
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

LIGHTRICKS LTD.,
Petitioner,

v.

PLOTAGRAPH, INC. and SASCHA CONNELLY,
Patent Owner.

Case IPR2023-00568
U.S. Patent No. 11,182,641
Filing Date: Feb. 26, 2020
Issue Date: Nov. 23, 2021

DECLARATION OF PHILIP GREENSPUN, PH.D.

Lightricks Ltd.
EX1002

Page 1 of 202

 - 2 -

TABLE OF CONTENTS

I. INTRODUCTION AND SCOPE OF WORK ... 21

II. EXPERIENCE AND QUALIFICATIONS .. 21

III. COMPENSATION ... 26

IV. LEGAL CONSIDERATIONS ... 27

A. Level of Ordinary Skill in the Art .. 27

B. Claim Construction... 28

V. BASIS FOR OPINIONS .. 29

VI. TECHNOLOGY BACKGROUND .. 29

VII. OVERVIEW OF THE ’641 PATENT ... 37

A. Claim Construction... 38

VIII. ANALYSIS OF CLAIMS 1-4, 8-15, AND 19-20 OF THE ’641
PATENT IN VIEW OF THE PRIOR ART ... 38

A. Public Availability of AEM, IMU, Okabe, and Li 38

B. Ground 1: AEM, and Claims 1-4, 8-15, and 19-20 43

1. Summary of AEM .. 43

a. Workspace and Panels ... 45

b. Compositions and Layers .. 46

c. Extracting a Single Frame from a Video 47

d. Modifying Transparency of Certain Pixels 48

e. Puppet Effect ... 50

f. Animating with the Puppet Effect 51

2. Example of Animating in AECS6 ... 55

a. Importing a Video into a Composition 57

b. Extracting a Single Frame from the Video and
Importing the Frame as a Layer 59

c. Placing a Puppet Deform Pin to Create a Starting
Keyframe ... 63

d. Creating an Ending Keyframe and a Motion Path 65

Page 2 of 202

 - 3 -

e. Using a Mask or the Roto Brush Tool to Select a
Set of Pixels to be Animated ... 68

i. Creating a Mask Using the “Pen” Tool 68

ii. Creating a Mask Using the “Auto-Trace”
Function ... 71

iii. Creating a Matte Using the “Roto Brush”
Tool.. 73

f. Looping the Animation .. 81

g. Final Resulting Animation ... 82

h. Animating with Multiple Deform Pins 87

3. Independent Claim 1 .. 98

a. [1pre]: A computer system providing, to a client
computing device, software for automating a
shifting of pixels within a video file, the computer
system comprising: one or more processors; and
one or more computer-readable media having
stored thereon executable instructions that are
transmitted to the client computing device for
execution by one or more client processors on the
client computing device, the executable
instructions comprising instructions that when
executed by the one or more client processors
configure the client computing device to perform
at least the following. ... 98

b. [1a]: access, from memory, a digital image file,
wherein the digital image file comprises
information that corresponds to individual pixels
within a frame of the digital image file. 99

c. [1b]: receive a first starting point through a user
interface, wherein the first starting point is
received through a user selection of a first
beginning portion of a first image frame. 101

d. [1c]: receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion. 107

Page 3 of 202

 - 4 -

e. [1d]: create a first digital link between the first
starting point and the first ending point, wherein
the first digital link comprises: a first direction
extending from the first starting point to the first
ending point; and a first length between the first
starting point and the first ending point. 108

f. [1e]: identify a first set of pixels that lie along the
first digital link between the first starting point and
the first ending point; and. ... 110

g. [1f]: shift the first set of pixels in the first
direction. .. 115

4. Claim 2: The computer system of claim 1, wherein the first
ending portion comprises a particular portion of the first
image frame. ... 117

5. Claim 3: The computer system of claim 1, wherein the digital
image file comprises a video file and the first image frame
comprises a first video frame of the video file. 117

6. Claim 4: The computer system of claim 3, wherein the first
ending portion comprises a particular portion of a second
video frame within the video file. .. 117

7. Claim 8: The computer system of claim 1, wherein shifting
the first set of pixels comprises rendering in a loop the first set
of pixels being shifted within the first image frame. 118

8. Claim 9 ... 119

Page 4 of 202

- 5 -

a. [9a]-[9e]: The computer system of claim 1,
wherein the executable instructions include
instructions that are executable to configure the
computer system to: receive a second starting
point through the user interface, wherein the
second starting point is received through a user
selection of a second beginning portion of the first
image frame; receive a second ending point
through the user interface, wherein the second
ending point is received through a user selection of
a second ending portion; create a second digital
link between the second starting point and the
second ending point, wherein the second digital
link comprises: a second direction extending from
the second starting point to the second ending
point; and a second length between the second
starting point and the second ending point;
identify a second set of pixels that lie between the
second starting point and the second ending point;
and shift the second set of pixels in the second
direction. .. 119

9. Claim 10: The computer system of claim 9, wherein the first
direction is different from the second direction. 122

10. Claim 11: The computer system of claim 9, wherein a
magnitude of the shifting of the first set of pixels is
proportionally related to the first length and the magnitude of
the shifting of the second set of pixels is proportionally
related to the second length. ... 122

11. Independent Claim 12 .. 125
a. [12pre]: A computer program product comprising

one or more non-transitory computer storage
media having stored thereon computer-executable
instructions that, when transmitted to a remote
computer system for execution at a processor,
cause the remote computer system to perform a
method for automating a shifting of pixels within
an image file, the method comprising. 125

Page 5 of 202

- 6 -

b. [12a]: receiving a first indication of a first starting
point through a user interface, wherein the first
starting point is received through a user selection
of a first portion of a first image frame. 126

c. [12b]: receiving, through the user interface, a first
direction associated with the first starting point. 126

d. [12c]: create a first digital link extending in the
first direction from the first starting point. 127

e. [12d]: selecting a first set of pixels that are along
the first digital link and extend in the first direction
away from the first starting point; and. 127

f. [12e]: shifting the first set of pixels, in the first
image frame, in the first direction. 128

12. Claim 13 ... 128
a. [13a]-[13b]: The computer program product as

recited in claim 12, further comprising receiving
an indication to generate a first mask over a second
portion of the first image frame, wherein pixels
under the first mask are prevented from shifting. 128

13. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions that,
when transmitted to the remote computer system for
execution at the processor, cause the remote computer system
to perform a method for automating the shifting of pixels
within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated. ... 132

14. Claim 15 ... 133

Page 6 of 202

 - 7 -

a. [15a]-[15b]: The computer program product of
claim 14, further comprising computer-executable
instructions that, when transmitted to the remote
computer system for execution at the processor,
cause the remote computer system to perform a
method for automating the shifting of pixels within
the image file, the method comprising: identifying
one or more edges that form a first boundary
around the second portion; and generating the first
mask to cover area within the first boundary. 133

15. Independent Claim 19 .. 136

a. [19pre]: A method for transmitting to a client
computing device instructions for shifting pixels
within a video file, comprising: transmitting
computer executable instructions to a client
computing device, the computer executable
instructions configured to cause the client
computing device to. .. 136

b. [19a]: access, from memory, a digital image file,
wherein the digital image file comprises
information that corresponds to individual pixels
within a frame of the digital image file. 137

c. [19b]: receive a first starting point through a user
interface, wherein the first starting point is
received through a user selection of a first
beginning portion of a first image frame. 137

d. [19c]: receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion. 137

e. [19d]: create a first digital link between the first
starting point and the first ending point, wherein
the first digital link comprises: a first direction
extending from the first starting point to the first
ending point; and a first length between the first
starting point and the first ending point. 138

Page 7 of 202

 - 8 -

f. [19e]: identify a first set of pixels that lie along
the first digital link between the first starting point
and the first ending point; and. 138

g. [19f]: shift the first set of pixels in the first
direction. .. 138

16. Claim 20: The method of claim 19, wherein the digital image
file comprises a video file and the first image frame comprises
a frame of the video file. .. 138

C. Ground 2: IMU and Okabe, and Claims 1-4, 8-14, and 19-20 138

1. Summary of IMU ... 138

a. Applying Effects and Creating an Animation 140

b. Extracting a Single Frame of a GIF Animation 143

c. Modifying Transparency of Certain Pixels Using a
Matte .. 145

2. Summary of Okabe .. 146

3. The IMU-Okabe Combination ... 147

a. Motivation to Combine IMU with Okabe 147

b. Resulting Combination of IMU with Okabe 151

4. Independent Claim 1 .. 153

a. [1pre]: A computer system providing, to a client
computing device, software for automating a
shifting of pixels within a video file, the computer
system comprising: one or more processors; and
one or more computer-readable media having
stored thereon executable instructions that are
transmitted to the client computing device for
execution by one or more client processors on the
client computing device, the executable
instructions comprising instructions that when
executed by the one or more client processors
configure the client computing device to perform
at least the following. ... 153

Page 8 of 202

 - 9 -

b. [1a]: access, from memory, a digital image file,
wherein the digital image file comprises
information that corresponds to individual pixels
within a frame of the digital image file. 154

c. [1b]: receive a first starting point through a user
interface, wherein the first starting point is
received through a user selection of a first
beginning portion of a first image frame. 155

d. [1c]: receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion. 158

e. [1d]: create a first digital link between the first
starting point and the first ending point, wherein
the first digital link comprises: a first direction
extending from the first starting point to the first
ending point; and a first length between the first
starting point and the first ending point. 159

f. [1e]: identify a first set of pixels that lie along the
first digital link between the first starting point and
the first ending point; and. ... 160

g. [1f]: shift the first set of pixels in the first
direction. .. 162

5. Claim 2: The computer system of claim 1, wherein the first
ending portion comprises a particular portion of the first
image frame. ... 163

6. Claim 3: The computer system of claim 1, wherein the digital
image file comprises a video file and the first image frame
comprises a first video frame of the video file. 163

7. Claim 4: The computer system of claim 3, wherein the first
ending portion comprises a particular portion of a second
video frame within the video file. .. 163

8. Claim 8: The computer system of claim 1, wherein shifting
the first set of pixels comprises rendering in a loop the first set
of pixels being shifted within the first image frame. 164

9. Claim 9 ... 165

Page 9 of 202

 - 10 -

a. [9a]-[9e]: The computer system of claim 1,
wherein the executable instructions include
instructions that are executable to configure the
computer system to: receive a second starting
point through the user interface, wherein the
second starting point is received through a user
selection of a second beginning portion of the first
image frame; receive a second ending point
through the user interface, wherein the second
ending point is received through a user selection of
a second ending portion; create a second digital
link between the second starting point and the
second ending point, wherein the second digital
link comprises: a second direction extending from
the second starting point to the second ending
point; and a second length between the second
starting point and the second ending point;
identify a second set of pixels that lie between the
second starting point and the second ending point;
and shift the second set of pixels in the second
direction. .. 165

10. Claim 10: The computer system of claim 9, wherein the first
direction is different from the second direction. 168

11. Claim 11: The computer system of claim 9, wherein a
magnitude of the shifting of the first set of pixels is
proportionally related to the first length and the magnitude of
the shifting of the second set of pixels is proportionally
related to the second length. ... 169

12. Independent Claim 12 .. 171

a. [12pre]: A computer program product comprising
one or more non-transitory computer storage
media having stored thereon computer-executable
instructions that, when transmitted to a remote
computer system for execution at a processor,
cause the remote computer system to perform a
method for automating a shifting of pixels within
an image file, the method comprising. 171

Page 10 of 202

- 11 -

b. [12a]: receiving a first indication of a first starting
point through a user interface, wherein the first
starting point is received through a user selection
of a first portion of a first image frame. 172

c. [12b]: receiving, through the user interface, a first
direction associated with the first starting point. 172

d. [12c]: creating a first digital link extending in the
first direction from the first starting point. 172

e. [12d]: selecting a first set of pixels that are along
the first digital link and extend in the first direction
away from the first starting point. 173

f. [12e]: shifting the first set of pixels, in the first
image frame, in the first direction. 173

13. Claim 13 ... 173
a. [13a]-[13b]: The computer program product as

recited in claim 12, further comprising receiving
an indication to generate a first mask over a second
portion of the first image frame, wherein pixels
under the first mask are prevented from shifting. 173

14. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions that,
when transmitted to the remote computer system for
execution at the processor, cause the remote computer system
to perform a method for automating the shifting of pixels
within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated. ... 175

15. Independent Claim 19 .. 175
a. [19pre]: A method for transmitting to a client

computing device instructions for shifting pixels
within a video file, comprising: transmitting
computer executable instructions to a client
computing device, the computer executable
instructions configured to cause the client
computing device to. .. 175

Page 11 of 202

 - 12 -

b. [19a]: access, from memory, a digital image file,
wherein the digital image file comprises
information that corresponds to individual pixels
within a frame of the digital image file. 176

c. [19b]: receive a first starting point through a user
interface, wherein the first starting point is
received through a user selection of a first
beginning portion of a first image frame. 176

d. [19c]: receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion. 176

e. [19d]: create a first digital link between the first
starting point and the first ending point, wherein
the first digital link comprises: a first direction
extending from the first starting point to the first
ending point; and a first length between the first
starting point and the first ending point. 177

f. [19e]: identify a first set of pixels that lie along
the first digital link between the first starting point
and the first ending point; and. 177

g. [19f]: shift the first set of pixels in the first
direction. .. 177

16. Claim 20: The method of claim 19, wherein the digital image
file comprises a video file and the first image frame comprises
a frame of the video file. .. 177

D. Ground 3: IMU, Okabe, and Li, and Claims 13-15 177

1. Summary of Li ... 177

2. The IMU-Okabe-Li Combination .. 179

a. Motivation to Combine the IMU-Okabe
Combination with Li .. 179

b. Resulting Combination of the IMU-Okabe
Combination and Li ... 182

3. Claim 13 ... 183

Page 12 of 202

 - 13 -

a. [13a]-[13b]: The computer program product as
recited in claim 12, further comprising receiving
an indication to generate a first mask over a second
portion of the first image frame, wherein pixels
under the first mask are prevented from shifting. 183

4. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions that,
when transmitted to the remote computer system for
execution at the processor, cause the remote computer system
to perform a method for automating the shifting of pixels
within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated. ... 184

5. Claim 15 ... 185

a. [15a]-[15b]: The computer program product of
claim 14, further comprising computer-executable
instructions that, when transmitted to the remote
computer system for execution at the processor,
cause the remote computer system to perform a
method for automating the shifting of pixels within
the image file, the method comprising: identifying
one or more edges that form a first boundary
around the second portion; and generating the first
mask to cover area within the first boundary. 185

IX. CONCLUSION ... 186

Page 13 of 202

 - 14 -

LIST OF DOCUMENTS CONSIDERED

Exhibit Shorthand Description
1001 ’641 Patent U.S. Patent No. 11,182,641
1003 AEM Adobe® After Effects® Help and tutorials,

Adobe (2013)
1004 IMU-Home Wayback Machine Capture dated Mar. 27, 2012

of Anthony Thyssen, Examples of ImageMagick
Usage (Version 6), ImageMagick (Mar. 15,
2011), http://www.imagemagick.org/Usage/
[https://web.archive.org/web/20120327064501/ht
tp://www.imagemagick.org/Usage/]

1005 IMU-Distorting WayBack Machine Capture dated Mar. 29, 2012
of Anthony Thyssen, ImageMagick v6 Examples -
- Distorting Images, ImageMagick (Mar. 21,
2012),
http://www.imagemagick.org/Usage/distorts/
[https://web.archive.org/web/20120329131929/ht
tp://www.imagemagick.org/Usage/distorts/]

1006 IMU-Masking Wayback Machine Capture dated Sept. 28, 2012
of Anthony Thyssen, ImageMagick v6 Examples -
- Masks, ImageMagick (Mar. 10, 2011),
http://www.imagemagick.org/Usage/masking/
[https://web.archive.org/web/20120928070642/ht
tp://www.imagemagick.org/Usage/masking/]

1007 IMU-Animating1 Wayback Machine Capture dated Mar. 10, 2012
of Anthony Thyssen, ImageMagick v6 Examples -
- Animation Basics, ImageMagick (Feb. 8, 2011),
http://www.imagemagick.org/Usage/anim_basics/
[https://web.archive.org/web/20120310193613/ht
tp://www.imagemagick.org/Usage/anim_basics/]

1008 IMU-Windows Wayback Machine Capture dated Apr. 5, 2012 of
Anthony Thyssen, ImageMagick v6 Examples --
Usage under Windows, ImageMagick (Mar. 21,
2012),

1 IMU-Home, IMU-Warping, IMU-Distorting, IMU-Masking, IMU-Animating, and

IMU-Windows are collectively referred to hereinafter as “IMU.”

Page 14 of 202

 - 15 -

http://www.imagemagick.org/Usage/windows/
[https://web.archive.org/web/20120405151502/ht
tp://www.imagemagick.org/Usage/windows/]

1009 Okabe Makato Okabe, et al., Creating Fluid Animation
from a Single Image using Video Database, 30
Computer Graphics Forum 1973 (Nov. 4, 2011)

1010 Li Yin Li, et al., Lazy Snapping, 23 ACM
Transactions on Graphics 303 (Aug. 1, 2004)

1011 ’641 PH Prosecution history of U.S. Patent No. 11,182,641
1012 Archive Declaration of Nathaniel E Frank-White of the

Internet Archive
1022 Plaintiffs’ Opposed Motion for Leave to Serve

Second Supplemental Disclosures Pursuant to
PR. 3-1 and P.R. 3-2, Plotagraph, Inc. v.
Lightricks Ltd., Civil Action No. 4:21-cv-03873,
Dkt. No. 42 (S.D. Tex. May 21, 2022)

1023 Hair U.S. Patent No. 6,014,491
1024 Nakagawa U.S. Patent No. 5,835,911
1025 WayBack Machine Capture dated Sept. 7, 2012

of Downloads, Adobe (Sept. 7, 2012),
http://www.adobe.com/downloads/ [https://web.
archive.org/web/20120907130453/http://www.
adobe.com/downloads/]

1026 WayBack Machine Capture dated Mar. 28, 2012
of Download ImageMagick, ImageMagick (Mar.
28, 2012), http://www.imagemagick.org/script/
download.php [https://web.archive.org/web/
20120328075001/http://www.imagemagick.org/
script/download.php]

Page 15 of 202

 - 16 -

CLAIM LISTING

Claim Limitation No. Limitation

1

[1pre]

A computer system providing, to a client computing
device, software for automating a shifting of pixels
within a video file, the computer system comprising:

one or more processors; and

one or more computer-readable media having stored
thereon executable instructions that are transmitted
to the client computing device for execution by one
or more client processors on the client computing
device, the executable instructions comprising
instructions that when executed by the one or more
client processors configure the client computing
device to perform at least the following:

[1a]

access, from memory, a digital image file, wherein
the digital image file comprises information that
corresponds to individual pixels within a frame of
the digital image file;

[1b]

receive a first starting point through a user interface,
wherein the first starting point is received through a
user selection of a first beginning portion of a first
image frame;

[1c]
receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion;

[1d]

create a first digital link between the first starting
point and the first ending point, wherein the first
digital link comprises:

a first direction extending from the first starting point
to the first ending point; and

a first length between the first starting point and the
first ending point;

[1e]
identify a first set of pixels that lie along the first
digital link between the first starting point and the
first ending point; and

Page 16 of 202

 - 17 -

Claim Limitation No. Limitation
[1f] shift the first set of pixels in the first direction.

2 The computer system of claim 1, wherein the first ending portion
comprises a particular portion of the first image frame.

3
The computer system of claim 1, wherein the digital image file
comprises a video file and the first image frame comprises a first video
frame of the video file.

4
The computer system of claim 3, wherein the first ending portion
comprises a particular portion of a second video frame within the video
file.

8
The computer system of claim 1, wherein shifting the first set of pixels
comprises rendering in a loop the first set of pixels being shifted within
the first image frame.

9

[9a]

The computer system of claim 1, wherein the
executable instructions include instructions that are
executable to configure the computer system to:

receive a second starting point through the user
interface, wherein the second starting point is
received through a user selection of a second
beginning portion of the first image frame;

[9b]

receive a second ending point through the user
interface, wherein the second ending point is
received through a user selection of a second ending
portion;

[9c]

create a second digital link between the second
starting point and the second ending point, wherein
the second digital link comprises:

a second direction extending from the second
starting point to the second ending point; and

a second length between the second starting point
and the second ending point;

[9d]
identify a second set of pixels that lie between the
second starting point and the second ending point;
and

[9e] shift the second set of pixels in the second direction.

Page 17 of 202

 - 18 -

Claim Limitation No. Limitation

10 The computer system of claim 9, wherein the first direction is different
from the second direction.

11

The computer system of claim 9, wherein a magnitude of the shifting of
the first set of pixels is proportionally related to the first length and the
magnitude of the shifting of the second set of pixels is proportionally
related to the second length.

12

[12pre]

A computer program product comprising one or
more non-transitory computer storage media having
stored thereon computer-executable instructions that,
when transmitted to a remote computer system for
execution at a processor, cause the remote computer
system to perform a method for automating a shifting
of pixels within an image file, the method
comprising:

[12a]

receiving a first indication of a first starting point
through a user interface, wherein the first starting
point is received through a user selection of a first
portion of a first image frame;

[12b] receiving, through the user interface, a first direction
associated with the first starting point;

[12c] creating a first digital link extending in the first
direction from the first starting point;

[12d]
selecting a first set of pixels that are along the first
digital link and extend in the first direction away
from the first starting point; and

[12e] shifting the first set of pixels, in the first image
frame, in the first direction.

13
[13a]

The computer program product as recited in claim
12, further comprising receiving an indication to
generate a first mask over a second portion of the
first image frame,

[13b] wherein pixels under the first mask are prevented
from shifting.

14

The computer program product as recited in claim 13, further
comprising computer-executable instructions that, when transmitted to
the remote computer system for execution at the processor, cause the
remote computer system to perform a method for automating the
shifting of pixels within the image file, the method comprising

Page 18 of 202

 - 19 -

Claim Limitation No. Limitation
receiving through a user interface a selection of the second portion of
the first image frame around which the first mask should be generated.

15
[15a]

The computer program product of claim 14, further
comprising computer-executable instructions that,
when transmitted to the remote computer system for
execution at the processor, cause the remote
computer system to perform a method for
automating the shifting of pixels within the image
file, the method comprising:

identifying one or more edges that form a first
boundary around the second portion; and

[15b] generating the first mask to cover area within the
first boundary.

19

[19pre]

A method for transmitting to a client computing
device instructions for shifting pixels within a video
file, comprising:

transmitting computer executable instructions to a
client computing device, the computer executable
instructions configured to cause the client computing
device to:

[19a]

access, from memory, a digital image file, wherein
the digital image file comprises information that
corresponds to individual pixels within a frame of
the digital image file;

[19b]

receive a first starting point through a user interface,
wherein the first starting point is received through a
user selection of a first beginning portion of a first
image frame;

[19c]
receive a first ending point through the user
interface, wherein the first ending point is received
through a user selection of a first ending portion;

[19d]

create a first digital link between the first starting
point and the first ending point, wherein the first
digital link comprises:

Page 19 of 202

 - 20 -

Claim Limitation No. Limitation
a first direction extending from the first starting point
to the first ending point; and

a first length between the first starting point and the
first ending point;

[19e]
identify a first set of pixels that lie along the first
digital link between the first starting point and the
first ending point; and

[19f] shift the first set of pixels in the first direction.

20 The method of claim 19, wherein the digital image file comprises a
video file and the first image frame comprises a frame of the video file.

Page 20 of 202

 - 21 -

I. INTRODUCTION AND SCOPE OF WORK

 My name is Philip Greenspun. I am over the age of twenty-one (21)

years, of sound mind, capable of making the statements set forth in this declaration,

and competent to testify about the matters set forth below. All the facts and

statements contained in this declaration are within my personal knowledge, and they

are, in all things, true and correct.

 I have been retained as an expert witness on behalf of Lightricks Ltd.

(“Petitioner”) to provide my opinions and views on the materials I have reviewed

related to U.S. Patent No. 11,182,641 (the “’641 Patent”), and the scientific and

technical knowledge regarding that subject matter. I understand that Petitioner has

filed a Petition for Inter Partes Review (“IPR”) arguing that claims 1-4, 8-15, and

19-20 of the ’641 Patent are unpatentable. I have been asked to provide expert

opinions on the issues relating to this IPR, which I address below.

II. EXPERIENCE AND QUALIFICATIONS

 I am a salaried employee of Fifth Chance Media LLC, which I

understand is being compensated for my work in this matter. I am not an owner of

Fifth Chance Media LLC, and my compensation is not contingent on the outcome

of this matter or the specifics of my testimony. Fifth Chance Media LLC is being

compensated for my work as an expert on an hourly basis. My compensation is not

dependent on the outcome of these proceedings or the content of my opinions.

Page 21 of 202

 - 22 -

 My resumé is attached as Attachment A. In terms of my background

and experiences that qualify me as an expert in this case, I earned a Ph.D. in

Electrical Engineering and Computer Science from the Massachusetts Institute of

Technology (“MIT”) in 1999. I also obtained a Bachelor of Science Degree in

Mathematics from MIT in 1982 and a Master of Science Degree in Electrical

Engineering and Computer Science from MIT in 1993.

 My Ph.D. thesis concerned the engineering of large online Internet

communities with a Web browser front-end and a relational database management

system (RDBMS) containing site content and user data. This work was substantially

based on building and operating the photo.net online community, a site where

photography enthusiasts reviewed tutorials, many of which I authored, uploaded

their own photos for display and discussion, and exchanged questions and answers.

The thesis included a chapter on using digital image processing tools, including

Adobe Photoshop, as well as batch-processing tools based on ImageMagick (see

below) for handling 100 or more photos in an automated pipeline.

 I have authored five computer science textbooks in total, including

Database Backed Web Sites (Macmillan), Software Engineering for Internet

Applications (MIT Press), and a SQL language tutorial.

 I have served as an independent member of various advisory and

corporate boards, mostly for technology companies. For example, I joined the

Page 22 of 202

 - 23 -

corporate board of an MIT materials science spin-off in late 2005 during a $550,000

seed capital phase. I stepped down when the company secured $10 million in

venture capital in mid-2007.

 I have previously served as an expert witness for Amazon.com, Ford

Motor Company, IBM, Microsoft, Oracle, Samsung, Canon, and Google, among

others, in patent cases. I have been retained as a patent expert by the U.S.

Department of Justice in a trade matter and by the Commonwealth of Massachusetts

in a criminal matter in which software was at issue.

 I began working full-time as a computer programmer in 1978,

developing a database management system for the Pioneer Venus Orbiter at the

National Aeronautics and Space Administration’s Goddard Space Flight Center.

 I began working in the area of computer graphics in 1983, specifically

on primitives for the Symbolics Operating System as well as a video game for that

computer. I began working with digital video and digital video editing programs in

the 1990s and was using Adobe Premiere continuously starting in the 2000s. See,

e.g., Philip Greenspun, “Suggestions for video editing computer” (June 6, 2010),

https://philip.greenspun.com/blog/2010/06/06/suggestions-for-video-editing-

computer/.

 I began working on systems that rendered 2D screens from 3D models

in 1984 while developing the ICAD computer-aided mechanical design system for

Page 23 of 202

 - 24 -

the Symbolics Lisp Machine. Also for the Lisp Machine, I developed a 2D anti-tank

warfare simulator for the U.S. Department of Defense (through Textron). I also

developed a computer system for supporting civil engineering, especially

earthmoving, that included a digital three-dimensional map. The latter system was

the topic of my Master’s thesis at MIT and also U.S. Patents 5,150,310 and

5,964,298 (“Integrated civil engineering and earthmoving system”).

 In 1995, I led an effort by Hearst Corporation to set up an infrastructure

for Internet applications across all their newspaper, magazine, radio, and television

properties. This infrastructure included software for managing users, shopping carts,

electronic commerce, advertising, and user tracking. The software that I designed

managed images for both editorial and advertising.

 Between 1995 and 1997, I significantly expanded the photo.net online

community that I had started in 1993 to help people teach each other to become

better photographers. I began distributing the source code behind photo.net to other

programmers as a free open-source toolkit called “ArsDigita Community System.”

 The photo.net site enabled users to upload photos as attachments to

discussion forum postings and also, beginning in 1999, included a complete photo-

sharing system along the lines of Flickr. The system included some server-based

image processing capabilities, e.g., to produce thumbnail images from full-size

images.

Page 24 of 202

 - 25 -

 In May 1997, Macmillan published my first textbook on Internet

Application development, Database Backed Web Sites. This book includes a chapter

on processing images, including with Adobe and ImageMagick software, for

inclusion within Web sites.

 In 1997, I started a company, ArsDigita, to provide support and service

for the free open-source toolkit based on photo.net. Between 1997 and the middle

of 2000, I managed the growth of ArsDigita to 80 people, almost all programmers,

and $20 million per year in annual revenue. This involved supervising dozens of

software development projects, nearly all of which were Internet Applications with

a Web front-end and an Oracle RDBMS back-end. The typical project also involved

handling images and image processing.

 Between 2000 and the present, I have done software development

projects for philip.greenspun.com and photo.net, two online services that are

implemented as relational database management applications. In addition, I

developed postclipper.com, a database-backed Web application that works in

conjunction with Facebook to allow parents to produce electronic baby books based

on photographs previously included in Facebook posts.

 Separately from this commercial and public work, I have been

involved, as a part-time teacher within the Department of Electrical Engineering and

Computer Science, educating students at MIT in how to develop Internet

Page 25 of 202

 - 26 -

Applications with an RDBMS back-end. In the Spring of 1999, I taught 6.916

Software Engineering of Innovative Web Services with Professors Hal Abelson and

Michael Dertouzos. In the Spring of 2002, this course was adopted into the standard

MIT curriculum as 6.171. I wrote 15 chapters of a new textbook for this class,

Software Engineering for Internet Applications. This book was published on the

Web at http://philip.greenspun.com/seia/ starting in 2002 and 2003 and also in

hardcopy from MIT Press in 2006. I am the sole author of a supplementary textbook

for the class, SQL for Web Nerds, a succinct SQL programming language tutorial

available only on the Web at http://philip.greenspun.com/sql/. I am also one of the

creators and teachers of a three-day intensive course in developing database

applications. We teach this class periodically at MIT.

 I periodically teach a database programming class at Harvard Medical

School. Students have access to a relational database of more than 5 billion

insurance claims and write SQL programs to try to identify correlations and trends.

I taught this course most recently in March 2021. In the fall of 2021, I taught an

Information Security class at Florida Atlantic University. The most recent course

that I have taught is an aeronautical engineering class at MIT in January 2023.

III. COMPENSATION

 My work on this matter is being billed at $550/hour. Also, Fifth Chance

Media is being reimbursed for reasonable and necessary expenses incurred in

Page 26 of 202

 - 27 -

relation to my services. Fifth Chance Media’s compensation is not dependent on my

testimony or the outcome of this or any other proceeding.

IV. LEGAL CONSIDERATIONS

 I am not a lawyer, and I offer no legal opinions. For the purposes of

this declaration, I have been informed by counsel for Petitioner about certain aspects

of the law that are relevant to my analysis, as summarized below.

A. Level of Ordinary Skill in the Art

 I understand from Petitioner’s counsel that the claims of the ’641

Patent, the teachings from the prior art, and the related issues I address below must

be considered from the perspective of a person of ordinary skill in the art

(“POSITA”) at the time of the earliest claimed priority date (“ECPD”), which I have

been asked by counsel for Petitioner to assume, for purposes of this IPR, is July 28,

2016.

 I have also been advised that a POSITA is a hypothetical person to

whom the claimed subject matter pertains with the capability of understanding the

scientific and engineering principles applicable to the pertinent art. I understand that

the following factors may be considered in determining the level of ordinary skill:

type of problems encountered in the art; prior art solutions to those problems; speed

with which innovations are made; sophistication of the technology; and educational

Page 27 of 202

 - 28 -

level of active workers in the field. I also understand that not every factor may be

present and that one or more factors may predominate.

 In my opinion, a POSITA as of the ECPD would have had at least a

bachelor’s degree in computer science, electrical engineering, or a related field, and

at least 1-2 years of experience in image processing and animation. Less education

could have been compensated with more experience, and vice versa. A POSITA

would have also been familiar with existing systems for image processing and

animation and understood how to implement such systems. The ’641 Patent and

prior art discussed in Section VIII evidence this level of ordinary skill.

 Under this definition, I at least possessed ordinary skill in the art at the

ECPD. I have applied this definition of a POSITA in rendering my opinions below.

B. Claim Construction

 I am informed that a claim term is given the meaning that the term

would have to a POSITA at the time of the invention, which generally is the ordinary

and customary meaning of the term. I further understand that the ordinary and

customary meaning of a term may be evidenced by a variety of sources, including

the words of the claims themselves, the specification, the prosecution history, and

extrinsic evidence concerning relevant scientific principles, the meaning of technical

terms, and the state of the art.

Page 28 of 202

 - 29 -

V. BASIS FOR OPINIONS

 My opinions are based on my education, training, and experience as

well as items that I reviewed to prepare my opinions, including the ’641 Patent and

at least the publications listed in the table at the beginning of this declaration.

 My opinions address what would have been logical to, and within the

skill level of, a POSITA at the ECPD, given the state of the relevant art, the

knowledge and skill that a POSITA would have, the teachings of the references

discussed below, and how a POSITA would have understood those teachings. My

opinions also address whether a POSITA would have had a reasonable expectation

of the modified systems discussed below successfully functioning in their modified

forms as discussed below.

 I have not been asked to take a position on whether a given claim would

have been legally anticipated or otherwise obvious to a POSITA at the ECPD, but I

have been told that some or all of my opinions are being used to support the argument

that claims of the ’641 Patent are anticipated or otherwise obvious.

VI. TECHNOLOGY BACKGROUND

 Interactive computing with a command-line interface dates to the 1960s

and was an improvement on batch computing with decks of punched cards. The

command-line interface became widely familiar to consumers in 1978 with Apple

Page 29 of 202

 - 30 -

DOS on the Apple II and in 1981 with MS-DOS—the operating system included on

the IBM PC.

 Bit-mapped or “raster” graphics computer displays, which replaced

vector graphics terminals, were developed in the 1960s and became more popular as

the cost of memory fell. By 1977, the Apple II was available to consumers and

included the ability to display color graphics from an area of its memory.2

“Computer science curriculum for high school students,” ACM SIGCSE Bulletin

12:1 (1980), page 172, describes students in an introductory high school class

programming 2D looping animations in the PASCAL language on the Apple II.

Packaged animation programs enabled consumers to create animations without

programming. Fantavision, an example mid-1980s program, can be seen in

operation in 2010 YouTube videos.3

 Conventional mid-80s hardware and low-level software for displaying

computer-generated images is described in “VAXstation: A General-Purpose Raster

Graphics Architecture,” ACM Transactions on Graphics 3:1 (1984), page 70, which

2 https://www.si.edu/object/nmah_334638.

3 E.g., Highretrogamelord, Fantavision for the Apple II [Part 01 \ 02], YouTube

(Dec. 5, 2010), https://youtu.be/k4ysfd8r0fA; Highretrogamelord, Fantavision for

the Apple II [Part 02 \ 02], YouTube (Dec. 5, 2010), https://youtu.be/vSo5_2TB91E.

Page 30 of 202

 - 31 -

notes that “high-resolution bit-mapped raster displays, as pioneered on the Xerox

PARC Alto computer, have now become standard on many personal computers and

workstations.” The paper describes an operation to move a group of pixels as “the

fundamental operation of the display system.” “VAXstation: A General-Purpose

Raster Graphics Architecture” at 75.

 The earliest graphical user interfaces predate bitmapped graphics. One

may be seen in a 1963 demonstration of Ivan Sutherland’s Sketchpad program on a

vector graphics display.4 The familiar modern windows, icons, menus, and pointer

(“WIMP”) interface is generally dated to the 1973 and the Xerox Alto computer,

many of whose ideas were popularized for consumers in the Apple Macintosh (1984)

and Microsoft Windows (1985). One of the application programs shipped with the

first Macintosh was MacDraw, which enabled users to create and manipulate

drawings on the screen.

 Although professionals had access to film scanners in the 1980s, the

typical consumer did not have a library of personal digital photos in that decade.

The 1992 Kodak PhotoCD system enabled the bulk conversion of images on film to

high-resolution digital files. I myself was a user of the PhotoCD system starting in

4 Interactive Chronicles, Ivan Sutherland Sketchpad Demo 1963, YouTube (May 30,

2012), https://youtu.be/6orsmFndx_o.

Page 31 of 202

 - 32 -

late 1993, processing the files with ImageMagick (first released in 1990).

Professional photographers began to originate digital images in the late 1980s, while

the first consumer digital cameras were products of the 1990s and the first mobile

phones with built-in cameras arrived in the late 1990s. Today’s familiar touch-

screen smartphone with an included camera was pioneered in 2007 with the first

Apple iPhone.

 Almost as soon as there were digital images, there were digital image

editing programs. A system from Bell Labs is described in a 1987 paper, “PICO-A

Picture Editor,” AT&T Technical Journal 66:2 (1987), page 2. PICO includes the

capability of transforming images. Introduced originally in 1990, Photoshop version

3.0 was released in 1994 and included layers and the capability of generating

animated GIFs.5 Consumer-targeted image editing applications appeared in the

1990s as well. A November 18, 1997, press release notes that 5 million copies of

Adobe PhotoDeluxe had been shipped to consumers. A November 24, 1997, press

5 Rik Fairlie, A Look Back at 20 Years of Photoshop (Feb. 18, 2010, 12:23 PM),

https://gadgetwise.blogs.nytimes.com/2010/02/18/a-look-back-at-20-years-of-

photoshop/ [https://archive.nytimes.com/gadgetwise.blogs.nytimes.com/2010/02

/18/a-look-back-at-20-years-of-photoshop/]

Page 32 of 202

 - 33 -

release from Microsoft, on the other hand, claimed that the company’s Picture It! 2.0

was the market leader in both sales and capability.

 George Wolberg, Digital Image Warping (1990) describes underlying

algorithms for transforming portions of digital photographs. Applications of some

of these techniques are described in Thaddeus Beier & Shawn Neely, “Feature-

Based Image Metamorphosis,” SIGGRAPH ’92: Proceedings of the 19th Annual

Conference on Computer Graphics and Interactive Techniques 1992), page 35, and

Peter Litwinowicz & Lance Williams, “Animating Images with Drawings,”

SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics

and Interactive Techniques (1994), page 409.

 Adding motion to images was being done with standard desktop

software, such as Adobe After Effects, first released in 1993, no later than 1999.

“Cycore’s Cult Effects Filters To Be Offered Free With Adobe After Effects 4.1,”

PR Newswire Europe, September 10, 1999, describes “CE Noise Turbulent: fractals

can be used to describe many real world objects that do not have simple geometric

shapes. You can animate all fractals with full control. Great for simulating anything

from caustics to clouds, from lava to flowing water or gas.”

 Yung-Yu Chuang et al., “Animating Pictures with Stochastic Motion

Textures,” ACM Transactions on Graphics 24:3 (2005), page 853 (“Chuang”),

explains “we explore the problem of enhancing still pictures with subtly animated

Page 33 of 202

 - 34 -

motions” and describes a looping two-dimensional displacement. The user assists

the software by segmenting “the scene into a set of animatable layers and assigns

certain parameters to each one.” Masks are used to divide up the image. From

Chuang at page 855:

 Each layer may be annotated with “a line segment,” and the “motion

texture” for each layer can be different. Chuang at page 855. Although the system

has the capability of implementing complex motions as much of the paper is

concerned with, it can also move pixels: “Since clouds often move very slowly and

their motion does not attract too much attention, we simply assign a translational

motion field to them.” Chuang at page 858.

 Image processing on moving images (videos) began in the 1960s. For

example, “Digital Video-Data Handling” (NASA JPL Technical Report No. 32-877,

January 5, 1966) describes an analog television signal that is converted to a digital

file, processed, and then converted once again into an analog video. By the 1980s,

Page 34 of 202

 - 35 -

such systems were available commercially. “The Coming Revolution in Interactive

Digital Video” (Fox, Communications of the ACM, July 1989) describes digital

video systems produced for consumers, typically based on optical disks such as CD-

ROM and notes that “image processing techniques can enhance individual frames”

(page 796).

 One popular system that I personally observed in the late 1980s was

sold to television stations by Avid Technology. See., e.g., U.S. Patent No. 4,970,633

(filed in 1989). This patent describes storing digital video in “a standard PC file

system” (2:7-15), compressing, decompressing, and displaying video data in real

time (4:13-14), and digital effects, “as in a television newscast when an overlaid

image in a corner of the screen expands in size to take up the entire screen” (4:52-

55).

 The capabilities of Avid’s proprietary system became available to

consumers in the 1990s with programs such as Adobe Premiere (1991).6

 Because, like film, video gives the illustration of motion by presenting

individual frames in succession, almost any system that had the capability of

digitizing and processing video (multiple frames) also had the capability of

6 See “Adobe Premiere brings digital video capabilities to the desktop” (Business

Wire, December 13, 1991)

Page 35 of 202

 - 36 -

extracting an individual frame. In fact, the hardware for digitizing video was

typically marketed as a “frame grabber.” This capability is described explicitly in

“Picture processor breaks new ground,” Electronics Times (January 30, 1986): “The

frame grabber board digitises a video image from a camera or tape into 256 x 256

pixel image with up to 64 grey scale levels. It has a 64kbyte memory which can be

used to store, or 'photograph', a particular frame for analysis” (emphasis added).

 Our modern world of distributing software over a network in which the

client machine checks for updates, and downloads updates from a network is

described in Nakagawa (Abstract):

A number of sets of software may be systematically
distributed and maintained via a network connecting many
vendors and users of client/server software. A client
program in a user computer detects when software subject
to maintenance is activated and transmits an inquiry over
the network to the software vendor's computer for
information on the current version of the software. The
server program compares data in the inquiry with data
relating to the latest version of the software and returns
update instruction information and updated software if
appropriate. The client program automatically updates the
software to the latest version according to the update
instruction information when it is received.

 Any person of ordinary skill by the ECPD would have been familiar

with software being provided by a server to a client computing device, such as a

desktop personal computer or a mobile phone.

Page 36 of 202

 - 37 -

 In summary, graphical user interfaces, algorithms, and software for

adding motion to a static image had been developed in the 1990s. All of the

hardware and software tools necessary for obtaining that static image from an analog

video signal or a digital video file were also available in the 1990s.

VII. OVERVIEW OF THE ’641 PATENT

 The ’641 Patent itself is directed to “systems, methods, and computer-

readable media that automate the shifting of pixels within a digital video file.” ’641

Patent, 3:13-16. A user provides a video file and selects a “starting point” on a video

frame, as well as an “ending point” on the same or a different frame. ’641 Patent,

Abst., 6:33-54. The system or user then creates a “digital link” between the starting

and ending points and identifies a set of pixels that includes at least “a line of

individual pixels extending from the starting point to the ending point” but may, “at

another extreme,” include “a relatively wide swatch of pixels that are parallel to the

link that extends between the starting point and the ending point.” ’641 Patent, 6:58-

67, 7:22-36. The set of pixels is then shifted in the link’s direction. ’641 Patent,

7:37-40. Figure 9 is representative:

Page 37 of 202

 - 38 -

’641 Patent, Fig. 9.

A. Claim Construction

 For purposes of this IPR, I apply the plain and ordinary meanings of all

claim terms in the ’641 Patent.

VIII. ANALYSIS OF CLAIMS 1-4, 8-15, AND 19-20 OF THE ’641 PATENT
IN VIEW OF THE PRIOR ART

A. Public Availability of AEM, IMU, Okabe, and Li

 AEM is a user manual for the Adobe After Effects CS6 software

(“AECS6”). See, e.g., AEM, 3. In my personal experience, AECS6 was a publicly

available animation software that was popular in the art by the ECPD. It was

Page 38 of 202

 - 39 -

included in the Adobe Creative Suite bundle, and I had a copy installed on my

desktop computer by the ECPD. Its user manual, AEM, was likewise publicly

available to AECS6 users by the ECPD, when it was downloadable from Adobe’s

website. I consulted the Internet Archive and confirmed that this was true through

the following URL of an archived Wayback Machine capture of the Adobe website:

https://web.archive.org/web/20120907012238/https://helpx.adobe.com/pdf/after_ef

fects_reference.pdf. This URL shows that AEM was publicly available for

download from Adobe’s website by September 7, 2012—I understand how to read

the URL from Archive at ¶5. I downloaded AEM from this URL and provided

counsel with the copy of AEM that I understand is used as an exhibit in this

proceeding. AEM matches the copy at Archive, 99-699. Indeed, the above URL

matches that found in Archive, 98.

 IMU contains Wayback Machine captures dated 2012 of the

ImageMagick.org website, specifically the website’s section titled “Examples of

ImageMagick Usage (Version 6),” which provides guidance and examples on how

to use the website’s ImageMagick Version 6 (“IMV6”) software. See IMU-Home,

1. The section’s homepage (IMU-Home) links to different subpages explaining how

to use IMV6’s various effects and capabilities, including “Distorting Images” (IMU-

Distorting), “Masking and Background Removal” (IMU-Masking), “Animation

Page 39 of 202

 - 40 -

Basics” (IMU-Animating), and “Usage under Windows” (IMU-Windows).7 IMU-

Home, 1-2. In my experience, IMV6 was an opensource and publicly available

image processing software that was popular in the art by the ECPD. Likewise, the

above guiding webpages on IMV6 provided by the ImageMagick.org website were

each publicly available for viewing by IMV6 users on the ImageMagick.org website

by the ECPD. I consulted the Internet Archive and confirmed that this was true

through the following URLs of archived Wayback Machine captures of the

ImageMagick.org website:

 https://web.archive.org/web/20120327064501/http://www.imagemagick.org/

Usage/. This URL corresponds to an archived version of the “Examples of

ImageMagick Usage (Version 6)” homepage discussed above and shows that this

homepage was publicly available for viewing on the ImageMagick.org website by

March 27, 2012. I printed the webpage at this URL and provided counsel with the

printout that I understand is used as the “IMU-Home” exhibit in this proceeding.

 https://web.archive.org/web/20120329131929/http://www.imagemagick.org/

Usage/distorts/. This URL corresponds to an archived version of the “Distorting

7 IMU is thus a single reference. Separately, a POSITA would have also been

motivated to consider the IMU webpages together to gain a more complete

understanding of IMV6.

Page 40 of 202

 - 41 -

Images” subpage linked on the “Examples of ImageMagick Usage (Version 6)”

homepage. See IMU-Home, 1. This URL shows that this subpage was publicly

available for viewing on the ImageMagick.org website by March 29, 2012. I printed

the webpage at this URL and provided counsel with the printout that I understand is

used as the “IMU-Distorting” exhibit in this proceeding.

 https://web.archive.org/web/20120928070642/http://www.imagemagick.org/

Usage/masking/. This URL corresponds to an archived version of the “Masking and

Background Removal” subpage linked on the “Examples of ImageMagick Usage

(Version 6)” homepage. See IMU-Home, 1. This URL shows that this subpage was

publicly available for viewing on the ImageMagick.org website by September 28,

2012. I printed the webpage at this URL and provided counsel with the printout that

I understand is used as the “IMU-Masking” exhibit in this proceeding.

 https://web.archive.org/web/20120310193613/http://www.imagemagick.org/

Usage/anim_basics/. This URL corresponds to an archived version of the

“Animation Basics” subpage linked on the “Examples of ImageMagick Usage

(Version 6)” homepage. See IMU-Home, 1. This URL shows that this subpage was

publicly available for viewing on the ImageMagick.org website by March 10, 2012.

I printed the webpage at this URL and provided counsel with the printout that I

understand is used as the “IMU-Animating” exhibit in this proceeding.

Page 41 of 202

 - 42 -

 https://web.archive.org/web/20120405151502/http://www.imagemagick.org/

Usage/windows/. This URL corresponds to an archived version of the “Usage under

Windows” subpage linked on the “Examples of ImageMagick Usage (Version 6)”

homepage. See IMU-Home, 2. This URL shows that this subpage was publicly

available for viewing on the ImageMagick.org website by April 5, 2012. I printed

the webpage at this URL and provided counsel with the printout that I understand is

used as the “IMU-Windows” exhibit in this proceeding.

IMU-Home, IMU-Distorting, IMU-Masking, IMU-Animating, IMU-Windows

match, respectively, the copies at Archive, 5-8, 10-44, 46-64, 66-78, and 80-96.

Indeed, the URLs for these exhibits match, respectively, those found in Archive, 4,

9, 45, 65, and 79.

 Okabe was published in Volume 30, Number 7 of Computer Graphics

Forum in September 2011 and was thus publicly available to those in the art by that

date. Okabe, 1.

 Li was published in Volume 23, Issue 3 of ACM Transactions on

Graphics in August 2004 and was thus publicly available to those in the art by that

date. Li, 1.

Page 42 of 202

 - 43 -

B. Ground 1: AEM, and Claims 1-4, 8-15, and 19-20

1. Summary of AEM

 AEM is a user manual for AECS6—software for performing a variety

of animation tasks from, e.g., “animat[ing] a simple title” to “creat[ing] complex

motion graphics, or composit[ing] realistic visual effects.” AEM, 25.

 AEM instructs the user to “[m]ake sure that you’ve installed the current

version of [AECS6], including any available updates.” AEM, 517. To view such

updates, AEM instructs to “go to the Downloads section of the Adobe website,” and

provides a hyperlink for doing so. AEM, 517. As a POSITA would have known,

clicking such a hyperlink would have directed the user to the “Downloads” webpage

of the Adobe website shown in EX1025, from which the user could indeed download

and install AECS6, including any updates:

Page 43 of 202

 - 44 -

EX1025 (annotations added); AEM, 517. In fact, I downloaded and installed Adobe

Creative Suite, which included AECS6, onto my desktop computer via the

“Downloads” webpage of Adobe’s website by the ECPD. Further, I generated

EX1025 by entering the hyperlinked “Downloads” webpage’s URL into the

Wayback Machine, and then selecting and printing out the Wayback Machine

capture of the webpage captured on the same day as AEM’s capture date of

Page 44 of 202

 - 45 -

September 7, 2012.8 Compare EX1025, with AEM, 517, and Archive, p. 98. See

Archive, ¶5. Because these dates match, EX1025 thus shows the webpage that a

user would have been directed to upon clicking the aforementioned hyperlink in

AEM on that date. See Archive, ¶5.

 AEM also explains how to navigate AECS6’s workspace and panels,

define “compositions” and “layers,” extract a single frame of a video, apply a “mask”

or “matte” to the frame, and animate the frame using the “Puppet” effect. Each is

discussed herein.

 According to AEM, AECS6’s user interface comprises an application

window housing “panels” organized in a “workspace.” AEM, 39. Different panels

contain different tools and effects for editing and animating images in AECS6. See,

e.g., AEM, 25 (discussing the general workflow using AECS6’s “Composition

panel” and “Timeline panel”). AEM depicts an example workspace containing

several panels:

8 I provided counsel with this printout, which I understand is being used as an exhibit

in this proceeding.

Page 45 of 202

 - 46 -

AEM, 39.

 AEM explains that a composition is the “framework” for animation in

AECS6. AEM, 75. “Footage items,” such as images and videos, are imported into

a composition. AEM, 75-76; see also AEM, 101 (“Imported footage items appear

in the Project panel.”). AEM lists specific “[s]upported import formats” of such

footage items, including for example “Still-image formats” such as JPEG, PNG, and

PDF, and “Video and animation formats” such as MOV, MPEG, and animated GIF.

Page 46 of 202

 - 47 -

AEM, 98-101. Once imported, a footage item becomes a “layer” in that

composition. AEM, 75, 98; see also AEM, 121 (“You can create a layer from any

footage item in the Project panel…” by “[s]electing one or more footage items and

folders in the Project panel” and “[d]rag[ging] the selected footage items to the

Composition panel.”).

 Layers are “the elements that make up a composition” and, as implied,

are stacked in a “vertical arrangement” such that the uppermost layer is visible.

AEM, 120, 125.

 Additionally, “[AECS6] includes a variety of effects, which you apply

to layers to add or modify characteristics of still images, video, and audio.” AEM,

335. Such effects are previewed and applied to a composition in the “Composition

panel,” or to a single layer in the “Layer panel.” AEM, 75, 120, 335. When ready,

the user “render[s] [the] composition to create the frames of a final output movie.”

AEM, 75.

 While AEM teaches creating a composition using a video (AEM, 75,

98-101), AEM also teaches extracting a “single frame” from such a composition and

thus the video, which “is useful for,” e.g., “exporting an image from a movie for

posters or storyboards” (AEM, 590). To do so, AEM instructs to “[g]o to the frame

that you want to export so that it is shown in the Composition panel.” AEM, 590.

Page 47 of 202

 - 48 -

Then, “choose Composition > Save Frame As > File. Adjust settings in the Render

Queue panel if necessary, and then click Render.” AEM, 590.

 AEM also teaches that the aforementioned “Render Queue panel”

allows the user to manage various “render settings and output module settings” for

the frame, including “output format.” AEM, 572. “Supported output formats”

include many of the same formats listed as “[s]upported import formats” for footage

items discussed in Section VIII.B.1.b, such as JPEG, PNG, and other “Still-image

formats.” Compare AEM, 573-74, with AEM, 98-101. Indeed, AEM teaches

importing the frame as a new footage item “by dragging its output module from the

Render Queue panel into the Project panel.” AEM, 574-75. Such provides “a

convenient way to convert a footage item from one format to another,” e.g., to extract

a single frame from a video as a footage item for use as a new layer of the

composition. AEM, 573-75, 98-101, 590.

 AEM describes tools for modifying transparency of a layer’s pixels—

and thus the visibility of effects applied to the layer. “You can make portions of a

layer transparent using any of several features in After Effects,” including “masks”

and “mattes.” AEM, 315. Masks and mattes modify the layer’s “alpha channel,”

which “determines the transparency of the layer at each pixel.” AEM, 318.

Page 48 of 202

 - 49 -

 Regarding masks, AEM explains that a user applies a mask to all or a

portion of a layer so that pixels enclosed within the mask are made nontransparent,

while the remaining pixels are made transparent, or vice versa. AEM, 318. AEM

provides an example composition illustrating this functionality using two layers and

a rectangular mask:

AEM, 318. Masks are created by using, e.g., AECS6’s “Pen” tool to click on

different points on the layer in the “Composition” or “Layer panel[s]” to specify the

mask’s path and vertices. AEM, 264-66. AEM depicts an exemplary star-shaped

mask created using the Pen tool:

AEM, 265. Masks can also be automatically created using AECS6’s “Auto-trace”

function, which creates a mask by “searching for edges” across a layer and tracing

such edges. AEM, 262. Such edges are detected based on “the alpha, red, green,

blue, or luminance channel of [the] layer.” AEM, 262.

Page 49 of 202

 - 50 -

 Mattes similarly “define[] the transparent areas” of a layer. AEM, 317.

Specifically, a matte isolates a layer’s “foreground” from its “background,” making

the latter transparent. AEM, 328. A matte is created by using, e.g., AECS6’s “Roto

Brush” tool to draw “strokes” in the “Layer panel” over “representative areas of the

foreground and background elements.” AEM, 328. AECS6 then uses “Edge

Detection” to determine a “segmentation boundary” separating the foreground and

background elements drawn over by the user’s strokes. AEM, 328-31.

 One available effect is AECS6’s “Puppet” effect, which “deform[s] part

of an image according to the positions of pins that you place and move.” AEM, 218.

A user first places a Puppet “Deform” pin on the layer via the “Composition” or

“Layer panel[s],” specifically on a “nontransparent pixel” in a portion of the layer to

be moved. AEM, 219. AECS6 then creates an “outline” by “auto-tracing the alpha

channel of [the] layer”—i.e., outlining the nontransparent pixels of the layer. AEM,

219, 220-21. This outline is “automatically divided into a mesh of triangles,” where

“[e]ach part of the mesh is also associated with the pixels of the image, so the pixels

move with the mesh.” AEM, 218. Thus, when the user repositions the Deform pin,

“the mesh changes shape to accommodate this movement, while keeping the overall

mesh as rigid as possible,” resulting in a corresponding movement of the layer’s

Page 50 of 202

 - 51 -

nontransparent pixels. AEM, 218. The user can add more Deform pins to move

other portions of the layer and its mesh. AEM, 218.

 In one example, AEM depicts a foreground layer containing an image

of a gorilla stacked over a background layer containing several buildings:

AEM, 218. A Deform pin has been placed on each of the gorilla’s limbs, and a mesh

has been created from the nontransparent pixels of the gorilla. AEM, 218. As

shown, the Deform pin on the gorilla’s right arm is repositioned, causing that arm to

move, while the other three Deform pins are not repositioned, causing the other limbs

to remain “as rigid as possible” during the animation. See AEM, 218; see also AEM,

219 (“For example, when animating a person waving, add a pin to each foot to hold

them to the ground, and add a pin to the waving hand.”).

 A user not only can apply the Puppet effect to move a portion of a layer

but can also animate this movement. AEM, 218-19. To do so, AEM instructs to

Page 51 of 202

 - 52 -

define a starting time point and starting position for a Deform pin, and then define

an ending time point and ending position for the Deform pin. AEM, 177, 219. This

is known as defining starting and ending “keyframes” for the Deform pin,

respectively. AEM, 177, 219. AECS6 then interpolates the Deform pin’s position

from the starting time and position (the “starting keyframe”) to the ending time and

position (the “ending keyframe”) and generates “in-between” frames based on the

interpolation, resulting in an animated movement of the layer. AEM, 177, 193, 219.

This is known as “keyframe interpolation.” AEM, 177, 193. Note that the

terminology in the hand-drawn days of animation was similarly “key drawing” or

simply “key” and “in-between.”9

 To define a starting “keyframe” for a Deform pin, AEM instructs the

user to specify a time point within the animation and then place the Deform pin on

a nontransparent pixel of the layer in the “Composition” or “Layer panel[s].” AEM,

218-19; see also AEM, 166 (describing the “current-time indicator (CTI)” in the

“Timeline panel,” which allows a user to specify the current animation time point).

AECS6 then automatically creates the starting keyframe for the Deform pin based

9 See, e.g., The Illusion Of Life: Disney Animation (1981), “The Principles of

Animation” chapter, available at

https://archive.org/details/TheIllusionOfLifeDisneyAnimation/.

Page 52 of 202

 - 53 -

on both the specified time point and the Deform pin’s starting position. AEM, 218-

19.

 AEM then instructs the user to define an ending keyframe by “[g]o[ing]

to another time in the composition, and mov[ing] the position of… the Deform pin[]

by dragging [it] in the Composition or Layer panel.” AEM, 219.

 Once the keyframes for a Deform pin have been specified, AECS6 will

perform keyframe interpolation by interpolating the position of the Deform pin from

the starting to ending keyframe and generating animation frames to animate the

layer’s corresponding movement. AEM, 193 (“You set keyframes to specify a

property’s values at certain key times. After Effects interpolates values for the

property for all times between keyframes.”), 218-19 (“[A] keyframe is set or

modified each time that you change the position of a Deform pin.”). AECS6

performs such interpolation for all keyframes of a Deform pin. AEM, 193, 219. The

user may place additional Deform pins to animate other parts of the layer in the same

way. AEM, 219.

 Further, keyframe interpolation of a Deform pin’s change in position

follows a user-defined path—a “motion path.” AEM, 187, 219. A motion path is

visually indicated in both the “Composition” and “Layer panel[s]” as “a sequence of

dots, where each dot marks the position of the [Deform pin] at each frame. A box

in the path marks the position of a keyframe.” AEM, 187, 219. A user selects

Page 53 of 202

 - 54 -

between using a linear or non-linear motion path for interpolation. AEM, 194-95.

With a linear motion path—i.e., “Linear Interpolation”—the position of the Deform

pin is interpolated linearly from the starting to ending keyframe. AEM, 194. With

a non-linear motion path—e.g., “Bezier interpolation”—the user can adjust the

motion path to include “any combination of curves and straight lines,” and the

position of the Deform pin will follow that path when interpolated from the starting

to ending keyframe. AEM, 194-95. AEM provides an example illustrating the

available linear and non-linear motion paths:

AEM, 193.

 Additionally, a Deform pin’s keyframe interpolation can be looped

such that a layer’s movement is animated in a repeating loop. This is done by

Page 54 of 202

 - 55 -

applying a “loopOut()” expression to the Deform pin, which, by default, causes “all

keyframes [to] loop.” AEM, 562 (explaining that, when using the default inputs for

the “loopOut()” expression, “all keyframes will loop”), 219 (“You can use

expressions to link the positions of Deform pins to motion tracking data, audio

amplitude keyframes, or any other properties.”). Thus, after the Deform pin reaches

the ending position/keyframe, its position will be reset to the starting

position/keyframe, and keyframe interpolation will repeat. AEM, 562, 219. This

loop repeats until the user specifies otherwise. AEM, 562, 219.

2. Example of Animating in AECS6

 To further illustrate the animation capabilities of AECS6, I provide

below a number of annotated screenshots of AECS6’s user interface, as well as

accompanying explanations, showing the step-by-step creation of an exemplary

composition comprising a single frame from a video of a smokestack, where the

frame has been animated using the features of AECS6 discussed above in Section

VIII.B.1.10

10 A nearly identical example of animating smoke in a single, still image using Adobe

After Effects 2020 can also be viewed on YouTube. See Blackbronx, How To

Animate a Still Photo in After Effects, YouTube (Apr. 2, 2020),

https://youtu.be/L_d1Wo-hmoQ. Although this video was published in 2020 (after

Page 55 of 202

 - 56 -

 The specific version of AECS6 used to generate the screenshots was

AECS6 version 11.0.4.2:

 The software was installed on a 2012 Mac running macOS High Sierra

version 10.13.6:

the ECPD) and uses a 2020 version of After Effects to animate the image rather than

AECS6, the video may nevertheless be helpful to those unfamiliar with how such

animations are created in AECS6, as AECS6 includes all of the same features of

After Effects 2020 that are discussed in the video, e.g., the Puppet effect and masks.

Page 56 of 202

 - 57 -

 I have been informed by counsel that, although AECS6—including

screenshots of AECS6—cannot be used as a basis of the grounds in the Petition

because AECS6 does not qualify as either a patent or printed publication under 35

U.S.C. §311(b), such screenshots can nevertheless be used for establishing the

background knowledge possessed by a POSITA, including demonstrating what a

POSITA would have known about AECS6’s animation capabilities, especially in

light of AEM’s teachings. The below screenshots and accompanying explanations

are thus provided for this specific and limited purpose.

 To begin, the below screenshot of AECS6’s user interface shows a 4-

second long MOV video of a smokestack billowing smoke that has been imported

Page 57 of 202

 - 58 -

into an exemplary composition to form a layer in that composition.11 See AEM, 75,

99. The center panel within the user interface (indicated in the annotations) is the

“Composition Panel,” which provides a preview of the layer within the composition

and, as later screenshots also show, enables a layer to be manually modified using

AECS6’s effects. See AEM, 75, 120, 335.

11 Attachment D shows the depicted frames of the MOV video at 1-second time

intervals to mimic the playback of the MOV video over time. As shown, the smoke

gradually billows upwards from the smoke stack, showing that the MOV video is

indeed a video file.

Composition Panel

Page 58 of 202

 - 59 -

 As shown in the following screenshots, a single frame of the video may

be extracted and used as a still-image footage item to be imported into the

composition as a new layer. AEM, 590, 573-75, 98-101. The first screenshot below

shows the selection of the first frame of the video—i.e., the frame at time

“0:00:00:00,” which is selected using the “current-time indicator (CTI)” in the

“Timeline panel”—as the frame to be extracted. See AEM, 590, 166. The frame is

then extracted by choosing “Composition > Save Frame As > File.” AEM, 590.

 The next screenshot below shows the resulting “Render Queue panel”

(indicated in the annotations), which allows the render and output module settings

Page 59 of 202

 - 60 -

for the frame to be managed. See AEM, 590, 572. The settings have been adjusted

such that the output format of the frame is a JPEG—i.e., one of the “[s]till-image

formats” that AECS6 supports as both an output format and a footage item import

format. See AEM, 573-74, 98-101.

 The frame is then extracted accordingly by clicking the “Render”

button at the top-right of the Render Queue panel, as shown in the screenshot below.

See AEM, 590.

Render Queue Panel

Page 60 of 202

 - 61 -

 From here, the frame may be imported into the composition by first

dragging the frame’s “Output Module” to the “Project panel” (indicated in the

annotations below), which thus enables the frame to be used as a footage item, as

shown in the following annotated screenshot. See AEM, 574-75; see also AEM, 90.

The Render Output panel may also be closed, as it is no longer needed.

Page 61 of 202

 - 62 -

The extracted frame is then selected and dragged to the Composition panel, thus

causing the frame to become a new layer of the composition, as shown in the below

annotated screenshot. See AEM, 121, 75. For purposes of clarity, the original video

is also deleted from the composition and Project panel as unnecessary for this

example.

Project Panel

Extracted frame

Page 62 of 202

 - 63 -

 As shown in the next two screenshots, AECS6’s Puppet effect is

applied to the layer using the Puppet Pin tool, beginning with the placement of a

Puppet Deform pin within the “Composition panel” specifically on the portion of the

layer to be moved and animated—i.e., the billowing smoke in the exemplary

composition. See AEM, 218-19. Such placement of the Deform pin automatically

creates a starting keyframe for the Deform pin based on the Deform pin’s placed

location and the starting time of the animation (0:00:00:00). See AEM, 218-19.

Extracted frame, now a
layer of the composition

Page 63 of 202

 - 64 -

Puppet Pin tool

Placed Puppet Deform pin

Starting keyframe created

Page 64 of 202

 - 65 -

 A second Deform pin can optionally be placed at the bottom of the

smoke near the smokestack itself to keep the smokestack rigid and to prevent it from

moving during the animation, as shown below. See AEM, 218-19 (“[W]hen

animating a person waving, add a pin to each foot to hold them to the ground, and

add a pin to the waving hand.”).

 Next, an ending keyframe for the first Deform pin is created by using

the CTI in the Timeline panel to go to another time in the animation (0:00:03:00)

and then dragging the Deform pin to a new position in the “Composition panel.” See

AEM, 219, 166. As the below screenshots indicate, the Deform pin’s repositioning

creates a linear motion path for the Deform pin by default, but the shape of the

Placed Second Puppet
Deform pin to keep
the smokestack rigid

during animation

Page 65 of 202

 - 66 -

motion path can be made non-linear by manually adjusting the motion path

accordingly. See AEM, 194-95.

CTI moved to 0:00:03:00

Page 66 of 202

 - 67 -

Deform pin repositioned
by dragging

Ending keyframe created

Motion path
manually adjusted
to be non-linear

Page 67 of 202

 - 68 -

 The following screenshots show how a mask or matte is used to select

only a set of certain pixels to be nontransparent, such as those pixels of the billowing

smoke in the exemplary composition, to cause only those pixels to be animated by

the Puppet effect. See AEM, 315.

i. Creating a Mask Using the “Pen” Tool

 As shown in the three screenshots below, a mask can be created around

the perimeter of the billowing smoke by using the “Pen” tool. See AEM, 318, 264-

65. Specifically, the mask is created using the “Pen” tool by clicking on different

points around the smoke in the “Composition panel” to specify the shape of the mask

correspondingly. See AEM, 264-65.

Page 68 of 202

 - 69 -

Pen tool

Mask being created by clicking around
smoke to specify mask’s path and vertices

Page 69 of 202

 - 70 -

As can be seen, the mask causes only those pixels of the smoke to be nontransparent.

See AEM, 318. And, as shown in the below screenshot, this causes only these

nontransparent pixels to be included in the “mesh of triangles” to be moved during

the Puppet effect animation mentioned above. See AEM, 219.

Completed mask

Page 70 of 202

 - 71 -

ii. Creating a Mask Using the “Auto-Trace”

Function

 Alternatively, AECS6’s “Auto-trace” function can be used to create a

similar mask by “searching for edges” across the entire layer using, for example, the

layer’s “luminance channel,” as shown in the below screenshots. See AEM, 262.

Puppet effect’s “mesh of
triangles” includes only the

smoke’s pixels made
nontransparent by the mask

Page 71 of 202

 - 72 -

Auto-trace function window

Preview of mask
to be generated

Resulting mask
generated by
“Auto-trace”

Page 72 of 202

 - 73 -

The below screenshot also shows the resulting “mesh of triangles” created from the

smoke’s pixels made nontransparent by this mask. See AEM, 218-19.

iii. Creating a Matte Using the “Roto Brush” Tool

 As an additional alternative, AECS6’s “Roto Brush” tool can be used

to create a matte, which, like a mask, defines which areas of the layer are

nontransparent (in this case, the foreground) or transparent (in this case, the

background). See AEM, 328. To begin using the “Roto Brush” tool, the layer must

first be opened in the “Layer panel,” as shown below. See AEM, 328.

Mesh of triangles
again includes only the
nontransparent pixels

of the smoke

Page 73 of 202

 - 74 -

 Thereafter, as shown in the screenshots below, the “Roto Brush” tool is

used to draw a foreground “stroke” (shown in green) that defines the area of the layer

to be considered the foreground, which in this exemplary composition is the

billowing smoke. See AEM, 328.

Layer Panel

Page 74 of 202

 - 75 -

Roto Brush tool

Foreground stroke
drawn using Roto

Brush tool

Page 75 of 202

 - 76 -

Based on this foreground stroke, AECS6 uses “Edge Detection” to then determine a

“segmentation boundary” (shown in pink) that separates the foreground smoke and

the background sky, as shown below. See AEM, 328-31.

 Although the segmentation boundary is not perfect, it is refined as

shown in the screenshot below by using the “Roto Brush” tool to draw a background

stroke (shown in red) that defines the area of the layer to be considered the

background, which in this exemplary composition is the sky. See AEM, 328-29.

Segmentation
boundary determined
using edge detection

Page 76 of 202

 - 77 -

Based on this background stroke and the previous foreground stroke, AECS6 again

uses edge detection to then redetermine the segmentation boundary, as shown below.

See AEM, 328-31.

Background stroke
drawn using Roto

Brush tool

Page 77 of 202

 - 78 -

 As can be seen, the segmentation boundary is again not perfect but is

now closer than before to the true boundary between the foreground smoke and

background sky. Additional foreground and background strokes are drawn to

continue the refining process until a satisfactory segmentation boundary is reached,

such as shown below. See AEM, 328-29.

Segmentation
boundary redetermined

using edge detection

Page 78 of 202

 - 79 -

 Once a satisfactory segmentation boundary is reached, the resulting

matte can be viewed in the “Composition Panel,” as shown below. See AEM, 317.

Satisfactory segmentation
boundary reached after

refining with multiple strokes

Page 79 of 202

 - 80 -

The below screenshot shows the resulting “mesh of triangles” created from the pixels

specified by the matte to be part of the foreground, i.e., the pixels of the billowing

smoke made nontransparent by the matte. See AEM, 219.

Composition Panel

Resulting Matte created
using Roto Brush tool

Page 80 of 202

 - 81 -

 After creating the mesh using one of the above tools and functions, a

“loopOut()” expression can be applied to the Deform pin to cause the resulting

animation to repeatedly loop. See AEM, 562, 219. The screenshot below shows

how a “loopOut()” expression is applied to the Deform pin in the exemplary

composition depicted in Section VIII.B.2.e.i’s final screenshot:

Mesh of triangles includes
only the smoke’s pixels made
nontransparent by the matte

Page 81 of 202

 - 82 -

While not shown here, the same can be done to the Deform pins in the exemplary

compositions depicted in the final screenshots of Sections VIII.B.2.e.ii and

VIII.B.2.e.iii to achieve the same result of a repeatedly looping animation.

 The final resulting animation of the exemplary composition in Section

VIII.B.2.f is shown in the below screenshots. From top to bottom, the screenshots

show the animation at the following time points, respectively, in order to mimic the

animation playing in time: (0:00:00:00), (0:00:01:00), (0:00:02:00), (0:00:02:23),

(0:00:03:01), (0:00:04:00), (0:00:05:00), (0:00:05:23), and (0:00:06:01). I have also

included in Attachment B cropped versions of the below screenshots depicting only

the “Composition panel” in order to provide a better view of the resulting animation.

“loopOut()” expression
applied to Deform pin

Page 82 of 202

 - 83 -

Animation time point:
(0:00:00:00)

Animation time point:
(0:00:01:00)

Page 83 of 202

 - 84 -

Animation time point:
(0:00:02:00)

Animation time point:
(0:00:02:23)

Page 84 of 202

 - 85 -

Animation time point:
(0:00:03:01)

Animation time point:
(0:00:04:00)

Page 85 of 202

 - 86 -

Animation time point:
(0:00:05:00)

Animation time point:
(0:00:05:23)

Page 86 of 202

 - 87 -

 Although in the above exemplary composition only one Deform pin is

specified to move during the animation, additional Deform pins can also be applied

and moved in the same way, as shown in the below screenshots. See AEM, 218-19.

 First, in addition to placing the first Deform pin as discussed in Section

VIII.B.2.b, multiple other Deform pins are placed on other portions of the layer, and

starting keyframes will be automatically created accordingly, as shown below. See

AEM, 218-19.

Animation time point:
(0:00:06:01)

Page 87 of 202

 - 88 -

 Next, ending keyframes and non-linear motion paths for each of the

additional Deform pins are created in the same way as discussed in Section

VIII.B.2.d, as shown below. See AEM, 219, 194-95.

Additionally placed
Deform pins

Starting keyframes created

Page 88 of 202

 - 89 -

Non-linear motion path
for additional Deform pin

Ending keyframe created

Non-linear motion path
for additional Deform pin

Ending keyframe created

Page 89 of 202

 - 90 -

 The mask from Section VIII.B.2.e.i is then likewise created and applied

to the layer in the same way discussed therein to cause only the pixels of the

billowing smoke to be nontransparent and thus animated, as shown in the screenshot

below. See AEM, 318, 264-65.

The below screenshot shows the “mesh of triangles” created from the smoke’s pixels

made nontransparent by this mask. See AEM, 219.

Pen tool

Resulting mask

Page 90 of 202

 - 91 -

 Finally, as shown below, a “loopOut()” expression is applied to each of

the additional Deform pins as similarly discussed in Section VIII.B.2.f to cause the

overall animation to repeatedly loop. See AEM, 562, 219.

Mesh of triangles
includes only the

nontransparent pixels
of the smoke

Page 91 of 202

 - 92 -

 The final resulting animation is shown in the below screenshots, which

follow the same sequential order as in Section VIII.B.2.g in order to mimic the

animation playing in time—i.e., animation time points (0:00:00:00), (0:00:01:00),

(0:00:02:00), (0:00:02:23), (0:00:03:01), (0:00:04:00), (0:00:05:00), (0:00:05:23),

and (0:00:06:01). See Section VIII.B.2.g. I have also included in Attachment C

cropped versions of the below screenshots depicting only the “Composition panel”

in order to provide a better view of the resulting animation.

“loopOut()” expression
applied to each

additional Deform pin

Page 92 of 202

 - 93 -

Animation time point:
(0:00:00:00)

Animation time point:
(0:00:01:00)

Page 93 of 202

 - 94 -

Animation time point:
(0:00:02:00)

Animation time point:
(0:00:02:23)

Page 94 of 202

 - 95 -

Animation time point:
(0:00:03:01)

Animation time point:
(0:00:04:00)

Page 95 of 202

 - 96 -

Animation time point:
(0:00:05:00)

Animation time point:
(0:00:05:23)

Page 96 of 202

 - 97 -

Animation time point:
(0:00:06:01)

Page 97 of 202

it Neg De dsmoeTe Triangles: Pensete enta] Sa © Search Help
Project * cernea)seeale a Info *

Smoke Stack.jpeg + , used 1 time SmokeStackErietineRt)
eraer)Leg

oeCSCSC‘(C;é‘ j 1 ee =
Pea ~ © Type 4 i] { i a a ares Cores

SmokeStack | sett aitaee aol
» * Animation Presets

EeerT)
Audio
ceeeli)

a j 5 eT]
. Bi lt L feneigetretsttly

Animation timepoint: aei X Expression Controls

. . . i Keying
ria
Noise & Grain
Obsolete

 rn cs Te! bP Dees eet ane elec y EE & (Active Camera) [1 View (vl Gm Ae

Lite)etaae

jooeeoe)
open ¢ # Rea pe ee d=APMaacd
i eeeee Pay,

eae = SeateeaaSaaahemNericel80)
¥ Puppet Pin 3 I

AACS(rE ES o
Sethe CaMeeULCe weliseaecetecolece)

aeiaed I
6

¥ Puppet Fi I
~%& 7 re Ser. = eweeesaneeeie A mew

Toggle Switches / Modes

 - 98 -

3. Independent Claim 1

 AEM teaches that AECS6 is “software” that is installed on a user’s

computer and run on “64-bit operating systems.” AEM, 19. Such installation of

AECS6 on a user’s computer discloses the claimed “computer system” and

remaining claim language according to Plotagraph’s infringement contentions in

Plotagraph, Inc. v. Lightricks Ltd., Civil Action No. 4:21-cv-03873, Dkt. No. 42

(S.D. Tex. May 5, 2022), which simply assert that “[c]laim 1 is infringed when the

claimed invention is made. The claimed computer system is made when a user

downloads [Petitioner’s] app or program to his/her smartphone, tablet or computer.”

See EX1022, 134.

 Alternatively, AEM instructs the user to “[m]ake sure that you’ve

installed the current version of [AECS6], including any available updates.” AEM,

Page 98 of 202

 - 99 -

517. To view such updates, AEM instructs to “go to the Downloads section of the

Adobe website,” and provides a hyperlink for doing so. AEM, 517. A user

following these instructions would have downloaded and installed the most up-to-

date version of AECS6 (i.e., the claimed “software”) onto the user’s computer (i.e.,

“client computing device” with “one or more client processors”) from Adobe’s

website, which would have been provided by a server (see Nakagawa, Abst.) (i.e.,

“computer system providing, to a client computing device, software” and comprising

“one or more processors” and “one or more computer-readable media having stored

thereon executable instructions that are transmitted to the client computing device

for execution by one or more client processors”).

 Further, in my opinion, AEM describes using AECS6 to animate the

movement of pixels within a single frame of a video (i.e., “automating a shifting of

pixels within a video file”). Sections VIII.B.3.b-VIII.B.3.g.

 In my opinion, AEM discloses limitation [1a]. AEM teaches importing

video “footage items” from a “local disk drive” into a composition in AECS6—i.e.,

the claimed “access, from memory, a digital image file, wherein the digital image

file comprises information that corresponds to individual pixels within a frame of

the digital image file.” AEM, 75, 98-100 (listing “[v]ideo and animation formats”

Page 99 of 202

 - 100 -

of footage items supported for importing, including MOV, MPEG, and animated

GIF),12 17; ’641 Patent, claim 3; see also AEM, 90 (“Compositions and footage

items are listed in the project panel.”), 121 (“You can create a layer from any footage

item in the Project panel…” by “[s]electing one or more footage items and folders

in the Project panel” and “[d]rag[ging] the selected footage items to the Composition

panel.”).

 By way of further illustration, the annotated screenshot of AECS6 in

Section VIII.B.2.a is provided below (with annotations removed), which shows an

exemplary composition where a MOV video of a smokestack has been imported as

a layer:

12 A POSITA would have known that such video files “comprise[] information that

corresponds to individual pixels within a frame” as claimed. See AEM, 104 (“Each

motion-footage item in a composition can also have its own frame rate.”), 105-08

(“[M]any video formats—including ITU-R 601 (D1) and DV—use non-square

rectangular pixels.”); Hair, 1:15-21 (stating “computer file formats for… digital

video (hereinafter referred to as a ‘Dynamic Video File’)” include “the MPEG video

file format”), 1:45-49 (“[M]otion picture quality Digital Video Files are generally

composed of about 30 video frames (images) per second. Each of these video frames

are composed of a two dimensional, usually rectangular or square, grid of pixels.”).

Page 100 of 202

 - 101 -

 In my opinion, AEM teaches limitation [1b]. Beginning with the

recited “first image frame,” AEM teaches, after importing a video into a

composition, extracting a single frame from the composition (and thus the video)—

i.e., the claimed “first image frame”—to be a new layer in the composition, which

“is useful for,” e.g., “exporting an image from a movie for posters or storyboards.”

AEM, 590. To do so, AEM instructs to “[g]o to the frame that you want to export

so that it is shown in the Composition panel.” AEM, 590. Then, “choose

Composition > Save Frame As > File.” AEM, 590.

Page 101 of 202

 - 102 -

 To further illustrate, the first screenshot in Section VIII.B.2.b is

provided below. The screenshot depicts the exemplary composition from Section

VIII.B.3.b, where the first frame of the video (at “0:00:00:00”) is now being

extracted according to AEM’s discussed instructions:

 AEM also teaches managing the “render” and “output module” settings

for the frame using the “Render Queue panel.” AEM, 573-74. Section VIII.B.2.b’s

second screenshot, reproduced below with the added annotations, shows this Render

Queue panel, which appears after clicking “Composition > Save Frame As > File”

in the above screenshot:

Page 102 of 202

 - 103 -

One such manageable setting in the Render Queue panel is “output format,” which

may be adjusted so the extracted frame can be used later as a footage file, e.g., by

setting the output format to be JPEG, which is a “[s]till-image format[]” supported

as both an output format and a footage item import format. Compare AEM, 573-74,

with AEM, 98-101. Indeed, AEM teaches importing the extracted frame as a new

footage item “by dragging its output module from the Render Queue panel into the

Project panel,” and then creating a layer from the frame by selecting the frame in the

Project panel and “[d]rag[ging] the selected footage item[] to the Composition

panel.” AEM, 574-75, 121. Such provides “a convenient way to convert a footage

item from one format to another,” e.g., to extract and import a single frame from a

video as a new layer in the composition. AEM, 574-75, 98-101, 590.

Render Queue Panel

Page 103 of 202

 - 104 -

 To further illustrate, the fourth screenshot in Section VIII.B.2.b,

including the added annotations, is provided below, which shows the result of

extracting the first frame of the above screenshot’s video as a JPEG and dragging

the frame’s output module to the Project panel:

The frame is then selected and dragged to the Composition panel, causing the frame

to become a new layer of the composition, as shown in the fifth screenshot of AECS6

in Section VIII.B.2.b, reproduced below with the added annotations13:

13 As discussed in Section VIII.B.2.b, for purposes of clarity, the original video is

deleted from the composition and Project panel as unnecessary.

Project Panel

Extracted frame

Page 104 of 202

 - 105 -

 In addition to the claimed “first image frame,” AEM also, in my

opinion, teaches the remaining elements of limitation [1b]. Specifically, AEM

teaches creating a Puppet effect animation of the frame by placing a Puppet

“Deform” pin in the “Composition” or “Layer panel[s]” on a “nontransparent pixel”

at a specific part of the layer that the user desires to move, causing AECS6 to create

a starting “keyframe” based on both the current animation time and the Deform pin’s

position—i.e., the claimed “receive a first starting point through a user interface,

wherein the first starting point is received through a user selection of a first

beginning portion of a first image frame.” AEM, 218-19; see also ’641 Patent, 6:38-

40 (“The beginning portion of the video frame comprises a starting pixel, or area,

from which the user wishes pixels to shift.” (emphasis added)), 6:43-45 (“In at least

Extracted frame, now a
layer of the composition

Page 105 of 202

 - 106 -

one embodiment, a beginning point comprise[s] a particular pixel that is selected….”

(emphasis added)).

 To further illustrate, the second annotated screenshot in Section

VIII.B.2.c is provided below. The screenshot shows a Deform pin placed in the

“Composition panel” on the extracted frame of the previous screenshots, and a

starting keyframe automatically created as a result:

 Further, should there be any argument that AEM discloses only creating

a Puppet effect animation of an image and not specifically the video frame extracted

according to the above, a POSITA would have nevertheless been motivated to use

such an extracted frame as the digital image to be animated because such a frame

would have been easily accessible and, in common instances, particularly desirable

Placed Puppet Deform pin

Starting keyframe created

Page 106 of 202

 - 107 -

for modifying and animating with AECS6’s effects, e.g., the Puppet effect. See, e.g.,

’641 Patent, 1:36-40 (“The increased ease with which video and images can be

captured has led to an explosion in the amount of shared multimedia content.”);

AEM, 590 (stating that “export[ing] a single frame from a composition” is “useful”

for, e.g., “exporting an image from a movie for posters or storyboards”).

 In my opinion, AEM discloses limitation [1c]. Once a starting

keyframe for a Deform pin has been defined, AEM instructs the user to create an

ending keyframe by “[g]o[ing] to another time in the composition, and mov[ing] the

position of… the Deform pin[] by dragging [it] in the Composition or Layer

panel”—i.e., the claimed “receive a first ending point through the user interface,

wherein the first ending point is received through a user selection of a first ending

portion.” AEM, 218-19; see also ’641 Patent, 6:48-51 (“The ending portion of the

video frame comprises an ending pixel, or area, to which the user wishes pixels to

shift.”).

 To further illustrate, the below annotated screenshot depicts creating an

ending keyframe for the Deform pin previously discussed and depicted in the fifth

screenshot in Section VIII.B.3.c:

Page 107 of 202

 - 108 -

 AEM teaches that, when a Deform pin is initially placed and a starting

keyframe is created, AECS6 automatically outlines the layer’s nontransparent pixels

and divides this outline into a “mesh of triangles.” AEM, 219 (“Click any

nontransparent pixel of a raster layer to apply the Puppet effect and create a mesh

for the outline created by auto-tracing the alpha channel of a layer.”), 220-21. AEM

also teaches that, when the user thereafter creates an ending keyframe for the Deform

Deform pin
ending position

Ending keyframe created

Page 108 of 202

 - 109 -

pin by “[g]o[ing] to another time in the composition, and mov[ing] the position of…

the Deform pin[] by dragging [it] in the Composition or Layer panel,” the shape of

the layer’s mesh changes—and thus the layer’s nontransparent pixels move—to

“accommodate” this repositioning. AEM, 218-19 (“Each part of the mesh is also

associated with the pixels of the image, so the pixels move with the mesh.… When

you move one or more Deform pins, the mesh changes shape to accommodate this

movement, while keeping the overall mesh as rigid as possible.”), 177.

 Further, the ending keyframe’s creation prompts AECS6 to perform

“keyframe interpolation,” where AECS6 interpolates the Deform pin’s position from

the starting to ending keyframe and generates “in-between” frames based on the

interpolation, thus animating the movement of the layer’s nontransparent pixels.

AEM, 177, 193, 218-19. The interpolation is performed according to, and visually

indicated by, a “motion path,” which extends from the starting to ending

position/keyframe—i.e., the claimed “create a first digital link between the first

starting point and the first ending point, wherein the first digital link comprises: a

first direction extending from the first starting point to the first ending point; and a

first length between the first starting point and the first ending point.” AEM, 187,

218-19.

Page 109 of 202

 - 110 -

 To further illustrate, the screenshot in Section VIII.B.3.c is reproduced

below, but with further annotations highlighting the motion path created between the

Deform pin’s starting and ending position/keyframe:

Additional screenshots illustrating how this motion path was created can be found

in Section VIII.B.2.d.

 Regarding the claimed “identify a first set of pixels,” the ’641 Patent

states that “[t]he size of the group of pixels may be user selectable or automatically

determined.” ’641 Patent, 7:28-29. For example, a user can perform the claimed

“identify[ing]” of a “first set of pixels” by identifying certain pixels between the

Motion path

Page 110 of 202

 - 111 -

starting and ending points to be “covered by a mask” and excluded from the set of

pixels to be shifted. ’641 Patent, 7:25-28, 4:24-36. Alternatively, the software can

perform the claimed “identify[ing]” automatically by “identif[ying] sets of pixels

that lie between the respective starting points and the respective ending points”—

e.g., identifying pixels between the starting and ending points that are or are not

“covered by a mask.” ’641 Patent, 7:22-28.

 In my opinion, AEM discloses limitation [1e]. AEM teaches selecting

certain pixels of the layer to be transparent or nontransparent (i.e., modifying the

“alpha channel” of the layer) by applying either a “mask” or a “matte,” where the

former is created using, e.g., the “Pen” tool or “Auto-trace” function, and the latter

is created using, e.g., the “Roto Brush” tool. AEM, 315, 318.

 Thus, as AEM teaches, AECS6 allows a user to apply either a mask or

matte to select any or all pixels of the layer to be nontransparent and thus included

in the layer’s mesh to be moved and animated, including pixels that lie along the

Deform pin’s motion path between the Deform pin’s starting position/keyframe and

ending position/keyframe—i.e., the claimed “lie along the first digital link between

the first starting point and the first ending point.” AEM, 218-19, 315, 194-95; ’641

Patent, 7:28-29 (“The size of the group of pixels may be user selectable….”

(emphasis added)). Further, AECS6 automatically creates the mesh from the layer’s

nontransparent pixels, which additionally discloses limitation [1e]. AEM, 218-19,

Page 111 of 202

 - 112 -

194-95; ’641 Patent, 7:28-29 (“The size of the group of pixels may be…

automatically determined.” (emphasis added)).

 Separately, a POSITA would have been motivated to select and make

nontransparent, using a mask or matte, those pixels that lie along the Deform pin’s

motion path between the Deform pin’s starting position/keyframe and ending

position/keyframe, because such pixels would in common instances be pixels that

the user desires to include in the mesh to be moved and animated. For instance, to

move and animate the smoke rising from the smokestack of the video frame depicted

in Section VIII.B.3.e’s screenshot using the Puppet effect, a POSITA would have

recognized to apply a Deform pin within the smoke, create for the Deform pin a

motion path rising through the smoke, and ensure the smoke’s pixels are included in

the mesh to be moved by selecting and making nontransparent all pixels of the smoke

using, e.g., a mask created with the Pen tool, as shown below14:

14 Okabe provides further support by depicting a similar instance in its Figure 1,

which depicts user-drawn “strokes” going downwards through a waterfall, and a

“matte” specifying a to-be-animated “region of interest” (in white) that includes all

pixels of the waterfall, including that lie along each stroke between each stroke’s

starting point and ending point. Okabe, 7, 2; see also Section VIII.C.4.f.

Page 112 of 202

 - 113 -

As shown, the mask makes nontransparent, and thus the mesh includes, pixels that

lie along the Deform pin’s motion path between the Deform pin’s starting

position/keyframe and ending position/keyframe. The following additionally

illustrates how a similar mask and mesh is created using the “Auto-trace” function:

Mask created
using Pen tool

Automatically
created mesh

Page 113 of 202

 - 114 -

Further, the following shows how a similar result is achieved by creating a matte

using the “Roto Brush” tool:

Mask created
using “Auto-trace”

Automatically
created mesh

Page 114 of 202

 - 115 -

Additional screenshots illustrating how each of the above meshes were created can

be found, respectively, in Sections VIII.B.2.e.i, VIII.B.2.e.ii, and VIII.B.2.e.iii.

 The ’641 Patent states the claimed pixel “shift[ing]” can use a “mesh

algorithm” that “triangulates the mesh using defined points and then calculates an

affine transformation for every angle.” ’641 Patent, 9:29-32. The ’641 Patent’s

Figure 4 depicts an example, where “a starting mesh and ending mesh [are] overlaid

on [a] video frame of [a] house and landscape”:

Matte created using
Roto Brush tool

Automatically
created mesh

Page 115 of 202

 - 116 -

’641 Patent, Fig. 4, 7:11-21.

 In my opinion, AEM discloses limitation [1f]. AEM similarly teaches

that, when a user places a Deform pin, AECS6 creates a mesh from the layer’s

nontransparent pixels. AEM, 219, 220-21; Section VIII.B.3.e. And when a motion

path for the Deform pin is also created, AECS6 animates the corresponding change

to the shape of the layer’s mesh (which includes the claimed “first set of pixels,” see

Section VIII.B.3.f), and thus the movement of the layer’s nontransparent pixels

accommodating the Deform pin’s repositioning—i.e., “shift the first set of pixels in

the first direction.” AEM, 218-19, 194-95; ’641 Patent, 9:29-32; Section VIII.B.3.e.

 To further illustrate, the series of screenshots provided in Section

VIII.B.2.g shows the resulting animation of the exemplary composition in Section

Page 116 of 202

 - 117 -

VIII.B.3.f’s first screenshot at sequential time points to mimic the animation playing

in time. There, a “loopOut()” expression (to be discussed further below in Section

VIII.B.7) has also been added to the Deform pin to allow the animation to loop, but

the first four screenshots in the series show the animation before the looping begins

and are thus indicative of what the animation would look like when the “loopOut()”

expression is not applied. Cropped versions for these screenshots are also provided

in the table in Attachment B to provide a better view of the resulting animation.

4. Claim 2: The computer system of claim 1, wherein the first
ending portion comprises a particular portion of the first
image frame.

 See Sections VIII.B.3.c-VIII.B.3.d. The ending position/keyframe for

the Deform pin is created on the same video frame as that which includes the starting

position/keyframe—i.e., “wherein the first ending portion comprises a particular

portion of the first image frame.”

5. Claim 3: The computer system of claim 1, wherein the digital
image file comprises a video file and the first image frame
comprises a first video frame of the video file.

 See Section VIII.B.3.b. The discussed video footage items are “video

file[s]” comprising “video frame[s]” as claimed.

6. Claim 4: The computer system of claim 3, wherein the first
ending portion comprises a particular portion of a second
video frame within the video file.

 See Sections VIII.B.3.c-VIII.B.3.d, VIII.B.5. While the ending

position/keyframe for the Deform pin is created on the same video frame as that

Page 117 of 202

 - 118 -

which includes the starting position/keyframe, such nevertheless discloses claim 4

because the claimed “first video frame” and “second video frame” may be the same

frame. ’641 Patent, 6:51-54; EX1022, 137.

7. Claim 8: The computer system of claim 1, wherein shifting
the first set of pixels comprises rendering in a loop the first
set of pixels being shifted within the first image frame.

 Claim 8 is dependent from claim 1. In my opinion, AEM discloses

claim 8. AEM teaches applying a “loopOut()” expression to a Deform pin, which,

by default, causes “all keyframes [to] loop.” AEM, 562, 219 (“You can use

expressions to link the positions of Deform pins to motion tracking data, audio

amplitude keyframes, or any other properties.”). Specifically, by applying a default

“loopOut()” expression to a Deform pin, such as the initially placed Deform pin

discussed in Sections VIII.B.3.c-VIII.B.3.g, the Deform pin’s position will be reset

to the starting keyframe upon reaching the ending keyframe during keyframe

interpolation, and the interpolation will be repeatedly looped until otherwise

specified—i.e., “rendering in a loop the first set of pixels being shifted within the

first image frame.” AEM, 562, 219.

 The screenshot in Section VIII.B.2.f illustrates how a “loopOut()”

expression can be applied to the initial Deform pin placed in the exemplary

composition therein. The series of screenshots provided in Section VIII.B.2.g shows

the resulting animation at different, sequential time points to mimic the animation

Page 118 of 202

 - 119 -

playing in time. Cropped versions for these screenshots are also provided in the

table in Attachment B.

8. Claim 9

 Claim 9 is dependent from claim 1. In my opinion, AEM discloses

limitations [9a]-[9e]. Specifically, AEM teaches how to move and animate different

parts of a layer through the use of multiple Deform pins. AEM, 218-19. Like when

Page 119 of 202

 - 120 -

placing a first Deform pin (see Section VIII.B.3.c), a user places additional Deform

pins and creates for each a starting keyframe visible in the Composition and Layer

panels by simply “[c]lick[ing] in one or more places within the outline”—i.e.,

“receive a second starting point through the user interface, wherein the second

starting point is received through a user selection of a second beginning portion of

the first image frame” as recited in limitation [9a]. AEM, 219 (emphasis added);

’641 Patent, 6:38-40. The user creates ending keyframes and motion paths for these

additional Deform pins in the same way as for the first Deform pin—i.e., “receive a

second ending point through the user interface, wherein the second ending point is

received through a user selection of a second ending portion” as recited in limitation

[9b], and “create a second digital link between the second starting point and the

second ending point, wherein the second digital link comprises: a second direction

extending from the second starting point to the second ending point; and a second

length between the second starting point and the second ending point” as recited in

limitation [9c]. AEM, 218-19; ’641 Patent, 6:48-51; Sections VIII.B.3.d-VIII.B.3.e.

Further, AEM teaches, and a POSITA would have been motivated to perform,

creating a mask or matte to select any and all pixels of the layer to be nontransparent

and thus included in the layer’s mesh to be moved and animated, including pixels

that lie along each Deform pin’s motion path between each Deform pin’s starting

Page 120 of 202

 - 121 -

position/keyframe and ending position/keyframe15—i.e., “identify a second set of

pixels that lie between the second starting point and the second ending point” as

recited in limitation [9d]. AEM, 218-19, 315, 194-95; Section VIII.B.3.f. Finally,

AEM teaches that AECS6 animates the change to the shape of the layer’s mesh, and

thus the movement of the layer’s nontransparent pixels, that accommodates each

Deform pin’s repositioning—i.e., “shift the second set of pixels in the second

direction” as recited in limitation [9e]. AEM, 218-19, 194-95, 562; Section

VIII.B.3.g.

 Attachment C further illustrates the foregoing by including a table that

provides a series of cropped screenshots of AECS6 like those in Attachment B, but

the exemplary composition now includes additional Deform pins. Like the table in

Attachment B as discussed in Section VIII.B.3.g, a “loopOut()” expression (see

Section VIII.B.7) has also been added to each Deform pin to allow the animation to

15 Okabe again provides further support that a POSITA would have been motivated

to perform these steps by depicting, in its Figure 1, not one but three user-drawn

“strokes” going downwards through the waterfall, where the to-be-animated “region

of interest” includes all pixels of the waterfall, including those that lie along the

strokes between each stroke’s starting point and ending point. Okabe, 7, 2; see also

Section VIII.C.6.a.

Page 121 of 202

 - 122 -

loop, but the first four screenshots in the table show the animation before the looping

begins and are thus indicative of what the animation would look like when the

“loopOut()” expression is not applied. Additional screenshots in Section VIII.B.2.h

show how the animation depicted in Attachment C was created using the multiple

Deform pins, including the uncropped versions of the screenshots in Attachment C’s

table.

9. Claim 10: The computer system of claim 9, wherein the first
direction is different from the second direction.

 Claim 10 is dependent from claim 9. AEM teaches creating different

motion paths for each Deform pin placed on a layer, thereby disclosing the claimed

“wherein the first direction is different from the second direction.” AEM, 218-19;

Section VIII.B.8.a. Indeed, the example in Attachment C’s table (discussed in

Section VIII.B.8.a) shows each Deform pin having a separate motion path that

differs from the others. AEM therefore, in my opinion, discloses claim 10.

10. Claim 11: The computer system of claim 9, wherein a
magnitude of the shifting of the first set of pixels is
proportionally related to the first length and the magnitude
of the shifting of the second set of pixels is proportionally
related to the second length.

 Claim 11 is dependent from claim 9. In my opinion, AEM discloses

claim 11. Specifically, AEM teaches, after a user defines a starting keyframe for a

Deform pin and a mesh of the layer’s nontransparent pixels is automatically created,

creating an ending keyframe by “[g]o[ing] to another time in the composition, and

Page 122 of 202

 - 123 -

mov[ing] the position of… the Deform pin[] by dragging [it] in the Composition or

Layer panel.” AEM, 218-19; Sections VIII.B.3.c-VIII.B.3.d. This repositioning

causes the shape of the layer’s mesh to change—and thus the layer’s nontransparent

pixels to move—to “accommodate” this repositioning. AEM, 218-19; Section

VIII.B.3.e. Further, AECS6 performs keyframe interpolation to animate this

movement of the layer’s nontransparent pixels, which is performed according to, and

visually indicated by, a motion path extending from the starting to ending

position/keyframe. AEM, 187, 218-19; Section VIII.B.3.e. As such, for a given

span of time in the composition, if a Deform pin’s ending position/keyframe is

repositioned a relatively long distance away from its starting position/keyframe, the

corresponding change to the shape of the layer’s mesh—and the movement of the

layer’s nontransparent pixels—will be large to “accommodate” such a large

repositioning, and the Deform pin’s corresponding motion path will be of a longer

length. See AEM, 218-19. The opposite occurs if the Deform pin repositioned a

relatively short distance. See AEM, 218-19. Such illustrates a proportional

relationship between the magnitude of pixel movement and the length of each

Deform pin’s motion path—i.e., “magnitude of the shifting of the first set of pixels

is proportionally related to the first length and the magnitude of the shifting of the

second set of pixels is proportionally related to the second length” as recited in claim

11.

Page 123 of 202

 - 124 -

 To further illustrate, the exemplary composition from Attachment C’s

table (discussed in Section VIII.B.8.a) is depicted in the screenshots below, but now

the first Deform pin is repositioned a lesser amount (shown in the first screenshot)

while one additional Deform pin is repositioned a larger amount (shown in the

second screenshot) for a fixed span of time:

First Deform pin’s ending
position, now closer to

starting position

Motion path,
resultantly shorter

Page 124 of 202

 - 125 -

As shown, the first Deform pin’s motion path is now shorter, and the surrounding

pixels have a proportionally lower magnitude of movement, whereas the opposite is

true of the additional Deform pin.

11. Independent Claim 12

 AEM instructs a user to “[m]ake sure that you’ve installed the current

version of [AECS6], including any available updates.” AEM, 517. To view such

Additional Deform
pin’s ending position,

now further from
starting position

Motion path,
resultantly longer

Page 125 of 202

 - 126 -

updates, AEM instructs to “go to the Downloads section of the Adobe website,” and

provides a hyperlink for doing so. AEM, 517. A user following these instructions

would have downloaded and installed the most up-to-date version of AECS6 from

Adobe’s website—and thus a server (see Nakagawa, Abst.) (i.e., the claimed

“computer program product comprising one or more non-transitory computer

storage media having stored thereon computer-executable instructions”)—onto the

user’s computer (i.e., “when transmitted to a remote computer system for execution

at a processor, cause the remote computer system to perform”).

 Further, in my opinion, AEM describes using AECS6 to animate the

movement of pixels within a single frame of a video (i.e., “method for automating a

shifting of pixels within an image file”). Sections VIII.B.11.b-VIII.B.11.f.

 See Sections VIII.B.3.b-VIII.B.3.c. Receiving the Deform pin’s

starting position from the user discloses the claimed “receiving a first indication of

a first starting point through a user interface.”

 See Sections VIII.B.3.d-VIII.B.3.e. The discussed motion path—which

results when the user creates a starting and ending keyframe for the Deform pin via

Page 126 of 202

 - 127 -

the Composition or Layer panel, and which extends from the starting to ending

position/keyframe—discloses the claimed “receiving, through the user interface, a

first direction associated with the first starting point” as recited in limitation [12b].

AEM, 187, 218-19.

 See Section VIII.B.3.e. The created motion path, as discussed, extends

from the starting to ending position/keyframe and thus discloses the claimed “create

a first digital link extending in the first direction from the first starting point” as

recited in limitation [12c]. AEM, 187, 218-19.

 For similar reasons discussed in Section VIII.B.3.f, AEM teaches, and

a POSITA would have been motivated to perform, applying a mask or matte in

AECS to select any or all pixels of a layer to be nontransparent and thus included in

the layer’s mesh to be moved and animated, including pixels that are along a Deform

pin’s motion path and extend in the motion path’s direction away from the Deform

pin’s starting position/keyframe—i.e., “selecting a first set of pixels that are along

the first digital link and extend in the first direction away from the first starting point”

as recited in limitation [12d]. See Section VIII.B.11.d.

Page 127 of 202

 - 128 -

 See Section VIII.B.3.g.

12. Claim 13

 Claim 13 is dependent from claim 12. AEM teaches using a mask or

matte to select pixels to be nontransparent and thus included in the layer’s mesh to

be moved and animated by the Puppet effect. AEM, 315, 218-19; Section VIII.B.3.f.

Naturally, such a mask or matte is therefore also used to select one or more pixels to

be transparent and thus excluded from the layer’s mesh so as to not be moved and

animated—i.e., “a first mask over a second portion of the first image frame” as

recited in limitation [13a], “wherein pixels under the first mask are prevented from

shifting” as recited in limitation [13b]. Indeed, AEM teaches how to toggle between

making selected pixels transparent or nontransparent. AEM, 104 (“If you want to

switch the opaque and transparent areas of the image, select Invert Alpha.”), 318

(“To invert what is considered inside and what is considered outside for a specific

mask, select Invert next to the mask name in the Timeline panel.”), 328 (“[D]raw a

background stroke on the area that you want to define as the background.”).

Page 128 of 202

 - 129 -

 AEM also teaches creating a mask using the “Pen” tool by clicking on

different points on the layer in the “Composition” or “Layer panel[s]” to specify the

path and vertices of the mask, or the “Auto-trace” function to “search[] for edges”

across the entire layer and create a mask tracing such edges, both of which disclose

the claimed “receiving an indication to generate a first mask” as recited in limitation

[13a]. AEM, 262, 264-65. As for a matte, AEM teaches creating a matte using the

“Roto Brush” tool to draw “strokes” in the “Layer panel” over foreground and

background elements to be separated, which likewise discloses the claimed

“receiving an indication to generate a first mask.” AEM, 328. Thus, in my opinion,

AEM discloses limitations [13a]-[13b].

 Section VIII.B.3.f’s first screenshot depicting a mask created using the

“Pen” tool is shown below, but the annotations now indicate pixels of the layer made

transparent by the mask and thus excluded from the mesh:

Page 129 of 202

 - 130 -

Section VIII.B.3.f’s second screenshot, which depicts a mask created using the

“Auto-trace” function, is shown below, but now again indicating pixels of the layer

excluded from the mesh by the mask:

Mask created
using Pen tool

Automatically
created mesh

Pixels made
transparent by mask
and thus excluded

from mesh

Page 130 of 202

 - 131 -

Section VIII.B.3.f’s third screenshot, which shows a matte created using the “Roto

Brush” tool, is provided below, but now indicating pixels of the layer excluded from

the mesh by the matte:

Mask created
using “Auto-trace”

Automatically
created mesh

Pixels made
transparent by mask
and thus excluded

from mesh

Page 131 of 202

 - 132 -

13. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions
that, when transmitted to the remote computer system for
execution at the processor, cause the remote computer
system to perform a method for automating the shifting of
pixels within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated.

 Claim 14 is dependent from claim 13. As discussed in Section

VIII.B.12.a, AEM teaches selecting, in the “Composition” or “Layer panel[s],” one

or more pixels to be transparent and thus excluded from a layer’s mesh so as to not

be moved and animated with the Puppet effect by creating a mask using the “Pen”

tool to specify the path and vertices of the mask, creating a mask using the “Auto-

trace” function to “search[] for edges” across the entire layer and create a mask

Matte created using
Roto Brush tool

Automatically
created mesh

Pixels made
transparent by matte
and thus excluded

from mesh

Page 132 of 202

 - 133 -

tracing such edges, or creating a matte using the Roto Brush tool to draw over

foreground and background elements to be separated, any of which disclose the

claimed “receiving through a user interface a selection of the second portion of the

first image frame around which the first mask should be generated.” AEM, 318,

262, 264-65, 328. Therefore, in my opinion, AEM discloses claim 14.

14. Claim 15

 Claim 15 is dependent from claim 14. AEM teaches that a mask is

automatically created for a layer when using AECS6’s “Auto-trace” function. AEM,

262. This “Auto-trace” function “search[es] for edges” across the entire layer based

on the value of each pixel’s “alpha, red, green, blue, or luminance channel”—i.e.,

“identifying one or more edges that form a first boundary around the second portion”

recited in limitation [15a]—and generates a mask that outlines such edges—i.e.,

“generating the first mask to cover area within the first boundary” as recited in

Page 133 of 202

 - 134 -

limitation [15b]. AEM, 262. In particular, Auto-trace compares the “alpha, red,

green, blue, or luminance channel” of each of the layer’s pixels to a user-set

“Threshold,” which is a “percentage” value. AEM, 262. “Pixels with channel values

over the threshold are mapped to white and are opaque; pixels with values under the

threshold are mapped to black and are transparent.” AEM, 262. As such, a mask is

created for the layer that traces the edges between pixels with values above and

below the selected threshold. See AEM, 262. Additionally, “[y]ou can modify a

mask created with Auto-trace as you would any other mask” (AEM, 262), such as

toggling between whether pixels enclosed within the mask are made transparent or

nontransparent (AEM, 104, 318, 328). Indeed, Section VIII.B.12.a’s second

screenshot shows that the mask traces the luminance edge between the billowing

smoke and the sky, where only the smoke’s pixels are nontransparent:

Page 134 of 202

 - 135 -

 Further, AEM teaches creating a matte using the “Roto Brush” tool,

which, similar to Auto-trace (see AEM, 262), uses “Edge Detection” to detect a

“segmentation boundary” separating a layer’s foreground and background elements

based on user-drawn “strokes” over “representative areas of the foreground and

background elements.” AEM, 328-31. This additionally discloses the claimed

“identifying one or more edges that form a first boundary around the second

portion.” See ’641 Patent, 4:46-64. Further, as AEM teaches, AECS6 applies a

matte that isolates the foreground from the background, thereby making the latter

transparent, and thus AEM discloses the claimed “generating the first mask to cover

area within the first boundary.” AEM, 328, 318. Indeed, Section VIII.B.12.a’s third

screenshot depicts creating a matte using the “Roto Brush” tool:

Mask created
using “Auto-trace”

Automatically
created mesh

Pixels made
transparent by mask
and thus excluded

from mesh

Page 135 of 202

 - 136 -

As shown, the segmentation boundary between the foreground (the billowing

smoke) and background (the sky, made transparent by the matte) traces the edge

between the two. Therefore, in my opinion, AEM discloses limitations [15a]-[15b].

15. Independent Claim 19

 AEM instructs a user to “[m]ake sure that you’ve installed the current

version of [AECS6], including any available updates.” AEM, 517. To view such

Matte created using
Roto Brush tool

Automatically
created mesh

Pixels made
transparent by matte
and thus excluded

from mesh

Page 136 of 202

 - 137 -

updates, AEM instructs to “go to the Downloads section of the Adobe website,” and

provides a hyperlink for doing so. AEM, 517. A user following these instructions

would have downloaded and installed the most up-to-date version of AECS6 onto

the user’s computer (i.e., the claimed “client computing device”) from Adobe’s

website—and thus a server (see Nakagawa, Abst.) (i.e., “transmitting to a client

computing device instructions,” and “transmitting computer executable instructions

to a client computing device, the computer executable instructions configured to

cause the client computing device to”).

 Further, in my opinion, AEM teaches using AECS6 to animate the

movement of pixels within a single frame of a video (i.e., “for shifting pixels within

a video file”). Sections VIII.B.15.b-VIII.B.15.g.

 See Section VIII.B.3.b.

 See Section VIII.B.3.c.

 See Section VIII.B.3.d.

Page 137 of 202

 - 138 -

 See Section VIII.B.3.e.

 See Section VIII.B.3.f.

 See Section VIII.B.3.g.

16. Claim 20: The method of claim 19, wherein the digital image
file comprises a video file and the first image frame comprises
a frame of the video file.

 See Section VIII.B.5.

C. Ground 2: IMU and Okabe, and Claims 1-4, 8-14, and 19-20

1. Summary of IMU

 IMU contains Wayback Machine captures from 2012 of the

ImageMagick.org website, specifically the website’s section titled “Examples of

ImageMagick Usage (Version 6),” which provides guidance and examples on how

to use IMV6’s various effects and capabilities. IMU-Home, 1-2.

Page 138 of 202

 - 139 -

 IMU “strongly recommend[s] to use an up-to-date version of IM[V6]”

(IMU-Windows, 3; see also IMU-Home, 6 (“Also all examples are re-built using the

latest beta release for IM…. If you get something different your IM[V6] is probably

a much older version, with old bugs, or your IM[V6] is incorrectly installed.”)), and

hyperlinks the ImageMagick.org website’s “Downloads Page” for users to download

and install such an new version of IMV6 onto their computers (IMU-Home, 1). This

hyperlink, when clicked, directs to the archived “Download ImageMagick” webpage

shown in EX1026, from which the user could indeed download and install the “latest

release of I[MV6].” EX1026; IMU-Home, 1. In fact, I generated EX1026 by

clicking this hyperlink in IMU-Home, which directed me to the archived webpage

shown in EX1026, and then printing out that webpage.16 Compare EX1026, with

IMU-Home, 1. EX1026’s capture date of March 28, 2012 is only one day after IMU-

Home’s capture date of March 27, 2012, and thus EX1026 shows the webpage that

a user would have been directed to upon clicking IMU-Home’s “Downloads Page”

hyperlink around the time of these capture dates. Compare EX1026, with IMU-

Home, 1, and Archive, p. 4. See Archive, ¶5.

16 I provided counsel with this printout, which I understand is being used as an

exhibit in this proceeding.

Page 139 of 202

 - 140 -

 IMU also teaches that, once installed, IMV6 is operated in the

command-line. IMU-Home, 2. Thus, IMV6 “is not a GUI image editor.” IMU-

Home, 2.

 Further, IMU teaches how to manually write text commands in IMV6

to apply effects to an image, such as IMV6’s “Shepard’s Distortion” pixel shifting

effect, as well as how to create infinitely looping animations from such effects. IMU

also teaches how to extract individual frames from a GIF animation, which can then

be used to create a subsequent animation. IMU additionally teaches how to manually

write commands to modify the transparency of the pixels of an image (e.g., an

extracted frame of a GIF animation)—and thus the visibility of effects that are

applied to the image—using a “matte.” Each is discussed herein.

 IMU teaches that IMV6 is an “image-to-image converter” that utilizes

a “library of Image Processing Algorithms” to apply effects and convert one image

into another. IMU-Home, 2. One such effect is “Shepard’s Distortion,” a distortion

effect that allows a user to place “control points” on pixels located at user-specified

coordinates of an image and move such control points to new coordinates “to distort

the image in terms of ‘local’ effects.” IMU-Distorting, 59, 19-20. As an example,

IMU provides an image of a koala, as well as an exemplary command that places

and moves Shepard’s Distortion control points to “torture the ‘koala’ by pulling on

Page 140 of 202

 - 141 -

his ears” from coordinates (30,11) and (48,29) to coordinates (20,11) and (59,29),

respectively. IMU-Distorting, 59. The command, as well as the koala image before

and after the “torture,” is reproduced below, with original annotations from IMU

indicating the corresponding placement and movement of the two control points

within the image:

IMU-Distorting, 59.

 Although IMV6 is an “image-to-image converter,” IMU further teaches

how to incrementally apply IMV6’s effects to an image to produce a sequence of

frames that, when played sequentially, result in an animation. See IMU-Distorting,

17-18. IMU provides an example that applies IMV6’s “SRT Distortion” effect—

another “[d]istortion” effect that, like Shepard’s Distortion, uses “control points”—

to an image of a “stylized space ship” by moving a placed SRT Distortion control

point in seven increments to create frames that, when played sequentially, animate

the space ship launching along a path through the sky. IMU-Distorting, 17-18. This

example, as well as the eight resulting frames in their sequential order, are

reproduced below:

Page 141 of 202

 - 142 -

IMU-Distorting, 17-18.17

17 The full animation can be viewed on the IMU-Distorting webpage as archived at

https://web.archive.org/web/20120329131929/http://www.imagemagick.org/Usage

/distorts/ (end of the section titled “Scale-Rotate-Translate (SRT) Distortion” and

just above a headline “Methods of Rotating Images”). The above sequence of eight

frames was created by applying IMV6’s “-coalesce” operator to the animation (a

Page 142 of 202

 - 143 -

 After teaching creating a sequence of frames, IMU teaches how to save

these frames in an animated GIF file that will be rendered as an animation by a

variety of standard computer programs, including Web browsers, that show each

frame in sequence. IMU-Animating, 1-2; IMU-Distorting, 17-18. In creating such

a GIF, IMU teaches applying a “-loop” operator to specify the “[n]umber of times

the GIF animation is to cycle though the image sequence before stopping.” IMU-

Animating, 2. When “-loop” is applied at its default value of zero, such as in the

above example, the GIF will render the animation in an “infinite loop.” IMU-

Animating, 2; IMU-Distorting, 17-18.

 In addition to animation, IMU also teaches how to use IMV6 to “split[]

an animation into frames”—i.e., extract and output an animation’s frames as

individual images. IM-Animating, 7. Particularly, IMV6’s “+adjoin” operator can

be used to “read in” a “GIF animation[] and output the individual frame images in

the animation sequence.” IM-Animating, 7.

 The “+adjoin” operator, however, extracts “sub-frame[s]”—certain

animated GIFs are created by layering sub-frames over one another over time (see

GIF file, accessible at the preceding URL) in a similar manner as that taught in IM-

Animation, 8-9, and discussed infra in Section VIII.C.1.b.

Page 143 of 202

 - 144 -

IMU-Animating, 16-17), and, for such GIFs, the “+adjoin” operator outputs only

those sub-frames (IM-Animating, 7-8). To see instead “a complete view of the

animation at each point,” IMU teaches to use IMV6’s “-coalesce” operator, which

works similarly to “+adjoin” but outputs each full frame image rather than sub-

frames. IM-Animating, 8-9.

 IMU provides a first example of applying “+adjoin” to an animated GIF

of a script letter K being drawn to illustrate the operator’s functionality:

IMU-Animating, 8. IMU also provides a second example of applying “-coalesce”

to the same animated GIF to show the differences in results:

IMU-Animating, 8.

 Further, IMU also teaches numerous ways to use such frame images,

including to “study, edit, modify and re-optimize” the original animation. IMU-

Animating, 8. The user can also “use the individual frames for other projects,” e.g.,

for creating a subsequent animation. IMU-Animating, 7. For instance, IMU

Page 144 of 202

 - 145 -

provides an example of applying “+adjoin” to extract the sub-frames of a

“canvas_prev.gif” animated GIF, and teaches that these extracted sub-frames may

be used for “easil[y] rebuild[ing] the animation” or may be additionally modified.

IMU-Animating, 7.

 IMU also teaches modifying the transparency of the pixels of an image

(e.g., a frame image)—and thus the visibility of effects that are applied to the frame

image’s pixels—by modifying the image’s “transparency (alpha) channel,” also

referred to as a “‘matte’ channel” or simply a “matte.” IMU-Masking, 2-3; IMU-

Animating, 7-8. This matte “is just a plain grey scale image of values which range

from white, for full-transparent (or clear), to black for fully-opaque.” IMU-

Masking, 2.

 IMU provides an example matte shaped like a crescent moon:

IMU-Masking, 2. IMU further illustrates how this matte is applied or not applied to

correspondingly change the transparency of an image’s pixels:

Page 145 of 202

 - 146 -

IMU-Masking, 3-4.

2. Summary of Okabe

 Okabe describes a “method for synthesizing fluid animation from a

single image.” Okabe, 1. While Okabe acknowledges that “[m]any methods have

been proposed for creating an animation from a single image,” Okabe asserts that its

method of creating such an animation provides, among other advantages, “markedly

reduce[d]… user burden.” Okabe, 2.

 Okabe teaches that, to animate an image, the user first “inputs a target

painting or photograph of a fluid scene along with its alpha matte that extracts the

fluid region of interest in the scene.” Okabe, 1. Thereafter, the user “sketch[es] the

flow direction and paint[s] a speed map” by drawing “a sparse set of user-drawn

strokes” on the target image, “which is a simple task and takes less than 1 min[ute].”

Okabe, 3, 7. Okabe’s Figure 1 provides an example of these steps, where the

discussed “strokes” are “shown as orange arrows”:

Okabe, 2. From these inputs, Okabe’s algorithm is then able to generate a flow

animation in the target image corresponding to the flow direction and speed specified

Page 146 of 202

 - 147 -

by the strokes, and permits “infinite repetition” of such an animation. Okabe, 1, 8.

According to Okabe, such simple and graphical commands allow a user to animate

images “with less effort than with previous methods.” Okabe, 1.

3. The IMU-Okabe Combination

 According to IMU, IMV6 is operated in the command-line and

therefore “is not a GUI image editor.” IMU-Home, 2. In general, command-line

interfaces, such as that used in the MS-DOS operating system, have grown less and

less popular in favor of graphical user interfaces, such as that used in MS-DOS’s

successor—Microsoft Windows. A POSITA understood that, when releasing a

computer software program or system, a graphical user interface would almost

always be more commercially successful and preferred by users than a command-

line interface.

 In IMV6 in particular, to create an animation from an image (e.g., a

frame image extracted from a GIF animation using “+adjoin” or “-coalesce” in

IMV6, see IMU-Animating, 7-8), a user must create each frame of the animation by

manually writing DOS-style text commands that apply IMV6’s effects to each

frame. E.g., IMU-Animating, 7-8; IMU-Distorting, 17-18. For example, to animate

a frame image using Shepard’s Distortion, a POSITA would have recognized to

write commands that place and incrementally move Shepard’s Distortion control

Page 147 of 202

 - 148 -

points within the image to new coordinates for each successive frame, such that each

control point moves across the animation at the user’s desired direction and speed.

See IMU-Distorting, 17-18 (creating an animation in the same way, but using

IMV6’s “SRT distortion” effect instead, to animate the launch of a space ship along

a non-linear path), 59, 19-20.

 Further, to make distortion and animation visible only in a particular

region of the image, the user would write further commands applying a

corresponding matte to the image such that only the particular region is visible

during the distortion and animation. IMU-Masking, 2. Lastly, to save the animation

as a looping animated GIF, the user would write further commands to save the

animation using “-loop.” IMU-Animating, 1-2; see also, e.g., IMU-Distorting, 17-

18.

 But given this laborious, non-graphical process for extracting a frame

and creating a subsequent animation of the frame image in IMV6, a POSITA would

have been motivated to modify IMV6 (as described in IMU) by at least enabling a

user to animate an already-extracted frame image using simpler and more intuitive

graphical user commands. In other words, a POSITA would have been motivated

to modify IMV6 such that it is a “GUI image editor,” at least with respect to the

aspect of animating images. See IMU-Home, 2.

Page 148 of 202

 - 149 -

 The motivation is underscored in IMU itself, which acknowledges the

disadvantages of IMV6’s lack of a GUI when applying effects to a single image,

noting “there are a lot of readily available image manipulation programs, such as

Adobe Photoshop, Corel’s Paint Shop Pro, IrfanView (http://www.irfanview.com/)

and even GIMP (http://www.gimp.org/). So why should you bother to perform

image processing by IM[V6]’s command line programs and scripts?” IMU-

Windows, 1. Indeed, AECS6 was another such “readily available image

manipulation program[]” that combined the ability to create a looping animation

using effects applied to a frame image (e.g., using the Puppet effect) with simple and

graphical user commands for defining such animation (e.g., by placing and moving

Deform pins to define keyframes and motion paths, and specifying which pixels

move using a mask or matte, all within the “Composition” or “Layer panel[s]”),

confirming a POSITA would have been—and in fact was—motivated to make such

a combination of features. See AEM, 218-19, 187-89, 193-95, 317, 562; Section

VIII.B.1.

 Okabe teaches simple and graphical user commands that a POSITA

would have found well-suited for implementing a GUI for at least animating an

image (e.g., a frame image) in IMV6. Specifically, Okabe teaches that a user

animates an image by first using an “alpha matte” to specify a “region of interest”

the user wants to animate. Okabe, 1. The user also draws on the image a “sparse

Page 149 of 202

 - 150 -

set of user-drawn strokes” to specify the user’s desired direction and speed of

animation, “which is a simple task and takes less than 1 min[ute].” Okabe, 7, 2, 3.

From these inputs, an infinitely repeating animation is automatically produced that

follows the user-specified direction and speed. Okabe, 1-2, 8. Okabe’s simple and

graphical user commands thus enable creating looping animations “with less effort

than with previous methods” and “markedly reduces the user burden.” Okabe, 1-2.

 Given such advantages, a POSITA would have found Okabe’s simple

and graphical user commands desirable for animating an image (e.g., a frame image)

in IMV6, i.e., obviating at least IMV6’s laborious and non-graphical animation

procedure. As such, a POSITA would have been motivated to modify IMV6 to

include Okabe’s simple and graphical user commands to make the animation process

easier, graphical, and less time consuming.

 Further, a POSITA would have been motivated to make such a

modified version of IMV6 available for users to download on the ImageMagick.org

website via the “Download Page” hyperlinked in IMU-Home. See IMU-Home, 1.

As IMU teaches, “I[MV6] is under constant development, new versions are released

roughly on a monthly basis. It is strongly recommended to use an up-to-date version

of IM[V6], especially when IM[V6] doesn’t seem to perform a job quite as you

expect it to do.” IMU-Windows, 3; IMU-Home, 6. And IMU provides the above

hyperlink for users to download and install such new versions of IMV6. IMU-

Page 150 of 202

 - 151 -

Home, 1. Indeed, as a POSITA would have known, clicking the above hyperlink

would have directed the user to the “Download ImageMagick” webpage of the

ImageMagick.org website shown in EX1026, which provides a download link for

the “latest release of I[MV6].” EX1026; IMU-Home, 1. Given that modifying

IMV6 in view of Okabe as discussed above would have likewise created a new

version of IMV6, a POSITA would have thus found the hyperlinked “Download

Page” ideal for hosting and providing such a new version of IMV6 to users. See

IMU-Home, 1.

 So modified, the IMU-Okabe Combination allows a frame image from

a GIF animation to be extracted and outputted using, e.g., IMV6’s “+adjoin” or “-

coalesce” operator. See IMU-Animating, 7-8. The IMU-Okabe Combination then

allows a subsequent animation of the image to be created using Okabe’s simple and

graphical user commands, where, rather than requiring complex commands to be

written that place and move control points (e.g., for Shepard’s Distortion) on the

image frame-by-frame and in the user’s desired direction and speed across the

animation (see IMU-Distorting, 17-18, 59, 19-20), the IMU-Okabe Combination

enables the same result to be achieved via user-drawn strokes on the image that

specify the direction and speed of corresponding Shepard’s Distortion control points

across the animation (see Okabe, 7, 2-3).

Page 151 of 202

 - 152 -

 Also, similar to how IMV6 allows a user to apply a matte to make

distortion and animation effects visible in only a portion of the image (IMU-

Masking, 2), the IMU-Okabe Combination enables a user to apply a matte to make

the Shepard’s Distortion effect from the user-drawn strokes visible in only a portion

of the image (see Okabe, 1). Further, as IMV6 allows saving an animation as an

infinitely looping animated GIF using “-loop” (IMU-Animating, 1-2), the IMU-

Okabe Combination permits infinite repetition of the resulting animation (see

Okabe, 1, 8).

 Lastly, the IMU-Okabe Combination, being a new version of IMV6,

would have been made downloadable for installation onto the user’s computer from

the ImageMagick.org website’s “Downloads Page” hyperlinked in IMU-Home. See

IMU-Home, 1.

Page 152 of 202

 - 153 -

4. Independent Claim 1

 IMU teaches downloading and installing the most “up-to-date version”

of IMV6 onto a user’s computer from the ImageMagick.org website. IMU-

Windows, 3; IMU-Home, 1, 6. Okabe teaches that, when animating an image using

Okabe’s simple and graphical user commands, “the designer specifies a single target

image along with several characteristics regarding motion and uses a computer to

synthesize animated sequences derived from the input.” Okabe, 1 (emphasis added).

Given both IMV6 and Okabe’s commands require a computer, the IMU-Okabe

Combination would thus also be installed to run on a user’s computer, which meets

the claimed “computer system” and remaining claim language according to

Plotagraph’s infringement contentions in Plotagraph, Dkt. No. 42. See EX1022,

134.

Page 153 of 202

 - 154 -

 Alternatively, IMU “strongly recommend[s] to use an up-to-date

version of IM[V6]” (IMU-Windows, 3; IMU-Home, 6), and hyperlinks the

ImageMagick.org website’s “Downloads Page” for users to download and install

such a new version of IMV6 onto their computers (IMU-Home, 1). Following

IMU’s recommendations, a user would have thus downloaded and installed the

IMU-Okabe Combination (i.e., the claimed “software”) onto the user’s computer

(i.e., “client computing device” with “one or more client processors”) from this

webpage, which would have been provided by a server (see Nakagawa, Abst.) (i.e.,

“computer system providing, to a client computing device, software” and comprising

“one or more processors” and “one or more computer-readable media having stored

thereon executable instructions that are transmitted to the client computing device

for execution by one or more client processors”). See Section VIII.C.3.b.

 Further, the IMU-Okabe Combination enables a user to automatically

animate an extracted frame of a GIF animation (i.e., “automating a shifting of pixels

within a video file”). Sections VIII.C.4.b-VIII.C.4.g.

 According to IMU, when using the “+adjoin” or “-coalesce” operators,

IMV6 and thus the IMU-Okabe Combination “read[s] in” a “GIF animation” from

the current directory being operated on—i.e., the claimed “access, from memory, a

Page 154 of 202

 - 155 -

digital image file, wherein the digital image file comprises information that

corresponds to individual pixels within a frame of the digital image file.” IMU-

Animating, 7-8; IMU-Home, 4; ’641 Patent, claim 3; Section VIII.C.3.b; see also

AEM, 100 (listing “Animated GIF (GIF)” as a “[v]ideo and animation format[]”);

’641 Patent, 10:13-24 (stating “animated GIF” is one “format[]” for viewing the

video file after pixel shifting is applied); IMU-Animating, 15-19 (explaining GIF

animations are “displayed one frame to another,” where each frame includes

“pixels” that may be “cleared or erased from one frame to the next” (emphasis

added)).

 IMU teaches that “+adjoin” and “-coalesce,” as used by the IMU-

Okabe Combination, “split[] an animation into frames” to allow a user to “use the

individual frames for other projects,” such as for creating subsequent animations.18

18 Should there be any argument that IMU teaches applying Shepard’s Distortion to

animate only an image and not specifically the extracted frame image, a POSITA

would have nevertheless been motivated to use such an extracted frame as the image

to be animated because such a frame would have been easily accessible and, in

Page 155 of 202

 - 156 -

IMU-Animating, 7-8; Section VIII.C.3.b; see also, e.g., IMU-Animating, 7. Any of

such extracted frame images meets the claimed “first image frame.”

 Additionally, IMU teaches that IMV6 is an “image-to-image converter”

that enables a user apply effects such as distortion effects (e.g., “Shepard’s

Distortion”) to convert one image (e.g., a frame image) into a sequence of frames

that animate the image when played sequentially. IMU-Home, 2; IMU-Distorting,

17-18; IMU-Animating, 7-8. To do so, the user places a “control point” on a pixel

at a user-specified coordinate of the image and then moves the control point to a new

coordinate. IMU-Distorting, 19-20; see also, e.g., IMU-Distorting, 17-18 (placing

and moving an “SRT distortion” control point on an image of a space ship to animate

the launching of the space ship across the sky). This is done incrementally for each

successive frame such that the control point moves across the animation at the user’s

desired direction and speed. See IMU-Distorting, 19-20; see also, e.g., IMU-

Distorting, 17-18. IMU provides an example of one such increment, where two

common instances, particularly desirable for modifying and animating with IMV6’s

effects, e.g., Shepard’s Distortion. See, e.g., ’641 Patent, 1:36-38; AEM, 590; IMU-

Animating, 7-8 (teaching that extracted frames are useful not only “for other

projects” but also to “study, edit, modify and re-optimize” the original GIF

animation).

Page 156 of 202

 - 157 -

Shepard’s Distortion control points are placed on an image of a koala at coordinates

(30,11) and (48,29), before being moved to coordinates (20,11) and (59,29),

respectively. See IMU-Distorting, 59. IMU also provides a figure showing the koala

image before and after the Shepard’s Distortion is applied:

IMU-Distorting, 59 (additional annotations added).

 Further, in the IMU-Okabe Combination, IMU’s placement and

movement of a Shepard’s Distortion control point corresponds to Okabe’s user-

drawn “stroke[]” on the frame image. See Okabe, 7, 3; Section VIII.C.3.b. That is,

Okabe’s user-drawn stroke as used in the IM-Okabe Combination includes an

indication of a starting point, direction, and speed across the animation, like how a

user in IMV6 indicates a control point’s starting coordinate, direction, and speed

across an animation according to IMU. See Okabe, 7, 3; IMU-Distorting, 17-18, 59,

19-20; Section VIII.C.3.b. Receiving the starting point of a user-drawn stroke on

the frame image thus meets the claimed “receive a first starting point through a user

interface, wherein the first starting point is received through a user selection of a first

Shepard’s Distortion
control points

Page 157 of 202

 - 158 -

beginning portion of a first image frame.” See IMU-Distorting, 59, 19-20; Okabe,

7, 3.

 Okabe’s Figure 1 illustrates the relevant disclosure by depicting several

user-drawn strokes (shown in orange) on an image of a waterfall:

Okabe, 2 (Figure 1, annotations added). In my opinion, the IMU-Okabe

Combination therefore meets limitation [1b].

 In my opinion, the IMU-Okabe Combination meets limitation [1c]. In

the IMU-Okabe Combination, a user defines a Shepard’s Distortion control point’s

direction and speed across the animation of a frame image by drawing a “stroke[]”

on the image. See Okabe, 7, 2-3; IMU-Distorting, 59; Section VIII.C.3.b. Receiving

this user-drawn stroke on the frame image, specifically the stroke’s ending point,

meets the claimed “receive a first ending point through the user interface, wherein

the first ending point is received through a user selection of a first ending portion.”

See Okabe, 2 (Figure 1, reproduced below with annotations added).

Starting points of
user-drawn strokes

Page 158 of 202

 - 159 -

 IMU teaches animating an image (e.g., a frame image) in IMV6 using

distortion effects (e.g., Shepard’s Distortion) by placing and incrementally moving

control points frame-by-frame such that each control point moves across the

animation at the user’s desired direction and speed. See IMU-Distorting, 17-18, 59,

19-20; IMU-Animating, 7-8.

 Further, in the IMU-Okabe Combination, a user specifies such a

direction and speed of a Shepard’s Distortion control point by drawing a

corresponding “stroke[]” from Okabe on the frame image—i.e., the claimed “create

a first digital link between the first starting point and the first ending point, wherein

the first digital link comprises: a first direction extending from the first starting point

to the first ending point; and a first length between the first starting point and the

Ending points of
user-drawn strokes

Page 159 of 202

 - 160 -

first ending point.” See Okabe, 7, 2-3; Section VIII.C.3.b. Indeed, Okabe’s Figure

1 illustrates three user-drawn strokes, each of which comprise a direction (indicated

by the arrowhead) and a length:

Okabe, 2 (Figure 1, annotations added). Similarly, Okabe’s Figure 8-a depicts two

user-drawn strokes, each shown in Okabe’s interface as a green curved line with an

arrow specifying direction:

Okabe, 6 (discussing Figure 8-a). Therefore, in my opinion, the IMU-Okabe

Combination meets limitation [1d].

 IMU teaches modifying the transparency of pixels of an image (e.g., an

extracted frame) in IMV6—and thus the visibility of effects applied to the frame

User-drawn strokes

Page 160 of 202

 - 161 -

image—by applying a “matte,” which “is just a plain grey scale image of values

which range from white, for full-transparent (or clear), to black for fully-opaque.”

IMU-Masking, 2; IMU-Animating, 7-8.

 The IMU-Okabe Combination similarly allows a user to apply a matte

specifying a region of interest the user desires to animate in the image (see Okabe,

1), in addition to a “stroke[]” that specifies the direction and speed of a Shepard’s

Distortion control point across the animation (see Okabe, 7, 3). Section VIII.C.3.b.

Thus, a user would have been allowed to select any or all pixels of the image to be

included in this region of interest, including pixels that lie along the stroke between

the stroke’s starting point and ending point—i.e., the claimed “identify a first set of

pixels that lie along the first digital link between the first starting point and the first

ending point”—by using a matte. See Okabe, 1. Okabe’s Figure 1 confirms this by

depicting a matte specifying a region of interest to be animated (in white) that

includes pixels that lie along three user-drawn strokes between each stroke’s starting

point and ending point:

Matte
Region of interest

Three user-
drawn strokes

Page 161 of 202

 - 162 -

Okabe, 2 (Figure 1, annotations added). This confirms that the IMU-Okabe

Combination meets limitation [1e].

 With respect to “shift the first set of pixels,” the ’641 Patent states the

claimed “shift[ing]” can be performed using “a warping function, such as Shepard’s

distortion.” ’641 Patent, 9:27-29. IMU explicitly teaches that IMV6 performs

“Shepard’s Distortion” and therefore the claimed pixel shifting. IMU-Distorting,

59. That is, IMV6’s user shifts pixels as claimed by using Shepard’s Distortion to

place and incrementally move a “control point” on a frame image in the user’s

specified direction and speed. See IMU-Distorting, 17-18, 59, 19-20; IMU-

Animating, 7-8.

 Further, in the IMU-Okabe Combination allows, the user specifies a

Shepard’s Distortion control point’s direction and speed by drawing a corresponding

“stroke[]” from Okabe on the image. See Okabe, 7, 3, 2; Sections VIII.C.3.b,

VIII.C.4.e. The IMU-Okabe Combination also allows a user to apply a matte to

select pixels that lie along the stroke between the stroke’s starting point and ending

point—i.e., “the first set of pixels”—to be in a region of interest and thus animated.

See Okabe, 1, 2; Section VIII.C.4.f. The IMU-Okabe Combination then

automatically generates animation frames by shifting the selected pixels in the

Page 162 of 202

 - 163 -

stroke’s direction using IMV6’s Shepard’s Distortion—i.e., “shift the first set of

pixels in the first direction.” See Okabe, 1-2; Section VIII.C.3.b.

5. Claim 2: The computer system of claim 1, wherein the first
ending portion comprises a particular portion of the first
image frame.

 See Sections VIII.C.4.c-VIII.C.4.d. The stroke is drawn on a single

frame image, and thus the stroke’s ending point is on the same frame image as the

stroke’s starting point—i.e., “wherein the first ending portion comprises a particular

portion of the first image frame.”

6. Claim 3: The computer system of claim 1, wherein the digital
image file comprises a video file and the first image frame
comprises a first video frame of the video file.

 See Section VIII.C.4.b. The animated GIF discussed is a “video file”

as claimed, and the extracted frame image is “a first video frame of the video file.”

7. Claim 4: The computer system of claim 3, wherein the first
ending portion comprises a particular portion of a second
video frame within the video file.

 See Sections VIII.C.4.c-VIII.C.4.d, VIII.C.6. While the stroke is drawn

on a single frame image, and thus the stroke’s ending point is on the same frame

image as the stroke’s starting point, such nevertheless meets claim 4 because the

claimed “first video frame” and “second video frame” may be the same frame. ’641

Patent, 6:51-54; EX1022, 137.

Page 163 of 202

 - 164 -

8. Claim 8: The computer system of claim 1, wherein shifting
the first set of pixels comprises rendering in a loop the first
set of pixels being shifted within the first image frame.

 IMU teaches saving an animation of an image (e.g., a frame image) in

IMV6 as an infinitely looping animated GIF using IMV6’s “-loop” operator. IMU-

Animating, 1-2, 7-8. Similarly, Okabe describes automatically producing an

infinitely repeating animation that follows a direction and speed based on a user-

drawn stroke. Okabe, 1-2, 8. The IMU-Okabe Combination thus likewise permits

infinite repetition of an animation of the frame image by, e.g., allowing a user to

apply “-loop” to an animation created by Shepard’s Distortion and the user’s

stroke—i.e., “rendering in a loop the first set of pixels being shifted within the first

video frame.” See IMU-Animating, 1-2; Okabe, 1, 8; Section VIII.C.3.b. Therefore,

in my opinion, the IMU-Okabe Combination meets claim 8.

Page 164 of 202

 - 165 -

9. Claim 9

 In my opinion, the IMU-Okabe Combination meets limitations [9a]-

[9e]. IMU teaches applying multiple Shepard’s Distortion control points at different

coordinates of an image (e.g., a frame image) in IMV6 and incrementally moving

the control points to animate the image. See IMU-Distorting, 17-18, 59, 19-20;

Page 165 of 202

 - 166 -

IMU-Animating, 7-8. IMU provides an example of one such increment using two

Shepard’s Distortion control points on an image of a koala:

IMU-Distorting, 59.

 In the IMU-Okabe Combination, this placement and movement of

multiple Shepard’s Distortion control points is performed by a user drawing multiple

“strokes” from Okabe on the frame image, each specifying a direction and speed of

a different control point. See Okabe, 7, 2-3; Section VIII.C.3.b. Indeed, Okabe’s

Figure 1 depicts three user-drawn strokes on an image:

Okabe, 2 (Figure 1, annotations added). Similarly, Okabe’s Figure 8-a depicts two

user-drawn strokes shown as two green lines:

Three user-drawn strokes

Page 166 of 202

 - 167 -

Okabe, 6 (discussing Figure 8-a). Receiving multiple user-drawn strokes—

including each stroke’s starting and ending points, direction, and speed—meets

“receive a second starting point…” as recited in limitation [9a], “receive a second

ending point…” as recited in limitation [9b], and “create a second digital link…” as

recited in limitation [9c]. See Sections VIII.C.4.c-VIII.C.4.e.

 The IMU-Okabe Combination also allows a user to apply a matte

specifying a region of interest the user desires to animate, including pixels that lie

along each stroke between each stroke’s starting point and ending point—i.e., the

claimed identify a second set of pixels that lie between the second starting point and

the second ending point” as recited in recited in limitation [9d]. See Okabe, 1; IMU-

Masking, 2; Section VIII.C.3.b; see also Section VIII.C.4.f. Okabe’s Figure 1

confirms this by depicting a matte specifying a region of interest that includes pixels

that lie along three strokes between each stroke’s starting point and ending point:

Page 167 of 202

 - 168 -

Okabe, 2 (Figure 1, annotations added).

 After receiving the strokes and matte, the IMU-Okabe Combination

automatically generates animation frames using Shepard’s Distortion according to

the user’s strokes—i.e., “shift the second set of pixels in the second direction” as

recited in limitation [9e]. See Okabe, 1-2; IMU-Animating, 1-2; Section VIII.C.3.b;

see also Section VIII.C.4.g.

10. Claim 10: The computer system of claim 9, wherein the first
direction is different from the second direction.

 IMU teaches applying and incrementally moving control points, such

as for Shepard’s Distortion, to different coordinates on an image (e.g., a frame

image) to generate an animation. See IMU-Distorting, 17-18, 59, 19-20; IMU-

Animating, 7-8. IMU provides an example that places two Shepard’s Distortion

control points on an image of a koala and moves them in different directions:

IMU-Distorting, 59.

Matte
Region of interest

Three user-
drawn strokes

Page 168 of 202

 - 169 -

 Further, in the IMU-Okabe Combination, this placement and movement

of multiple Shepard’s Distortion control points is performed by a user drawing

multiple “strokes” from Okabe on the frame image, which specify different

directions and speeds of corresponding Shepard’s Distortion control points across

the animation—i.e., the claimed “wherein the first direction is different from the

second direction.” See Okabe, 7, 3; Section VIII.C.3.b. In fact, Okabe’s Figure 1

depicts three user-drawn strokes with different directions:

Okabe, 2 (Figure 1, annotations added). Therefore, in my opinion, the IMU-Okabe

Combination meets claim 10.

11. Claim 11: The computer system of claim 9, wherein a
magnitude of the shifting of the first set of pixels is
proportionally related to the first length and the magnitude
of the shifting of the second set of pixels is proportionally
related to the second length.

 In my opinion, the IMU-Okabe Combination meets claim 11. IMU

teaches that distortions using control points in IMV6, e.g., Shepard’s Distortion,

require users to input “2 pairs of coordinates”: Xi,Yi and Ii,Ji. IMU-Distorting, 19,

59. Specifically, “the control point Xi,[Y]i in the source image (relative [to] its

Three user-
drawn strokes

Page 169 of 202

 - 170 -

virtual canvas), is mapped to Ii,Ji on the distorted destination image.” IMU-

Distorting, 19. Thus, when using Shepard’s Distortion to animate, the magnitude of

distortion from one frame to the next is directly related to the distance between the

“source” and “destination” coordinates inputted for a corresponding control point.

See IMU-Distorting, 19, 59.

 In the IMU-Okabe Combination, the placement and movement of

multiple Shepard’s Distortion control points is determined by a user-drawn

“stroke[]” on the image that specifies the direction and speed of a corresponding

Shepard’s Distortion control point across the animation. See Okabe, 7, 3; Section

VIII.C.3.b. Thus, longer strokes correspond to larger frame-by-frame distances of

travel for corresponding Shepard’s Distortion control points, resulting in larger

shifts, and vice versa. See IMU-Distorting, 19, 59; Section VIII.C.3.b. Such

establishes a proportional relationship between the magnitude of Shepard’s

Distortion applied and the length of each corresponding stroke—i.e., the claimed

“magnitude of the shifting of the first set of pixels is proportionally related to the

first length and the magnitude of the shifting of the second set of pixels is

proportionally related to the second length.”

Page 170 of 202

 - 171 -

12. Independent Claim 12

 IMU “strongly recommend[s] to use an up-to-date version of IM[V6]”

(IMU-Windows, 3; IMU-Home, 6), and hyperlinks the ImageMagick.org website’s

“Downloads Page” for users to download and install such a new version of IMV6

onto their computers (IMU-Home, 1). Following IMU’s recommendations, a user

would have thus downloaded and installed the IMU-Okabe Combination from this

webpage—and thus a server (see Nakagawa, Abst.) (i.e., the claimed “computer

program product comprising one or more non-transitory computer storage media

having stored thereon computer-executable instructions”)—onto the user’s

computer (i.e., “when transmitted to a remote computer system for execution at a

processor, cause the remote computer system to perform”). See Section VIII.C.3.b.

 Further, using the IMU-Okabe Combination meets the claimed

“method for automating a shifting of pixels within an image file.” Sections

VIII.C.12.b-VIII.C.12.f.

Page 171 of 202

 - 172 -

 See Sections VIII.C.4.b-VIII.C.4.c. Receiving the stroke from the user,

including the stroke’s starting point, meets the claimed “receiving a first indication

of a first starting point through a user interface.”

 See Sections VIII.C.4.d-VIII.C.4.e. Receiving the discussed user-

drawn stroke, which indicates the Shepard’s Distortion control point’s starting and

ending coordinates as well as direction and speed across the animation, meets the

claimed “receiving, through the user interface, a first direction associated with the

first starting point.” See IMU-Distorting, 17-18, 59, 19-20; Okabe, 7, 2-3; Section

VIII.C.3.b.

 See Section VIII.C.4.e. The discussed user-drawn stroke indicates the

Shepard’s Distortion control point’s starting and ending coordinates as well as

direction and speed across the animation, thus meeting the claimed “creating a first

digital link extending in the first direction from the first starting point.” See IMU-

Distorting, 17-18, 59, 19-20; Okabe, 7, 2-3; Section VIII.C.3.b.

Page 172 of 202

 - 173 -

 As discussed similarly in Section VIII.C.4.f, the IMU-Okabe

Combination’s user selects any or all pixels of the image to be included in a to-be-

animated region of interest, including pixels that are along the stroke and extend in

the stroke’s direction away from the stroke’s starting point—i.e., the claimed

“selecting a first set of pixels that are along the first digital link and extend in the

first direction away from the first starting point”—by using a matte. Indeed, Okabe’s

Figure 1 depicts a matte specifying a region of interest to be animated (in white) that

includes pixels that are along three user-drawn strokes and extend in each stroke’s

direction away from each stroke’s starting point. Okabe, 2.

 See Section VIII.C.4.g.

13. Claim 13

 In my opinion, the IMU-Okabe Combination meets limitations [13a]-

[13b]. Similar to how IMV6’s user applies a matte to modify the transparency of

the pixels of an image (e.g., a frame image) and therefore the visibility of effects

Page 173 of 202

 - 174 -

applied to the pixels (IMU-Masking, 2; IMU-Animating, 7-8), the IMU-Okabe

Combination’s user applies a matte specifying a region of interest the user desires to

animate (see Okabe, 1). Section VIII.C.3.b. Naturally, the matte also specifies a

region that includes pixels the user does not desire to animate. Indeed, Okabe’s

Figure 1 depicts a matte that includes white and black regions for pixels to be or not

to be animated:

Okabe, 2 (Figure 1, annotations added). Therefore, the matte meets “a first mask

over a second portion of the first image frame” as recited in limitation [13a],

“wherein pixels under the first mask are prevented from shifting” as recited in

limitation [13b]. Receiving and applying such a matte specified by the user meets

“receiving an indication to generate a first mask” as recited in limitation [13a].

Region of image that the user
does not desire to animate

Page 174 of 202

 - 175 -

14. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions
that, when transmitted to the remote computer system for
execution at the processor, cause the remote computer
system to perform a method for automating the shifting of
pixels within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated.

 As discussed in Section VIII.C.13.a, the IMU-Okabe Combination’s

user applies a matte specifying a region of an image (in black) covering pixels the

user does not desire to animate. See Okabe, 1-2. As seen in Okabe’s Figure 1, such

a matte includes a black region covering pixels the user does not desire to animate.

Okabe, 2. Receiving such a region meets the claimed “receiving through a user

interface a selection of the second portion of the first image frame around which the

first mask should be generated.”

15. Independent Claim 19

 IMU “strongly recommend[s] to use an up-to-date version of IM[V6]”

(IMU-Windows, 3; IMU-Home, 6), and hyperlinks the ImageMagick.org website’s

“Downloads Page” for users to download and install such a new version of IMV6

Page 175 of 202

 - 176 -

onto their computers (IMU-Home, 1). Following IMU’s recommendations, a user

would have thus downloaded and installed the IMU-Okabe Combination onto the

user’s computer (i.e., the claimed “client computing device”) from this webpage—

and thus a server (see Nakagawa, Abst.) (i.e., “transmitting to a client computing

device instructions,” and “transmitting computer executable instructions to a client

computing device, the computer executable instructions configured to cause the

client computing device to”). See Section VIII.C.3.b.

 Further, the IMU-Okabe Combination is used “for shifting pixels

within a video file.” Sections VIII.C.15.b-VIII.C.15.g.

 See Section VIII.C.4.b.

 See Section VIII.C.4.c.

 See Section VIII.C.4.d.

Page 176 of 202

 - 177 -

 See Section VIII.C.4.e.

 See Section VIII.C.4.f.

 See Section VIII.C.4.g.

16. Claim 20: The method of claim 19, wherein the digital image
file comprises a video file and the first image frame comprises
a frame of the video file.

 See Section VIII.C.6.

D. Ground 3: IMU, Okabe, and Li, and Claims 13-15

1. Summary of Li

 Li describes “a novel coarse-to-fine UI design for image cutout” named

“Lazy Snapping.” Li, 2. “The task in image cutout is specifying which parts of the

image are ‘foreground’ (the part you want to cut out) and which belong to the

background.” Li, 1.

Page 177 of 202

 - 178 -

 Li teaches that performing image cutout on a computer historically

required a user to specify the foreground by “marking every pixel individually”—a

“tedious” and “particularly frustrating task for users.” Li, 1. “Lazy Snapping,”

however, allows a user to easily perform image cutout in two steps: “a quick object

marking step (b) and a simple boundary editing step (c).” Li, 2. Li’s Figure 1

illustrates how image cutout is performed in “Lazy Snapping” using these two steps:

Li, 1.

 As Li teaches, the first “object marking” step “works at a coarse scale,”

where the user begins by “mark[ing] a few lines on the image by dragging the mouse

cursor while holding a button (left button indicating the foreground, and right button

for the background). A yellow line or a blue line is displayed for the foreground

marker or background marker respectively.” Li, 2. After each marker line is drawn,

a “segmentation process” is triggered that uses a “novel interactive graph cut

algorithm” to detect a “cutout boundary” between the foreground and background

Page 178 of 202

 - 179 -

lines. Li, 2. Li’s Figure 2 depicts an example of detecting such a boundary (green)

between a foreground line (red) and a background line (blue):

Li, 2-3.

 The second “boundary editing” step allows the user to further refine the

boundary. Li, 3. This second step “works at a finer scale” by converting the

boundary into “editable polygons” and allowing the user to manually refine the

boundary “by simply clicking and dragging polygon vertices.” Li, 3, 2.

2. The IMU-Okabe-Li Combination

 The prior art contains express teachings, suggestions, and motivations

for combining the IMU-Okabe Combination (Section VIII.C.3.b) with Li’s “Lazy

Snapping” tool (hereinafter, the “IMU-Okabe-Li Combination”).

 IMU teaches that, in IMV6, a user applies a matte to make only a

particular region of an image visible when animating the image using Shepard’s

Page 179 of 202

 - 180 -

Distortion. IMU-Masking, 2. Similarly, in the IMU-Okabe Combination, a user

applies a matte that, as taught in Okabe, specifies a region of interest that the user

desires to animate in an extracted frame image (shown in white), as well as a region

the user does not desire to animate (shown in black). Okabe, 1-2; Sections

VIII.C.3.b, VIII.C.13.a.

 Okabe teaches that its matte can be created “using a scribble-based

image segmentation tool,” specifically Li’s “Lazy Snapping” tool. Okabe, 7 (citing

“LSTS04”), 10 (indicating “LSTS04” is the shorthand for Li). As such, Okabe

explicitly teaches using “Lazy Snapping” to create a matte in Okabe and the IMU-

Okabe Combination, and thus explicitly teaches combining the IMU-Okabe

Combination with Li. Okabe, 7.

 Separately, Li teaches that “Lazy Snapping” allows a user to easily

perform “image cutout”—i.e., separating and removing an image’s background,

leaving only the foreground visible—by using a “novel image segmentation

algorithm” to detect a boundary between the foreground and background based on

“a quick object marking step” and “a simple boundary editing step” performed by

the user. Li, 1-2. Compared to other existing methods and tools for image cutout,

Li’s tool “outperforms in terms of ease of use, efficiency, and quality of results.” Li,

1-2.

Page 180 of 202

 - 181 -

 Given such benefits, a POSITA would have been motivated to utilize

“Lazy Snapping” to remove the background of an image and make only the

foreground visible—i.e., to create a matte in IMV6 that makes the former portion of

the image transparent and the latter portion visible. See IMU-Masking, 2. Further,

given that a user of the IMU-Okabe Combination applies a matte that, as taught in

Okabe, specifies regions in an image (e.g., an extracted frame image) to be or not to

be animated (see Okabe, 1; IMU-Animating, 7-8; Section VIII.C.3.b), a POSITA

would have likewise been motivated to utilize Li’s “Lazy Snapping” tool in the

IMU-Okabe Combination to create such a matte for the same benefits of “ease of

use, efficiency, and quality of results” (see Li, 2). Indeed, Okabe describes utilizing

Li’s tool in this exact way, and states doing so allows a matte to be created in “less

than 5 min[utes],” confirming that a POSITA would have been motivated to modify

the IMU-Okabe Combination in view of Li to reach the IMU-Okabe-Li

Combination. Okabe, 7.

 Additionally, AECS6 was an image manipulation program “readily

available” by the ECPD that included not only the functionality of the IMU-Okabe

Combination (see Section VIII.C.3.a), but also functionality similar to “Lazy

Snapping.” Particularly, similar to Li’s “object marking” step (Li, 2-3), AECS6’s

“Roto Brush” tool allows a user to create a matte that isolates a layer’s foreground

from its background by having the user draw “strokes” on the layer over

Page 181 of 202

 - 182 -

“representative areas of the foreground and background elements,” which AECS6

then uses to determine a “segmentation boundary” between the foreground and

background elements via “Edge Detection” (AEM, 328-331). Given AECS6 already

contained functionality similar to the IMU-Okabe-Li Combination, a POSITA

therefore would have been—and in fact was—motivated to further modify the IMU-

Okabe Combination in view of Li to reach the IMU-Okabe-Li Combination.

 So modified, the IMU-Okabe-Li Combination allows a user to create a

matte by first performing an “object marking” step of drawing marker lines on an

image, e.g., an extracted frame image as discussed in Section VIII.C.3.b, to indicate

the image’s foreground (i.e., the region of interest that the user desires to animate)

and background (i.e., the region of the image that the user does not desire to

animate). See Li, 2; Okabe, 1, 7. The IMU-Okabe-Li Combination utilizes Li’s

“novel image segmentation algorithm” to detect the boundary between the frame

image’s foreground and background based on the user’s marker lines, as well as Li’s

“boundary editing” step for manual refinement of the boundary. See Li, 1-2; Okabe,

7. The resulting matte is then used in the remaining steps for animating the frame

image discussed in Section VIII.C.3.b. See Okabe, 1, 7.

Page 182 of 202

 - 183 -

3. Claim 13

 In my opinion, the IMU-Okabe-Li Combination meets limitations

[13a]-[13b]. The IMU-Okabe-Li Combination allows a user to create a matte that

specifies regions of an extracted frame image to animate (foreground) and not to

animate (background). See Li, 1-2; Section VIII.D.2.b. Such a matte thus meets the

claimed “first mask over a second portion of the first image frame, wherein pixels

under the first mask are prevented from shifting” as recited in limitations [13a]-

[13b].

 To create this matte, the IMU-Okabe Combination’s user performs Li’s

first “object marking” step of drawing marker lines on the image indicating the

foreground and background. See Li, 2; Okabe, 1, 7; Section VIII.D.2.b. Receiving

such marker lines from the user, from which the matte is created, meets “receiving

an indication to generate a first mask over a second portion of the first image frame”

recited in limitation [13a].

Page 183 of 202

 - 184 -

4. Claim 14: The computer program product as recited in claim
13, further comprising computer-executable instructions
that, when transmitted to the remote computer system for
execution at the processor, cause the remote computer
system to perform a method for automating the shifting of
pixels within the image file, the method comprising receiving
through a user interface a selection of the second portion of
the first image frame around which the first mask should be
generated.

 In my opinion, the IMU-Okabe-Li Combination meets claim 14. Li

teaches that the “object marking” step of drawing marker lines on the image

comprises drawing marker lines over the pixels that form the foreground and

background. Li, 2. Specifically, Li teaches, “[o]nce the user marks the image, two

sets of pixels intersecting with the foreground and background markers are defined

as foreground seeds ℱ and background seeds ℬ respectively, as shown in Figure 2”:

Li, 2-3. Such foreground and background “pixels” or “seeds” are then used in Li’s

segmentation algorithm, as utilized by the IM-Okabe-Li Combination, to detect the

boundary between the foreground and background. Li, 2-3; Section VIII.D.2.b. The

Page 184 of 202

 - 185 -

“pixels” or “seeds” of the marker lines thus meet the claimed “selection of the second

portion of the first image frame around which the first mask should be generated.”

Li, 2-3. Receiving the foreground and background marker lines, and their

intersecting “pixels” or “seeds,” meets the claimed “receiving through a user

interface a selection.” Li, 2-3.

5. Claim 15

 In my opinion, the IMU-Okabe-Li Combination meets limitations

[15a]-[15b]. Li teaches that, in the “object marking” step, a user draws marker lines

over the particular “pixels” or “seeds” that form the foreground and background. Li,

2-3. Such “pixels” or “seeds” are used by the IM-Okabe-Li Combination to detect

the boundary between the foreground and background for generating the matte,

meeting the claimed “identifying one or more edges that form a first boundary

around the second portion; and generating the first mask to cover area within the

Page 185 of 202

 - 186 -

first boundary” as recited in limitations [15a]-[15b]. Li, 2-3; Section VIII.D.4; see

also ’641 Patent, 4:46-64.

IX. CONCLUSION

 All statements made herein of my own knowledge are true, all

statements made herein on information and belief are believed to be true, and these

statements were made with the knowledge that willful false statements and the like

are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001.

Dated: Apr. 6, 2023

Philip Greenspun, Ph.D.

Page 186 of 202

ATTACHMENT A

Page 187 of 202

ATTACHMENT A

Page 187 of 202

Resume

of Philip Greenspun; updated May 2022

Summary:

Business experience: started six companies and buried three. As
CEO, grew an open-source
enterprise software company to $20 million
annual revenue in two years with $10,000 in
capital. Served as
corporate board member for venture capital-backed MIT spinoff
companies.
Software product development experience: 20 years. Same email
address since 1976:
philg@mit.edu.
Developing open source software since 1982. List of
engineering projects
completed is available
from http://philip.greenspun.com/personal/resume-list
Pedagogy experience: Co-developed "Software Engineering for Internet
Applications" with
Hal Abelson at MIT; it has been a successful
course at MIT and is being used by computer
science departments at 10
other universities around the world. Re-developed 16.687 for the
MIT
Department of Aeronautics and Astronautics. Co-developed the RDBMS
materials for a
Harvard Medical School course on computational medicine.
Non-profit experience: Started a 501c3 foundation in December 1998.
The Foundation
operated a prize program for high-school age Web
developers and a one-year post-
baccalaureate program in computer
science; the annual budget was approximately $1.5
million.
Political experience: Testified before the U.S. Senate Commerce
Committee and the
Subcommittee on Patents, Copyrights and Trademarks
of the Senate Judiciary Committee
Writing experience: four computer science textbooks, one book
about North America and its
people, numerous journal and magazine
articles.
Photography experience: started photo.net
in 1993, an online community for photographers.
Work published in
dozens of print magazines and books and used for advertising (see separate
photo resume).
Aviation experience: holder of Airline Transport Pilot certificate
with multi-engine, single-
engine seaplane, and helicopter ratings;
holder of flight instructor certificate with instrument
and helicopter
ratings; have flown single-engine aircraft to Alaska (twice) and just
about
everywhere else in North America and the Caribbean; have flown
three coast-to-coast trips in
Robinson helicopters; flew the Canadair
Regional Jet out of JFK for Delta Airlines
Education: three MIT degrees (including a Ph.D., but you can't
call me "Dr. Greenspun"
because my brother is a real doctor).

Employment Experience

Fall 2021: Florida Atlantic University

Teach Information Security at this 31,000-student branch of the State
University System of Florida.

2018-present: Harvard University

Develop curricular materials for medical students and post-doc
researchers learning how to query a
12 TB insurance claims
database. Assist student groups with their analytics projects in SQL
and R.

1991-present: Massachusetts Institute of Technology

Teach and expand the MIT computer science curriculum, conduct
research, and supervise student
research. Teach the most popular
course in the MIT Department of Aeronautics and Astronautics,

Page 188 of 202

https://philip.greenspun.com/
mailto:philg@mit.edu
https://philip.greenspun.com/personal/resume-list
https://philip.greenspun.com/teaching/one-term-web
http://www.photo.net/
https://philip.greenspun.com/personal/resume-photo-list

16.687
(via Zoom for 2021, with over 500 students)

2013-present: Fifth Chance Media LLC

I develop software, write, photograph, and create videos for this
publishing company whose current
products are listed
at fifthchance.com. Through
Fifth Chance Media LLC I also work as
a software
expert witness, especially in cases
regarding Internet
software patents (e.g., for Amazon, Ford, IBM,
Microsoft, and the U.S. Department of Justice). I have also served as
an aviation expert
witness,
testifying in front of a Federal Court jury, and as a
relational database expert
witness.

1993-2000; 2006-2007: photo.net

Started, programmed, financed, and managed this online learning
community as a personal hobby.
Spun it off in 2000 to a team of
entrepreneurs who attempted to make it a profitable business. Took
it
back over in mid-2006 to clean up the content, software, and balance
sheet (crippled with debt).
With 600,000 registered users and 60
million page views per month, sold the company in April
2007 to
NameMedia.

1997 through March 2000: ArsDigita Corporation

Started, financed, and managed this company, which developed an
open-source toolkit for building
collaborative Internet applications.
Grew the company profitably from 5 part-time people to 80 full-
timers
and revenue of $20 million per year. Between January and March 2000,
negotiated and
closed a $38 million venture capital investment from
Greylock and General Atlantic Partners.
Handed over the reins to a team
of professional managers brought in by the venture capitalists.

February 1988 through August 1990: Isosonics Corporation

Founded company to develop a product that stored digital data with
consumer video recorders. Co-
designed custom digital signal
processor. Developed simulation environment, complete simulator
for
digital audio recorder (1.4 Mbits/second), microcode compiler on the
Symbolics Lisp Machine.
Used Lisp tools to develop error correction
microcode and refine DSP architecture. Co-designed
three phase locked
loops. With partners, developed system for auditing television
broadcasts
nationwide by monitoring commercials and compiling reports
for advertisers. We designed a single
board that tunes a chosen
channel, recognizes tagged advertisements and makes a record for each
ad
of time of broadcast, number of fields, video quality and color
burst presence. Served as president of
Isosonics from its inception
until its dissolution.

April 1986 through November 1989: ConSolve Incorporated

Co-founded this construction automation company. With partner,
developed initial product, obtained
financing (from PaineWebber
Ventures), hired software development, marketing and support
staff,
established R&D partnership with Tektronix, obtained
government contracts and sold software. Was
active participant
in all important planning, legal, and management activities.
Wrote every line of
code in the first system shipped to a
customer (Caterpillar).

November 1984 through August 1985: ICAD, Inc.

Co-founded company with three partners. With Patrick O'Keefe,
developed Lisp software to
automate mechanical engineering. The ICAD
System was initially primarily intended for large steel
structures,
e.g., air-cooled heat exchangers, offshore oil rigs, coal-fired power
plants, but has been
extended to many general ME problems.

Page 189 of 202

http://fifthchance.com/
https://philip.greenspun.com/software/expert-witness
https://philip.greenspun.com/business/internet-software-patents
https://philip.greenspun.com/flying/aviation-expert-witness
https://philip.greenspun.com/software/relational-database-expert-witness

Company went public in January 1995 as Concentra with a market
valuation of $50 million and was
subsequently acquired by Oracle
Corporation.

June 1983 through November 1984: Symbolics, Inc.

Developed VLSI tools, including automatic layout functions and worked
on the system architecture
for the Ivory microprocessor (the base of
all Symbolics products sold in the late 1980s). Wrote parts
of the
Symbolics operating system.

June 1982 through June 1983: Hewlett-Packard Labs

Wrote packet-switched network simulation software on Symbolics Lisp
Machine. Helped architect,
simulate and design prototype of HP's
Precision Architecture RISC computer. The prototype took
two
man-years to complete and ran at VAX 11/780 speed in June 1983. This
architecture became the
basis of HP's computer product line for 15
years and then became the basis for the 64-bit generation
of Intel
processors.

1978 to 1982

Paid tuition and living expenses through MIT
with employment and contract work for Wang
Laboratories, Verbex
Corporation, National Aeronautics and Space Administration, and
other
organizations.

Education (Massachusetts Institute of Technology)

Ph.D. 1999 in electrical engineering and computer science. Thesis
title: Architecture and
Implementation of Online
Communities.

S.M. 1993 in electrical engineering and computer science. Thesis
title: Site Controller: A system for
computer-aided civil
engineering and construction.

S.B. 1982 in mathematics. Completed coursework for electrical
engineering S.B. with emphasis on
digital systems and signal
processing. Took undergraduate and graduate computer science
courses,
with an emphasis on algorithms. Took graduate courses
in microeconomics and neurophysiology.

Selected Technical Publications

Software Engineering for Internet
Applications (online and MIT Press 2006),
Philip and Alex's
Guide to Web Publishing (Morgan Kaufmann; 1999),
Database Backed Web Sites (Ziff Davis
Press;
1997), Travels with Samantha, a book about North America; SITE CONTROLLER: A system for
computer-aided civil engineering and
construction.; various journal articles (most recent:
"Medication Use in the Management of Comorbidities Among Individuals With Autism Spectrum
Disorder From a Large Nationwide Insurance Database,"
JAMA Pediatrics, June 2021); dozens of
magazine
articles. United States patents 5,172,363 (digital audio recorder circuit),
5,150,310
(location system),
and
5,964,298
(computer-aided earthmoving system).

Most of my relevant publications are linked
from philip.greenspun.com
or fifthchance.com.

philg@mit.edu

Page 190 of 202

https://philip.greenspun.com/seia/
https://philip.greenspun.com/panda/
https://philip.greenspun.com/wtr/dead-trees/
https://philip.greenspun.com/samantha/
https://philip.greenspun.com/research/tr1408/complete.pdf
https://jamanetwork.com/journals/jamapediatrics/fullarticle/2780352
https://patents.google.com/patent/US5172363A/
https://patents.google.com/patent/US5150310A/
https://patents.google.com/patent/US5964298A/
https://philip.greenspun.com/
http://fifthchance.com/
mailto:philg@mit.edu

ATTACHMENT B

Page 191 of 202

ATTACHMENT B

Page 191 of 202

Animation Time Point Composition Frame

(0:00:00:00)

(0:00:01:00)

(0:00:02:00)

Page 192 of 202

Animation Time Point Composition Frame

(0:00:02:23)

(0:00:03:01)

(0:00:04:00)

Page 193 of 202

Animation Time Point Composition Frame

(0:00:05:00)

(0:00:05:23)

(0:00:06:01)

Page 194 of 202

ATTACHMENT C

Page 195 of 202

ATTACHMENT C

Page 195 of 202

Animation Time Point Composition Frame

(0:00:00:00)

(0:00:01:00)

(0:00:02:00)

Page 196 of 202

Animation Time Point Composition Frame

(0:00:02:23)

(0:00:03:01)

(0:00:04:00)

Page 197 of 202

Animation Time Point Composition Frame

(0:00:05:00)

(0:00:05:23)

(0:00:06:01)

Page 198 of 202

ATTACHMENT D

Page 199 of 202

ATTACHMENT D

Page 199 of 202

Page 200 of 202

Rest euEte
Project * §a|Composition: Smoke Stack

Smoke Stack.movv , used 1 time BlutCeca
3860 x 3050 (1.00)
OMeSeeerPetree eCole
Eel)

oC Soe :
Prd + © Type Sr) [Pe a oe dF ar

[a] Smoke Stack.mov MH QuickTime 2.6 Gita
[smokeStack eetsta Effects & Presets * =

* Animation Presets
EeeaT)
carole)
Ce ery
ET
be]eel

atlas
Pastepetter)

eTie1c)
Pin
Lia
LEC Selei)

= ry eC °|eeee Ch

OFoeee oe)
Canary ee es ed =0te rt
i Smoke Stackmov -- / (omen

eresws

Example Animation.aep *
Reet euEte

§|Composition: Smoke Stack
Smoke Stack.movv , used 1 time BlutCeca
3860 x 3050 (1.00)
OMeSeeerPetree eCole
CEU

oC Pe
SE sills aa Pie a ae
CES M Quicktime 26Ci4[El smoke Stack ele) ieee eates

LeRa
EeeaT)
Audio
Ceeel)bau UT
bes]elit)

Pas
Pastnertere

eTTet)
Peril
Lia
LEC Selei)

 [ee rit BARTZ ORS MIet) ete °|a NN retOea

Bite) <del.laaes

Camry ee wes ed =ets rt
BB Smoke Stackmov -- / _ @ [None

errsWs

Page 201 of 202

Rest euEte
Project * §a|Composition: Smoke Stack

Smoke Stack.movv , used 1 time BlutCeca
3860 x 3050 (1.00)
OMeSeeerPetree eCole
Eel)

oC Soe :
Prd + © Type Sr) [Pe a oe dF ar

[a] Smoke Stack.mov MH QuickTime 2.6 Gita
[smokeStack eetsta Effects & Presets * =

* Animation Presets
EeeaT)
carole)
Ce ery
ET
be]eel

atlas
Pastepetter)

eTie1c)
Pin
Lia
LEC Selei)

= ry eye °|eeee Ch

OFoeee oe)
Canary ee es ed =0te rt
i Smoke Stackmov -- / (on en

eresws

Example Animation.aep *
Reet euEte

§|Composition: Smoke Stack
Smoke Stack.movv , used 1 time BlutCeca
3860 x 3050 (1.00)
OMeSeeerPetree eCole
CEU

oC Pe
SE sills aa Pie a ae
CES M Quicktime 26Ci4
aaie4 eesti) aitaee aol

LeRa
EeeaT)
Audio
Ceeel)bau UT
bes]elit)

Pas
Pastnertere

eTTet)
Peril
Lia
LEC Selei)

 [ee rit BARTZ ORSON ©|a NN retOea

Bite) <tc.laaes

joo sCE 008 eni
Camry ee wes ed =ets rt

BB Smoke Stackmov -- / _ @ [None

errsWs

Page 202 of 202

Rest euEte Sal Search Help
Project * Hi ‘hb Composition: Smoke Stack|¥ Info *

Smoke Stack.mov +,used 1 time SmokeStackcrease)
. PNneeeReePetree eCole

Peal

Pe a a 1 La gS
DERE © Quicktime 26615,
I Smoke Stack Lin ieee eates =

LURa
» 3D Channel
Lai}
eee
LaeUU
Peemeeeate)

coad a

» Distort
edeeneta)
» Generate
eiur
Paice
Cee eertu)

 Pe cope ae ee need ©] SAN Ol Mcaeetie ae 2 En es

ietedeg

oFeo
Fy Petes ee es ed =0te rt
Se ORCaletaOs ed CoM ht

eresws

