findText method takes three parameters. The first parameter is the
string to locate in the document. The second parameter represents how many
characters to search in the document; the value must be positive for a forward

212

FOURTEEN: User Selection and Editing Operations

search and negative for a backward search. The third parameter specifies
whether an entire word must match the string and whether a match must be
case sensitive: pass 2 for full word matching, 4 for case-sensitive searching, and
6 for case-sensitive word matching.

Managing TextRange Objects

Methods are available to clone a TextRange object, to compare two TextRange
objects, and to position one TéxtRange object relative to another one.

The duplicate Method

The duplicate method creates a copy of the TextRange object on which it is
called. For example, the following code creates a copy of the TextRange ob-
ject named #r:

var tr2 = tr.duplicate();

The inRange and isEqual Methods
The inRange method specifies whether the supplied text range is within the
span of the TextRange object on which the method is called:

alert(tr2.inRange(tr}}; // true; tr is within tr2.

The isEqual method compares two TextRange objects to see whether they
span the same text. The method is necessary because two TextRange objects rep-
resenting the same range of text can nonetheless be distinct objects, so com-
paring them directly as objects will not work. The following code demonstrates
the right and wrong ways to see whether two objects span the same text:

// Set up example.

var tr = document.body.createTextRange():

var tr2 = tr.duplicate(}:

/7 Wrong way to compare text ranges:

alert(tr == tr2); /f false; these are two different abjects.
// Right way to compare text ranges:

alert(tr.isEqual{tr2)); // true

The compareEndPoints and setEndPoint Methods

The compareEndPoints method compares two TextRange objects to see whether
their start or end positions coincide. The setEndPoint method sets the start or end
position of one TextRange object to the start or end position of another TextRange
object. Both methods take two parameters. A start or end position of the
TextRange object on which the method is called is compared with or set to a start
or end position of the TextRange object specified by the second parameter. The

407

==

PART [IV: DOCUMENT CONTENTS AND DATA BINDING

first parameter can take any of the values in the following table, which specify
what positions are to be used.

Value Description

StariToStart Sets or compares the start position of the current TextRange
object to the start position of the TexiRange object specified
in the second parameter

StartTolind Sets or compares the start position of the current TextRange
object to the end position of the TextRange object specified
in the second parameter .

EndTolnd Sets or compares the end position of the current TextRange

object to the end position of the 7extRange object specified
in the second parameter

EndToStart Sets or compares the end position of the current TextRange

: object to the start position of the TextRange object specified
in the second parameter

For example, the following function determines whether the ¢rDest object
continues where the #Src object leaves off:

function continues{trSrc, trDest) {
return trSrc.compareEndPoints("EndToStart™, trDest);
}

Scrolling the Range into View

TextRange objects are manipulated entirely in memory. Changing the text and
htmlText properties on the TextRange object does not cause the document to
scroll. To scroll the text spanned by a TextRange object into view, use the same
scrolifntoView method that all elements support. This method takes a single
optional parameter that specifies whether to scroll the text in the TextRange
ohject to the top of the screen (#rue) or to the bottom of the screen (false).

Manipulating Bookmarks

408

A bookmark represents a TexiRange object’s position in the text, similar to an
HTML bookmark representing a position in a document. You can use a
TextRange object’s getBookmark method to save a record of the object’s current
position as a bookmark and its moveToBookmark method to return to a saved
position,

The getBookmark method returns a bookmark as a string value. Like
TextRange, 2 bookmark does not record start and end positions as character

213

FOURTEEN: User Selection and Editing Operations

indexes. Rather, the bookmark is a string that contains the position informa-
tion in an encoded form. The string is not meant to be manipulated directly
and should be used only with TextRange methods.

The moveToBookmark method takes a bookmark string as a parameter and
positions the TextRange object according to the bookmark. This method returns
a Boolean value that indicates whether the operation is successful.

You could make one TaxtRange object’s position match a second TextRange
object’s position by calling the first object’s moveToBookmark method and pass-
ing it the bookmark returned by the second object’s getBookmark method.
However, a more direct way to copy a bookmark is to use the duplicate method.

Embedded Objects

Embedded objects are the HTML elements that represent intrinsic controls,
Object elements, images, and so on. Each embedded object is represented by
a space in the 7éxtRange object. To determine whether a space in a TextRange
object actually represents an embedded object, obtain another TextRange ob-
Jject that spans just the space and check the parentElement method.

To add an embedded object to the TextRange object, insert the appropriate
HTML into the document using the pasteH TMLmethod. Once the assignment
is made and the HTML is parsed, the text in the TextRange object is automati-
cally updated with a space to represent the newly instantiated embedded object.

Selecting the Text Range

The TextRange objéct exposes a select method that makes the text spanned by
the object the user’s current selection. When a TextRange object is selected, the
text it spans is selected on the screen. Subsequently extending the TextRange
object does not extend the selection unless you call the select method again.

Accessing the User’s Selection

User selection is closely related to the TextRange object. The document’s selec-
tion property references an ohject that exposes the current selection in the
browser to scripts. This selection object also exposes a type property that returns
the type of the selection: None for no selection and Text for a text-based selec-
tion. When text is selected on the screen, the selection object’s createRange
method returns a TextRange object that spans the selected text., Repositioning
this TextRange object will not change what text is selected on the screen, but
changes made to the text by the TextRange object will of course be reflected on
the screen. To change the selection on the screen to match a TextRange object,

409

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

you can call the TextRange object’s select method. For example, the following
code uses a TextRange object to extend the selection on the screen by one word:

if ("Text" == document.selection.type) {
var tr = document.selection.createRange();
// Move the end position to include one more word.
tr.moveEnd("word”, 1);
// Reselect the range.
tr.select();
1
else
alert("No text is selected."):

Always test the type of the selection before you do any manipulating
hecause the browser supports a second type of object, called a ControlRange,
for selecting multiple controls. Because multiple controls are currently not
selectable when you are browsing a document, the ControlRange ohject is not
discussed here.

Executing Commands

410

The Dynamic HTML object model exposes a set of methods that allow user
operations to be executed directly on a range or on the document. These
operations correspond to different actions the user can perform on the text.
For example, there are commands for making text boldface or not boldface,
similar to a Bold toggle button in a text editor. These commands modify the
underlying HTML to achieve the desired result. Currently all style manipula-
tions occur by inserting the presentational HTML markup into the document,
There are no guarantees that the commands will perform style manipulations
this way in future releases of the browser. The only guarantee is that the cor-
mands will still create the same visible end results.

These commands enable a page to manipulate the document style and
contents without worrying about the HTML structural rules. For example,
when the Bold command is invoked, appropriate HTML is automatically gener-
ated. Commands are also available for performing other basic user operations,
such as cutting and copying text, adding controls to a fixed region, and undo-
ing the last operation.

‘ TextRange objects and the document object expose a number of methods
for executing and querying the status of commands. These methods fall into
two categories: those that return the status of a command and those that ex-
ecute a command. The six available methods for determining a command’s
status are shown here:

214

FOURTEEN: User Selection and Editing Operations

queryCommandSupported(cmdlID)
queryCommandEnabled(cmdID)
queryCommandState(cmdID)
queryCommandIndeterm{cmdID)
queryCommand Text(cmdID, text)

queryCommandValue(cmdl D)

These methods are best understood in the context of a text editor’s user
interface. The queryCommandSupporied and queryCommandEnabled methods
return Boolean values reporting whether the specified command is supported
by the object and whether it is currently available. If a command is disabled,
executing the command has no effect on the document. The queryCommand-
State method indicates whether the specified command has been carried out
on the object; for example, calling this method with the parameter Boldreturns
true if the object spans boldface text, false if not, and nullif the method can-
not determine the state. The queryCommandIndeterm method indicates whether
the state of the command is available. For example, if a TextRange object spans
both boldface text and plain text, this method returns ¢rue because the actual
bold state is unavailable.

The queryCommandText and queryCommandValue methods provide further
information about a command. The queryCommandTexi method returns a short
menu string or a longer status bar string that describes the function. Because
the texts of these strings may vary among browsers, you should not write code
that relies on a particular string being returned. The queryCommandValue
method returns the actual value of the command. For example, calling this
method with the parameter FontName returns the name of the font.

None of the preceding methods have any effect on the document; they
simply return information about the current state. To interact with the docu-
ment, the following two methods are exposed:

B execCommand(emdID [, displayUl] [, value])

M execCommandShowHelp(cmdID)
The execCommand method executes a command. The emdID argument represents
the command to invoke and is required. The optional displayUl parameter
specifies whether to display or hide any corresponding user interface. By de-

fault, any associated user interface is not displayed. In some cases, bypassing the
user interface would create a security concern, so the displayUl argument is

411

PART 1V: DOCUMENT CONTENTS AND DATA BINDING
ignored and the user interface is always displayed. For example, invoking the
Print command will not print the document without first alerting the user. The
value attribute supplies a value to the command. The execCommandShowHelp
method displays the help file if one is supported for the specified command.
The following code, which analyzes a document in order to determine
how many fonts are displayed, illustrates how the queryCommandValue method
can be used:
<SCRIPT LANGUAGE="JavaScript">
function walkDocument() (
var fonts = new Array();
var tr = document.body.createTextRange();
tr.collapse();
while (tr.moveEnd(“character”, 1)) {
var val = tr.queryCommandValue("FontName"};
if (null == fonts[vall) {
fonts[vall = true;
fonts.length++
1
tr.collapse(false);
}
var settings = “"Total Fents: " + fonts.length + "\n";
for (var font in fonts) {
settings += " " + font + "\n":
}
alert(settings);
}
</SCRIPT>
The companion CI contains a list of all the available commands and the
types of values they accept and return.
412

215

" {tparselntnavigat
nonsrHAnavigetor appierssio

CHAPTEHR F1FTETEN

Data Binding with HTML

Until the arrival of data binding, accessing data via Web pages was slow. (And
the Internet has become slower as traffic has increased—especially if you're
limited to a 28.8-Kbps modem.) Pages that accessed data were slow to render.
This was due, in large part, to servers not only supplying Web pages but also
being tasked with accessing the database and merging the data with the page
to create a complete HTML page for the client. Moreover, once that page was
transmitted to the client there was no way for the client to differentiate between
the data and the HTML that contained it. As a result, when users wanted to
manipulate the data—for example, to sort it in a different order—they needed
to make another request to the server. Such a request would result in the server
accessing the same data again, formatting it differently, and transmitting the
new page to the client. The server would once again transmit the same data
embedded in the HTML page to the client. Some servers were also required
to maintain client state to ensure that data was consistently displayed to the
user. All these factors resulted in a user experience equivalent to mainframe
terminals in terms of interactivity. Fortunately, all this has changed.

Enter data binding. Data binding is a feature of Dynamic HTML that
solves many of these problems. Data binding maintains the distinction between
the data and the HTML that displays it. Data is transmitted to the client asyn-
chronously and rendered asynchronously as it arrives, much like a progressively
rendercd GIF. Because the client is able to differentiate the data, it can per-
form manipulations, such as sorting, on the client without a round-trip to the
server. This autonomy reduces the number of server hits and the amount of
data transmitted. Web pages built using data binding display data more quickly,
remove the burden of formatting from the server, and provide a more inter-
active, responsive experience to the user by eliminating long waiting periods
between pages.

413

PART

1V¥: DOCUMENT CONTENTS AND DATA BINDING

414

The goal of this chapter is to give you enough information to build an
HTML page using data binding as well as to provide a reference as you build
data-bound pages. The following topics are covered in this chapter:

® What is data binding? Data binding is a concept introduced in Dy-
namic HTML. This section defines the term binding and introduces
the concepts that will be explored in the remainder of this chapter.

W Data-binding architecture This section discusses the three compo-
nents of the data-binding architecture: data source objects, HTML
data-binding extensions, and the binding and repetition agent. Data
source objects supply data to Web pages and encapsulate the func-
tions of transmission, specification, manipulation, and script access.
The HTML data-binding extensions are attributes that can be in-
cluded on HTML elements. Elements that include data-binding at-
tributes are called data consumers. The attributes specify the data
source object that supplies data to the element. The binding and
repetition agent recognizes data source objects and data consumers
on a Web page and synchronizes data transfers between the HTML
elements and the data source.

B Data consumers: HTML elements A large number of HTML ele-
ments support data binding. This section provides a list of these
elements and explains how they are used to display and allow user
interaction with the data supplied by a data source object. This sec-
tion also provides examples that demonstrate how to bind each sup-
ported HTML element.

Building basic pages using data binding This section discusses the
three basic types of binding: current record binding, repeated table
binding, and paged table binding. Current record binding displays
data from the current record in bound elements. You can use a script
to change which record in the data set is current, When a new record
becomes current, the bound elements are updated to show data from
that record. Repeated table binding allows the Web author to repeat
a set of HTML elements, called a template, to build a table that dis-
plays all the rows in a data set. Paged table binding is similar to re-
peated table binding except that it allows the Web author to Jimit
the number of records displayed in the table. The paged table can
be thought of as a window into the data set. Using scripts, the Web
author can then move this window around the data set to display
additional data.

216

FIFTEEN: Data Binding with HTML

B Writing scripts using data binding As part of the data-binding func-
tionality, a rich event model is provided to Web authors for writing
applications. Events are provided for validation, record movement,
and asynchronous data transmission. This section also describes
the basics of accessing data from a data source object using ADO
(ActiveX Data Objects).

Advanced features This section gives a brief overview of a number
of advanced features of data binding, including data updates,

the recordNumber property, and object model access to the data-
binding attributes. This section discusses how a Web page can be
made into 1 client/server application by enabling data updates.
The recordNumber property, available from every element in a re-
peated or paged table, allows the Web author to easily determine
to which record from the data source object the element is bound.
The remainder of the section discusses adding, deleting, and modi-
fying data-binding attributes on elements using the Dynamic HTML
object model.

What Is Data Binding?

Before we discuss the three components of the data binding architecture, let’s
explain what is meant by the term binding. Simply put, a binding expresses the
relationship between the data supplied by a data source object and the HTML
consumer of the data. This relationship is called a binding because the value
of the datem (short for data item) is synchronized between the client and the
server. When an HTML consumer—for example, an HTML text box—modifies
a datem, the modified datem is saved back to the data source object. Con-
versely, if the data source object changes the data value, the modified datem
is sent to the data consumer, Generalizing further, multiple consumers can be
bound to the same datem, and all values of all consumers are synchronized to
the value supplied by the data source object. Values in the data source object
are bound to the values in one or more data consumers.

Two distinct styles of binding are available: current record binding and re-
peaied table binding, Current record binding uses HTML elements to display data
from a single record from the data set—the current record. A different record
can then be made current, in which case—the elements are updated dynami-
cally to display the data from that record. Repeated table binding lets you
specify a set of bound elements, called a template, that is repeated once for each
record in the data set. Web authors also have the option of limiting the num-
ber of records repeated in the 1able, a feature known as table paging. Table

415

PART

1V¥: DOCUMENT CONTENTS AND DATA BINDING

paging and the two binding styles will be discussed in detail in the section
“Building Basic Pages Using Data Binding” later in this chapter.

Data-Binding Architecture

The data-binding architecture consists of three major components: data source
objects, HTML data-binding extensions that define data consumers, and the
binding and repetition agent. Data source objects supply data to the page, and
HTML data consumers display the data and provide ways for the user to interact
with the data. The binding and repetition agent provides support for the two
styles of bindings. Additionally, the binding and repetition agent is responsible
for synchronizing all bindings to a single datem whien users modify the data
on the page.

Data Source Objects

416

Data source objects provide an open architecture for supplying data to a Web
page. Data source objects are inserted in a Web page using either an <APPLET>
tag or an <OBJECT> tag, as shown here:

<OBJECT ID="stocklist™ WIDTH="@" HEIGHT="g"
CLASSID="c1s1d:333C7BC4-460F-1100-B(04-0986C7055A83">
<PARAM NAM DataURL" VALUE="stockdata.txt™>
<PARAM NAME="FieldDelim” VALUE="|">
<PARAM NAME="TextQualifier” VALU ">
<PARAM NAME="UseHeader™ VALUE="true">
</0BJECT>

Once a data source object has been inserted on a page, data consumers can
be defined to display the data and interact with the user.

Data source objects can be implemented in a variety of programming
languages, including Java, Microsoft Visual Basic, and Microsoft Visual C++.
Data source objects are responsible for four major functions of data access:

W Transporting data to and from the page—Data source objects must
implement the mechanisms for retrieving data for an HTML page.
Data source objects are solely responsible for transporting the data
to the client and, optionally, transporting modifications of the data
by the client back to the server. They can transport this information
in any manner they see fit—using HTTP (hypertext transfer proto-
col), FTP (file transfer protocol), local file access, or connection-
based database protocols. Dynamic HTML does not place any
constraints on the transporting of data.

217

FIFTEEN: Data Binding with HTML

Most well-authored data source objects will support asynchro-
nous data delivery—that is, the data source object will expose the
data incrementally as it is transmitted to the client rather than wait-
ing for the entire data set to be present before exposing the data.
Because the Microsoft Internet Explorer 4.0 browser supports in-
cremental display of bound data, use of a data source ohject that
supports asynchronous delivery will result in the data being dis-
played and available for interaction with the user sooner, much like
an interlaced GIF is displayed incrementally.

Supplying the mechanism for specifying the data to be transferred—
Because data source objects are responsible for the transfer of data,
they are similarly responsible for the mechanism that specifies what
data is to be transferred (accessed). Data source objects are free to
use a query language of their choice, URLs, paths to files, other
processes, other objects, or any other means of specifying data that
is compatible with the protocol they utilize for accessing the data.

Providing methods for manipulating the data on the client—Data
source objects can support properties and methods for manipulat-
ing the data they supply. For example, the data source objects in-
cluded with Internet Explorer 4.0 support properties and methods
for sorting and filtering the data that they supply. When you set
these properties or call these methods from a script, the data source
object performs the manipulation and, through notification inter-
faces with the binding and repetition agent, informs the browser that
the data has been modified. The browser in turn redisplays the
bound data to reflect the current order (for sorting) or the new,
reduced or expanded data set (for filtering).

Data source objects can also support data updating. The data
source object can allow the user to change the values of bound
HTML elements on the Web page. The data source object transmits
the changed data back to its source, usually a database or a Web
server, where the changes will be saved. The RDS (Remote Data
Service) is one such data source object. RDS is included with mini-
mal configurations of Internet Explorer 4.0. More information
about RDS can be obtained from the Microsoft Web site at
www.microsoft.com/data.

Sorting, filtering, and updating aren’'t the only manipulations
supported by data source objects. A data source object can support

417

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

any manipulation appropriate to the type of data it supplies. For
example, a data source object that provides an amortization sched-
ule for a loan might expose three properties: interest rate, loan
amount, and duration. Whenever any of these properties are modi-
fied, the data source object would generate a different data set be-
cause a change to the values will change the amortization schedule
for the loan.

Providing an object model for script access to data (referred to as a
data object model)—In general, data binding requires little or no
script to build basic pages unless you need to perform validation,
calculations, or data manipulations.

Internet Explorer 4.0 provides the ADO object model for every
data source object. However, data source objects can optionally ex-
pose their own additional object model in circumstances in which
the data exposed does not lend itself to access using ADO. An ex-
ample of a data source object that must expose its own data object
model is the XML (Extensible Markup Language) data source ob-
ject; see the Microsoft Web site at www.microsoft.com/standards,/xml
for more information.

HTML Data-Binding Extensions

418

Data from data source objects is displayed to the user using standard HTML
elements. The key to these elements displaying the data is the inclusion of one
or more of the HTML data-binding extensions.

NOTE: The data-binding extensions have been proposed to the
W3C (World Wide Web Consortium) for inclusion in the HTML
standard.

The data-binding extensions are four new attributes that can be included
on a wide variety of HTML elements. The attributes specify the data source
object that supplies the data to the element, what column or field of the data
source object to bind, whether the data is plain text or should be interpreted
as HIML, and, for repeated tables, whether the table should display only a
subset of the data supplied by the data source object. The following sections
discuss these attributes in detail. For a complete listing of elements that sup-
port the data-binding attributes, see the section “Data Consumers: HTML
Elements” later in this chapter.

218

FIFTEEN: Data Binding with HTML

OLE-DB Simple Provider

In general, a data source object will read its data into an in-memory
cache on the client. The data source object must then have a way to
expose the data in this cache to the browser. Data source objects do
this by implementing either the OSP (OLE-DB Simple Provider) inter-
face or directly through OLE-DB, which is a set of OLE interfaces for
accessing data.

For the initial release, Internet Explorer 4.0 will support all data
source objects implementing OSP. The RDS included with Internet
Explorer 4.0 is the only supported OLE-DB provider for Internet Ex-
plorer 4.0. Support for arbitrary OLE-DB providers will be added in
future releases, but this section will discuss only OSP.

OSP is an open specification and is compatible with both JavaBeans
(the component model for Java) and OLE. OSP provides a simple
interface for exposing data in the client-side cache. In most circum-
stances, the client-side cache can be viewed as an array or a set of tabu-
lar data—that is, a data set made up of rows, in which each row has the
same number of columns. OSP provides access to this array of data one
cell at a time, OSP supports the capability to add and delete rows; it
also requires the data source object to fire notifications when cells are
modified or when rows are added and deleted. These notifications are
used by the Internet Explorer 4.0 binding and repetition agent to keep
each bound element synchronized with the current record’s data val-
ues. Data source objects that expose OSP can be implemented in Java,
Microsoft Visual Basic 5.0, and Microsoft Visual C++ using MFC
(Microsoft Foundation Classes) or, preferably, ATL (Application Trans-
action Language) 2.0.

The DATASRC Attribute

The DATASRC attribute indicates the data source object that supplies the data.
DATASRC is set to #<IDref> where <IDref> is the ID of the data source object.
Using the earlier example under “Data Source Objects,” the DATASRC at-
tribute pointing to the stocklist object would be expressed as follows:

DATASRC=#stocklist

In general, the DATASRC attribute is not used alone; it is combined with
the DATAFLD attribute. However, there is one exception to this rule: repeated

419

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

420

tables. Repeated tables use only the DATASRC attribute because the bind-
ing on a repeated table indicates only the source of repetition. Bound HTMT,
elements inside the table display and interact with the actual data.

The DATAFLD Attribute

Data source objects expose their data as a tabular set consisting of multiple rows
with a fixed number of columns. The data source object gives the columns
names that can be referenced through the OSP interface. The definition of
column names is the responsibility of the data source object. The DATAFLD
attribute indicates the named column or field that is to be bound from the data
source object.

In general, the DATAFLD attribute must be accompanied by DATASRC.
However, for an element within a repeated table, DATASRG is omitted because
it is inherited from the DATASRC attribute on the Table element. See the
section “Repeated Table Binding” later in this chapter for more information.

The DATAFORMATAS Attribute

The DATAFORMATAS attribute specifies the format of the data supplied by
a data source object. DATAFORMATAS can take one of three values: NONE,
TEXT, and HTML. The default value is NONE. When NONE is specified (or
when the attribute is not included), the data source object is asked for the native
type required by the data consumer—almost always text for HTML elements.
When TEXT is specified, the data source object is asked specifically for a text
value, regardless of the underlying data type of the column. For example, if
the data source object supplied a column of type integer, it would be required
to convert those integers to strings when DATAFORMATAS was specified
as TEXT.

Most important, when DATAFORMATAS has the value HTML, the data
supplied by the data source object is interpreted as HTML rather than as plain
text. The data is parsed, and any HTML elements within it are rendered as if
they were present directly on the Web page. By setting DATAFORMATAS to
HTML, you can store HTML in your data rather than storing it statically on

your page.

The DATAPAGESIZE Attribute

The DATAPAGESIZE attribute is specific to a repeated table. It gives the Web
author the flexibility to limit the length of a repeated table, and hence the
overall length of a data-bound page. It takes positive integers as its value, and
it must be used in conjunction with the DATASRC attribute.

219

FIFTEEN: Data Binding with HTML

If the DATAPAGESIZE attribute is not specified, the table’s template is
repeated for every record supplied by the data source object. Including DATA-
PAGESIZE on a table limits the number of times the template is repeated to
the value specified. The rows displayed in the table can then be scrolled us-
ing methods from the Dynamic HTML object model on the Table element.

Binding and Repetition Agent

The third component of the data-binding architecture is the binding and rep-
etition agent—called the binding agent for short. The binding agent is a built-
in component of Internet Explorer 4.0. It is responsible for interpreting the
data-binding attributes and then actually supplying the data from a data source
object to the data consumers. To achieve this, the binding agent performs a
number of tasks. First the binding agent recognizes data source objects and
data consumers included on a page or added dynamically to the page using
the Dynamic HTML object model. The binding agent keeps track of what data
source objects are available and to which columns of the data source object the
data consumers are bound.

The binding agent also performs the appropriate processing as deter-
mined by the type of binding expressed. For current record binding, the bind-
ing agent supplies data from the current record to the data consumers. When
a new record becomes current, the binding agent updates the data consum-
ers with the data from the new current record. For repeated table bindings,
the binding agent repeats the table’s template for each record supplied by the
data source object. Individual bound elements within the table are supplied
values from the appropriate column for each record in the data source object.

Another function of the binding agent is to keep the data synchronized
between data consumers and data source objects. This is actually a dual func-
tion. The binding agent monitors data source objects and detects changes to
data by handling notifications; when data to which an HTML element is bound
changes, the binding agent propagates the changes to the bound element.
Likewise, when a user changes a bound element’s value by interacting with the
page, the binding agent propagates the change back to the data source object.

Last, the binding agent is responsible for firing script events for the data
source objects and data consumers. Events are provided on data consumers
to allow page authors to write scripts that validate user input or that respond
to actions taken by the user, such as changing which record is current. More
details on the available script events can be found in the section, “Writing
Scripts Using Data Binding” later in this chapter.

421

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

Data Consumers: HTML Elements

Data binding uses standard HTML elements to present data to the user. These
elements include HTML Form elements, basic HTML constructs such as An-
chors and Images, more esoteric constructs such as Objects and Applets, simple
containers for other HTML elements such as DIV and Span, and Tables for
repeating items from a data set. This section provides a detailed explanation
of each data consumer, beginning with the basic consumers and continuing
to the more complex elements.

The DIV and Span Elements

DIV and Span are simple containers for text or for other HTML elements. Be-
cause DIV and Span are block elements (they have begin and end tags), binding
them hinds their contents. Both DIV and Span support the DATAFORMATAS at-
tribute and can be bound to HTML data in the column of a data source ob-

ject. Neither element can have its contents modified by the viewer of the page;

therefore, the bindings to the DIV and Span are also read-only.

NOTE: Data can still be modified through the data object model.
In this case, changes to the data from a script will be reflected in
bound DIVs and Spans.

The following code demonstrates a bound DIV and a bound Span:

<DIV DATASRC=ffstocklist DATAFLD="Symbol" DATAFORMATAS=TEXT></DIV>

The Input Element

422

The types of Input elements supported by data binding are listed here:

m TYPE=TEXT—Data binding enables binding to the VALUE attribute
of the text box and, in keeping with the text box’s normal mode of
operation, allows the user to edit the value. Changes made to the
item are stored in the data source object. An example of how to bind
a text box control is shown here:
<INPUT TYPE=TEXT DATASRC=#stocklist DATAFLD="Shares">

W TYPE=RADIO—Data binding binds the VALUE attribute from a
group of radio buttons having the same NAME attribute. The DATA-

SRC and DATAFLD attributes must be included on all the radio but-
tons in the group. If the bound value from the data source does not

220

FIFTEEN: Data Binding with HTML

match any of the values of the bound radio buttons, no radio but-
tons are selected. When the user selects a radio button, the corre-
sponding value is stored in the data source object.

An example of a group of data-bound radio buttons is shown
here:

<INPUT TYPE=RADIO VALUE=S DATASRC=ffstocklist
DATAFLD="Type">Short
<INPUT TYPE=RADIO VALUE=L DATASRC=f#stocklist
DATAFLD="Type">Long
TYPE=CHECKBOX—The data-bound behavior of a check box dif-
fers significantly from its behavior within an HTML form. Data-
bound check boxes bind a Boolean value, not the VALUE attribute
of the check box. A data-bound check box always provides a value
of True or False.
An example of a data-bound check box is shown here:

<INPUT TYPE=CHECKBOX DATASRC=f#stocklist DATAFLD="ExDiv">

TYPE=HIDDEN—A data-bound hidden element is useful only in hy-
brid pages that use data binding in conjunction with a Submit but-
ton. A data-bound hidden element has its VALUE attribute bound.
‘When an HTML form that contains a data-bound hidden element is
submitted, the hidden element’s value will be sent to the server.

An example of a data-bound hidden element is shown here:

<INPUT TYPE=HIDDEN DATASRC=#stocklist DATAFLD="DatelUpdated">

TYPE-PASSWORD—Data-bound password fields have exactly the
same data-binding behavior as data-bound text boxes. Their VALUE
attribute is bound and the value typed by the user is stored in the
data source object.

NOTE: The Input elements do not require an enclosing Form

element when used for data binding. No Submit button is required
either.

The TextArea Element

Data binding a TextArea element binds the complete text of the multiline text
box to a single column.
An example of a data-hound TextArea élement is shown here:

<TEXTAREA DATASRC=#stocklist DATAFLD="News">

423

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

The Marquee Element

As with the DIV and Span elements, binding to a Marquee element binds the
contents of the element. You can optionally add the DATAFORMATAS=HTML
attribute to indicate that the bound data is HTML. If you do so, the data will
be parsed and rendered by the browser.

An example of a data-bound Marquee element is shown here:

<MARQUEE DATASRC=ftstocklist DATAFLD="Last" DATAFORMATAS=HTML>
</MARQUEE>

The Select Element

424

A data-bound Select element allows the binding of a single selected value from
alist. The VALUE attribute of the Option element corresponding to the selec-
tion is the value stored in the bound column of the data source object. When
the value in the data source object does not correspond to any values specified
on an Option element in the Select element, no values are selected. Data-bound
Select elements can use either the drop-down list or the combo box user in-
terface, depending on setting of the SIZE attribute. The MULTIPLE attribute
is ignored on data-bound Select elements because it is not possible to bind an
elément to more than one value from a single column.
An example of a data-bound combo box is shown here:

<SELECT DATASRC=#stocklist DATAFLD="Type">
<OPTION VALUE=L>Long
<OPTION VALUE=S>Short

</SELECT>

A data-bound drop-down list would use the following Select element:

<SELECT SIZE=2 DATASRC=#stocklist DATAFLD="Type">
<OPTION VALUE=L>Long
<OPTION VALUE=S>Short

</SELECT>

Although the list of options for the Select element cannot be bound di-
rectly to a data source object, it is possible, through a script, to populate the
options of the Select element from a dara source object. The following code
illustrates this technique:

<!-- Data source object to supply the Select element options -->
<OBJECT ID="selectlist™ WIDTH="0" HEIGHT="0"
CLASSID="c1sid:333C7BC4-460F-11D0-BC04-0980C7055A83">
<PARAM NAME="DataURL" VALUE="selectdata.txt">
<PARAM NAME="UseHeader™ VALUE="True">
</ORJECT>

221

FIFTEEN: Data Binding with HTML

<l-- List to be populated -->
<SELECT ID=typeselect>
<{/SELECT>

<SCRIPT FOR=window EVENT=onload{} LANGUAGE="JavaScript">
var 1, newop;

selecttist.recordset.MoveFirst();

for (i = 1; i <= selectlist.recordset.AbsolutePosition; i++) {
newop = document.createElement("option™);
newop.value = selectlist.recordset("value”);
newop.text = selectlist.recordset("display");
typeselect.add(newop);
selectlist.recordset.MoveNext();

}

</SCRIPT>

The handler for the window onload event reads through the data from the data
source object and adds an option for each record in the data to the Select
element. The MoveFirst method and AbsolutePosition property are explained in
the sections “Move Methods” and “The recordNumber Property,” respectively,
later in this chapter.

The IMG Element

Data binding supports binding the SRC attribute of the Ilmg element. The value
supplied by the binding should be a URL to the image file to be displayed. The
URL can be either an absolute URL or a relative URL. When it is a relative
URL, either the base URL for the document or the URL specified in a <BASE>
tag is used to construct the full URL to retrieve the image file. The download-
ing of the image file proceeds as if the IMG element were statically defined
within the document—that is, the image data is downloaded using the threads
available to the browser. -

An example of a data-bound IMG element is shown here:

The Anchor Element

Like the IMG element, binding to the HREF attribute of an Anchor element
is supported in Dynamic HTML. The bound value is expected to be either a
relative or @n absolute URL. The same rules apply to the URL of the Anchor
element as apply to the Img element.

An example of a data-bound Anchor element is shown here:

...

425

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

You can include bound text for an Anchor element by using the anchor
in combination with other elements, such as a Span element. Here the sym-
bol for the stock in our example is used as a hyperlink to the company’s Web
site:

<IA>

The Button Element

It is possible to bind the contents of the Button element by including the DATA-
SRC and DATAFLD attributes on the element. Thé face of the button will
display the bound text. The DATAFORMATAS attribute can also be included
on the binding to display HTML on the face of the button.

An example of a data-bound Button element is shown here:

<BUTTON DATASRC=#stocklist DATAFLD="Chart™ DATAFORMATAS=HTML></BUTTON>

The Label Element

Binding a Label element is similar to binding a Button element. The contents
of the Label element are bound, and the binding can contain HTML. One
word of caution: Label elements cannot be used within a repeated table. Be-
cause a Label element is associated with a control by setting its FOR attribute
to the ID of the associated control, it is not possible to uniquely assign a La-
bel element to a single control in a repeated table.

The Object and Applet Elements

426

You can also bind an arbitrary number of properties of ActiveX controls and
Java applets. To bind a property of an Object or Applet element, you include
the DATASRC and DATAFLD attributes on the <PARAM> tag that specifies
the name of the property to bind. This example shows bindings to the fore-
ground and background colors of the control or applet:

<APPLET CODE=myapplet.class>
<PARAM NAME="backcolor" VALUE="green"
DATASRC="#dsc1” DATAFLD="color">
<PARAM NAME="forecolor" VALUE="yellow"
DATASRC="#dscl1" DATAFLD="textcolor™>

</APPLET>

222

FIFTEEN: Data Binding with HTML

To bind to Java applets, the Applet element must be implemented accord-
ing to the JavaBeans specifications for properties—that is, there should be
corresponding public get and set methods for the property specified by the
NAME attribute of the <PARAM:> tag. As with ActiveX controls, the Applet
element is not required to implement property change notifications.

Object elements (ActiveX controls) work exactly the same way as Applet
elements. An example of a data-bound Object element is shown here:

<OBJECT CLSID="
<PARAM NAME="backcolor"” VALUE="blue"
DATASRC="#dsc1" DATAFLD="color">
<PARAM NAME="forecolor"” VALUE="white”
DATASRC="#dsc1™ DATAFLD="textcolor™>

oD

</0BJECT>

An ActiveX control must support a property whose name is specified by
the NAME attribute of the <PARAM> tag. Most ActiveX controls fire notifi-
cations when the value of a property changes. However, data binding does not
require the control to fire these notifications.

ActiveX controls can specify a default property for binding by setting the
DegfaultBind flag in the type information for the property. Data binding sup-
ports binding to this default property by setting the DATASRC and DATAFLD
attributes directly on the Object element:

<O0BJECT CLSID="..." DATASRC="#dscl” DATAFLD="text">
<PARAM NAM ackcolor” VALUE="blue"
DATASRC="#dsc1" DATAFLD="color">
<PARAM NAME="forecolor™ VALUE="white"
DATASRC="#dscl"” DATAFLD="textcolor">

</0BJECT>

Notice that you can mix default binding with any number of Param element
bindings.

The Frame and IFrame Elements

‘You can bind the HREF attributes of both Frame and IFrame elements. In both
cases, the bound data should supply a URL. The bindings differ in that IFrame
elements can exist in any page. An IFrame element can be used like any other
element that supports data binding simply by adding the DATASRC and DATA-
FLD attributes:

<IFRAME DATASRC=f#fstocklist DATAFLD="Website">

427

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

On the other hand, a Frame element must exist within a Frameset element
and not within the body of an HTML document. To take advantage of Frame
binding, the data source object must be placed within the Head element of the
HTML document that contains the Frameset element:

<HTML>
<HEAD>
<QBJECT ID="stocklist™ WIDTH="8" HEIGHT="8"
CLASSID="c1s1d:333C7BC4-460F-11D0-BCG4-2880C7055A83">
<PARAM NAME="DatalURL" VALUE="stockdata.txt">
FieldDelim” VALUE="|">
TextQualifier” VALUE="">
<PARAM NAME="UseHeader™ VALUE="true">
</OBJECT>
</HEAD>
<FRAMESET>
<FRAME DATASRC=ifstocklist DATAFLD="Website"> i
</FRAMESET>
</HTML>

Binding to the Frame element is useful when you want to enable the user
to view a list of URLs in sequence. A current record binding is used with the
Frame element, and as the current record is moved, the Frame element displays
data from the new URL supplied by the data source object. Frame elements
cannot be used within a repeated table.

The Table Element

428

The last supported data consumer is the Table element. The Table element is
a special data consumer in that it is a container for other bindings rather than
a binding itself. A binding on a Table element specifies that the contents of the
table, excluding the THead and TFoot elements, is to be repeated over the data
set specified by the DATASRC attribute:

<TABLE DATASRC=#stocklist>

</TABLE>

‘When the contents of the table are repeated, a bound element within the
Table element takes its data from the current record and from subsequent
records in the data source. For example, the following table displays a list of
all the stock symbols—with their last quote, change, and volume—from a data
source named stocklist:

<TABLE ID="stocktbl™ DATASRC="#stocklist” BORDER=1>
<THEAD>

223

FIFTEEN: DataBinding with HTML

<TR ONCLICK="sort():">
<TD CLASS=thd><DIV ID=Symbol>Symbol</DIV></TD>
<TD CLASS=thd><DIV ID=Last>Last</DIV></TD>
<TD CLASS=thd><DIV ID=Change>Change</DIV></TD>
<TD CLASS=thd><DIV ID=Volume>Volume</DIV></TD>
</TR>
</THEAD>

<TBODY>
<TR>
<TD>

</TD>
<TD ALIGN=right>
<DIV DATAFLD="Last"></DIV>
</TD>
<TD ALIGN=right>

</TD>
<TD ALIGN=right><DIV DATAFLD="VYolume"></DIV></TD>
</TR>
</TBODY>
</TABLE>

Figure 15-1 shows the resulting table.

F} Aeppaled Table Data Bnding

|t 4 Fomine
Repeated Table K
SymbaollLast [Change]|volume
aapl 19.19] 1.69] 4302800
armnzn 29 0.25] 299000
) 79.81[0.25] 5465200
ijbm {10475 -1.00[4000800
fintc 93.63 1.81]21846700
fmeft [140.63] -0.75] 7364100
frscp | 37.63] 0.94] 1765800
orcl [54.86] 0.44] 4345400
sunw | 45.06] -0.63] 5014000
yhoo | 55.25] -1.25] 829500
=
= i O 4

Figure 15-1.
An example of a repeated table.

429

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

Table 15-1 lists the data consumers, the data-binding attributes they sup-
port, and whether they support data updates.

Tag Bound DATA- DATA- DATA- DATA- Data
Attribute SRC FLD FORMATAS PAGESIZE Updates
<DIV> Contents v v v
 Contents v v v
<INPUT TYPE= VALUE v v v
TEXT>
<INPUT TYPE= VALUE v v v
RADIO>
<INPUT TYPE= Boolean cor- v v v
CHECKBOX> responding
to checked
state
<INPUT TYPE= VALUE v 4
HIDDEN:>
<INPUT TYPE= VALUE v v v
PASSWORD>
<TEXTAREA> Contents v v v
<MARQUEE> Contents v v v
<SELECT> Selected v v v
itern
 SRC v v
<A> HREF v v
<BUTTON> Contenrs v v v
<LABEL> Contents v v v
<OBJECT> or Default v v 4
<APPLET> property
<PARAM> Property v v v
of object
or applet
<FRAME> HREF v 4
<IFRAME> HREF 4 v
<TABLE> Repetition 4 v
Table 15-1.

Summary of data consumers.

430

224

FIFTEEN: Data Binding with HTML

Notice in the Table element example that the data-bound elements within
the Table element do not specify the DATASRC attribute. Because the Table
element is repeated, elements in the table inherit the DATASRC attribute
value—namely, #stocklist—from the repeated table.

You can include multiple TBody elements and multiple rows with any
combination of ROWSPAN and COLSPAN attributes. When you are creating
arepeated table, you should construct the table to display and format the data
for a single record from the data source object. The entire contents of the table
will then be repeated for each record in the data set. It is possible to limit the
number of records repeated in a Table element. See the section “Paged Tables”
later in this chapter for details.

Building Basic Pages Using Data Binding

Now that you understand the role of data source objects, the attributes used
to specify a binding, and the HTML elements that can be bound, let’s apply
this information to building three basic pages using data binding.

Current Record Binding

Think of the current record as an index or a pointer to some record in the data
source. The values from the columns in this record are displayed in the bound
elements. A different record can be made current by incrementing or decre-
menting the index or pointer. When a new record becomes current, the bound
elements are dynamically changed to reflect the data from the new record.
The following code demonstrates how to specify a current record binding;:

<BODY TOPMARGIN=0 LEFTMARGIN=40 BGCOLOR="#fFFFFFF">

<HZ>Current Record Binding</H2>

<P>Stock:

 (CSPAN DATASRC=#stocklist DATAFLD="Symbol">)

<A
<P>Last:
<P>Change:

(continued)
431

PART 1V: DOCUMENT CONTENTS AND DATA BINDING
<P>Chart:
<HR>
<INPUT TYPE=BUTTON VALUE=" [<

ONCLICK="stocklist.recordset.MoveFirst();">

<INPUT TYPE=BUTTON VALUE=" < "
ONCLICK="stocklist.recordset.MovePrevious();">

<INPUT TYPE=BUTTON VALUE=" > "
ONCLICK="stocklist.recordset.MoveNext();">

<INPYUT TYPE=BUTTON VALUE=" >| "
ONCLICK="stocklist.recordset.Movelast():">
</BODY>

432

For current record binding, every bound elerent contains both the DATASRC
and DATAFLD attributes.
Figure 15-2 shows how the current record binding example is displayed.

[Cussnnt Aacond Dinding - Microsoft Inteinet Explarer

| B ES Ve Gn Fgesim Hek
Current Record Binding

Stock: MICROSOFT £ ik}

Last: 140.63

Change: -G 78

Chart:

o R

EET -

i &
L

i

Figure 15-2.
A page using current record binding.

Notice the four HTML button controls included in this example. These
controls provide user interface elements to control which record is current in
the data source. Clicking the buttons sets the first, previous, next, or last record

225

FIFTEEN: Data Binding with HTML

as the current record. This technique is discussed in detail in the section “Move
Methods” later in this chapter.

Repeated Table Binding

The following code demonstrates how to create a simple repeated table. This
example builds on the earlier stock table example with a few modifications.
Here the Symbol column contains both the stock symbol and a bound Anchor
element linking to each company’s Web site. The data has been divided be-
tween two table rows, and a small chart has been added to each item in the table
to show that stock’s performance over the last six months. The cell containing
the chart spans the two rows of each item.

<TABLE ID="stocktbl” DATASRC="#stocklist” BORDER=1>
<THEAD>
TR ONCLICK="sort();">
<TD CLASS=thd ROWSPAN=2><DIV ID=Symbol>Symbol</DIV></TD>
<TD CLASS=thd><DIV ID=Last>Last</DIV></TD>
<TD CLASS=thd><DIV ID=Change>Change</DIV></TD>
<TD ROWSPAN=2>Chart</TD>
</TR>
<TR ONCLICK="sort();">
<TD CLASS=thd><DIV ID=Volume>Volume</DIV></TD>
<TD CLASS=thd><DIV ID=Type>Type</DIV></TD>
</TR>
</THEAD>

<TBODY>
<TR>
<TD ALIGN=Teft ROWSPAN=2>

</TD>
<TD ALIGN=right>
<DIV DATAFLD="Last"></DIV>
</TD>
<TD ALIGN=right>

</TD>
<TD ALIGN=Teft ROWSPAN=2>

</TD>
</TR>
<TR>
<TD ALIGN=right>
<DIV DATAFLD="Volume"></DIV>
</TD>

(continusd)

433

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

434

<TD ALIGN=center>
<SELECT DATAFLD="Type">
<OPTION VALUE=L>Long
<OPTION VALUE=S>Short
</SELECT>
</TD>
</TR>
</TBODY>
</TABLE>

A few of the concepts illustrated here may not be obvious. First, you can
use multiple bindings in a single cell of a table; the first cell contains an An-
chor and a Span element, each of which are bound to different fields. Remem-
ber that the Table element is simply a container for repetition; the specification
of the template can include any element or control with or without data bind-
ing, as long as the template obeys the rules of HTML.

Figure 15-3 shows the revised stock table.

{Last
Volume)

19.19

sapl
4302800
29|
amzn
298000
79.81
csco

5469200

104.75

4000800

Figure 15-3.
Basic repeated table binding.

226

FIFTEEN: Data Binding with HTML

Note also that this example uses the TDC (Tabular Data Control) as its
data source. The TDG is a data source object included with the minimal con-
figuration of Internet Explorer 4.0. It uses a URL to retrieve data in a delim-
ited text format. The data set used in the examples in this section has the fields
shown in the following table.

Field Data Type
Symbol text
Last tloat
Change float
ChangeF text
Volume int
% Change float
DateUpdated text
High float
Low float
Open float
Close float
52WeekHigh float
52WeekLow float
PERatio float
CompanyName text
Shares int
Website text
Chart text
Type text
ExDiv text

Paged Table Binding

In the preceding example, the table was repeated for each and every record
in the data set. This repetition can result in large tables that are neither pleas-
ing to view nor efficient to display. To solve this problem, the concept of table
paging was introduced. Table paging allows the Web author to specify the exact
number of records to be displayed in a repeated table at a given time. This
technique lets the Web author limit how large the page will become as a result
of repeating the table’s template. It also allows the Web author to constrain the

435

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

436

table to a specific region of the page and to place other page elements around
the table without having to worry about elements below the table being moved
out of view.

To enable table paging, the DATAPAGESIZE attribute is specified on a
repeated table. DATAPAGESIZE takes an integer argument that defines the
number of records from the data set, and correspondingly the number of in-
stances of the table template, to repeat. in the table at any one time. (Display
of partial templates is not supported.)

Building on the preceding example, the only change necessary to enable
table paging is to include the DATAPAGESIZE atiribute on the Table element:

<TABLE ID="stocktbl" DATASRC="#stocklist” DATAPAGESIZE=4 BORDER=1>
</TABLE>

This code displays the data from four records in the tablc at a time.
Figure 15-4 shows the stock table example with table paging enabled.

[Pagend T bl Datn Mindding - Wicsall Snteinet Eaplrer

[e EE e o Faoee oo e
Paged Table -
- [last [Change
?imlwi\'iulume Type Chart
19.18 =
azpl T lfwi |
1302800 g
: =]
| > =
amzs I . .
295000, ——
=551 e % |
ceco *’W"&... ol =
5466200 | [Conalll il i ==
10475 p =
bm —
o080, r———
Ema| [P
@ [[[[[y o o
Figure 15-4.

Basic paged table binding.

227

FIFTEEN: Data Binding with HTML

But how can the user view the remainder of the data? Two methods are
exposed on a paged, repeated table to show additional records from the data
set: nextPage, which displays the next page of data in the table, and previousPage,
which displays the previous page of data. Using these methods, the Web author
can include HTML elements that invoke scripts to display additional pages of
data. The Next and Previous buttons, shown in Figure 15-4, call the nextPuge
and previousPage methods on the repeated table. These buttons are defined as
ollows:

<INPUT TYPE=BUTTON VALUE=" Previous “
ONCLICK="stocktbl.previousPage():">

KINPUT TYPE=BUTTON VALUE=" Next "
ONCLICK="stocktbl.nextPage();">

Boundary conditions arc worth noting. If nextPageis invoked when there
is less than a page of records remaining in the data set, the table displays only
the remaining records. Thereafter, nextPage fails silently. If previousPage is in-
voked when the current record is less than a page of records from the first
record in the data set, a full page of records beginning with the first record is
shown. Thereatter, previousPage fails silently. Finally, when records arc dynami-
cally added or deleted, the data displayed will be adjusted accordingly. In that
casc, the record displayed at the top of the table remains at the top unless it is
deleted.

Writing Scripts Using Data Binding

The preceding scction showed you how to write bindings using HTML. Tn this
section, you'll learn how to combine script code with data binding to create
actual data-access applications that can run in Internet Explorer 4.0. The dis-
cussion begins by introducing ADO (ActiveX Data Objects) and then proceeds
to the events provided by Internet Explorer 4.0 on data-bound elements and
data source objects.

ADO-Recordset Version

The current record-binding example presented earlier in this chapter used
HTML. button controls to move the current record pointer forward and back-
ward. The script used for the onclick event was stocklist.recordset. MoveNexi(). This
code references the recerdset object from the data source object stocklistand then
invokes the MoveNext method on the recordset object.

The 7ecordset object in this case is ADO-Recordset version, referred to here
as ADOR, which includes only the recordset and field objects from the full ver-
sion of ADQ provided with various other Microsoft products, such as Active

437

PART

1V: DOCUMENT CONTENTS AND DATA BINDING

438

Server Pages. Internet Explorer 4.0 supplies ADOR to all data source objects
on a Web page. As shown in the preceding example, the recordset object is ac-
cessible from the recordset property of the data source object.

You can access the data in an ADOR recordset using scripts. Through
scripts you can change which record is current and perform calculations, vali-
dation, or any other function that requires access to the data. The data used
in the ADOR recordset need not be bound to any HTML elements on the page.
You can use the ADOR recordset solely for programmatic access to data from
a data source object.

The specifics of using ADOR are beyond the scope of this chapter. How-
ever, the following sections touch on two key areas of functionality commeonly
used by Web pages: move methods and field objects.

Move Methods

The move methods allow you to change which record is current, thereby chang-
ing the values displayed in any bound elements. The methods used to move
the current record pointer are: Move, MoveNext, MovePrevious, MoveFirst, and
MoveLast. The Move method takes an argument to move the current record
pointer to the specified position in the recordset. The functions of the other
move methods are self-explanatory.

ADOR allows you to move the current record pointer before the first
record in the data set (BOF, or beginning of file} or after the last record in the
data set (EOF, or end of file). Because these positions have no data associated
with them, moving to these positions will result in all bindings on the page
having null values, which usually means nothing is displayed. This problemn can
be avoided by checking the current position in the recordset prior to moving
the pointer. The following code checks whether the current record is the last
record in the recordset prior to advancing the current record pointer:

<SCRIPT LANGUAGE="JavaScript" FOR=NextButton EVENT=onclick>
if (stocklist.recordset.AbsolutePosition <
stocklist.recordset.RecordCount)
stocklist.recordset.MoveNext();
else
alert("Already at last record.”);
</SCRIPT>

NOTE: The current record position can also be changed by set-
ting the AbsolutePosition property on the recordset.

228

FIFTEEN: DataBinding with HTML

The fields Collection/The field Object
The fields collection provides a set of field objects for a recordset. A field object
corresponds directly to a single column of data. The field object is used to read
data values from the column for the current record of the recordset. For ex-
ample, the data for the current record in a column named Last could be ob-
tained using the following lines of code, all of which return the same value:
stocklist.recordset.Fields("Last").value
stocklist.recordset.Fields("Last")
stocklist.recordset("Last")

Assigning a value to the Value property of the field object modifies the
value. The following code sets the last stock price in the current record to 103.0:

stocklist.recordset("lLast") = 1€3.8;

Again, any of the three equivalent forms could be used to write this statement.

For more details about ADOR, consult the Internet Client SDK (Software
Development Kit), available from the Microsoft Web site at www.microsoft.com/
msdn/sdk/inetsdk.

Script Events

Internet Explorer 4.0 provides a rich event set to enable Web authors to write
scripts in response to user actions on data-bound pages. The event set can be
divided into two categories. One category of events fires on data-consuming
elements, These events (onbeforeupdate, onafterupdate, and onervorupdate) pro-
vide for validation of user input. The second category of events (onrowexil,
onrowenter, ond, hanged, ondat tlable, and ond: plete) fires on data
source objects to enable validation and processing when a new record becomes
current or in response to data being asynchronously transmitted to the client.
An additional event, onbeforeunload, is not specific to data binding but is par-
ticularly useful in data-binding applications. The following sections describe
these events in greater detail.

NOTE: Aswith all events in the Dynamic HTML object model,
the events described in this section bubble up the containment
hierarchy. Handlers for them can be written at any level of the hier-
archy. If multiple data source objects are present on the page, the
‘Web author can include a single handler for any event in a common
container to process the event.

439

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

440

The onbeforeupdate Event
The onbeforeupdate event fires on HTML elements that support data updating.
(See Table 15-1 earlier in this chapter for a list of data consumers that support
updating.) The onbeforeupdate event fires when the user moves the focus from
an element whose value has been updated and before the updated data is trans-
mitted to the data source object by the binding agent. The previous value of
the data can be obtained from the data source object using the ADOR record-
set. The onbeforeupdate event can be used by the Web author to perform vali-
dation. If the Web author cancels the event, the focus remains on the element
and the data is not transmitted to the data source object.

The following code demonstrates a handler for the onbeforeupdute event.
In this example, the value in the HTML text box is verified to be in the range
5 through 15. If the value is outside the range, an error message is displayed
and the event is canceled.

<SCRIPT LANGUAGE="JavaScript" FOR=textboxl EVENT=onbeforeupdate>
if (textboxl.value < 5 || textboxl.value > 15)
{
alert("Number must be in the range 5 through 15.");
returnValue = false;
1
</SCRIPT>

The onafterupdate Event
The onafterupdate event is also fired on HTML elements that support updat-
ing; however, it fires immediately after the data is transmitted from the element
to the data source object. The onafterupdate event is not fired if the ondefore-
update event is canceled, and onafterupdate itself is not cancelable.

One use of onafterupdateis for updating the value of a calculated amount.
For example, suppose the user is filling out an order form, has selected an item,
and is now selecting the quantity. When the quantity is entered, you want to
calculate the line item total based on the price of the item and the quantity
requested. You can accomplish this in the handler for the onafterupdate event
of the text box in which the quantity is entered:
<SCRIPT LANGUAGE="JavaScript™ FOR=quant_tbox EVENT=onafterupdate>

Tine_total.value = quant_tbox.value * item_price.value;
</SCRIPT>

The onerrorupdate Event
The onbeforeupdate and onafterupdate events span the transfer of data from the
HTML element to the data source object. But these two events don’t cover the

229

FIFTEEN: DataBinding with HTML

rare case in which the transfer of the data fails. In this case, the onerrorupdate
event fires.

The onerrorupdate and onafierupdate events are mutually exclusive—that
is, onafterupdate fires only if the data transfer succeeds, and onerrorupdaie fires
only when the data transfer fails. The onerrorupdate event provides the Web
author with an opportunity to display a sensible error message to the user when
the data transfer fails.

NOTE: A data transfer occurs when the binding and repetition
agent notices that the value in a bound element has changed. But
the binding and repetition agent might not notice the change in
value immediately after the change takes place. For example, if a
bound value is changed through a script, the binding and repetition
agent won't notice the change until the current record pointer is
moved or the page is unloaded.

Additionally, because an object or applet is not required to fire
notifications when the value of one of its bound properties changes,
the binding and repetition agent automatically transfers data from
an object or applet when the current record pointer is moved or the
page is unloaded, even if the value has not changed.

The onrowexit Event

The onrowexit event is the first of the set of events that fire on the data source
object. Recall that each data source object has one record that is the current
record. A different record can be made current by using the move methods in
ADOR. The onrowexit event fires on the data source object to signify that the
current record pointer is about to be moved.

A number of steps must take place before onrowexit is fired. First the cur-
rent record pointer must be requested to move, generally by the execution of
a move method on the ADOR recordset. Once the request is received, the
binding agent examines each bound HTML element to determine whether any
data items from the current record have been modified. It does this by com-
paring the value in the element to the value in the column of the data source
object. If the columns differ, the binding agent fires the onbeforeupdate event
on that element. If the event is canceled, the sequence is terminated and the
current record pointer remains unmoved. If onrbgforeupdateis not canceled, the
onafterupdate event is fired on the element. This process is repeated for each
bound HTML element. After all elements have been synchronized, the onrow-
exit event is fired on the data source object.

441

——

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

442

The onrowexit event is cancelable, When the Web author cancels the event,
the current record pointer remains in place. The onrowexit event is useful for
performing record-level validation or for recalculating columns of the data
source object that are not bound hut are based on the values in other columns.

The following example shows an onrowexit handler:

<SCRIPT LANGUAGE="JavaScript™>
function myrowexit() {
if (stocklist.recordset("Last™) = stocklist.recordset(”Shares”)
> my_cash_balance) {
alert("Purchase exceeds cash position in your account.™);
returnValue = false;
}
}
</SCRIPT>

The onrowenter Event
As its name implies, the onrowenter event fires immediately after the current
record pointer has been moved. When it fires, all data from the new current
record will be present in the HTML elements bound to the data source object.
The onrowenter event is not cancelable because the data from the new
current record is already displayed to the user. The onrowenter event is useful
for calculating fields based on the data elements in a row. The following ex-
ample demonstrates how to use onrowenter:

<SCRIPT LANGUAGE="JavaScript">
function myrowenter() {
total_value.text =
stocklist.recordset("Price™) * stocklist.recordset(”Shares™);
}
</SCRIPT>

The ondatasetchanged Event

‘Web authors need to know when the data source object is ready to supply data,
and the ondatasetchanged event is the first of three events available to help. The
ondatasetchanged event fires on the data source object as soon as data is avail-
able, signifying that the ADOR recordset can now be obtained from the data
source object. The ondatasetchanged event is not cancelable.

In addition to firing when an HTML page is initially displayed, ondata-
setchanged fires when data source objects perform data manipulations. This
manipulation can be in response to a reordering of the data set caused by
sorting or to a change in the underlying structure of the data set (number of
rows or columns, or column names) caused by filtering.

230

FIFTEEN: Data Binding with HTML

The ondataavailable Event
Web authors can be notified when more data from a data source object has
arrived by handling the ondataavailable event. The ondataavailable event fires
when data from a data source object has been received by the browser; ondate-
available is not cancelable.

The data source object determines the firing frequency of ondataavailable.
For performance reasons, most data source objects don't fire ondataavailable
for each record displayed. Instead, data source objects will collect a number
of rows as a block and fire ondataavailable for the block of rows. The ondata-
available event does not, however, indicate the number of rows available nor
does it indicate their position within the data set. This information must be
determined directly from the ADOR recordset.

The ondataavailable event can be used to calculate a running total of
records as they are received or to perform script operations as data arrives in
the browser:

<SCRIPT LANGUAGE="JavaScript">
var count;
function myondataavailable() {
total_stocks.value = stocklist.recordset.RecordCount;

}
</SCRIPT>

The ondatasetcomplete Event
Rounding out the set of asynchronous events is the ondatasetcomplete event.
Probably the most useful asynchronous event, ondataseicomplete notifies the Web
author that asynchronous transmission is complete and the entire data set is
available.

The ondatasetcomplete event sets the reason property on the event object to
inform the Web author of the status of the transmission. The following table
lists the three possible values for the reason property.

Value Description

0 Transmission was completed without error.

1 User aborted the transmission. Generally, this interruption occurs
when the user clicks the Stop button on the page.

2 Transmission generated an error. This is the catchall case for trans-
mission failures of all sorts, including the inability to contact the
host or a dropped connection.

443

PART

I'V: DOCUMENT CONTENTS AND DATA BINDING

444

The onbeforeunioad Event

The onbeforeunioad event is not specific to data binding, but handling it can be
useful for avoiding data loss on data-bound pages. Some data source ohjects
can cache updates to the data they supply on the client until a method is in-
voked on the object to save the updated values to the server. Because these values
can be cached, the user can attempt to navigate away from the page prior to
saving the updated values. The onbeforeunload event can be used to prompt the
user to cancel the navigation, avoiding the loss of the changes.

The operation of the onbeforeunload event is somewhat different from the
other events discussed so far. The onbeforeunioad event fires in response to a
request from the user to navigate o a new page—for example, when the user
clicks on a hyperlink, clicks the Back or Forward button, or types a new URL
in the address bar. The onbeforeunioad event fires on the window object prior
to the unload event on a page. When the event fires, the Web author can set

_lhc returnValue property on the event object to a string value, which will be

displayed to the user along with a standard message from the browser explain-
ing that the user has the option to cancel the requested navigation. Generally,
Web authors will return a message instructing the user that continuing with
the navigation will result in the cached changes being discarded. If the user
chooses to cancel the navigation, the page remains visible and the user can in-
teract with it as if the hyperlink or other navigation method was never invoked.
If the user continues the navigation, the page is unloaded and the changes to
the data are discarded.

Canceling the unioad Event Requires User Interaction

Shouldn’t the author be able to simply cancel the unload event without
prompting the user? The answer to this question is centered in oper-
ating system security issues. If the Web author were able to cancel the
unload event, it would be possible to create a page that would never
unload—that is, the unload event would always eancel the navigation.
The anly way for the user to navigate away from the page would be to
kill the browser process, which is a violation of hasic operating system
integrity because the user should be in control of his or her local ma-
chine and processes at all times. Although onbeforeunload can be can-
celed, it is the user who chooses to cancel the unload event, not the Web
author. The Web author only has the ability to provide the user with an
informational message.

231

FIFTEEN: Data Binding with HTML

Advanced Features

Now that you've learned the basics, you're ready for some of the advanced
features of data binding that enable the construction of more sophisticated,
application-like pages.

Data Update

A data source object can enable the user to update the data it supplies. When
the user updates the data in an element bound to the data source object, the
binding agent will store the modified value in the data source object. The data
source object can then save these changed values in the underlying data source.

Generally, data source objects support data updates by allowing the user
to modify data values stored within the local cache. The data source object can
then choose when to update the data in the underlying data source: data can
be updated immediately or in batch mode. Changes to a single cell, to a single
row, or to the entire data set can be cached. Which mode the data source object
operates in will be based largely on whether a connection to the underlying
data source is maintained. When the entire data set is cached, data source
objects usually expose a method that Web authors can call in order to save the
cached data.

RDS is an example of a data source object that provides the ability to
update data. RDS works in conjunction with a serverside component that en-
ables access to ODBC (Online Database Connectivity) data sources. RDS stores
the entire data set (the result of a SQL query) in a local in-memory cache. In
addition to storing the data, RDS stores concurrency information to resolve
conflicts when multiple users modify the same data values simultaneously. Data
changed by a user is sent with this concurrency information to a server com-
ponent that performs the update to the database. RDS can be used to build
sophisticated client/server applications using HTML and scripts.

NOTE: Examples of applications written using RDS can be found
on the Microsoft Web site at www.microsoft.com/data. The server
component can be obtained free at the same URL. The client compo-
nent of RDS is an. integral part of the Internet Explorer 4.0 browser
and is installed with the minimal configuration of the browser.

The recordNumber Property

The recordNumber property is available on all elements that are part of the tem-
plate of a repeated table, Recall that when repeated table binding is used, the
contents of the table are used as a template and repeated once for each record

PART 1V: DOCUMENT CONTENTS AND DATA BINDING

in the data set. Fach instance of the repetition is called a template instance. For
each element in a template instance (including elements that are not data
bound, such as the <TR> and <TD> tags), recordNumber provides the record
number from the data set that generated the element.

The recordNumber property corresponds directly to the AbsolutePosition
property of the ADOR recordset. By using recordNumber to set AbsolutePosition
on the recordset, the Web author can access additional data elements from the
same column of the data set. You need to set'the AbsolutePosition property
because ADOR allows access only to fields in the current record.

The recordNumber property is not a bookmark; recordNumber changes as a
result of rows being inserted or deleted from the. local client cache. Using
ADOR, however, the Web author can obtain a bookmark for the column by
using the recordNumber property:

<SCRIPT LANGUAGE="JavaScript">
var clone_rs = stocklist.recordset.clone{);
clone_rs.AbsolutePosition = textboxl.recordNumber;
var bkmk = clone_rs.Bookmark;

</SCRIPT>

This bookmark always refers to the same record in the recordset, regardless
of whether rows are inserted and deleted.

The recordNumber property can also be used to assist with navigating a
collection of elements in a repeated table. You can uniquely name an element
in HTML by including an ID attribute in the element’s tag. When you name
an element in the template of a repeated table, however, the result is a collec-
tion of elements with the same ID because the template is repeated for each
record of the data set. The recordNumber property can be used in conjunction
with a script to display details for the record corresponding to the selected
element. For example, say that instead of viewing all of your stock data at once
you want to view detailed data when you click on a particular stock. You can
include selector buttons in the table to select a stock and then set the current
record to the selected stock to display the detailed data using the following
HTML:

<BODY TOPMARGIN=@ LEFTMARGIN=48 BGCOLOR="#FFFFFF">

<H2>Record Number</H2>

<TABLE>
<TR>
<TD VALIGN=top>
<TABLE ID="stocktbl™ DATASRC="ffstock]ist™ BORDER=1>
<THEAD>

232

FIFTEEN: Data Binding with HTML

<TR ONCLICK="sort(}:">
<TD>

<TD CLASS=thd><{DIV ID=Symbol1>Symbol1</DIV></TD>
<TD CLASS=thd><DIV ID=Last>Shares</DIV></TD>
<TD CLASS=thd><DIV ID=Volume>Volume</DIV></TD>

</TR>
</THEAD>
<TBODY>

<BUTTON CLASS=sb ONCLICK="setrn{this);">

show
</BUTTON>
</TD>

<TD>

S/A>
</TD>
<TD ALIGN=right><DIV
<TD ALIGN=right>

DATAFLD="Shares"></DIV></TD>

</TD>
<TR>
</TBODY>
</TABLE>

</TD>
<TD VALIGN=top>

Company Name:
<SPAN DATASRC="#stocklist"”

Last Updated:
<SPAN DATASRC="#stocklist"

0pen:
<SPAN DATASRC="#stocklist™

High:
<SPAN DATASRC="#stocklist™

Low:
<SPAN DATASRC="f#stocklist"

BATAFLD="CompanyName™>

DATAFLD="Datelpdated">

DATAFLD="0pen">

DATAFLD="High">

BATAFLD="Low">

(continued)

447

PART IV: DOCUMENT CONTENTS AND DATA BINDING FI1FTEEN: Data Binding with HTML

G) Modifying Binding Attributes
PE Ratio: | a
 Dynamic HTML exposes properties that correspond to the attributes and styles
 on the tags for HTML elements. The data-binding attributes are no exception.

 The Web author has the full capability to add, delete, and modify the data-
GPEIRFRERTD . . . R binding properties on HTML elements after the page has been rendered.
:ingﬁl;IGNﬁup PRSI, SRe AN ESTIALD= Moreover, using Dynamic HTML the Web author can also add data source
TR objects to and delete data source objects from the page.

</TABLE> The one caveat to this correspondence is that the DATASRC, DATAFLD,

: and DATAFORMATAS attributes cannot be modified on elements within a
<SCRIPT LANGUAGE="JavaScript">

- repeated table. You can get around this limitation by changing the table to a
fncaion §etrn(button) (. 5 standard HTML table. First remove the DATASRC attribute from the table.
stocklist.recordset.AbsolutePosition = button.recordNumber: o
3 2 The table reduces to a nonrepeated state and includes only the template. The
</SCRIPT>

elements within the template, although not bound, can then be modified.
DATASRC can then be added back to the table to reinstate the repetition. Using
Figure 15-5 shows how the details are displayed next to the table. the mulume‘dla extensions of Internet E?(plor.er 4.0, the Web auth_or can also
suspend redisplay of the table so that this series of steps occurs without mul-
tiple redraws.

</BODY>

[} Record Number - Microscft Interned Faplaier

| B Ea Ve G0 Faode e = J

NOTE: Additional information about data binding can be ob-
Record Number i tained from the Internet Explorer 4.0 section of the Microsoft Web
site at www.microsoft.com. Examples can also be found at the same

[:_@ymb(ﬂ Shares [volume |Company Name; INTEL CORP.

Last Updated: 8/2/97 8:35 A locations
show [[aapl -200| 4302800 |apen: 92.75
0 =cd - |High: 94.31

show [lamzn | S0C| 299000 /0 a0’ |

show |lcsca S0C| 5459200|PE Ratio: 24.45

— mutgca Chart:

show]fibrm 600 4000800

Show]intc | 200021846700

show [Imsft 5000] 7364100

shaw [[nscp -100| 1768800

show |lorcl 200| 4345400

show [lsunw 400| 5014000

show [lyhoo -700| 829600|
=
Figure 15-5. |
Using the recordNumber property to display details from a single record in

a repeated table. ‘

448 449

233

234

INDEX

SPECIAL CHARACTERS
<> (angle brackets), 375

* (apostrophc), 38

* (asterisk), 183, 262, 270

: (colon), 18, 95

/ (forward slash), 38

- (hyphen), 27, 289

() (parentheses), 65

{pound sign), 25¢

3 {(semicolon), 126, 158

[1 {square hrackets), 50, 169
_ (undemscore), 118

32-bit integers, 192-96

A
<A>tag, 6, 18, 216-22
Aboul button, 121
About dialog box, 121
AbsolutePosition property, 425, 438
ahsolute values, $32
accessibility enhancements, 4, 5, 6-10
ACCESSKEY attribute, 8
access keys, adding, 6-8
action property, 258
activehorder keywaord, 25
activecaption keyword, 25
ActiveX controls, ix, xii, 5, 35, 257, 126-27
ADO, 117, 437-43
ADO-Recordset version, 437-39, 446
adaptive layout techniques, $11-16
addimport method, 305
add method, 285, 273
address bar dialog box feature, 124, 125
Address clement, 29
addRule method, 303-1, 306

ADO (ActiveX Data Objects), 417, 437-43
ADO-Recordset version, 4137-39, 446
advisory text, adding, 8-9
<A HREF> tag, 174
Alert dialog boxes, 254, 265
alert method, 117, 119
aliases, 162
ALIGN artribute, xiv, 195
alignElements function, 264-65
alinkColor property, 151
all collection, 143, 168, 169, 175-74, 176-78, 181,
183-86, 189, 197-99, 208, 214, 216, 233, 296
all object, 34
alternate mode, 237
eltHTML property, 240
wliKey parameter, 73
altKey property, 79
<A NAME> tag, 174
Anchor element, 207, 216-22, 258, 389, 425-26
anchors 2
pseado-classes for, 221
removing, 222
anchors collection, 174, 216, 222
anchors object, 34, 233
angle brackets (<>), 375
animation
image maps and, 226-27
Marquee element and, 237-39
text, 325-27, 351-62
using timers for, 107
ANSI keys, 79
anyDocument.htm, 142
apostrophe ('), 8
appCodeName property, 1089

451

INSIDE DYNAMIC HTML

Applet element, 173, 333, 426-27
applets collection, 174
appleis object, 34
<APPLET> tag, 174, 416
appMinorVersion property, 112
appName property, 108-9
appVersion property, 108-10
appworkspace keyword, 25
Area element, 27-28, 201, 229-37
areas collection, 201, 233, 235
<AREA> tag, 28, 174
arrays
arguments array, 52
of name-value pairs, 158-59
ASCII (American Standard Code for Information
Interchange), 264, 375
asterisk (*), 133, 262, 270
ATL (Application Transaction Language), 419
!ATTLIST keyword, 38
attributes. See also attributes (listed by name)
accessing, 189, 192-96
data types for, 192-96
defining, 28
determining the existence of, 202-3
naming conventions for, 194
reflecting, as properties, 154
unrecognized, 196
atiributes (listed by name). Sez also attributes
ACCESSKEY attribute, 8
ALIGN attribute, xiv, 195
background attribute, 287, 289
BORDER attribute, 134, 226
BORDERCOLOR atiribute, 134
child attribute, 318
CLASS attribute, 18, 23, 37, 190-91, 194,
267-68, 288, 292-95
COLS ateribute, 131, 133, 214
DATAFLD attribute, 420, 422, 426, 427, 432, 449
DATAFORMATAS attribute, 420, 422, 426, 449
DATAPAGESIZE attribute, 420-21, 436

attributes (listed by name), continued
DATASRC attribute, 419-20, 422, 427-28,
431-32, 449
DEFER attribute, 43, 44
DISABLED atiribute, 9-10, 297
dragEnabled attribute, 348-51
ERROR attribute, 262
EVENT attribute, 62, 63, 69
float auribute, 337
FOR attribute, 6, 62, 63, 69, 88, 194, 426 !
FRAMEBORDER attribute, 134
FRAMESPACING attribute, 134
HEIGHT attribute, 227, 238
HFREF attribute, 425-26
HIDDEN attribute, 260, 261 |
HREF attribute, 17, 60, 64, 216, 218, 233
1D attribute, 23, 62, 169-73, 190, 191, 203, 288
increments attribute, 356
ISMAP attribute, 229
LANGUAGE attribute, 38, 39, 61, 64
media attribute, 302
mtarget attribute, 220
MULTIPLE attribute, 272, 424
name attribute, 169-73, 422, 427
NORESIZE attribute, 133-34
ONCLICK atiribute, 61
order attribute, 356
outline attribute, 202, 319
pasition attribute, 339
READONLY attribute, 9-10, 257
REL attribute, 17, 222
required attribute, 266, 267 |
Rev attribute, 222
ROWS attribute, 131, 133, 214
ROWSPAN attribute, 243-44, 431
SCROLLING attribute, 133-34
SIZE attribute, 194, 272, 424
speed attribute, 356
SRC attribute, 40, 201, 226, 227, 425
STYLE attribute, 15, 61, 291-92

235

Index

attributes (listed by name), continued
TABINDEX attribute, 9
TARGET attribute, 92, 118
TITLE attribute, 8, 9, 239, 300, 381, 386-87
TYPE attribute, 16, 17, 23, 38, 203-4, 281, 356
USEMAP attribute, 229
VALUE attribute, 193, 203, 272, 422, 424
WIDTH attribute, 227, 238

auto value, 337

availHeight property, 96

availWidth property, 96

B

 tag, xiii, 3, 183, 398, 401-2

Back button, 55, 94, 144, 444

background attribute, 287, 289

backgroundColor property, 290

backgroundImage property, 290

background keyword, 25

backgroundPosition property, 290

background property, 289-90, 340

backgroundRepeat property, 290

backgroundScroll property, 290

back method, 94

<BAR> tag, 182

Base element, 179

<BASE> tag, 425

behavior property, 237

bgColor property, 151, 152

<BINDEVENT> tag, 87, 88

blur method, 99

Body element, 27-28, 79, 162, 167, 175, 179,
207-16, 351, 357, 373-87

body object, 34, 212

body property, 115, 208-9

<BODY> tag, 64, 101-2, 181, 151-52, 154, 179,
209, 212

Bold element, xiv, 401

boldface font, 398, 410

bookmarks, 389-90, 408-9

Boolean data type, 111, 192-96, 279
BORDER attribute, 134, 226
BORDERCOLOR atiribute, 134
bouncing ball example, 342-43
brackets ([]), 50, 169
browser(s). Sez also Internet Explorer browser;
Netscape Navigator browser
creating simple, with framesets, 14344
error handling and, 100-101
support, checking for, 53
support for older, 35-36
window, 89-112
browserLanguage property, 112
bulleted lists, 19-20, 185-86
buttons. See also buttons (listed by name)
Button element and, 11-12, 14, 255, 280-83,
333, 426
history buttons, 93-94
rules for, 256-57
Button Demonstration Web page, 11-12
buttonface keyword, 25
buttonhighlight keyword, 25
button parameter, 73
buttons (listed by name). See also butrons
About button, 121
Back button, 55, 94, 144, 444
Cancel button, 13, 281
Close button, 119
Default button, 13, 281
Forward button, 55, 94, 144, 444
Go button, 144
Next button, 437
Previous button, 437
Refresh button, 144
Reset button, 13, 281
Settings button, 47
Submit button, 13, 256-57, 281
buttonshadow keyword, 25
<BUTTON> tag, 12, 282
buttontext keyword, 25

453

INSIDE DYNAMIC HTML

(4]
C++ {programming language), x, xi, 49
calendars, 245-49
cancelBubble property, 70
Cancel button, 18, 281
Caption element, 29, 358
caption keyword, 26
captionlext keyword, 25
case-sensitivity
data types and, 190, 191, 194-95
JavaScript and, 50-51
cells
collection, 245-49
forms that span multiple, 186-87
CGI (Common Gateway Interface), 95
check boxes
Label element and, 6-8
programming lists with, 252, 277-80
rules for, 256
using, for small lists, 275-76
checked property, 275, 279-80
child attribute, 318
children collection, 197
children property, 178
CLASS attribute, 18, 23, 37, 190-91, 194, 267-68,
288, 292-95
CLASSID parameter, 5
className property, 37, 190, 191, 194, 292, 295
clearLinks method, 223, 225
clear method, 166
clich event, 71
click method, 202
clientHeight property, 210
clientInformation object, 34
clientInformation property, 90, 108-12
client object, 108, 111
clientside redirection, 48
clieniWidth property, 210-11
client window, 210-12

454

clientX property, 72, 351
cHentY property, 72, 351
clipping regions, 336-37
clip property, 330, 836, 343-46
clocks, ticking, 106-7, 376
Close button, 119
closed property, 127
close method, 127-29, 164, 165-66
code
evaluating strings as, 92
immediately executed, 40-42
CODEBASE parameter, 5
Col element, 29, 241
ColGroup element, 29, 241
collapsed class, 318
collapse method, 403
collections (listed by name)
all collection, 143, 168, 169, 173-74, 176-78,
181, 188-86, 189, 197-99, 208, 214, 216,
233, 296
anchors collection, 174, 216, 222
applets collection, 174
areas collection, 201, 233, 235
¢ells collection, 245-49
children collection, 197
elements collection, 167-87, 255-56, 260
embeds collection, 174
Jfields collection, 439
Jorms collection, 167, 174, 254-56
Jrames collection, 113, 128, 138-43, 162, 174,
210, 216, 255
image collection, 174
imports collection, 304, 305
links collection, 174, 216, 222, 235
options collection, 201, 273, 275
rows collection, 241-49
rules collection, 303
seripts collection, 174
stylesheets collection, 149, 288, 296, 309
windows collection, 128

236

Index

colon (:}), 18, 95
color
background, 267-68
document, 149, 151-54
frame border, 134 .
keywords, available in Internet Explorer, 24-25
RGB hex values for, 152
selector, 152~-54
system, 24-25
valid values for, 152
colorDepth property, 96
COLS attribute, 131, 133, 214
colSpen property, 245
columns, 4, 5
comma-delimited text, 29, 131
command (s)
burton elements, 252, 280-83
executing, 395-96, 410-12
comments, 38, 45-47
compareEndPoints method, 407-8
complete state, 162, 163
compound properties, 289-90
confirm method, 117, 119
constants, 203-4
containers, 197-98, 205
contains method, 197-98
contents.htm, 137, 225-26, 308-9
ControlRange object, 410
cookieEnabled property, 111-12
cookie property, 1568-59
cookies
deleting, 160
description of, 55, 158-62
expiration dates for, 159, 160
using, 160-61
writing, 159-60
cool.css, 305
coolstuff class, 190, 191
coordinate systems, 115, 334-36

cpuClass property, 112
createCaption method, 241
createFlement method, 190, 228, 235, 273
createRange method, 409
createTextRange method, 263, 282, 396, 399, 402
createTFoot method, 241
ereateTHead method, 241
createWindow method, 128-29
CSS (Cascading Style Sheets), x—xii, xiv. See also
style sheet(s)
adaptive layout techniques, 311-16
anchors and, 221
cascading order and, 18-19
color values and, 152
cursor property, 22-23, 78, 317
data display techniques, 321, 325
defining, 17-19
description of, 34, 14-29
dynamic positioning and, 329, 330-56
dynamic styles and, 287, 288-89
features, 19-26
id attribute and, 170
imported style rules and, 305
intrinsic controls and, 260
modal dialog boxes and, 126-27
object models and, 37
pseudo-classes and, 221
specification (CSS1), 14, 18, 19
tables and, 245
text animation and, 326
CSS Positioning (CSS-P) working draft, 26, 329-56
essText property, 290, 302
ciriKey property, 73, 79
current record binding, 415-16, 431-33
cursor property, 22-23, 78, 317
cursors
controlling, 22-23
highlighting contents using, 317-18

4585

INSIDE DYNAMIC HTML

D
databases, 445
data binding
advanced features, 415, 445-49
architecture, 414, 416-421
building basic pages using, 414, 431-37
current record hinding, 415-16, 431-33%
description of, 413-49
extensions, 418-19
repeated table binding, 415-16, 428-31, 433-35
two styles of, 415-16
writing scripts using, 415, 437-44
data display techniques
description of, 316-25
expandable tables of contents, 320-25
expanding/collapsing outlines, 318-20
hiding and showing data, 317-18
highlighting contents using cursors, 317
dala source objects, 416-18
dara types
basic description of, 192-96
Boolean data type, 111, 192-96, 279
enumerated, 195-96
DATAFLD auribute, 420, 422, 426, 427, 432, 449
DATAFORMATAS attribute, 420, 422, 426, 449
DATAPAGESIZE attribute, 420-21, 436
DATASRC attribute, 419-20, 422, 427-28,
431-32, 449
dates, properties for, 156-57
DefauitBind flag, 427
Defauit button, 13, 281
defaultChecked property, 260
defaultSelected property, 260
defuuliStatus property, 93, 94
defauliValue property, 260
DEFER attribute, 43, 44
deleteCaption method, 241
deleteCell method, 243
deleteRow method, 241, 245
deleteTFoot method, 241

456

deleteTHead method, 241
deleting
anchors, 222
rows, 241
table sections, 241
dialogArguments property, 120
dialog boxes
browsable modal, 123
creating, 119-27
custom, 119-23
displaying, 120 ..
modal, 119, 122223
passing information to/from, 120
size/position of, 123
dialogHeight property, 123
dialogleft property, 123
dialogTop property, 123
dialogWidih property, 123
direction property, 238
directories feature, 124, 125
DISABLED attribute, 9-10, 297
Disabled Element Demonstration Web page, 10
disabled elements, 10, 257, 261-62
“disabledError” message, 261-62
displayFN function, 381
display-none value, 325
display property, 21-22, 260, 291, 341
DIV element, 152, 154, 211, 333-37, 339, 357,
360, 388, 422, 424
<DIV> tag, 12, 26
document. frames object, 34
document object, 34-35, 41-42, 51, 91, 112, 410
body property and, 208-9
dynamic positioning and, 563-64
elements collections and, 167-87

manipulating text/background color with, 149,
151-54

meta information and, 149-50, 155-64
modifying the HTML stream and, 150, 164-66
referencing, 149, 151

237

Index

Document Object Madel working group, xii-xiii
document pane, 130
document property, 91, 149, 200
documents. See also document object; DTD
{document type definition)
accessing the contents of, 385-87
availability of, 162-64
contents of, representing, 400-402
creating, using the open and close methods,
165-66
loading, four states associated with, 162-64
logical size of, 210-12
physical size of, 210-11
reflowing, 36-37
document state events
load events, 97
unload events, 97-98
document.write method, 42, 107, 245-49,
371, 387-94
dot {.) notation, 50
dragEnabled attribute, 348-51
DTD (document type definition}, xiv,
373-74, 401-2
<BODY> tag and, 209
data types and, 192
description of, 4, 26-29
element collections and, 177-87
Input elements and, 12
invalid HTML and, 185-87
LI elements and, 185-86
obtaining, 29
<TITLE> tag and, 42
unrecognized elements and, 180-81
duplicate method, 407
dynamic contents
contents manipulation and, 371, 372-73
coordinate systems and, 354-36
description of, 371-94
document.write method and, 371, 387-94
dynamic positioning
absolute positioning, 340-51, 857, 360

dynamic positioning, continued

automatic sizing and, 335

clipping regions and, 336-37

description of, $29-67

relative positioning, 351-56, 357, 360, 362, 864-67
dynamic rcflow, 36-37
dynamic styles, 14, 287-327

E
ECMA. (European Computer Manufacturers
Association), x, 48
editing aperations, 395-412
effect property, 295
element(s). See also specific elements
accessing, 169-73
adding advisory text to, 8-9
attributes of, accessing, 189, 192-96
child, accessing, 197
collections and, distinguishing between, 172-73
contained within other elements, 197-98
creating new, 190, 200-201
customizing, 190, 201-5
data binding and, 414, 421, 422-31
in DTDs, 27-28
identifying, 189, 190-92
implied, 178-79
named, 170, 173
overlapping, 183-84
referencing, 170, 173
scripting, 20749
synthesized, 29
unrecognized/unknown, 173, 180-82
user-defined, 203-4
elements collections, 167-87, 255-56, 260
accessing elements in, 169-73
HTML structure and, 168, 177-87
returning, with the item method, 170-72
using, 168-76
elementFromPoint method, 73, 363-64
ELEMENT keyword, 27

457

INSIDE DYNAMIC HTML

embedded objects, 4, 37, 174, 409
embeds collection, 174
<EMBED?> tag, 174
EM element, 183, 360
 tag, 17, 18
end tags, 179-80, 183
end-ofline characters, 165
EndToEnd value, 408
EndToStart value, 408
Enter key, 281
entities
defining, 28-29
description of, 28
ERROR attribute, 262
errors
event model and, 58
handling, 160-101, 385-86
naming conventions and, 53
object availability and, 43
Script element and, 43
escape function, 159
escape sequences, 159
eval method, 92
event(s)
attributes, 61
binding (see event binding)
bubbling (sez event bubbling)
examples, 58, 80-88
handlers, shared, 69
image maps and, 229-30
as properties, 64-65
support, generic, 62-63
EVENT attribute, 62, 63, 69
event binding, 58, 60-69
Event Broadcaster, 58, 8488
event bubbling, 57, 59-60, 70, 79, 81-83, 218
event model, 57-88
event object, 34, 67, 69-73, 91, 144, 212
event property, 91

458

Event Tutor, 58, 80-83, 145
exeCommand method, 411-12
expandable class, 318

expand method, 403

external script file support, 40
extralnformation field, 108-9

F
features parameter, 118, 123-27
features string, 126
fgColor property, 151, 152
field object, 439~
Sfelds collection, 439
Fieldset element, 12-13, 252, 283, 333, 358
file(s)
created/modified dates, 156-56
size of, displaying, 155
fileCreatedDate property, 156
fileModifiedDate property, 156-57
JfileSize property, 155
JfileUpatedDate property, 156, 157
File Upload element, 263
filier property, 26
filters, 26
Find dialog box, 37, 407
findText method, 403, 406-7
firewalls, 55
float attribute, 337
Jfloat property, 20, 289
focus events, 80, 98-99
focus method, 99
font(s)
CSS and, 24
custom, 24
for dialog boxes, 125, 126
embedding, 24
italic font, 398
keywords, 26
system, 26

238

Index

Jfont-family property, 24
FontName parameter, 411
font property, 24, 126
fant-size property, 126
font-style property, 126
 tag, 8
Jfont-weight property, 126
FOO element, 181-82
oo function, 68
<FOO> tag, 181-82
footers, 4, 5
footnotes, 381-82
FOR attribute, 6, 62, 63, 69, 88, 194, 426
Jfor...inloops, B1
form(s), 4, 5, 6-10
contents, resetting, 260
description of, 251-62
scoping, 253-54
submissions, 257-60, 266-67
Jform abject, 34, 265, 259
form property, 255
Jforms collection, 167, 174, 254-56
Forms element, 175, 186-87, 251-62
<FORM> tag, 174, 259
Forward button, 55, 94, 144, 444
forward method, 94
forward slash (/}, 38
frame(s)
automatically sliding, 214-15
customizing links to, 219-21
management of, 113-45
FRAMEBORDER attribute, 134
Frame element, 176, 218, 214, 216, 427-28
frame object, 35, 140
frames collection, 113, 128, 138-43, 162, 174, 210,
216, 255
frameset(s), 4, 5
authoring, 131-32
borderlesss, 134

frameset(s), continued
creating simple browsers with, 143-44
defining frame contents and, 141
down-level browsers and, 134-36
downloading frames and, 143
focus events and, 99
hierarchy, 142-43
inline frames and, 136
manipulating, 118, 130-44
nesting, 132-33
resizing, 133-34
scripting, 138~43
scrolling, 138-34
searching for, 138
Frameset element, 137, 162, 176, 207-16, 427-28
<FRAMESET> tag, 131, 134, 176, 212
FRAMESPACING attribute, 134
frames property, 141, 162
<FRAME> tag, 181, 141
FTP (File Transfer Protocol), 416
function(s)
naming conventions for, 53
pointers, 51-52, 192-96
Jfunction ohject, 193
Furman, Scott, 329

G

getAttribute method, 194, 195

geiBookmark method, 408-9

GET method, 257-58, 427

GIF (Graphics Interchange Format) files, ix—x,
326, 415

global style sheets, 15, 16, 245, 288, 292, 295-311

global variables, 91-92

GMT (Greenwich Mean Time), 160

Go button, 144

go method, 94

graytext keyword, 25

459

INSIDE DYNAMIC HTML

H
<HI1>..<H6> tags, xiii, 18, 179-80, 292, 303, 374-75
hash property, 95, 217
Head element, 163, 167, 179
headers, 4, 5, 397-89
<HEAD:> tag, 155, 179
HEIGHT attribute, 227, 238
height property, 96, 127, 245, 330, 334-85, 340
Hello, World! program, 41, 218
help, 80, 125
help event, 80
Help menu, 80
HIDDEN attribute, 260, 261
hidden.htm, 152
hiding/showing
data, 317-18
frames, 132
intrinsic controls, 260-61
highlightborder keyword, 25
highlight keyword, 25
history buttons, 93-94
history list, 144
history object, 34, 55, 94
HLP (Windows Help) files, 80
hostnames, in URLs, 95
host property, 217
HREF attribute, 17, 60, 64, 216, 218, 233,
425-26
href property, 95, 155, 216-18
HTML (Hypertext Markup Language)
containership, determining, 197-98
documents, description of, 149-66
elements collections and, 167-87
invalid, 184-87
properties, vs. text properties, 374-75
stream, 150, 164-66
version 4.0, 3-29
htmiFor property, 194
HTML tags (listed by name)
<A> tag, 6, 18, 216-22
<A HREF> tag, 174

460

HTML tags (listed by name), continued

<A NAME> tag, 174

<APPLET> tag, 174, 416

<AREA> tag, 98, 174

 tag, xiii, 3, 183, 398, 401-2

<BAR> tag, 182

<BASE> tag, 425

<BINDEVENT> tag, 87, 88

<BODY> tag, 64, 101-2, 131, 151-52, 154, 179,
209, 212

<BUTTON> tag, 12, 282

<DIV> tag, 12, 20

<EMBED> tag, 174

 tag, 17, 18

 tag, 3

<FOO> tag, 181-82

<FORM> tag, 174, 259

<FRAMESET?> tag, 131, 134, 176, 212

<FRAME> tag, 131, 141

<HI>..<H6> tags, xiii, 18, 179-80, 292, 303,
374-75

<HEAD> tag, 155, 179

<I> tag, xiii, 398

<IFRAME> tag, 174

 tag, 174

<INPUT> 1ag, 11, 61, 282

<INPUT TYPE=BUTTON> tag, 282

<INPUT TYPE=FILE> tag, 262, 263

<INPUT TYPE=PASSWORD: tag, 262

<INPUT TYPE=TEXT> tag, 262

<LABEL> tag, 6, 8-9

<LINK> tag, 17, 217

<NOFRAMES> tag, 134

<NOSCRIPT> tag, 46, 47

<OBJECT> 'tag, 136, 174, 416-17

<OPTION> 1ag, 272

<P> tag, 17, 18, 179, 184, 240

<PARAM> tag, 426-27

<SCRIPT> tag, 37, 40, 43, 45-46, 62, 166, 174

<SEQUENCE> tag, 356

 tag, 8, 20

. o

239

Index

HTML tags (listed by name), continued
 tag, xili—xiv
<STYLE> tag, 16
<TD> tag, 185
<TEXTAREA> tag, 262
<TITLE> tag, 42
htmIText property, 400-401
HTTP (Hypertext Transfer Protocel), 109, 416
hyphen (-}, 27, 289

1
<I> tag, xiii, 398
icon keyword, 26
1D attribute, 23, 62, 169-73, 190, 191, 203, 288
id property, 190, 191, 239
TFrame element, 4, 123, 186, 210, 333, 427-28
<IFRAME> tag, 174
if statement, 63
image(s). See also image maps; IMG element
collection, 174
error handling, 335-86
GIF, ix-x, 326, 413
sequencing, 227-28
image maps
accessing, 230-32
events and, 229-30
programming, 226-37
IMG element, 164, 173, 201, 205, 207, 226-37,
333, 425
 tag, 174
imports collection, 304, 305
inactivecaption keyword, 25
inactivecaptiontext keyword, 25
increments attribute, 356
indeterminate property, 279
indeterminate state, 279-80
indexes, enhanced, 389-94
infobackground keyword, 25
information field, 109

information pane, 130

infotext keyword, 25
inline style sheets, 15, 288, 291-92
innerHTML property, 373-74, 389
innerText property, 263, 282, 373-75, 376
Input element, 28, 260-61, 280-88, 333, 422-23
<INPUT> tag, 11, 61, 282
<INPUT TYPE=BUTTON> tag, 282
<INPUT TYPE=FILE> tag, 262, 263
<INPUT TYPE=PASSWORD?> tag, 262
<INPUT TYPE=TEXT> tag, 262
inRange method, 407
insertAdjacentH TML method, 373-74, 38185, 398
insertAdjacentText method, 373-74, 381-85, 398
insertCell method, 243
insertRow method, 241, 243
Inside Dynamic HTML Web site, xvi
integers, 192-96
interactive state, 162, 163
Internet
Client SDK (Software Development Kit),
xvi, 439
slow traffic on, 413
Internet Explorer browser, ix, xi—xii, xiv. Se¢
also browser(s)
Button element and, 280
CS8S and, xi, 16, 19-26
clear method in, 166
client property and, 108
cookies and, 112, 158
copy of, on the companion CD, xvi
data binding and, 417, 419, 422, 437,
489-45, 449
data display techniques and, 317, 325
document structure and, 1556-56, 158, 166-67,
182, 185
dynamic positioning and, 329, 332, 339
dynamic styles and, 289, 301
event model and, 63, 64
FOO element and, 182
framesets and, 130, 131, 134, 136, 144
image maps and, 226, 228

461

INSIDE DYNAMIC HTML

Internet Explorer browser, continued
JScript and, 48
lastModified property and, 156
Link element and, 222
lists and, 185
Marquee element and, 237
navigator ohject and, 108-9
new HTML features and, 3, 4-5, 6, 8, 13
object models, 31-55
opener property and, 127
security and, 270
setInterval method and, 103
tables and, 240
text animation and, 326
title property and, 155
intLeft variable, 104
intrinsic controls
description of, 6, 251-83
disabled, interacting with, 261-62
hiding/displaying, 260~61
invalid HTML
description of, 184-87
overlapping elements as, 183-84
invoice forms, 12-13
isEqual method, 407
IsIndex element, 179
ISMAP attribute, 229
isTextEdit property, 400
italic font, 398
item method, 169, 170-72, 174-75, 255

J
JASS (JavaScript Accessible Style Sheets), 287, 325
Java, x, xi
data binding and, 416, 419, 426-27
navigator object and, 111
JavaBeans, 419, 427
javaEnabled method, 111
JScript, ix—xi, xv—xvi
advanced techniques, 32, 50-54

462

JScript, continued |
case sensitivity and, 190, 191, 194 |
converting to GMT using, 160
data types and, 193
event model and, 57, 58, 61-69, 84, 87
framesets and, 140-44
function pointers, 51-52, 57, 58, 6465, 68, 84,

144-45
image maps and, 228
LANGUAGE attribute and, 38-39
length property and, 172
line breaks in, 119
specifying a script for, 38
unrecognized attributes and, 196
VBScript vs., 32, 48-49
Web site, xvi

K

keyboard events, 79
keyCode praperty, 79
heydown event, 263
key information, 7%
heypress event, 263
keyup event, 263

L
Label Demonstration Web page, 7-8, 11
Label element, 6-8, 11, 252, 283, 426
<LABEL> tag, 6, 8-9
LANGUAGE attribute, 38, 39, 61, 64
lastModified property, 156-57
left property, 330, 382, 334-35, 340, 364
length property, 94, 169, 171
letler-spacing property, 326
line breaks, 119, 232
link(s). See also Anchor element; URL (Uniform
Resource Locator)
customizing, to target frames, 219-21
defining, to the next document, 225-26
indexes, 389-90

240

Index

methods (listed by name),
add method, 235, 273
addRule method, 3034, 306
alert method, 117, 119
back method, 94
blur method, 99
clearLinks method, 223, 225
clear method, 166
click method, 202
close method, 127-29, 164, 165-66
collapse method, 403
compareEndPoints method, 407-8
confirm method, 117, 119
contains method, 197-98
createCaption method, 241
createElement method, 190, 228, 235, 273
ereateRange method, 409
ereateTextRange method, 263, 282, 396, 399, 402
createTFoot mcthod, 241
createT Head method, 241
createWindow method, 128-29
deleteCaption method, 241
deleteCell method, 243
deleteRow method, 241, 243
deleteTFooi method, 241
deleteTHead method, 241
M document.write method, 42, 107, 24549, 371,
Map element, 27, 207, 226-37, 358, 364 T 387-94
margin-top property, 239 duplicate method, 407
Marquee element, 13-14, 116, 206, 257-39, 358 elemenifromPoint method, 73, 363-64

media attribute, 302 eval method, 92
exeCommand method, 411-12

expand method, 403
findText method, 403, 406-7

tinkColor property, 151, 152
linked style sheets, 15, 16-17, 292, 304
Link element, 207, 217, 222-26, 295, 297, 302
link object, 34
links collection, 174, 216, 222, 233
links.htm, 223-24
<LINK> tag, 17, 217
list boxes. Sz also lists
adding/removing items from, 273-74
adding styles to, 272
creating custom, 382-85
defining, 271-72
multipleselect, 275-76
lists. See also list boxes
bulleted lists, 1920, 185-86
invalid HTML and, 185-86
programming, with check boxes and radio
buttons, 277-80
list-style property, 19
Ioad events, 97
loading state, 162, 163
location object, 34, 95, 155, 233
location property, 95-96, 155
logos, 34042
loop property, 238

menu keyword, 25, 26
menubar dialog box feature, 124, 125, 126

menus
creating, 34648 Jocus method, 99
pop-up, 346—48 Jforward method, 94

getAttribute method, 194, 195
getBookmark method, 408-9
GET method, 257-58, 427
go method, 94

menutext keyword, 25
messagebox keyword, 26
meta information, 149-50, 155-64

463

—\r,_— =
INSIDE DYNAMIGC HTML lpdey
methods (listed by name), continued methods (listed by name), continued mouse events, confinued Netscape Navigator browser, continued
inRange method, 407 removeRule method, 303-4 onmausedown event, 69, 71, 74-77, 218 Form element and, 260
insertAdjacentHTMI, method, 37374, replace method, 95 onmousemove event, 62-63, 74-77, 78, 218 framesets and, 130, 131, 134, 136, 144
A 381-85, 398 resizeBy method, 114 onmouseout event, T4, 7677, 87-88, 94, 198, image maps and, 226, 228
insertAdjosontText method, 873-74, 381-85,398 0Ty method, 114 218, 226, 293 JAsS 2nd, 325
inseriCell method, 243 scrollBy method, 114 onmouseover event, 74, 76-77, 87-88, 94, 198, lasiModified property and, 156
insertRow method, 241, 243 scrollintoView method, 363, 408 SIh P R - lists and, 185
isEqual method, 407 scroll method, 114, 115, 116, 211 onmouseup event, 74-77, 218 name attribute and, 170
item methad, 169, 170-72, 17475, 255 scrollTop method, 116 onselect event, 74, 78-79 navigaior object and, 1089
javaEnabled method, 111 sendEndPoint method, 407-8 onselectstart event, 74, 78-79, 317 new operators and, 201
moveBy method, 114 setAttribute method, 194-95 moveBy method, 114 object models, 31-55
movelind method, 403, 404-6 setfnteroal method, 103 moveEnd method, 403, 404-6 security and, 270
MoveFirst method, 425, 438 setmethod, 427 MoveFirst method, 425, 438 setInterval method and, 103 |
MoveLast method, 438 setTimeout method, 102 MoveLast methad, 438 uitle property and, 155
move method, 403, 404-5, 438 showHelp method, 80 move method, 403, 404-5, 438 Netscape Web site, 325
MoveNext method, 437, 438 showlModelDialog method, 117, 119-21, 123, MoveNext method, 437, 438 newCalendar function, 248 |
MovePrevious method, 438 124, 126-27 MovePrevious method, 438 new operator, 53, 201, 228
moveStart method, 403, 404-6 start method, 239 moveStart method, 403, 404-6 New Option element, 201
moveTo method, 114 stop method, 239 moveTo method, 114 Next button, 437 |
moveToBookmark method, 408-9 submit method, 260 moveToBookmark method, 408-9 nextPage method, 457
moveToElementText method, 403, 404 tags method, 174-76, 255 moveToElementText method, 403, 404 NoFrames element, 134-35, 176
moveToPoint method, 403, 406 10GMTString method, 160 | moveToPoint method, 403, 406 <NOFRAMES> tag, 134
nextPage method, 437 window.open mcthod, 124 migrget attribute, 220 nonbreaking spaces, 5, 375
open method, 117-19, 123, 124, 125, 126, 128, writeln method, 42, 164, 165, 372 | MULTIPLE atcribute, 272, 424 NORESIZE attribute, 135-34
151, 164-66 write method, 41, 42, 164, 165, 372 NoScript element, 46 |
pasteHTML method, 400-402, 405, 409 MEFC (Microsoft Foundation Classes), 419 N <NOSCRIPT> tag, 46, 47
POST method, 257-58, 270 Microsoft Web site, xvi, 3, 29, 205, 999, 417, \n (escape character), 119 null values, 172, 193, 273, 304, 364
previousPage method, 437 439, 449 name attribute, 169-78, 422, 427
prompt method, 117, 119, 121-93 MIME (Multipurpose Internet Mail Extension) name property, 91, 92, 190, 191, 216 0
queryCommandEnabled method, 411 types, 3, 16-17, 165 name-value pairs, 158-59 Object clement, 4, 5-6, 164, 206, 239-40, 257, |
queryCommandIndetern method, 411 e e, By navigation bars, 225 333, 426-27 |
queryCommandState method, 411 returning, 158 navigation.htm, 225 object hierarchy
queryCommandSupported method, 411 mimeType property, 158 navigator object, 34, 89-90, 108-12 description of, 31, 32-37
queryCommandText method, 411 modem speed, 413 ; q
navigator property, 108-12 evolution of, 34
queryCommandValue method, 411, 412 mousc events, 74-77 nesting framesets, 132-33 for the window object, 90-92
rangeFromPoint method, 78 m"u:wd"w" crcaty/l Netscape Navigator browser, x-xi, 62-63. See.also object models
reload mel‘hod, 95 onclich event, 6‘1, 63, 71, 74-77, 202, 212, 218-19, browser(s) description of, 37-48
removeAttribute method, 194-95 278, 280, 281, 288, 437 cookies and, 112, 158 event model and, 60
removelmport method, 305 ondblelick event, 74-75, 218 dynamic positioning and, 329 object hierarchy and, 31, 32-37
remove method, 235 ondragstart event, 74, 77-78 dynamic styles and, 288 object property, 239
I
464 465]

241

INSIDE DYNAMIC HTML

<OBJECT> tag, 186, 174, 416-17
ODBC (Open Database Connectivity), 445
offseiHeight property, 210-11, 357, 363
offsetLeft property, 357, 362, 364
offsetParent property, 357, 368, 364
offsetTop property, 857, 362, 364
offsetWidth property, 210-11, 357, 363
offsetX property, 72

offsetY property, 72

off Width property, 211

OLE (Object Linking and Embedding), 419
OLE-DB, 419

onabort event, 386

onafterupdate event, 439, 440
onbeforeunload event, 9798, 430, 444-45
onbeforeupdats event, 439, 440, 441
onblur event, 80, 98-99, 218, 264
onbouncs event, 238

onchange event, 264

ONCLICK attribute, 61

onclick event, 61, 63, 71, 7477, 202, 219, 218-19,

278, 280, 281, 283, 437

ondatagvailable event, 439, 443
ondataseichanged event, 439, 442
ondatasetcomplete event, 489, 443-44
ondblclick event, 74-75, 218
ondragstart event, 74, 77-78

onerver event, 100-101, 385
onerrorupdate event, 439, 440
onfinish event, 238
onfocus event, 80, 98-99, 216
onkelp event, 80
onkeydown event, 79

oni ss event, 79

onhkeyup event, 79

online property, 112

onload event, 66, 67, 97, 143, 164, 204, 212, 213,
309-11, 425

onmousedown event, 69, 71, 74~77, 218

onmousemove event, 62-63, 7477, 78, 218

466

onmouseout event, 74, 76-77, 87-88, 94, 198, 218,
226, 293

onmauseover event, 74, 76-77, 87-88, 94, 198, 218,
223, 292-93
onmouseup event, 74-77, 218
onreadystatechange event, 66, 67, 97, 143, 162,
163-64, 309, 310
onreset event, 260, 281
onresize event, 101, 218, 245
onrowenter event, 439, 442
onrowexit event, 439, 441-42
onscript event, 79~
onscroll event, 101, 115, 213-14
onselect event, 74, 78-79
onselectstart event, 74, 78-79, 317
onstart event, 238
onsubmit event, 258, 259, 281
onunload event, 97-98, 103
open class, 321
open method, 117-19, 123, 124, 125, 126, 128,
151, 16466
Option element, 272, 273, 424
options collection, 201, 273, 275
aptions parameter, 195
<OPTION> tag, 272
order attribute, 356
OSP (OLE-DB Simple Provider), 419
oulerHTML property, 222, 373-74, 376
outerText property, 222, 873-775, 400
outline attribute, 202, 319
outlines, expanding/collapsing, 318-20
overflow property, 211, 330, 337-38
overlapping elements, 183~84
oumingllement property, 296

P

<P>tag, 17, 18, 179, 184, 240

page navigation, automatic, 103~4

Paragraph element, 167, 178, 179-80, 240, 360

242

Index

parameters
accessing, through the event object, 71
aliKey parameter, 73
button parameter, 73
CLASSID parameter, 5
CODEBASE parameter, 5
ctriKey parameter, 73
features parameter, 118, 128-27
FontName parameter, 411
options parameter, 195
replace parameter, 118
shiftKey parameter, 73
wrl parameter, 118
<PARAM> tag, 426-27
parentElement property, 178, 197, 242, 358, 402
parentheses[()1, 65
parent property, 140, 216
parentStyleSheet property, 304
parentTextEdit property, 399-400
parentWindow property, 161-62
parseCookie function, 1 60
parsing information, 189, 196-200
constructing parsing trees, 198-200
determining HTML containership and, 197-98
parselnt function, 193
password input, 262, 270
PASSWORD Input element, 262
pasteHTML method, 400-402, 405, 409
pathname property, 217
pathnames, in URLs, 95
pixels, 123, 340
platform field, 108
port property, 95, 217
position attribute, 339
position property, 291, 330, 332
POST method, 257-58, 270
pound sign (#), 230
PRE element, 165, 401

presentation effects, 352-56
presentation rules, 17
Previous button, 437
previousPage method, 437
print media, 301-2
prompt method, 117, 119, 12128
properties
compound, 289-50
conflicts between, 23940
events as, 64-65
HTML vs. text, 374-75
modifying, 291
naming conventions for, 53
reflecting HTML attributes as, 154
user-defined, 91-92
protocols
FTP (File Transfer Protocol), 416
HTTP (Hypertext Transfer Protocol), 109, 416
in URLs, 95
pseudo-classes, 18, 221
pulsating elements, 326-27

queryCommandEnabled method, 411
gqueryCommandIndeterm method, 411
queryCommandState method, 411
queryCommandSupporied method, 411
queryCommandT ext method, 411
qunyCommundValue method, 411, 412

R
radio buttons
Label element and, 6-8
programming lists with, 252, 277-80
rulés for, 256
scoping forms and, 253-54
rangeFromPoint method, 73
RDS (Remote Data Service), 417, 419, 445

467

INSIDE DYNAMIC HTML

READONLYamibute, 9-10, 257
read-only elements, 257
read/write attributes
COLS attribute, 131, 133, 214
ROWS auribute, 131, 133, 214
read/write Properties, 123, 127, 155
readyState property, 148, 162, 163, 309, 385
Teason property, 443
recordNumber property, 425, 44548
recordset abject, 437-38
recordset property, 438
Refresh button, 144
REL atrribute, 17, 292
reload method, 95
remove method, 285
TemoveAltribute method, 194-95
removelmport method, 305
removeRule method, 3034
rendering context, 330, 356-67
tepealed table binding, 415~16, 428-31, 433-35
replace method, 95
replace parameter, 118
required atribute, 266, 267
Reset button, 13, 281
vesizeBy method, 114
Resize tab dialog box feature, 124, 125
7esizeTo method, 114
return keyword, 70
returnValue property, 70, 98, 120, 958
Rev attribute, 222
RGB (Red-Green-Blue) color model, 152
rowindex property, 242
Tows
collection, 241-49
forms that span multiple, 186-87
ROWS attribute, 181, 133, 214
ROWSPAN attribute, 24344, 431
rowSpan property, 245
rules collection, 303

S
sandbox model, 55
sans-serif font, 24
scope, 6768, 95354
of influence, 178
invalid, 402
screen media, 301-2
sereen abject, 84, 66-97
screenX property, 72
scresnY property, 72
Script element, 4, 37-39, 44, 46, 66, 162, 165
scripting. See alsg scripts
fundamentals, 31-55
languages, choosing, 32, 48-49
languages, multiple, 4445
languages, specifying, in event attributes, 64
Web security and, 32, 55
script libraries, 39—40
Seript property, 162
seript object, 34
scripts. See also scripting
disabling, through security settings, 46-47
elements and, 189-205
hiding, from down-level browsers, 4547
locations of, in documents, 4943
scoping of, 67-68
writing, into the HTML stream, 166
scripts collection, 174
<SCRIPT> tag, 37, 40, 43, 4546, 62,166, 174
scrollAmount property, 238
scrollbar keyword, 25
scrollBy method, 114
scrollDelay property, 238
scroll events, 79
scroliHeight property, 211, 388
scrolling, 79, 124-95, 337-39
framesets and, 138-34
status biar text, 1046
timer events and, 104-6

243

Index

SCROLLING attribute, 133-34
scrollIntoView method, 363, 408
scrollLeft property, 115, 211, 212, 262, 351
seroll method, 114, 115, 116, 211
scroliTop method, 115
scroliTop property, 115, 211, 212, 262
scrolfWidth property, 211, 262
SDK (Software Development Kit), xvi, 439
search engines, 14
search property, 95, 217
sectionRowIndex property, 242-43
security, 32, 270
disabling scripts and, 46-47
firewalls, 55
unload events and, 98
ecurity tab, 47
:elect[Zlemem, 23, 251-52, 270-76, 333, 424-25
selection object, 34, 409-10
selection operations, 395412
selectors
contextual, 16, 17-18, 19
description of, 16
simple, 16, 17-18
selectorText property, 303
self property, 91
semicolon (;), 126, 158
sendEndPoint method, 407-8
<SEQUENCE> tag, 356
setAitribute method, 194-95
setInterval method, 103
set method, 427
set property, 140
setTimeout method, 102
Settings button, 47
setupLinks function, 223, 225
SGML. (Standard Generalized Markup Language),
xiii, 3, 26
HTML streams and, 165
XML markup language and, 205

shiftKey property, 73, 79
showHelp method, 80
showModalDialog method, 117, 119-21, 128, 124,
126-27
sidebars, 20-21
SIZE atribute, 194, 272, 424
size property, 194, 195
slide mode, 237
smallcaption keyword, 26
sourcelndex property, 198, 242
source locations, 156
spaces
nonbreaking, 5, 375
white space, 401
Span elemernt, 106-7, 333-34, 381, 422, 424,
426, 434
 tag, 8, 20
speed attribute, 356
square brackets ([1), 50, 169
SRC attribute, 40, 201, 226, 227, 425
sreElement property, 67, 70, 77, 212
standard user events, 58, 74-80
start method, 239
StartToEnd value, 408
StartToStart value, 408
State field, 265
static value, 332
status bar, 26, 93-94, 1046
statusbar keyword, 26
status messages, 93
status property, 93
stop method, 239
strings
data type for, 192-96
evaluating, as code, 92
Strong element, xiv, 18-19, 178, 183
<STRONG: tag, xiii—xiv
STYLE attribute, 15, 61, 291-92
Style element, 165, 295, 297, 302
styleFloat property, 291

469

INSIDE DYNAMIC HTML

style property, 303
style sheet(s). See also CSS (Cascading Style
Sheets)

adding new, 305-9
alternative, providing a list of, 299-301
global style sheets, 15, 16, 245, 288, 292,
295-311
imported, 304-5
inline style sheets, 15, 288, 201-92
JASS, 287, 325
linked style sheets, 15, 16-17, 292, 304
media-dependent, 301-2
multiple, selecting from, 299-300
Properties, 289-91
randomly applying, 301
referencing, 296-97
rules, 303-6
stylesheets collection, 149, 288, 296, 309
styleSheet object, 34, 296-505, 309-11
styles.htm, 307-8
<STYLE> tag, 16
stylizer.htm, 306-7
Submit button, 13, 256-57, 281
submit method, 260
systemLanguage property, 112

T
tabbing order, 9
TABINDEX attribute, 9
Table element, 29, 206, 240-49, 333, 368, 421
428-31, 434
tuble object, 241-45
table of contents, 130, 320-25
dynamic contents and, 389-94
enhanced, 389-94
tables

Form elements in, 186-87
paging, 435-37

tagless contents, 184

tag method, 255

470

tagName property, 190, 191, 210

tags (listed by name)
<A> tag, 6, 18, 216-22
<A HREF> tag, 174
<A NAME> tag, 174
<APPLET> tag, 174, 416
<AREA> tag, 28, 174
 tag, xiii, 3, 183, 398, 401-2
<BAR> tag, 182
<BASE> tag, 425
<BINDEVENTS tag, 87, 88
<BODY> tag, 64,.101-2, 131, 151-52, 154, 179,

209, 212

<BUTTON> tag, 12, 282
<DIV> tag, 12, 20
<EMBED> tag, 174
 tag, 17, 18
<FONTS> tag, 3
<FOO> tag, 181-82
<FORM> tag, 174, 259
<FRAMESETS> tag, 181, 134, 176, 212
<FRAME> tag, 131, 141

<HI>...<H8> tags, xiii, 18, 179-80, 292, 308,
374-75

<HEAD> tag, 155, 179

<I> tag, xiii, 398

<IFRAME:> tag, 174

 tag, 174

<INPUT> iag, 11, 61, 282

<INPUT TYPE=BUTTON> tag, 282
<INPUT TYPE=FILE> tag, 262, 263
<INPUT TYPE=PASSWORD> tag, 262
<INPUT TYPE=TEXT> tag, 262
<LABEL> tag, 6, 8-9

<LINK> tag, 17, 217
<NOFRAMES> tag, 134
<NOSCRIPT> tag, 46, 47
<OBJECT> tag, 136, 174, 416-17
<OPTION: tag, 272

<P> tag, 17, 18, 179, 184, 240

Index

tags (listed by name), continued
<PARAM> tag, 426-27
<SCRIPT> tag, 37, 40, 43, 45-46, 62, 166, 174
<SEQUENCE> tag, 356
 tag, 8, 20
 tag, xiii—xiv
<STYLE> tag, 16
<TD> tag, 185
<TEXTAREA> tag, 262
<TITLE> tag, 42

tags method, 174-76

TARGET attribute, 92, 118

target property, 258

TBody element, 29, 240-41

<TD> tag, 185
| TDGC (Tabular Data Control), 435
template instances, 446
temporary status string, 94
text
animation techniques, 325-27, 3561-52
elastic, 326
flying, 351-52
justification of, 19
properties, vs. HTML properties, 374-75
pulsating, 326-27
text-align property, 19
TextArea element, 211, 282, 333, 423-24
<TEXTAREA> tag, 262
Text Input elements, 251, 262-70
text property, 272, 400-401
TextRange object, xiii, 164, 149, 222, 263, 372,
395-409
TFoot element, 29, 24041, 428
THead element, 29, 240-41, 428
this keyword, 67
this pointer, 67-68, 77
ticking clock example, 106-7, 376
Tic-Tac-Toe example, 376-80

244

timer events
adding ticking clocks using, 106-7
automatic page navigation with, 1034
description of, 102-7
precision of, 107
scrolling status bar text with, 104-6
TITLE attribute, 8, 9, 239, 300, 381, 386-87
Title element, 167
title property, 49, 50, 165
<TITLE> tag, 42
toElement property, 76
toGMTString method, 160
toolbar dialog box feature, 124, 125
ToolTip Demonstration Web page, ¢
ToolTips, 8-9, 239, 381, 387
top property, 115, 140, 330, 332, 334-35, 340, 364
transition effects, 26
trueSpeed property, 238
TYPE artribute, 16, 17, 23, 38, 203-4, 281, 356
type property, 71, 409

U
underscore (_}, 118
unescape function, 159
uninitialized state, 162
unioad event, 97-98, 444
url parameter, 118
URL property, 155
URL (Uniform Resource Locator), 17, 111, 118,
See also link(s)
absolute, 425
Anchor element and, 216-22
data binding and, 417, 425-28, 435, 444-45
dynamic styles and, 289, 260
form submissions and, 257-58
framesets and, 141, 144
location object and, 95-96
pop-up menus and, 346-48
USEMARP attribute, 229

471

INSIDE DYNAMIC HTML

useMap property, 230
user(s)
events, 58, 74-80, 101
input, formatting, 26870
input, validating, 263-68
selections, accessing, 395, 409-10
settings, 24-26, 111-12
userAgent property, 108-9
user-defined properties, 91-92
UserInfo.htm, 122
userLanguage property, 112

v
VALUL attribute, 193, 203, 272, 422, 494
value property, 55, 193, 263, 270, 275, 282, 439
variables
global, 91-92
naming conventions for, 53
‘VBScript, ix—x, xv, 173
element collections and, 169, 173, 175
event model and, 60, 63-64, 66, 67, 69, 84
framesets and, 141
ilem method and, 169
readyState property and, 163
specifying a script for, 38
views
determining whether elements are within,
362-63
providing multiple, 297-99
scrolling ranges into, 408
visibility property, 21-22, 260, 330, 335
Visual Basic, 416, 419
Visual C++, 416, 419
ulinkColor property, 151, 152

w
W3C (World Wide Web Consortium), 3, xii,
xiv, 418 .
CSS Positioning (CSS-P) working draft, 26,
329-56

Web site, 5, 14, 29, 206

472

walkStyles function, 295
Web browser(s). See browser(s); Internet
Explorer browser; Netscape Navigator
browser
Web pages/sites
Button Demonstration Web page, 11-12
Disabled Element Demonstration
Web page, 10
Inside Dynamic HTML Web site, xvi
Label Demonstration Web page, 7-8, 11
Microsoft Web site, xvi, 5, 29, 205, 229, 417,
439,449
Netscape Web site, 325
ToolTip Demonstration Web page, ¢
white space, 401
WIDTH attribute, 227, 238
width property, 96, 127, 245, 330, 334-35, 340
window(s). See also window object
auto-scrolling, 116
closing, 127-29
creating new, 113, 116-29
events, 97-102, 212-14
features, specifying, 128-27
management, 113-45
modal/modeless, 116-17
naming, 92
parent, 161-62
scrolling, 115-16
windowframe keyword, 25
window. frames object, 34
window keyword, 25
window object, 3334, 40, 51, 54, 69, 444
creating new windows and, 113, 116-29
description of, 89-102
document object and, 151
error handling and, 100-101
manipulating framesets and, 113, 130-44
manipulating windows and, 118, 114-16
onscroll event and, 214

referencing, 91

245

Index

window.open method, 124

windows collection, 128

windowtext keyword, 25

wipe effects, 343-46

writeln method, 42, 164, 165, 372
write method, 41, 42, 164, 165, 372

X

XML (Extensible Markup Language), 205, 417
XMP element, 165, 401

xycoordinates, 115, 334-36

z
zindex property, 330, 336, 342-43
z00m function, 233

473

246

Scott Isaacs

Scott Isaacs is a Microsoft program manager working
on Internet Explorer. He has worked on the design of
Dynamic HTML from the beginning and frequently pre-
sents the technology at industry conferences. Scott also
represents Microsaft on working groups of the World
Wide Web Consortium (W3C) for standardizing HTML,
CSS, and the document object model. Independently,
Scott maintains a Web site, www.insideDHTML.com,
that covers the latest Dynamic HTML developments.

247

T he manuscript for this book was prepared
and submitted to Microsoft Press in electronic

form. Text files were prepared using Microsoft Word
97. Pages were composed by Microsoft Press using
Adobe PageMaker 6.5 for Windows, with text in New
Baskerville and display type in Helvetica bold. Com-
posed pages were delivered to the printer as electronic

prepress files.

Couver Graphic Designer
Tim Girvin Design

Cover Illustrator
Glenn Mitsui -

Interior Graphic Designer
Pamela Hidaka

Interior Graphic Artist
Joel Panchot

Principal Compositor
Elizabeth Hansford

Principal Proofreader
Roger LeBlanc

Indexer
Liz Cunningham

