
Operating System Support for Mitigating Software
Scalability Bottlenecks on Asymmetric Multicore

Processors

Juan Carlos Saez
Complutense University,

Madrid, Spain
jcsaezal@fdi.ucm.es

Alexandra Fedorova
Simon Fraser University,
Vancouver BC, Canada
fedorova@cs.sfu.ca

Manuel Prieto
Complutense University,

Madrid, Spain
mpmatias@dacya.ucm.es

Hugo Vegas
Complutense University,

Madrid, Spain
hugovegas@fdi.ucm.es

ABSTRACT
Asymmetric multicore processors (AMP) promise higher per-
formance per watt than their symmetric counterparts, and
it is likely that future processors will integrate a few fast
out-of-order cores, coupled with a large number of simpler,
slow cores, all exposing the same instruction-set architec-
ture (ISA). It is well known that one of the most effective
ways to leverage the effectiveness of these systems is to use
fast cores to accelerate sequential phases of parallel appli-
cations, and to use slow cores for running parallel phases.
At the same time, we are not aware of any implementation
of this parallelism-aware (PA) scheduling policy in an op-
erating system. So the questions as to whether this policy
can be delivered efficiently by the operating system to un-
modified applications, and what the associated overheads
are remain open. To answer these questions we created two
different implementations of the PA policy in OpenSolaris
and evaluated it on real hardware, where asymmetry was
emulated via CPU frequency scaling. This paper reports
our findings with regard to benefits and drawbacks of this
scheduling policy.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling

General Terms
Performance, Measurement, Algorithms

Keywords
Asymmetric multicore, Scheduling, Operating Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

1. INTRODUCTION
An asymmetric multicore processor (AMP) includes cores

exposing the same instruction-set architecture, but differing
in features, size, speed and power consumption [2, 8]. A
typical AMP would contain a number of simple, small and
low-power slow cores and a few complex, large and high-
power fast cores. It is well known that AMP systems can
mitigate scalability bottlenecks in parallel applications by
accelerating sequential phases on fast cores [2, 7, 12].

To leverage this potential of AMP systems, threads must
be mapped to cores in consideration of the amount of paral-
lelism in the application: if an application is highly parallel
its threads should be mapped to slow cores, but if the ap-
plication is sequential or is executing a sequential phase its
thread should be mapped to a fast core. A natural place for
this Parallelism-Aware (PA) policy is in the operating sys-
tem. This way, many applications can reap its benefits, po-
tentially without requiring any modifications, and the shar-
ing of scarce fast cores among multiple applications can be
fairly arbitrated by the operating system. To the best of our
knowledge, there are no OS-level implementations of the PA
scheduling policy. As a result, many questions regarding the
effectiveness and practicality of this policy remain open.

One open question is how can the operating system effec-
tively detect sequential phases in applications? In some ap-
plications unused threads block during the sequential phase,
and by monitoring the application’s runnable thread count,
which is exposed to the OS by most threading libraries, the
scheduler can trivially detect a sequential phase. In other
applications, however, unused threads busy-wait (or spin)
during short periods of time, and so the OS cannot de-
tect these phases simply by monitoring the runnable thread
count. To address these scenarios we designed PA Runtime
Extensions (PA-RTX) – an interface and library enhance-
ments enabling the threading library to notify the scheduler
when a thread spins rather than doing useful work. We im-
plemented PA-RTX in a popular OpenMP runtime, which
required only minimal modifications to support them, but
the extensions are general enough to be used with other
threading libraries.

Another open question is the overhead associated with the
PA policy. Any policy that prioritizes fast cores to specific

Petitioner Samsung Ex-1025, 0001
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

threads is bound to generate migration overheads – a per-
formance degradation that occurs when a thread is moved
from one core to another. Performance degradation results
from the loss of cache state accumulated on the thread’s old
core. Upon evaluating these overheads we found that they
can be significant (up to 18%) if the fast core is placed in
a different memory hierarchy domain from slow cores, but
a hardware configuration where a fast core shares a mem-
ory hierarchy domain with several slow cores coupled with a
topology-aware scheduler practically eliminates these over-
heads.

We evaluate the PA policy on a real multicore system,
where “slow” cores were emulated by reducing the clock fre-
quency on the processors, while “fast” cores were configured
to run at regular speed. We find that the main benefits from
the PA policy are derived for multi-application workloads
and when the number of fast cores relative to slow cores is
small. In this case, it delivers speedups of up to 40% relative
to the OpenSolaris default asymmetry-agnostic scheduler.
Previously proposed asymmetry-aware algorithms, which we
used for comparison, also do well in some cases, but unlike
our parallelism-aware algorithms they do not perform well
across the board, because they fail to consider the paral-
lelism of the application.

The key contribution of our work is the evaluation of the
operating system technology enabling next-generation asym-
metric systems. We are not aware of previous studies investi-
gating the benefits and drawbacks of the PA scheduling pol-
icy implemented in a real OS. Our findings provide insights
for design of future asymmetry-aware operating systems and
asymmetric hardware alike.

The rest of the paper is structured as follows. Section 2
presents the design and implementation of the PA schedul-
ing algorithm. Section 3 presents experimental results. Sec-
tion 4 discusses related work. Section 5 summarizes our
findings and discusses future work.

2. DESIGN AND IMPLEMENTATION
In Section 2.1 we describe two parallelism-aware algo-

rithms proposed in this work: PA and MinTLP. In Sec-
tion 2.2 we describe the runtime extensions to PA (PA-
RTX). A brief description of other asymmetry-aware algo-
rithms that we use for comparison is provided in Section 2.3.

2.1 PA and MinTLP algorithms
Our algorithms assume an AMP system with two core

types: fast and slow. Previous studies concluded that sup-
porting only two core types is optimal for achieving most of
the potential gains on AMP [8]; so we expect this configu-
ration to be typical of future systems. More core types may
be present in future systems due to variations in the fabrica-
tion process. In that case, scheduling must be complemented
with other algorithms, designed specifically to address this
problem [18].

The goal of the algorithm is to decide which threads should
run on fast cores and which on slow cores. In MinTLP, this
decision is straightforward: the algorithm selects applica-
tions with the smallest thread-level parallelism (hence the
name MinTLP) and maps threads of these applications to
fast cores. Thread-level parallelism is determined by exam-
ining the number of runnable (i.e., not blocked) threads. If
not enough fast cores are available to accommodate all these
threads, some will be left running on slow cores. MinTLP

makes no effort to fairly share fast cores among all “eligible”
threads. This algorithm is very simple, but not always fair.

The other proposed algorithm, PA, is more sophisticated.
It classifies threads dynamically into several categories: MP,
HP, and SP. The MP (mildly parallel) category includes
threads belonging to applications with a low degree of thread-
level parallelism, including the single-threaded applications.
The HP category includes threads belonging to highly par-
allel applications. The MP threads will run primarily on
fast cores, and the HP threads will run primarily on slow
cores. Threads of applications whose runnable thread count
exceeds hp_threshold fall into the HP category, the remain-
ing threads fall into the MP category.

A special class SP is reserved for threads of parallel ap-
plications that have just entered a sequential phase. These
threads will get the highest priority for running on fast cores:
this provides more opportunities to accelerate sequential
phases. To avoid monopolizing fast cores, SP threads are
downgraded by the scheduler into the MP class after spend-
ing amp_boost_ticks scheduling clock ticks in the SP class.

If there are not enough cores to run all SP and MP threads
on fast cores, the scheduler will run some of the threads on
slow cores, to preserve load balance. SP threads have a
higher priority in using fast cores. The remaining fast cores
will be shared among MP threads in a round-robin fashion.

The scheduler keeps track of the count of runnable threads
in each applicationto detect transitions between the afore-
mentioned classes and perform thread-to-core mapping ad-
justments accordingly. To avoid premature migrations and
preserve load balance, PA integrates a thread swapping mech-
anism to perform those adjustments periodically, instead of
reacting to those transitions immediately (MinTLP also in-
tegrates a similar swapping mechanism).

When the change in the thread-level parallelism cannot be
determined via the monitoring of the runnable thread count,
PA relies on the Runtime Extensions, described in the next
Section. We must also highlight that despite the fact that
our evaluation has been focused on multi-threaded single-
process applications, the PA and MinTLP algorithms can be
easily extended to support multi-process applications using
high-level abstractions provided by the operating system,
such as process sets.

Although sensitivity of the PA algorithm to its config-
urable parameters was studied, we are unable to provide
the results due to space constraints. We found, however,
that it is generally easy to choose good values for these pa-
rameters. After performing such a sensitivity study, we set
amp_boost_ticks to one hundred timeslices (1 second) and
hp_threshold to one greater than the number of fast cores.
These values ensure acceleration of sequential phases with-
out monopolizing fast cores.

2.2 PA Runtime Extensions
The base PA algorithm introduced so far relies on moni-

toring runnable thread count to detect transitions between
serial and parallel phases in the application. However, con-
ventional synchronization primitives found in most thread-
ing libraries use an adaptive two-phase approach where un-
used threads busy wait for a while before blocking to reduce
context-switching overheads. While blocking is coordinated
with the OS, making it possible to detect phase transitions,
spinning is not. Reducing the spinning phase enables the
OS to detect more serial phases. However, in our context

Petitioner Samsung Ex-1025, 0002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

it may also lead to excessive migrations and cause substan-
tial overheads (as soon as a fast core becomes idle PA and
MinTLP will immediately migrate a thread to this core). In
the event these busy-waiting phases are frequent, it is help-
ful to give the scheduler some hints that would help it to
avoid mapping spinning threads to fast cores. To that end,
we propose two optimizations, which can be implemented in
the threading library (applications themselves need not be
changed).

2.2.1 Spin-then-notify mode
Our first proposal is a new spin-then-notify waiting mode

for synchronization primitives. Its primary goal is to avoid
running spinning threads on fast cores and save these“power-
hungry” cores for other threads. In this mode the synchro-
nization primitive notifies the operating system via a system
call after a certain spin threshold that the thread is busy-
waiting rather than doing useful work. Upon notification,
the PA scheduler marks this thread as a candidate for migra-
tion to slow cores. We have opted to mark threads as migra-
tion candidates instead of forcing an immediate migration
since this approach avoids premature migrations and allows
a seamless integration with the PA and MinTLP swapping
mechanisms. The synchronization primitive also notifies the
scheduler when a spinning thread finishes the busy wait. In
Section 3.2 we explore the advantages of using the new spin-
then-notify mode. For this purpose we have modified the
OpenMP runtime system to include this new mode in the
basic waiting function used by high-level primitives such as
mutexes or barriers.

Another potentially useful feature of this primitive may
arise in the context of scheduling algorithms that map threads
on AMP systems based on their relative speedup on fast vs.
slow cores (see Section 4). These algorithms typically mea-
sure performance of each thread on fast and slow cores and
compute its performance ratio, which determines the rela-
tive speedup [5, 9]. If a thread performs busy-waiting it can
achieve a very high performance ratio, since a spin loop uses
the CPU pipeline very efficiently1. As a result, the proposed
algorithms would map spinning threads to fast cores despite
they are not doing useful work. Even though these imple-
mentation issues could be solved via additional hardware
support [11], a spin-then-notify primitive could help avoid
the problem without needing extra hardware.

2.2.2 Exposing the master thread
We have also investigated a simple but effective optimiza-

tion allowing the application to communicate to the ker-
nel that a particular thread must have a higher priority
in running on a fast core. This optimization was inspired
by the typical structure of OpenMP do-all applications. In
these applications, there is usually a master thread that is in
charge of the explicit serial phases at the beginning, in be-
tween parallel loops, and at the end of the application (apart
from being in charge of its share of the parallel loops). Iden-
tifying this master thread to the kernel enables the scheduler
to give it a higher priority on the fast core simply because
this thread will likely act as the“serial”thread. This hint can
speed up do-all applications even without properly detect-
ing serial phases. Our PA Runtime Extensions enable the

1Best practices in implementing spinlocks dictate using al-
gorithms where a thread spins on a local variable [1], which
leads to a high instruction throughput.

runtime system to identify the master thread to the sched-
uler via a new system call. If the pattern of the application
changes and another thread gets this responsibility, the same
system call can be used to update this information.

To evaluate this feature, we have modified the OpenMP
runtime system to automatically identify the thread execut-
ing the main function as the master thread to the kernel,
right after initializing the runtime environment. In the same
way as the implementation of spin-notify mode, only the
OpenMP library needs to be modified, not requiring any
change in the applications themselves. Upon receiving this
notification, the PA scheduler tries to ensure that the master
thread runs on a fast core whenever it is active, but without
permanently binding the thread to that core as would be
done with other explicit mechanisms based on thread affini-
ties. This way, PA still allows different threads to compete
for fast cores according to its policies.

2.3 The other schedulers
We compare PA and MinTLP to three other schedulers

proposed in previous work. Round-Robin (RR) equally shares
fast and slow cores among all threads [5]. BusyFCs is a
simple asymmetry-aware scheduler that guarantees that fast
cores never go idle before slow cores [4]. Static-IPC-Driven,
which we describe in detail below, assigns fast cores to those
threads that experience the greatest relative speedup (in
terms of instructions per second) relative to running on slow
cores [5]. We implemented all these algorithms in Open-
Solaris. Our baseline for comparison is the asymmetry-
agnostic default scheduler in OpenSolaris, referred to here-
after as Default.

The Static-IPC-Driven scheduler is based on the design
proposed by Becchi and Crowley [5]. Thread-to-core as-
signments in that algorithm are done based on per-thread
IPC ratios (quotients of IPCs on fast and slow cores), which
determine the relative benefit of running a thread on a par-
ticular core type. Threads with the highest IPC ratios are
scheduled on fast cores while remaining threads are sched-
uled on slow cores. In the original work [5], the IPC-driven
scheduler was simulated. This scheduler samples threads’
IPC on cores of all types whenever a new program phase is
detected. Researchers who attempted an implementation of
this algorithm found that such sampling caused large over-
heads, because frequent cross-core thread migrations were
required [16]. To avoid these overheads, we have imple-
mented a static version of the IPC-driven algorithm, where
IPC ratios of all threads are measured a priori. This makes
IPC ratios more accurate in some cases [16] and eliminates
much of the runtime performance overhead. Therefore, the
results of the Static-IPC-Driven scheduler are somewhat op-
timistic and the speedups of PA and MinTLP relative to
Static-IPC-Driven are somewhat pessimistic.

3. EXPERIMENTS
The evaluation of the PA algorithm was performed on

an AMD Opteron system with four quad-core (Barcelona)
CPUs. The total number of cores was 16. Each core has
private 64KB instruction and data caches, and a private L2
cache of 512KB. A 2MB L3 cache is shared by the four cores
on a chip. The system has a NUMA architecture. Access
to a local memory bank incurs a shorter latency than access
to a remote memory bank. Each core is capable of running
at a range of frequencies from 1.15 GHz to 2.3 GHz. Since

Petitioner Samsung Ex-1025, 0003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1: Classification of selected applications.

Categories Benchmarks
HP-CI EP(N), vips(P), fma3d(O), ammp(O), RNA(I), scalparc(M), wupwise (O)
HP-MI art(O), equake(O), applu(O), swim(O)
PS-CI BLAST(NS), swaptions(P), bodytrack(P), semphy(M), FT(N)
PS-MI MG(N), TPC-C(NS), FFTW(NS)
ST-CI gromacs(C), sjeng(C), gamess(C), gobmk(C), h264ref(C), hmmer(C), namd(C)
ST-MI astar(C), omnetpp(C), soplex(C), milc(C), mcf(C), libquantum(C)

Table 2: Multi-application workloads, Set #1.

Workload name Benchmarks
STCI-PSMI gamess, FFTW (12,15)
STCI-PSCI gamess, BLAST (12,15)
STCI-PSCI(2) hmmer, BLAST (12,15)
STCI-HP gamess, wupwise (12,15)
STCI-HP(2) gobmk, EP (12,15)
STMI-PSMI mcf, FFTW (12,15)
STMI-PSCI mcf, BLAST (12,15)
STMI-HP astar, EP (12,15)
PSMB-PSCI FFTW (6,8), BLAST (7,8)
PSMB-HP FFTW (6,8), wupwise_m (7,8)
PSCI-HP BLAST (6,8), wupwise_m (7,8)
PSCI-HP(2) semphy (6,8), EP (7,8)

each core is within its own voltage/frequency domain, we are
able to vary the frequency for each core independently. We
experimented with asymmetric configurations that use two
core types: “fast”(a core set to run at 2.3 GHz) and“slow”(a
core set to run at 1.15 GHz). We also varied the number of
cores in the experimental configurations by disabling some
of the cores.

We used three AMP configurations in our experiments:
(1) 1FC-12SC – one fast core and 12 slow cores, the fast
core is on its own chip and the other cores on that chip are
disabled; (2) 4FC-12SC – four fast cores and 12 slow cores,
each fast core is on a chip with three slow cores; (3) 1FC-
3SC – one fast core, three slow cores, all on one chip. Not
all configurations are used in all experiments.

Although thread migrations can be effectively exploited by
asymmetry-aware schedulers (e.g. to map sequential parts
of parallel applications on fast cores), the overhead that they
may introduce can lead to performance degradation. Since
we also aim to assess the impact of migrations on perfor-
mance we opted to select the default asymmetry-unaware
scheduler used in OpenSolaris (we refer to it as Default
henceforth) as our baseline scheduler. Despite Default keeps
threads on the same core for most of the execution time and
thus minimizes thread migrations, its asymmetry-unawareness
leads it to offer much more unstable results from run to run
than the ones observed for the other schedulers. For that
reason, a high number of samples were collected for this
scheduler, in an attempt to capture the average behavior
more accurately. Overall, we found that Default usually
fails to schedule single-threaded applications and sequential
phases of parallel application on fast cores, especially when
the number of fast cores is much smaller than the number
of slow cores, such as on the 1FC-12SC and 4FC-12SC con-
figurations.

We evaluate the base implementation of the PA algorithm
as well PA with Runtime Extensions. We compare PA to
RR, BusyFCs, Static-IPC-Driven, Min-TLP and to Default.
In all experiments, each application was run a minimum of
three times, and we measure the average completion time.
The observed variance was small in most cases (so it is not
reported) and where it was large we repeated the experi-
ments for a larger number of trials until the variance reached
a low threshold. In multi-application workloads the appli-
cations are started simultaneously and when an application
terminates it is restarted repeatedly until the longest appli-
cation in the set completes at least three times. We report
performance as the speedup over Default. The geometric
mean of completion times of all executions for a benchmark
under a particular asymmetry-aware scheduler is compared
to that under Default, and percentage speedup is reported.

In all experiments, the total number of threads (sum of the
number of threads of all applications) was set to match the
number of cores in the experimental system, since this is how
runtime systems typically configure the number of threads
for the CPU-bound workloads that we considered [19].

Our evaluation section is divided into four parts. In Sec-
tion 3.1 we introduce the applications and workloads used
for evaluation. In Section 3.2 we evaluate PA runtime ex-
tensions. In Section 3.3 we evaluate multi-application work-
loads. Finally, in Section 3.4 we study the overhead.

3.1 Workload selection
We used applications from PARSEC [6], SPEC OMP2001,

NAS [3] Parallel Benchmarks and MineBench [13] bench-
mark suites, as well as the TPC-C benchmark implemented
over Oracle Berkeley DB [14], BLAST – a bioinformatics
benchmark, FFT-W – a scientific benchmark performing
the fast Fourier transform, and RNA – an RNA sequencing

Petitioner Samsung Ex-1025, 0004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 3: M u lti-a pplica tion workloads, Set #2.

Workload n a m e Benchmarks
2STCI- 2STMI-1HP gamess, h264ref, astar , s oplex, wupwise (12)
4STCI-1HP gromacs , gamess, namd, gobmk, EP (12)
3STCI-1STMI-1PSCI gamess, hmmer, gobmk, s opl ex, semphy (12)
2STCI-1STMI-1PSMI-1HP gamess, h264ref, s oplex, FFTW (6), equake (7)
3STCl-3STMI-1HP gromacs , s j eng, h264ref, l i bquantum, milc, omnetpp, EP (10)
3STCl-3STMI-1PSCI gromacs , s j eng, h264ref, l ibquantum, milc, omnetpp, BLAST (10)

application. For multi-applica tion workloads we also used
sequent ial applicat ions from SPEC CPU2006.

We classified applications according to their architectural
properties: memory-intensive (MI) or compute-intensive (CI),
as well as according to their parallelism: highly parallel
(HP), partially sequential (PS) and single-threaded (ST).
Memory-intensity was import ant for fair comparison with
Stat ic-IPC-Driven. CI applications have a higher relat ive
speedup on fast cores [16) and so it was important to include
applications of both types in the experiments. Parallelism
class was determined by tracing execution via OpenSolaris '
DTrace framework and measuring the fraction of t ime the
application spent running with a single runnable thread.
Parallel applications where this fraction was greater than 7%
were classified as PS, whereas the rest were classified as HP.
T he ST class includes sequential applications. Table 1 shows
the classifica tion of our selected applica tions according to
these classes. T he text in parentheses next to the bench
mark name indicates the corresponding benchmark suite: 0
-SP EC OMP2001, P- PARSEC, M - Minebench, N- NAS,
C - SPEC CP U2006, and NS - other benchmarks not be
longing to any specific suite.

By default, all OpenMP applicat ions were compiled with
the nat ive Sun Studio compiler. In order to evalua te PA
Runt ime Extensions (Section 3.2) we had to modify the
OpenMP runtime system but the source code for the Sun
Studio OpenMP runt ime system was not available to us. For
that reason, we resorted to using the Linux version of the
GCC 4.4 OpenMP runtime system in OpenSolaris2

• Never
theless, we observed that the performance of OpenMP ap
plications with Sun Studio and GCC is similar.

Both OpenMP and POSIX threaded applica tions used
in section 3.3 and 3.4 run with adapt ive synchronization
modes; as such sequential phases are exposed to the oper
ating system in both cases. In these sect ions we do not use
runtime extensions with parallelism-aware algorithms. All
OpenMP applications run with the default adapt ive syn
chronization mode used by GCC 4.4 unless otherwise noted
(Sun Studio can be easily configured to use a similar adap
tive mode). P OSIX threaded applications (such as BLAST
or bodytrack) use full blocking modes on all synchroniza
tion primitives but on those related to P OSIX standard mu
texes and synchroniza tion barriers, where an adapt ive im
plementation is provided by OpenSolaris. Unlike OpenMP
applications, threads of P OSIX applications spin for shorter
periods of time before blocking on those adaptive synchro
niza tion primitives (these are the default parameters used
in OpenSolaris) .

2Using such a version of the runt ime system required aug
ment ing OpenSolaris with a Linux compatible sys_futex
syscall)

7Cl"Ai

~
□Sleep

6Cl"Ai ■Adaptive(lm) -s
> SO"Ai □Adaptive(lOm)
.0
C:

4Cl"Ai 13Adaptive(100m) (IJ

~ a spin C: 3Cl"Ai 0
tl
~ 2Cl"Ai ..
~ l O"Ai
(IJ
::,

Cl"Ai ,;r
(IJ
V, <(cu t: :::, "O a. I- I.!) e >,

z .>< "' a. m E u. ::iE "'
~

"' "' a. a: :::, a.
.E E a.

E C' "' ~ cu "' Bl

Figu re 2: Varia tions in the seq uentia l fractio n seen
by the OS w h e n va rying the syn ch roniza t ion mode
and blocking threshold.

For Section 3.2 we selected ten OpenMP applications:
art, applu, fma3d, ammp, FT, MG, s cal parc , semphy and
RNA. These applica tions were chosen to cover a wide variety
of sequential port ions. In the overhead section we analyze
ten parallel applica tions accross the aforementioned classes:
three HPCI (RNA , wupwise and vips), two HPMI (swim and
applu) , three PSCI (swaptions, bodytrack and BLAST) and
two PSMI applicat ions (TPC- C and FFTW) .

For Sect ion 3.3, we constructed two sets of multi-application
workloads. T he first set, shown in Table 2, comprises twelve
representa tive pairs of benchmarks across the previous cat
egories ment ioned above. For the sake of completeness, we
experimented with additional multi-applicat ion workloads
with more than two applica tions. Table 3 shows this second
set, consisting of six workloads.

3.2 PA Runtime Extensions
We begin by invest igating the effect on performance when

using different synchroniza tion waiting modes under the PA
scheduler. In these experiments we demonstrate that us
ing a low blocking threshold effect ively exposes sequential
phases to the scheduler, but performance can also suffer if
the threshold is set too low. T hen we evaluate PA-RT X
and show that it offers comparable performance to purely
adaptive approaches and in some cases even improves it .

In the following experiment we used the 1FC-12SC config
ura tion and tested three different waiting modes: spin, sleep
and adaptive. In spin mode unused threads busy-wait for
the entire t ime, in sleep mode, they block immedia tely. We
studied the effects of various synchronizat ion modes on all
asymmetry-aware schedulers, but since our results showed

Petitioner Samsung Ex-1025, 0005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

