
1 

EXHIBIT D-1 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 
U.S. Patent Publication No. 2012/0300615 to Kempf et al. (“Kempf”) 

As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because Kempf 
meets each element of those claims, and/or (2) 35 U.S.C. § 103 because Kempf renders those claims obvious either alone, or in 
combination with the knowledge of a person having ordinary skill in the art, and in further combination with the references 
specifically identified below and in the following claim chart and/or one or more references identified in Defendant’s Preliminary 
Invalidity Contentions.  The following quotations and diagrams come from Kempf titled “Implementing EPC In A Cloud Computer 
With OpenFlow Data Plane”, which was filed on June 28, 2012, and published on November 29, 2012. 

Motivations to combine the disclosures in Kempf with disclosures in other publications known in the art, as explained in this chart, 
include at least the similarity in subject matter between the references to the extent they concern methods relating to routing certain 
network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or suggest 
additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  

These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent 
construction of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, 
and Orckit’s January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 
(Orckit’s “Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused 
structures, acts, or materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the 
claims, or that the claims satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way 
be seen as, admissions or adoptions as to any particular claim scope or construction, or as any admission that any particular element is 
met by any accused product in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  
Defendant’s prior art invalidity contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view 
as to the meaning, definiteness, written description support for, or enablement of any claim contained therein. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1 of 1100



2 

The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s 
construction of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Kempf 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

Kempf discloses a method for use with a packet network including a network node for 
transporting packets between first and second entities under control of a controller that is 
external to the network node, the method comprising. 
 
For example, Kempf discloses a method in which a network element such as a router, 
switch, or bridge communicatively interconnects other elements of a network for data 
packet transport.  Kempf further discloses a method in which the network element is 
controlled by an external OpenFlow controller. Thus, at least under the apparent claim scope 
alleged by Orckit’s Infringement Disclosures, this limitation is met.    
 
Kempf at Abstract (“A method implements a control plane of an evolved packet core (EPC) 
of a long term evolution (LTE) network in a cloud computing system. A cloud manager 
monitors resource utili-zation of each control plane module and the control plane traffic 
handled by each control plane module. The cloud man-ager detects a threshold level of 
resource utilization or traffic load for one of the plurality of control plane modules of the 
EPC. A new control plane module is initialized as a separate virtual machine by the cloud 
manager in response to detecting the threshold level. The new control plane module signals 
the plurality of network elements in the data plane to establish flow rules and actions to 
establish differential routing of flows in the data plane using the control protocol, wherein 
flow matches are encoded using an extensible match structure in which the flow match is 
encoded as a type-length-value (TLV).”) 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 2 of 1100



3 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is a 
piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide sup-port 
for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 aggregation, 
session border control, multicasting, and/or subscriber management), and/or provide support 
for multiple application services (e.g., data, voice, and video). Subscriber end stations ( e.g., 
servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, mul-timedia phones, 
Voice Over Internet Protocol (VOIP) phones, portable media players, GPS units, gaming 
systems, set-top boxes (STBs), etc.) access content/services provided over the Internet and/or 
content/services provided on virtual private networks (VPN s) overlaid on the Internet. The 
content and/or services are typically provided by one or more end stations ( e.g., server end 
stations) belonging to a service or content provider or end stations participating in a peer to 
peer service, and may include public web pages (free content, store fronts, search services, 
etc.), private web pages (e.g., username/pass-word accessed web pages providing email 
services, etc.), corporate networks over VPNs, IPTV, etc. Typically, sub-scriber end stations 
are coupled (e.g., through customer premise equipment coupled to an access network (wired 
or wirelessly)) to edge network elements, which are coupled (e.g., through one or more core 
network elements to other edge network elements) to other end stations (e.g., server end 
stations).”) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
 
Kempf at Figure 1 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 3 of 1100



4 

No. ʼ111 Patent Claim 1 Kempf 

 
 
Kempf at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 4 of 1100



5 

No. ʼ111 Patent Claim 1 Kempf 

 
 

1[a] sending, by the 
controller to the 
network node over the 
packet network, an 
instruction and a 
packet-applicable 
criterion;  

Kempf discloses sending, by the controller to the network node over the packet network, an 
instruction and a packet-applicable criterion. 
 
For example, Kempf discloses sending by the OpenFlow controller to the network element a 
rule defining matches for fields in packet headers. Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 5 of 1100



6 

No. ʼ111 Patent Claim 1 Kempf 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 6 of 1100



7 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 7 of 1100



8 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at [0079] (“FIG. 16 is a diagram of one embodiment of a process for EPC peering 
and differential routing for specialized ser-vice treatment. The OpenFlow signaling, 
indicated by the solid lines and arrows 1601, sets up flow rules and actions on the switches 
and gateways within the EPC for differential routing. These flow rules direct GTP flows to 
particular loca-tions. In this example, the operator in this case peers its EPC with two other 
fixed operators. Routing through each peering point is handled by the respective P-GW-Dl 
and P-GW-D2 1603A, B. The dashed lines and arrows 1605 show traffic from a UE 1607 
that needs to be routed to another peering operator. The flow rules and actions to distinguish 
which peering point the traffic should traverse are installed in the OpenFlow switches 1609 
and gateways 1603A, B by the OpenFlow controller 1611. The OpenFlow controller 1611 
calculates these flow rules and actions based on the routing tables it maintains for outside 
traffic, and the source and destination of the packets, as well as by any specialized 
for-warding treatment required for DSCP marked packets.”) 
 
Kempf at [0080] (“The long dash and dotted lines and arrows 1615 shows a example of a 
UE 1617 that is obtaining content from an external source. The content is originally not 
formulated for the UE's 1617 screen, so the OpenFlow controller 1611 has installed flow 
rules and actions on the P-GW-Dl 1603B, S-GW-D 1619 and the OpenFlow switches 1609 
to route the flow through a transcoding application 1621 in the cloud computing facility. 
The transcoding application 1621 refor-mats the content so that it will fit on the UE's 1617 
screen. A PCRF requests the specialized treatment at the time the UE sets up its session with 
the external content source via the IP Multimedia Subsystem (IMS) or another signaling 
protocol.”) 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 8 of 1100



9 

No. ʼ111 Patent Claim 1 Kempf 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0085] (“The OpenFlow controller instantiates a virtual port for each physical port 
that may transmit or receive packets routed through a GTP tunnel, prior to installing any 
rules in the switch for GTP TEID routing.) 
 
Kempf at [0089] (“n one embodiment, the system implements a GTP fast path encapsulation 
virtual port. When requested by the S-GW-C and P-GW-C control plane software running in 
the cloud computing system, the OpenFlow controller programs the gateway switch to 
install rules, actions, and TEID hash table entries for routing packets into GTP tunnels via a 
fast path GTP encapsulation virtual port. The rules match the packet filter for the input side 
of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source address; IP destination 
address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP destination port. The IP source 
address and destination address are typically the addresses for user data plane traffic, i.e. a 
UE or Internet service with which a UE is transacting, and similarly with the port numbers. 
For a rule matching the GTP-U tunnel input side, the associated instructions and are the 
following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP)”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 9 of 1100



10 

No. ʼ111 Patent Claim 1 Kempf 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0097] (“In one embodiment, the system implements han-dling of G-PDU packets 
with extension headers, sequence numbers, and N-PDU numbers. G-PDU packets with 
exten-sion headers, sequence numbers, and N-PDU numbers need to be forwarded to the 
local switch software control plane for processing. The OpenFlow controller programs 3 
rules for this purpose. They have the following common header fields: the IP destination 
address is an IP address on which the gateway is expecting GTP traffic; and the IP protocol 
type is UDP (17); the UDP destination port is the GTP-U destination port (2152).”) 
 
Kempf at [0099] (“The instruction for these rules is the following: 
 
Apply-Actions (Set-Output-Port LOCAL_GTP _U_DECAP)”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 10 of 1100



11 

No. ʼ111 Patent Claim 1 Kempf 
 
Kempf at [0108] (“A GTP-extended Openflow switch contains at least one flow table that 
handles rules matching the GTP header fields as in FIG. 17. The Openflow controller 
programs the GTP header field rules in addition to the other fields to per-form GTP routing 
and adds appropriate actions if the rule is matched. For example, the following rule matches 
a GTP-C control packet directed to a control plane entity (MME, S-GW-C, P-GW-C) in the 
cloud computing system, which is not in the control plane VLAN: the VLAN tag is not set 
to the control plane VLAN, the destination IP address field is set to the IP address of the 
targeted control plane entity, the IP protocol type is UDP (17), the UDP destination port is 
the GTP-C destination port (2123), the GTP header flags and message type is wildcarded 
with 0xF0 and the matched ver-sion and protocol type fields are 2 and 1, indicating that the 
packet is a GTPv2 control plane packet and not GTP'.”) 
 

1[b] receiving, by the 
network node from the 
controller, the 
instruction and the 
criterion; 

Kempf discloses receiving, by the network node from the controller, the instruction and the 
criterion. 
 
See supra at 1[a]. 
 

1[c] receiving, by the 
network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Kempf discloses receiving, by the network node from the first entity over the packet 
network, a packet addressed to the second entity. 
 
For example, Kempf discloses communication between electronic devices in which data 
packets are sent from one electronic device to another destination device.   
 
Kempf at [0003] (“The general packet radios system (GPRS) is a sys-tem that is used for 
transmitting Internet Protocol packets between user devices such as cellular phones and the 
Internet. The GPRS system includes the GPRS core network, which is an integrated part of 
the global system for mobile communi-cation (GSM). These systems are widely utilized by 
cellular phone network providers to enable cellular phone services over large areas.”) 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 11 of 1100



12 

No. ʼ111 Patent Claim 1 Kempf 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0032] (“The techniques shown in the figures can be imple-mented using code and 
data stored and executed on one or more electronic devices ( e.g., an end station, a network 
ele-ment, etc.). Such electronic devices store and communicate (internally and/or with other 
electronic devices over a net-work) code and data using non-transitory machine-readable or 
computer-readable media, such as non-transitory machine-readable or computer-readable 
storage media ( e.g., magnetic disks; optical disks; random access memory; read only 
memory; flash memory devices; and phase-change memory). In addition, such electronic 
devices typically include a set of one or more processors coupled to one or more other 
compo-nents, such as one or more storage devices, user input/output devices (e.g., a 
keyboard, a touch screen, and/or a display), and network connections. The coupling of the 
set of proces-sors and other components is typically through one or more busses and bridges 
(also termed as bus controllers). The stor-age devices represent one or more non-transitory 
machine-readable or computer-readable storage media and non-tran-sitory machine-readable 
or computer-readable communication media. Thus, the storage device of a given electronic 
device typically stores code and/or data for execu-tion on the set of one or more processors 
of that electronic device. Of course, one or more parts of an embodiment of the invention 
may be implemented using different combinations of software, firmware, and/or 
hardware.”) 
 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is 
a piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide 
sup-port for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 
aggregation, session border control, multicasting, and/or subscriber management), and/or 
provide support for multiple application services (e.g., data, voice, and video). Subscriber 
end stations ( e.g., servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, 
mul-timedia phones, Voice Over Internet Protocol (VOIP) phones, portable media players, 
GPS units, gaming systems, set-top boxes (STBs), etc.) access content/services provided 
over the Internet and/or content/services provided on virtual private networks (VPN s) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 12 of 1100



13 

No. ʼ111 Patent Claim 1 Kempf 
overlaid on the Internet. The content and/or services are typically provided by one or more 
end stations ( e.g., server end stations) belonging to a service or content provider or end 
stations participating in a peer to peer service, and may include public web pages (free 
content, store fronts, search services, etc.), private web pages ( e.g., username/pass-word 
accessed web pages providing email services, etc.), corporate networks over VPNs, IPTV, 
etc. Typically, sub-scriber end stations are coupled ( e.g., through customer premise 
equipment coupled to an access network (wired or wirelessly)) to edge network elements, 
which are coupled (e.g., through one or more core network elements to other edge network 
elements) to other end stations (e.g., server end stations).”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.”) 
 
Kempf at [0079] (“FIG. 16 is a diagram of one embodiment of a process for EPC peering 
and differential routing for specialized ser-vice treatment. The OpenFlow signaling, 
indicated by the solid lines and arrows 1601, sets up flow rules and actions on the switches 
and gateways within the EPC for differential routing. These flow rules direct GTP flows to 
particular loca-tions. In this example, the operator in this case peers its EPC with two other 
fixed operators. Routing through each peering point is handled by the respective P-GW-Dl 
and P-GW-D2 1603A, B. The dashed lines and arrows 1605 show traffic from a UE 1607 
that needs to be routed to another peering operator. The flow rules and actions to distinguish 
which peering point the traffic should traverse are installed in the OpenFlow switches 1609 
and gateways 1603A, B by the OpenFlow controller 1611. The OpenFlow controller 1611 
calculates these flow rules and actions based on the routing tables it maintains for outside 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 13 of 1100



14 

No. ʼ111 Patent Claim 1 Kempf 
traffic, and the source and destination of the packets, as well as by any specialized 
for-warding treatment required for DSCP marked packets.”) 
 

1[d] checking, by the 
network node, if the 
packet satisfies the 
criterion; 

Kempf discloses checking, by the network node, if the packet satisfies the criterion. 
 
For example, Kempf discloses determining by the network element if the packet header 
field matches an associated action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 14 of 1100



15 

No. ʼ111 Patent Claim 1 Kempf 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 15 of 1100



16 

No. ʼ111 Patent Claim 1 Kempf 
 

1[e] responsive to the 
packet not satisfying 
the criterion, sending, 
by the network node 
over the packet 
network, the packet to 
the second entity; and 

Kempf discloses responsive to the packet not satisfying the criterion, sending, by the 
network node over the packet network, the packet to the second entity. 
 
For example, Kempf discloses sending the packet from the network element to the 
destination device in response to the packet not matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 16 of 1100



17 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 17 of 1100



18 

No. ʼ111 Patent Claim 1 Kempf 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
 
Kempf at [0053] (“In one embodiment, a group table can be supported in conjunction with 
the OpenFlow 1.1 protocol. Group tables enable a method for allowing a single flow match 
to trigger forwarding on multiple ports. Group table entries consist of four fields: a group 
identifier, which is a 32 bit unsigned integer identifying the group; a group type that 
determines the group's semantics; counters that maintain statistics on the group; and an 
action bucket list, which is an ordered list of action buckets, where each bucket contains a 
set of actions to execute together with their parameters.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 18 of 1100



19 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at Figure 5 (annotation added) 
 

 
 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 19 of 1100



20 

No. ʼ111 Patent Claim 1 Kempf 

 
 

1[f] responsive to the 
packet satisfying the 
criterion, sending the 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 
instruction and is other 
than the second entity. 

Kempf discloses responsive to the packet satisfying the criterion, sending the packet, by the 
network node over the packet network, to an entity that is included in the instruction and is 
other than the second entity. 
 
For example, Kempf discloses sending the packet from the network element to the 
controller or another table, in response to the packet matching the corresponding action in 
the flow table. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 20 of 1100



21 

No. ʼ111 Patent Claim 1 Kempf 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 21 of 1100



22 

No. ʼ111 Patent Claim 1 Kempf 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
 
Kempf at Figure 5 (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 22 of 1100



23 

No. ʼ111 Patent Claim 1 Kempf 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 23 of 1100



24 

No. ʼ111 Patent Claim 1 Kempf 

 
 

 
No. ʼ111 Patent Claim 2 Kempf 

2[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Kempf discloses the method according to claim 1, wherein the instruction is ‘probe’, 
‘mirror’, or ‘terminate’ instruction. 
 
For example, Kempf discloses actions associated with a flow match that may be require 
further processing, duplication, or dropping.  A person of ordinary skill in the art would 
understand that the actions associated with a flow match may be any action, including 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 24 of 1100



25 

No. ʼ111 Patent Claim 2 Kempf 
probe, mirror, or terminate. Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met. 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 25 of 1100



26 

No. ʼ111 Patent Claim 2 Kempf 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0052] (“Actions allow manipulating of tag stacks by pushing and popping labels. 
Combined with multiple tables, VLAN or MPLS label stacks can be processed by matching 
one label per table. FIG. 7 is a flow chart of one embodiment of a header parsing process. 
The parsing process matches a packet header by initializing a set of match fields (Block 
701) and checking for the presence of a set of different header types. The process checks for 
a VLAN tag (Block 703). If the VLAN tag is present, then there are a series of processing 
steps for the VLAN tag (Blocks 705-707). If the switch supports MPLS (Block 709), then 
there are a series of steps for detecting and processing the MPLS header information 
(Blocks 711-715). If the switch supports address resolution protocol (ARP), then there are a 
series of steps for processing the ARP header (Blocks 719 and 721). If the packet has an IP 
header (Block 723), then there are a series of steps for processing the IP header (Blocks 
725-733). This process is performed for each received packet.”) 
 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 26 of 1100



27 

No. ʼ111 Patent Claim 2 Kempf 
2[b] upon receiving by the 

network node the 
‘terminate’ instruction, 
the method further 
comprising blocking, 
by the network node, 
the packet from being 
sent to the second 
entity and to the 
controller.  

Kempf discloses upon receiving by the network node the ‘terminate’ instruction, the method 
further comprising blocking, by the network node, the packet from being sent to the second 
entity and to the controller. 
 
For example, Kempf discloses actions associated with a flow match including dropping 
packets from being sent any further. 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 27 of 1100



28 

No. ʼ111 Patent Claim 2 Kempf 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at Figure 2 (annotation added) 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 28 of 1100



29 

No. ʼ111 Patent Claim 3 Kempf 
3[a] The method according 

to claim 1, wherein the 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

Kempf discloses the method according to claim 1, wherein the instruction is a ‘probe’, a 
‘mirror’, or a ‘terminate’ instruction. 
 
See supra at 2(a). 

3[b] upon receiving by the 
network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Kempf discloses upon receiving by the network node the ‘mirror’ instruction and responsive 
to the packet satisfying the criterion, the method further comprising sending the packet, by 
the network node, to the second entity and to the controller. 
 
For example, Kempf discloses actions associated with a flow match including an action to 
forward the packet to the destination device and to the controller. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  
To the extent that the Kempf is found to not meet this limitation, cou upon receiving by the 
network node the ‘mirror' instruction and responsive to the packet satisfying the criterion, 
method further comprising sending the packet, by the network node, to the second entity 
and to the controller would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 29 of 1100



30 

No. ʼ111 Patent Claim 3 Kempf 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 30 of 1100



31 

No. ʼ111 Patent Claim 3 Kempf 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 3(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
  
For example, Chua discloses a mirror program in response to an indication based on the 
packet header in which the network devices mirror copies of the packets of the packet flow 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 31 of 1100



32 

No. ʼ111 Patent Claim 3 Kempf 
to a second service device while forwarding the packets of the packet flow to the destination 
of the packet flow. 
  
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
  
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device 
of service devices 116) for either inspection or to keep a potential hacker 'busy' to determine 
if there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
  
Chua at 16:23-44 (“More particularly, control unit 130 may configure any of service devices 
116 to send data representative of a particular event to SDN controller 112, and control unit 
130 may auto-matically reprogram one or more network devices of SDN 106 in response to 
such data. For example, security monitor-ing applications of service devices 116 may 
determine that a specific source port, destination port, source IP address, des-tination IP 
address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN 
controller 112 based on these metrics. SDN controller 112 may respond by programming Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 32 of 1100



33 

No. ʼ111 Patent Claim 3 Kempf 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) 
  
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may 
cause the net-work devices to change a path along which the packet is forwarded. For 
example, when the service device is a security device (e.g., a firewall or an IDS), if the 
security device determines that one or more packets of a packet flow are malicious, the 
security device may send service data indicat-ing that the packet flow includes malicious 
data. SDN con-troller 112 may program the network devices of the SDN to perform a 
programmed action based on the service-related data (336). For example, SDN controller 
112 may program network devices to, in response to an indication that packets of a packet 
flow include malicious data, forward packets of the packet flow to a destination of the 
packet flow, forward packets of malicious packet flows to a collection device for further 
analysis, cause network devices to drop packets of the malicious packet flows, send a close 
session message to devices from which packets of the malicious packet flows were received, 
block the packets of the packet flow, mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of 
the packet flow, redirect the packets of the packet flow to a third service device, transform 
one or more values of headers of the packets, and/or encapsulate the pack-ets with a 
particular header, or other such actions.”) 
  
As another example, Swenson discloses a counting mode instructed by the network 
controller to the steering device for monitoring and optimizing, in which the steering device 
forwards the packet flow to the user device/origin server and at the same time, sending the 
packet flow to the network controller. 
  
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 33 of 1100



34 

No. ʼ111 Patent Claim 3 Kempf 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
  
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
  
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 34 of 1100



35 

No. ʼ111 Patent Claim 3 Kempf 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
  
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net-work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
  
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 35 of 1100



36 

No. ʼ111 Patent Claim 3 Kempf 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 
 

 
No. ʼ111 Patent Claim 4 Kempf 

4[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Kempf discloses the method according to claim 1, wherein the instruction is ‘probe’, 
‘mirror’, or ‘terminate’ instruction. 
 
See supra at 2(a). 

4[b] upon receiving by the 
network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 
the network node, to 
the controller;  

Kempf discloses upon receiving by the network node the ‘probe’ instruction and responsive 
to the packet satisfying the criterion, the method further comprising: sending the packet, by 
the network node, to the controller. 
 
For example, Kempf discloses actions associated with a flow match including an action for 
further processing and sending the packet to the controller. 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 36 of 1100



37 

No. ʼ111 Patent Claim 4 Kempf 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 37 of 1100



38 

No. ʼ111 Patent Claim 4 Kempf 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 38 of 1100



39 

No. ʼ111 Patent Claim 4 Kempf 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 2 (annotation added) 

 
 

4[c] responsive to receiving 
the packet, analyzing 
the packet, by the 
controller; 

Kempf discloses responsive to receiving the packet, analyzing the packet, by the controller. 
 
For example, Kempf discloses further processing by the controller in response to a packet 
flow match indicating that a packet needs encapsulation or arrives encapsulated with 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 39 of 1100



40 

No. ʼ111 Patent Claim 4 Kempf 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet). 
 
Kempf at [0037] (“The EPC architecture also contains little flexibility for specialized 
treatment of user flows. Though the architec-ture does provide support for establishing 
quality of service (QoS), other sorts of data management are not available. For example 
services involving middle boxes, such as specialized deep packet inspection or interaction 
with local data caching and processing resources that might be utilized for transcod-ing or 
augmented reality applications, is difficult to support with the current EPC architecture. 
Almost all such applica-tions require the packet flows to exit through the PDN Gate-way, 
thereby being de-tunnelled from GTP, and to be pro-cessed within the wired network.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0084] (“GTP virtual ports are configured from the Open-Flow controller using a 
configuration protocol. The details of the configuration protocol are switch-dependent. The 
con-figuration protocol must support messages that perform following functions: allow the 
controller to query for and return an indication whether the switch supports GTP fast path Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 40 of 1100



41 

No. ʼ111 Patent Claim 4 Kempf 
virtual ports and what virtual port numbers are used for fast path and slow path GTP-U 
processing; and allow the controller to instantiate a GTP-U fast path virtual port within a 
switch datapath for use in the OpenFlow table set-output-port action. The configuration 
command must be run in a transaction so that, when the results of the action are reported 
back to the controller, either a GTP-U fast path virtual port for the requested datapath has 
been instantiated or an error has returned indicating why the request could not be honored. 
The command also allows the OpenFlow controller to bind a GTP-U virtual port to a 
physical port. For decapsulation virtual ports, the physical port is an input port. For 
encapsu-lation virtual ports, the physical port is an output port.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 41 of 1100



42 

No. ʼ111 Patent Claim 4 Kempf 
4[d] sending the packet, by 

the controller, to the 
network node; and  

Kempf discloses sending the packet, by the controller, to the network node. 
 
For example, Kempf discloses the controller sending the packet back through the intended 
datapath via the network element.  A person of ordinary skill would understand that the 
packet, once sent to the controller for further processing, is then sent back to the network 
element to be forwarded to its originally intended destination. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  
To the extent that the Kempf is found to not meet this limitation, sending the packet, by the 
controller, to the network node would have been obvious to a person having ordinary skill in 
the art, as explained below. 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 42 of 1100



43 

No. ʼ111 Patent Claim 4 Kempf 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 4(d) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
  
  
For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow 
statistics. 
  
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
  
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 43 of 1100



44 

No. ʼ111 Patent Claim 4 Kempf 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
  
  
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
  
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 44 of 1100



45 

No. ʼ111 Patent Claim 4 Kempf 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
  
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
  
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 45 of 1100



46 

No. ʼ111 Patent Claim 4 Kempf 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
  
 Swenson at Figure 1 (annotation added) 
 

 
 

4[e] responsive to receiving 
the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Kempf discloses responsive to receiving the packet, sending the packet, by the network 
node, to the second entity. 
 
For example, Kempf discloses sending the packet back through the intended datapath via 
the network element.  A person of ordinary skill would understand that the packet, once sent 
to the controller for further processing, is then sent back to the network element to be 
forwarded to its originally intended destination. Thus, at least under the apparent claim 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 46 of 1100



47 

No. ʼ111 Patent Claim 4 Kempf 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Kempf is found to not meet this limitation, responsive to receiving the packet, 
sending the packet, by the network node, to the second entit would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, the 
VMware NSX System in combination with (1) the knowledge of a person of ordinary skill 
in the art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 4(e) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 47 of 1100



48 

No. ʼ111 Patent Claim 4 Kempf 
 For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow 
statistics, i.e., sending the packet, by the controller, to the network node.  Swenson further 
discloses the steering device, upon having the packet returned to it, i.e., responsive to 
receiving the packet, transmitting the packet to the destination entity, for example, the user 
device or origin server, i.e., sending the packet, by the network node, to the second entity. 
  
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
  
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 48 of 1100



49 

No. ʼ111 Patent Claim 4 Kempf 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
  
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
  
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
  
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 49 of 1100



50 

No. ʼ111 Patent Claim 4 Kempf 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
  
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
  
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 50 of 1100



51 

No. ʼ111 Patent Claim 4 Kempf 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
  
 Swenson at Figure 1 (annotation added) 
 

 
 

 
No. ʼ111 Patent Claim 5 Kempf 

5 The method according 
to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 

Kempf discloses the method according to claim 1, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending the packet or a portion thereof, 
by the network node, to the controller.  
 
For example, Kempf discloses sending in response to a flow table match, the packet or 
packet field to the controller by the network element.  Thus, at least under the apparent 
claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the 
extent that the Kempf is found to not meet this limitation, further comprising responsive to 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 51 of 1100



52 

No. ʼ111 Patent Claim 5 Kempf 
network node, to the 
controller.  
 

the packet satisfying the criterion and to the instruction, sending the packet or a portion 
thereof, by the network node, to the controller would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
 
See supra at Claim 1. 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 52 of 1100



53 

No. ʼ111 Patent Claim 5 Kempf 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 53 of 1100



54 

No. ʼ111 Patent Claim 5 Kempf 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at [0133] (“Before returning a result to the PGW-C from the GTP routing update 
RPC, the OpenFlow controller issues a sequence of OpenFlow messages to the appropriate 
data plane gateway entity. In the example embodiment, the sequence begins with an OFP 
_BARRIER_REQUEST to ensure that there are no pending messages that might influ-ence 
processing of the following messages. Then an OFPT_ FLOW _MOD message is issued, 
including the of_match structure with GTP extension as the match field and OFPFC_ ADD 
as the command field. The message specifies actions and instructions, as described above, to 
establish a flow route for the GTP tunnel that encapsulates and decapsulates the packets 
through the appropriate virtual port. In addition, immediately following the OFPT_FLOW 
_MOD message, the OpenFlow controller issues an GTP _ADD_TEID_ TABLE_ENTRY 
message to the gateways containing the TEID hash table entries for the encapsulation virtual 
port. As described above, the two OpenFlow messages are followed by an Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 54 of 1100



55 

No. ʼ111 Patent Claim 5 Kempf 
OFPT_BARRIER_REQUEST message to force the gateways to process the flow route and 
TEID hash table update before proceeding.”) 
 
Kempf at Figure 2 (annotation added) 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 5 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 55 of 1100



56 

No. ʼ111 Patent Claim 5 Kempf 
  
For example, Copeland discloses sending packets and sampled packet headers to the 
intrusion detection engine on the monitoring appliance based on matching predetermined 
values associated with a concern index. 
  
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) 
  
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
  
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
  
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured 
and processed by the sample packet collector 505 in order to create a "Packet Data" data 
struc-ture that includes the sFlow agent source of the packets, the header of the sampled 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 56 of 1100



57 

No. ʼ111 Patent Claim 5 Kempf 
packets, and other information avail-able from the sFlow data stream that may be important. 
For  
example, one data field that is optionally available pr vides the username of the user using 
the computer at the time of the communications. This information is extremely useful in 
some environments subject to regulatory requirements and monitoring of the 
communications on the network. In this case the username will be stored as "supplementary 
infor-mation" for auditing purposes in the flow data. Other infor-mation, including the 
sampling device and the physical port on which the communications was detected may also 
be retained for other uses such as mitigation, where a host may be removed from the 
network.”) 
  
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
  
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
  
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number 
of flows active with matching IP addresses but no matching port number. If this number 
exceeds a predetermined threshold value (e.g., 4) and is greater than the previous number 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 57 of 1100



58 

No. ʼ111 Patent Claim 5 Kempf 
noticed, CI is added for an amount corresponding to a "port scan." A bit in the host record is 
set to indicate that the host has received CI for "port scanning."”) 
  
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
  
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
  
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
 

 
No. ʼ111 Patent Claim 6 Kempf 

6 The method according 
to claim 5, further 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

Kempf discloses the method according to claim 5, further comprising storing the received 
packet or a portion thereof, by the controller, in a memory. 
 
For example, Kempf discloses storing the packets and packet fields in the controller, and 
further updating rules based on that stored information.  A person of ordinary skill in the art 
would understand that updating the rules sent to network elements by the controller is based 
on storing the packet information informing the rule update. 
 
See supra at Claim 5. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 58 of 1100



59 

No. ʼ111 Patent Claim 6 Kempf 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0134] (“Prior to returning from the GTP routing update RPC, the OpenFlow 
controller also issues GTP flow routing updates to any GTP extended OpenFlow Switches 
(GxOFSs) that need to be involved in customized GTP flow routing. The messages in these 
updates consist of an OFP _BARRIER_ REQUEST followed by an OFPT_FLOW _MOD 
message containing the ofp_match structure with GTP extension for the new GTP flow as 
the match field and OFPFC_ADD as the command field, and the actions and instructions 
described above for customized GTP flow routing. A final OFP _BAR-RIER_REQUEST Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 59 of 1100



60 

No. ʼ111 Patent Claim 6 Kempf 
forces the switch to process the change before responding. The flow routes on any GxOFSs 
are installed after installing the GTP tunnel endpoint route on the SGW-D and prior to 
installing the GTP tunnel endpoint route on the PGW-D, as illustrated in FIG. 19. The 
OpenFlow controller does not respond to the PGW-C RPC until all flow routing updates 
have been accomplished.”) 
 
 

 
No. ʼ111 Patent Claim 7 Kempf 

7 The method according 
to claim 5, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

Kempf discloses the method according to claim 5, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending a portion of the packet, by the 
network node, to the controller. 
 
For example, Kempf discloses sending in response to a flow table match a packet field to 
the controller by the network element.  Thus, at least under the apparent claim scope alleged 
by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Kempf is 
found to not meet this limitation, further comprising responsive to the packet satisfying the 
criterion and to instruction, sending a portion of the packet, by the network node, to the 
controller would have been obvious to a person having ordinary skill in the art, as explained 
below. 
 
See supra at Claim 5. 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 60 of 1100



61 

No. ʼ111 Patent Claim 7 Kempf 
Kempf at [0055] (“OpenFlow 1.1 can be utilized to support virtual ports. A virtual port, as 
used herein, is an "action block" that performs some kind of processing action other than 
simply forwarding the packet out to a network connection like physi-cal ports do. Examples 
of a few built-in virtual ports include: ALL, which forwards the port out all ports except for 
the ingress port and any ports that are marked "Do Not Forward;" CONTROLLER, which 
encapsulates the packet and sends it to the controller; TABLE, which inserts the packet into 
the packet processing pipeline by submitting it to the first flow table, this action is only 
valid in the action set of a packet-out message; and IN_PORT, which sends the packet out 
the ingress port. In other embodiments, there can also be switched-defined virtual ports.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 61 of 1100



62 

No. ʼ111 Patent Claim 7 Kempf 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number bitmask 0xFF0l and the upper two bytes Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 62 of 1100



63 

No. ʼ111 Patent Claim 7 Kempf 
match the G-PDU message type (255) while the lower two bytes are 0x31, indicating that 
the version number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 7 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
  
For example, Copeland discloses sending packets and sampled packet headers to the 
intrusion detection engine on the monitoring appliance based on matching predetermined 
values associated with a concern index. 
  
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 63 of 1100



64 

No. ʼ111 Patent Claim 7 Kempf 
  
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
  
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
  
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured 
and processed by the sample packet collector 505 in order to create a "Packet Data" data 
struc-ture that includes the sFlow agent source of the packets, the header of the sampled 
packets, and other information avail-able from the sFlow data stream that may be important. 
For  
example, one data field that is optionally available pr vides the username of the user using 
the computer at the time of the communications. This information is extremely useful in 
some environments subject to regulatory requirements and monitoring of the 
communications on the network. In this case the username will be stored as "supplementary 
infor-mation" for auditing purposes in the flow data. Other infor-mation, including the 
sampling device and the physical port on which the communications was detected may also 
be retained for other uses such as mitigation, where a host may be removed from the 
network.”) 
  
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 64 of 1100



65 

No. ʼ111 Patent Claim 7 Kempf 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
  
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
  
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number 
of flows active with matching IP addresses but no matching port number. If this number 
exceeds a predetermined threshold value (e.g., 4) and is greater than the previous number 
noticed, CI is added for an amount corresponding to a "port scan." A bit in the host record is 
set to indicate that the host has received CI for "port scanning."”) 
  
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
  
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 65 of 1100



66 

No. ʼ111 Patent Claim 7 Kempf 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
 

 
No. ʼ111 Patent Claim 8 Kempf 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 
consists of multiple 
consecutive bytes, and  

Kempf discloses the method according to claim 7, wherein the portion of the packet consists 
of multiple consecutive bytes. 
 
For example, Kempf discloses consecutive bytes of a packet header field. 
 
See supra at Claim 7. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 66 of 1100



67 

No. ʼ111 Patent Claim 8 Kempf 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 67 of 1100



68 

No. ʼ111 Patent Claim 8 Kempf 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number bitmask 0xFF0l and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are 0x31, indicating that 
the version number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 68 of 1100



69 

No. ʼ111 Patent Claim 8 Kempf 
8[b] wherein the instruction 

comprises 
identification of the 
consecutive bytes in 
the packet.  

Kempf discloses wherein the instruction comprises identification of the consecutive bytes in 
the packet. 
 
For example, Kempf discloses rules in which the flow table includes matching to the 
consecutive bytes of a packet header. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 69 of 1100



70 

No. ʼ111 Patent Claim 8 Kempf 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 70 of 1100



71 

No. ʼ111 Patent Claim 8 Kempf 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number bitmask 0xFF0l and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are 0x31, indicating that 
the version number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 

 
No. ʼ111 Patent Claim 9 Kempf 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Kempf discloses the method according to claim 5, further comprising responsive to 
receiving the packet, analyzing the packet, by the controller. 
 
For example, Kempf discloses further processing by the controller in response a packet flow 
match indicating a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 71 of 1100



72 

No. ʼ111 Patent Claim 9 Kempf 
See supra at Claim 5. 
 
Kempf at [0037] (“The EPC architecture also contains little flexibility for specialized 
treatment of user flows. Though the architec-ture does provide support for establishing 
quality of service (QoS), other sorts of data management are not available. For example 
services involving middle boxes, such as specialized deep packet inspection or interaction 
with local data caching and processing resources that might be utilized for transcod-ing or 
augmented reality applications, is difficult to support with the current EPC architecture. 
Almost all such applica-tions require the packet flows to exit through the PDN Gate-way, 
thereby being de-tunnelled from GTP, and to be pro-cessed within the wired network.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0084] (“GTP virtual ports are configured from the Open-Flow controller using a 
configuration protocol. The details of the configuration protocol are switch-dependent. The 
con-figuration protocol must support messages that perform following functions: allow the 
controller to query for and return an indication whether the switch supports GTP fast path 
virtual ports and what virtual port numbers are used for fast path and slow path GTP-U Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 72 of 1100



73 

No. ʼ111 Patent Claim 9 Kempf 
processing; and allow the controller to instantiate a GTP-U fast path virtual port within a 
switch datapath for use in the OpenFlow table set-output-port action. The configuration 
command must be run in a transaction so that, when the results of the action are reported 
back to the controller, either a GTP-U fast path virtual port for the requested datapath has 
been instantiated or an error has returned indicating why the request could not be honored. 
The command also allows the OpenFlow controller to bind a GTP-U virtual port to a 
physical port. For decapsulation virtual ports, the physical port is an input port. For 
encapsu-lation virtual ports, the physical port is an output port.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 73 of 1100



74 

No. ʼ111 Patent Claim 12 Kempf 
12 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Kempf discloses the method according to claim 9, wherein the analyzing comprises 
applying security or data analytic application. 
 
For example, Kempf discloses packet processing for security purposes. 
 
See supra at Claim 9. 
 
Kempf at [0037] (“The EPC architecture also contains little flexibility for specialized 
treatment of user flows. Though the architec-ture does provide support for establishing 
quality of service (QoS), other sorts of data management are not available. For example 
services involving middle boxes, such as specialized deep packet inspection or interaction 
with local data caching and processing resources that might be utilized for transcod-ing or 
augmented reality applications, is difficult to support with the current EPC architecture. 
Almost all such applica-tions require the packet flows to exit through the PDN Gate-way, 
thereby being de-tunnelled from GTP, and to be pro-cessed within the wired network.”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0066] (“Cloud computer systems can also support secure multi-tenancy, in which 
the cloud computer system provider offers virtual private network (VPN)-like connections 
between the client's distributed office networks outside the cloud and a VPN within the 
cloud computing system. This allows the client's applications within the cloud computing 
system to operate in a network environment that resembles a corporate WAN. For private 
data centers, in which services are only offered to customers within the corporation owning Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 74 of 1100



75 

No. ʼ111 Patent Claim 12 Kempf 
the data center, the security and privacy requirements for multi-tenancy are relaxed. But for 
public data centers, the cloud operator must ensure that the traffic from multiple tenants is 
isolated and there is no possibility for traffic from one client to reach another client 
network.”) 
 
Kempf at [0070] (“The cloud manager 1303 monitors the central pro-cessor unit (CPU) 
utilization of the EPC control plane entities 1307 and the control plane traffic between the 
EPC control plane entities 1307 within the cloud. It also monitors the control plane traffic 
between the end user devices (UEs) and E-NodeBs, which do not have control plane entities 
in the cloud computing system 1301, and the EPC control plane entities 1307. If the EPC 
control plane entities 1307 begin to exhibit signs of overloading, such as the utilization of 
too much CPU time, or the queueing up of too much traffic to be processed, the overloaded 
control plane entity 1307 requests that the cloud manager 1303 start up a new VM to handle 
the load. Additionally, the EPC control plane entities 1307 them-selves can issue event 
notifications to the cloud manager 1303 if they detect internally that they are beginning to 
experience overloading.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 75 of 1100



76 

No. ʼ111 Patent Claim 12 Kempf 
 
Kempf at [0084] (“GTP virtual ports are configured from the Open-Flow controller using a 
configuration protocol. The details of the configuration protocol are switch-dependent. The 
con-figuration protocol must support messages that perform following functions: allow the 
controller to query for and return an indication whether the switch supports GTP fast path 
virtual ports and what virtual port numbers are used for fast path and slow path GTP-U 
processing; and allow the controller to instantiate a GTP-U fast path virtual port within a 
switch datapath for use in the OpenFlow table set-output -port action. The configuration 
command must be run in a transaction so that, when the results of the action are reported 
back to the controller, either a GTP-U fast path virtual port for the requested datapath has 
been instantiated or an error has returned indicating why the request could not be honored. 
The command also allows the OpenFlow controller to bind a GTP-U virtual port to a 
physical port. For decapsulation virtual ports, the physical port is an input port. For 
encapsu-lation virtual ports, the physical port is an output port.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 76 of 1100



77 

No. ʼ111 Patent Claim 12 Kempf 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
 

 
 

No. ʼ111 Patent Claim 13 Kempf 
13 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Kempf discloses the method according to claim 9, wherein the analyzing comprises 
applying security application that comprises firewall or intrusion detection functionality. 
 
For example, Kempf discloses packet processing for security purposes, i.e., wherein the 
analyzing comprises applying security application that comprises firewall or intrusion 
detection functionality.  A person of ordinary skill in the art would understand security 
monitoring of packets can comprise use of a firewall or intrusion detection functionality. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Kempf is found to not meet this limitation, 
wherein the analyzing comprises applying security application that comprises firewall or 
intrusion detection functionality would have been obvious to a person having ordinary skill 
in the art, as explained below. 
 
See supra at Claim 9. 
 
Kempf at [0037] (“The EPC architecture also contains little flexibility for specialized 
treatment of user flows. Though the architec-ture does provide support for establishing 
quality of service (QoS), other sorts of data management are not available. For example 
services involving middle boxes, such as specialized deep packet inspection or interaction 
with local data caching and processing resources that might be utilized for transcod-ing or 
augmented reality applications, is difficult to support with the current EPC architecture. 
Almost all such applica-tions require the packet flows to exit through the PDN Gate-way, 
thereby being de-tunnelled from GTP, and to be pro-cessed within the wired network.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 77 of 1100



78 

No. ʼ111 Patent Claim 13 Kempf 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0066] (“Cloud computer systems can also support secure multi-tenancy, in which 
the cloud computer system provider offers virtual private network (VPN)-like connections 
between the client's distributed office networks outside the cloud and a VPN within the 
cloud computing system. This allows the client's applications within the cloud computing 
system to operate in a network environment that resembles a corporate WAN. For private 
data centers, in which services are only offered to customers within the corporation owning 
the data center, the security and privacy requirements for multi-tenancy are relaxed. But for 
public data centers, the cloud operator must ensure that the traffic from multiple tenants is 
isolated and there is no possibility for traffic from one client to reach another client 
network.”) 
 
Kempf at [0070] (“The cloud manager 1303 monitors the central pro-cessor unit (CPU) 
utilization of the EPC control plane entities 1307 and the control plane traffic between the 
EPC control plane entities 1307 within the cloud. It also monitors the control plane traffic 
between the end user devices (UEs) and E-NodeBs, which do not have control plane entities 
in the cloud computing system 1301, and the EPC control plane entities 1307. If the EPC 
control plane entities 1307 begin to exhibit signs of overloading, such as the utilization of 
too much CPU time, or the queueing up of too much traffic to be processed, the overloaded 
control plane entity 1307 requests that the cloud manager 1303 start up a new VM to handle 
the load. Additionally, the EPC control plane entities 1307 them-selves can issue event 
notifications to the cloud manager 1303 if they detect internally that they are beginning to 
experience overloading.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 78 of 1100



79 

No. ʼ111 Patent Claim 13 Kempf 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0084] (“GTP virtual ports are configured from the Open-Flow controller using a 
configuration protocol. The details of the configuration protocol are switch-dependent. The 
con-figuration protocol must support messages that perform following functions: allow the 
controller to query for and return an indication whether the switch supports GTP fast path 
virtual ports and what virtual port numbers are used for fast path and slow path GTP-U 
processing; and allow the controller to instantiate a GTP-U fast path virtual port within a 
switch datapath for use in the OpenFlow table set-output-port action. The configuration 
command must be run in a transaction so that, when the results of the action are reported 
back to the controller, either a GTP-U fast path virtual port for the requested datapath has 
been instantiated or an error has returned indicating why the request could not be honored. 
The command also allows the OpenFlow controller to bind a GTP-U virtual port to a 
physical port. For decapsulation virtual ports, the physical port is an input port. For 
encapsu-lation virtual ports, the physical port is an output port.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 79 of 1100



80 

No. ʼ111 Patent Claim 13 Kempf 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 13 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses analysis by the intrusion detection engine on the 
monitoring appliance to detect communication intruders and suspicious activity.  The 
monitoring appliance may also work in coordination with a firewall. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 80 of 1100



81 

No. ʼ111 Patent Claim 13 Kempf 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular 
traffic or flow or suspicious activity. The flow concern index values have been derived 
heuristically from extensive net-work traffic analysis. Concern index values are associated 
with particular hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern 
index values for various exemplary flow-based events and other types of events are 
illustrated in connection with FIGS. 6 and 7.”) 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) 
 
Copeland at [0068] (“Those skilled in the art understand that many networks utilize 
firewalls to limit unwanted network traffic. A monitoring appliance 150 can be connected 
before a firewall to detect intrusions directed at the network. Con-versely, the monitoring 
appliance 150 may be installed behind a firewall to detect intrusions that bypass the firewall. 
Some systems install two firewalls with web and e-mails servers in the so-called 
"demilitarized zone" or "DMZ" between firewalls. One common placement of the 
monitor-ing appliance 150 is in this demilitarized zone. Of course, those skilled in the art 
will appreciate that the flow-based intrusion detection system 155 or appliance 150 can 
operate without the existence of any firewalls.”) 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of 
intrusion detection is accomplished at least in part by analyzing communication flows to 
determine if such communications have the flow characteristics of probes or attacks. By 
analyzing communications for abnormal flow characteristics, attacks can be determined 
without the need for resource-intensive packet data analysis. A flow can be determined from 
the packets 101 that are transmitted between two hosts utilizing a single service. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 81 of 1100



82 

No. ʼ111 Patent Claim 13 Kempf 
addresses and port numbers of communications are easily discerned by analysis of the 
header information in a datagram.”) 
 
Copeland at [0112] (“FIG. 5 illustrates a logical software architecture of a flow-based 
intrusion detection engine 155 constructed in accordance with an embodiment of the present 
invention. As will be understood by those skilled in the art, the system is constructed 
utilizing Internet-enabled computer systems with computer programs designed to carry out 
the functions described herein. Preferably, the various computing func-tions are 
implemented as different but related processes known as "threads" which executed 
concurrently on modern day multi-threaded, multitasking computer systems.”) 
 
Copeland at Figure 5 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 82 of 1100



83 

No. ʼ111 Patent Claim 13 Kempf 

 
 
Copeland at [0149] (“The alert manager 530 also looks for hosts whose CI or traffic (byte 
rate) exceeds preset alarm thresholds and which have not been handled on previous runs. 
The new alarm conditions can cause immediate operator notification by an operator 
notification process 542. These conditions can be highlighted on the user interface, and 
cause SNMP trap messages to be sent to a network monitor such as HP Openview, and/or 
email messages to the network adminis-trator that in turn may cause messages to be sent to 
beepers or cell phones. Messages can also be sent to cause automated devices such as a 
firewall manager 544 to drop packets going to or from an offending host. It will thus be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 83 of 1100



84 

No. ʼ111 Patent Claim 13 Kempf 
appreciated that the present invention advantageously operates in conjunc-tion with 
firewalls and other network security devices and processes to provide additional protection 
for an entity's computer network and computer resources.”) 
 
Copeland at [0177] (“If an alarm threshold has been exceeded, the "Yes" branch of step 975 
is followed to step 976. In step 976, the alert manager thread generates certain 
predetermined signals designed to drawn the attention of a system administrator or other 
interested person. The alert manager 530 looks for hosts whose CI or traffic (byte rate) 
exceeds preset alarm thresholds and have not been handled on previous runs. The new alarm 
conditions can cause immediate operator notifi-cation. These conditions can be highlighted 
on the user interface, and cause SNMP trap messages to be sent to a network monitor such 
as HP Openview, and/or email mes-sages to the network administrator that in turn may 
cause messages to be sent to beepers or cell phones. Messages can also be sent to cause 
automated devices such as a firewall manager to drop packets going to or from an offending 
host. Step 976 is followed by step 972, in which the thread 530 awaits the requisite amount 
of time.”) 
 
 
For example, Chua ‘877 discloses security determinations and analysis that involve the use 
of firewalls or intrusion detection services. 
 
Chua ‘877 at 31:48-59 (“In some examples, SDN controller 112 further performs deep 
packet inspection (DPI) on packets from client device 102 ( 402). For example, SDN 
controller 112 may inspect one or more preliminary packets of packet flows originating 
from or directed to client device 102, and after determining that the packet flows are not 
malicious ( after a predetermined number of packets), stop inspecting the packet flows. 
Alternatively, SDN controller 112 may program network devices of SDN 106 to forward a 
predetermined number of packets of the packet flows originating from or destined for client 
device 102 through a deep packet inspection service device, which may correspond to one 
of service devices 116.”) 
 
Chua ‘877 at 25:32-52 (“In the example of FIG. 5, SDN controller 112 determines zones for 
packet flows through the network devices forming the SDN (304). The zones generally 
correspond to packet flows, that is, paths through the SDN followed by particular packets. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 84 of 1100



85 

No. ʼ111 Patent Claim 13 Kempf 
SDN controller 112 may store data defining the zones in the data model discussed above. 
The data defining the zones may specify entities (e.g., users, devices, or the like) that have 
access to each zone. Thus, SDN controller 112 may program network devices of the SDN 
such that entities that  are not authorized to access a particular zone are prevented from 
accessing the zone. SDN controller 112 may specify a zone using packet header field 
values, such as a source port, a destination port, a source IP address, a destination IP 
address, a virtual local area network (VLAN) tag, multiprotocol label switching (MPLS) 
labels, a packet protocol, and/or an IP subnet. In some cases, SDN controller 112 may 
specify whether a corresponding packet flow for a zone is suspect or malicious and 
construct the zone such that packets of the packet flow are prevented from reaching an 
intended destination. As noted above, zones may be ordered based on priority values when 
overlap occurs.”) 
 
Chua ‘877 at 25:53-65 (“Furthermore, SDN controller 112 determines trusted packet flows 
(306). For example, SDN controller 112 may determine that certain packet flows can be 
trusted based on security controls, and that other packet flows cannot be trusted based on the 
security controls. That is, SDN controller 112 may determine whether a packet flow can be 
trusted based on values of packet headers for the packet flows, e.g., values of headers at 
various layers of the OSI model ( e.g., any or all of layers 2-7 of the OSI model). In some 
examples, SDN controller 112 may omit any or all of steps 302, 304, and 306, e.g., omitting 
any or all of determination of service devices, determination of zones, and/or determination 
of trusted packet flows.”) 
 
Chua ‘877 at 5:50-6:5 (“SDN 106 generally serves to interconnect various endpoint devices, 
such as client device 102 and server device 104. In addition, SDN 106 may provide services 
to network traffic flowing between client device 102 and server device 104. Alternatively, 
SDN 106 may provide services to client device 102, without further directing traffic to 
server device 106. For example, administrator 114 may use SDN controller 112 to program 
network devices of SDN 106 to direct network traffic for client device 102 to one or more of 
service devices 116. Service devices 116 may include, for example, intrusion detection 
service (IDS) devices, intrusion prevention system (IPS) devices, web proxies, web servers, 
web-application firewalls and the like. In other examples, service devices 116 may, 
additionally or alternatively, include devices for provid-ing services such as, for example, 
denial of service (DoS) protection, distributed denial of service (DDoS) protection, traffic Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 85 of 1100



86 

No. ʼ111 Patent Claim 13 Kempf 
filtering, wide area network (WAN) acceleration, or other such services. Service devices 
116 may also addition-ally or alternatively include malware detection devices, net-work 
anti-virus devices, network packet capture and analysis devices, honeypot devices, reflector 
net devices, tar pit devices, domain name service (DNS) and global DNS server devices, 
mail proxies, and anti-spam devices.”) 
 
Chua ‘877 at 6:6-24 (“Service devices 116 may, additionally or alternatively, include 
devices in various device categories such as, for example, network and application security 
devices, application optimization devices, scaling devices, traffic shaping devices, and/or 
monitoring and analytics devices. Moreover, although shown as individual devices, it 
should be understood that service devices may be realized by physical devices, multi-tenant 
devices, or using virtual services (e.g., cloud-based services). Moreover, service devices 116 
may represent multi-function devices. For purposes of example and ease of explanation, this 
disclosure primarily describes individual service devices. However, it should be understood 
that the techniques of this disclosure may be readily applied to virtual devices and cloud-
based applications, in addition or in the alternative to physical devices. Likewise, where this 
disclosure refers to a switch or other network device, it should be understood that these 
techniques may apply to virtual switches or other virtual network devices.”) 
 
Chua ‘877 at 7:3-13 (“Devices that may be plugged into (that is, communicatively coupled 
to) SDN controller 112 ( also sometimes referred to as a "FlowDirector") generally include 
classes of devices found in most network-based DMZs, including firewalls, web proxies, 
mail proxies, AV (anti-virus) proxies, mail systems, IDS (intrusion detection systems), IPS 
(intrusion prevention systems), VPN (virtual private network) servers, web application 
firewalls, vulnerability scanners, network recording and analysis systems, and packet 
shapers. Most of these devices are either security devices, or traffic engineering or visibility 
devices, in some examples.”) 
 
Chua ‘877 at 14:32-51 (“One example use case for SDN controller 112 includes performing 
internal security zone partitioning. In today's enterprise environment, certain flows can be 
trusted, based on security controls placed on the end points, while others must be assumed 
to have some potential for risk. SDN controller 112 may create security zones based both on 
physical topol-ogy as well as threat assessments based on L2-L4 header information. 
Business-level security rules can be implemented directly on SDN controller 112 to direct Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 86 of 1100



87 

No. ʼ111 Patent Claim 13 Kempf 
only higher risk flows through specific L4-L 7 devices ( e.g., service devices 116) to 
monitor for or block malicious traffic. That is, when an SDN interconnects a set of 
enterprise network devices of a common enterprise network and also provides connections 
for the enterprise network devices outside of the enterprise network, SDN controller 112 
may determine that connections between the enterprise network devices within the 
enterprise network can be trusted, whereas connections to network devices outside the 
enterprise network cannot be trusted and, therefore, should be monitored by a security 
device.”) 
 
Chua ‘877 at 14:52-63 (“Thus, SDN controller 112 may determine separate sets of packet 
flows based on security controls, e.g., a first set of packet flows that can be trusted and a 
second set of packet flows that are not trusted. Then, SDN controller 112 may determine a 
first set of one or more paths for the first set of packet flows that omit a security device for 
the first set of packet flows (that is, based on the determination that the first set of packet 
flows can be trusted), and a second set of one or more paths for the second set of packet 
flows that direct the second set of packet flows through the security device (based on the 
determination that the second set of packet flows are not trusted).”) 
 
Chua ‘877 at 14:64-15:3 (“The security controls may include various types of information. 
For example, the security controls may specify values for one or more packet headers at 
various layers of the Open Systems Interconnection (OSI) network model. The security 
controls may specify information for any or all of network layers two, three, four, five, six, 
and/or seven of the OSI model.”) 
 
Chua ‘877 at 16:23-44 (“More particularly, control unit 130 may configure any of service 
devices 116 to send data representative of a particular event to SDN controller 112, and 
control unit 130 may auto-matically reprogram one or more network devices of SDN 106 in 
response to such data. For example, security monitor-ing applications of service devices 116 
may determine that a specific source port, destination port, source IP address, des-tination 
IP address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 87 of 1100



88 

No. ʼ111 Patent Claim 13 Kempf 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN 
controller 112 based on these metrics. SDN controller 112 may respond by programming 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) 
 
Chua ‘877 at 19:60-20:4 (“FIG. 3 is a conceptual diagram illustrating an example 60 system 
200 including various devices that may be used in accordance with the techniques of this 
disclosure. In this example, system 200 includes various network devices, including firewall 
206, router 208, switch 210, web proxy 212, intrusion detection system (IDS) 214, web 
server 216, 65 administrator ("admin") workstation 220, and software defined network 
(SDN) controller 218. Web clients 202 can access system 200 via a network, such as the 
Internet, e.g., Internet 204. Internet 204 may include additional network devices not 
explicitly shown in FIG. 3, such as routers, switches, hubs, gateways, security devices, or 
the like.”) 
 
 

 
No. ʼ111 Patent Claim 14 Kempf 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Kempf discloses the method according to claim 9, wherein the analyzing comprises 
performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Kempf discloses packet processing for security purposes. A person of ordinary 
of skill in the art would understand the current architectures could be modified to provide 
deep packet inspection functionality. Thus, at least under the apparent claim scope alleged 
by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Kempf is 
found to not meet this limitation, wherein the analyzing comprises performing Deep Packet 
Inspection (DPI) or using a DPI engine on the packet would have been obvious to a person 
having ordinary skill in the art, as explained below. 
 
See supra at Claim 9. 
 
Kempf at [0037] (“The EPC architecture also contains little flexibility for specialized 
treatment of user flows. Though the architec-ture does provide support for establishing Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 88 of 1100



89 

No. ʼ111 Patent Claim 14 Kempf 
quality of service (QoS), other sorts of data management are not available. For example 
services involving middle boxes, such as specialized deep packet inspection or interaction 
with local data caching and processing resources that might be utilized for transcod-ing or 
augmented reality applications, is difficult to support with the current EPC architecture. 
Almost all such applica-tions require the packet flows to exit through the PDN Gate-way, 
thereby being de-tunnelled from GTP, and to be pro-cessed within the wired network.”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0066] (“Cloud computer systems can also support secure multi-tenancy, in which 
the cloud computer system provider offers virtual private network (VPN)-like connections 
between the client's distributed office networks outside the cloud and a VPN within the 
cloud computing system. This allows the client's applications within the cloud computing 
system to operate in a network environment that resembles a corporate WAN. For private 
data centers, in which services are only offered to customers within the corporation owning 
the data center, the security and privacy requirements for multi-tenancy are relaxed. But for 
public data centers, the cloud operator must ensure that the traffic from multiple tenants is 
isolated and there is no possibility for traffic from one client to reach another client 
network.”) 
 
Kempf at [0070] (“The cloud manager 1303 monitors the central pro-cessor unit (CPU) 
utilization of the EPC control plane entities 1307 and the control plane traffic between the 
EPC control plane entities 1307 within the cloud. It also monitors the control plane traffic 
between the end user devices (UEs) and E-NodeBs, which do not have control plane entities Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 89 of 1100



90 

No. ʼ111 Patent Claim 14 Kempf 
in the cloud computing system 1301, and the EPC control plane entities 1307. If the EPC 
control plane entities 1307 begin to exhibit signs of overloading, such as the utilization of 
too much CPU time, or the queueing up of too much traffic to be processed, the overloaded 
control plane entity 1307 requests that the cloud manager 1303 start up a new VM to handle 
the load. Additionally, the EPC control plane entities 1307 them-selves can issue event 
notifications to the cloud manager 1303 if they detect internally that they are beginning to 
experience overloading.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0084] (“GTP virtual ports are configured from the Open-Flow controller using a 
configuration protocol. The details of the configuration protocol are switch-dependent. The 
con-figuration protocol must support messages that perform following functions: allow the 
controller to query for and return an indication whether the switch supports GTP fast path 
virtual ports and what virtual port numbers are used for fast path and slow path GTP-U 
processing; and allow the controller to instantiate a GTP-U fast path virtual port within a 
switch datapath for use in the OpenFlow table set-output-port action. The configuration 
command must be run in a transaction so that, when the results of the action are reported Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 90 of 1100



91 

No. ʼ111 Patent Claim 14 Kempf 
back to the controller, either a GTP-U fast path virtual port for the requested datapath has 
been instantiated or an error has returned indicating why the request could not be honored. 
The command also allows the OpenFlow controller to bind a GTP-U virtual port to a 
physical port. For decapsulation virtual ports, the physical port is an input port. For 
encapsu-lation virtual ports, the physical port is an output port.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 14 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 91 of 1100



92 

No. ʼ111 Patent Claim 14 Kempf 
 
For example, Chua ‘877 discloses analyzing, including deep packet inspection, performed 
by the controller on packets received. 
 
Chua ‘877 at 31:48-59 (“In some examples, SDN controller 112 further performs deep 
packet inspection (DPI) on packets from client device 102 ( 402). For example, SDN 
controller 112 may inspect one or more preliminary packets of packet flows originating 
from or directed to client device 102, and after determining that the packet flows are not 
malicious ( after a predetermined number of packets), stop inspecting the packet flows. 
Alternatively, SDN controller 112 may program network devices of SDN 106 to forward a 
predetermined number of packets of the packet flows originating from or destined for client 
device 102 through a deep packet inspection service device, which may correspond to one 
of service devices 116.”) 
 
Chua ‘877 at 10:48-52 (“As another possible extension, the central control platform can also 
capture and inspect the first or a fixed number of packets to perform deep packet inspection 
for application classification to extend the policy enforcement to specific application 
types.”)  
 
Chua ‘877 at 16:23-44 (“More particularly, control unit 130 may configure any of service 
devices 116 to send data representative of a particular event to SDN controller 112, and 
control unit 130 may auto-matically reprogram one or more network devices of SDN 106 in 
response to such data. For example, security monitor-ing applications of service devices 116 
may determine that a specific source port, destination port, source IP address, des-tination 
IP address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN 
controller 112 based on these metrics. SDN controller 112 may respond by programming 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 92 of 1100



93 

No. ʼ111 Patent Claim 14 Kempf 
 
Chua ‘877 at 31:48-59 (“In some examples, SDN controller 112 further performs deep 
packet inspection (DPI) on packets from client device 102 ( 402). For example, SDN 
controller 112 may inspect one or more preliminary packets of packet flows originating 
from or directed to client device 102, and after determining that the packet flows are not 
malicious ( after a predetermined number of packets), stop inspecting the packet flows. 
Alternatively, SDN controller 112 may program network devices of SDN 106 to forward a 
predetermined number of packets of the packet flows originating from or destined for client 
device 102 through a deep packet inspection service device, which may correspond to one 
of service devices 116.”) 
 
For example, Chandrasekaran discloses the controller performing Deep Packet Inspection, 
which provides the ability to look into the packet past basic header information so that the 
contents of a particular packet can be determined, i.e., analyzing comprises performing 
Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 93 of 1100



94 

No. ʼ111 Patent Claim 14 Kempf 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 94 of 1100



95 

No. ʼ111 Patent Claim 14 Kempf 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 95 of 1100



96 

 
No. ʼ111 Patent Claim 15 Kempf 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Kempf discloses the method according to claim 9, wherein the packet comprises distinct 
header and payload fields. 
 
For example, Kempf discloses packets with packet fields and payload fields. 
 
See supra at Claim 9. 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 96 of 1100



97 

No. ʼ111 Patent Claim 15 Kempf 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0052] (“Actions allow manipulating of tag stacks by pushing and popping labels. 
Combined with multiple tables, VLAN or MPLS label stacks can be processed by matching 
one label per table. FIG. 7 is a flow chart of one embodiment of a header parsing process. 
The parsing process matches a packet header by initializing a set of match fields (Block 
701) and checking for the presence of a set of different header types. The process checks for 
a VLAN tag (Block 703). If the VLAN tag is present, then there are a series of processing 
steps for the VLAN tag (Blocks 705-707). If the switch supports MPLS (Block 709), then 
there are a series of steps for detecting and processing the MPLS header information 
(Blocks 711-715). If the switch supports address resolution protocol (ARP), then there are a 
series of steps for processing the ARP header (Blocks 719 and 721). If the packet has an IP 
header (Block 723), then there are a series of steps for processing the IP header (Blocks 
725-733). This process is performed for each received packet.”) 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 97 of 1100



98 

No. ʼ111 Patent Claim 15 Kempf 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0086] (“In one embodiment, an OpenFlow GTP gateway maintains a hash table 
mapping GTP TEIDs into the tunnel header fields for their bearers. FIG. 18 is a diagram of 
the structure of a flow table row. The TEID hash keys are calcu-lated using a suitable hash 
algorithm with low collision fre-quency, for example SHA-1. The gateway maintains one 
such flow table row for each GTP TEID/bearer. The TEID field contains the GTP TEID for 
the tunnel. The VLAN tags and MPLS labels fields contain an ordered list of VLAN tags 
and/or MPLS labels defining tunnels into which the packet needs to be routed. The VLAN 
priority bits and MPLS traffic class bits are included in the labels. Such tunnels may or may 
not be required. If they are not required, then these fields are empty. The tunnel origin 
source IP address contains the address on the encapsulating gateway to which any control 
traffic involving the tunnel should be directed (for example, error indications). The tunnel 
end destination IP address field contains the IP address of the gateway to which the tunneled 
packet should be routed, at which the packet will be decap-sulated and removed from the 
GTP tunnel. The QoS DSCP field contains the DiffServe Code Point, if any, for the bearer 
in the case of a dedicated bearer. This field may be empty if the bearer is a default bearer 
with best effort QoS, but will contain nonzero values if the bearer QoS is more than best 
effort.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 98 of 1100



99 

No. ʼ111 Patent Claim 15 Kempf 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0115] (“In another embodiment, OpenF!ow 1.2 supports an extensible match 
structure, OXM, shown in FIG. 22, in which the flow match is encoded as a type-length-
value. The oxm_ class field values 0x0000 to 0x7FFF are reserved for Open Network 
Foundation members, Ox8000 to 0xFFFE are reserved for future standardization, and 
0xFFFF is designated for experimentation. The oxm_field identifies a subtype within the 
class, the HM field specifies whether the value contains a bitmask (yes=l, no=0), and 
oxm_length contains the length of the value payload.”) 
 
Kempf at [0116] (“For GTP TEID routing, we define a value payload by the 
ersmt_gtp_match structure: Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 99 of 1100



100 

No. ʼ111 Patent Claim 15 Kempf 
 

 
 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Kempf discloses wherein the analyzing comprises checking part of, or whole of, the payload 
field.  
 
For example, Kempf discloses processing the message type field of the packet.  
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 100 of 1100



101 

No. ʼ111 Patent Claim 15 Kempf 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0115] (“In another embodiment, OpenF!ow 1.2 supports an extensible match 
structure, OXM, shown in FIG. 22, in which the flow match is encoded as a type-length-
value. The oxm_ class field values 0x0000 to 0x7FFF are reserved for Open Network 
Foundation members, Ox8000 to 0xFFFE are reserved for future standardization, and 
0xFFFF is designated for experimentation. The oxm_field identifies a subtype within the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 101 of 1100



102 

No. ʼ111 Patent Claim 15 Kempf 
class, the HM field specifies whether the value contains a bitmask (yes=l, no=0), and 
oxm_length contains the length of the value payload.”) 
 
Kempf at [0116] (“For GTP TEID routing, we define a value payload by the 
ersmt_gtp_match structure: 
 

 
 

 
No. ʼ111 Patent Claim 16 Kempf 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Kempf discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 
 

16[b] the header comprises 
one or more flag bits, 
and  

Kempf discloses the header comprises one or more flag bits. 
 
For example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 102 of 1100



103 

No. ʼ111 Patent Claim 16 Kempf 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 103 of 1100



104 

No. ʼ111 Patent Claim 16 Kempf 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 104 of 1100



105 

No. ʼ111 Patent Claim 16 Kempf 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenFlow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 105 of 1100



106 

No. ʼ111 Patent Claim 16 Kempf 
 
 

16[c] wherein the packet-
applicable criterion is 
that one or more of the 
flag bits is set.  

Kempf discloses wherein the packet-applicable criterion is that one or more of the flag bits 
is set. 
 
For example, Kempf flow table matches in which the flag bits is set. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 106 of 1100



107 

No. ʼ111 Patent Claim 16 Kempf 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 107 of 1100



108 

No. ʼ111 Patent Claim 16 Kempf 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 108 of 1100



109 

No. ʼ111 Patent Claim 16 Kempf 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at Figure 10 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 109 of 1100



110 

No. ʼ111 Patent Claim 16 Kempf 

 
 

 
No. ʼ111 Patent Claim 17 Kempf 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 
Protocol (TCP) packet, 
and  

Kempf discloses the method according to claim 16, wherein the packet is an Transmission 
Control Protocol (TCP) packet. 
 
For example, Kempf discloses packets in a network that are part of the Transmission 
Control Protocol. 
 
See supra at Claim 16. 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 110 of 1100



111 

No. ʼ111 Patent Claim 17 Kempf 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 111 of 1100



112 

No. ʼ111 Patent Claim 17 Kempf 
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
 

17[b] wherein the one or 
more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

Kempf discloses wherein the one or more flag bits comprises comprise a SYN flag bit, an 
ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
For example, Kempf discloses packet headers with flag bits.  A person of ordinary skill in 
the art would understand that such flag bits can comprise a SYN flag bit, an ACK flag bit, a 
FIN flag bit, a RST flag bit, or any combination thereof. Thus, at least under the apparent 
claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the 
extent that the Kempf is found to not meet this limitation, wherein the one or more flag bits 
comprises comprise a SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any 
combination thereof would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 112 of 1100



113 

No. ʼ111 Patent Claim 17 Kempf 
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 113 of 1100



114 

No. ʼ111 Patent Claim 17 Kempf 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 114 of 1100



115 

No. ʼ111 Patent Claim 17 Kempf 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenFlow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Kempf in combination with (1) the knowledge of a person of ordinary skill in the art, alone 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 115 of 1100



116 

No. ʼ111 Patent Claim 17 Kempf 
or in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 17[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets with flag bits including SYN, ACK, FIN, and 
R flag bits, i.e., wherein the one or more flag bits comprise a SYN flag bit, an ACK flag bit, 
a FIN flag bit, a RST flag bit, or any combination thereof. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 116 of 1100



117 

No. ʼ111 Patent Claim 17 Kempf 
 
Copeland at [0090] (“Host2 responds with a SYN-ACK packet. In this message, both the 
SYN flag and the ACK flag are set. Host2 provides the initial sequence number for its data 
to Hostl. Host2 also sends to Hostl the acknowledgment number that is the next sequence 
number Host2 expects to receive from host 1. In the SYN-ACK packet sent by Host2, the 
acknowl-edgment number is the initial sequence number of Hostl plus 1, which should be 
the next sequence number received.”) 
 
Copeland at [0091] (“Hostl responds to the SYN-ACK with a packet with just the ACK flag 
set. Hostl acknowledges that the next packet of information received from Host2 will be 
Host2's initial sequence number plus 1. The three-way handshake is complete and data is 
transferred.”) 
 
Copeland at [0092] (“Host2 responds to ACK packet with its own ACK packet. Host2 
acknowledges the data it has received from Hostl by sending an acknowledgment number 
one greater than its last received data sequence number. Both hosts send packets with the 
ACK flag set until the session is to end although the P and U flags may also be set, if 
warranted.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0094] (“Host2 acknowledges the FIN packet by sending its own ACK packet. 
The ACK packet has the acknowledge-ment number one greater than the sequence number 
of Hostl's FIN-ACK packet. ACK packets are still delivered between the two hosts, except 
that HOSTl's packets have no data appended to the TCP/IP end of the headers.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 117 of 1100



118 

No. ʼ111 Patent Claim 17 Kempf 
As another example, Uchida discloses the TCP (Transmission Control Protocol) FIN flag, 
RST flag, and SYN flag i.e., the one or more flag bits comprises comprise a SYN flag bit, 
an ACK flag bit, a FIN flag bit, a RST flag bit. 
 
Uchida at [0040] (“A flow end can be detected by various methods as below. For example, 
in one method, a protocol end message is checked. For example, in the TCP (Transmission 
Control Protocol), a FIN flag is checked. In this way, the end of communication, that is, the 
end of a flow using communica-tion, can be detected. In practice, after a FIN flag, 
communi-cation with an ACK packet is generated in a reverse-direction flow (a flow in 
which the source and the destination are reversed). Thus, by detecting the ACK flag in the 
reverse-direction flow after the FIN packet, a flow end can be deter-mined. Further, since 
the TCP is used in bidirectional com-munication, the forward- and reverse-direction flows 
can be used as a pair to determine a flow end. Namely, if the end of a flow is detected, a 
process rule corresponding to the reverse-direction flow of the flow can also be determined 
to be unnec-essary. Alternatively, a communication end can also be deter-mined when a 
predetermined time elapses after reception of a SYN packet and a timeout is determined. 
Still alternatively, a communication end can be determined by reception of a RST packet. 
These methods will be described in more detail later as specific examples.”) 
 
Uchida at [0050] (“The flow end check unit can use at least one of a TCP (Transmission 
Control Protocol) FIN flag, RST flag, and SYN flag extracted by the end determination 
information extraction unit to determine a flow end.”) 
 
Uchida at [0055] (“In the process rule update method, a flow end can be determined by at 
least one of a TCP (Transmission Control Protocol) FIN flag, RST flag, and SYN flag.”) 
 
Uchida at [0102] (“Next, specific examples 1 to 3 will be described. In the examples 1 to 3, 
a flow end is determined by combining features of the above individual exemplary 
embodiments and using TCP (Transmission Control Protocol) flags.”) 
 
Uchida at [0103] (“FIG. 6 is a state transition diagram of TCP connec-tion. "CLOSED" at 
the top of FIG. 6 represents the end of TCP communication, and portions connected thereto 
repre-sent states prior to the end of TCP communication. Approxi-mately 2MSL (MSL: 
Maximum Segment Lifetime) is the maximum amount of time required to reach the above Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 118 of 1100



119 

No. ʼ111 Patent Claim 17 Kempf 
"CLOSED," that is, if the packet forwarding apparatus stands by for approximately 2MSL 
after both FINs flow, the above "CLOSED" is reached. Thus, after a FIN is confirmed in 
either direction, if this 2MSL elapses, basically, a communi-cation end can be determined. 
Even if the state does not change smoothly because of packet loss or the like (for example, 
even if an ACK packet does not arrive after "CLOS-ING"), a retransmitted packet is 
forwarded immediately after this 2MSL. Thus, the end of TCP communication can be 
determined if a new FIN packet is not received within the time corresponding to the 2MSL 
and a margin (2MSL+a) at long-est.”) 
 
Uchida at [0104] (“Hereinafter, the description will be made, assuming that a packet 
forwarding apparatus Cl according to the present invention relays TCP communication 
between a com-puter (client) Dl 0 and a server D20 that use network configu-rations 
illustrated in FIG. 7. In the example of FIG. 7, the computer Dl0 belongs to a network 
represented by 192.168. 0./24 and is set by 192.168.0.10. The server D20 belongs to a 
network represented by 192.168.1./24 and is set by 192.168. 1.10. As in the case of the 
OpenFlow controller described in Non-Patent Documents 1 and 2, a control apparatus ( 
control-ler) Dl is connected to the packet forwarding apparatus Cl via a dedicated channel 
and manages connection between the two networks. In the following description, the control 
appa-ratus (controller) Dl controls the packet forwarding appara-tus Cl so that connection 
from other networks appears as communication from network number 1 (192.168.1.1) of the 
respective networks (see process rule actions in FIG. 19). In addition, in the present specific 
example, since FIN packets are monitored, the end determination information extraction 
unit Cl 7 monitors a protocol stack, including: fields in which the TCP is determined; and 
the FIN flag in the TCP header.”) 
  
Uchida at [0105] (“FIG. 8 is a flow chart of a flow end determination process using FIN 
flags. In FIG. 8, steps relating to a timeout determination are added to steps Slll to S116 in 
the flow chart in FIG. 3. Thus, the flow chart in FIG. 8 includes more detailed steps than the 
flow chart of FIG. 3. Hereinafter, operations will be described with reference to FIGS. 3, 6, 
and 8 and FIGS. 9 to 13. In practice, prior to TCP/IP communi-cation, ARP (Address 
Resolution Protocol) communication is executed, and a process rule may be set in that stage. 
However, for ease of description, description of the ARP communication will be omitted. 
The following description will be made based on communication at the TCP/IP level.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 119 of 1100



120 

No. ʼ111 Patent Claim 17 Kempf 
Uchida at [0106] (“First, the computer Dl0 starts communication with the server D20. For 
an initial establishment of communica-tion, a packet (SYN) is inputted to the packet 
forwarding apparatus Cl (start of ACTIVE OPEN through SYN forward-ing in FIG. 6). The 
packet reception unit Cl0 receives and stores this first packet in the packet storage unit Cll 
(steps SlOl to S102 in FIG. 3).”) 
 
Uchida at [0107] (“The packet reception unit C10 notifies the packet process information 
extraction unit C12 and the end determination information extraction unit C17 of reception 
of the packet. The packet process information extraction unit C12 refers to the packet 
storage unit C11 and extracts information such as IP source and destination information that 
is necessary to search for a process rule (step S103 in FIG. 3). Hereinafter, a process 
corresponding to steps S103 to S110 in FIG. 3 will be executed.”) 
 
Uchida at [0115] (“Upon receiving a notification that the packet has been received by the 
packet reception unit Cl 0, the end deter-mination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN flag (step S201 in 
FIG. 8).”) 
 
Uchida at [0116] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 1; the source address is 192.168. 
0.10; the destination is 192.168.1.10; and the protocol is TCP (the type is Ox0006)) and 
stands by until forwarding of the packet. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a process rule to be deleted 
from the packet storage unit Cll. Since the IP address is replaced, the extracted information 
for identifying a process rule to be deleted represents that the source address is 192.168.1.1; 
the destination is 192.168.1.1 0; and the protocol is TCP (the type is 0x0006). The 
information is used for marking of the reverse flow. The end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the FIN 
packet has been received and these items of information (step S202 in FIG. 8).”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 120 of 1100



121 

No. ʼ111 Patent Claim 17 Kempf 
Uchida at [0117] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203). These steps correspond to 
steps Slll to S114 in FIG. 3.”) 
 
 
Uchida at [0121] (“Next, after an ACK reply in response to the FIN packet from the 
computer DlO is forwarded from the server D20 in the same way as the above normal 
packet (start of PASSIVE CLOSE in FIG. 6), the server D20 transmits a FIN packet to the 
computer DlO. When this FIN packet is inputted to the packet forwarding apparatus Cl, the 
flow end determi-nation process from steps Slll to S116 is started, as in the case of the 
above start of ACTIVE CLOSE.”) 
 
Uchida at [0122] (“Upon receiving a notification that the packet has been received from the 
packet reception unit Cl0, the end determination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN packet (step S201 in 
FIG. 8).”) 
 
Uchida at [0123] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a modified process rule represents that the source address is 192.168.1. 10; the 
destination is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extrac-tion unit Cl 
7 notifies the flow end check unit C18 of the notification that the FIN packet has been 
received and these items of information (step S202 in FIG. 8).”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 121 of 1100



122 

No. ʼ111 Patent Claim 17 Kempf 
Uchida at [0124] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203 in FIG. 8). These steps 
correspond to steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0125] (“At this point, since a FIN packet has been transmit-ted, the flow end 
check unit C18 uses the information for identifying a process rule to be deleted as a key, 
extracts the process rule (process rule corresponding to ingress port 2 in FIG. 11) from the 
process rule storage unit C13, and marks a FIN packet reception flag (steps S204 to S205 in 
FIG. 8). This process corresponds to the internal state update process in step S115 in FIG. 
3.”) 
 
Uchida at [0134] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there are two cases where "CLOSED" at the top of FIG. 6 is reached without a state 
transition involving FIN flags. One case arises when the ses-sion is closed from 
SYN_SENT, which is reached when a SYN packet in which a SYN flag is marked is 
transmitted. The other case arises when a timeout is generated. In such case, while the 
packet forwarding apparatus cannot monitor the closed session, the packet forwarding 
apparatus can con-firm a timeout in the following way. In the present specific example, a 
flow end is determined by this timeout.”) 
 
Uchida at [0135] (“n the present specific example, if a SYN/ ACK packet does not flow in a 
direction opposite to the SYN packet flow direction within a predetermined time (from 
"SYN_ RCVD" to "SYN_SENT" in FIG. 6), a timeout is determined.”) 
 
Uchida at [0136] (“FIG. 14 is a flow chart illustrating a flow end deter-mination process 
using a SYN flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the dif-ference.”) 
 
Uchida at [0137] (“In FIG. 14, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage, unit Cll, monitors a TCP SYN flag, and finds a SYN 
packet (step S301 in FIG. 14).”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 122 of 1100



123 

No. ʼ111 Patent Claim 17 Kempf 
Uchida at [0138] (“Since a SYN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a process rule repre-sents that the source address is 192.168.1.10; the destination 
is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is used for 
marking of the reverse flow. The end determination information extraction unit Cl 7 notifies 
the flow end check unit C18 of the notification that the SYN packet has been received and 
these items of information (step S302 in FIG. 14).”) 
 
Uchida at [0139] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether a SYN flag is 
set in a prede-termined packet header position and an ACK flag is not marked (step S303 in 
FIG. 14). These steps correspond to steps Slll to S114 in FIG. 3.”)  
 
Uchida at [0148] (“ Next, a third specific example in which a flow end determination is 
executed by using a TCP RST (reset) flag will be described.”) 
 
Uchida at [0149] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there is a transition from "SYN_ RCVD," which is a communication establishment 
standby state, to "LISTEN," which is a communication standby state. A TCP RST (reset) 
flag signifies release of connection and retry of communication. Namely, since a RST 
packet in which this RST flag is set signifies invalidation of communi-cation, by detecting 
this RST flag, a flow end can be deter-mined.”) 
 
Uchida at [0150] (“FIG. 16 is a first flow chart illustrating a flow end determination process 
using a RST flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the difference.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 123 of 1100



124 

No. ʼ111 Patent Claim 17 Kempf 
Uchida at [0151] (“In FIG. 16, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage unit Cll, monitors a TCP RST flag, and finds a RST packet 
(step S401 in FIG. 16).”) 
 
Uchida at [0152] (“Since a RST flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the RST 
packet has been received and these items of information ( step S402 in FIG. 16).”) 
 
Uchida at [0164] (“For example, in a specific example of the present invention, certain TCP 
flags are monitored. A single packet forwarding apparatus can monitor these flags in a 
parallel fashion. For example, after a packet that triggers a flow end is detected, the above 
process may be allowed to branch to the above FIGS. 8, 14, and 16 (17) to realize parallel 
monitoring.”) 
 
 

 
No. ʼ111 Patent Claim 18 Kempf 

18[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Kempf discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Kempf discloses the header comprises at least the first and second entities addresses in the 
packet network. 
 
For example, Kempf discloses headers with source and destination addresses of the 
electronic devices in the network in which the packet is sent. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 124 of 1100



125 

No. ʼ111 Patent Claim 18 Kempf 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0059] (In the EPC, a bearer is a transmission channel through an EPC packet 
network which has a defined set of data transmission characteristics ( quality of service data 
rate and flow control). EPC bearers are typically implemented at the network layer as 
DiffServ Code Points (DSCPs) or at the MAC layer as IEEE 802.lq VLANs with 802.lp 
(incorpo-rated into the 802.ld standard0 traffic class priorities,. The PCRF (Policy and 
Charging Resource Function) 801 identi-fies packet flows from the user equipment (UE) 
807 that require bearers based on service requests from subsystems such as the IP 
multimedia subsystem (IMS). The packet flows to be included in a bearer are identified to 
the gateways and radio base station (E-NodeB) by 5 tuples, consisting of the IP source and 
destination address, the IP source and destination port, and the protocol identifier. The five 
tuples together with a DSCP for the QoS class identify an uplink and downlink packet filter. 
One bearer is set up per terminal IP address and QoS traffic class. The PCRF supplies a 
collection of four QoS parameters describing the bearer including: a quality class identifier 
(QCI) that specifies the QoS for the radio; allocation retention priority (ARP), which is an 
indicator of how the control plane should prioritize the bearer when requests for 
modification are made and resource conflicts arise; and a guaranteed bit rate (GBR) and 
maximum bit rate (MBR, optional) where these specify the guaranteed and maximum bit 
rates the bearer can receive. These are only defined for guaranteed-i.e. non-best effort-
bearers.”) 
 
Kempf at [0061] (“In addition to the QoS parameters, each bearer has an associated GTP 
tunnel. A GTP tunnel consists of the IP address of the tunnel endpoint nodes (radio base 
station, S-GW 803, and P-GW 805), a source and destination UDP port, and a Tunnel 
Endpoint Identifier (TEID). GTP tunnels are unidirectional, so each bearer is associated 
with two TEIDs, one for the uplink and one for the downlink tunnel. One set of GTP tunnels 
(uplink and downlink) extends between the radio base station and the S-GW 803 and one set Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 125 of 1100



126 

No. ʼ111 Patent Claim 18 Kempf 
extends between the S-GW 803 and the P-GW 805. The UDP destination port number for 
GTP-U is 2152 while the desti-nation port number for GTP-C is 2123. The source port 
num-ber is dynamically allocated by the sending node. FIG. 10 is a diagram of one 
embodiment of the header fields in the primary GTP-U encapsulation header.”) 
 
Kempf at [0079] (“FIG. 16 is a diagram of one embodiment of a process for EPC peering 
and differential routing for specialized ser-vice treatment. The OpenFlow signaling, 
indicated by the solid lines and arrows 1601, sets up flow rules and actions on the switches 
and gateways within the EPC for differential routing. These flow rules direct GTP flows to 
particular loca-tions. In this example, the operator in this case peers its EPC with two other 
fixed operators. Routing through each peering point is handled by the respective P-GW-Dl 
and P-GW-D2 1603A, B. The dashed lines and arrows 1605 show traffic from a UE 1607 
that needs to be routed to another peering operator. The flow rules and actions to distinguish 
which peering point the traffic should traverse are installed in the OpenFlow switches 1609 
and gateways 1603A, B by the OpenFlow controller 1611. The OpenFlow controller 1611 
calculates these flow rules and actions based on the routing tables it maintains for outside 
traffic, and the source and destination of the packets, as well as by any specialized 
for-warding treatment required for DSCP marked packets.”) 
 
Kempf at [0086] (“In one embodiment, an OpenFlow GTP gateway maintains a hash table 
mapping GTP TEIDs into the tunnel header fields for their bearers. FIG. 18 is a diagram of 
the structure of a flow table row. The TEID hash keys are calcu-lated using a suitable hash 
algorithm with low collision fre-quency, for example SHA-1. The gateway maintains one 
such flow table row for each GTP TEID/bearer. The TEID field contains the GTP TEID for 
the tunnel. The VLAN tags and MPLS labels fields contain an ordered list of VLAN tags 
and/or MPLS labels defining tunnels into which the packet needs to be routed. The VLAN 
priority bits and MPLS traffic class bits are included in the labels. Such tunnels may or may 
not be required. If they are not required, then these fields are empty. The tunnel origin 
source IP address contains the address on the encapsulating gateway to which any control 
traffic involving the tunnel should be directed (for example, error indications). The tunnel 
end destination IP address field contains the IP address of the gateway to which the tunneled 
packet should be routed, at which the packet will be decap-sulated and removed from the 
GTP tunnel. The QoS DSCP field contains the DiffServe Code Point, if any, for the bearer 
in the case of a dedicated bearer. This field may be empty if the bearer is a default bearer Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 126 of 1100



127 

No. ʼ111 Patent Claim 18 Kempf 
with best effort QoS, but will contain nonzero values if the bearer QoS is more than best 
effort.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 127 of 1100



128 

No. ʼ111 Patent Claim 18 Kempf 
18[c] wherein the packet-

applicable criterion is 
that the first entity 
address, the second 
entity address, or both 
match a predetermined 
address or addresses.  

Kempf discloses wherein the packet-applicable criterion is that the first entity address, the 
second entity address, or both match a predetermined address or addresses. 
 
For example, Kempf discloses the packet header field used in the flow table matching is a 
sources and/or destination address of the electronic devices. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 128 of 1100



129 

No. ʼ111 Patent Claim 18 Kempf 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 129 of 1100



130 

No. ʼ111 Patent Claim 18 Kempf 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 130 of 1100



131 

No. ʼ111 Patent Claim 18 Kempf 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0097] (“In one embodiment, the system implements han-dling of G-PDU packets 
with extension headers, sequence numbers, and N-PDU numbers. G-PDU packets with 
exten-sion headers, sequence numbers, and N-PDU numbers need to be forwarded to the 
local switch software control plane for processing. The OpenFlow controller programs 3 
rules for this purpose. They have the following common header fields: the IP destination 
address is an IP address on which the gateway is expecting GTP traffic; and the IP protocol 
type is UDP (17); the UDP destination port is the GTP-U destination port (2152).”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 131 of 1100



132 

No. ʼ111 Patent Claim 18 Kempf 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
 

 
No. ʼ111 Patent Claim 19 Kempf 

19 The method according 
to claim 18, wherein 
the addresses are 
Internet Protocol (IP) 
addresses.  

Kempf discloses the method according to claim 18, wherein the addresses are Internet 
Protocol (IP) addresses. 
 
For example, Kempf discloses packets with header fields comprised of Internet Protocol 
source and destination addresses. 
 
See supra at Claim 18. 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 132 of 1100



133 

No. ʼ111 Patent Claim 19 Kempf 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0052] (“Actions allow manipulating of tag stacks by pushing and popping labels. 
Combined with multiple tables, VLAN or MPLS label stacks can be processed by matching 
one label per table. FIG. 7 is a flow chart of one embodiment of a header parsing process. 
The parsing process matches a packet header by initializing a set of match fields (Block 
701) and checking for the presence of a set of different header types. The process checks for 
a VLAN tag (Block 703). If the VLAN tag is present, then there are a series of processing 
steps for the VLAN tag (Blocks 705-707). If the switch supports MPLS (Block 709), then 
there are a series of steps for detecting and processing the MPLS header information 
(Blocks 711-715). If the switch supports address resolution protocol (ARP), then there are a 
series of steps for processing the ARP header (Blocks 719 and 721). If the packet has an IP 
header (Block 723), then there are a series of steps for processing the IP header (Blocks 
725-733). This process is performed for each received packet.) 
 
Kempf at [0059] (“In the EPC, a bearer is a transmission channel through an EPC packet 
network which has a defined set of data transmission characteristics ( quality of service data 
rate and flow control). EPC bearers are typically implemented at the network layer as 
DiffServ Code Points (DSCPs) or at the MAC layer as IEEE 802.lq VLANs with 802.lp 
(incorpo-rated into the 802.ld standard0 traffic class priorities,. The PCRF (Policy and 
Charging Resource Function) 801 identi-fies packet flows from the user equipment (UE) 
807 that require bearers based on service requests from subsystems such as the IP 
multimedia subsystem (IMS). The packet flows to be included in a bearer are identified to 
the gateways and radio base station (E-NodeB) by 5 tuples, consisting of the IP source and 
destination address, the IP source and destination port, and the protocol identifier. The five 
tuples together with a DSCP for the QoS class identify an uplink and downlink packet filter. 
One bearer is set up per terminal IP address and QoS traffic class. The PCRF supplies a 
collection of four QoS parameters describing the bearer including: a quality class identifier 
(QCI) that specifies the QoS for the radio; allocation retention priority (ARP), which is an 
indicator of how the control plane should prioritize the bearer when requests for 
modification are made and resource conflicts arise; and a guaranteed bit rate (GBR) and 
maximum bit rate (MBR, optional) where these specify the guaranteed and maximum bit 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 133 of 1100



134 

No. ʼ111 Patent Claim 19 Kempf 
rates the bearer can receive. These are only defined for guaranteed-i.e. non-best effort-
bearers”) 
 
Kempf at [0061] (“In addition to the QoS parameters, each bearer has an associated GTP 
tunnel. A GTP tunnel consists of the IP address of the tunnel endpoint nodes (radio base 
station, S-GW 803, and P-GW 805), a source and destination UDP port, and a Tunnel 
Endpoint Identifier (TEID). GTP tunnels are unidirectional, so each bearer is associated 
with two TEIDs, one for the uplink and one for the downlink tunnel. One set of GTP tunnels 
(uplink and downlink) extends between the radio base station and the S-GW 803 and one set 
extends between the S-GW 803 and the P-GW 805. The UDP destination port number for 
GTP-U is 2152 while the desti-nation port number for GTP-C is 2123. The source port 
num-ber is dynamically allocated by the sending node. FIG. 10 is a diagram of one 
embodiment of the header fields in the primary GTP-U encapsulation header.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0086] (“In one embodiment, an OpenFlow GTP gateway maintains a hash table 
mapping GTP TEIDs into the tunnel header fields for their bearers. FIG. 18 is a diagram of 
the structure of a flow table row. The TEID hash keys are calcu-lated using a suitable hash 
algorithm with low collision fre-quency, for example SHA-1. The gateway maintains one 
such flow table row for each GTP TEID/bearer. The TEID field contains the GTP TEID for 
the tunnel. The VLAN tags and MPLS labels fields contain an ordered list of VLAN tags 
and/or MPLS labels defining tunnels into which the packet needs to be routed. The VLAN 
priority bits and MPLS traffic class bits are included in the labels. Such tunnels may or may 
not be required. If they are not required, then these fields are empty. The tunnel origin 
source IP address contains the address on the encapsulating gateway to which any control 
traffic involving the tunnel should be directed (for example, error indications). The tunnel Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 134 of 1100



135 

No. ʼ111 Patent Claim 19 Kempf 
end destination IP address field contains the IP address of the gateway to which the tunneled 
packet should be routed, at which the packet will be decap-sulated and removed from the 
GTP tunnel. The QoS DSCP field contains the DiffServe Code Point, if any, for the bearer 
in the case of a dedicated bearer. This field may be empty if the bearer is a default bearer 
with best effort QoS, but will contain nonzero values if the bearer QoS is more than best 
effort.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 135 of 1100



136 

No. ʼ111 Patent Claim 19 Kempf 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0097] (“In one embodiment, the system implements han-dling of G-PDU packets 
with extension headers, sequence numbers, and N-PDU numbers. G-PDU packets with 
exten-sion headers, sequence numbers, and N-PDU numbers need to be forwarded to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 136 of 1100



137 

No. ʼ111 Patent Claim 19 Kempf 
local switch software control plane for processing. The OpenFlow controller programs 3 
rules for this purpose. They have the following common header fields: the IP destination 
address is an IP address on which the gateway is expecting GTP traffic; and the IP protocol 
type is UDP (17); the UDP destination port is the GTP-U destination port (2152).”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0104] (“In one embodiment, the system implements han-dling of GTP-C and 
GTP' control packets. Any GTP-C and GTP' control packets that are directed to IP addresses 
on a gateway switch are in error. These packets need to be handled by the S-GW-C, P-GW-
C, and GTP' protocol entities in the cloud computing system, not the S-GW-D and P-GW-D 
enti-ties in the switches. To catch such packets, the OpenFlow controller must program the 
switch with the following two rules: the IP destination address is an IP address on which the 
gateway is expecting GTP traffic; the IP protocol type is UDP (17); for one rule, the UDP 
destination port is the GTP-U destination port (2152), for the other, the UDP destination 
port is the GTP-C destination port (2123); the GTP header flags and message type fields are 
wildcarded.”) 
 
 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 137 of 1100



138 

No. ʼ111 Patent Claim 20 Kempf 
20[a] The method according 

to claim 1, wherein the 
packet is an 
Transmission Control 
Protocol (TCP) packet 
that comprises source 
and destination TCP 
ports, a TCP sequence 
number, and a TCP 
sequence mask fields, 
and  

Kempf discloses the method according to claim 1, wherein the packet is an Transmission 
Control Protocol (TCP) packet that comprises source and destination TCP ports, a TCP 
sequence number, and a TCP sequence mask fields. 
 
For example, Kempf discloses packets that belong to the Transmission Control Protocol that 
include source and destination ports, sequence numbers, and mask fields. 
 
See supra at Claim 1, 17[a]. 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0097] (“In one embodiment, the system implements han-dling of G-PDU packets 
with extension headers, sequence numbers, and N-PDU numbers. G-PDU packets with Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 138 of 1100



139 

No. ʼ111 Patent Claim 20 Kempf 
exten-sion headers, sequence numbers, and N-PDU numbers need to be forwarded to the 
local switch software control plane for processing. The OpenFlow controller programs 3 
rules for this purpose. They have the following common header fields: the IP destination 
address is an IP address on which the gateway is expecting GTP traffic; and the IP protocol 
type is UDP (17); the UDP destination port is the GTP-U destination port (2152).”) 
  
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
  
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 139 of 1100



140 

No. ʼ111 Patent Claim 20 Kempf 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 

20[b] wherein the packet-
applicable criterion is 
that the source TCP 
port, the destination 
TCP port, the TCP 
sequence number, the 
TCP sequence mask, 
or any combination 
thereof, matches a 
predetermined value or 
values.  

Kempf discloses wherein the packet-applicable criterion is that the source TCP port, the 
destination TCP port, the TCP sequence number, the TCP sequence mask, or any 
combination thereof, matches a predetermined value or values. 
 
For example, Kempf discloses header fields including TCP include source and destination 
ports, sequence numbers, and mask fields as matching fields in the flow table. 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 140 of 1100



141 

No. ʼ111 Patent Claim 20 Kempf 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 141 of 1100



142 

No. ʼ111 Patent Claim 20 Kempf 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0097] (“In one embodiment, the system implements han-dling of G-PDU packets 
with extension headers, sequence numbers, and N-PDU numbers. G-PDU packets with 
exten-sion headers, sequence numbers, and N-PDU numbers need to be forwarded to the 
local switch software control plane for processing. The OpenFlow controller programs 3 
rules for this purpose. They have the following common header fields: the IP destination 
address is an IP address on which the gateway is expecting GTP traffic; and the IP protocol 
type is UDP (17); the UDP destination port is the GTP-U destination port (2152).”) 
  
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 142 of 1100



143 

 
No. ʼ111 Patent Claim 21 Kempf 

21 The method according 
to claim 1, wherein the 
packet network 
comprises a Wide 
Area Network (WAN), 
Local Area Network 
(LAN), the Internet, 
Metropolitan Area 
Network (MAN), 
Internet Service 
Provider (ISP) 
backbone datacenter 
network, or inter - 
datacenter network.  

Kempf discloses the method according to claim 1, wherein the packet network comprises a 
Wide Area Network (WAN), Local Area Network (LAN), the Internet, Metropolitan Area 
Network (MAN), Internet Service Provider (ISP) backbone datacenter network, or inter - 
datacenter network.  
 
For example, Kempf discloses a packet network including a local area network, wide area 
network, and the Internet. 
 
See supra at Claim 1. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 

 
No. ʼ111 Patent Claim 22 Kempf 

22 The method according 
to claim 1, wherein the 
first entity is a server 
device and the second 
entity is a client 
device, or wherein the 
first entity is a client 
device and the second 
entity is a server 
device. 

Kempf discloses the method according to claim 1, wherein the first entity is a server device 
and the second entity is a client device, or wherein the first entity is a client device and the 
second entity is a server device.  
 
For example, Kempf discloses electronic devices including subscriber end stations such as 
servers, laptops, smart phones, mobile phones, etc. that communicate packets between each 
other.  
 
 
See supra at Claim 1. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 143 of 1100



144 

No. ʼ111 Patent Claim 22 Kempf 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is 
a piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide 
sup-port for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 
aggregation, session border control, multicasting, and/or subscriber management), and/or 
provide support for multiple application services (e.g., data, voice, and video). Subscriber 
end stations ( e.g., servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, 
mul-timedia phones, Voice Over Internet Protocol (VOIP) phones, portable media players, 
GPS units, gaming systems, set-top boxes (STBs), etc.) access content/services provided 
over the Internet and/or content/services provided on virtual private networks (VPN s) 
overlaid on the Internet. The content and/or services are typically provided by one or more 
end stations ( e.g., server end stations) belonging to a service or content provider or end 
stations participating in a peer to peer service, and may include public web pages (free 
content, store fronts, search services, etc.), private web pages ( e.g., username/pass-word 
accessed web pages providing email services, etc.), corporate networks over VPNs, IPTV, 
etc. Typically, sub-scriber end stations are coupled ( e.g., through customer premise 
equipment coupled to an access network (wired or wirelessly)) to edge network elements, 
which are coupled (e.g., through one or more core network elements to other edge network 
elements) to other end stations (e.g., server end stations). 
 
Kempf at [0034] (“The embodiments of the present invention provide a method and system 
for avoiding the disadvantages of the prior art. The disadvantages of the prior art are that 
prior imple-mentations of the evolved packet core use a pool of servers that are dedicated to 
a specific network entity, such as a server pool that is dedicated to hosting a mobility 
management entity (MME). When additional signaling demands require that extra capacity, 
then a new MME instance is instantiated in the server pool. However, when demand is high 
for the services of a policy and charging rules function (PCRF) and low for MMEs, the 
server pool dedicated to the PCRF servers will be heavily utilized, but the server pool for 
the MMEs is underutilized. These underutilized server pools continue to require 
maintenance and incur operating expenses, but are not providing optimum performance for 
the network operator.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 144 of 1100



145 

No. ʼ111 Patent Claim 22 Kempf 
Kempf at [0035] (“In some situations, managed services companies build and run mobile 
operator networks, while the mobile operator itself handles marketing, billing, and customer 
rela-tions. The signaling and data traffic for each mobile operator network is kept private 
and isolated from the traffic of their competitors, even though their network and their 
competi-tors' networks may be managed by the same managed ser-vices company. The 
managed services company must main-tain a completely separate server pool and physical 
signaling network for each mobile operator it supports. As a result, there is a large 
duplication of resources and an underutiliza-tion of server capacity. This increases operating 
expenses for the managed services companies and the mobile operator network due to the 
additional equipment, power and cooling requirements.”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0143] (“In other embodiments, the split EPC architecture can be implemented in 
non-cloud and non-virtualized sys-tems. The control plane entities of the EPC architecture 
can be stored and executed on a single server or distributed across any number of servers or 
similar computing devices. Simi-larly, the control plane entities can be executed as standard 
software code and modules without virtualization or similar systems. These control plane 
entities can communicate with one another through local system or procedure calls, remote 
procedure calls or similar mechanisms. In further embodi-ments, a subset of the control 
plane entities can be virtualized or executed in a cloud computing system while another 
subset of the control plane entities can be executed in a server, distributed server system or 
similar system. The control plane entities can communicate with the data plane through the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 145 of 1100



146 

No. ʼ111 Patent Claim 22 Kempf 
use of the OpenFlow protocol as described herein above or through other control protocols 
as described herein below.”) 
 

 
No. ʼ111 Patent Claim 23 Kempf 

23[a] The method according 
to claim 22, wherein 
the server device 
comprises a web 
server, and  

Kempf discloses the method according to claim 22, wherein the server device comprises a 
web server. 
 
For example, Kempf discloses servers that include web servers for web service applications. 
 
See supra at Claim 22. 
 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is 
a piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide 
sup-port for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 
aggregation, session border control, multicasting, and/or subscriber management), and/or 
provide support for multiple application services (e.g., data, voice, and video). Subscriber 
end stations ( e.g., servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, 
mul-timedia phones, Voice Over Internet Protocol (VOIP) phones, portable media players, 
GPS units, gaming systems, set-top boxes (STBs), etc.) access content/services provided 
over the Internet and/or content/services provided on virtual private networks (VPN s) 
overlaid on the Internet. The content and/or services are typically provided by one or more 
end stations ( e.g., server end stations) belonging to a service or content provider or end 
stations participating in a peer to peer service, and may include public web pages (free 
content, store fronts, search services, etc.), private web pages ( e.g., username/pass-word 
accessed web pages providing email services, etc.), corporate networks over VPNs, IPTV, 
etc. Typically, sub-scriber end stations are coupled ( e.g., through customer premise 
equipment coupled to an access network (wired or wirelessly)) to edge network elements, 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 146 of 1100



147 

No. ʼ111 Patent Claim 23 Kempf 
which are coupled (e.g., through one or more core network elements to other edge network 
elements) to other end stations (e.g., server end stations).”) 
 
Kempf at [0034] (“The embodiments of the present invention provide a method and system 
for avoiding the disadvantages of the prior art. The disadvantages of the prior art are that 
prior imple-mentations of the evolved packet core use a pool of servers that are dedicated to 
a specific network entity, such as a server pool that is dedicated to hosting a mobility 
management entity (MME). When additional signaling demands require that extra capacity, 
then a new MME instance is instantiated in the server pool. However, when demand is high 
for the services of a policy and charging rules function (PCRF) and low for MMEs, the 
server pool dedicated to the PCRF servers will be heavily utilized, but the server pool for 
the MMEs is underutilized. These underutilized server pools continue to require 
maintenance and incur operating expenses, but are not providing optimum performance for 
the network operator.”) 
 
Kempf at [0035] (“In some situations, managed services companies build and run mobile 
operator networks, while the mobile operator itself handles marketing, billing, and customer 
rela-tions. The signaling and data traffic for each mobile operator network is kept private 
and isolated from the traffic of their competitors, even though their network and their 
competi-tors' networks may be managed by the same managed ser-vices company. The 
managed services company must main-tain a completely separate server pool and physical 
signaling network for each mobile operator it supports. As a result, there is a large 
duplication ofresources and an underutiliza-tion of server capacity. This increases operating 
expenses for the managed services companies and the mobile operator network due to the 
additional equipment, power and cooling requirements.”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 147 of 1100



148 

No. ʼ111 Patent Claim 23 Kempf 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 
 
Kempf at [0143] (“In other embodiments, the split EPC architecture can be implemented in 
non-cloud and non-virtualized sys-tems. The control plane entities of the EPC architecture 
can be stored and executed on a single server or distributed across any number of servers or 
similar computing devices. Simi-larly, the control plane entities can be executed as standard 
software code and modules without virtualization or similar systems. These control plane 
entities can communicate with one another through local system or procedure calls, remote 
procedure calls or similar mechanisms. In further embodi-ments, a subset of the control 
plane entities can be virtualized or executed in a cloud computing system while another 
subset of the control plane entities can be executed in a server, distributed server system or 
similar system. The control plane entities can communicate with the data plane through the 
use of the OpenFlow protocol as described herein above or through other control protocols 
as described herein below.”) 
 
 

23[b] wherein the client 
device comprises a 
smartphone, a tablet 
computer, a personal 
computer, a laptop 
computer, or a 
wearable computing 
device.  

Kempf discloses wherein the client device comprises a smartphone, a tablet computer, a 
personal computer, a laptop computer, or a wearable computing device. 
 
For example, Kempf discloses subscriber end points including smartphones, mobile phones, 
laptops, etc. 
 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is 
a piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide 
sup-port for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 
aggregation, session border control, multicasting, and/or subscriber management), and/or 
provide support for multiple application services (e.g., data, voice, and video). Subscriber 
end stations ( e.g., servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, 
mul-timedia phones, Voice Over Internet Protocol (VOIP) phones, portable media players, 
GPS units, gaming systems, set-top boxes (STBs), etc.) access content/services provided Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 148 of 1100



149 

No. ʼ111 Patent Claim 23 Kempf 
over the Internet and/or content/services provided on virtual private networks (VPN s) 
overlaid on the Internet. The content and/or services are typically provided by one or more 
end stations ( e.g., server end stations) belonging to a service or content provider or end 
stations participating in a peer to peer service, and may include public web pages (free 
content, store fronts, search services, etc.), private web pages ( e.g., username/pass-word 
accessed web pages providing email services, etc.), corporate networks over VPNs, IPTV, 
etc. Typically, sub-scriber end stations are coupled ( e.g., through customer premise 
equipment coupled to an access network (wired or wirelessly)) to edge network elements, 
which are coupled (e.g., through one or more core network elements to other edge network 
elements) to other end stations (e.g., server end stations).”) 
 
Kempf at [0065] (“A cloud computing system can be composed of any number of 
computing devices having any range of capabili-ties (e.g., processing power or storage 
capacity). The cloud computing system can be a private or public system. The computing 
devices can be in communication with one another across any communication system or 
network. A cloud com-puting system can support a single cloud or service or any number of 
discrete clouds or services. Services, applications and similar programs can be virtualized or 
executed as stan-dard code. In one embodiment, cloud computing systems can support web 
services applications. Web services applications consist of a load balancing front end that 
dispatches requests to a pool of Web servers. The requests originate from appli-cations on 
remote machines on the Internet and therefore the security and privacy requirements are 
much looser than for applications in a private corporate network.”) 

 
No. ʼ111 Patent Claim 24 Kempf 

24 The method according 
to claim 22, wherein 
the communication 
between the network 
node and the controller 
is based on, or uses, a 
standard protocol.  

Kempf discloses the method according to claim 22, wherein the communication between the 
network node and the controller is based on, or uses, a standard protocol. 
 
For example, Kempf discloses communication between network elements and the 
OpenFlow controller based on standard protocols including GPRS, GTP, OpenFlow, etc. 
 
See supra at Claim 22. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 149 of 1100



150 

No. ʼ111 Patent Claim 24 Kempf 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 150 of 1100



151 

No. ʼ111 Patent Claim 24 Kempf 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 151 of 1100



152 

No. ʼ111 Patent Claim 24 Kempf 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0074] (“The operation of the EPC cloud computer system as follows. The UE 
1317, E-NodeB 1317, S-GW-C 1307, and P-GW-C signal 1307 to the MME, PCRF, and 
HSS 1307 using the standard EPC protocols, to establish, modify, and delete bearers and 
GTP tunnels. This signaling triggers pro-cedure calls with the OpenFlow controller to 
modify the routing in the EPC as requested. The OpenFlow controller configures the 
standard OpenFlow switches, the Openflow S-GW-D 1315, and P-GW-D 1311 with flow 
rules and actions to enable the routing requested by the control plane entities. Details of this 
configuration are described in further detail herein below.) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 152 of 1100



153 

No. ʼ111 Patent Claim 24 Kempf 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 
 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 153 of 1100



154 

No. ʼ111 Patent Claim 27 Kempf 
27 The method according 

to claim 1, wherein the 
network node 
comprises a router, a 
switch, or a bridge.  

Kempf discloses the method according to claim 1, wherein the network node comprises a 
router, a switch, or a bridge. 
 
For example, Kempf discloses network elements such as a router, switch, bridge, etc. 
 
See supra at Claim 1. 
 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is a 
piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide sup-port 
for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 aggregation, 
session border control, multicasting, and/or subscriber management), and/or provide support 
for multiple application services (e.g., data, voice, and video). Subscriber end stations ( e.g., 
servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, mul-timedia phones, 
Voice Over Internet Protocol (VOIP) phones, portable media players, GPS units, gaming 
systems, set-top boxes (STBs), etc.) access content/services provided over the Internet and/or 
content/services provided on virtual private networks (VPN s) overlaid on the Internet. The 
content and/or services are typically provided by one or more end stations ( e.g., server end 
stations) belonging to a service or content provider or end stations participating in a peer to 
peer service, and may include public web pages (free content, store fronts, search services, 
etc.), private web pages ( e.g., username/pass-word accessed web pages providing email 
services, etc.), corporate networks over VPNs, IPTV, etc. Typically, sub-scriber end stations 
are coupled ( e.g., through customer premise equipment coupled to an access network (wired 
or wirelessly)) to edge network elements, which are coupled (e.g., through one or more core 
network elements to other edge network elements) to other end stations (e.g., server end 
stations).”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 154 of 1100



155 

No. ʼ111 Patent Claim 27 Kempf 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.”) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 155 of 1100



156 

No. ʼ111 Patent Claim 27 Kempf 
 

 
No. ʼ111 Patent Claim 28 Kempf 

28 The method according 
to claim 1, wherein the 
packet network is an 
Internet Protocol (IP) 
network, and the 
packet is an IP packet.  

Kempf discloses the method according to claim 1, wherein the packet network is an Internet 
Protocol (IP) network, and the packet is an IP packet. 
 
For example, Kempf discloses routing IP packets on an IP network. 
 
See supra at Claim 1. 
 
Kempf at [0003] (“The general packet radios system (GPRS) is a sys-tem that is used for 
transmitting Internet Protocol packets between user devices such as cellular phones and the 
Internet. The GPRS system includes the GPRS core network, which is an integrated part of 
the global system for mobile communi-cation (GSM). These systems are widely utilized by 
cellular phone network providers to enable cellular phone services over large areas.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 156 of 1100



157 

No. ʼ111 Patent Claim 28 Kempf 
Kempf at [0136] (“Characteristics of the GTP bearer are changed using a modify bearer 
request procedure. Such changes may, for example, include the QoS assigned to the IP 
packets. This procedure is used in a variety of EPC message sequences, for example, a UE 
triggered service request.”) 
 
Kempf at [0137] (“FIG. 21 is a diagram of one embodiment of the OpenFlow message 
sequence for the modify bearer request procedure. As with session creation, the EPC cloud 
control plane MME issues a modify bearer request message to the SGW-C and the SGW-C 
issues a modify bearer request mes-sage to the PGW-C. The PGW-C then optionally begins 
a policy and charging enforcement function (PCEF) initiated Internet Protocol connectivity 
access network (IP-CAN) ses-sion modification process with the PCRF. When this process 
completes, the PGW-C issues a GTP routing update RPC to the OpenFlow controller 
including the new bearer update information. The OpenFlow controller then issues GTP 
extended OpenFlow messages to the SGW-D, GxOFSes, and the PGW-D.”) 
 

 
No. ʼ111 Patent Claim 29 Kempf 

29 The method according 
to claim 28, wherein 
the packet network is 
an Transmission 
Control Protocol 
(TCP) network, and 
the packet is an TCP 
packet.  

Kempf discloses the method according to claim 28, wherein the packet network is an 
Transmission Control Protocol (TCP) network, and the packet is an TCP packet. 
 
For example, Kempf discloses routing TCP packets in a TCP network. 
 
See supra at Claim 28. 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 157 of 1100



158 

No. ʼ111 Patent Claim 29 Kempf 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0089] (“In one embodiment, the system implements a GTP fast path 
encapsulation virtual port. When requested by the S-GW-C and P-GW-C control plane 
software running in the cloud computing system, the OpenFlow controller programs the 
gateway switch to install rules, actions, and TEID hash table entries for routing packets into 
GTP tunnels via a fast path GTP encapsulation virtual port. The rules match the packet filter 
for the input side of GTP tunnel's bearer. Typi-cally this will be a 4 tuple of: IP source 
address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The IP source address and destination address are typically the addresses 
for user data plane traffic, i.e. a UE or Internet service with which a UE is transacting, and 
similarly with the port numbers. For a rule matching the GTP-U tunnel input side, the 
associated instructions and are the following: 
 
Write-Metadata ( GTP-TEID, OxFFFFFFFF)  
Apply-Actions (Set-Output-Port GTP-Encap-VP”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 158 of 1100



159 

No. ʼ111 Patent Claim 29 Kempf 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
 

 
No. ʼ111 Patent Claim 30 Kempf 

30[a] The method according 
to claim 1, further 
comprising: receiving, 
by the network node 
from the first entity 
over the packet 
network, one or more 
additional packets;  

Kempf discloses the method according to claim 1, further comprising: receiving, by the 
network node from the first entity over the packet network, one or more additional packets. 
 
For example, Kempf discloses communication between electronic devices in which 
additional data packets are sent from one electronic device to another destination device via 
the network elements. 
 
See supra at Claim 1, 1[c]. 
 
Kempf at [0003] (“The general packet radios system (GPRS) is a sys-tem that is used for 
transmitting Internet Protocol packets between user devices such as cellular phones and the 
Internet. The GPRS system includes the GPRS core network, which is an integrated part of 
the global system for mobile communi-cation (GSM). These systems are widely utilized by 
cellular phone network providers to enable cellular phone services over large areas.”) 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0032] (“The techniques shown in the figures can be imple-mented using code and 
data stored and executed on one or more electronic devices ( e.g., an end station, a network 
ele-ment, etc.). Such electronic devices store and communicate (internally and/or with other Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 159 of 1100



160 

No. ʼ111 Patent Claim 30 Kempf 
electronic devices over a net-work) code and data using non-transitory machine-readable or 
computer-readable media, such as non-transitory machine-readable or computer-readable 
storage media ( e.g., magnetic disks; optical disks; random access memory; read only 
memory; flash memory devices; and phase-change memory). In addition, such electronic 
devices typically include a set of one or more processors coupled to one or more other 
compo-nents, such as one or more storage devices, user input/output devices (e.g., a 
keyboard, a touch screen, and/or a display), and network connections. The coupling of the 
set of proces-sors and other components is typically through one or more busses and bridges 
(also termed as bus controllers). The stor-age devices represent one or more non-transitory 
machine-readable or computer-readable storage media and non-tran-sitory machine-readable 
or computer-readable communication media. Thus, the storage device of a given electronic 
device typically stores code and/or data for execu-tion on the set of one or more processors 
of that electronic device. Of course, one or more parts of an embodiment of the invention 
may be implemented using different combinations of software, firmware, and/or 
hardware.”) 
 
Kempf at [0033] (“As used herein, a network element (e.g., a router, switch, bridge, etc.) is 
a piece of networking equipment, including hardware and software, that communicatively 
interconnects other equipment on the network (e.g., other network elements, end stations, 
etc.). Some network elements are "multiple services network elements" that provide 
sup-port for multiple networking functions (e.g., routing, bridg-ing, switching, Layer 2 
aggregation, session border control, multicasting, and/or subscriber management), and/or 
provide support for multiple application services (e.g., data, voice, and video). Subscriber 
end stations ( e.g., servers, worksta-tions, laptops, palm tops, mobile phones, smart phones, 
mul-timedia phones, Voice Over Internet Protocol (VOIP) phones, portable media players, 
GPS units, gaming systems, set-top boxes (STBs), etc.) access content/services provided 
over the Internet and/or content/services provided on virtual private networks (VPN s) 
overlaid on the Internet. The content and/or services are typically provided by one or more 
end stations ( e.g., server end stations) belonging to a service or content provider or end 
stations participating in a peer to peer service, and may include public web pages (free 
content, store fronts, search services, etc.), private web pages ( e.g., username/pass-word 
accessed web pages providing email services, etc.), corporate networks over VPNs, IPTV, 
etc. Typically, sub-scriber end stations are coupled ( e.g., through customer premise 
equipment coupled to an access network (wired or wirelessly)) to edge network elements, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 160 of 1100



161 

No. ʼ111 Patent Claim 30 Kempf 
which are coupled (e.g., through one or more core network elements to other edge network 
elements) to other end stations (e.g., server end stations).”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.”) 
 
Kempf at [0079] (“FIG. 16 is a diagram of one embodiment of a process for EPC peering 
and differential routing for specialized ser-vice treatment. The OpenFlow signaling, 
indicated by the solid lines and arrows 1601, sets up flow rules and actions on the switches 
and gateways within the EPC for differential routing. These flow rules direct GTP flows to 
particular loca-tions. In this example, the operator in this case peers its EPC with two other 
fixed operators. Routing through each peering point is handled by the respective P-GW-Dl 
and P-GW-D2 1603A, B. The dashed lines and arrows 1605 show traffic from a UE 1607 
that needs to be routed to another peering operator. The flow rules and actions to distinguish 
which peering point the traffic should traverse are installed in the OpenFlow switches 1609 
and gateways 1603A, B by the OpenFlow controller 1611. The OpenFlow controller 1611 
calculates these flow rules and actions based on the routing tables it maintains for outside 
traffic, and the source and destination of the packets, as well as by any specialized 
for-warding treatment required for DSCP marked packets.”) 
 

30[b] checking, by the 
network node, if any 
one of the one or more 
additional packets 
satisfies the criterion;  

Kempf discloses checking, by the network node, if any one of the one or more additional 
packets satisfies the criterion. 
 
See supra at Claim 1[d], 30[a]. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 161 of 1100



162 

No. ʼ111 Patent Claim 30 Kempf 
30[c] responsive to an 

additional packet not 
satisfying the criterion, 
sending, by the 
network node over the 
packet network, the 
additional packet to 
the second entity; and  

Kempf discloses responsive to an additional packet not satisfying the criterion, sending, by 
the network node over the packet network, the additional packet to the second entity. 
 
See supra at Claim 1[e], 30[a]. 
 

30[d] responsive to the 
additional packet 
satisfying the criterion, 
sending the additional 
packet, by the network 
node over the packet 
network, in response 
to the instruction.  

Kempf discloses responsive to the additional packet satisfying the criterion, sending the 
additional packet, by the network node over the packet network, in response to the 
instruction. 
 
See supra at Claim 1[f], 30[a]. 
 

 
No. ʼ111 Patent Claim 31 Kempf 

31[a] The method according 
to claim 1, wherein the 
packet network is a 
Software Defined 
Network (SDN),  
 

Kempf discloses the method according to claim 1, wherein the packet network is a Software 
Defined Network (SDN). 
 
For example, Kempf discloses a packet network using the OpenFlow protocol.  A person of 
ordinary skill in the art would understand that the OpenFlow protocol is used in Software 
Defined Networks. 
 
See supra at Claim 1. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 162 of 1100



163 

No. ʼ111 Patent Claim 31 Kempf 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 163 of 1100



164 

No. ʼ111 Patent Claim 31 Kempf 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 164 of 1100



165 

No. ʼ111 Patent Claim 31 Kempf 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 

31[b] the packet is routed as 
part of a data plane 
and 

Kempf discloses the packet is routed as part of a data plane. 
 
For example, Kempf discloses routing packets on a data plane using a control protocol. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 165 of 1100



166 

No. ʼ111 Patent Claim 31 Kempf 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 166 of 1100



167 

No. ʼ111 Patent Claim 31 Kempf 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 167 of 1100



168 

No. ʼ111 Patent Claim 31 Kempf 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the 
mobile operators may even share base stations and EPC switching fabrics, though the 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 168 of 1100



169 

No. ʼ111 Patent Claim 31 Kempf 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 169 of 1100



170 

No. ʼ111 Patent Claim 31 Kempf 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 

31[c] the network node 
communication with 
the controller serves as 
a control plane. 
 

Kempf discloses the network node communication with the controller serves as a control. 
 
For example, Kempf discloses communication between network elements and an OpenFlow 
controller over a control plane. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 170 of 1100



171 

No. ʼ111 Patent Claim 31 Kempf 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 171 of 1100



172 

No. ʼ111 Patent Claim 31 Kempf 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 172 of 1100



173 

No. ʼ111 Patent Claim 31 Kempf 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the 
mobile operators may even share base stations and EPC switching fabrics, though the 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 173 of 1100



174 

No. ʼ111 Patent Claim 31 Kempf 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 174 of 1100



1 

EXHIBIT D-2 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

 
Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 

U.S. Patent Publication No. 2013/0322242 to Swenson et al. (“Swenson”) 
 
As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because Swenson 
meets each element of those claims, and/or (2) 35 U.S.C. § 103 because Swenson renders those claims obvious either alone, or in 
combination with the knowledge of a person having ordinary skill in the art, and in further combination with the references 
specifically identified below and in the following claim chart and/or one or more references identified in Defendant’s Preliminary 
Invalidity Contentions.  The following quotations and diagrams come from Swenson titled “Real-Time Network Monitoring And 
Subscriber Identification With An On-Demand Appliance”, which was filed on May 31, 2013, and published on December 5, 2013. 
 
Motivations to combine the disclosures in Swenson with disclosures in other publications known in the art, as explained in this chart, 
include at least the similarity in subject matter between the references to the extent they concern methods relating to routing certain 
network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or suggest 
additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  
 
These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent 
construction of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, 
and Orckit’s January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 
(Orckit’s “Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused 
structures, acts, or materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the 
claims, or that the claims satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way 
be seen as, admissions or adoptions as to any particular claim scope or construction, or as any admission that any particular element is 
met by any accused product in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  
Defendant’s prior art invalidity contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view 
as to the meaning, definiteness, written description support for, or enablement of any claim contained therein. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 175 of 1100



2 

The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s 
construction of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Swenson 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

Swenson discloses a method for use with a packet network including a network node for 
transporting packets between first and second entities under control of a controller that is 
external to the network node, the method comprising. 
 
For example, Swenson discloses a method for monitoring and steering traffic using a 
steering device that provides a gateway between user devices and servers under the control 
of an external network controller.  Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met. 
 
Swenson at Abstract (“A system and a method are disclosed for selectively monitor-ing 
traffic in a service provider network. The system receives a notice for a beginning of a 
network data flow, which responds to a request from a user device for content at an origin 
server. The system then determines whether to monitor the data flow from the origin server 
to the user device. If so determined, the system collects statistic information of the data flow 
and stores the statistic information to a flow record in a database. The system also maps the 
flow record to a subscriber of the service provider network by analyzing the statistic 
information of the data flow and estimates bandwidth provided to the data flow by the 
service provider's network based on the analysis of the statistic information of the data 
flow.”) 
 
Swenson at [0018] (“Embodiments disclosed include a network control-ler system for real-
time data gathering on the state of existing network traffic flows and mapping flow data to 
respective users in the network to predict available bandwidth and level of congestion. By 
gathering a history of flow statistics in the network, the network controller system 
establishes a relation-ship between base stations ( or other network segments) and their 
capability to deliver the amount of data typically required by a particular user of the 
network. The very recent history of network flows can be used to predict the near future 
congestions in a substantially real-time fashion. Furthermore, the history of flow statistics 
can be used to build a long-term map of user behavior on the network, which can more 
effec-tively predict on demand data delivery requirements for the collection of users Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 176 of 1100



3 

No. ʼ111 Patent Claim 1 Swenson 
utilizing a given network access point in a consistent manner. The network controller keeps 
a flow state database, which groups flow data in a number of ways, such as on per 
station/cell tower, per subscriber, per time-of-day, or per geography area basis. As new 
flows are presented to the system for inspection, database can be queried to estimate the 
network congestion level for new flows to determine whether existing, new or future flows 
require optimizations in order to maintain the desired level of user satisfaction.”) 
 
Swenson at [0019] (“In one embodiment, an on-demand network moni-toring method is 
adopted to gather data about network flows as they traverse the network. For example, 
network flows can be monitored selectively or on-demand based on the types of the content 
carried in the flows. Furthermore, the network monitoring can also be performed selectively 
at inline level, as well as out-of-band to improve efficiency. Both TCP and UDP flows are 
monitored to gather information about the state of the network, such as the average network 
throughput for each flow and end-to-end latency between, for example, a client device and 
an origin server providing multimedia con-tent to the client device. For each TCP or UDP 
flow, the system tracks the number of bytes sent ( and in some embodi-ments 
acknowledged). In TCP, the current window size may also be tracked. Records on network 
flows are stored in a flow statistics database, which can be indexed by subscriber 
iden-tification (ID), cell tower (base station), and network segment etc. As many flow 
records accumulate, this database repre-sents both historical and current network condition 
and capacity for delivering data. Network throughput can be mea-sured by calculating an 
average number of bytes delivered over a period of time. Steps may be taken to filter out 
spurious data from small flows with size less than a certain threshold that, when measured, 
cause very noisy results in measuring bandwidth and/or latency. For example, any flow 
having delivery time of less than 500 ms can be filtered.”) 
 
Swenson at [0023] (“FIG. 1 illustrates a high-level block diagram of an example 
communications environment 100 for selective on-demand real-time network monitoring 
and subscriber identi-fication. The environment 100 comprises user devices 110, an origin 
server 160, a steering device 130, a network controller 140, a video optimizer 150, and a 
network 120. The network 120 is a communication network that transmits data between the 
user devices 110, the steering device 130 and the origin server 160 and/or the video 
optimizer 150. In one embodi-ment the network 120 includes wireless network and the 
Internet.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 177 of 1100



4 

No. ʼ111 Patent Claim 1 Swenson 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 178 of 1100



5 

No. ʼ111 Patent Claim 1 Swenson 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0056] (“FIGS. 4A and 4B each illustrates one embodiment of an example 
working mode of the network controller for providing selective on-demand real-time 
network monitoring and subscriber identification. Shown with the network con-troller 140 
are the user device 110, the steering device 130, and the origin server 160. The network 
controller 140 is coupled to the steering device 130 through the steering device interface 
316. In one embodiment, the network controller 140 and the steering device 130 
communicate with each other using the Internet content adaption protocol (ICAP). The 
steering device interface 316 executes an ICAP server 406, which interacts with an ICAP 
client 404 running on the steer-ing device 130. Similar or different protocols may be used 
for communication between the network controller 140 and the steering device 130 in other 
embodiments.”) 
 
Swenson at Figure 1 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 179 of 1100



6 

No. ʼ111 Patent Claim 1 Swenson 

 
 
 

1[a] sending, by the 
controller to the 
network node over the 
packet network, an 
instruction and a 
packet-applicable 
criterion;  

Swenson discloses sending, by the controller to the network node over the packet network, 
an instruction and a packet-applicable criterion. 
 
For example, Swenson discloses sending instructions by the network controller to the 
steering device in which the steering device categorizes packet flows based on certain 
desired criteria or conditions.  Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 180 of 1100



7 

No. ʼ111 Patent Claim 1 Swenson 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0027] (“However, information on the wireless/cellular user devices 110 side is 
often not available at the steering device 130 that sits between the cellular network and the 
wired Internet. For example, there is often no information about the identifiers of the towers 
associated with the mobile devices 110. Tower association information only broadcasted 
when the mobile devices first attached to the network. In addition, user devices 110 do not 
usually report any identification information except their IP addresses. Therefore, 
monitoring of the network traffic and detection of the congestion is auto-mated and 
managed by the detector 140 so that network can be optimized for end user's experience 
without the mobile user's knowledge.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 181 of 1100



8 

No. ʼ111 Patent Claim 1 Swenson 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 182 of 1100



9 

No. ʼ111 Patent Claim 1 Swenson 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 

1[b] receiving, by the 
network node from the 
controller, the 
instruction and the 
criterion; 

Swenson discloses receiving, by the network node from the controller, the instruction and 
the criterion. 
 
See supra at 1[a]. 
 

1[c] receiving, by the 
network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Swenson discloses receiving, by the network node from the first entity over the packet 
network, a packet addressed to the second entity. 
 
For example, Swenson discloses receiving network traffic flows from the user device at the 
steering device that is intended to be transmitted to the origin server. 
 
Swenson at [0005] (“Mobile devices, such as smart phones and tablets, have become 
prevalent in recent years. Given the fast advance in mobile computing power and far-
reaching wireless Inter-net access, more and more users view streamed videos on their Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 183 of 1100



10 

No. ʼ111 Patent Claim 1 Swenson 
mobile devices. The detection of network congestion has become increasingly important for 
network operators attempting to maximize user experience on the network. Even as network 
operators are ever increasing the capacity of their networks, the demand for bandwidth is 
growing at an even faster pace. Managing network growth and dealing with con-gestion in 
the infrastructure is particularly important in the mobile space because of the high cost of 
radio spectrum and radio access network (RAN) equipment utilized by wireless mobile 
networks. These high costs prevent mobile service providers from engineering excess 
capacity into each net-work access point through the purchase of additional RAN 
infrastructure. The same situation can, however, also happens to other types of network 
infrastructure.”) 
 
 
Swenson at [0023] (“FIG. 1 illustrates a high-level block diagram of an example 
communications environment 100 for selective on-demand real-time network monitoring 
and subscriber identi-fication. The environment 100 comprises user devices 110, an origin 
server 160, a steering device 130, a network controller 140, a video optimizer 150, and a 
network 120. The network 120 is a communication network that transmits data between the 
user devices 110, the steering device 130 and the origin server 160 and/or the video 
optimizer 150. In one embodi-ment the network 120 includes wireless network and the 
Internet.”) 
 
Swenson at [0025] (“In one embodiment, the user devices 110 are com-puting devices with 
network capabilities. Oftentimes, for example, the user devices 110 are wireless enabled 
mobile computing device with a web browser and media display capability. The user 
devices 110 as mobile computing devices may include laptops, netbooks, tablets, smart 
telephones, or personal digital assistants (PDAs ). While only two user devices HOA and 
HOB are illustrated in FIG. 1, the environ-ment 100 may include thousands or millions of 
such devices. The web browsers may be software applications running on mobile devices 
110 for retrieving web content from the origin server 160 and presenting the web content on 
a display coupled to the mobile device. Web content accessed by the user devices 110 
include text, images, audio and video con-tent. The multimedia content can be played back 
by the browsers, for example, HTML5 compatible browsers, plug-in or a standalone media 
player. The browsers can also invoke the media players or plug-ins available on the user 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 184 of 1100



11 

No. ʼ111 Patent Claim 1 Swenson 
devices 110 and passes images, audio and/or video to the media player or plug-in for 
playback.”) 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 185 of 1100



12 

No. ʼ111 Patent Claim 1 Swenson 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 
412. On the opposite direction, network traffic originated from the origin server 160 flows 
through the steering device 130 back to the user device 110 over the network response path. 
For example, the origin server 160 responds to the user request by sending web content over 
the network link 413 to the steering device 130, which forwards the web content to the user 
device 110 over the network link 416. Note that the network links 411 and 416 are two 
opposite directions on the same physical link, so are the network link pair 414 and 415. On 
the other hand, the network link pair 412 and 413 may or may not share the same network 
path because traffic between the steering device 130 and origin server 160 on opposite 
directions may be routed differently over one or more routers.”) 

1[d] checking, by the 
network node, if the 
packet satisfies the 
criterion; 

Swenson discloses checking, by the network node, if the packet satisfies the criterion. 
 
For example, Swenson discloses determining by the steering device packet flows that match 
one or more signatures, conditions, or criteria of the packet.  
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 186 of 1100



13 

No. ʼ111 Patent Claim 1 Swenson 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 187 of 1100



14 

No. ʼ111 Patent Claim 1 Swenson 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 188 of 1100



15 

No. ʼ111 Patent Claim 1 Swenson 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may 
never reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 
75-100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be 
different, hence the bandwidth for each of the buckets is measured and calculated 
separately. In other embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and 
l00kB+) of the buckets may be altered depending on the network traffic and size of objects 
transmitted. Furthermore, the bucket sizes can also be adjusted based on network topology, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 189 of 1100



16 

No. ʼ111 Patent Claim 1 Swenson 
such as buffer size, prior to transmission to the client. The calculated bandwidth per bucket 
is stored in a queue structure that allows for the computing and updating of minimum, 
maximum, and/or average measurements for each bucket. In one embodiment, the 100 kB+ 
bucket's current tail entry is checked against the average bandwidth for the 100 kB+ bucket. 
If the current entry is less than the average multiplied by the number of entries in the queue, 
the current entry is added to the bandwidth calculation for the current interval. This scheme 
can filter out large bursts of data from tempo-rarily idle flows. If the bandwidth exceeds the 
value, a number of bytes (e.g., 125 kB) will be subtracted from the current entry to account 
for TCP buffers in the network.”) 
 
 

1[e] responsive to the 
packet not satisfying 
the criterion, sending, 
by the network node 
over the packet 
network, the packet to 
the second entity; and 

Swenson discloses responsive to the packet not satisfying the criterion, sending, by the 
network node over the packet network, the packet to the second entity. 
 
For example, Swenson discloses monitoring and categorizing network traffic by the steering 
device based on instructions and desired criteria sent by the network controller to determine 
if packet flows require further inspection.  Based on the instruction and desired criteria, the 
network controller monitors and optimizes only a subset of network traffic.  Packet flows 
that do not meet the desired criteria from the network controller’s instructions at the steering 
device are not sent for further inspection and are sent to their originally intended destination. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 190 of 1100



17 

No. ʼ111 Patent Claim 1 Swenson 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0042] (“The network controller 140 collects real-time statis-tical data on the 
network flows from core network side with-out probes deployed in the RAN network. The 
statistical data is stored and compared against historical flow data to estimate level of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 191 of 1100



18 

No. ʼ111 Patent Claim 1 Swenson 
congestion and available network bandwidth. Instead of collecting traffic statistics for every 
flow and every session, the network controller 140 samples only large flows involving 
media objects such as videos and images above a certain size ( e.g., above 50 kB). The 
network controller 140 can choose to be a pass-through device to monitor the large flows as 
well as to determine whether to optimize the flows. Measuring only larger flows has the 
advantage to mitigate corruptions caused by origin server latency and network glitches. 
Furthermore, focusing on the large flows helps the network controller to reduce the 
background noise and to increase noise-to-signal ratio in bandwidth measuring by removing 
the impact of millions of tiny or small flows with delivery time in millisec-onds. Therefore 
the reliability of bandwidth estimation and congestion detection is much higher.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 192 of 1100



19 

No. ʼ111 Patent Claim 1 Swenson 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 193 of 1100



20 

No. ʼ111 Patent Claim 1 Swenson 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

1[f] responsive to the 
packet satisfying the 
criterion, sending the 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 
instruction and is other 
than the second entity. 

Swenson discloses responsive to the packet satisfying the criterion, sending the packet, by 
the network node over the packet network, to an entity that is included in the instruction and 
is other than the second entity. 
 
For example, Swenson discloses determining by the steering device monitors flows that 
match one or more signatures or criteria of the packet. Swenson further discloses that when 
a matching flow is detected the steering device forwards the packet to the network 
controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 194 of 1100



21 

No. ʼ111 Patent Claim 1 Swenson 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 195 of 1100



22 

No. ʼ111 Patent Claim 1 Swenson 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 196 of 1100



23 

No. ʼ111 Patent Claim 1 Swenson 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 197 of 1100



24 

No. ʼ111 Patent Claim 1 Swenson 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 198 of 1100



25 

No. ʼ111 Patent Claim 2 Swenson 
2[a] The method according 

to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Swenson discloses the method according to claim 1, wherein the instruction is ‘probe’, 
‘mirror’, or ‘terminate’ instruction. 
 
For example, Swenson discloses instructions sent by the network controller to the steering 
device instructions as to whether a packet flow should be ignored, monitored, or optimized. 
The monitoring and optimizing instructions may comprise forwarding packets/messages 
user device/origin server and/or the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 199 of 1100



26 

No. ʼ111 Patent Claim 2 Swenson 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 200 of 1100



27 

No. ʼ111 Patent Claim 2 Swenson 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net-work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 201 of 1100



28 

No. ʼ111 Patent Claim 2 Swenson 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 202 of 1100



29 

No. ʼ111 Patent Claim 2 Swenson 
2[b] upon receiving by the 

network node the 
‘terminate’ instruction, 
the method further 
comprising blocking, 
by the network node, 
the packet from being 
sent to the second 
entity and to the 
controller.  

Swenson discloses upon receiving by the network node the ‘terminate’ instruction, the 
method further comprising blocking, by the network node, the packet from being sent to the 
second entity and to the controller. 
 
For example, Swenson discloses in response to detected traffic congestion, the steering 
device stops receiving data from the user device or origin server and does not forward any 
data to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 203 of 1100



30 

No. ʼ111 Patent Claim 2 Swenson 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 

 
No. ʼ111 Patent Claim 3 Swenson 

3[a] The method according 
to claim 1, wherein the 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

Swenson discloses the method according to claim 1, wherein the instruction is a ‘probe’, a 
‘mirror’, or a ‘terminate’ instruction. 
 
See supra at 2(a). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 204 of 1100



31 

No. ʼ111 Patent Claim 3 Swenson 
3[b] upon receiving by the 

network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Swenson discloses upon receiving by the network node the ‘mirror’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising sending the 
packet, by the network node, to the second entity and to the controller. 
 
For example, Swenson discloses a counting mode instructed by the network controller to the 
steering device for monitoring and optimizing, in which the steering device forwards the 
packet flow to the user device/origin server and at the same time, sending the packet flow to 
the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 205 of 1100



32 

No. ʼ111 Patent Claim 3 Swenson 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net-work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 206 of 1100



33 

No. ʼ111 Patent Claim 3 Swenson 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 

 
No. ʼ111 Patent Claim 4 Swenson 

4[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Swenson discloses the method according to claim 1, wherein the instruction is ‘probe’, 
‘mirror’, or ‘terminate’ instruction. 
 
See supra at 2(a). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 207 of 1100



34 

No. ʼ111 Patent Claim 4 Swenson 
4[b] upon receiving by the 

network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 
the network node, to 
the controller;  

Swenson discloses upon receiving by the network node the ‘probe’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising: sending the 
packet, by the network node, to the controller. 
 
For example, Swenson discloses determining by the steering device flows that match one or 
more signatures or criteria of the packet. Swenson further discloses that when a matching 
flow is detected the steering device forwards the packet to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 208 of 1100



35 

No. ʼ111 Patent Claim 4 Swenson 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 209 of 1100



36 

No. ʼ111 Patent Claim 4 Swenson 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 210 of 1100



37 

No. ʼ111 Patent Claim 4 Swenson 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 211 of 1100



38 

No. ʼ111 Patent Claim 4 Swenson 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 212 of 1100



39 

No. ʼ111 Patent Claim 4 Swenson 

 
 

4[c] responsive to receiving 
the packet, analyzing 
the packet, by the 
controller; 

Swenson discloses responsive to receiving the packet, analyzing the packet, by the 
controller. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 213 of 1100



40 

No. ʼ111 Patent Claim 4 Swenson 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 214 of 1100



41 

No. ʼ111 Patent Claim 4 Swenson 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of "reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 215 of 1100



42 

No. ʼ111 Patent Claim 4 Swenson 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 216 of 1100



43 

No. ʼ111 Patent Claim 4 Swenson 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 217 of 1100



44 

No. ʼ111 Patent Claim 4 Swenson 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 218 of 1100



45 

No. ʼ111 Patent Claim 4 Swenson 

 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 219 of 1100



46 

No. ʼ111 Patent Claim 4 Swenson 

 
 

4[d] sending the packet, by 
the controller, to the 
network node; and  

Swenson discloses sending the packet, by the controller, to the network node. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 220 of 1100



47 

No. ʼ111 Patent Claim 4 Swenson 
For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow 
statistics. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 221 of 1100



48 

No. ʼ111 Patent Claim 4 Swenson 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 222 of 1100



49 

No. ʼ111 Patent Claim 4 Swenson 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 223 of 1100



50 

No. ʼ111 Patent Claim 4 Swenson 
 
Swenson at Figure 1 (annotation added) 

 
 

4[e] responsive to receiving 
the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Swenson discloses responsive to receiving the packet, sending the packet, by the network 
node, to the second entity. 
 
For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow 
statistics.  Swenson further discloses the steering device, upon having the packet returned to 
it, transmitting the packet to the destination entity, for example, the user device or origin 
server. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 224 of 1100



51 

No. ʼ111 Patent Claim 4 Swenson 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 225 of 1100



52 

No. ʼ111 Patent Claim 4 Swenson 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 226 of 1100



53 

No. ʼ111 Patent Claim 4 Swenson 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 227 of 1100



54 

No. ʼ111 Patent Claim 4 Swenson 

 
 

 
No. ʼ111 Patent Claim 5 Swenson 

5 The method according 
to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 
network node, to the 
controller.  
 

Swenson discloses the method according to claim 1, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending the packet or a portion thereof, 
by the network node, to the controller.  
 
For example, Swenson discloses determining by the steering device flows that match one or 
more signatures or criteria of the packet. Swenson further discloses that when a matching 
flow is detected, the steering device forwards the HTTP request and a portion of the HTTP 
response to the network controller. 
 
See supra at Claim 1. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 228 of 1100



55 

No. ʼ111 Patent Claim 5 Swenson 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 229 of 1100



56 

No. ʼ111 Patent Claim 5 Swenson 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 230 of 1100



57 

No. ʼ111 Patent Claim 5 Swenson 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 231 of 1100



58 

No. ʼ111 Patent Claim 5 Swenson 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 232 of 1100



59 

No. ʼ111 Patent Claim 5 Swenson 

 
 

 
No. ʼ111 Patent Claim 6 Swenson 

6 The method according 
to claim 5, further 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

Swenson discloses the method according to claim 5, further comprising storing the received 
packet or a portion thereof, by the controller, in a memory. 
 
For example, Swenson discloses the network controller storing historical network traffic 
data based on received packet flows. 
 
See supra at Claim 5. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 233 of 1100



60 

No. ʼ111 Patent Claim 6 Swenson 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 234 of 1100



61 

No. ʼ111 Patent Claim 6 Swenson 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over 
time may be metrics calculated by the flow analyzer 312 in order to determine short term 
needs for optimization. For example, the flow analyzer 312 may determine to being 
optimizing flows asso-ciated with a particular cell-ID (or those flows for identified high-
bandwidth users on the cell-ID) in response to a thresh-old number of high-bandwidth users 
connecting to a same cell tower corresponding to the cell-ID. The reason why flow analyzer 
312 selectively monitors large flows lies in the real-ization that TCP statistics for small 
objects, which make up most web flows, can be misleading and cause huge errors in 
throughput estimations.”) 
 
Swenson at [0046] (“The flow cache 322 stores monitored flow informa-tion, which is 
updated for a flow with each associated trans-action from the steering device 13 0. In one 
embodiment, data in the flow cache is stored in a map indexed by a hash, which can be up to 
64-bit or longer. An entry in the flow cache map may be organized as a linked list to allow 
hash collisions. Alternatively, fewer bits in the hash index can also be used to speed up 
binary search in the flow cache map. For example, instead of using 64-bit hash index, which 
requires at worst 64 steps to find a node, the hash index can be reduced to 16-24 bits. There 
will be more hash collisions, hence the longer linked list. Other embodiments may use other 
type of maps or binary trees instead of the linked list to further optimize the hash collision 
searches.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 235 of 1100



62 

No. ʼ111 Patent Claim 6 Swenson 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 236 of 1100



63 

No. ʼ111 Patent Claim 7 Swenson 
7 The method according 

to claim 5, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

Swenson discloses the method according to claim 5, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending a portion of the packet, by the 
network node, to the controller. 
 
For example, Swenson discloses determining by the steering device flows that match one or 
more signatures or criteria of the packet. Swenson further discloses that when a matching 
flow is detected the steering device forwards the HTTP request and a portion of the HTTP 
response to the network controller. 
 
See supra at Claim 5. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 237 of 1100



64 

No. ʼ111 Patent Claim 7 Swenson 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 238 of 1100



65 

No. ʼ111 Patent Claim 7 Swenson 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 239 of 1100



66 

No. ʼ111 Patent Claim 7 Swenson 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 240 of 1100



67 

No. ʼ111 Patent Claim 7 Swenson 

 
 

 
No. ʼ111 Patent Claim 8 Swenson 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 
consists of multiple 
consecutive bytes, and  

Swenson discloses the method according to claim 7, wherein the portion of the packet 
consists of multiple consecutive bytes. 
 
For example, Swenson discloses determining by the steering device flows that match one or 
more signatures or criteria of the packet. Swenson further discloses that when a matching 
flow is detected the steering device forwards the a next portion of the flow payload to the 
network controller that consists of a number of bytes. 
 
See supra at Claim 7. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 241 of 1100



68 

No. ʼ111 Patent Claim 8 Swenson 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 242 of 1100



69 

No. ʼ111 Patent Claim 8 Swenson 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 243 of 1100



70 

No. ʼ111 Patent Claim 8 Swenson 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

8[b] wherein the instruction 
comprises 
identification of the 
consecutive bytes in 
the packet.  

Swenson discloses wherein the instruction comprises identification of the consecutive bytes 
in the packet. 
 
For example, Swenson discloses determining by the steering device flows that match one or 
more signatures or criteria of the packet. Swenson further discloses that when a matching 
flow is detected the steering device identifies and forwards a next portion of the flow 
payload to the network controller that consists of a number of bytes. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 244 of 1100



71 

No. ʼ111 Patent Claim 8 Swenson 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
 Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 245 of 1100



72 

No. ʼ111 Patent Claim 8 Swenson 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 246 of 1100



73 

No. ʼ111 Patent Claim 8 Swenson 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

 
No. ʼ111 Patent Claim 9 Swenson 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Swenson discloses the method according to claim 5, further comprising responsive to 
receiving the packet, analyzing the packet, by the controller. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
See supra at Claim 5. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 247 of 1100



74 

No. ʼ111 Patent Claim 9 Swenson 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 248 of 1100



75 

No. ʼ111 Patent Claim 9 Swenson 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 249 of 1100



76 

No. ʼ111 Patent Claim 9 Swenson 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 250 of 1100



77 

No. ʼ111 Patent Claim 9 Swenson 

 
 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 251 of 1100



78 

No. ʼ111 Patent Claim 12 Swenson 
12 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Swenson discloses the method according to claim 9, wherein the analyzing comprises 
applying security or data analytic application. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet.  Swenson further discloses other conventional 
components such as security functions are included in the network controller. 
 
See supra at Claim 9. 
 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 252 of 1100



79 

No. ʼ111 Patent Claim 12 Swenson 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 253 of 1100



80 

No. ʼ111 Patent Claim 12 Swenson 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 254 of 1100



81 

No. ʼ111 Patent Claim 12 Swenson 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 255 of 1100



82 

No. ʼ111 Patent Claim 12 Swenson 

 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 256 of 1100



83 

No. ʼ111 Patent Claim 13 Swenson 
13 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Swenson discloses the method according to claim 9, wherein the analyzing comprises 
applying security application that comprises firewall or intrusion detection functionality. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet.  Swenson further discloses other conventional 
component such as security functions, which may be a firewall or intrusion detection 
engine, are included in the network controller. 
 
See supra at Claim 9. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 257 of 1100



84 

No. ʼ111 Patent Claim 13 Swenson 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 258 of 1100



85 

No. ʼ111 Patent Claim 13 Swenson 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 259 of 1100



86 

No. ʼ111 Patent Claim 13 Swenson 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

 
No. ʼ111 Patent Claim 14 Swenson 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Swenson discloses the method according to claim 9, wherein the analyzing comprises 
performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Swenson discloses the network controller comprising a flow analyzer 
performing a deep flow inspection on the packet flow.  
 
See supra at Claim 9. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 260 of 1100



87 

No. ʼ111 Patent Claim 14 Swenson 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 261 of 1100



88 

No. ʼ111 Patent Claim 14 Swenson 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 262 of 1100



89 

No. ʼ111 Patent Claim 14 Swenson 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
 

 
No. ʼ111 Patent Claim 15 Swenson 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Swenson discloses the method according to claim 9, wherein the packet comprises distinct 
header and payload fields. 
 
For example, Swenson discloses packet flows with header and payload fields. 
 
See supra at Claim 9. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 263 of 1100



90 

No. ʼ111 Patent Claim 15 Swenson 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the 
network infrastructure via API, and making decisions on how to apply optimization based 
on individual or a combination of these inputs. The optimization policies can be applied to 
large flows all the time or on a time-of-day basis, a per user basis, and/or depending on the 
network condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 264 of 1100



91 

No. ʼ111 Patent Claim 15 Swenson 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net- work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 265 of 1100



92 

No. ʼ111 Patent Claim 15 Swenson 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 266 of 1100



93 

No. ʼ111 Patent Claim 15 Swenson 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may 
never reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 
75-100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be 
different, hence the bandwidth for each of the buckets is measured and calculated 
separately. In other embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and 
l00kB+) of the buckets may be altered depending on the network traffic and size of objects 
transmitted. Furthermore, the bucket sizes can also be adjusted based on network topology, 
such as buffer size, prior to transmission to the client. The calculated bandwidth per bucket 
is stored in a queue structure that allows for the computing and updating of minimum, 
maximum, and/or average measurements for each bucket. In one embodiment, the 100 kB+ 
bucket's current tail entry is checked against the average bandwidth for the 100 kB+ bucket. 
If the current entry is less than the average multiplied by the number of entries in the queue, 
the current entry is added to the bandwidth calculation for the current interval. This scheme 
can filter out large bursts of data from tempo-rarily idle flows. If the bandwidth exceeds the 
value, a number of bytes (e.g., 125 kB) will be subtracted from the current entry to account 
for TCP buffers in the network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 267 of 1100



94 

No. ʼ111 Patent Claim 15 Swenson 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Swenson discloses wherein the analyzing comprises checking part of, or whole of, the 
payload field.  
 
For example, Swenson discloses defining optimization policies based on analysis of HTTP 
payload field of the packet by the flow analyzer of the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 268 of 1100



95 

No. ʼ111 Patent Claim 15 Swenson 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the 
network infrastructure via API, and making decisions on how to apply optimization based 
on individual or a combination of these inputs. The optimization policies can be applied to 
large flows all the time or on a time-of-day basis, a per user basis, and/or depending on the 
network condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 269 of 1100



96 

No. ʼ111 Patent Claim 15 Swenson 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 270 of 1100



97 

No. ʼ111 Patent Claim 15 Swenson 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
 

 
No. ʼ111 Patent Claim 16 Swenson 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Swenson discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 
 

16[b] the header comprises 
one or more flag bits, 
and  

Swenson discloses the header comprises one or more flag bits. 
 
For example, Swenson packet flow header fields in which may include flags, such as a “do 
not transcode” flag.  A person of ordinary skill in the art would understand that a header 
may be comprised of specific flag bits. Thus, at least under the apparent claim scope alleged 
by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Swenson 
is found to not meet this limitation the header comprises one or more flag bits would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 271 of 1100



98 

No. ʼ111 Patent Claim 16 Swenson 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0068] (“In one embodiment, responsive to an HTTP get request 522 to an 
origin server 160, the video optimizer receives a HTTP 404 error from the origin server 160 
as opposed to a video file. In such case, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 524, which is intercepted by the 
steering device 130 and the inline on-demand element the network controller 140 for 
monitoring purpose.”) 
 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 16[b] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 272 of 1100



99 

No. ʼ111 Patent Claim 16 Swenson 
 
For example, Copeland discloses packet headers with flag bits. 
 
Copeland at Figure 2 
 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 273 of 1100



100 

No. ʼ111 Patent Claim 16 Swenson 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
Copeland at [0078] (“In regards to a typical IP packet 210, the first 4 bits of the IP header 
220 identify the Internet protocol (IP) version. The following 4 bits identify the IP header 
length in 32 bit words. The next 8 bits differentiate the type of service by describing how 
the packet should be handled in transit. The following 16 bits convey the total packet 
length.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 274 of 1100



101 

No. ʼ111 Patent Claim 16 Swenson 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0116] (“These steps generally require manipulations of quantities such as IP 
addresses, packet length, header length, start times, end times, port numbers, and other 
packet related information. Usually, though not necessarily, these quanti-ties take the form 
of electrical, magnetic, or optical signals capable of being stored, transferred, combined, 
compared, or otherwise manipulated. It is conventional for those skilled in the art to refer to 
these signals as bits, bytes, words, values, elements, symbols, characters, terms, numbers, 
points, records, objects, images, files or the like. It should be kept in mind, however, that 
these and similar terms should be associated with appropriate quantities for computer 
opera-tions and that these terms are merely conventional labels applied to quantities that 
exist within and during operation of the computer.”) 
 
As another example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 275 of 1100



102 

No. ʼ111 Patent Claim 16 Swenson 
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 276 of 1100



103 

No. ʼ111 Patent Claim 16 Swenson 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 277 of 1100



104 

No. ʼ111 Patent Claim 16 Swenson 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_ 
teid field contains the GRP TEID. When the value of the oxm_type ( oxm_class+oxm_field 
is GTP _ MATCH and the HM bit is zero, the flaw's GTP header must match these values 
exactly. If the HM flag is one, the value contains an ersmt_gtp_match field and an 
ermst_gtp_mask field, as specified by the OpenFlow 1.2 specification. We define 
ermst_gtp_mask field for selecting flows based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 278 of 1100



105 

No. ʼ111 Patent Claim 16 Swenson 
16[c] wherein the packet-

applicable criterion is 
that one or more of the 
flag bits is set.  

Swenson discloses wherein the packet-applicable criterion is that one or more of the flag 
bits is set. 
 
For example, Swenson discloses one or more signatures, desired criteria, or conditions of 
the packet flow used by the steering device to determine the categorization of network 
traffic which may include one or more flag bits of the header is set.  A person of ordinary 
skill in the art would understand that one or more signatures, desired criteria, or conditions 
of the packet flow could be that one or more of the flag bits is set. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Swenson is found to not meet this limitation, wherein the packet 
applicable criterion is that one or more of the flag bits is set would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 279 of 1100



106 

No. ʼ111 Patent Claim 16 Swenson 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0068] (“In one embodiment, responsive to an HTTP get request 522 to an 
origin server 160, the video optimizer receives a HTTP 404 error from the origin server 160 
as opposed to a video file. In such case, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 524, which is intercepted by the 
steering device 130 and the inline on-demand element the network controller 140 for 
monitoring purpose.”) 
 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 16[c] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet specific characteristics including flag bits that are 
set. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 280 of 1100



107 

No. ʼ111 Patent Claim 16 Swenson 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0125] (“For purposes of the description, which follows, the IP address with the 
lower value, when considered as a 32-bit unsigned integer, is designated ip[0] and the 
corresponding port number is designated pt[0]. The higher IP address is designated ip[l] and 
the corresponding TCP or UDP port number is designated pt[l]. At some point, either pt[0] 
or pt[l] may be designated the "server" port by setting an appropriate bit in a bit map that is 
part of the flow record (record "state", bit 1 or 2 is set).”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 281 of 1100



108 

No. ʼ111 Patent Claim 16 Swenson 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 
8) have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of 
hosts scanned "statistically significant". These and other values of concern index are shown 
for non-flow based events in FIG. 7.”) 
 
As another example, Kempf flow table matches in which the flag bits is set. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 282 of 1100



109 

No. ʼ111 Patent Claim 16 Swenson 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 283 of 1100



110 

No. ʼ111 Patent Claim 16 Swenson 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 284 of 1100



111 

No. ʼ111 Patent Claim 16 Swenson 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at Figure 10 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 285 of 1100



112 

No. ʼ111 Patent Claim 16 Swenson 

 
 
 

 
No. ʼ111 Patent Claim 17 Swenson 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 
Protocol (TCP) packet, 
and  

Swenson discloses the method according to claim 16, wherein the packet is an Transmission 
Control Protocol (TCP) packet. 
 
For example, Swenson discloses TCP packet flows. 
 
See supra at Claim 16. 
 
Swenson at [0019] (“ In one embodiment, an on-demand network moni-toring method is 
adopted to gather data about network flows as they traverse the network. For example, 
network flows can be monitored selectively or on-demand based on the types of the content 
carried in the flows. Furthermore, the network monitoring can also be performed selectively Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 286 of 1100



113 

No. ʼ111 Patent Claim 17 Swenson 
at inline level, as well as out-of-band to improve efficiency. Both TCP and UDP flows are 
monitored to gather information about the state of the network, such as the average network 
throughput for each flow and end-to-end latency between, for example, a client device and 
an origin server providing multimedia con-tent to the client device. For each TCP or UDP 
flow, the system tracks the number of bytes sent ( and in some embodi-ments 
acknowledged). In TCP, the current window size may also be tracked. Records on network 
flows are stored in a flow statistics database, which can be indexed by subscriber 
iden-tification (ID), cell tower (base station), and network segment etc. As many flow 
records accumulate, this database repre-sents both historical and current network condition 
and capacity for delivering data. Network throughput can be mea-sured by calculating an 
average number of bytes delivered over a period of time. Steps may be taken to filter out 
spurious data from small flows with size less than a certain threshold that, when measured, 
cause very noisy results in measuring bandwidth and/or latency. For example, any flow 
having delivery time of less than 500 ms can be filtered.”) 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 287 of 1100



114 

No. ʼ111 Patent Claim 17 Swenson 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over 
time may be metrics calculated by the flow analyzer 312 in order to determine short term 
needs for optimization. For example, the flow analyzer 312 may determine to being 
optimizing flows asso-ciated with a particular cell-ID (or those flows for identified high-
bandwidth users on the cell-ID) in response to a thresh-old number of high-bandwidth users 
connecting to a same cell tower corresponding to the cell-ID. The reason why flow analyzer 
312 selectively monitors large flows lies in the real-ization that TCP statistics for small 
objects, which make up most web flows, can be misleading and cause huge errors in 
throughput estimations.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 288 of 1100



115 

No. ʼ111 Patent Claim 17 Swenson 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0062] (“ Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0084] (“The flow analyzer 312 can also map flows to users (subscribers to the 
mobile or network service) in the flow cache entries by matching cookie hashes, MAC 
address ( or any unique device identifiers), or TCP source ports. For example, if two flows 
share the same source port, it is very likely that they belong to the same user because TCP 
ports are reused often by an individual user, but not often between users. Furthermore, 
source ports can also be used to map users when network address translation (NAT) is 
deployed. In a typical network with NAT configuration, each user is allo-cated a block (e.g., 
32) of TCP source ports. A random port number within the block is then picked for each Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 289 of 1100



116 

No. ʼ111 Patent Claim 17 Swenson 
new user flows initiated. With this knowledge, all source ports within a block can be 
aggregated under the same user. In some cases, a user with more than one block of port 
number assigned, the cookie hashes can be used to link the blocks together.”) 
 

17[b] wherein the one or 
more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

Swenson discloses wherein the one or more flag bits comprises comprise a SYN flag bit, an 
ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
For example, Swenson discloses headers that may include flag bits.  A person of ordinary 
skill in the art would understand that such flag bits may be a SYN flag bit, an ACK flag bit, 
a FIN flag bit, a RST flag bit, or any combination thereof. Thus, at least under the apparent 
claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the 
extent that the Swenson is found to not meet this limitation, wherein the one or more flag 
bits comprises comprise a SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or 
any combination thereof would have been obvious to a person having ordinary skill in the 
art, as explained below. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 17[b] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 290 of 1100



117 

No. ʼ111 Patent Claim 17 Swenson 
For example, Copeland discloses TCP packets with flag bits including SYN, ACK, FIN, and 
R flag bits. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0090] (“Host2 responds with a SYN-ACK packet. In this message, both the 
SYN flag and the ACK flag are set. Host2 provides the initial sequence number for its data 
to Hostl. Host2 also sends to Hostl the acknowledgment number that is the next sequence 
number Host2 expects to receive from host 1. In the SYN-ACK packet sent by Host2, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 291 of 1100



118 

No. ʼ111 Patent Claim 17 Swenson 
acknowl-edgment number is the initial sequence number of Hostl plus 1, which should be 
the next sequence number received.”) 
 
Copeland at [0091] (“Hostl responds to the SYN-ACK with a packet with just the ACK flag 
set. Hostl acknowledges that the next packet of information received from Host2 will be 
Host2's initial sequence number plus 1. The three-way handshake is complete and data is 
transferred.”) 
 
Copeland at [0092] (“Host2 responds to ACK packet with its own ACK packet. Host2 
acknowledges the data it has received from Hostl by sending an acknowledgment number 
one greater than its last received data sequence number. Both hosts send packets with the 
ACK flag set until the session is to end although the P and U flags may also be set, if 
warranted.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0094] (“Host2 acknowledges the FIN packet by sending its own ACK packet. 
The ACK packet has the acknowledge-ment number one greater than the sequence number 
of Hostl's FIN-ACK packet. ACK packets are still delivered between the two hosts, except 
that HOSTl's packets have no data appended to the TCP/IP end of the headers.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
As another example, Uchida discloses the TCP (Transmission Control Protocol) FIN flag, 
RST flag, and SYN flag. 
 
Uchida at [0040] (“A flow end can be detected by various methods as below. For example, 
in one method, a protocol end message is checked. For example, in the TCP (Transmission Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 292 of 1100



119 

No. ʼ111 Patent Claim 17 Swenson 
Control Protocol), a FIN flag is checked. In this way, the end of communication, that is, the 
end of a flow using communica-tion, can be detected. In practice, after a FIN flag, 
communi-cation with an ACK packet is generated in a reverse-direction flow (a flow in 
which the source and the destination are reversed). Thus, by detecting the ACK flag in the 
reverse-direction flow after the FIN packet, a flow end can be deter-mined. Further, since 
the TCP is used in bidirectional com-munication, the forward- and reverse-direction flows 
can be used as a pair to determine a flow end. Namely, if the end of a flow is detected, a 
process rule corresponding to the reverse-direction flow of the flow can also be determined 
to be unnec-essary. Alternatively, a communication end can also be deter-mined when a 
predetermined time elapses after reception of a SYN packet and a timeout is determined. 
Still alternatively, a communication end can be determined by reception of a RST packet. 
These methods will be described in more detail later as specific examples.”) 
 
Uchida at [0050] (“The flow end check unit can use at least one of a TCP (Transmission 
Control Protocol) FIN flag, RST flag, and SYN flag extracted by the end determination 
information extraction unit to determine a flow end.”) 
 
Uchida at [0055] (“In the process rule update method, a flow end can be determined by at 
least one of a TCP (Transmission Control Protocol) FIN flag, RST flag, and SYN flag.”) 
 
Uchida at [0102] (“Next, specific examples 1 to 3 will be described. In the examples 1 to 3, 
a flow end is determined by combining features of the above individual exemplary 
embodiments and using TCP (Transmission Control Protocol) flags.”) 
 
Uchida at [0103] (“FIG. 6 is a state transition diagram of TCP connec-tion. "CLOSED" at 
the top of FIG. 6 represents the end of TCP communication, and portions connected thereto 
repre-sent states prior to the end of TCP communication. Approxi-mately 2MSL (MSL: 
Maximum Segment Lifetime) is the maximum amount of time required to reach the above 
"CLOSED," that is, if the packet forwarding apparatus stands by for approximately 2MSL 
after both FINs flow, the above "CLOSED" is reached. Thus, after a FIN is confirmed in 
either direction, if this 2MSL elapses, basically, a communi-cation end can be determined. 
Even if the state does not change smoothly because of packet loss or the like (for example, 
even if an ACK packet does not arrive after "CLOS-ING"), a retransmitted packet is 
forwarded immediately after this 2MSL. Thus, the end of TCP communication can be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 293 of 1100



120 

No. ʼ111 Patent Claim 17 Swenson 
determined if a new FIN packet is not received within the time corresponding to the 2MSL 
and a margin (2MSL+a) at long-est.”) 
 
Uchida at [0104] (“Hereinafter, the description will be made, assuming that a packet 
forwarding apparatus Cl according to the present invention relays TCP communication 
between a com-puter (client) Dl 0 and a server D20 that use network configu-rations 
illustrated in FIG. 7. In the example of FIG. 7, the computer Dl0 belongs to a network 
represented by 192.168. 0./24 and is set by 192.168.0.10. The server D20 belongs to a 
network represented by 192.168.1./24 and is set by 192.168. 1.10. As in the case of the 
OpenFlow controller described in Non-Patent Documents 1 and 2, a control apparatus ( 
control-ler) Dl is connected to the packet forwarding apparatus Cl via a dedicated channel 
and manages connection between the two networks. In the following description, the control 
appa-ratus (controller) Dl controls the packet forwarding appara-tus Cl so that connection 
from other networks appears as communication from network number 1 (192.168.1.1) of the 
respective networks (see process rule actions in FIG. 19). In addition, in the present specific 
example, since FIN packets are monitored, the end determination information extraction 
unit Cl 7 monitors a protocol stack, including: fields in which the TCP is determined; and 
the FIN flag in the TCP header.”) 
  
Uchida at [0105] (“FIG. 8 is a flow chart of a flow end determination process using FIN 
flags. In FIG. 8, steps relating to a timeout determination are added to steps Slll to S116 in 
the flow chart in FIG. 3. Thus, the flow chart in FIG. 8 includes more detailed steps than the 
flow chart of FIG. 3. Hereinafter, operations will be described with reference to FIGS. 3, 6, 
and 8 and FIGS. 9 to 13. In practice, prior to TCP/IP communi-cation, ARP (Address 
Resolution Protocol) communication is executed, and a process rule may be set in that stage. 
However, for ease of description, description of the ARP communication will be omitted. 
The following description will be made based on communication at the TCP/IP level.”) 
 
Uchida at [0106] (“First, the computer Dl0 starts communication with the server D20. For 
an initial establishment of communica-tion, a packet (SYN) is inputted to the packet 
forwarding apparatus Cl (start of ACTIVE OPEN through SYN forward-ing in FIG. 6). The 
packet reception unit Cl0 receives and stores this first packet in the packet storage unit Cll 
(steps SlOl to S102 in FIG. 3).”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 294 of 1100



121 

No. ʼ111 Patent Claim 17 Swenson 
Uchida at [0107] (“The packet reception unit C10 notifies the packet process information 
extraction unit C12 and the end determination information extraction unit C17 of reception 
of the packet. The packet process information extraction unit C12 refers to the packet 
storage unit C11 and extracts information such as IP source and destination information that 
is necessary to search for a process rule (step S103 in FIG. 3). Hereinafter, a process 
corresponding to steps S103 to S110 in FIG. 3 will be executed.”) 
 
Uchida at [0115] (“Upon receiving a notification that the packet has been received by the 
packet reception unit Cl 0, the end deter-mination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN flag (step S201 in 
FIG. 8).”) 
 
Uchida at [0116] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 1; the source address is 192.168. 
0.10; the destination is 192.168.1.10; and the protocol is TCP (the type is Ox0006)) and 
stands by until forwarding of the packet. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a process rule to be deleted 
from the packet storage unit Cll. Since the IP address is replaced, the extracted information 
for identifying a process rule to be deleted represents that the source address is 192.168.1.1; 
the destination is 192.168.1.1 0; and the protocol is TCP (the type is 0x0006). The 
information is used for marking of the reverse flow. The end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the FIN 
packet has been received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0117] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203). These steps correspond to 
steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0121] (“Next, after an ACK reply in response to the FIN packet from the 
computer DlO is forwarded from the server D20 in the same way as the above normal Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 295 of 1100



122 

No. ʼ111 Patent Claim 17 Swenson 
packet (start of PASSIVE CLOSE in FIG. 6), the server D20 transmits a FIN packet to the 
computer DlO. When this FIN packet is inputted to the packet forwarding apparatus Cl, the 
flow end determi-nation process from steps Slll to S116 is started, as in the case of the 
above start of ACTIVE CLOSE.”) 
 
Uchida at [0122] (“Upon receiving a notification that the packet has been received from the 
packet reception unit Cl0, the end determination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN packet (step S201 in 
FIG. 8).”) 
 
Uchida at [0123] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a modified process rule represents that the source address is 192.168.1. 10; the 
destination is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extrac-tion unit Cl 
7 notifies the flow end check unit C18 of the notification that the FIN packet has been 
received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0124] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203 in FIG. 8). These steps 
correspond to steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0125] (“At this point, since a FIN packet has been transmit-ted, the flow end 
check unit C18 uses the information for identifying a process rule to be deleted as a key, 
extracts the process rule (process rule corresponding to ingress port 2 in FIG. 11) from the 
process rule storage unit C13, and marks a FIN packet reception flag (steps S204 to S205 in Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 296 of 1100



123 

No. ʼ111 Patent Claim 17 Swenson 
FIG. 8). This process corresponds to the internal state update process in step S115 in FIG. 
3.”) 
 
Uchida at [0134] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there are two cases where "CLOSED" at the top of FIG. 6 is reached without a state 
transition involving FIN flags. One case arises when the ses-sion is closed from 
SYN_SENT, which is reached when a SYN packet in which a SYN flag is marked is 
transmitted. The other case arises when a timeout is generated. In such case, while the 
packet forwarding apparatus cannot monitor the closed session, the packet forwarding 
apparatus can con-firm a timeout in the following way. In the present specific example, a 
flow end is determined by this timeout.”) 
 
Uchida at [0135] (“n the present specific example, if a SYN/ ACK packet does not flow in a 
direction opposite to the SYN packet flow direction within a predetermined time (from 
"SYN_ RCVD" to "SYN_SENT" in FIG. 6), a timeout is determined.”) 
 
Uchida at [0136] (“FIG. 14 is a flow chart illustrating a flow end deter-mination process 
using a SYN flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the dif-ference.”) 
 
Uchida at [0137] (“In FIG. 14, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage, unit Cll, monitors a TCP SYN flag, and finds a SYN 
packet (step S301 in FIG. 14).”) 
 
Uchida at [0138] (“Since a SYN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 297 of 1100



124 

No. ʼ111 Patent Claim 17 Swenson 
identifying a process rule repre-sents that the source address is 192.168.1.10; the destination 
is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is used for 
marking of the reverse flow. The end determination information extraction unit Cl 7 notifies 
the flow end check unit C18 of the notification that the SYN packet has been received and 
these items of information (step S302 in FIG. 14).”) 
 
Uchida at [0139] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether a SYN flag is 
set in a prede-termined packet header position and an ACK flag is not marked (step S303 in 
FIG. 14). These steps correspond to steps Slll to S114 in FIG. 3.”)  
 
Uchida at [0148] (“ Next, a third specific example in which a flow end determination is 
executed by using a TCP RST (reset) flag will be described.”) 
 
Uchida at [0149] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there is a transition from "SYN_ RCVD," which is a communication establishment 
standby state, to "LISTEN," which is a communication standby state. A TCP RST (reset) 
flag signifies release of connection and retry of communication. Namely, since a RST 
packet in which this RST flag is set signifies invalidation of communi-cation, by detecting 
this RST flag, a flow end can be deter-mined.”) 
 
Uchida at [0150] (“FIG. 16 is a first flow chart illustrating a flow end determination process 
using a RST flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the difference.”) 
 
Uchida at [0151] (“In FIG. 16, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage unit Cll, monitors a TCP RST flag, and finds a RST packet 
(step S401 in FIG. 16).”) 
 
Uchida at [0152] (“Since a RST flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 298 of 1100



125 

No. ʼ111 Patent Claim 17 Swenson 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the RST 
packet has been received and these items of information ( step S402 in FIG. 16).”) 
 
Uchida at [0164] (“For example, in a specific example of the present invention, certain TCP 
flags are monitored. A single packet forwarding apparatus can monitor these flags in a 
parallel fashion. For example, after a packet that triggers a flow end is detected, the above 
process may be allowed to branch to the above FIGS. 8, 14, and 16 (17) to realize parallel 
monitoring.”) 
 
 

 
No. ʼ111 Patent Claim 18 Swenson 

18[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Swenson discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Swenson discloses the header comprises at least the first and second entities addresses in the 
packet network. 
 
For example, Swenson discloses source and destination addresses included in the packet 
flow header. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 299 of 1100



126 

No. ʼ111 Patent Claim 18 Swenson 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 300 of 1100



127 

No. ʼ111 Patent Claim 18 Swenson 
18[c] wherein the packet-

applicable criterion is 
that the first entity 
address, the second 
entity address, or both 
match a predetermined 
address or addresses.  

Swenson discloses wherein the packet-applicable criterion is that the first entity address, the 
second entity address, or both match a predetermined address or addresses. 
 
For example, Swenson discloses the one or more signatures, desired criteria, or conditions 
associated with a packet flow including matching a source and/or destination address. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 301 of 1100



128 

No. ʼ111 Patent Claim 18 Swenson 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0075] (“Ideally, a flow can be assigned to the mapped user flows block 726 for 
a user or subscriber by the user's source IP address. However, in some cases, flows 
associated with an IP address may often be associated with a group of users or subscribers, 
but there is not enough information to identify a particular user or subscriber. In these cases, 
a pseudo sub-scriber id can be assigned in the default user flows block 724 until real users 
or subscribers are identified as more flows are observed.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 
 

 
No. ʼ111 Patent Claim 19 Swenson 

19 The method according 
to claim 18, wherein 
the addresses are 
Internet Protocol (IP) 
addresses.  

Swenson discloses the method according to claim 18, wherein the addresses are Internet 
Protocol (IP) addresses. 
 
For example, Swenson discloses IP addresses used to identify network flows. 
 
See supra at Claim 18. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 302 of 1100



129 

No. ʼ111 Patent Claim 19 Swenson 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0027] (“However, information on the wireless/cellular user devices 110 side is 
often not available at the steering device 130 that sits between the cellular network and the 
wired Internet. For example, there is often no information about the identifiers of the towers 
associated with the mobile devices 110. Tower association information only broadcasted 
when the mobile devices first attached to the network. In addition, user devices 110 do not 
usually report any identification information except their IP addresses. Therefore, 
monitoring of the network traffic and detection of the congestion is auto-mated and 
managed by the detector 140 so that network can be optimized for end user's experience 
without the mobile user's knowledge.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0047] (“ The subscriber log 324 stores user or subscriber information, such as 
user or subscriber identifications and their device information. In one embodiment, the 
subscriber and device information is provided to the subscriber log 324 by the 
administrators or operators of the carrier or service provider networks. In other 
embodiments, the subscriber or the device information of the carrier networks (e.g., mobile 
ISPs) is not available to the network controller 140. This makes bandwidth measurement Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 303 of 1100



130 

No. ʼ111 Patent Claim 19 Swenson 
more difficult since multiple users' devices may share a single IP address using the net-work 
address translation (NAT) protocol. Accordingly, algo-rithms that separate multiple users 
sharing an IP address can be implemented by the flow analyzer 312 to determine the amount 
of bandwidth available to individual users.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”)  
 
Swenson at [0062] (“Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of intern al components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 304 of 1100



131 

No. ʼ111 Patent Claim 19 Swenson 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0074] (“A flow cache block 720 pointed to by the flow cache entry 712 is 
shown to include information on source IP 722, one or more user flow blocks, which 
represent a logical group of flows associated with a user, a subscriber, or an entity 
representing a potential subscriber. Examples of these user flow blocks are default user 
flows block 724 and mapped user flows block 726. The default user flows block 724 store 
flows that are not yet associated with any particular user or sub-scriber. If the subscriber id 
or any other identifiers associated with a particular user is known a-priori, all the flows 
associ-ated with the particular user or subscriber will be assigned to the mapped user flows 
block 726. The mapped user flows block 726 also include flows that either have been, or are 
in the process of being mapped to a user or subscriber by the flow analyzer 312. The 
mapped user flows block 726 can be indexed using subscriber id.”) 
 
Swenson at [0075] (“Ideally, a flow can be assigned to the mapped user flows block 726 for 
a user or subscriber by the user's source IP address. However, in some cases, flows 
associated with an IP address may often be associated with a group of users or subscribers, 
but there is not enough information to identify a particular user or subscriber. In these cases, 
a pseudo sub-scriber id can be assigned in the default user flows block 724 until real users 
or subscribers are identified as more flows are observed.”) 
 
Swenson at [0076] (“An example user flow block 730 that can be included in the default 
user flows block 724 and the mapped user flows block 726 contains data fields like the 
subscriber id 732 (pseudo or real) estimated bandwidth 734, a list of all flows 736 
associated with the subscriber id 732, and a list of cookie hashes 738 among other related 
flow information. Each entry in the list of cookie hashes 738 contains one unique cookie 
seen within the flows. The list of flows 736 includes one or more flow statistics block 740. 
Each flow statistics block 740 contains the IP flow identifier 742 (e.g., srcIP, dstIP, srcPort, 
dstPort ), current domain and cookie 7 44, total number of bytes seen in each direction 746, 
the total number of bytes in each direction as of the last update 748. Not shown in the FIG. 7 
includes a list of cookie hashes associated with the flow and an expiration time”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 305 of 1100



132 

No. ʼ111 Patent Claim 19 Swenson 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 
 

 
No. ʼ111 Patent Claim 20 Swenson 

20[a] The method according 
to claim 1, wherein the 
packet is an 
Transmission Control 
Protocol (TCP) packet 
that comprises source 
and destination TCP 
ports, a TCP sequence 
number, and a TCP 
sequence mask fields, 
and  

Swenson discloses the method according to claim 1, wherein the packet is an Transmission 
Control Protocol (TCP) packet that comprises source and destination TCP ports, a TCP 
sequence number, and a TCP sequence mask fields. 
 
For example, Swenson discloses TCP packet flows with TCP port identifier information. 
 
See supra at Claim 1, 17[a]. 
 
Swenson at [0019] (“In one embodiment, an on-demand network moni-toring method is 
adopted to gather data about network flows as they traverse the network. For example, 
network flows can be monitored selectively or on-demand based on the types of the content 
carried in the flows. Furthermore, the network monitoring can also be performed selectively 
at inline level, as well as out-of-band to improve efficiency. Both TCP and UDP flows are 
monitored to gather information about the state of the network, such as the average network 
throughput for each flow and end-to-end latency between, for example, a client device and 
an origin server providing multimedia con-tent to the client device. For each TCP or UDP 
flow, the system tracks the number of bytes sent ( and in some embodi-ments 
acknowledged). In TCP, the current window size may also be tracked. Records on network 
flows are stored in a flow statistics database, which can be indexed by subscriber 
iden-tification (ID), cell tower (base station), and network segment etc. As many flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 306 of 1100



133 

No. ʼ111 Patent Claim 20 Swenson 
records accumulate, this database repre-sents both historical and current network condition 
and capacity for delivering data. Network throughput can be mea-sured by calculating an 
average number of bytes delivered over a period of time. Steps may be taken to filter out 
spurious data from small flows with size less than a certain threshold that, when measured, 
cause very noisy results in measuring bandwidth and/or latency. For example, any flow 
having delivery time of less than 500 ms can be filtered.”) 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 307 of 1100



134 

No. ʼ111 Patent Claim 20 Swenson 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over 
time may be metrics calculated by the flow analyzer 312 in order to determine short term 
needs for optimization. For example, the flow analyzer 312 may determine to being 
optimizing flows asso-ciated with a particular cell-ID (or those flows for identified high-
bandwidth users on the cell-ID) in response to a thresh-old number of high-bandwidth users 
connecting to a same cell tower corresponding to the cell-ID. The reason why flow analyzer 
312 selectively monitors large flows lies in the real-ization that TCP statistics for small 
objects, which make up most web flows, can be misleading and cause huge errors in 
throughput estimations.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 308 of 1100



135 

No. ʼ111 Patent Claim 20 Swenson 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0062] (“ Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0084] (“The flow analyzer 312 can also map flows to users (subscribers to the 
mobile or network service) in the flow cache entries by matching cookie hashes, MAC 
address ( or any unique device identifiers), or TCP source ports. For example, if two flows 
share the same source port, it is very likely that they belong to the same user because TCP 
ports are reused often by an individual user, but not often between users. Furthermore, 
source ports can also be used to map users when network address translation (NAT) is 
deployed. In a typical network with NAT configuration, each user is allo-cated a block (e.g., 
32) of TCP source ports. A random port number within the block is then picked for each Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 309 of 1100



136 

No. ʼ111 Patent Claim 20 Swenson 
new user flows initiated. With this knowledge, all source ports within a block can be 
aggregated under the same user. In some cases, a user with more than one block of port 
number assigned, the cookie hashes can be used to link the blocks together.”) 
 

20[b] wherein the packet-
applicable criterion is 
that the source TCP 
port, the destination 
TCP port, the TCP 
sequence number, the 
TCP sequence mask, 
or any combination 
thereof, matches a 
predetermined value or 
values.  

Swenson discloses wherein the packet-applicable criterion is that the source TCP port, the 
destination TCP port, the TCP sequence number, the TCP sequence mask, or any 
combination thereof, matches a predetermined value or values. 
 
For example, Swenson discloses TCP packet flows with TCP port identifier information that 
can be used as one of more signatures, desired criteria, or conditions of the packet flow to 
determine if the flow matches. 
 
Swenson at [0019] (“In one embodiment, an on-demand network moni-toring method is 
adopted to gather data about network flows as they traverse the network. For example, 
network flows can be monitored selectively or on-demand based on the types of the content 
carried in the flows. Furthermore, the network monitoring can also be performed selectively 
at inline level, as well as out-of-band to improve efficiency. Both TCP and UDP flows are 
monitored to gather information about the state of the network, such as the average network 
throughput for each flow and end-to-end latency between, for example, a client device and 
an origin server providing multimedia con-tent to the client device. For each TCP or UDP 
flow, the system tracks the number of bytes sent ( and in some embodi-ments 
acknowledged). In TCP, the current window size may also be tracked. Records on network 
flows are stored in a flow statistics database, which can be indexed by subscriber 
iden-tification (ID), cell tower (base station), and network segment etc. As many flow 
records accumulate, this database repre-sents both historical and current network condition 
and capacity for delivering data. Network throughput can be mea-sured by calculating an 
average number of bytes delivered over a period of time. Steps may be taken to filter out 
spurious data from small flows with size less than a certain threshold that, when measured, 
cause very noisy results in measuring bandwidth and/or latency. For example, any flow 
having delivery time of less than 500 ms can be filtered.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 310 of 1100



137 

No. ʼ111 Patent Claim 20 Swenson 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 311 of 1100



138 

No. ʼ111 Patent Claim 20 Swenson 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over 
time may be metrics calculated by the flow analyzer 312 in order to determine short term 
needs for optimization. For example, the flow analyzer 312 may determine to being 
optimizing flows asso-ciated with a particular cell-ID (or those flows for identified high-
bandwidth users on the cell-ID) in response to a thresh-old number of high-bandwidth users 
connecting to a same cell tower corresponding to the cell-ID. The reason why flow analyzer 
312 selectively monitors large flows lies in the real-ization that TCP statistics for small 
objects, which make up most web flows, can be misleading and cause huge errors in 
throughput estimations.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0062] (“ Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 312 of 1100



139 

No. ʼ111 Patent Claim 20 Swenson 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0084] (“The flow analyzer 312 can also map flows to users (subscribers to the 
mobile or network service) in the flow cache entries by matching cookie hashes, MAC 
address ( or any unique device identifiers), or TCP source ports. For example, if two flows 
share the same source port, it is very likely that they belong to the same user because TCP 
ports are reused often by an individual user, but not often between users. Furthermore, 
source ports can also be used to map users when network address translation (NAT) is 
deployed. In a typical network with NAT configuration, each user is allo-cated a block (e.g., 
32) of TCP source ports. A random port number within the block is then picked for each 
new user flows initiated. With this knowledge, all source ports within a block can be 
aggregated under the same user. In some cases, a user with more than one block of port 
number assigned, the cookie hashes can be used to link the blocks together.”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 313 of 1100



140 

No. ʼ111 Patent Claim 21 Swenson 
21 The method according 

to claim 1, wherein the 
packet network 
comprises a Wide 
Area Network (WAN), 
Local Area Network 
(LAN), the Internet, 
Metropolitan Area 
Network (MAN), 
Internet Service 
Provider (ISP) 
backbone datacenter 
network, or inter - 
datacenter network.  

Swenson discloses the method according to claim 1, wherein the packet network comprises 
a Wide Area Network (WAN), Local Area Network (LAN), the Internet, Metropolitan Area 
Network (MAN), Internet Service Provider (ISP) backbone datacenter network, or inter - 
datacenter network.  
 
For example, Swenson discloses a service provider network comprised of an Internet service 
provider. 
 
See supra at Claim 1. 
 
Swenson at Abstract (“A system and a method are disclosed for selectively monitor-ing 
traffic in a service provider network. The system receives a notice for a beginning of a 
network data flow, which responds to a request from a user device for content at an origin 
server. The system then determines whether to monitor the data flow from the origin server 
to the user device. If so determined, the system collects statistic information of the data flow 
and stores the statistic information to a flow record in a database. The system also maps the 
flow record to a subscriber of the service provider network by analyzing the statistic 
information of the data flow and estimates bandwidth provided to the data flow by the 
service provider's network based on the analysis of the statistic information of the data 
flow.”) 
  
Swenson at [0005] (“Mobile devices, such as smart phones and tablets, have become 
prevalent in recent years. Given the fast advance in mobile computing power and far-
reaching wireless Inter-net access, more and more users view streamed videos on their 
mobile devices. The detection of network congestion has become increasingly important for 
network operators attempting to maximize user experience on the network. Even as network 
operators are ever increasing the capacity of their networks, the demand for bandwidth is 
growing at an even faster pace. Managing network growth and dealing with con-gestion in 
the infrastructure is particularly important in the mobile space because of the high cost of 
radio spectrum and radio access network (RAN) equipment utilized by wireless mobile 
networks. These high costs prevent mobile service providers from engineering excess 
capacity into each net-work access point through the purchase of additional RAN 
infrastructure. The same situation can, however, also happens to other types of network 
infrastructure.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 314 of 1100



141 

No. ʼ111 Patent Claim 21 Swenson 
 
Swenson at [0006] (“Existing network elements can give operators a view into the current 
state of traffic in their network, but they do not provide a measure of "goodness," i.e., how 
much elasticity is left or how much more data can the network handle. This measure is 
important for multimedia content delivery since a good user experience usually depends on 
the network's ability to deliver data in a reliable and sustainable fashion. A minimum data 
rate is required to prevent stalling and re-buffering during the streaming of multimedia 
content, hence ensuring sufficient bandwidth is important to quality of experience. 
Typically, multimedia content providers are suf-ficiently equipped to deliver multimedia 
content at levels far beyond the capabilities of wireless infrastructure. Hence, the burden 
falls on wireless service providers to implement net-work data optimization to ease the 
traffic burden and maxi-mize the experience of each and every user on the network. 
Currently, however, mobile service providers are often forced to use very coarse tools that 
have little visibility into which network segments are congested and tend to apply 
optimiza-tion to flows that may not need any optimization.”) 
 
Swenson at [0007] (“Typically, mobile service providers use inline net-work appliances that 
monitor every bit of subscriber traffic in order to make estimates of network throughput. 
This puts a huge burden on the system since it must scale to handle hundreds of thousands 
to millions of network requests per second through a single network access point. 
Furthermore, network service providers often must utilize these monitoring techniques on a 
micro-scale ( e.g., per RAN equipment instal-lation) in order to react to the condition of the 
network, which results in increased cost. In addition, a large portion of web traffic consists 
of small object requests, which can obscure network monitoring at any level due to their 
short lifetime and bursty characteristics.”) 
 
Swenson at [0024] (“A network efficiency strategy that aspires to keep capital expenditure 
from outpacing revenues has to be bal-anced with demands from consumers for better user 
experi-ences that rely increasingly on higher data usage. Today, mobile operators are 
employing a variety of tools to manage capacity including data usage caps, Wi-Fi offload 
and intel-ligent optimization. The environment 100 demonstrates such a solution that 
provides a unified foundation with deep ses-sion intelligence, integrated services 
management, and dynamic adaptability to fit any service offering. Together, the network 
controller 140 and the video optimizer 150 deliver a world-class media optimization Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 315 of 1100



142 

No. ʼ111 Patent Claim 21 Swenson 
solution that brings a surgical capacity advantage to wireless operators as well as Internet 
service providers with better peak capacity savings than alter-native solutions.”) 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0047] (“The subscriber log 324 stores user or subscriber information, such as 
user or subscriber identifications and their device information. In one embodiment, the 
subscriber and device information is provided to the subscriber log 324 by the 
administrators or operators of the carrier or service provider networks. In other 
embodiments, the subscriber or the device information of the carrier networks (e.g., mobile 
ISPs) is not available to the network controller 140. This makes bandwidth measurement 
more difficult since multiple users' devices may share a single IP address using the net-work 
address translation (NAT) protocol. Accordingly, algo-rithms that separate multiple users 
sharing an IP address can be implemented by the flow analyzer 312 to determine the amount 
of bandwidth available to individual users.”) 
 

 
No. ʼ111 Patent Claim 22 Swenson 

22 The method according 
to claim 1, wherein the 
first entity is a server 
device and the second 
entity is a client 
device, or wherein the 
first entity is a client 

Swenson discloses the method according to claim 1, wherein the first entity is a server 
device and the second entity is a client device, or wherein the first entity is a client device 
and the second entity is a server device.  
 
For example, Swenson discloses a user device and an origin server. 
 
See supra at Claim 1. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 316 of 1100



143 

No. ʼ111 Patent Claim 22 Swenson 
device and the second 
entity is a server 
device..  

 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0030] (“The video optimizer 150 is a computer server that provides video and 
image optimization and delivers opti-mized video and image content to the user devices 110 
via the network 120. The video and image optimization is an on-demand service provided 
through the transcoding of the video and image content. For example, when a user device 
attempts to retrieve video from the origin server 160, the network controller 140 may decide 
that the flow meets certain criteria for content optimization. The network controller 140 then 
redirected the user devices 110 to the video optimizer 150 to retrieve the optimized content. 
The video optimizer 150 receives information in the redirect request from the user devices 
110 or from the network controller 140 about the video or image content to be optimized 
and retrieve the video or image content from the corresponding origin server 160 for 
optimization and subsequent delivery to the user devices 110.”) 
 
Swenson at [0032] (“The video optimizer 150 and the origin server 160 are typically formed 
of one or more computers. While only one server of each video optimizer 150 and origin 
server 160 is shown in the environment 100 of FIG. 1, different embodi-ments may include 
multiple web servers and video servers operated by a single entity or multiple entities. In 
other embodiments, a single server may also provide different func-tionalities, such as 
delivering web content as a web server, as well as serving optimized video content.”) 
 
Swenson at [0034] (“The machine may be a server computer, a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a 
cellular tele-phone, a smart phone, a web appliance, a network router, switch or bridge, or Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 317 of 1100



144 

No. ʼ111 Patent Claim 22 Swenson 
any machine capable of executing instructions 224 ( sequential or otherwise) that specify 
actions to be taken by that machine. Further, while only a single machine is illustrated, the 
term "machine" shall also be taken to include any collection of machines that individually or 
jointly execute instructions 224 to perform any one or more of the methodologies discussed 
herein.”) 
 
Swenson at [0055] (“The video optimizer redirector 318 generates a redi-rect request to a 
URL pointing to the video optimizer 150 if the video is deemed to be transcoded. In one 
embodiment, the URL may contain at least one of a video resolution, a video bit rate, a 
video frame rate divisor, an audio sample rate and number of channels, an audio bit rate, a 
source URL, a user agent of a client, a source domain cookie and any other authentication 
data by the video optimizer 150. The video optimizer redirector 318 rewrites the original 
response with the HTTP redirect and sets the location header to the new URL. This causes 
the user devices 110 to issue a new request to the video optimizer 150. The video optimizer 
redirector 318 also has the logic to look for incoming URLs generated by itself so that they 
are not intercepted again.”) 
 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 
412. On the opposite direction, network traffic originated from the origin server 160 flows 
through the steering device 130 back to the user device 110 over the network response path. 
For example, the origin server 160 responds to the user request by sending web content over 
the network link 413 to the steering device 130, which forwards the web content to the user 
device 110 over the network link 416. Note that the network links 411 and 416 are two 
opposite directions on the same physical link, so are the network link pair 414 and 415. On 
the other hand, the network link pair 412 and 413 may or may not share the same network 
path because traffic between the steering device 130 and origin server 160 on opposite 
directions may be routed differently over one or more routers.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 318 of 1100



145 

No. ʼ111 Patent Claim 22 Swenson 
Swenson at [0070] (“Once the user device 110 receives the HTTP redirect request 620, the 
user device 110 sends the request over the network to the video optimizer 150. In one 
embodiment, the network controller 140 monitors the traffic and/or requests from the client 
device 110 as the HTTP redirect request 620 is routed to the video optimizer 150. In such a 
configuration, the video optimizer 150 only sees requests for video files that need to be 
transcoded (i.e., optimized) and are associated with a HTTP redirect request 620. As such, 
the video optimizer 150 is not burdened with all the requests generated by a user device 
110.”) 
 
Swenson at [0095] (“Certain embodiments are described herein as including logic or a 
number of components, modules, or mechanisms. Modules may constitute either software 
mod-ules ( e.g., code embodied on a machine-readable medium or in a transmission signal) 
or hardware modules. A hardware module is tangible unit capable of performing certain 
opera-tions and may be configured or arranged in a certain manner. In example 
embodiments, one or more computer systems ( e.g., a standalone, client or server computer 
system) or one or more hardware modules of a computer system (e.g., a pro-cessor or a 
group of processors 102) may be configured by software (e.g., an application or application 
portion) as a hardware module that operates to perform certain operations as described 
herein.”) 

 
No. ʼ111 Patent Claim 23 Swenson 

23[a] The method according 
to claim 22, wherein 
the server device 
comprises a web 
server, and  

Swenson discloses the method according to claim 22, wherein the server device comprises a 
web server. 
 
For example, Swenson discloses servers that’s provide different functionalities, such as 
delivering web content as a web server. 
 
See supra at Claim 22. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 319 of 1100



146 

No. ʼ111 Patent Claim 23 Swenson 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0030] (“The video optimizer 150 is a computer server that provides video and 
image optimization and delivers opti-mized video and image content to the user devices 110 
via the network 120. The video and image optimization is an on-demand service provided 
through the transcoding of the video and image content. For example, when a user device 
attempts to retrieve video from the origin server 160, the network controller 140 may decide 
that the flow meets certain criteria for content optimization. The network controller 140 then 
redirected the user devices 110 to the video optimizer 150 to retrieve the optimized content. 
The video optimizer 150 receives information in the redirect request from the user devices 
110 or from the network controller 140 about the video or image content to be optimized 
and retrieve the video or image content from the corresponding origin server 160 for 
optimization and subsequent delivery to the user devices 110.”) 
 
Swenson at [0032] (“The video optimizer 150 and the origin server 160 are typically formed 
of one or more computers. While only one server of each video optimizer 150 and origin 
server 160 is shown in the environment 100 of FIG. 1, different embodi-ments may include 
multiple web servers and video servers operated by a single entity or multiple entities. In 
other embodiments, a single server may also provide different func-tionalities, such as 
delivering web content as a web server, as well as serving optimized video content.”) 
 
Swenson at [0034] (“The machine may be a server computer, a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a 
cellular tele-phone, a smart phone, a web appliance, a network router, switch or bridge, or 
any machine capable of executing instructions 224 ( sequential or otherwise) that specify 
actions to be taken by that machine. Further, while only a single machine is illustrated, the 
term "machine" shall also be taken to include any collection of machines that individually or 
jointly execute instructions 224 to perform any one or more of the methodologies discussed 
herein.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 320 of 1100



147 

No. ʼ111 Patent Claim 23 Swenson 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 
412. On the opposite direction, network traffic originated from the origin server 160 flows 
through the steering device 130 back to the user device 110 over the network response path. 
For example, the origin server 160 responds to the user request by sending web content over 
the network link 413 to the steering device 130, which forwards the web content to the user 
device 110 over the network link 416. Note that the network links 411 and 416 are two 
opposite directions on the same physical link, so are the network link pair 414 and 415. On 
the other hand, the network link pair 412 and 413 may or may not share the same network 
path because traffic between the steering device 130 and origin server 160 on opposite 
directions may be routed differently over one or more routers.”) 
 

23[b] wherein the client 
device comprises a 
smartphone, a tablet 
computer, a personal 
computer, a laptop 
computer, or a 
wearable computing 
device.  

Swenson discloses wherein the client device comprises a smartphone, a tablet computer, a 
personal computer, a laptop computer, or a wearable computing device. 
 
For example, Swenson discloses a user device that may be a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a 
cellular tele-phone, a smart phone, a web appliance, etc. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 321 of 1100



148 

No. ʼ111 Patent Claim 23 Swenson 
Swenson at [0034] (“The machine may be a server computer, a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a 
cellular tele-phone, a smart phone, a web appliance, a network router, switch or bridge, or 
any machine capable of executing instructions 224 ( sequential or otherwise) that specify 
actions to be taken by that machine. Further, while only a single machine is illustrated, the 
term "machine" shall also be taken to include any collection of machines that individually or 
jointly execute instructions 224 to perform any one or more of the methodologies discussed 
herein.”) 
 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 
412. On the opposite direction, network traffic originated from the origin server 160 flows 
through the steering device 130 back to the user device 110 over the network response path. 
For example, the origin server 160 responds to the user request by sending web content over 
the network link 413 to the steering device 130, which forwards the web content to the user 
device 110 over the network link 416. Note that the network links 411 and 416 are two 
opposite directions on the same physical link, so are the network link pair 414 and 415. On 
the other hand, the network link pair 412 and 413 may or may not share the same network 
path because traffic between the steering device 130 and origin server 160 on opposite 
directions may be routed differently over one or more routers.”) 

 
No. ʼ111 Patent Claim 24 Swenson 

24 The method according 
to claim 22, wherein 
the communication 
between the network 
node and the controller 
is based on, or uses, a 
standard protocol.  

Swenson discloses the method according to claim 22, wherein the communication between 
the network node and the controller is based on, or uses, a standard protocol. 
 
For example, Swenson discloses communication between the network controller and 
steering device using the Internet content adaption protocol (ICAP). Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Swenson is found to not meet this limitation, wherein the 
communication between the network node and the controller is based on, or uses, a standard Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 322 of 1100



149 

No. ʼ111 Patent Claim 24 Swenson 
protocol would have been obvious to a person having ordinary skill in the art, as explained 
below. 
 
See supra at Claim 22. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0056] (“FIGS. 4A and 4B each illustrates one embodiment of an example 
working mode of the network controller for providing selective on-demand real-time 
network monitoring and subscriber identification. Shown with the network con-troller 140 
are the user device 110, the steering device 130, and the origin server 160. The network 
controller 140 is coupled to the steering device 130 through the steering device interface 
316. In one embodiment, the network controller 140 and the steering device 130 
communicate with each other using the Internet content adaption protocol (ICAP). The 
steering device interface 316 executes an ICAP server 406, which interacts with an ICAP 
client 404 running on the steer-ing device 130. Similar or different protocols may be used 
for communication between the network controller 140 and the steering device 130 in other 
embodiments.”) 
 
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 323 of 1100



150 

No. ʼ111 Patent Claim 24 Swenson 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 24 of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses a packet network using the OpenFlow protocol, which is 
used in Software Defined Networks for communication between network device and a 
controller. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 324 of 1100



151 

No. ʼ111 Patent Claim 24 Swenson 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 325 of 1100



152 

No. ʼ111 Patent Claim 24 Swenson 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 326 of 1100



153 

No. ʼ111 Patent Claim 24 Swenson 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
As another example, OpenFlow is a standard protocol used in SDNs to communicate 
between an OpenFlow switch and controller. 
 
OpenFlow at 6-7 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 327 of 1100



154 

No. ʼ111 Patent Claim 24 Swenson 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 328 of 1100



155 

No. ʼ111 Patent Claim 24 Swenson 

 
 

 
No. ʼ111 Patent Claim 27 Swenson 

27 The method according 
to claim 1, wherein the 
network node 
comprises a router, a 
switch, or a bridge.  

Swenson discloses the method according to claim 1, wherein the network node comprises a 
router, a switch, or a bridge. 
 
For example, Swenson discloses a steering device that may be a router. 
 
See supra at Claim 1. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 329 of 1100



156 

No. ʼ111 Patent Claim 27 Swenson 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 

 
No. ʼ111 Patent Claim 28 Swenson 

28 The method according 
to claim 1, wherein the 
packet network is an 
Internet Protocol (IP) 
network, and the 
packet is an IP packet.  

Swenson discloses the method according to claim 1, wherein the packet network is an 
Internet Protocol (IP) network, and the packet is an IP packet. 
 
For example, Swenson discloses packet flows in a network with IP addresses. 
 
See supra at Claim 1. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 330 of 1100



157 

No. ʼ111 Patent Claim 28 Swenson 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0027] (“However, information on the wireless/cellular user devices 110 side is 
often not available at the steering device 130 that sits between the cellular network and the 
wired Internet. For example, there is often no information about the identifiers of the towers 
associated with the mobile devices 110. Tower association information only broadcasted 
when the mobile devices first attached to the network. In addition, user devices 110 do not 
usually report any identification information except their IP addresses. Therefore, 
monitoring of the network traffic and detection of the congestion is auto-mated and 
managed by the detector 140 so that network can be optimized for end user's experience 
without the mobile user's knowledge.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0047] (“ The subscriber log 324 stores user or subscriber information, such as 
user or subscriber identifications and their device information. In one embodiment, the 
subscriber and device information is provided to the subscriber log 324 by the 
administrators or operators of the carrier or service provider networks. In other 
embodiments, the subscriber or the device information of the carrier networks (e.g., mobile 
ISPs) is not available to the network controller 140. This makes bandwidth measurement 
more difficult since multiple users' devices may share a single IP address using the net-work 
address translation (NAT) protocol. Accordingly, algo-rithms that separate multiple users Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 331 of 1100



158 

No. ʼ111 Patent Claim 28 Swenson 
sharing an IP address can be implemented by the flow analyzer 312 to determine the amount 
of bandwidth available to individual users.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”)  
 
Swenson at [0062] (“Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of intern al components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 332 of 1100



159 

No. ʼ111 Patent Claim 28 Swenson 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0074] (“A flow cache block 720 pointed to by the flow cache entry 712 is 
shown to include information on source IP 722, one or more user flow blocks, which 
represent a logical group of flows associated with a user, a subscriber, or an entity 
representing a potential subscriber. Examples of these user flow blocks are default user 
flows block 724 and mapped user flows block 726. The default user flows block 724 store 
flows that are not yet associated with any particular user or sub-scriber. If the subscriber id 
or any other identifiers associated with a particular user is known a-priori, all the flows 
associ-ated with the particular user or subscriber will be assigned to the mapped user flows 
block 726. The mapped user flows block 726 also include flows that either have been, or are 
in the process of being mapped to a user or subscriber by the flow analyzer 312. The 
mapped user flows block 726 can be indexed using subscriber id.”) 
 
Swenson at [0075] (“Ideally, a flow can be assigned to the mapped user flows block 726 for 
a user or subscriber by the user's source IP address. However, in some cases, flows 
associated with an IP address may often be associated with a group of users or subscribers, 
but there is not enough information to identify a particular user or subscriber. In these cases, 
a pseudo sub-scriber id can be assigned in the default user flows block 724 until real users 
or subscribers are identified as more flows are observed.”) 
 
Swenson at [0076] (“An example user flow block 730 that can be included in the default 
user flows block 724 and the mapped user flows block 726 contains data fields like the 
subscriber id 732 (pseudo or real) estimated bandwidth 734, a list of all flows 736 
associated with the subscriber id 732, and a list of cookie hashes 738 among other related 
flow information. Each entry in the list of cookie hashes 738 contains one unique cookie 
seen within the flows. The list of flows 736 includes one or more flow statistics block 740. 
Each flow statistics block 740 contains the IP flow identifier 742 (e.g., srcIP, dstIP, srcPort, 
dstPort ), current domain and cookie 7 44, total number of bytes seen in each direction 746, 
the total number of bytes in each direction as of the last update 748. Not shown in the FIG. 7 
includes a list of cookie hashes associated with the flow and an expiration time”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 333 of 1100



160 

No. ʼ111 Patent Claim 28 Swenson 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 

 
No. ʼ111 Patent Claim 29 Swenson 

29 The method according 
to claim 28, wherein 
the packet network is 
an Transmission 
Control Protocol 
(TCP) network, and 
the packet is an TCP 
packet.  

Swenson discloses the method according to claim 28, wherein the packet network is an 
Transmission Control Protocol (TCP) network, and the packet is an TCP packet. 
 
For example, Swenson discloses TCP traffic flows of TCP packets. 
 
See supra at Claim 28. 
 
Swenson at [0019] (“In one embodiment, an on-demand network moni-toring method is 
adopted to gather data about network flows as they traverse the network. For example, 
network flows can be monitored selectively or on-demand based on the types of the content 
carried in the flows. Furthermore, the network monitoring can also be performed selectively 
at inline level, as well as out-of-band to improve efficiency. Both TCP and UDP flows are 
monitored to gather information about the state of the network, such as the average network 
throughput for each flow and end-to-end latency between, for example, a client device and 
an origin server providing multimedia con-tent to the client device. For each TCP or UDP 
flow, the system tracks the number of bytes sent ( and in some embodi-ments 
acknowledged). In TCP, the current window size may also be tracked. Records on network 
flows are stored in a flow statistics database, which can be indexed by subscriber 
iden-tification (ID), cell tower (base station), and network segment etc. As many flow 
records accumulate, this database repre-sents both historical and current network condition 
and capacity for delivering data. Network throughput can be mea-sured by calculating an 
average number of bytes delivered over a period of time. Steps may be taken to filter out Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 334 of 1100



161 

No. ʼ111 Patent Claim 29 Swenson 
spurious data from small flows with size less than a certain threshold that, when measured, 
cause very noisy results in measuring bandwidth and/or latency. For example, any flow 
having delivery time of less than 500 ms can be filtered.”) 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 335 of 1100



162 

No. ʼ111 Patent Claim 29 Swenson 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over 
time may be metrics calculated by the flow analyzer 312 in order to determine short term 
needs for optimization. For example, the flow analyzer 312 may determine to being 
optimizing flows asso-ciated with a particular cell-ID (or those flows for identified high-
bandwidth users on the cell-ID) in response to a thresh-old number of high-bandwidth users 
connecting to a same cell tower corresponding to the cell-ID. The reason why flow analyzer 
312 selectively monitors large flows lies in the real-ization that TCP statistics for small 
objects, which make up most web flows, can be misleading and cause huge errors in 
throughput estimations.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 336 of 1100



163 

No. ʼ111 Patent Claim 29 Swenson 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0062] (“ Based on the flow statistics stored in the flow cache 322, the network 
controller 140 can also aggregate the flows associated with a user or subscriber in order to 
estimate the total available bandwidth occupied by the user or subscriber. In one 
embodiment, the network controller 140 tracks all the flow cache entries looking for flows 
originated from a com-mon source IP address or a user device identifier. The flow analyzer 
312 of the network controller 140 then attempts to group these flows together to form a flow 
history for the user or subscriber. The network controller further identifies users or 
subscribers using two data components in the flow cache entry: the TCP source port and 
HTTP cookies associated with the flow. Together with the flow history, the network 
control-ler 140 establish pattern, and identify users or subscribers and stores subscriber 
information in the subscriber log 324. More details of the flow cache and user mapping are 
described below with reference to FIG. 7.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0084] (“The flow analyzer 312 can also map flows to users (subscribers to the 
mobile or network service) in the flow cache entries by matching cookie hashes, MAC 
address ( or any unique device identifiers), or TCP source ports. For example, if two flows 
share the same source port, it is very likely that they belong to the same user because TCP 
ports are reused often by an individual user, but not often between users. Furthermore, 
source ports can also be used to map users when network address translation (NAT) is 
deployed. In a typical network with NAT configuration, each user is allo-cated a block (e.g., 
32) of TCP source ports. A random port number within the block is then picked for each 
new user flows initiated. With this knowledge, all source ports within a block can be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 337 of 1100



164 

No. ʼ111 Patent Claim 29 Swenson 
aggregated under the same user. In some cases, a user with more than one block of port 
number assigned, the cookie hashes can be used to link the blocks together.”) 
 
 

 
No. ʼ111 Patent Claim 30 Swenson 

30[a] The method according 
to claim 1, further 
comprising: receiving, 
by the network node 
from the first entity 
over the packet 
network, one or more 
additional packets;  

Swenson discloses the method according to claim 1, further comprising: receiving, by the 
network node from the first entity over the packet network, one or more additional packets. 
 
For example, Swenson discloses sending by a user device or origin server multiple packets 
in a flow as well as packet flow requests and responses. 
 
See supra at Claim 1, 1[c]. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0030] (“The video optimizer 150 is a computer server that provides video and 
image optimization and delivers opti-mized video and image content to the user devices 110 
via the network 120. The video and image optimization is an on-demand service provided 
through the transcoding of the video and image content. For example, when a user device 
attempts to retrieve video from the origin server 160, the network controller 140 may decide 
that the flow meets certain criteria for content optimization. The network controller 140 then 
redirected the user devices 110 to the video optimizer 150 to retrieve the optimized content. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 338 of 1100



165 

No. ʼ111 Patent Claim 30 Swenson 
The video optimizer 150 receives information in the redirect request from the user devices 
110 or from the network controller 140 about the video or image content to be optimized 
and retrieve the video or image content from the corresponding origin server 160 for 
optimization and subsequent delivery to the user devices 110.”) 
 
Swenson at [0063] (“FIG. 4B illustrates one embodiment of a second example working 
mode of the network controller 140 for providing selective on-demand network monitoring. 
In FIG. 4B, the network request path consists of a network link 421 from the user device 
110 to the steering device 130, and a network link 422 from the steering device 130 to the 
origin server 160. On the opposite direction, the network response path consists of a 
network link 423 from the origin server 160 to the steering device 130, and a network link 
424 from the steering device 13 0 back to the user device 110. Note that the network link 
pair 421 and 424 share the same physical link, so are network link pair 425 and 426.”) 
 

30[b] checking, by the 
network node, if any 
one of the one or more 
additional packets 
satisfies the criterion;  

Swenson discloses checking, by the network node, if any one of the one or more additional 
packets satisfies the criterion. 
 
See supra at Claim 1[d], 30[a]. 
 

30[c] responsive to an 
additional packet not 
satisfying the criterion, 
sending, by the 
network node over the 
packet network, the 
additional packet to 
the second entity; and  

Swenson discloses responsive to an additional packet not satisfying the criterion, sending, 
by the network node over the packet network, the additional packet to the second entity. 
 
See supra at Claim 1[e], 30[a]. 
 

30[d] responsive to the 
additional packet 
satisfying the criterion, 
sending the additional 
packet, by the network 
node over the packet 

Swenson discloses responsive to the additional packet satisfying the criterion, sending the 
additional packet, by the network node over the packet network, in response to the 
instruction. 
 
See supra at Claim 1[f], 30[a]. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 339 of 1100



166 

No. ʼ111 Patent Claim 30 Swenson 
network, in response 
to the instruction.  

 
 

No. ʼ111 Patent Claim 31 Swenson 
31[a] The method according 

to claim 1, wherein the 
packet network is a 
Software Defined 
Network (SDN),  
 

Swenson discloses the method according to claim 1, wherein the packet network is a 
Software Defined Network (SDN). 
 
For example, Swenson discloses logically coupling a steering device to a network controller 
via an ICAP interface. A person of ordinary skill in the art would understand that the 
communication between the steering device and network controller constitutes an SDN. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Swenson is found to not meet this limitation, 
wherein the packet network is a Software Defined Network (SDN) would have been 
obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at Claim 1. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 340 of 1100



167 

No. ʼ111 Patent Claim 31 Swenson 
Swenson at [0056] (“FIGS. 4A and 4B each illustrates one embodiment of an example 
working mode of the network controller for providing selective on-demand real-time 
network monitoring and subscriber identification. Shown with the network con-troller 140 
are the user device 110, the steering device 130, and the origin server 160. The network 
controller 140 is coupled to the steering device 130 through the steering device interface 
316. In one embodiment, the network controller 140 and the steering device 130 
communicate with each other using the Internet content adaption protocol (ICAP). The 
steering device interface 316 executes an ICAP server 406, which interacts with an ICAP 
client 404 running on the steer-ing device 130. Similar or different protocols may be used 
for communication between the network controller 140 and the steering device 130 in other 
embodiments.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 31[a] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses a packet network using the OpenFlow protocol, i.e., wherein 
the packet network is a Software Defined Network (SDN).  A person of ordinary skill in the 
art would understand that the OpenFlow protocol is used in Software Defined Networks. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 341 of 1100



168 

No. ʼ111 Patent Claim 31 Swenson 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 342 of 1100



169 

No. ʼ111 Patent Claim 31 Swenson 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 343 of 1100



170 

No. ʼ111 Patent Claim 31 Swenson 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
As another example, Chua discloses techniques and methods related to software defined 
networks (SDNs). 
 
Chua at 1:45-55 (“In general, this disclosure describes techniques related to controlling 
software defined networks (SDNs). A software defined network is generally a network of 
interconnected computing devices having forwarding planes or data planes that can be 
programmed remotely by one or more controller devices. In this manner, the control plane 
can be physically separate from the data plane ( or forwarding plane) for an SDN. These 
computing devices can have either physical instantiation or virtual (software-only) 
instantiation without the presence of a hardware appliance. This disclosure describes various 
techniques related to controlling SDNs.”) 
 
Chua at 1:56-63 (“In one example, a method includes determining, by a con-troller device for 
a software defined network, connections between network devices in the software defined 
network, determining, by the controller device, one or more paths for network traffic between 
the network devices based on the determination of the connections, and programming, by the 
controller device, the network devices to direct network traf-fic along the one or more paths.”) 
 
Chua at 2:14-20 (“In another example, a method includes programming, by a controller 
device for a software defined network (SDN), a first network device of the SDN to send Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 344 of 1100



171 

No. ʼ111 Patent Claim 31 Swenson 
packets of a packet flow to a service device, and programming, by the controller device, one 
or more network devices of the SDN to perform a programmed action on packets of the 
packet flow based on data  received from the service device for the packet flow.”) 
 
Chua at 2:38-48 (“In another example, a method includes programming, by a controller 
device for a software defined network (SDN), a set of network devices of the SDN to form a 
path through the SDN and to send data representative of packets sent along the path to the 
controller device, sending, by the controller device, packets of a packet flow corresponding 
to the path to one of the set of network devices, determining, by the controller device, 
whether the set of network devices is properly forwarding the packets of the packet flow 
along the path based on data received from the set of network devices, and present-ing a 
report representative of the determination.”) 
 
Chua at 5:50-6:5 (“SDN 106 generally serves to interconnect various endpoint devices, such 
as client device 102 and server device 104. In addition, SDN 106 may provide services to 
network traffic flowing between client device 102 and server device 104. Alternatively, 
SDN 106 may provide services to client device 102, without further directing traffic to 
server device 106. For example, administrator 114 may use SDN controller 112 to program 
network devices of SDN 106 to direct network traffic for client device 102 to one or more of 
service devices 116. Service devices 116 may include, for example, intrusion detection 
service (IDS) devices, intrusion prevention system (IPS) devices, web proxies, web servers, 
web-application firewalls and the like. In other examples, service devices 116 may, 
additionally or alternatively, include devices for provid-ing services such as, for example, 
denial of service (DoS) protection, distributed denial of service (DDoS) protection, traffic 
filtering, wide area network (WAN) acceleration, or other such services. Service devices 
116 may also addition-ally or alternatively include malware detection devices, net-work 
anti-virus devices, network packet capture and analysis devices, honeypot devices, reflector 
net devices, tar pit devices, domain name service (DNS) and global DNS server devices, 
mail proxies, and anti-spam devices.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 345 of 1100



172 

No. ʼ111 Patent Claim 31 Swenson 
31[b] the packet is routed as 

part of a data plane 
and 

Swenson discloses the packet is routed as part of a data plane. 
 
For example, Swenson discloses routing traffic flows between a user device and server 
device via a steering device in a network. Thus, at least under the apparent claim scope 
alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the 
Swenson is found to not meet this limitation the packet is routed as part of a data plane 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 31[b] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses routing packets on a data plane using a control protocol. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 346 of 1100



173 

No. ʼ111 Patent Claim 31 Swenson 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 347 of 1100



174 

No. ʼ111 Patent Claim 31 Swenson 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 348 of 1100



175 

No. ʼ111 Patent Claim 31 Swenson 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the 
mobile operators may even share base stations and EPC switching fabrics, though the 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 349 of 1100



176 

No. ʼ111 Patent Claim 31 Swenson 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 350 of 1100



177 

No. ʼ111 Patent Claim 31 Swenson 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 
As another example, Chua discloses forwarding packets over a data plane to various 
network destinations. 
 
Chua at 1:45-55 (“In general, this disclosure describes techniques related to controlling 
software defined networks (SDNs). A software defined network is generally a network of 
interconnected computing devices having forwarding planes or data planes that can be 
programmed remotely by one or more controller devices. In this manner, the control plane 
can be physically separate from the data plane ( or forwarding plane) for an SDN. These 
computing devices can have either physical instantiation or virtual (software-only) 
instantiation without the presence of a hardware appliance. This disclosure describes various 
techniques related to controlling SDNs.”) 
 
Chua at 1:56-63 (“In one example, a method includes determining, by a con-troller device for 
a software defined network, connections between network devices in the software defined 
network, determining, by the controller device, one or more paths for network traffic between 
the network devices based on the determination of the connections, and programming, by the 
controller device, the network devices to direct network traf-fic along the one or more paths.”) 
 
Chua at 23:22-34 (“FIG. 4 illustrates various devices and services organized according to the 
"control plane" and the "data plane." In general, devices and services of the control plane 
manage devices of the data plane to cause the devices of the data plane to forward data traffic 
between various network destinations. In conventional routers, each router includes 
functionality for both the control plane and the data plane, and the same is true for Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 351 of 1100



178 

No. ʼ111 Patent Claim 31 Swenson 
conventional switches. However, in accordance with the techniques of this disclosure, the 
control plane can be entirely separated from the data plane, such that an SDN controller, such 
as SDN controller 112, can program devices of the data plane, such as network switches, to 
perform the techniques of this disclosure.”) 
 
Chua at 23:35:45 (“FIG. 4 is a conceptual diagram illustrating an example flow management 
system 250 including various components that may operate in accordance with the techniques 
of this disclo-sure. Flow management system 250 (also referred to as "sys-tem 250") includes 
control plane 252 and data plane 280. In general, control plane 252 includes components that 
relate to control information, e.g., routing information relating to packet flows and paths 
through an SDN. Data plane 280 generally includes components that send, forward, and/or 
receive data in accordance with control information from components of control plane 252.”) 
 
Chua at 24:20-36 (“In accordance with the techniques of this disclosure, flow management 
server 256 programs network switches 282, based on connections between network switches 
282, to form paths through an SDN. For example, flow management server 256 may program 
network switches 282 to establish a path between TCP client 284 and server 288, and/or a 
path between TCP client 284 and multicast source 286. In some examples, flow management 
server 256 may program net-work switches 282 to define multiple paths, e.g., a primary path 
and one or more backup paths, as discussed above. Likewise, flow management server 256 
may send test traffic through network switches 282 to test one or more of the paths. Data 
plane 280 may include one or more service devices (such as web proxy devices, IDS devices, 
and/or web serv-ers), to which network switches 282 may direct network packets. Server 288 
may represent a service device of an SDN controlled by control plane 252, in some 
examples.”) 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 352 of 1100



179 

No. ʼ111 Patent Claim 31 Swenson 
31[c] the network node 

communication with 
the controller serves as 
a control plane. 
 

Swenson discloses the network node communication with the controller serves as a control 
plane. 
 
For example, Swenson discloses communication between the steering device and controller. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Swenson is found to not meet this limitation, 
the network node communication with the controller serves as a control plane would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Swenson in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 31[c] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses communication between network elements and an OpenFlow 
controller over a control plane. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 353 of 1100



180 

No. ʼ111 Patent Claim 31 Swenson 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 354 of 1100



181 

No. ʼ111 Patent Claim 31 Swenson 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 355 of 1100



182 

No. ʼ111 Patent Claim 31 Swenson 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the 
mobile operators may even share base stations and EPC switching fabrics, though the 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 356 of 1100



183 

No. ʼ111 Patent Claim 31 Swenson 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 357 of 1100



184 

No. ʼ111 Patent Claim 31 Swenson 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 
As another example, Chua discloses the network device’s communication with the SDN 
controller over the control plane as controlling and programming the network devices to 
direct network traffic along one or more paths. 
 
Chua at 1:64-2:5 (“In another example, a controller device for a software defined network 
includes one or more interfaces for commu-nicating with network devices in the software 
defined net-work, and one or more processors configured to determine connections between 
the network devices, determine one or more paths for network traffic between the network 
devices based on the determination of the connections, and program the network devices to 
direct network traffic along the one or more paths.”) 
 
Chua at 2:21-29 (“In another example, a controller device for a software defined network 
(SDN) includes one or more network inter-faces configured to communicate with network 
devices of the SDN, and one or more processors configured to program a first network 
device of the SDN to send packets of a packet flow to a service device, and program one or 
more network devices of the SDN to perform a programmed action on packets of the packet 
flow based on data received from the service device for the packet flow.”) 
 
Chua at 2:49-61 (“In another example, a controller device for a software defined network 
(SDN) includes one or more network interfaces configured to communicate with network 
devices of the SDN, and one or more processors configured to program a set of network 
devices of the SDN to form a path through the SDN and to send data representative of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 358 of 1100



185 

No. ʼ111 Patent Claim 31 Swenson 
packets sent along the path to the controller device, send, via one of the network interfaces, 
packets of a packet flow corresponding to the path to one of the set of network devices, 
determine whether the set of network devices is properly forwarding the packets of the 
packet flow along the path based on data received from the set of network devices, and 
present a report representative of the determination.”) 
 
Chua at 23:62-24:4  (“OpenFlow is an example of an SDN protocol. That is, in some 
examples, SDN controller 270 may conform to the OpenFlow protocol. However, it should 
be understood that other protocols may be used in conjunction with a software defined 
network. In general, any protocol that gives access to the forwarding plane or data plane of a 
networking (e.g., a switch or router) to a remote device over a network may be used in 
accordance with the techniques of this disclo-sure, other example protocols include XMPP, 
RESTful APis, Cisco OnePK, IETF I2RS (Interface to Routing Systems).”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 359 of 1100



1 

EXHIBIT D-3 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

 
Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 

U.S. Patent Publication No. 2014/0140211 to Chandrasekaran et al. (“Chandrasekaran”) 
 
As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because 
Chandrasekaran meets each element of those claims, and/or (2) 35 U.S.C. § 103 because Chandrasekaran renders those claims obvious 
either alone, or in combination with the knowledge of a person having ordinary skill in the art, and in further combination with the 
references specifically identified below and in the following claim chart and/or one or more references identified in Defendant’s 
Preliminary Invalidity Contentions.  The following quotations and diagrams come from Chandrasekaran titled “Classification of 
Traffic For Application Aware Policies In A Wireless Network”, which was filed on November 16, 2012, and published on May 22, 
2014. 
 
Motivations to combine the disclosures in Chandrasekaran with disclosures in other publications known in the art, as explained in this 
chart, include at least the similarity in subject matter between the references to the extent they concern methods relating to routing 
certain network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or 
suggest additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  
 
These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent 
construction of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, 
and Orckit’s January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 
(Orckit’s “Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused 
structures, acts, or materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the 
claims, or that the claims satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way 
be seen as, admissions or adoptions as to any particular claim scope or construction, or as any admission that any particular element is 
met by any accused product in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  
Defendant’s prior art invalidity contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view 
as to the meaning, definiteness, written description support for, or enablement of any claim contained therein. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 360 of 1100



2 

The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s 
construction of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Chandrasekaran 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

Chandrasekaran discloses a method for use with a packet network including a network node 
for transporting packets between first and second entities under control of a controller that is 
external to the network node, the method comprising. 
 
For example, Chandrasekaran discloses a method used in a network in which packets are 
sent between mobile devices in which the network includes a controller in communication 
with mobile devices, through an external access point. Thus, at least under the apparent 
claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.    
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 361 of 1100



3 

No. ʼ111 Patent Claim 1 Chandrasekaran 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at Figure (annotations added) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 362 of 1100



4 

No. ʼ111 Patent Claim 1 Chandrasekaran 

 
 

1[a] sending, by the 
controller to the 
network node over the 
packet network, an 
instruction and a 

Chandrasekaran discloses sending, by the controller to the network node over the packet 
network, an instruction and a packet-applicable criterion. 
 
For example, Chandrasekaran discloses a controller sending classification information, 
including flow information and rules, to an access point. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 363 of 1100



5 

No. ʼ111 Patent Claim 1 Chandrasekaran 
packet-applicable 
criterion;  

 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0008] (“In another embodiment, an apparatus generally comprises a 
stateful classifier for performing stateful appli-cation classification at a controller, a 
classification database for storing classification information, and a processor for 
transmitting the classification information to an access point. The classification information 
comprises flow information and stateless rules for applying policies. The access point is 
configured to use the classification information to perform stateless application 
classification and apply policies to pack-ets received from a mobile device.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 364 of 1100



6 

No. ʼ111 Patent Claim 1 Chandrasekaran 
Chandrasekaran at [0022] (“The wireless controller 12 and AP 14 further include 
classification databases 20, 24, respectively, for storing clas-sification information. The 
classification database 20 at the controller 12 stores classification information obtained by 
the stateful classifier 18. The classification database 24 at the AP 14 stores classification 
information 26 transmitted to the AP from the controller 12. The classification information 
stored at the databases 20, 24 may include, for example, flow infor-mation, stateless rules, 
and policies, as described below.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at theAP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at Figure 3 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 365 of 1100



7 

No. ʼ111 Patent Claim 1 Chandrasekaran 

 
1[b] receiving, by the 

network node from the 
controller, the 

Chandrasekaran discloses receiving, by the network node from the controller, the instruction 
and the criterion. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 366 of 1100



8 

No. ʼ111 Patent Claim 1 Chandrasekaran 
instruction and the 
criterion; 

See supra at 1[a]. 
 

1[c] receiving, by the 
network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Chandrasekaran discloses receiving, by the network node from the first entity over the 
packet network, a packet addressed to the second entity. 
 
For example, Chandrasekaran discloses an access point that receives data packets and traffic 
over a packet network from a first mobile device that is destined for another endpoint. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 367 of 1100



9 

No. ʼ111 Patent Claim 1 Chandrasekaran 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 368 of 1100



10 

No. ʼ111 Patent Claim 1 Chandrasekaran 
1[d] checking, by the 

network node, if the 
packet satisfies the 
criterion; 

Chandrasekaran discloses checking, by the network node, if the packet satisfies the 
criterion. 
 
For example, Chandrasekaran discloses a stateless classifier in the access point, that 
performs packets classification to determine if the packet satisfies the information in the 
policy.  Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Chandrasekaran is found to not 
meet this limitation, checking, by the network node, if the packet satisfies the criterion 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0008] (“In another embodiment, an apparatus generally comprises a 
stateful classifier for performing stateful appli-cation classification at a controller, a 
classification database for storing classification information, and a processor for 
transmitting the classification information to an access point. The classification information 
comprises flow information and stateless rules for applying policies. The access point is 
configured to use the classification information to perform stateless application 
classification and apply policies to pack-ets received from a mobile device.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 369 of 1100



11 

No. ʼ111 Patent Claim 1 Chandrasekaran 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Chandrasekaran at Figure 3 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 370 of 1100



12 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 371 of 1100



13 

No. ʼ111 Patent Claim 1 Chandrasekaran 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Under 
at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 1[d] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses determining by the network element if the packet header 
field match an associated action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 372 of 1100



14 

No. ʼ111 Patent Claim 1 Chandrasekaran 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 373 of 1100



15 

No. ʼ111 Patent Claim 1 Chandrasekaran 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
As another example, Swenson discloses determining by the steering device packet flows 
that match one or more signatures, conditions, or criteria of the packet.  
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 374 of 1100



16 

No. ʼ111 Patent Claim 1 Chandrasekaran 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 375 of 1100



17 

No. ʼ111 Patent Claim 1 Chandrasekaran 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 376 of 1100



18 

No. ʼ111 Patent Claim 1 Chandrasekaran 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may 
never reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 
75-100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be 
different, hence the bandwidth for each of the buckets is measured and calculated 
separately. In other embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and 
l00kB+) of the buckets may be altered depending on the network traffic and size of objects 
transmitted. Furthermore, the bucket sizes can also be adjusted based on network topology, 
such as buffer size, prior to transmission to the client. The calculated bandwidth per bucket 
is stored in a queue structure that allows for the computing and updating of minimum, 
maximum, and/or average measurements for each bucket. In one embodiment, the 100 kB+ 
bucket's current tail entry is checked against the average bandwidth for the 100 kB+ bucket. 
If the current entry is less than the average multiplied by the number of entries in the queue, 
the current entry is added to the bandwidth calculation for the current interval. This scheme 
can filter out large bursts of data from tempo-rarily idle flows. If the bandwidth exceeds the 
value, a number of bytes (e.g., 125 kB) will be subtracted from the current entry to account 
for TCP buffers in the network.”) 
 

1[e] responsive to the 
packet not satisfying 
the criterion, sending, 
by the network node 

Chandrasekaran discloses responsive to the packet not satisfying the criterion, sending, by 
the network node over the packet network, the packet to the second entity. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 377 of 1100



19 

No. ʼ111 Patent Claim 1 Chandrasekaran 
over the packet 
network, the packet to 
the second entity; and 

For example, Chandrasekaran discloses in response to particular policies, not sending the 
packet to the controller and sending the packet to the second entity.  A person of ordinary 
skill in the art would understand that Chandrasekaran discloses a number of embodiments in 
which a packet may not be sent to the controller in response to not satisfying the criterion 
and sending the packet to the second entity. Thus, at least under the apparent claim scope 
alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the 
Chandrasekaran is found to not meet this limitation, responsive to the packet not satisfying 
the criterion, sending, by the network node over the packet network, the packet to the 
second entity would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
Chandrasekaran at [0032] (“It is to be understood that the process illustrated in FIG. 3 and 
described above is only an example and that steps may be modified, deleted, added, or 
combined without departing from the scope of the embodiments. For example, if traffic 
from the network destined for the mobile device 16 does not pass through the controller 12, 
policies are not applied by the controller for downstream traffic as shown in step 46. Also, if 
the policy applied at the AP 14 is to drop packets, those packets will not be received at the 
controller as shown in step 48.”) 
 
Chandrasekaran at Figure 3 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 378 of 1100



20 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 379 of 1100



21 

No. ʼ111 Patent Claim 1 Chandrasekaran 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 1[e] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the 
destination device in response to the packet not matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 380 of 1100



22 

No. ʼ111 Patent Claim 1 Chandrasekaran 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 381 of 1100



23 

No. ʼ111 Patent Claim 1 Chandrasekaran 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0053] (“In one embodiment, a group table can be supported in conjunction with 
the OpenFlow 1.1 protocol. Group tables enable a method for allowing a single flow match 
to trigger forwarding on multiple ports. Group table entries consist of four fields: a group 
identifier, which is a 32 bit unsigned integer identifying the group; a group type that 
determines the group's semantics; counters that maintain statistics on the group; and an 
action bucket list, which is an ordered list of action buckets, where each bucket contains a 
set of actions to execute together with their parameters.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at Figure 5 (annotation added) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 382 of 1100



24 

No. ʼ111 Patent Claim 1 Chandrasekaran 
 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 383 of 1100



25 

No. ʼ111 Patent Claim 1 Chandrasekaran 

 
 
As another example, Swenson discloses monitoring and categorizing network traffic by the 
steering device based on instructions and desired criteria sent by the network controller to 
determine if packet flows require further inspection.  Based on the instruction and desired 
criteria, the network controller monitors and optimizes only a subset of network traffic.  
Packet flows that do not meet the desired criteria from the network controller’s instructions 
at the steering device are not sent for further inspection and are sent to their originally 
intended destination. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 384 of 1100



26 

No. ʼ111 Patent Claim 1 Chandrasekaran 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 385 of 1100



27 

No. ʼ111 Patent Claim 1 Chandrasekaran 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0042] (“The network controller 140 collects real-time statis-tical data on the 
network flows from core network side with-out probes deployed in the RAN network. The 
statistical data is stored and compared against historical flow data to estimate level of 
congestion and available network bandwidth. Instead of collecting traffic statistics for every 
flow and every session, the network controller 140 samples only large flows involving 
media objects such as videos and images above a certain size ( e.g., above 50 kB). The 
network controller 140 can choose to be a pass-through device to monitor the large flows as 
well as to determine whether to optimize the flows. Measuring only larger flows has the 
advantage to mitigate corruptions caused by origin server latency and network glitches. 
Furthermore, focusing on the large flows helps the network controller to reduce the 
background noise and to increase noise-to-signal ratio in bandwidth measuring by removing 
the impact of millions of tiny or small flows with delivery time in millisec-onds. Therefore 
the reliability of bandwidth estimation and congestion detection is much higher.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 386 of 1100



28 

No. ʼ111 Patent Claim 1 Chandrasekaran 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 387 of 1100



29 

No. ʼ111 Patent Claim 1 Chandrasekaran 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

1[f] responsive to the 
packet satisfying the 
criterion, sending the 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 

Chandrasekaran discloses responsive to the packet satisfying the criterion, sending the 
packet, by the network node over the packet network, to an entity that is included in the 
instruction and is other than the second entity. 
 
For example, Chandrasekaran discloses the controller receiving traffic for which initial 
classifications have been applied by the access node. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 388 of 1100



30 

No. ʼ111 Patent Claim 1 Chandrasekaran 
instruction and is other 
than the second entity. 

Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 389 of 1100



31 

No. ʼ111 Patent Claim 1 Chandrasekaran 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at Figure 1 (annotations added) 

 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 390 of 1100



32 

 
No. ʼ111 Patent Claim 2 Chandrasekaran 

2[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Chandrasekaran discloses the method according to claim 1, wherein the instruction is 
‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
For example, Chandrasekaran discloses policies, which may include classification, copying, 
or dropping policies or actions.  A person of ordinary skill in the art would understand that 
Chandrasekaran discloses many different policies, for example, probing, mirroring, or 
terminating packet flows. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Chandrasekaran is 
found to not meet this limitation, wherein the instruction is ‘probe’, ‘mirror', or ‘terminate’ 
instruction would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0008] (“In another embodiment, an apparatus generally comprises a 
stateful classifier for performing stateful appli-cation classification at a controller, a 
classification database for storing classification information, and a processor for 
transmitting the classification information to an access point. The classification information 
comprises flow information and stateless rules for applying policies. The access point is 
configured to use the classification information to perform stateless application 
classification and apply policies to pack-ets received from a mobile device.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 391 of 1100



33 

No. ʼ111 Patent Claim 2 Chandrasekaran 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 2(a) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses programming network nodes with redirecting, mirroring, and 
blocking programmed actions. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 392 of 1100



34 

No. ʼ111 Patent Claim 2 Chandrasekaran 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device 
of service devices 116) for either inspection or to keep a potential hacker 'busy' to determine 
if there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may 
cause the net-work devices to change a path along which the packet is forwarded. For 
example, when the service device is a security device (e.g., a firewall or an IDS), if the 
security device determines that one or more packets of a packet flow are malicious, the 
security device may send service data indicat-ing that the packet flow includes malicious 
data. SDN con-troller 112 may program the network devices of the SDN to perform a 
programmed action based on the service-related data (336). For example, SDN controller 
112 may program network devices to, in response to an indication that packets of a packet 
flow include malicious data, forward packets of the packet flow to a destination of the 
packet flow, forward packets of malicious packet flows to a collection device for further 
analysis, cause network devices to drop packets of the malicious packet flows, send a close 
session message to devices from which packets of the malicious packet flows were received, 
block the packets of the packet flow, mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of 
the packet flow, redirect the packets of the packet flow to a third service device, transform 
one or more values of headers of the packets, and/or encapsulate the pack-ets with a 
particular header, or other such actions.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 393 of 1100



35 

No. ʼ111 Patent Claim 2 Chandrasekaran 
 
As another example, Copeland discloses probing, copying, and terminating rules configured 
on the network device. 
 
Copeland at [0057] (“In accordance with an aspect of the invention, a flow is considered 
terminated after a predetermined period of time has elapsed on a particular connection or 
port. For example, if HTTP Web traffic on port 80 ceases for a predetermined period of 
time, but other traffic begins to occur on port 80 after the expiration of that predetermined 
time period, it is considered that a new flow has begun, and the system responds accordingly 
to assign a new flow number and track the statistics and characteristics thereof. In the 
disclosed embodiment, the predetermined time period is 330 seconds, but those skilled in 
the art will understand that this time is arbitrary and may be heuristically adjusted.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 394 of 1100



36 

No. ʼ111 Patent Claim 2 Chandrasekaran 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
Copeland at [0099] (“As another example, if a particular host sends a large number of SYN 
packets to a target host and in response receives numerous R packets from the targeted host, 
a potential TCP probe is indicated. Likewise, numerous UDP packets sent from one host to 
a targeted host and numerous ICMP "port unavailable" packets received from the targeted 
host indicate a potential UDP probe. A stealth probe is indicated by multiple packets from 
the same source port number sent to different port numbers on a targeted host.”) 
 
Copeland at [0107] (“A flow is terminated if no communications occur between the two IP 
addresses and the one low port ( e.g. port 80) for 330 seconds. Most Web browsers or a TCP 
connec-tion send a reset packet (i.e. a packet with the R flag set) if no communications are 
sent or received for 5 minutes. An analysis can determine if the flow is abnormal or not for 
HTTP communications.”) 
 
Copeland at [0123] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 
8) have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of 
hosts scanned "statistically significant". These and other values of concern index are shown 
for non-flow based events in FIG. 7.”) 
 
Copeland at [0158] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 395 of 1100



37 

No. ʼ111 Patent Claim 2 Chandrasekaran 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 

2[b] upon receiving by the 
network node the 
‘terminate’ instruction, 
the method further 
comprising blocking, 
by the network node, 
the packet from being 
sent to the second 
entity and to the 
controller.  

Chandrasekaran discloses upon receiving by the network node the ‘terminate’ instruction, 
the method further comprising blocking, by the network node, the packet from being sent to 
the second entity and to the controller. 
 
For example, Chandrasekaran discloses dropping packets by the access point in response to 
a dropping instruction. 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0032] (“It is to be understood that the process illustrated in FIG. 3 and 
described above is only an example and that steps may be modified, deleted, added, or 
combined without departing from the scope of the embodiments. For example, if traffic 
from the network destined for the mobile device 16 does not pass through the controller 12, 
policies are not applied by the controller for downstream traffic as shown in step 46. Also, if 
the policy applied at the AP 14 is to drop packets, those packets will not be received at the 
controller as shown in step 48.”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 396 of 1100



38 

No. ʼ111 Patent Claim 2 Chandrasekaran 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 

 
No. ʼ111 Patent Claim 3 Chandrasekaran 

3[a] The method according 
to claim 1, wherein the 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

Chandrasekaran discloses the method according to claim 1, wherein the instruction is a 
‘probe’, a ‘mirror’, or a ‘terminate’ instruction. 
 
See supra at 2(a). 

3[b] upon receiving by the 
network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Chandrasekaran discloses upon receiving by the network node the ‘mirror’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising sending the 
packet, by the network node, to the second entity and to the controller. 
 
For example, Chandrasekaran discloses policies which may include copying, policies or 
actions.  A person of ordinary skill in the art would understand that Chandrasekaran 
discloses many different policies, for example mirroring packet flows. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Chandrasekaran is found to not meet this limitation, upon 
receiving by the network node the ‘mirror' instruction and responsive to the packet 
satisfying the criterion, method further comprising sending the packet, by the network node, 
to the second entity and to the controller would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 397 of 1100



39 

No. ʼ111 Patent Claim 3 Chandrasekaran 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0008] (“In another embodiment, an apparatus generally comprises a 
stateful classifier for performing stateful appli-cation classification at a controller, a 
classification database for storing classification information, and a processor for 
transmitting the classification information to an access point. The classification information 
comprises flow information and stateless rules for applying policies. The access point is 
configured to use the classification information to perform stateless application 
classification and apply policies to pack-ets received from a mobile device.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 398 of 1100



40 

No. ʼ111 Patent Claim 3 Chandrasekaran 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 3(b) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses a mirror program in response to an indication based on the 
packet header, in which the network devices mirror copies of the packets of the packet flow 
to a second service device while forwarding the packets of the packet flow to the destination 
of the packet flow. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device 
of service devices 116) for either inspection or to keep a potential hacker 'busy' to determine 
if there is a real security threat. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 399 of 1100



41 

No. ʼ111 Patent Claim 3 Chandrasekaran 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 16:23-44 (“More particularly, control unit 130 may configure any of service devices 
116 to send data representative of a particular event to SDN controller 112, and control unit 
130 may auto-matically reprogram one or more network devices of SDN 106 in response to 
such data. For example, security monitor-ing applications of service devices 116 may 
determine that a specific source port, destination port, source IP address, des-tination IP 
address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN 
controller 112 based on these metrics. SDN controller 112 may respond by programming 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may 
cause the net-work devices to change a path along which the packet is forwarded. For 
example, when the service device is a security device (e.g., a firewall or an IDS), if the 
security device determines that one or more packets of a packet flow are malicious, the 
security device may send service data indicat-ing that the packet flow includes malicious 
data. SDN con-troller 112 may program the network devices of the SDN to perform a 
programmed action based on the service-related data (336). For example, SDN controller 
112 may program network devices to, in response to an indication that packets of a packet 
flow include malicious data, forward packets of the packet flow to a destination of the 
packet flow, forward packets of malicious packet flows to a collection device for further 
analysis, cause network devices to drop packets of the malicious packet flows, send a close 
session message to devices from which packets of the malicious packet flows were received, 
block the packets of the packet flow, mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 400 of 1100



42 

No. ʼ111 Patent Claim 3 Chandrasekaran 
the packet flow, redirect the packets of the packet flow to a third service device, transform 
one or more values of headers of the packets, and/or encapsulate the pack-ets with a 
particular header, or other such actions.”) 
 
As another example, Swenson discloses a counting mode instructed by the network 
controller to the steering device for monitoring and optimizing, in which the steering device 
forwards the packet flow to the user device/origin server and at the same time, sending the 
packet flow to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 401 of 1100



43 

No. ʼ111 Patent Claim 3 Chandrasekaran 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net-work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 402 of 1100



44 

No. ʼ111 Patent Claim 3 Chandrasekaran 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 

 
No. ʼ111 Patent Claim 4 Chandrasekaran 

4[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Chandrasekaran discloses the method according to claim 1, wherein the instruction is 
‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
See supra at 2(a). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 403 of 1100



45 

No. ʼ111 Patent Claim 4 Chandrasekaran 
4[b] upon receiving by the 

network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 
the network node, to 
the controller;  

Chandrasekaran discloses upon receiving by the network node the ‘probe’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising: sending the 
packet, by the network node, to the controller. 
 
For example, Chandrasekaran discloses classification policies that involve sending the 
packet to the controller from the access point, in response to a classification policy. 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 404 of 1100



46 

No. ʼ111 Patent Claim 4 Chandrasekaran 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at Figure 1 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 405 of 1100



47 

No. ʼ111 Patent Claim 4 Chandrasekaran 

 
 

4[c] responsive to receiving 
the packet, analyzing 
the packet, by the 
controller; 

Chandrasekaran discloses responsive to receiving the packet, analyzing the packet, by the 
controller. 
 
For example, Chandrasekaran discloses a controller performing stateful application 
classification, in response to receiving the packet. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 406 of 1100



48 

No. ʼ111 Patent Claim 4 Chandrasekaran 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 407 of 1100



49 

No. ʼ111 Patent Claim 4 Chandrasekaran 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at Figure 3 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 408 of 1100



50 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 409 of 1100



51 

No. ʼ111 Patent Claim 4 Chandrasekaran 
4[d] sending the packet, by 

the controller, to the 
network node; and  

Chandrasekaran discloses sending the packet, by the controller, to the network node. 
 
For example, Chandrasekaran discloses transmitting the packet and information from the 
controller to the access point. 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at theAP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at Figure 1 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 410 of 1100



52 

No. ʼ111 Patent Claim 4 Chandrasekaran 

 
 

4[e] responsive to receiving 
the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Chandrasekaran discloses responsive to receiving the packet, sending the packet, by the 
network node, to the second entity. 
 
For example, Chandrasekaran discloses sending the packet by the access point to the 
endpoint, after receiving the packet. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 411 of 1100



53 

No. ʼ111 Patent Claim 4 Chandrasekaran 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 412 of 1100



54 

No. ʼ111 Patent Claim 4 Chandrasekaran 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at Figure 1 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 413 of 1100



55 

No. ʼ111 Patent Claim 4 Chandrasekaran 

 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 414 of 1100



56 

No. ʼ111 Patent Claim 5 Chandrasekaran 
5 The method according 

to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 
network node, to the 
controller.  
 

Chandrasekaran discloses the method according to claim 1, further comprising responsive to 
the packet satisfying the criterion and to the instruction, sending the packet or a portion 
thereof, by the network node, to the controller.  
 
For example, Chandrasekaran discloses sending the packet or information about the packet 
to the controller by the access point, in response to performing the classification policy. 
 
See supra at Claim 1. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 415 of 1100



57 

No. ʼ111 Patent Claim 5 Chandrasekaran 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 416 of 1100



58 

No. ʼ111 Patent Claim 5 Chandrasekaran 
 
Chandrasekaran at Figure 1 (annotations added) 

 
 

No. ʼ111 Patent Claim 6 Chandrasekaran 
6 The method according 

to claim 5, further 
Chandrasekaran discloses the method according to claim 5, further comprising storing the 
received packet or a portion thereof, by the controller, in a memory. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 417 of 1100



59 

No. ʼ111 Patent Claim 6 Chandrasekaran 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

 
For example, Chandrasekaran discloses storing the packet or information about the packet in 
the memory of the controller. 
 
See supra at Claim 5. 
 
Chandrasekaran at [0022] (“The wireless controller 12 and AP 14 further include 
classification databases 20, 24, respectively, for storing clas-sification information. The 
classification database 20 at the controller 12 stores classification information obtained by 
the stateful classifier 18. The classification database 24 at the AP 14 stores classification 
information 26 transmitted to the AP from the controller 12. The classification information 
stored at the databases 20, 24 may include, for example, flow infor-mation, stateless rules, 
and policies, as described below.”) 
 
Chandrasekaran at [0024] (“It is to be understood that the network shown in FIG. 1 and 
described herein is only an example and that other networks having different components or 
configurations may be used, without departing from the scope of the embodi-ments. For 
example, there may be any number of APs 14 in communication with the controller 12 for 
supporting any number of mobile devices 16. Also, as described above, the controller 12 
may be located at various locations and devices in the network.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
 

 
No. ʼ111 Patent Claim 7 Chandrasekaran 

7 The method according 
to claim 5, further 
comprising responsive 

Chandrasekaran discloses the method according to claim 5, further comprising responsive to 
the packet satisfying the criterion and to the instruction, sending a portion of the packet, by 
the network node, to the controller. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 418 of 1100



60 

No. ʼ111 Patent Claim 7 Chandrasekaran 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

 
For example, Chandrasekaran discloses sending information about the packet to the 
controller by the access point, in response to performing the classification policy. 
 
See supra at Claim 5. 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at theAP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 419 of 1100



61 

No. ʼ111 Patent Claim 7 Chandrasekaran 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at Figure 1 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 420 of 1100



62 

No. ʼ111 Patent Claim 7 Chandrasekaran 

 
 

 
No. ʼ111 Patent Claim 8 Chandrasekaran 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 

Chandrasekaran discloses the method according to claim 7, wherein the portion of the 
packet consists of multiple consecutive bytes. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 421 of 1100



63 

No. ʼ111 Patent Claim 8 Chandrasekaran 
consists of multiple 
consecutive bytes, and  

For example, Chandrasekaran discloses information about a packet consisting of multiple 
bytes. 
 
See supra at Claim 7. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 422 of 1100



64 

No. ʼ111 Patent Claim 8 Chandrasekaran 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 423 of 1100



65 

No. ʼ111 Patent Claim 8 Chandrasekaran 
8[b] wherein the instruction 

comprises 
identification of the 
consecutive bytes in 
the packet.  

Chandrasekaran discloses wherein the instruction comprises identification of the 
consecutive bytes in the packet. 
 
For example, Chandrasekaran discloses the classification policy identifying the bytes in the 
packet. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 424 of 1100



66 

No. ʼ111 Patent Claim 8 Chandrasekaran 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
 Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 425 of 1100



67 

No. ʼ111 Patent Claim 8 Chandrasekaran 
10th byte=0x48”) 
 

 
No. ʼ111 Patent Claim 9 Chandrasekaran 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Chandrasekaran discloses the method according to claim 5, further comprising responsive to 
receiving the packet, analyzing the packet, by the controller. 
 
For example, Chandrasekaran discloses analyzing the packet through stateful classification 
by the controller. 
 
See supra at Claim 5. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 426 of 1100



68 

No. ʼ111 Patent Claim 9 Chandrasekaran 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 427 of 1100



69 

No. ʼ111 Patent Claim 9 Chandrasekaran 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at Figure 3 (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 428 of 1100



70 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 429 of 1100



71 

 
No. ʼ111 Patent Claim 12 Chandrasekaran 

12 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Chandrasekaran discloses the method according to claim 9, wherein the analyzing 
comprises applying security or data analytic application. 
 
For example, Chandrasekaran discloses analyzing the packet by the controller through 
stateful classification where the classification is done in order to recognize the packet.  A 
person of ordinary skill in the art would understand that stateful classification to recognize 
the packet is performed as a security and data analytic measure. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.   
 
See supra at Claim 9. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 430 of 1100



72 

No. ʼ111 Patent Claim 12 Chandrasekaran 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 431 of 1100



73 

No. ʼ111 Patent Claim 12 Chandrasekaran 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 432 of 1100



74 

No. ʼ111 Patent Claim 13 Chandrasekaran 
13 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Chandrasekaran discloses the method according to claim 9, wherein the analyzing 
comprises applying security application that comprises firewall or intrusion detection 
functionality. 
 
For example, Chandrasekaran discloses analyzing the packet by the controller through 
stateful classification where the classification is done in order to recognize the packet.  A 
person of ordinary skill in the art would understand that stateful classification in order to 
recognize the packet may be performed by applying security application including a firewall 
or intrusion detection functionality. Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the 
Chandrasekaran is found to not meet this limitation, wherein the analyzing comprises 
applying security application that comprises firewall or intrusion detection functionality 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at Claim 9. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 433 of 1100



75 

No. ʼ111 Patent Claim 13 Chandrasekaran 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 434 of 1100



76 

No. ʼ111 Patent Claim 13 Chandrasekaran 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 435 of 1100



77 

No. ʼ111 Patent Claim 13 Chandrasekaran 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 13 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses analysis by the intrusion detection engine on the 
monitoring appliance to detect communication intruders and suspicious activity.  The 
monitoring appliance may also work in coordination with a firewall. 
 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular 
traffic or flow or suspicious activity. The flow concern index values have been derived 
heuristically from extensive net-work traffic analysis. Concern index values are associated 
with particular hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern 
index values for various exemplary flow-based events and other types of events are 
illustrated in connection with FIGS. 6 and 7.”) 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) 
 
Copeland at [0068] (“Those skilled in the art understand that many networks utilize 
firewalls to limit unwanted network traffic. A monitoring appliance 150 can be connected 
before a firewall to detect intrusions directed at the network. Con-versely, the monitoring 
appliance 150 may be installed behind a firewall to detect intrusions that bypass the firewall. 
Some systems install two firewalls with web and e-mails servers in the so-called 
"demilitarized zone" or "DMZ" between firewalls. One common placement of the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 436 of 1100



78 

No. ʼ111 Patent Claim 13 Chandrasekaran 
monitor-ing appliance 150 is in this demilitarized zone. Of course, those skilled in the art 
will appreciate that the flow-based intrusion detection system 155 or appliance 150 can 
operate without the existence of any firewalls.”) 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of 
intrusion detection is accomplished at least in part by analyzing communication flows to 
determine if such communications have the flow characteristics of probes or attacks. By 
analyzing communications for abnormal flow characteristics, attacks can be determined 
without the need for resource-intensive packet data analysis. A flow can be determined from 
the packets 101 that are transmitted between two hosts utilizing a single service. The 
addresses and port numbers of communications are easily discerned by analysis of the 
header information in a datagram.”) 
 
Copeland at [0112] (“FIG. 5 illustrates a logical software architecture of a flow-based 
intrusion detection engine 155 constructed in accordance with an embodiment of the present 
invention. As will be understood by those skilled in the art, the system is constructed 
utilizing Internet-enabled computer systems with computer programs designed to carry out 
the functions described herein. Preferably, the various computing func-tions are 
implemented as different but related processes known as "threads" which executed 
concurrently on modern day multi-threaded, multitasking computer systems.”) 
 
Copeland at Figure 5 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 437 of 1100



79 

No. ʼ111 Patent Claim 13 Chandrasekaran 

 
 
Copeland at [0149] (“The alert manager 530 also looks for hosts whose CI or traffic (byte 
rate) exceeds preset alarm thresholds and which have not been handled on previous runs. 
The new alarm conditions can cause immediate operator notification by an operator 
notification process 542. These conditions can be highlighted on the user interface, and 
cause SNMP trap messages to be sent to a network monitor such as HP Openview, and/or 
email messages to the network adminis-trator that in turn may cause messages to be sent to 
beepers or cell phones. Messages can also be sent to cause automated devices such as a 
firewall manager 544 to drop packets going to or from an offending host. It will thus be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 438 of 1100



80 

No. ʼ111 Patent Claim 13 Chandrasekaran 
appreciated that the present invention advantageously operates in conjunc-tion with 
firewalls and other network security devices and processes to provide additional protection 
for an entity's computer network and computer resources.”) 
 
Copeland at [0177] (“If an alarm threshold has been exceeded, the "Yes" branch of step 975 
is followed to step 976. In step 976, the alert manager thread generates certain 
predetermined signals designed to drawn the attention of a system administrator or other 
interested person. The alert manager 530 looks for hosts whose CI or traffic (byte rate) 
exceeds preset alarm thresholds and have not been handled on previous runs. The new alarm 
conditions can cause immediate operator notifi-cation. These conditions can be highlighted 
on the user interface, and cause SNMP trap messages to be sent to a network monitor such 
as HP Openview, and/or email mes-sages to the network administrator that in turn may 
cause messages to be sent to beepers or cell phones. Messages can also be sent to cause 
automated devices such as a firewall manager to drop packets going to or from an offending 
host. Step 976 is followed by step 972, in which the thread 530 awaits the requisite amount 
of time.”) 
 
For example, Chua ‘877 discloses security determinations and analysis that involve the use 
of firewalls or intrusion detection services. 
 
Chua ‘877 at 31:48-59 (“In some examples, SDN controller 112 further performs deep 
packet inspection (DPI) on packets from client device 102 ( 402). For example, SDN 
controller 112 may inspect one or more preliminary packets of packet flows originating 
from or directed to client device 102, and after determining that the packet flows are not 
malicious ( after a predetermined number of packets), stop inspecting the packet flows. 
Alternatively, SDN controller 112 may program network devices of SDN 106 to forward a 
predetermined number of packets of the packet flows originating from or destined for client 
device 102 through a deep packet inspection service device, which may correspond to one 
of service devices 116.”) 
 
Chua ‘877 at 25:32-52 (“In the example of FIG. 5, SDN controller 112 determines zones for 
packet flows through the network devices forming the SDN (304). The zones generally 
correspond to packet flows, that is, paths through the SDN followed by particular packets. 
SDN controller 112 may store data defining the zones in the data model discussed above. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 439 of 1100



81 

No. ʼ111 Patent Claim 13 Chandrasekaran 
The data defining the zones may specify entities (e.g., users, devices, or the like) that have 
access to each zone. Thus, SDN controller 112 may program network devices of the SDN 
such that entities that  are not authorized to access a particular zone are prevented from 
accessing the zone. SDN controller 112 may specify a zone using packet header field 
values, such as a source port, a destination port, a source IP address, a destination IP 
address, a virtual local area network (VLAN) tag, multiprotocol label switching (MPLS) 
labels, a packet protocol, and/or an IP subnet. In some cases, SDN controller 112 may 
specify whether a corresponding packet flow for a zone is suspect or malicious and 
construct the zone such that packets of the packet flow are prevented from reaching an 
intended destination. As noted above, zones may be ordered based on priority values when 
overlap occurs.”) 
 
Chua ‘877 at 25:53-65 (“Furthermore, SDN controller 112 determines trusted packet flows 
(306). For example, SDN controller 112 may determine that certain packet flows can be 
trusted based on security controls, and that other packet flows cannot be trusted based on the 
security controls. That is, SDN controller 112 may determine whether a packet flow can be 
trusted based on values of packet headers for the packet flows, e.g., values of headers at 
various layers of the OSI model ( e.g., any or all of layers 2-7 of the OSI model). In some 
examples, SDN controller 112 may omit any or all of steps 302, 304, and 306, e.g., omitting 
any or all of determination of service devices, determination of zones, and/or determination 
of trusted packet flows.”) 
 
Chua ‘877 at 5:50-6:5 (“SDN 106 generally serves to interconnect various endpoint devices, 
such as client device 102 and server device 104. In addition, SDN 106 may provide services 
to network traffic flowing between client device 102 and server device 104. Alternatively, 
SDN 106 may provide services to client device 102, without further directing traffic to 
server device 106. For example, administrator 114 may use SDN controller 112 to program 
network devices of SDN 106 to direct network traffic for client device 102 to one or more of 
service devices 116. Service devices 116 may include, for example, intrusion detection 
service (IDS) devices, intrusion prevention system (IPS) devices, web proxies, web servers, 
web-application firewalls and the like. In other examples, service devices 116 may, 
additionally or alternatively, include devices for provid-ing services such as, for example, 
denial of service (DoS) protection, distributed denial of service (DDoS) protection, traffic 
filtering, wide area network (WAN) acceleration, or other such services. Service devices Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 440 of 1100



82 

No. ʼ111 Patent Claim 13 Chandrasekaran 
116 may also addition-ally or alternatively include malware detection devices, net-work 
anti-virus devices, network packet capture and analysis devices, honeypot devices, reflector 
net devices, tar pit devices, domain name service (DNS) and global DNS server devices, 
mail proxies, and anti-spam devices.”) 
 
Chua ‘877 at 6:6-24 (“Service devices 116 may, additionally or alternatively, include 
devices in various device categories such as, for example, network and application security 
devices, application optimization devices, scaling devices, traffic shaping devices, and/or 
monitoring and analytics devices. Moreover, although shown as individual devices, it 
should be understood that service devices may be realized by physical devices, multi-tenant 
devices, or using virtual services (e.g., cloud-based services). Moreover, service devices 116 
may represent multi-function devices. For purposes of example and ease of explanation, this 
disclosure primarily describes individual service devices. However, it should be understood 
that the techniques of this disclosure may be readily applied to virtual devices and cloud-
based applications, in addition or in the alternative to physical devices. Likewise, where this 
disclosure refers to a switch or other network device, it should be understood that these 
techniques may apply to virtual switches or other virtual network devices.”) 
 
Chua ‘877 at 7:3-13 (“Devices that may be plugged into (that is, communicatively coupled 
to) SDN controller 112 ( also sometimes referred to as a "FlowDirector") generally include 
classes of devices found in most network-based DMZs, including firewalls, web proxies, 
mail proxies, AV (anti-virus) proxies, mail systems, IDS (intrusion detection systems), IPS 
(intrusion prevention systems), VPN (virtual private network) servers, web application 
firewalls, vulnerability scanners, network recording and analysis systems, and packet 
shapers. Most of these devices are either security devices, or traffic engineering or visibility 
devices, in some examples.”) 
 
Chua ‘877 at 14:32-51 (“One example use case for SDN controller 112 includes performing 
internal security zone partitioning. In today's enterprise environment, certain flows can be 
trusted, based on security controls placed on the end points, while others must be assumed 
to have some potential for risk. SDN controller 112 may create security zones based both on 
physical topol-ogy as well as threat assessments based on L2-L4 header information. 
Business-level security rules can be implemented directly on SDN controller 112 to direct 
only higher risk flows through specific L4-L 7 devices ( e.g., service devices 116) to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 441 of 1100



83 

No. ʼ111 Patent Claim 13 Chandrasekaran 
monitor for or block malicious traffic. That is, when an SDN interconnects a set of 
enterprise network devices of a common enterprise network and also provides connections 
for the enterprise network devices outside of the enterprise network, SDN controller 112 
may determine that connections between the enterprise network devices within the 
enterprise network can be trusted, whereas connections to network devices outside the 
enterprise network cannot be trusted and, therefore, should be monitored by a security 
device.”) 
 
Chua ‘877 at 14:52-63 (“Thus, SDN controller 112 may determine separate sets of packet 
flows based on security controls, e.g., a first set of packet flows that can be trusted and a 
second set of packet flows that are not trusted. Then, SDN controller 112 may determine a 
first set of one or more paths for the first set of packet flows that omit a security device for 
the first set of packet flows (that is, based on the determination that the first set of packet 
flows can be trusted), and a second set of one or more paths for the second set of packet 
flows that direct the second set of packet flows through the security device (based on the 
determination that the second set of packet flows are not trusted).”) 
 
Chua ‘877 at 14:64-15:3 (“The security controls may include various types of information. 
For example, the security controls may specify values for one or more packet headers at 
various layers of the Open Systems Interconnection (OSI) network model. The security 
controls may specify information for any or all of network layers two, three, four, five, six, 
and/or seven of the OSI model.”) 
 
Chua ‘877 at 16:23-44 (“More particularly, control unit 130 may configure any of service 
devices 116 to send data representative of a particular event to SDN controller 112, and 
control unit 130 may auto-matically reprogram one or more network devices of SDN 106 in 
response to such data. For example, security monitor-ing applications of service devices 116 
may determine that a specific source port, destination port, source IP address, des-tination 
IP address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 442 of 1100



84 

No. ʼ111 Patent Claim 13 Chandrasekaran 
controller 112 based on these metrics. SDN controller 112 may respond by programming 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) 
 
Chua ‘877 at 19:60-20:4 (“FIG. 3 is a conceptual diagram illustrating an example 60 system 
200 including various devices that may be used in accordance with the techniques of this 
disclosure. In this example, system 200 includes various network devices, including firewall 
206, router 208, switch 210, web proxy 212, intrusion detection system (IDS) 214, web 
server 216, 65 administrator ("admin") workstation 220, and software defined network 
(SDN) controller 218. Web clients 202 can access system 200 via a network, such as the 
Internet, e.g., Internet 204. Internet 204 may include additional network devices not 
explicitly shown in FIG. 3, such as routers, switches, hubs, gateways, security devices, or 
the like.”) 
 
 

 
No. ʼ111 Patent Claim 14 Chandrasekaran 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Chandrasekaran discloses the method according to claim 9, wherein the analyzing 
comprises performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Chandrasekaran discloses the controller performing Deep Packet Inspection, 
which provides the ability to look into the packet past basic header information so that the 
contents of a particular packet can be determined. 
 
See supra at Claim 9. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 443 of 1100



85 

No. ʼ111 Patent Claim 14 Chandrasekaran 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 444 of 1100



86 

No. ʼ111 Patent Claim 14 Chandrasekaran 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 445 of 1100



87 

No. ʼ111 Patent Claim 14 Chandrasekaran 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
 

 
No. ʼ111 Patent Claim 15 Chandrasekaran 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Chandrasekaran discloses the method according to claim 9, wherein the packet comprises 
distinct header and payload fields. 
 
For example, Chandrasekaran discloses packets with header and payload fields. 
 
See supra at Claim 9. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 446 of 1100



88 

No. ʼ111 Patent Claim 15 Chandrasekaran 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 447 of 1100



89 

No. ʼ111 Patent Claim 15 Chandrasekaran 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 448 of 1100



90 

No. ʼ111 Patent Claim 15 Chandrasekaran 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Chandrasekaran discloses wherein the analyzing comprises checking part of, or whole of, 
the payload field.  
 
For example, Chandrasekaran discloses analyzing, including by deep packet inspection, by 
to looking into the packet past basic header information so that the contents, or payload, of a 
particular packet can be determined.  
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 449 of 1100



91 

No. ʼ111 Patent Claim 15 Chandrasekaran 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 450 of 1100



92 

No. ʼ111 Patent Claim 15 Chandrasekaran 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 451 of 1100



93 

No. ʼ111 Patent Claim 15 Chandrasekaran 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 

 
No. ʼ111 Patent Claim 16 Chandrasekaran 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Chandrasekaran discloses the method according to claim 1, wherein the packet comprises 
distinct header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 
 

16[b] the header comprises 
one or more flag bits, 
and  

Chandrasekaran discloses the header comprises one or more flag bits. 
 
For example, Chandrasekaran discloses packets with header fields.  A person of ordinary 
skill in the art would understand that the header could be comprised of one or more flag bits. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Chandrasekaran is found to not meet this 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 452 of 1100



94 

No. ʼ111 Patent Claim 16 Chandrasekaran 
limitation, the header comprises one or more flag bits would have been obvious to a person 
having ordinary skill in the art, as explained below. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 453 of 1100



95 

No. ʼ111 Patent Claim 16 Chandrasekaran 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 454 of 1100



96 

No. ʼ111 Patent Claim 16 Chandrasekaran 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 455 of 1100



97 

No. ʼ111 Patent Claim 16 Chandrasekaran 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 16[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet headers with flag bits. 
 
Copeland at Figure 2 
 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 456 of 1100



98 

No. ʼ111 Patent Claim 16 Chandrasekaran 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
Copeland at [0078] (“In regards to a typical IP packet 210, the first 4 bits of the IP header 
220 identify the Internet protocol (IP) version. The following 4 bits identify the IP header 
length in 32 bit words. The next 8 bits differentiate the type of service by describing how 
the packet should be handled in transit. The following 16 bits convey the total packet 
length.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 457 of 1100



99 

No. ʼ111 Patent Claim 16 Chandrasekaran 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0116] (“These steps generally require manipulations of quantities such as IP 
addresses, packet length, header length, start times, end times, port numbers, and other 
packet related information. Usually, though not necessarily, these quanti-ties take the form 
of electrical, magnetic, or optical signals capable of being stored, transferred, combined, 
compared, or otherwise manipulated. It is conventional for those skilled in the art to refer to 
these signals as bits, bytes, words, values, elements, symbols, characters, terms, numbers, 
points, records, objects, images, files or the like. It should be kept in mind, however, that 
these and similar terms should be associated with appropriate quantities for computer 
opera-tions and that these terms are merely conventional labels applied to quantities that 
exist within and during operation of the computer.”) 
 
As another example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 458 of 1100



100 

No. ʼ111 Patent Claim 16 Chandrasekaran 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 459 of 1100



101 

No. ʼ111 Patent Claim 16 Chandrasekaran 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 460 of 1100



102 

No. ʼ111 Patent Claim 16 Chandrasekaran 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_ 
teid field contains the GRP TEID. When the value of the oxm_type ( oxm_class+oxm_field 
is GTP _ MATCH and the HM bit is zero, the flaw's GTP header must match these values 
exactly. If the HM flag is one, the value contains an ersmt_gtp_match field and an 
ermst_gtp_mask field, as specified by the OpenFlow 1.2 specification. We define 
ermst_gtp_mask field for selecting flows based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 461 of 1100



103 

No. ʼ111 Patent Claim 16 Chandrasekaran 
16[c] wherein the packet-

applicable criterion is 
that one or more of the 
flag bits is set.  

Chandrasekaran discloses wherein the packet-applicable criterion is that one or more of the 
flag bits is set. 
 
For example, Chandrasekaran discloses packets with header fields.  A person of ordinary 
skill in the art would understand that the header could be comprised of one or more flag bits. 
A person of ordinary skill in the art would further understand that such flag bits in packet 
headers could be the packet specific information. Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Chandrasekaran is found to not meet this limitation, wherein the packet applicable 
criterion is that one or more of the flag bits is set would have been obvious to a person 
having ordinary skill in the art, as explained below. 
 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 462 of 1100



104 

No. ʼ111 Patent Claim 16 Chandrasekaran 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 463 of 1100



105 

No. ʼ111 Patent Claim 16 Chandrasekaran 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 464 of 1100



106 

No. ʼ111 Patent Claim 16 Chandrasekaran 
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 16[c] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet specific characteristics including flag bits that are 
set. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 465 of 1100



107 

No. ʼ111 Patent Claim 16 Chandrasekaran 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0125] (“For purposes of the description, which follows, the IP address with the 
lower value, when considered as a 32-bit unsigned integer, is designated ip[0] and the 
corresponding port number is designated pt[0]. The higher IP address is designated ip[l] and 
the corresponding TCP or UDP port number is designated pt[l]. At some point, either pt[0] 
or pt[l] may be designated the "server" port by setting an appropriate bit in a bit map that is 
part of the flow record (record "state", bit 1 or 2 is set).”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 
8) have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of 
hosts scanned "statistically significant". These and other values of concern index are shown 
for non-flow based events in FIG. 7.”) 
 
As another example, Kempf flow table matches in which the flag bits is set. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 466 of 1100



108 

No. ʼ111 Patent Claim 16 Chandrasekaran 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 467 of 1100



109 

No. ʼ111 Patent Claim 16 Chandrasekaran 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 468 of 1100



110 

No. ʼ111 Patent Claim 16 Chandrasekaran 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 469 of 1100



111 

No. ʼ111 Patent Claim 16 Chandrasekaran 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at Figure 10 
 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 470 of 1100



112 

No. ʼ111 Patent Claim 16 Chandrasekaran 
 

 
No. ʼ111 Patent Claim 17 Chandrasekaran 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 
Protocol (TCP) packet, 
and  

Chandrasekaran discloses the method according to claim 16, wherein the packet is an 
Transmission Control Protocol (TCP) packet. 
 
For example, Chandrasekaran discloses data traffic comprised of packets that may be a 
Transmission Control Protocol packet.  A person of ordinary skill in the art would 
understand that the packets may be part of a number of protocols, including Transmission 
Control Protocol. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Chandrasekaran is 
found to not meet this limitation, wherein the packet is an Transmission Control Protocol 
(TCP) packet would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
See supra at Claim 16. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 471 of 1100



113 

No. ʼ111 Patent Claim 17 Chandrasekaran 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0017] (“The stateful classifier 18 at the controller 12 classi-fies traffic 
based on multiple packets received from the begin-ning of a flow. Stateful classification 
uses rules which need information on states for a previous packet ( or packets) in a flow. 
Stateful classification may be based, for example, on packet pattern matching and decoding 
of protocols and their states. Stateful classification is also referred to as flow clas-sification 
since it looks at a data stream of related packets (flow, session).”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 17(a) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 472 of 1100



114 

No. ʼ111 Patent Claim 17 Chandrasekaran 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 473 of 1100



115 

No. ʼ111 Patent Claim 17 Chandrasekaran 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
For example, Chua discloses packet traffic using TCP services. 
 
Chua at 18:8-44 (“Based on the rule set for a specific device, including what traffic is 
allowed through, from what zones and expected targets, administrator 114 can infer the right 
type of test traffic that should be injected for both positive and negative testing of the 
device. Similarly, the inference can be made to deter-mine the appropriate type of flow 
troubleshooting that includes the appropriate IP ranges to watch on, and the TCP/ UDP 
services that the flowchain is meant to service.  
 
In the case of traffic injection to test a path through SDN 106, path verification unit 136 of 
SDN controller 112 may perform any of the following tasks: 
 
Infer from the flowchain the appropriate type of transmission control protocol (TCP) or 
uniform datagram proto-col (UDP) services that are relevant to the chain, as well as the 
range of source and target IP addresses for this chain 
 
Create either UDP packet flows or TCP sessions that confirm to the traffic type inferred or 
discovered form the flowchain configuration  
 
Using an SDN device ( e.g., a switch of SDN 106), inject these flows or TCP sessions by 
temporarily inserting a rule into the rules table on the switch that will take the flows from 
SDN controller 112 and send them across the devices of SDN 106 (starting from the ingress 
device in the chain) 
 
Using an SDN device, insert flow rules to replicate (flow-span) these same traffic streams at 
each point in the flow chain. The replicated traffic may be directed (via SDN rules) to a 
collection device ( or to SDN controller 112) that can determine whether the test packets 
passed through each port on the switch that is part of the flowchain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 474 of 1100



116 

No. ʼ111 Patent Claim 17 Chandrasekaran 
 
On the final exit device (prior to the end target), insert a flow rule that will drain all injected 
packets so the final devices (that is, devices external to SDN 106) do not see any of the test 
traffic.”) 
 
 

17[b] wherein the one or 
more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

Chandrasekaran discloses wherein the one or more flag bits comprises comprise a SYN flag 
bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
For example, Chandrasekaran discloses packets with header fields.  A person of ordinary 
skill in the art would understand that the header could be comprised of one or more flag bits 
that comprise a SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any 
combination thereof. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Chandrasekaran is 
found to not meet this limitation, wherein the one or more flag bits comprises comprise a 
SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 475 of 1100



117 

No. ʼ111 Patent Claim 17 Chandrasekaran 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 476 of 1100



118 

No. ʼ111 Patent Claim 17 Chandrasekaran 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 477 of 1100



119 

No. ʼ111 Patent Claim 17 Chandrasekaran 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
Chandrasekaran at [0035]-[0044] (“WebEx Video: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x50 
 
WebEx Voice: 
UDP Payload  
First byte=0x06  
Bytes [6-9]=Data length  
10th byte=0x48”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 17[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets with flag bits including SYN, ACK, FIN, and 
R flag bits. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 478 of 1100



120 

No. ʼ111 Patent Claim 17 Chandrasekaran 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0090] (“Host2 responds with a SYN-ACK packet. In this message, both the 
SYN flag and the ACK flag are set. Host2 provides the initial sequence number for its data 
to Hostl. Host2 also sends to Hostl the acknowledgment number that is the next sequence 
number Host2 expects to receive from host 1. In the SYN-ACK packet sent by Host2, the 
acknowl-edgment number is the initial sequence number of Hostl plus 1, which should be 
the next sequence number received.”) 
 
Copeland at [0091] (“Hostl responds to the SYN-ACK with a packet with just the ACK flag 
set. Hostl acknowledges that the next packet of information received from Host2 will be 
Host2's initial sequence number plus 1. The three-way handshake is complete and data is 
transferred.”) 
 
Copeland at [0092] (“Host2 responds to ACK packet with its own ACK packet. Host2 
acknowledges the data it has received from Hostl by sending an acknowledgment number 
one greater than its last received data sequence number. Both hosts send packets with the 
ACK flag set until the session is to end although the P and U flags may also be set, if 
warranted.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 479 of 1100



121 

No. ʼ111 Patent Claim 17 Chandrasekaran 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0094] (“Host2 acknowledges the FIN packet by sending its own ACK packet. 
The ACK packet has the acknowledge-ment number one greater than the sequence number 
of Hostl's FIN-ACK packet. ACK packets are still delivered between the two hosts, except 
that HOSTl's packets have no data appended to the TCP/IP end of the headers.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
 
Uchida discloses wherein the one or more flag bits comprises a SYN flag bit, an ACK flag 
bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
As another example, Uchida discloses the TCP (Transmission Control Protocol) FIN flag, 
RST flag, and SYN flag i.e., the one or more flag bits comprises comprise a SYN flag bit, 
an ACK flag bit, a FIN flag bit, a RST flag bit. 
 
Uchida at [0040] (“A flow end can be detected by various methods as below. For example, 
in one method, a protocol end message is checked. For example, in the TCP (Transmission 
Control Protocol), a FIN flag is checked. In this way, the end of communication, that is, the 
end of a flow using communica-tion, can be detected. In practice, after a FIN flag, 
communi-cation with an ACK packet is generated in a reverse-direction flow (a flow in 
which the source and the destination are reversed). Thus, by detecting the ACK flag in the 
reverse-direction flow after the FIN packet, a flow end can be deter-mined. Further, since 
the TCP is used in bidirectional com-munication, the forward- and reverse-direction flows 
can be used as a pair to determine a flow end. Namely, if the end of a flow is detected, a 
process rule corresponding to the reverse-direction flow of the flow can also be determined Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 480 of 1100



122 

No. ʼ111 Patent Claim 17 Chandrasekaran 
to be unnec-essary. Alternatively, a communication end can also be deter-mined when a 
predetermined time elapses after reception of a SYN packet and a timeout is determined. 
Still alternatively, a communication end can be determined by reception of a RST packet. 
These methods will be described in more detail later as specific examples.”) 
 
Uchida at [0050] (“The flow end check unit can use at least one of a TCP (Transmission 
Control Protocol) FIN flag, RST flag, and SYN flag extracted by the end determination 
information extraction unit to determine a flow end.”) 
 
Uchida at [0055] (“In the process rule update method, a flow end can be determined by at 
least one of a TCP (Transmission Control Protocol) FIN flag, RST flag, and SYN flag.”) 
 
Uchida at [0102] (“Next, specific examples 1 to 3 will be described. In the examples 1 to 3, 
a flow end is determined by combining features of the above individual exemplary 
embodiments and using TCP (Transmission Control Protocol) flags.”) 
 
Uchida at [0103] (“FIG. 6 is a state transition diagram of TCP connec-tion. "CLOSED" at 
the top of FIG. 6 represents the end of TCP communication, and portions connected thereto 
repre-sent states prior to the end of TCP communication. Approxi-mately 2MSL (MSL: 
Maximum Segment Lifetime) is the maximum amount of time required to reach the above 
"CLOSED," that is, if the packet forwarding apparatus stands by for approximately 2MSL 
after both FINs flow, the above "CLOSED" is reached. Thus, after a FIN is confirmed in 
either direction, if this 2MSL elapses, basically, a communi-cation end can be determined. 
Even if the state does not change smoothly because of packet loss or the like (for example, 
even if an ACK packet does not arrive after "CLOS-ING"), a retransmitted packet is 
forwarded immediately after this 2MSL. Thus, the end of TCP communication can be 
determined if a new FIN packet is not received within the time corresponding to the 2MSL 
and a margin (2MSL+a) at long-est.”) 
 
Uchida at [0104] (“Hereinafter, the description will be made, assuming that a packet 
forwarding apparatus Cl according to the present invention relays TCP communication 
between a com-puter (client) Dl 0 and a server D20 that use network configu-rations 
illustrated in FIG. 7. In the example of FIG. 7, the computer Dl0 belongs to a network 
represented by 192.168. 0./24 and is set by 192.168.0.10. The server D20 belongs to a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 481 of 1100



123 

No. ʼ111 Patent Claim 17 Chandrasekaran 
network represented by 192.168.1./24 and is set by 192.168. 1.10. As in the case of the 
OpenFlow controller described in Non-Patent Documents 1 and 2, a control apparatus ( 
control-ler) Dl is connected to the packet forwarding apparatus Cl via a dedicated channel 
and manages connection between the two networks. In the following description, the control 
appa-ratus (controller) Dl controls the packet forwarding appara-tus Cl so that connection 
from other networks appears as communication from network number 1 (192.168.1.1) of the 
respective networks (see process rule actions in FIG. 19). In addition, in the present specific 
example, since FIN packets are monitored, the end determination information extraction 
unit Cl 7 monitors a protocol stack, including: fields in which the TCP is determined; and 
the FIN flag in the TCP header.”) 
  
Uchida at [0105] (“FIG. 8 is a flow chart of a flow end determination process using FIN 
flags. In FIG. 8, steps relating to a timeout determination are added to steps Slll to S116 in 
the flow chart in FIG. 3. Thus, the flow chart in FIG. 8 includes more detailed steps than the 
flow chart of FIG. 3. Hereinafter, operations will be described with reference to FIGS. 3, 6, 
and 8 and FIGS. 9 to 13. In practice, prior to TCP/IP communi-cation, ARP (Address 
Resolution Protocol) communication is executed, and a process rule may be set in that stage. 
However, for ease of description, description of the ARP communication will be omitted. 
The following description will be made based on communication at the TCP/IP level.”) 
 
Uchida at [0106] (“First, the computer Dl0 starts communication with the server D20. For 
an initial establishment of communica-tion, a packet (SYN) is inputted to the packet 
forwarding apparatus Cl (start of ACTIVE OPEN through SYN forward-ing in FIG. 6). The 
packet reception unit Cl0 receives and stores this first packet in the packet storage unit Cll 
(steps SlOl to S102 in FIG. 3).”) 
 
Uchida at [0107] (“The packet reception unit C10 notifies the packet process information 
extraction unit C12 and the end determination information extraction unit C17 of reception 
of the packet. The packet process information extraction unit C12 refers to the packet 
storage unit C11 and extracts information such as IP source and destination information that 
is necessary to search for a process rule (step S103 in FIG. 3). Hereinafter, a process 
corresponding to steps S103 to S110 in FIG. 3 will be executed.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 482 of 1100



124 

No. ʼ111 Patent Claim 17 Chandrasekaran 
Uchida at [0115] (“Upon receiving a notification that the packet has been received by the 
packet reception unit Cl 0, the end deter-mination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN flag (step S201 in 
FIG. 8).”) 
 
Uchida at [0116] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 1; the source address is 192.168. 
0.10; the destination is 192.168.1.10; and the protocol is TCP (the type is Ox0006)) and 
stands by until forwarding of the packet. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a process rule to be deleted 
from the packet storage unit Cll. Since the IP address is replaced, the extracted information 
for identifying a process rule to be deleted represents that the source address is 192.168.1.1; 
the destination is 192.168.1.1 0; and the protocol is TCP (the type is 0x0006). The 
information is used for marking of the reverse flow. The end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the FIN 
packet has been received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0117] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203). These steps correspond to 
steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0121] (“Next, after an ACK reply in response to the FIN packet from the 
computer DlO is forwarded from the server D20 in the same way as the above normal 
packet (start of PASSIVE CLOSE in FIG. 6), the server D20 transmits a FIN packet to the 
computer DlO. When this FIN packet is inputted to the packet forwarding apparatus Cl, the 
flow end determi-nation process from steps Slll to S116 is started, as in the case of the 
above start of ACTIVE CLOSE.”) 
 
Uchida at [0122] (“Upon receiving a notification that the packet has been received from the 
packet reception unit Cl0, the end determination information extraction unit Cl 7 refers to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 483 of 1100



125 

No. ʼ111 Patent Claim 17 Chandrasekaran 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN packet (step S201 in 
FIG. 8).”) 
 
Uchida at [0123] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a modified process rule represents that the source address is 192.168.1. 10; the 
destination is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extrac-tion unit Cl 
7 notifies the flow end check unit C18 of the notification that the FIN packet has been 
received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0124] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203 in FIG. 8). These steps 
correspond to steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0125] (“At this point, since a FIN packet has been transmit-ted, the flow end 
check unit C18 uses the information for identifying a process rule to be deleted as a key, 
extracts the process rule (process rule corresponding to ingress port 2 in FIG. 11) from the 
process rule storage unit C13, and marks a FIN packet reception flag (steps S204 to S205 in 
FIG. 8). This process corresponds to the internal state update process in step S115 in FIG. 
3.”) 
 
Uchida at [0134] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there are two cases where "CLOSED" at the top of FIG. 6 is reached without a state 
transition involving FIN flags. One case arises when the ses-sion is closed from 
SYN_SENT, which is reached when a SYN packet in which a SYN flag is marked is Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 484 of 1100



126 

No. ʼ111 Patent Claim 17 Chandrasekaran 
transmitted. The other case arises when a timeout is generated. In such case, while the 
packet forwarding apparatus cannot monitor the closed session, the packet forwarding 
apparatus can con-firm a timeout in the following way. In the present specific example, a 
flow end is determined by this timeout.”) 
 
Uchida at [0135] (“n the present specific example, if a SYN/ ACK packet does not flow in a 
direction opposite to the SYN packet flow direction within a predetermined time (from 
"SYN_ RCVD" to "SYN_SENT" in FIG. 6), a timeout is determined.”) 
 
Uchida at [0136] (“FIG. 14 is a flow chart illustrating a flow end deter-mination process 
using a SYN flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the dif-ference.”) 
 
Uchida at [0137] (“In FIG. 14, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage, unit Cll, monitors a TCP SYN flag, and finds a SYN 
packet (step S301 in FIG. 14).”) 
 
Uchida at [0138] (“Since a SYN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a process rule repre-sents that the source address is 192.168.1.10; the destination 
is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is used for 
marking of the reverse flow. The end determination information extraction unit Cl 7 notifies 
the flow end check unit C18 of the notification that the SYN packet has been received and 
these items of information (step S302 in FIG. 14).”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 485 of 1100



127 

No. ʼ111 Patent Claim 17 Chandrasekaran 
Uchida at [0139] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether a SYN flag is 
set in a prede-termined packet header position and an ACK flag is not marked (step S303 in 
FIG. 14). These steps correspond to steps Slll to S114 in FIG. 3.”)  
 
Uchida at [0148] (“ Next, a third specific example in which a flow end determination is 
executed by using a TCP RST (reset) flag will be described.”) 
 
Uchida at [0149] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there is a transition from "SYN_ RCVD," which is a communication establishment 
standby state, to "LISTEN," which is a communication standby state. A TCP RST (reset) 
flag signifies release of connection and retry of communication. Namely, since a RST 
packet in which this RST flag is set signifies invalidation of communi-cation, by detecting 
this RST flag, a flow end can be deter-mined.”) 
 
Uchida at [0150] (“FIG. 16 is a first flow chart illustrating a flow end determination process 
using a RST flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the difference.”) 
 
Uchida at [0151] (“In FIG. 16, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage unit Cll, monitors a TCP RST flag, and finds a RST packet 
(step S401 in FIG. 16).”) 
 
Uchida at [0152] (“Since a RST flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the RST 
packet has been received and these items of information ( step S402 in FIG. 16).”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 486 of 1100



128 

No. ʼ111 Patent Claim 17 Chandrasekaran 
Uchida at [0164] (“For example, in a specific example of the present invention, certain TCP 
flags are monitored. A single packet forwarding apparatus can monitor these flags in a 
parallel fashion. For example, after a packet that triggers a flow end is detected, the above 
process may be allowed to branch to the above FIGS. 8, 14, and 16 (17) to realize parallel 
monitoring.”) 
 
 

 
No. ʼ111 Patent Claim 18 Chandrasekaran 

18[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Chandrasekaran discloses the method according to claim 1, wherein the packet comprises 
distinct header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Chandrasekaran discloses the header comprises at least the first and second entities 
addresses in the packet network. 
 
For example, Chandrasekaran discloses packet headers that may include source and 
destination addresses. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 487 of 1100



129 

No. ʼ111 Patent Claim 18 Chandrasekaran 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 488 of 1100



130 

No. ʼ111 Patent Claim 18 Chandrasekaran 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 489 of 1100



131 

No. ʼ111 Patent Claim 18 Chandrasekaran 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
 

18[c] wherein the packet-
applicable criterion is 
that the first entity 
address, the second 
entity address, or both 
match a predetermined 
address or addresses.  

Chandrasekaran discloses wherein the packet-applicable criterion is that the first entity 
address, the second entity address, or both match a predetermined address or addresses. 
 
For example, Chandrasekaran discloses the classification information, including source and 
destination addresses and other tuple information. 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 490 of 1100



132 

No. ʼ111 Patent Claim 18 Chandrasekaran 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
Chandrasekaran at [0021] (“Once the application is recognized, QoS or other policies 
associated with the application can be applied to traffic so that the network can invoke 
services for that par-ticular application. For example, the application may have certain 
requirements and expectations from the network infrastructure, which may be specified in 
terms of bandwidth, delay, jitter, throughput, packet loss, or other performance attributes.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Chandrasekaran at [0026] (“Memory 34 may be a volatile memory or non-vola-tile storage, 
which stores various applications, operating sys-tems, modules, and data for execution and 
use by the proces-sor 32. Memory 34 may include, for example, classification database 35. 
The classification database 35 may be any data structure configured for at least temporarily Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 491 of 1100



133 

No. ʼ111 Patent Claim 18 Chandrasekaran 
storing classifi-cation information including, for example, flow information, application ID, 
stateless DPI rules, and policies.”) 
 
Chandrasekaran at [0031] (“FIG. 3 is a flowchart illustrating an example of a process at the 
controller 12 for classification of traffic for application aware policies in a wireless network, 
in accor-dance with one embodiment. At step 40, the controller 12 receives packets 
belonging to a network flow. The controller 12 performs stateful classification to identify an 
application associated with the flow ( step 42). The controller 12 transmits classification 
information ( e.g., flow information, stateless DPI rule, and policy) to the AP 14 for use in 
stateless classi-fication at the AP (step 44). The controller 12 applies policies to downstream 
traffic (received at the controller and destined for the client 16) (step 46) and receives 
upstream traffic for which policies have been applied at the AP 14 (step 48). If the controller 
12 determines ( e.g., receives an indication) that the client 16 has roamed, it transmits the 
classification informa-tion to the new AP 14 to which the client has roamed (steps 50 and 
52).”) 
 
Chandrasekaran at [0033] (“The following describes an example of the above process for 
WebEx traffic that has different sub-classifications for voice and video traffic. Stateful 
classification is first performed by the controller 12 at the beginning of the flow. The 
controller 12 may need to process, for example, 10, 100, or any other number of packets to 
classify the flow as Web Ex traffic. Once the classification is performed, the controller 12 
sends the stateless DPI rules and flow information to the AP 14 for stateless sub-
classification to distinguish voice, video, or data within a WebEx flow. For example, after 
the controller 12 identifies the WebEx meeting traffic, it pushes the tuple, the stateless DPI 
rules (as shown below), and policies to the AP 14 for upstream traffic marking, dropping, or 
rate-limit-ing. If the client 16 roams, the controller 12 transmits the same classification 
information to the new AP to which the client has roamed.”) 
 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 492 of 1100



134 

No. ʼ111 Patent Claim 19 Chandrasekaran 
19 The method according 

to claim 18, wherein 
the addresses are 
Internet Protocol (IP) 
addresses.  

Chandrasekaran discloses the method according to claim 18, wherein the addresses are 
Internet Protocol (IP) addresses. 
 
For example, Chandrasekaran discloses source and destination IP addresses. 
 
See supra at Claim 18. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0017] (“The stateful classifier 18 at the controller 12 classi-fies traffic 
based on multiple packets received from the begin-ning of a flow. Stateful classification 
uses rules which need information on states for a previous packet ( or packets) in a flow. 
Stateful classification may be based, for example, on packet pattern matching and decoding 
of protocols and their states. Stateful classification is also referred to as flow clas-sification 
since it looks at a data stream of related packets (flow, session).”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 493 of 1100



135 

No. ʼ111 Patent Claim 19 Chandrasekaran 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 

 
No. ʼ111 Patent Claim 20 Chandrasekaran 

20[a] The method according 
to claim 1, wherein the 
packet is an 
Transmission Control 
Protocol (TCP) packet 
that comprises source 
and destination TCP 
ports, a TCP sequence 
number, and a TCP 
sequence mask fields, 
and  

Chandrasekaran discloses the method according to claim 1, wherein the packet is an 
Transmission Control Protocol (TCP) packet that comprises source and destination TCP 
ports, a TCP sequence number, and a TCP sequence mask fields. 
 
See supra at Claim 1, 17[a]. 

20[b] wherein the packet-
applicable criterion is 
that the source TCP 
port, the destination 
TCP port, the TCP 
sequence number, the 
TCP sequence mask, 
or any combination 
thereof, matches a 

Chandrasekaran discloses wherein the packet-applicable criterion is that the source TCP 
port, the destination TCP port, the TCP sequence number, the TCP sequence mask, or any 
combination thereof, matches a predetermined value or values. 
 
For example, Chandrasekaran discloses classification information that can include different 
identifiers of a packet.  A person of ordinary skill in the art would understand that the 
classification information transmitted could be the source TCP port, the destination TCP 
port, the TCP sequence number, the TCP sequence mask, or any combination thereof, which 
are applied to policy rules. Thus, at least under the apparent claim scope alleged by Orckit’s 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 494 of 1100



136 

No. ʼ111 Patent Claim 20 Chandrasekaran 
predetermined value or 
values.  

Infringement Disclosures, this limitation is met.  To the extent that the Chandrasekaran is 
found to not meet this limitation, wherein the packet-applicable criterion is that the  
source TCP port, the destination TCP port, the TCP sequence number, the TCP sequence 
mask, or any combination thereof, matches a predetermined value or values would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 17(a) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets with TCP port information. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 495 of 1100



137 

No. ʼ111 Patent Claim 20 Chandrasekaran 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 496 of 1100



138 

No. ʼ111 Patent Claim 20 Chandrasekaran 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
For example, Chua discloses packet traffic using TCP services with TCP port information.  
 
Chua at 18:8-44 (“Based on the rule set for a specific device, including what traffic is 
allowed through, from what zones and expected targets, administrator 114 can infer the right 
type of test traffic that should be injected for both positive and negative testing of the 
device. Similarly, the inference can be made to deter-mine the appropriate type of flow 
troubleshooting that includes the appropriate IP ranges to watch on, and the TCP/ UDP 
services that the flowchain is meant to service.  
 
In the case of traffic injection to test a path through SDN 106, path verification unit 136 of 
SDN controller 112 may perform any of the following tasks: 
 
Infer from the flowchain the appropriate type of transmission control protocol (TCP) or 
uniform datagram proto-col (UDP) services that are relevant to the chain, as well as the 
range of source and target IP addresses for this chain 
 
Create either UDP packet flows or TCP sessions that confirm to the traffic type inferred or 
discovered form the flowchain configuration  
 
Using an SDN device ( e.g., a switch of SDN 106), inject these flows or TCP sessions by 
temporarily inserting a rule into the rules table on the switch that will take the flows from 
SDN controller 112 and send them across the devices of SDN 106 (starting from the ingress 
device in the chain) 
 
Using an SDN device, insert flow rules to replicate (flow-span) these same traffic streams at 
each point in the flow chain. The replicated traffic may be directed (via SDN rules) to a 
collection device ( or to SDN controller 112) that can determine whether the test packets 
passed through each port on the switch that is part of the flowchain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 497 of 1100



139 

No. ʼ111 Patent Claim 20 Chandrasekaran 
 
On the final exit device (prior to the end target), insert a flow rule that will drain all injected 
packets so the final devices (that is, devices external to SDN 106) do not see any of the test 
traffic.”) 
 
 

 
No. ʼ111 Patent Claim 21 Chandrasekaran 

21 The method according 
to claim 1, wherein the 
packet network 
comprises a Wide 
Area Network (WAN), 
Local Area Network 
(LAN), the Internet, 
Metropolitan Area 
Network (MAN), 
Internet Service 
Provider (ISP) 
backbone datacenter 
network, or inter - 
datacenter network.  

Chandrasekaran discloses the method according to claim 1, wherein the packet network 
comprises a Wide Area Network (WAN), Local Area Network (LAN), the Internet, 
Metropolitan Area Network (MAN), Internet Service Provider (ISP) backbone datacenter 
network, or inter - datacenter network.  
 
For example, Chandrasekaran discloses a packet network comprising a Internet, intranet, 
local area net-work, wireless local area network, cellular network, metro-politan area 
network, wide area network, satellite network, radio access network, public switched 
network, virtual pri-vate network, or any other network or combination thereof 
. 
See supra at Claim 1. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 498 of 1100



140 

No. ʼ111 Patent Claim 21 Chandrasekaran 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
 

 
No. ʼ111 Patent Claim 22 Chandrasekaran 

22 The method according 
to claim 1, wherein the 
first entity is a server 
device and the second 
entity is a client 
device, or wherein the 
first entity is a client 
device and the second 
entity is a server 
device..  

Chandrasekaran discloses the method according to claim 1, wherein the first entity is a 
server device and the second entity is a client device, or wherein the first entity is a client 
device and the second entity is a server device.  
 
For example, Chandrasekaran discloses mobile devices that may be a client, wireless device, 
endpoint, host, user device, etc, that employ client/server applications.  A person of ordinary 
skill in the art would understand that a first mobile device may be either a server device or 
client device and a second mobile may be either a server device or client device. 
 
See supra at Claim 1. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 499 of 1100



141 

No. ʼ111 Patent Claim 22 Chandrasekaran 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network (e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 500 of 1100



142 

No. ʼ111 Patent Claim 22 Chandrasekaran 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 501 of 1100



143 

No. ʼ111 Patent Claim 22 Chandrasekaran 
 
 

 
 

No. ʼ111 Patent Claim 23 Chandrasekaran 
23[a] The method according 

to claim 22, wherein 
the server device 
comprises a web 
server, and  

Chandrasekaran discloses the method according to claim 22, wherein the server device 
comprises a web server. 
 
For example, Chandrasekaran discloses a mobile device that may be a server device, further 
comprising a web device.  A person of ordinary skill in the art would understand that a 
mobile device that may be a server device, may further comprise a web device. 
 
See supra at Claim 22. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 502 of 1100



144 

No. ʼ111 Patent Claim 23 Chandrasekaran 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 503 of 1100



145 

No. ʼ111 Patent Claim 23 Chandrasekaran 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
 

23[b] wherein the client 
device comprises a 
smartphone, a tablet 
computer, a personal 
computer, a laptop 
computer, or a 
wearable computing 
device.  

Chandrasekaran discloses wherein the client device comprises a smartphone, a tablet 
computer, a personal computer, a laptop computer, or a wearable computing device. 
 
For example, Chandrasekaran discloses a mobile device that may be a client device, 
wireless device, or endpoint, which may be any of a smartphone, a tablet computer, a 
personal computer, a laptop computer, or a wearable computing device 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 504 of 1100



146 

No. ʼ111 Patent Claim 23 Chandrasekaran 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 505 of 1100



147 

No. ʼ111 Patent Claim 23 Chandrasekaran 
Chandrasekaran at [0015] (“The mobile device 16 may be any suitable equip-ment that 
supports wireless communication, including for example, a mobile phone, personal digital 
assistant, portable computing device, laptop, tablet, multimedia device, or any other wireless 
device. The mobile device 16 and access point 14 are configured to perform wireless 
communication according to a wireless network communication protocol such as IEEE 
802.11/Wi-Fi.”) 
 
Chandrasekaran at [0016] (“The wireless controller 12 includes a stateful appli-cation 
classifier 18 and the AP 14 includes a stateless appli-cation classifier 22. After the stateful 
classifier 18 identifies the application, the controller 12 transmits ( e.g., pushes) 
clas-sification information 26 to the AP 14 so that the AP can perform stateless 
classification and apply policies ( e.g., QoS or other policies) to traffic received from the 
mobile device 16. The controller 12 may also provide the classification information 26 to 
another AP 14 if the client 16 roams to a new AP, as shown in FIG. 1. Implementation of 
the stateful classifier 18 at the controller 12 and stateless classifier 22 at the AP 14 allows 
for policies to be applied for downstream traffic (packet 25) at the wireless controller 12, 
and for upstream traffic (packet 28) at the access point 14.”) 
 
Chandrasekaran at [0020] (“In one embodiment, the stateful classifier 18 is a classification 
engine configured for NBAR (Network Based Application Recognition) or other technology 
used to classify applications. The classifier 18 is operable to recognize a wide variety of 
applications, including Web-based and client/ server applications. The applications may 
include, for example, Skype, YouTube, Netflix, WebEx, Google Voice, BitTorrent, Citrix, 
virtual desktop, PCoIP, or any other appli-cation. The classification engine may be 
configured, for example, to identify generic protocols and perform heuristic analysis for 
encrypted protocols. The classifiers 18, 22 are configured to perform deep packet inspection 
(DPI), which provides the ability to look into the packet past basic header information so 
that the contents of a particular packet can be determined.”) 
 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 506 of 1100



148 

No. ʼ111 Patent Claim 24 Chandrasekaran 
24 The method according 

to claim 22, wherein 
the communication 
between the network 
node and the controller 
is based on, or uses, a 
standard protocol.  

Chandrasekaran discloses the method according to claim 22, wherein the communication 
between the network node and the controller is based on, or uses, a standard protocol. 
 
For example, Chandrasekaran discloses a wireless network where communication between 
the controller and access point is based on Internet, intranet, local area net-work, wireless 
local area network, cellular network, metro-politan area network, wide area network, 
satellite network, radio access network, public switched network, virtual private network, or 
any other network or combination thereof, or any other standard protocol. Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Chandrasekaran is found to not meet this limitation, wherein 
the communication between the network node and the controller is based on, or uses, a 
standard protocol would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
See supra at Claim 22. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 507 of 1100



149 

No. ʼ111 Patent Claim 24 Chandrasekaran 
Chandrasekaran at [0017] (“The stateful classifier 18 at the controller 12 classi-fies traffic 
based on multiple packets received from the begin-ning of a flow. Stateful classification 
uses rules which need information on states for a previous packet ( or packets) in a flow. 
Stateful classification may be based, for example, on packet pattern matching and decoding 
of protocols and their states. Stateful classification is also referred to as flow clas-sification 
since it looks at a data stream of related packets (flow, session).”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 24 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses a packet network using the OpenFlow protocol, which is 
used in Software Defined Networks for communication between network device and a 
controller. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 508 of 1100



150 

No. ʼ111 Patent Claim 24 Chandrasekaran 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 509 of 1100



151 

No. ʼ111 Patent Claim 24 Chandrasekaran 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 510 of 1100



152 

No. ʼ111 Patent Claim 24 Chandrasekaran 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
As another example, OpenFlow is a standard protocol used in SDNs to communicate 
between an OpenFlow switch and controller. 
 
OpenFlow at 6-7 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 511 of 1100



153 

No. ʼ111 Patent Claim 24 Chandrasekaran 

 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 512 of 1100



154 

No. ʼ111 Patent Claim 24 Chandrasekaran 

 
 
 

 
No. ʼ111 Patent Claim 27 Chandrasekaran 

27 The method according 
to claim 1, wherein the 
network node 
comprises a router, a 
switch, or a bridge.  

Chandrasekaran discloses the method according to claim 1, wherein the network node 
comprises a router, a switch, or a bridge. 
 
For example, Chandrasekaran discloses an access point and other nodes that may be routers, 
switches, gateways, or other network devices. 
 
See supra at Claim 1. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 513 of 1100



155 

No. ʼ111 Patent Claim 27 Chandrasekaran 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 514 of 1100



156 

No. ʼ111 Patent Claim 28 Chandrasekaran 
28 The method according 

to claim 1, wherein the 
packet network is an 
Internet Protocol (IP) 
network, and the 
packet is an IP packet.  

Chandrasekaran discloses the method according to claim 1, wherein the packet network is 
an Internet Protocol (IP) network, and the packet is an IP packet. 
 
For example, Chandrasekaran discloses a network and packet that may belong to the 
Internet, intranet, local area net-work, wireless local area network, cellular network, 
metro-politan area network, wide area network, satellite network, radio access network, 
public switched network, virtual pri-vate network, or any other network or combination 
thereof.  A person of ordinary skill in the art would understand that the network may be an 
Internet Protocol network and that the packet may belong to an Internet Protocol network 
and be an IP packet. 
 
See supra at Claim 1. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0017] (“The stateful classifier 18 at the controller 12 classi-fies traffic 
based on multiple packets received from the begin-ning of a flow. Stateful classification 
uses rules which need information on states for a previous packet ( or packets) in a flow. 
Stateful classification may be based, for example, on packet pattern matching and decoding Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 515 of 1100



157 

No. ʼ111 Patent Claim 28 Chandrasekaran 
of protocols and their states. Stateful classification is also referred to as flow clas-sification 
since it looks at a data stream of related packets (flow, session).”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
 

 
No. ʼ111 Patent Claim 29 Chandrasekaran 

29 The method according 
to claim 28, wherein 
the packet network is 
an Transmission 
Control Protocol 
(TCP) network, and 
the packet is an TCP 
packet.  

Chandrasekaran discloses the method according to claim 28, wherein the packet network is 
an Transmission Control Protocol (TCP) network, and the packet is an TCP packet. 
 
For example, Chandrasekaran discloses a network and packet that may belong to the 
Internet, intranet, local area net-work, wireless local area network, cellular network, 
metro-politan area network, wide area network, satellite network, radio access network, 
public switched network, virtual pri-vate network, or any other network or combination 
thereof.  A person of ordinary skill in the art would understand that the network may be an 
Transmission Control Protocol network and that the packet may belong to an Transmission 
Control Protocol network and be a TCP packet. Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Chandrasekaran is found to not meet this limitation, wherein the packet network is 
an Transmission Control Protocol (TCP) network, and the packet is an TCP packet would 
have been obvious to a person having ordinary skill in the art, as explained below. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 516 of 1100



158 

No. ʼ111 Patent Claim 29 Chandrasekaran 
 
See supra at Claim 28. 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0017] (“The stateful classifier 18 at the controller 12 classi-fies traffic 
based on multiple packets received from the begin-ning of a flow. Stateful classification 
uses rules which need information on states for a previous packet ( or packets) in a flow. 
Stateful classification may be based, for example, on packet pattern matching and decoding 
of protocols and their states. Stateful classification is also referred to as flow clas-sification 
since it looks at a data stream of related packets (flow, session).”) 
 
Chandrasekaran at [0018] (“The stateless classifier 22 at the AP 14 uses rules that can act on 
a per packet basis in the flow. Stateless classifica-tion (also referred to as packet 
classification) is based on individual packet inspection ( e.g., 5 tuple, pattern matching) 
without knowledge of any related stream of packets, flows, sessions, or protocols.”) 
 
Chandrasekaran at [0023] (“In one embodiment, the classification information 26 
transmitted from the controller 12 to the AP 14 includes tuple information for a flow ( e.g., Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 517 of 1100



159 

No. ʼ111 Patent Claim 29 Chandrasekaran 
source IP address, destina-tion IP address, source port, destination port, and protocol), 
application identifier (ID), and stateless DPI information. Stateless DPI information 
includes classification and sub-classification information ( e.g., fixed or variable offset with 
a pattern or regular expression) and rules for applying policies on the sub-classified packets. 
The policies may include, for example, drop packet, mark a DSCP (Differentiated Services 
Code Point) value in the packet, or rate limit the traffic.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 29 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 518 of 1100



160 

No. ʼ111 Patent Claim 29 Chandrasekaran 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 519 of 1100



161 

No. ʼ111 Patent Claim 29 Chandrasekaran 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
For example, Chua discloses packet traffic using TCP services. 
 
Chua at 18:8-44 (“Based on the rule set for a specific device, including what traffic is 
allowed through, from what zones and expected targets, administrator 114 can infer the right 
type of test traffic that should be injected for both positive and negative testing of the 
device. Similarly, the inference can be made to deter-mine the appropriate type of flow 
troubleshooting that includes the appropriate IP ranges to watch on, and the TCP/ UDP 
services that the flowchain is meant to service.  
 
In the case of traffic injection to test a path through SDN 106, path verification unit 136 of 
SDN controller 112 may perform any of the following tasks: 
 
Infer from the flowchain the appropriate type of transmission control protocol (TCP) or 
uniform datagram proto-col (UDP) services that are relevant to the chain, as well as the 
range of source and target IP addresses for this chain 
 
Create either UDP packet flows or TCP sessions that confirm to the traffic type inferred or 
discovered form the flowchain configuration  
 
Using an SDN device ( e.g., a switch of SDN 106), inject these flows or TCP sessions by 
temporarily inserting a rule into the rules table on the switch that will take the flows from 
SDN controller 112 and send them across the devices of SDN 106 (starting from the ingress 
device in the chain) 
 
Using an SDN device, insert flow rules to replicate (flow-span) these same traffic streams at 
each point in the flow chain. The replicated traffic may be directed (via SDN rules) to a 
collection device ( or to SDN controller 112) that can determine whether the test packets 
passed through each port on the switch that is part of the flowchain Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 520 of 1100



162 

No. ʼ111 Patent Claim 29 Chandrasekaran 
 
On the final exit device (prior to the end target), insert a flow rule that will drain all injected 
packets so the final devices (that is, devices external to SDN 106) do not see any of the test 
traffic.”) 
 
 

 
No. ʼ111 Patent Claim 30 Chandrasekaran 

30[a] The method according 
to claim 1, further 
comprising: receiving, 
by the network node 
from the first entity 
over the packet 
network, one or more 
additional packets;  

Chandrasekaran discloses the method according to claim 1, further comprising: receiving, 
by the network node from the first entity over the packet network, one or more additional 
packets. 
 
For example, Chandrasekaran discloses data traffic sent from a mobile device over a 
network to the access point second and additional packets in a flow. 
 
See supra at Claim 1, 1[c]. 
 
Chandrasekaran at [0010] (“In order to provide end-to-end Quality of Service (QoS), 
policies should be applied to both upstream and down-stream traffic. In wireless networks, 
this would involve apply-ing policies at both a controller and an access point. Applica-tion 
classification is needed if the policies are application dependent. However, when a client 
roams between access points, it may interrupt classification performed at the access point, 
since classification of the application is based on mul-tiple packets and with roaming, the 
first packet of the flow may arrive on one access point and the second on another access 
point.”) 
 
Chandrasekaran at [0019] (“As noted above, stateful classification uses rules which need 
information on states for previous packets in a flow. When the client 16 roams (as shown in 
FIG. 1), the first packet of the flow may be received on one AP 14 and the second packet on 
another AP. Stateful classification is there-fore performed at the controller 12 rather than the 
AP 14 so that stateful packet inspection is not broken when the client 16 roams. As 
described below, when the client 16 roams, the controller 12 pushes the same classification 
rules and policies that it previously sent to the original AP to the new AP.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 521 of 1100



163 

No. ʼ111 Patent Claim 30 Chandrasekaran 
 

30[b] checking, by the 
network node, if any 
one of the one or more 
additional packets 
satisfies the criterion;  

Chandrasekaran discloses checking, by the network node, if any one of the one or more 
additional packets satisfies the criterion. 
 
See supra at Claim 1[d], 30[a]. 
 

30[c] responsive to an 
additional packet not 
satisfying the criterion, 
sending, by the 
network node over the 
packet network, the 
additional packet to 
the second entity; and  

Chandrasekaran discloses responsive to an additional packet not satisfying the criterion, 
sending, by the network node over the packet network, the additional packet to the second 
entity. 
 
See supra at Claim 1[e], 30[a]. 
 

30[d] responsive to the 
additional packet 
satisfying the criterion, 
sending the additional 
packet, by the network 
node over the packet 
network, in response 
to the instruction.  

Chandrasekaran discloses responsive to the additional packet satisfying the criterion, 
sending the additional packet, by the network node over the packet network, in response to 
the instruction. 
 
See supra at Claim 1[f], 30[a]. 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 522 of 1100



164 

No. ʼ111 Patent Claim 31 Chandrasekaran 
31[a] The method according 

to claim 1, wherein the 
packet network is a 
Software Defined 
Network (SDN),  
 

Chandrasekaran discloses the method according to claim 1, wherein the packet network is a 
Software Defined Network (SDN). 
 
For example, Chandrasekaran discloses a wireless controller and access point are configured 
to communicate to transmit network traffic.  A person of ordinary skill in the art would 
understand the communication between the controller and access point to be a software 
defined network. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Chandrasekaran is 
found to not meet this limitation, wherein the packet network is a Software Defined 
Network (SDN) would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
See supra at Claim 1. 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 523 of 1100



165 

No. ʼ111 Patent Claim 31 Chandrasekaran 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 524 of 1100



166 

No. ʼ111 Patent Claim 31 Chandrasekaran 
Chandrasekaran at Figure (annotations added) 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chadrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 525 of 1100



167 

No. ʼ111 Patent Claim 31 Chandrasekaran 
together) of the references identified in element 31[a] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses a packet network using the OpenFlow protocol which is used 
in Software Defined Networks. 
 
Kempf at [0004] (“The GPRS tunneling protocol (GTP) is an important communication 
protocol utilized within the GPRS core net-work. GTP enables end user devices ( e.g., 
cellular phones) in a GSM network to move from place to place while continuing to connect 
to the Internet. The end user devices are connected to other devices through a gateway 
GPRS support node (GGSN). The GGSN tracks the end user device's data from the end user 
device's serving GPRS support node (GGSN) that is handling the session originating from 
the end user device.”) 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 526 of 1100



168 

No. ʼ111 Patent Claim 31 Chandrasekaran 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 527 of 1100



169 

No. ʼ111 Patent Claim 31 Chandrasekaran 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
As another example, Chua discloses techniques and methods related to software defined 
networks (SDNs). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 528 of 1100



170 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
Chua at 1:45-55 (“In general, this disclosure describes techniques related to controlling 
software defined networks (SDNs). A software defined network is generally a network of 
interconnected computing devices having forwarding planes or data planes that can be 
programmed remotely by one or more controller devices. In this manner, the control plane 
can be physically separate from the data plane ( or forwarding plane) for an SDN. These 
computing devices can have either physical instantiation or virtual (software-only) 
instantiation without the presence of a hardware appliance. This disclosure describes various 
techniques related to controlling SDNs.”) 
 
Chua at 1:56-63 (“In one example, a method includes determining, by a con-troller device for 
a software defined network, connections between network devices in the software defined 
network, determining, by the controller device, one or more paths for network traffic between 
the network devices based on the determination of the connections, and programming, by the 
controller device, the network devices to direct network traf-fic along the one or more paths.”) 
 
Chua at 2:14-20 (“In another example, a method includes programming, by a controller 
device for a software defined network (SDN), a first network device of the SDN to send 
packets of a packet flow to a service device, and programming, by the controller device, one 
or more network devices of the SDN to perform a programmed action on packets of the 
packet flow based on data  received from the service device for the packet flow.”) 
 
Chua at 2:38-48 (“In another example, a method includes programming, by a controller 
device for a software defined network (SDN), a set of network devices of the SDN to form a 
path through the SDN and to send data representative of packets sent along the path to the 
controller device, sending, by the controller device, packets of a packet flow corresponding 
to the path to one of the set of network devices, determining, by the controller device, 
whether the set of network devices is properly forwarding the packets of the packet flow 
along the path based on data received from the set of network devices, and present-ing a 
report representative of the determination.”) 
 
Chua at 5:50-6:5 (“SDN 106 generally serves to interconnect various endpoint devices, such 
as client device 102 and server device 104. In addition, SDN 106 may provide services to 
network traffic flowing between client device 102 and server device 104. Alternatively, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 529 of 1100



171 

No. ʼ111 Patent Claim 31 Chandrasekaran 
SDN 106 may provide services to client device 102, without further directing traffic to 
server device 106. For example, administrator 114 may use SDN controller 112 to program 
network devices of SDN 106 to direct network traffic for client device 102 to one or more of 
service devices 116. Service devices 116 may include, for example, intrusion detection 
service (IDS) devices, intrusion prevention system (IPS) devices, web proxies, web servers, 
web-application firewalls and the like. In other examples, service devices 116 may, 
additionally or alternatively, include devices for provid-ing services such as, for example, 
denial of service (DoS) protection, distributed denial of service (DDoS) protection, traffic 
filtering, wide area network (WAN) acceleration, or other such services. Service devices 
116 may also addition-ally or alternatively include malware detection devices, net-work 
anti-virus devices, network packet capture and analysis devices, honeypot devices, reflector 
net devices, tar pit devices, domain name service (DNS) and global DNS server devices, 
mail proxies, and anti-spam devices.”) 
 
 

31[b] the packet is routed as 
part of a data plane 
and 

Chandrasekaran discloses the packet is routed as part of a data plane. 
 
For example, Chandrasekaran routing packets in a network utilizing a controller and access 
point.  A person of ordinary skill in the art would understand that the packet is routed over a 
data plane. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Chandrasekaran is found to not 
meet this limitation, the packet is routed as part of a data plane would have been obvious to 
a person having ordinary skill in the art, as explained below. 
 
See supra at Claim 1. 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 530 of 1100



172 

No. ʼ111 Patent Claim 31 Chandrasekaran 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 531 of 1100



173 

No. ʼ111 Patent Claim 31 Chandrasekaran 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at Figure (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 532 of 1100



174 

No. ʼ111 Patent Claim 31 Chandrasekaran 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 31[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 533 of 1100



175 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
For example, Kempf discloses routing packets on a data plane using a control protocol. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 534 of 1100



176 

No. ʼ111 Patent Claim 31 Chandrasekaran 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 535 of 1100



177 

No. ʼ111 Patent Claim 31 Chandrasekaran 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the 
mobile operators may even share base stations and EPC switching fabrics, though the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 536 of 1100



178 

No. ʼ111 Patent Claim 31 Chandrasekaran 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 537 of 1100



179 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 
As another example, Chua discloses forwarding packets over a data plane to various 
network destinations. 
 
Chua at 1:45-55 (“In general, this disclosure describes techniques related to controlling 
software defined networks (SDNs). A software defined network is generally a network of 
interconnected computing devices having forwarding planes or data planes that can be 
programmed remotely by one or more controller devices. In this manner, the control plane 
can be physically separate from the data plane ( or forwarding plane) for an SDN. These 
computing devices can have either physical instantiation or virtual (software-only) 
instantiation without the presence of a hardware appliance. This disclosure describes various 
techniques related to controlling SDNs.”) 
 
Chua at 1:56-63 (“In one example, a method includes determining, by a con-troller device for 
a software defined network, connections between network devices in the software defined Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 538 of 1100



180 

No. ʼ111 Patent Claim 31 Chandrasekaran 
network, determining, by the controller device, one or more paths for network traffic between 
the network devices based on the determination of the connections, and programming, by the 
controller device, the network devices to direct network traf-fic along the one or more paths.”) 
 
Chua at 23:22-34 (“FIG. 4 illustrates various devices and services organized according to the 
"control plane" and the "data plane." In general, devices and services of the control plane 
manage devices of the data plane to cause the devices of the data plane to forward data traffic 
between various network destinations. In conventional routers, each router includes 
functionality for both the control plane and the data plane, and the same is true for 
conventional switches. However, in accordance with the techniques of this disclosure, the 
control plane can be entirely separated from the data plane, such that an SDN controller, such 
as SDN controller 112, can program devices of the data plane, such as network switches, to 
perform the techniques of this disclosure.”) 
 
Chua at 23:35:45 (“FIG. 4 is a conceptual diagram illustrating an example flow management 
system 250 including various components that may operate in accordance with the techniques 
of this disclo-sure. Flow management system 250 (also referred to as "sys-tem 250") includes 
control plane 252 and data plane 280. In general, control plane 252 includes components that 
relate to control information, e.g., routing information relating to packet flows and paths 
through an SDN. Data plane 280 generally includes components that send, forward, and/or 
receive data in accordance with control information from components of control plane 252.”) 
 
Chua at 24:20-36 (“In accordance with the techniques of this disclosure, flow management 
server 256 programs network switches 282, based on connections between network switches 
282, to form paths through an SDN. For example, flow management server 256 may program 
network switches 282 to establish a path between TCP client 284 and server 288, and/or a 
path between TCP client 284 and multicast source 286. In some examples, flow management 
server 256 may program net-work switches 282 to define multiple paths, e.g., a primary path 
and one or more backup paths, as discussed above. Likewise, flow management server 256 
may send test traffic through network switches 282 to test one or more of the paths. Data 
plane 280 may include one or more service devices (such as web proxy devices, IDS devices, 
and/or web serv-ers), to which network switches 282 may direct network packets. Server 288 
may represent a service device of an SDN controlled by control plane 252, in some 
examples.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 539 of 1100



181 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 

31[c] the network node 
communication with 
the controller serves as 
a control plane. 
 

Chandrasekaran discloses the network node communication with the controller serves as a 
control plane. 
 
For example, Chandrasekaran discloses a wireless controller and access point are configured 
to communicate to transmit network traffic. A person of ordinary skill in the art would 
understand the communication between the controller and access point occurs over a control 
plane. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Chandrasekaran is found to not 
meet this limitation, the network node communication with the controller serves as a control 
plane would have been obvious to a person having ordinary skill in the art, as explained 
below 
 
Chandrasekaran at Abstract (“In one embodiment, a method includes performing stateful 
application classification on packets received at a controller and transmitting classification 
information to an access point. The classification information includes flow information and 
stateless rules for applying policies. The access point is con-figured to use the classification 
information to perform state-less application classification and apply policies to packets 
received from a mobile device. An apparatus and logic are also disclosed herein.”) 
 
Chandrasekaran at [0007] (“In one embodiment, a method generally comprises performing 
stateful application classification on packets received at a controller and transmitting 
classification infor-mation to an access point. The classification information comprises flow 
information and stateless rules for applying policies. The access point is configured to use 
the classifica-tion information to perform stateless application classifica-tion and apply 
policies to packets received from a mobile device.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 540 of 1100



182 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
Chandrasekaran at [0012] (“Referring now to the drawings, and first to FIG.1, an example 
of a network in which embodiments described herein may be implemented is shown. For 
simplification, only a small number of network devices are shown. The network includes a 
wireless controller 12 in communication with a mobile device (client, wireless device, 
endpoint) 16 through an access point (AP) 14. In the example shown in FIG. 1, the 
controller 12 is in wired communication with two access points 14 for wireless 
communication with any number of mobile devices 16 via a wireless network ( e.g., WLAN 
(wire-less local area network)) at a network site. The wireless con-troller 12 may be in 
communication with one or more other networks (not shown) (e.g., Internet, intranet, local 
area net-work, wireless local area network, cellular network, metro-politan area network, 
wide area network, satellite network, radio access network, public switched network, virtual 
pri-vate network, or any other network or combination thereof). Communication paths 
between the wireless controller 12 and other networks or between the controller and access 
points 14 may include any number or type of intermediate nodes (e.g., routers, switches, 
gateways, or other network devices), which facilitate passage of data between network 
devices.”) 
 
Chandrasekaran at [0013] (“In one example, the wireless controller 12 receives upstream 
traffic transmitted from the mobile device 16 and destined for another endpoint ( e.g., host, 
user device), and transmits downstream traffic received from the endpoint to the mobile 
device in a communication session. As used herein, the term 'downstream' refers to traffic 
transmitted from the controller 12 towards the mobile device 16, and the term 'upstream' 
refers to traffic transmitted from the mobile device towards the controller.”) 
 
Chandrasekaran at [0014] (“The term 'wireless controller' or 'controller' as used herein may 
refer to a wireless LAN (local area network) controller, mobility controller, wireless control 
device, wire-less control system, or any other network device operable to perform control 
functions for a wireless network. The net-work site may also include a wireless control 
system or other platform for centralized wireless LAN planning, configura-tion, and 
management. The wireless controller 12 enables system wide functions for wireless 
applications and may support any number of access points 14. Each access point 14 may 
serve any number of mobile devices 16 in the wireless network. The wireless controller 12 
may be, for example, a standalone device or a rack-mounted appliance. In the example Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 541 of 1100



183 

No. ʼ111 Patent Claim 31 Chandrasekaran 
shown in FIG. 1, the wireless controller 12 and access points 14 are separate devices and 
may be located remote from one another. The wireless controller 12 may also be integrated 
with the access point 14 ( e.g., autonomous AP) or located at a switch, router, switch/router, 
or other network device. Thus, the wireless controller 12 may be a physical device located at 
a standalone device, access point, switch, router, or other network device. The wireless 
controller 12 may also be a virtual device located in a network or cloud, for example.”) 
 
Chandrasekaran at Figure (annotations added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 542 of 1100



184 

No. ʼ111 Patent Claim 31 Chandrasekaran 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Chandrasekaran in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 31[c] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 543 of 1100



185 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
For example, Kempf discloses communication between network elements and an OpenFlow 
controller over a control plane. 
 
Kempf at [0006] (“A method implements a control plane of an evolved packet core (EPC) 
of a third generation partnership project (3GPP) long term evolution (LTE) network in a 
cloud com-puting system. The cloud computing system includes a cloud manager and a 
controller. The controller executes a plurality of control plane modules. The control plane 
communicates with the data plane of the EPC implemented in a plurality of network 
elements of the 3GPP LTE network through a control protocol. The EPC with the control 
plane implemented in the cloud computing system utilizes resources more efficiently than 
an architecture with the control plane implemented in the plurality of network elements of 
the 3GPP LTE network. The method comprises the steps of initializing the plurality of 
control plane modules of the EPC within the controller. Each control plane module in the 
plurality of control plane modules is initialized as a separate virtual machine by the cloud 
man-ager. Each control plane module provides a set of control plane functions for managing 
the data plane. The cloud man-ager monitors resource utilization of each control plane 
mod-ule and the control plane traffic handled by each control plane module. The cloud 
manager detects a threshold level of resource utilization or traffic load for one of the 
plurality of control plane modules of the EPC. A new control plane mod-ule is initialized as 
a separate virtual machine by the cloud manager in response to detecting the threshold level. 
The new control plane module shares the load of the one of the plural-ity of control plane 
modules and signals the plurality of net-work elements in the data plane to establish flow 
rules and actions to establish differential routing of flows in the data plane using the control 
protocol, wherein the control protocol is an OpenFlow protocol, and wherein flow matches 
are encoded using an extensible match structure in which the flow match is encoded as a 
type-length-value (TLV).”) 
 
Kempf at [0007] (“A cloud computer system implements a control plane of an evolved 
packet core (EPC) of a third generation partnership project (3GPP) long term evolution 
(LTE) net-work. The control plane communicates with the data plane of the EPC that is 
implemented in a plurality of network ele-ments of the 3GPP LTE network through a 
control protocol. The EPC with the control plane implemented in the cloud computing 
system utilizes resources more efficiently than an architecture with the control plane Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 544 of 1100



186 

No. ʼ111 Patent Claim 31 Chandrasekaran 
implemented in the plu-rality of network elements of the 3GPP LTE network. The cloud 
computing system, comprises a controller configured to execute a plurality of control plane 
modules of the EPC, each control plane module configured to provide a set of control plane 
functions for managing the data plane and to signal the plurality of network elements in the 
data plane to establish flow rules and actions to establish differential rout-ing of flows in the 
data plane using the control protocol, wherein the control protocol is an OpenFlow protocol, 
and wherein flow matches are encoded using an extensible match structure in which the 
flow match is encoded as a type-length-value (TLV) and a cloud manager communicatively 
coupled to the controller. The cloud manager is configured to initialize each of the plurality 
of control plane modules within the controller as a separate virtual machine, monitor 
resource utilization of each control plane module and the control plane traffic handled by 
each control plane module, detect whether a threshold level ofresource utilization or traffic 
load has been reached by any of the plurality of control plane modules of the EPC, and 
initialize a new control plane module as a separate virtual machine in response to detecting 
the threshold level, the new control plane module to share the load of the one of the plurality 
of control plane modules that exceeded the threshold level.”) 
 
Kempf at [0038] (“Implementing the control plane of an EPC in a cloud computing facility 
and the data plane of the EPC using a set of OpenFlow switches, as well as managing 
communication between the control plane and the dataplane using the Open-Flow protocol 
(e.g., OpenFlow 1.1), creates a problem that the OpenFlow protocol does not support GTP 
or GTP tunnel endpoint identifier (TEID) routing, which is necessary for implementing the 
dataplane of the EPC”) 
 
Kempf at [0039] (“The embodiments of the invention overcome these disadvantages of the 
prior art. The disadvantages of the prior art are avoided by splitting the control plane and the 
data plane for the EPC architecture and to implement the control plane by deploying the 
EPC control plane entities in a cloud computing facility, while the data plane is 
implemented by a distributed collection of OpenFlow switches. The OpenFlow protocol is 
used to connect the two, with enhancements to support GTP routing. While the EPC 
architecture already has a split between the control plane and the data plane, in the sense 
that the serving gateway (S-GW) and the PDN gateway (P-GW) are data plane entities 
while the MME, PCRF, and home subscriber server (HSS) are control plane entities, this 
split was made at the level of the mobility management pro-tocol, GTP.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 545 of 1100



187 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
Kempf at [0040] (“The standard EPC architecture assumes a standard routed IP network for 
transport on top of which the mobile network entities and protocols are implemented. The 
enhanced EPC architecture described herein is instead at the level ofIP routing and media 
access control (MAC) switch-ing. Instead of using L2 routing and L3 internal gateway 
protocols to distribute IP routing and managing Ethernet and IP routing as a collection of 
distributed control entities, L2 and L3 routing management is centralized in a cloud facility 
and the routing is controlled from the cloud facility using the OpenFlow protocol. As used 
herein, the "OpenFlow proto-col" refers to the OpenFlow network protocol and switching 
specification defined in the OpenFlow Switch Specification at www.openflowswitch.org a 
web site hosted by Stanford Uni-versity. As used herein, an "OpenFlow switch" refers to a 
network element implementing the OpenFlow protocol.) 
 
Kempf at [0041] (“The standard EPC control plane entities-the MME, PCRF, and HSS-are 
likewise deployed in the cloud, along with the control plane parts of the S-GW and P-GW, 
namely, the S-GW-C and the P-GW-C. The data plane con-sists of standard OpenFlow 
switches with enhancements as needed for routing GTP packets, rather than IP routers and 
Ethernet switches. At a minimum, the data plane parts of the S-GW and P-GW, namely, the 
S-GW-Dand the P-GW-D, and the packet routing part of the E-NodeB in the E-UTRAN 
require OpenFlow enhancements for GTP routing. Addi-tional enhancements for GTP 
routing may be needed on other switches within the EPC architecture depending on how 
much fine grained control over the routing an operator requires.”) 
 
Kempf at [0078] (“FIG. 15 is a diagram of one embodiment of how the EPC in the cloud 
computing system enables a managed ser-vices company to manage multiple operator 
networks out of a single data center. The managed services cloud computing facility 1501 
runs separate instances of the EPC control plane for every mobile operator with which the 
managed services company has a contract. Each EPC instance is in a VPC 1503A,B that 
isolates the mobile operator's traffic from other tenants in the cloud computing facility 1501 
of the data cen-ter. The EPC control plane instance for a mobile operator is connected to the 
mobile operator's geographically distributed EPC OpenFlow data plane switching fabric 
1507 A,B and the mobile operator's base stations through a virtual edge router 1509A,B. 
The virtual edge router 1509A,B routes traffic from the data center to and from the 
appropriate mobile operator EPC data plane switching fabric 1507 A,B. In some cases, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 546 of 1100



188 

No. ʼ111 Patent Claim 31 Chandrasekaran 
mobile operators may even share base stations and EPC switching fabrics, though the 
example embodiment in FIG. 15 shows a case where the two mobile operators have separate 
switching fabrics.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0093] (“The virtual port simply removes the GTP tunnel header and forwards the 
enclosed user data plane packet out the bound physical port.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 547 of 1100



189 

No. ʼ111 Patent Claim 31 Chandrasekaran 
 
 Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
Kempf at [0145] (“In other embodiments, other control protocols can be utilized in place of 
OpenFlow as described herein. The use of OpenFlow is presented by way of example and 
not limita-tion. Other control protocols can also be utilized to manage the communication 
between the control plane and data plane and configuration of the data plane of the split 
EPC architec-ture. An example of such a protocol is FORCES, an IETF standard protocol 
for splitting the control plane and forward-ing plane in networks. The FORCES protocol 
specification is described in RFC 5810. RFC 5812 describes the architecture of a FORCES 
forwarding element, the equivalent of an Open-Flow switch. The FORCES protocol itself 
does not directly support programming routes into the forwarding element, it is, instead, a 
framework for handling the interaction between the FORCES controller and a FORCES 
forwarding element. The forwarding element architecture describes how to design the 
protocol that actually allows a FORCES controller to program a FORCES forwarding 
element. One skilled in the art would understand that a FORCES based system could 
include features described herein above in relation to the OpenFlow embodiment, such as 
the GTP OpenFlow exten-sion, to allow the controller to program the switches for GTP 
TEID routing.”) 
 
As another example, Chua discloses the network device’s communication with the SDN 
controller over the control plane as controlling and programming the network devices to 
direct network traffic along one or more paths. 
 
Chua at 1:64-2:5 (“In another example, a controller device for a software defined network 
includes one or more interfaces for commu-nicating with network devices in the software 
defined net-work, and one or more processors configured to determine connections between 
the network devices, determine one or more paths for network traffic between the network 
devices based on the determination of the connections, and program the network devices to 
direct network traffic along the one or more paths.”) 
 
Chua at 2:21-29 (“In another example, a controller device for a software defined network 
(SDN) includes one or more network inter-faces configured to communicate with network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 548 of 1100



190 

No. ʼ111 Patent Claim 31 Chandrasekaran 
devices of the SDN, and one or more processors configured to program a first network 
device of the SDN to send packets of a packet flow to a service device, and program one or 
more network devices of the SDN to perform a programmed action on packets of the packet 
flow based on data received from the service device for the packet flow.”) 
 
Chua at 2:49-61 (“In another example, a controller device for a software defined network 
(SDN) includes one or more network interfaces configured to communicate with network 
devices of the SDN, and one or more processors configured to program a set of network 
devices of the SDN to form a path through the SDN and to send data representative of 
packets sent along the path to the controller device, send, via one of the network interfaces, 
packets of a packet flow corresponding to the path to one of the set of network devices, 
determine whether the set of network devices is properly forwarding the packets of the 
packet flow along the path based on data received from the set of network devices, and 
present a report representative of the determination.”) 
 
Chua at 23:62-24:4  (“OpenFlow is an example of an SDN protocol. That is, in some 
examples, SDN controller 270 may conform to the OpenFlow protocol. However, it should 
be understood that other protocols may be used in conjunction with a software defined 
network. In general, any protocol that gives access to the forwarding plane or data plane of a 
networking (e.g., a switch or router) to a remote device over a network may be used in 
accordance with the techniques of this disclo-sure, other example protocols include XMPP, 
RESTful APis, Cisco OnePK, IETF I2RS (Interface to Routing Systems).”) 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 549 of 1100



1 

EXHIBIT D-4 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

 
Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 
U.S. Patent No. 9,264,400 to Lin et al. (“Lin ’400”) 

 
As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because Lin ’400 
meets each element of those claims, and/or (2) 35 U.S.C. § 103 because Lin ’400 renders those claims obvious either alone, or in 
combination with the knowledge of a person having ordinary skill in the art, and in further combination with the references specifically 
identified below and in the following claim chart and/or one or more references identified in Defendant’s Preliminary Invalidity 
Contentions.  The following quotations and diagrams come from Lin ’400 titled “Software Defined Networking Pipe For Network 
Traffic Inspection”, which was filed on Dec. 2, 2013, and issued on February 16, 2016. 
 
Motivations to combine the disclosures in Lin ’400 with disclosures in other publications known in the art, as explained in this chart, 
include at least the similarity in subject matter between the references to the extent they concern methods relating to routing certain 
network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or suggest 
additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  
 
These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent construction 
of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, and Orckit’s 
January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 (Orckit’s 
“Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused structures, acts, or 
materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the claims, or that the claims 
satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way be seen as, admissions or 
adoptions as to any particular claim scope or construction, or as any admission that any particular element is met by any accused product 
in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  Defendant’s prior art invalidity 
contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view as to the meaning, definiteness, 
written description support for, or enablement of any claim contained therein. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 550 of 1100



2 

The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s construction 
of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Lin ’400 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

Lin ’400 discloses a method for use with a packet network including a network node for 
transporting packets between first and second entities under control of a controller that is 
external to the network node.  
 
For example, Lin ’400 discloses that it relates to a software defined networking (SDN) 
computer network under the control of an SDN controller over the SDN computer network, 
from a sender component through an ingress port, out an egress port, and to the “next hope” 
destination.  Lin ’400 further discloses that the SDN controller is external to the SDN switch.  
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.    
 
Lin ’400 1:7-9 (“The present invention relates generally to computer security, and more 
particularly but not exclusively to software defined networking.”). 
 
Lin ’400 1:58-2:4 (“In one embodiment, a software defined networking (SDN) computer 
network includes an SDN controller and an SDN switch. The SDN controller inserts flow 
rules in a flow table of the SDN switch to create an SDN pipe between a sender component 
and a security component. A broadcast function of the SDN switch to the ports that form the 
SDN pipe may be disabled. The SDN pipe allows outgoing packets sent by the sender 
component to be received by the security component. The security component inspects the 
outgoing packets for compliance with security policies and allows the outgoing packets to be 
forwarded to their destination when the outgoing packets pass inspection. The SDN controller 
may also insert a flow rule in the flow table of the SDN switch to bypass inspection of 
specified packets.”). 
 
Lin ’400 2:47-65 (“FIG. 2 shows a schematic diagram of a computer system 100 that may be 
employed with embodiments of the present invention. The computer system 100 may be 
employed as a control plane and/or a data plane, for example. As another example, the 
computer system 100 may be employed to host a virtualization environment that supports a 
plurality of virtual machines. The computer system 100 may have fewer or more components Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 551 of 1100



3 

No. ʼ111 Patent Claim 1 Lin ’400 
to meet the needs of a particular application. The computer system 100 may include one or 
more processors 101. The computer system 100 may have one or more buses 103 coupling its 
various components. The computer system 100 may include one or more user input 
devices 102 (e.g., keyboard, mouse), one or more data storage devices 106 (e.g., hard drive, 
optical disk, Universal Serial Bus memory), a display monitor 104 (e.g., liquid crystal display, 
flat panel monitor), a computer network interface 105 (e.g., network adapter, modem), and a 
main memory 108 (e.g., random access memory). The computer network interface 105 may 
be coupled to a computer network 109.”). 
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). 
 
Lin ’400 3:40-64 (“Referring now to FIG. 6, there is shown a schematic diagram of an SDN 
computer network 600 in accordance with an embodiment of the present invention. In one 
embodiment, the SDN computer network 600 is compliant with the OpenFlow™ protocol. 
Accordingly, in one embodiment, the SDN controller 610 comprises an OpenFlow™ 
controller and the SDN switch 620 comprises an OpenFlow™ switch. The SDN 
controller 610 and the SDN switch 620 comprise the control plane and data plane, 
respectively, of the SDN computer network 600. The SDN computer network 600 may have 
a plurality of SDN switches 620 but only one is shown for clarity of illustration. The SDN 
controller 610 and the SDN switch 620 are logically separate components. 
In one embodiment, the SDN computer network 600 is a virtual computer network that allows 
for transmission of packets from one virtual machine to another. Accordingly, the SDN 
controller 610 may comprise a virtual OpenFlow™ controller and the SDN switch 620 may 
comprise a virtual OpenFlow™ switch. The SDN computer network 600 may be 
implemented in a computer system comprising one or more computers that host a 
virtualization environment. For example, the SDN computer network 600 may be 
implemented in the Amazon Web Services™ virtualization environment. The sender 
component 622 may be a virtual machine in that embodiment.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 552 of 1100



4 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Fig. 6 (annotation added) 

 
Lin ’400 4:33-67 (“The SDN switch 620 may comprise a plurality of ports 623 (i.e., 623-
1, 623-2, 623-3, 623-4, etc.). The SDN switch 620 may forward packets from one port 623 to 
another port 623 in accordance with flow rules in the flow tables 621. In the example of FIG. 
6, the port 6231-1 is coupled to a sender component 622. The port 623-1 is referred to as an 
“ingress port” in that it is a port for receiving outgoing packets sent by the sender 
component 622. Similarly, the port 623-4 is referred to as an “egress port” in that it is a port 
for transmitting outgoing packets sent by the sender component 622. It is to be noted that any 
port 623 may be employed as an “ingress port,” “egress port,” “redirect port,” or “re-inject 
port.” The aforementioned labels are used herein merely to illustrate processing of packets 
relative to the sender component 622. Packets going in the opposite direction, i.e., incoming 
packets that are going to the sender component 622, may be received in the egress port 623-
4, forwarded to the re-inject port 623-3, received in the redirect port 623-2, and forwarded to 
the ingress port 623-1 toward the sender component 622. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 553 of 1100



5 

No. ʼ111 Patent Claim 1 Lin ’400 
The SDN switch 620 may comprise one or more flow tables 621. The flow tables 621 may 
comprise one or more flow rules (labeled as 624) that indicate how to manipulate or process 
packets that are passing through the SDN switch 620. As a particular example, a flow rule 
may indicate that a packet received in the ingress port 623-1 is to be forwarded to the redirect 
port 623-2. Another flow rule may indicate that a packet received in the redirect port 623-2 is 
to be forwarded to the ingress port 623-1. The just mentioned pair of flow rules are redirect 
flow rules that create an SDN pipe between the sender component 622 and the security 
service 630, allowing the security service 630 to inspect packets sent by or going to the sender 
component 622. Table 1 shows an example flow table with flow rules that create an SDN pipe 
between the security service 630 and the sender component 622.”). 
 
Lin ’400 6:13-23 (“Once outgoing packets from the sender component 622 are inspected by 
the security service 630 and re-injected by the security service 630 back into the SDN 
switch 620 through the re-inject port 623-3 and then forwarded out to the egress port 623-4, 
the L2 switching logic of the SDN computer network 600 (which is controlled by the SDN 
controller 610) remembers that packets destined for the sender component 622 and entering 
the SDN switch 620 by way of the egress port 623-4 are to be forwarded to the re-inject 
port 623-3. This allows the security service 630 to also receive incoming packets going to the 
sender component 622 for inspection.”). 
 
Lin ’400 6:57-63 (“Once back in the SDN switch 620 by way of the re-inject port 623-3, the 
flow rules that govern packets received in the ingress port 623-1 and the redirect port 623-
2 no longer apply. Accordingly, the re-injected packets are forwarded to the egress port 623-
4 (or some other port) toward the next hop in accordance with the L2 switching logic of the 
SDN computer network 600.”). 
 
Lin ’400 7:10-23 (“Re-injecting packets that pass inspection consume bandwidth, as the 
packets will have to be transmitted by the security service 630 to the re-inject port 623-3. For 
optimization, the SDN switch 620 may be configured to copy packets that are redirected to 
the security service 630 for inspection. This way, the security service 630 simply has to 
inform the SDN switch 620 an action to take on packets based on the result of the inspection 
(see arrow 604). For example, the security service 630 may send an index identifying the 
packets and an action on how to manipulate the packets. The action may instruct the SDN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 554 of 1100



6 

No. ʼ111 Patent Claim 1 Lin ’400 
switch 620 to drop the copied packets, forward the copied packets to their destinations, 
quarantine the copied packets, etc.”). 
 
Lin ’400 7:39-67 (“In the example of Table 2, the first two rows are bypass rules for bypassing 
packets coming from or going to a transport control protocol (TCP) port 80. More specifically, 
hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are received in the 
ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded directly to the 
egress port (i.e., egress port 623-4), instead of being redirected to the redirect port 623-2 for 
inspection by the security service 630. Similarly, HTTP packets received in the egress port 
with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the ingress 
port 623-1 without being redirected to the security service 630. 
In the example of Table 2, the bottom two rows are redirect flow rules for forming the SDN 
pipe between the sender component 622 and the security service 630. Because the bypass 
flow rules are inserted in the flow tables 621 with higher priority than the redirect flow rules, 
the bypass flow rules are followed by the SDN switch 620 before the redirect flow rules. 
Accordingly, HTTP packets are not redirected for inspection by the security service 630. 
Other packets, i.e., non-HTTP packets, are redirected to the security service 630 per the 
redirect flow rules. Bypass flow rules and redirect flow rules may be set at different priority 
levels to meet particular packet inspection needs. 
The bypass and redirect flow rules also allow for inspection of particular packets, while 
allowing all other packets to bypass inspection. This is illustrated in the example flow table 
of Table 3.”). 
 

 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 555 of 1100



7 

No. ʼ111 Patent Claim 1 Lin ’400 
 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630.”). 
 
Lin ’400 Claim 1 (“A software defined networking (SDN) computer network comprising: 
an SDN switch comprising a plurality of ports that receives network traffic of an SDN 
computer network, the SDN switch having a first port coupled to a sender component and a 
second port coupled to a security component, the SDN switch comprising a flow table that 
comprises a first flow rule to forward a packet received in the first port to the second port and 
a second flow rule to forward a packet received in the second port to the first port, the SDN 
switch receiving outgoing packets from the first port and forwarding the outgoing packets to 
the second port in accordance with the first flow rule, the outgoing packets being sent by the 
sender component to a destination component; and 
an SDN controller that controls 7orwardding behavior of the SDN switch and inserts the first 
and second flow rules into the flow table of the SDN switch, 
wherein the security component receives the outgoing packets from the second port of the 
SDN switch, inspects the outgoing packets, and allows the outgoing packets to be forwarded 
to their destination when the outgoing packets pass inspection, 
wherein the security component allows the outgoing packets to be forwarded to their 
destination by instructing the SDN switch to release copies of the outgoing packets.”). 
 
Lin ’400 4:8-31 (“The SDN controller 610 provides a logically centralized framework for 
controlling the behavior of the SDN computer network 600. This is in marked contrast to 
traditional computer networks where the behavior of the computer network is controlled by 
low-level device configurations of switches and other network devices. The SDN 
controller 610 may include a flow policy database 611. The flow policy database 611 may 
comprise flow policies that are enforced by the controller 610 on network traffic transmitted 
over the SDN computer network 600. The flow policies may specify security policies that 
govern transmission of packets over the SDN computer network 600. The flow policies may 
be enforced in terms of flow rules (labeled as 624) that are stored in the flow tables 621 of the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 556 of 1100



8 

No. ʼ111 Patent Claim 1 Lin ’400 
SDN switch 620. As a particular example, a flow policy in the flow policy database 611 may 
indicate inspection of particular packets (e.g., those that meet one or more conditions) by a 
security service 630. That flow policy may be implemented as a flow rule that forwards the 
particular packets received in an ingress port 623-1 to the redirect port 623-2 for inspection, 
for example.”). 
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 620. 
In one embodiment, the SDN pipe is created by creating a first flow rule that forwards packets 
received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule that 
forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 
Lin ’400 3:11-12 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 557 of 1100



9 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Fig. 3 (annotation added)  

 
1[a] sending, by the 

controller to the 
network node over the 
packet network, an 
instruction and a 
packet-applicable 
criterion;  

Lin ’400 discloses sending, by the controller to the network node over the packet network, 
an instruction and a packet-applicable criterion. 
 
For example, Lin ’400 identifies a command to determine whether or not a packet requires 
inspection.  Lin ’400 further discloses that its SDN controllers inserts flow rules in a flow 
table of the SDN switch (which corresponds to the claimed network node) to create an AND 
pipe between a sender component and a security components, where these flow tables are 
stored in switches.  
 
Lin ’400 1:58-2:4 (“In one embodiment, a software defined networking (SDN) computer 
network includes an SDN controller and an SDN switch. The SDN controller inserts flow 
rules in a flow table of the SDN switch to create an SDN pipe between a sender component 
and a security component. A broadcast function of the SDN switch to the ports that form the 
SDN pipe may be disabled. The SDN pipe allows outgoing packets sent by the sender 
component to be received by the security component. The security component inspects the 
outgoing packets for compliance with security policies and allows the outgoing packets to be 
forwarded to their destination when the outgoing packets pass inspection. The SDN controller 
may also insert a flow rule in the flow table of the SDN switch to bypass inspection of 
specified packets.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 558 of 1100



10 

No. ʼ111 Patent Claim 1 Lin ’400 
Lin ’400 7:39-8:18 (“In the example of Table 2, the first two rows are bypass rules for 
bypassing packets coming from or going to a transport control protocol (TCP) port 80. More 
specifically, hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are 
received in the ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded 
directly to the egress port (i.e., egress port 623-4), instead of being redirected to the redirect 
port 623-2 for inspection by the security service 630. Similarly, HTTP packets received in the 
egress port with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the 
ingress port 623-1 without being redirected to the security service 630. 
In the example of Table 2, the bottom two rows are redirect flow rules for forming the SDN 
pipe between the sender component 622 and the security service 630. Because the bypass 
flow rules are inserted in the flow tables 621 with higher priority than the redirect flow rules, 
the bypass flow rules are followed by the SDN switch 620 before the redirect flow rules. 
Accordingly, HTTP packets are not redirected for inspection by the security service 630. 
Other packets, i.e., non-HTTP packets, are redirected to the security service 630 per the 
redirect flow rules. Bypass flow rules and redirect flow rules may be set at different priority 
levels to meet particular packet inspection needs. 
The bypass and redirect flow rules also allow for inspection of particular packets, while 
allowing all other packets to bypass inspection. This is illustrated in the example flow table 
of Table 3.”). 
 
Lin ’400 4:23-31 (“The flow policies may be enforced in terms of flow rules (labeled as 624) 
that are stored in the flow tables 621 of the SDN switch 620. As a particular example, a flow 
policy in the flow policy database 611 may indicate inspection of particular packets (e.g., 
those that meet one or more conditions) by a security service 630. That flow policy may be 
implemented as a flow rule that forwards the particular packets received in an ingress 
port 623-1 to the redirect port 623-2 for inspection, for example.”). 
 
Lin ’400 5:22-24 (“When the conditions are met, i.e., the particular packet is identified, the 
action indicated in the corresponding “Action” column is performed on the packet.”). 
 

TABLE 1 
 MAC MAC IP IP    

IN_PORT src dst src dst . . . Action Count 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 559 of 1100



11 

No. ʼ111 Patent Claim 1 Lin ’400 
 

 
Lin ’400 5:26-36 (“In the example of Table 1, the first and second rows are redirect flow rules 
for forming an SDN pipe between the sender component 622 and the security service 630. 
More specifically, the first row of Table 1 is a flow rule instructing the SDN switch 620 to 
forward packets received in a port having the Ingress_port_ID (e.g., ingress port 623-1) to the 
redirect port (e.g., redirect port 623-2). Similarly, the second row of Table 1 is a flow rule 
instructing the SDN switch 620 to forward packets received in a port having a 
“Redirect_port_ID” to the ingress port.”).  
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 620. 
In one embodiment, the SDN pipe is created by creating a first flow rule that forwards packets 
received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule that 
forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 
Lin ’400 6:40-54 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.).”).  
 

Ingress_port_ID * * * * * Redirect port 10 
Redirect_port_ID * * * * * Ingress port 10 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 560 of 1100



12 

No. ʼ111 Patent Claim 1 Lin ’400 
1[b] receiving, by the 

network node from the 
controller, the 
instruction and the 
criterion; 

Lin ’400 discloses receiving, by the network node from the controller, the instruction and the 
criterion.  
 
For example, Lin ’400 discloses flow rules in a flow table of the SDN switch to create an 
SDN pipe between a sender component and a security component that are sent to the SDN 
switches in order to provide instruction to the SDN switches on what packets should be sent 
to the security component for analysis.  Lin ’400 further discloses that its SDN controller 
inserts flow rules in a flow table of the SDN switch where these flow rules may indicate 
inspection of particular packets (e.g., those that meet one or more conditions) by a security 
service.  
 
Lin ’400 1:57-2:4 (“In one embodiment, a software defined networking (SDN) computer 
network includes an SDN controller and an SDN switch. The SDN controller inserts flow 
rules in a flow table of the SDN switch to create an SDN pipe between a sender component 
and a security component. A broadcast function of the SDN switch to the ports that form the 
SDN pipe may be disabled. The SDN pipe allows outgoing packets sent by the sender 
component to be received by the security component. The security component inspects the 
outgoing packets for compliance with security policies and allows the outgoing packets to be 
forwarded to their destination when the outgoing packets pass inspection. The SDN controller 
may also insert a flow rule in the flow table of the SDN switch to bypass inspection of 
specified packets.”). 
 
Lin ’400 4:23-31 (“The flow policies may be enforced in terms of flow rules (labeled as 624) 
that are stored in the flow tables 621 of the SDN switch 620. As a particular example, a flow 
policy in the flow policy database 611 may indicate inspection of particular packets (e.g., 
those that meet one or more conditions) by a security service 630. That flow policy may be 
implemented as a flow rule that forwards the particular packets received in an ingress 
port 623-1 to the redirect port 623-2 for inspection, for example.”). 
 
Lin ’400 5:8-12 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 561 of 1100



13 

No. ʼ111 Patent Claim 1 Lin ’400 
Lin ’400 6:1-4 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. “). 
 

 
Fig. 6 (annotation added)  

 
Lin ’400 6:40-41 (“…redirect flow rules for creating the SDN pipe are inserted in the flow 
tables 621…”).  
 
Lin ’400 9:10-12 (“…the SDN controller inserts one or more bypass flow rules in the flow 
table of an SDN switch that is controlled by the SDN controller (step 701).”).  
 
See supra at 1[a]. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 562 of 1100



14 

No. ʼ111 Patent Claim 1 Lin ’400 
 

1[c] receiving, by the 
network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Lin ’400 discloses receiving, by the network node from the first entity over the packet 
network, a packet addressed to the second entity.  
 
For example, Lin ’400 explains that the SDN switch transports packets from a sender 
component through an ingress port, out an egress port, and follows the directed address to the 
“next hop” or destination.  
 
Lin ’400 1:58-2:4 (“In one embodiment, a software defined networking (SDN) computer 
network includes an SDN controller and an SDN switch. The SDN controller inserts flow 
rules in a flow table of the SDN switch to create an SDN pipe between a sender component 
and a security component. A broadcast function of the SDN switch to the ports that form the 
SDN pipe may be disabled. The SDN pipe allows outgoing packets sent by the sender 
component to be received by the security component. The security component inspects the 
outgoing packets for compliance with security policies and allows the outgoing packets to be 
forwarded to their destination when the outgoing packets pass inspection. The SDN controller 
may also insert a flow rule in the flow table of the SDN switch to bypass inspection of 
specified packets.”). 
 
Lin ’400 3:11-12 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 4:33-67 (“The SDN switch 620 may comprise a plurality of ports 623 (i.e., 623-
1, 623-2, 623-3, 623-4, etc.). The SDN switch 620 may forward packets from one port 623 to 
another port 623 in accordance with flow rules in the flow tables 621. In the example of FIG. 
6, the port 6231-1 is coupled to a sender component 622. The port 623-1 is referred to as an Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 563 of 1100



15 

No. ʼ111 Patent Claim 1 Lin ’400 
“ingress port” in that it is a port for receiving outgoing packets sent by the sender 
component 622. Similarly, the port 623-4 is referred to as an “egress port” in that it is a port 
for transmitting outgoing packets sent by the sender component 622. It is to be noted that any 
port 623 may be employed as an “ingress port,” “egress port,” “redirect port,” or “re-inject 
port.” The aforementioned labels are used herein merely to illustrate processing of packets 
relative to the sender component 622. Packets going in the opposite direction, i.e., incoming 
packets that are going to the sender component 622, may be received in the egress port 623-
4, forwarded to the re-inject port 623-3, received in the redirect port 623-2, and forwarded to 
the ingress port 623-1 toward the sender component 622. 
The SDN switch 620 may comprise one or more flow tables 621. The flow tables 621 may 
comprise one or more flow rules (labeled as 624) that indicate how to manipulate or process 
packets that are passing through the SDN switch 620. As a particular example, a flow rule 
may indicate that a packet received in the ingress port 623-1 is to be forwarded to the redirect 
port 623-2. Another flow rule may indicate that a packet received in the redirect port 623-2 is 
to be forwarded to the ingress port 623-1. The just mentioned pair of flow rules are redirect 
flow rules that create an SDN pipe between the sender component 622 and the security 
service 630, allowing the security service 630 to inspect packets sent by or going to the sender 
component 622. Table 1 shows an example flow table with flow rules that create an SDN pipe 
between the security service 630 and the sender component 622.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 564 of 1100



16 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Fig. 6 (annotation added)  

 
Lin ’400 Claim 1 (“. A software defined networking (SDN) computer network comprising: 
an SDN switch comprising a plurality of ports that receives network traffic of an SDN 
computer network, the SDN switch having a first port coupled to a sender component and a 
second port coupled to a security component, the SDN switch comprising a flow table that 
comprises a first flow rule to forward a packet received in the first port to the second port and 
a second flow rule to forward a packet received in the second port to the first port, the SDN 
switch receiving outgoing packets from the first port and forwarding the outgoing packets to 
the second port in accordance with the first flow rule, the outgoing packets being sent by the 
sender component to a destination component; and 
an SDN controller that controls forwarding behavior of the SDN switch and inserts the first 
and second flow rules into the flow table of the SDN switch, 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 565 of 1100



17 

No. ʼ111 Patent Claim 1 Lin ’400 
wherein the security component receives the outgoing packets from the second port of the 
SDN switch, inspects the outgoing packets, and allows the outgoing packets to be forwarded 
to their destination when the outgoing packets pass inspection, 
wherein the security component allows the outgoing packets to be forwarded to their 
destination by instructing the SDN switch to release copies of the outgoing packets.”).  
 

1[d] checking, by the 
network node, if the 
packet satisfies the 
criterion; 

Lin ’400 discloses checking, by the network node, if the packet satisfies the criterion.  
 
For example, Lin ’400 discloses flow rules that may indicate inspection of particular packets 
(e.g., those that meet one or more conditions) by a security service, where under the 
inspection, if the conditions are met, the action indicated in the corresponding “Action” 
column in the table is performed on the packet. Lin ’400 further discloses that the SDN switch 
implements bypass flow rules that check whether the packet meets certain criterion, such as 
identification of HTTP packets, that indicate that the packet should be routed to the 
destination node instead of the security device.  
 
Lin ’400 4:23-31 (“The flow policies may be enforced in terms of flow rules (labeled as 624) 
that are stored in the flow tables 621 of the SDN switch 620. As a particular example, a flow 
policy in the flow policy database 611 may indicate inspection of particular packets (e.g., 
those that meet one or more conditions) by a security service 630. That flow policy may be 
implemented as a flow rule that forwards the particular packets received in an ingress 
port 623-1 to the redirect port 623-2 for inspection, for example.”). 
 
Lin ’400 5:8-12 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule.”). 
 

 

TABLE 1 
 MAC MAC IP IP    

IN_PORT src dst src dst . . . Action Count 

Ingress_port_ID * * * * * Redirect port 10 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 566 of 1100



18 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Lin ’400 5:16-21 (“ For example, “IN_PORT”, “MAC src” (media access control (MAC) 
address of the source of the packet), “MAC dst” (MAC address of the destination of the 
packet), “IP src” (Internet Protocol (IP) address of the source of the packet), “IP dst” (IP 
address of the destination of the packet), etc. are conditions that identify a particular packet. 
When the conditions are met, i.e., the particular packet is identified, the action indicated in 
the corresponding “Action” column is performed on the packet. The asterisks in Table 1 
indicate an irrelevant condition.”).  
 
Lin ’400 5:22-24 (“When the conditions are met, i.e., the particular packet is identified, the 
action indicated in the corresponding “Action” column is performed on the packet.”). 
 
Lin ’400 5:26-36 (“In the example of Table 1, the first and second rows are redirect flow rules 
for forming an SDN pipe between the sender component 622 and the security service 630. 
More specifically, the first row of Table 1 is a flow rule instructing the SDN switch 620 to 
forward packets received in a port having the Ingress_port_ID (e.g., ingress port 623-1) to the 
redirect port (e.g., redirect port 623-2). Similarly, the second row of Table 1 is a flow rule 
instructing the SDN switch 620 to forward packets received in a port having a 
“Redirect_port_ID” to the ingress port.”). 
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 620. 
In one embodiment, the SDN pipe is created by creating a first flow rule that forwards packets 
received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule that 
forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 
Lin ’400 6:40-54 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 

Redirect_port_ID * * * * * Ingress port 10 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 567 of 1100



19 

No. ʼ111 Patent Claim 1 Lin ’400 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.).”). 
 
Lin ’400 7:24-8:18 (“In one embodiment, bypass flow rules are inserted in the flow 
tables 621 such that particular packets that do not need to be inspected are not redirected to 
the security service 630. This embodiment is explained with reference to example flow tables 
of Tables 2 and 3. 
 

 

 
 

 

TABLE 2 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Egress port 120 
Egress_port_ID * * 80 * * Ingress port 120 
Ingress_port_ID * * * * * Redirect port  10 
Redirect_port_ID * * * * * Ingress port  10 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 568 of 1100



20 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Lin ’400 9:10-40 (“In the method of FIG. 9, the SDN controller inserts one or more bypass 
flow rules in the flow table of an SDN switch that is controlled by the SDN controller 
(step 701). The bypass flow rules may instruct the SDN switch to forward particular packets 
directly from one port to another port of the SDN switch without being redirected to a security 
component, such as a security service, for inspection. The bypass flow rules may be inserted 
at higher or lower priority than redirect flow rules for creating an SDN pipe that redirects 
packets to be inspected to the security service. The security service may comprise a physical 
or virtual machine that provides a security service by inspecting network traffic. 
In the following two steps (steps 702 and 703), an SDN pipe is created in the SDN switch by 
inserting redirect flow rules in the flow table of the SDN switch. In one embodiment, the SDN 
pipe formed by the redirect flow rules allows for interception of packets sent by or transmitted 
to a virtual machine for inspection by the security service. The SDN controller inserts a first 
flow rule that instructs the SDN switch to forward packets received in an ingress port to a 
redirect port (step 702). The ingress port may be a port of the SDN switch that is connected 
to the virtual machine, and the redirect port may be a port of the SDN switch that is connected 
to the security service. The SDN controller also inserts a second flow rule that instructs the 
SDN switch to forward packets received in the redirect port to the egress port (step 703). The 
SDN controller may also disable the broadcast function of the SDN switch to the ingress port 
and the redirect port (step 704) to prevent the same broadcast packets to be received multiple 
times by the virtual machine and the security service”). 
 

Egress_port_ID * * * * * Ingress port 130 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 569 of 1100



21 

No. ʼ111 Patent Claim 1 Lin ’400 

 
Fig. 9 (annotation added)  

 
1[e] responsive to the 

packet not satisfying 
the criterion, sending, 
by the network node 
over the packet 

Lin ’400 discloses responsive to the packet not satisfying the criterion, sending, by the 
network node over the packet network, the packet to the second entity.  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 570 of 1100



22 

No. ʼ111 Patent Claim 1 Lin ’400 
network, the packet to 
the second entity; and 

For example, Lin ’400 discloses that during the checking phase, if a packet does not indicate 
that port 80 is the source or destination port, then the SDN switch sends the packet over the 
packet network to its destination node.  
 
Lin ’400 7:24-8:18 (“In one embodiment, bypass flow rules are inserted in the flow 
tables 621 such that particular packets that do not need to be inspected are not redirected to 
the security service 630. This embodiment is explained with reference to example flow tables 
of Tables 2 and 3. 
 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630.”). 
 

 

 
Lin ’400 9:10-40 (“In the method of FIG. 9, the SDN controller inserts one or more bypass 
flow rules in the flow table of an SDN switch that is controlled by the SDN controller 
(step 701). The bypass flow rules may instruct the SDN switch to forward particular packets 
directly from one port to another port of the SDN switch without being redirected to a security 
component, such as a security service, for inspection. The bypass flow rules may be inserted 
at higher or lower priority than redirect flow rules for creating an SDN pipe that redirects 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 571 of 1100



23 

No. ʼ111 Patent Claim 1 Lin ’400 
packets to be inspected to the security service. The security service may comprise a physical 
or virtual machine that provides a security service by inspecting network traffic. 
In the following two steps (steps 702 and 703), an SDN pipe is created in the SDN switch by 
inserting redirect flow rules in the flow table of the SDN switch. In one embodiment, the SDN 
pipe formed by the redirect flow rules allows for interception of packets sent by or transmitted 
to a virtual machine for inspection by the security service. The SDN controller inserts a first 
flow rule that instructs the SDN switch to forward packets received in an ingress port to a 
redirect port (step 702). The ingress port may be a port of the SDN switch that is connected 
to the virtual machine, and the redirect port may be a port of the SDN switch that is connected 
to the security service. The SDN controller also inserts a second flow rule that instructs the 
SDN switch to forward packets received in the redirect port to the egress port (step 703). The 
SDN controller may also disable the broadcast function of the SDN switch to the ingress port 
and the redirect port (step 704) to prevent the same broadcast packets to be received multiple 
times by the virtual machine and the security service”). 
 

1[f] responsive to the 
packet satisfying the 
criterion, sending the 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 
instruction and is other 
than the second entity. 

Lin ’400 discloses responsive to the packet satisfying the criterion, sending the packet, by the 
network node over the packet network, to an entity that is included in the instruction and is 
other than the second entity. 
 
For example, Lin ’400 teaches that the devices check for a specific packet-applicable 
criterion, where if a packet satisfies this criterion by indication that port 80 is the s destination 
port, then the SDN switch sends the packet over the packet network to the security service.  
 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630.”). 
 
Lin ’400 1:60-62 (“The SDN controller inserts flow rules in a flow table of the SDN switch 
to create an SDN pipe between a sender component and a security component.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 572 of 1100



24 

No. ʼ111 Patent Claim 1 Lin ’400 
Lin ’400 4:8-31 (“The SDN controller 610 provides a logically centralized framework for 
controlling the behavior of the SDN computer network 600. This is in marked contrast to 
traditional computer networks where the behavior of the computer network is controlled by 
low-level device configurations of switches and other network devices. The SDN 
controller 610 may include a flow policy database 611. The flow policy database 611 may 
comprise flow policies that are enforced by the controller 610 on network traffic transmitted 
over the SDN computer network 600. The flow policies may specify security policies that 
govern transmission of packets over the SDN computer network 600. The flow policies may 
be enforced in terms of flow rules (labeled as 624) that are stored in the flow tables 621 of the 
SDN switch 620. As a particular example, a flow policy in the flow policy database 611 may 
indicate inspection of particular packets (e.g., those that meet one or more conditions) by a 
security service 630. That flow policy may be implemented as a flow rule that forwards the 
particular packets received in an ingress port 623-1 to the redirect port 623-2 for inspection, 
for example.”). 
 
Lin ’400 4:53-67 (“The SDN switch 620 may comprise one or more flow tables 621. The flow 
tables 621 may comprise one or more flow rules (labeled as 624) that indicate how to 
manipulate or process packets that are passing through the SDN switch 620. As a particular 
example, a flow rule may indicate that a packet received in the ingress port 623-1 is to be 
forwarded to the redirect port 623-2. Another flow rule may indicate that a packet received in 
the redirect port 623-2 is to be forwarded to the ingress port 623-1. The just mentioned pair 
of flow rules are redirect flow rules that create an SDN pipe between the sender 
component 622 and the security service 630, allowing the security service 630 to inspect 
packets sent by or going to the sender component 622. Table 1 shows an example flow table 
with flow rules that create an SDN pipe between the security service 630 and the sender 
component 622.”). 
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 620. 
In one embodiment, the SDN pipe is created by creating a first flow rule that forwards packets 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 573 of 1100



25 

No. ʼ111 Patent Claim 1 Lin ’400 
received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule that 
forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 

 
Fig. 6 (annotation added)  

 
Lin ’400 1:66-2:4 (“The security component inspects the outgoing packets for compliance 
with security policies and allows the outgoing packets to be forwarded to their destination 
when the outgoing packets pass inspection. The SDN controller may also insert a flow rule in 
the flow table of the SDN switch to bypass inspection of specified packets.”). 
 
Lin ’400 3:21-24 (“The security service may inspect the packets, and forward the packets to 
an egress port of the switch toward the next hop, which may be another switch or a destination 
component (e.g., destination computer), for example.”). 
 
Lin ’400 6:54-63 (“The security service 630 may forward those packets that pass inspection 
toward their destination by re-injecting the packets back into the SDN switch 620 by way of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 574 of 1100



26 

No. ʼ111 Patent Claim 1 Lin ’400 
the re-inject port 623-3. Once back in the SDN switch 620 by way of the re-inject port 623-
3, the flow rules that govern packets received in the ingress port 623-1 and the redirect 
port 623-2 no longer apply. Accordingly, the re-injected packets are forwarded to the egress 
port 623-4 (or some other port) toward the next hop in accordance with the L2 switching logic 
of the SDN computer network 600.”). 
 
Lin ’400 7:23-27 (“In one embodiment, bypass flow rules are inserted in the flow 
tables 621 such that particular packets that do not need to be inspected are not redirected to 
the security service 630. This embodiment is explained with reference to example flow tables 
of Tables 2 and 3.”). 
 

 
No. ʼ111 Patent Claim 2 Lin ’400 

2[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Lin ’400 discloses the method according to claim 1, wherein the instruction is a ‘probe’, a 
‘mirror’, or a ‘terminate’ instruction.  
 
For example, Lin ’400 discloses flow rules to (1) redirecting a packet from its intended 
destination to a new destination (such as a security service) or (2) making a copy of a packet 
and sending the copy of the packet to a new destination (such as a security service, as well as 
a rule to drop packets from the network such that they are no longer forwarded to a destination 
within the network. Lin further discloses an instruction that, if the packet satisfies the 
criterion, to send the packet to the security service for inspection.  
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). 
 
Lin ’400 7:10-22 (“Re-injecting packets that pass inspection consume[s] bandwidth, as the 
packets will have to be transmitted by the security service 630 to the re-inject port 623-3. For 
optimization, the SDN switch 620 may be configured to copy packets that are redirected to 
the security service 630 for inspection. This way, the security service 630 simply has to inform Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 575 of 1100



27 

No. ʼ111 Patent Claim 2 Lin ’400 
the SDN switch 620 an action to take on the packets based on the result of the inspection (see 
arrow 604). For example, the security service 630 may send an index identifying the packets 
and an action how to manipulate the packets. The action may instruct the SDN switch 620 to 
drop the copied packets, forward the copied packets to their destinations, quarantine the 
copied packets, etc.”).  
 
Lin ’400 1:28-32 (“Example packet manipulation actions include forwarding a packet to a 
specific port, modifying one or more fields of the packet, asking the controller for action to 
perform on the packet, or dropping the packet.”). 
 
Lin ’400 7:19-22 (“The action may instruct the SDN switch 620 to drop the copied packets, 
forward the copied packets to their destinations, quarantine the copied packets, etc.”). 
 
Lin ’400 4:8-31 (“The SDN controller 610 provides a logically centralized framework for 
controlling the behavior of the SDN computer network 600. This is in marked contrast to 
traditional computer networks where the behavior of the computer network is controlled by 
low-level device configurations of switches and other network devices. The SDN 
controller 610 may include a flow policy database 611. The flow policy database 611 may 
comprise flow policies that are enforced by the controller 610 on network traffic transmitted 
over the SDN computer network 600. The flow policies may specify security policies that 
govern transmission of packets over the SDN computer network 600. The flow policies may 
be enforced in terms of flow rules (labeled as 624) that are stored in the flow tables 621 of the 
SDN switch 620. As a particular example, a flow policy in the flow policy database 611 may 
indicate inspection of particular packets (e.g., those that meet one or more conditions) by a 
security service 630. That flow policy may be implemented as a flow rule that forwards the 
particular packets received in an ingress port 623-1 to the redirect port 623-2 for inspection, 
for example.”). 
 
Lin ’400 4:53-67 (“The SDN switch 620 may comprise one or more flow tables 621. The flow 
tables 621 may comprise one or more flow rules (labeled as 624) that indicate how to 
manipulate or process packets that are passing through the SDN switch 620. As a particular 
example, a flow rule may indicate that a packet received in the ingress port 623-1 is to be 
forwarded to the redirect port 623-2. Another flow rule may indicate that a packet received in 
the redirect port 623-2 is to be forwarded to the ingress port 623-1. The just mentioned pair Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 576 of 1100



28 

No. ʼ111 Patent Claim 2 Lin ’400 
of flow rules are redirect flow rules that create an SDN pipe between the sender 
component 622 and the security service 630, allowing the security service 630 to inspect 
packets sent by or going to the sender component 622. Table 1 shows an example flow table 
with flow rules that create an SDN pipe between the security service 630 and the sender 
component 622.”). 
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 620. 
In one embodiment, the SDN pipe is created by creating a first flow rule that forwards packets 
received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule that 
forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 

2[b] upon receiving by the 
network node the 
‘terminate’ instruction, 
the method further 
comprising blocking, 
by the network node, 
the packet from being 
sent to the second 
entity and to the 
controller.  

Lin ’400 discloses upon receiving by the network node the ‘terminate’ instruction, the method 
further comprising blocking, by the network node, the packet from being sent to the second 
entity and to the controller. 
 
For example, Lin ’400 discloses blocking a packet from being sent to the destination node.  If 
the controller is the destination, the packet would be also be blocked from being sent to the 
controller. 
 
Lin ’400 7:10-22 (“Re-injecting packets that pass inspection consume[s] bandwidth, as the 
packets will have to be transmitted by the security service 630 to the re-inject port 623-3. For 
optimization, the SDN switch 620 may be configured to copy packets that are redirected to 
the security service 630 for inspection. This way, the security service 630 simply has to inform 
the SDN switch 620 an action to take on the packets based on the result of the inspection (see 
arrow 604). For example, the security service 630 may send an index identifying the packets 
and an action how to manipulate the packets. The action may instruct the SDN switch 620 to 
drop the copied packets, forward the copied packets to their destinations, quarantine the 
copied packets, etc.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 577 of 1100



29 

No. ʼ111 Patent Claim 2 Lin ’400 
Lin ’400 1:28-32 (“Example packet manipulation actions include forwarding a packet to a 
specific port, modifying one or more fields of the packet, asking the controller for action to 
perform on the packet, or dropping the packet.”). 
 
Lin ’400 7:19-22 (“The action may instruct the SDN switch 620 to drop the copied packets, 
forward the copied packets to their destinations, quarantine the copied packets, etc.”). 
 

 
No. ʼ111 Patent Claim 3 Lin ’400 

3[a] The method according 
to claim 1, wherein the 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

Lin ’400 discloses the method according to claim 1, wherein the instruction is a ‘probe’, a 
‘mirror’, or a ‘terminate’ instruction.  
 
See supra Claim 2[a]. 
 

3[b] upon receiving by the 
network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Lin ’400 discloses upon receiving by the network node the ‘mirror’ instruction and responsive 
to the packet satisfying the criterion, the method further comprising sending the packet, by 
the network node, to the second entity and to the controller. 
 
For example, Lin ’400 discloses mirroring the packets that enter the ingress port of the switch 
to continue on to the next hop as well as be sent to the security service.  
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 578 of 1100



30 

No. ʼ111 Patent Claim 3 Lin ’400 

 
Fig. 4 (annotation added)  

 
 

No. ʼ111 Patent Claim 4 Lin ’400 
4[a] The method according 

to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Lin ’400 discloses the method according to claim 1, wherein the instruction is ‘probe’, 
‘mirror’, or ‘terminate’ instruction.  
 
See supra Claim 2[a]. 
 

4[b] upon receiving by the 
network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 

Lin ’400 discloses upon receiving by the network node the ‘probe’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising: sending the 
packet, by the network node, to the controller.  
 
For example, Lin ’400 discloses a command to send a packet to a security service for further 
inspection upon positive identification. A person of ordinary skill in the art would understand 
that the security service could be located in the SDN controller. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To 
the extent that the Lin ‘400 is found to not meet this limitation, upon receiving by the network 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 579 of 1100



31 

No. ʼ111 Patent Claim 4 Lin ’400 
the network node, to 
the controller;  

node the ‘probe’ instruction and responsive to the packet satisfying the criterion, the method 
further comprising: sending the packet, by the network node, to the controller would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Lin ’400 6:40-63 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.). The security service 630 may 
forward those packets that pass inspection toward their destination by re-injecting the packets 
back into the SDN switch 620 by way of the re-inject port 623-3. Once back in the SDN 
switch 620 by way of the re-inject port 623-3, the flow rules that govern packets received in 
the ingress port 623-1 and the redirect port 623-2 no longer apply. Accordingly, the re-
injected packets are forwarded to the egress port 623-4 (or some other port) toward the next 
hop in accordance with the L2 switching logic of the SDN computer network 600.”). 
 
Lin ’400 5:45-55 (“The security service 630 may inspect packets for compliance/non-
compliance with security policies, such as for presence of malicious code, compliance with 
firewall rules and access control lists, network intrusion detection, and other computer 
network security services. The security service 630 may employ conventional packet 
inspection algorithms. The security service 630 may comprise the Trend Micro Deep 
Security™ service, for example. The security service 630 may also comprise a physical 
machine, e.g., a server computer, an appliance, a gateway computer, etc.”). 
 
Lin ’400 7:10-22 (“Re-injecting packets that pass inspection consume bandwidth, as the 
packets will have to be transmitted by the security service 630 to the re-inject port 623-3. For 
optimization, the SDN switch 620 may be configured to copy packets that are redirected to 
the security service 630 for inspection. This way, the security service 630 simply has to 
inform the SDN switch 620 an action to take on packets based on the result of the inspection Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 580 of 1100



32 

No. ʼ111 Patent Claim 4 Lin ’400 
(see arrow 604). For example, the security service 630 may send an index identifying the 
packets and an action on how to manipulate the packets. The action may instruct the SDN 
switch 620 to drop the copied packets, forward the copied packets to their destinations, 
quarantine the copied packets, etc.”). 
 
Lin ’400 8:33-45 (“The security service 630 receives the outgoing packets from the redirect 
port 623-2 (see arrow 654) and inspects the outgoing packets. After inspection, the security 
service 630 re-injects the outgoing packets (e.g., outgoing packets that passed inspection) 
back into the SDN switch 620 by way of the re-inject port 623-3 (see arrow 655). The SDN 
switch 620 receives the outgoing packets on the re-inject port 623-3. The SDN 
switch 620 forwards the outgoing packets from the re-inject port 623-3 to the egress port 623-
4 in accordance with the L2 switching logic of the SDN computer network 600 (see 
arrow 657). The outgoing packets exit the SDN switch 620 through the egress port 623-4 (see 
arrow 658) and move towards their destination.”). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 581 of 1100



33 

No. ʼ111 Patent Claim 4 Lin ’400 

 
Figure 9 (annotation added)  

 
Lin ’400 4:53-67 (“The SDN switch 620 may comprise one or more flow tables 621. The flow 
tables 621 may comprise one or more flow rules (labeled as 624) that indicate how to 
manipulate or process packets that are passing through the SDN switch 620. As a particular 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 582 of 1100



34 

No. ʼ111 Patent Claim 4 Lin ’400 
example, a flow rule may indicate that a packet received in the ingress port 623-1 is to be 
forwarded to the redirect port 623-2. Another flow rule may indicate that a packet received in 
the redirect port 623-2 is to be forwarded to the ingress port 623-1. The just mentioned pair 
of flow rules are redirect flow rules that create an SDN pipe between the sender 
component 622 and the security service 630, allowing the security service 630 to inspect 
packets sent by or going to the sender component 622. Table 1 shows an example flow table 
with flow rules that create an SDN pipe between the security service 630 and the sender 
component 622.”). 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 4[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the controller 
or another table, in response to the packet matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 protocol 
enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a secure 
channel 103 and control a single forwarding table 107 in the switch 109. The controller 101 
is an external software component executed by a remote computing device that enables a user 
to configure the Open-Flow 1.0 switch 109. The secure channel 103 can be provided by any 
type of network including a local area network (LAN) or a wide area network (WAN), such 
as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; and 
a collection of statistics 205 on the flow. When an incoming packet is received a lookup for 
a matching rule is made in the flow table 107. If the incoming packet matches a particular 
rule, the associated action defined in that flow table entry is performed on the packet.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 583 of 1100



35 

No. ʼ111 Patent Claim 4 Lin ’400 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are Drop, 
which drops the matching packets; Forward, which forwards the packet to one or all outgoing 
ports, the incoming physical port itself, the controller via the secure channel, or the local 
networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined with a 
set of structures specified using the C programming language. Some of the more commonly 
used messages are: report switch configuration message; modify state messages (in-cluding a 
modify flow entry message and port modification message); read state messages, where while 
the system is running, the datapath may be queried about its current state using this message; 
and send packet message, which is used when the controller wishes to send a packet out 
through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through an 
OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared against 
each of the flow tables 401. After each flow table match, the actions are accumulated into an 
action set. If processing requires matching against another flow table, the actions in the 
matched rule include an action directing processing to the next table in the pipeline. Absent 
the inclusion of an action in the set to execute all accumulated actions immediately, the actions 
are executed at the end 403 of the packet processing pipeline. An action allows the writing of 
data to a metadata register, which is carried along in the packet processing pipe-line like the 
packet header.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 584 of 1100



36 

No. ʼ111 Patent Claim 4 Lin ’400 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 5 (annotation added) 
 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 585 of 1100



37 

No. ʼ111 Patent Claim 4 Lin ’400 

 
For example, Swenson discloses determining by the steering device monitors flows that match 
one or more signatures or criteria of the packet. Swenson further discloses that when a 
matching flow is detected the steering device forwards the packet to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 586 of 1100



38 

No. ʼ111 Patent Claim 4 Lin ’400 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data 
for the average of the bandwidth per user at the particular cell tower. The network controller 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 587 of 1100



39 

No. ʼ111 Patent Claim 4 Lin ’400 
140 can then estimate the amount ofbandwidth or degree of congestion for the new flow based 
on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans with 
lower hardware and software costs. The architecture of the network controller 140 provides 
an excel-lent fit for the net neutrality guideline of"reasonable network management", and 
better compliance to the copyright law (DMCA) than solutions that rely on long-term caching. 
Hav-ing the ability of monitoring network traffic on a per sub-scriber, per flow, or per video 
file basis, the network controller 140 also selectively monitors and optimizes only a subset of 
traffic that benefits from optimization the most, thus achiev-ing both scalability and efficiency 
for optimization at a com-petitive price-point. The core element of the network control-ler 
140 lies in its mechanisms for congestion detection and mitigation, which allows optimization 
resources to be utilized in the most efficient and surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer redirector 
318, a flow cache 322, and a subscriber log 324. In other embodiments, the network controller 
140 may include additional, fewer, or different components for various applications. 
Conventional components such as network interfaces, security functions, failover servers, 
management and network operations con-soles, and the like are not shown so as to not obscure 
the details of the system architecture.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., large 
object net-work flows). Existing routing appliances in most carrier net-works are designed to 
handle large amounts of network traf-fic. They are not, however, ideal devices to operate for 
monitoring and analysis individual flows. Through the steer-ing device interface 316, the 
network controller 140 may communicate with the external routing appliances, such as the 
steering device 130, to steer a portion of network traffic to the network controller 140 when 
certain conditions are met. Generally, network flows of interest to the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 588 of 1100



40 

No. ʼ111 Patent Claim 4 Lin ’400 
contain larger media objects, such as videos and images.  In one embodiment, the smaller 
flows, such as web page and text information, are not exchanged over the steering device 
interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline network 
element for flows deemed of interest. Thus, the network controller 140 ingests the network 
flow for inspection and subsequently forwards the network flow on the network response 
path. For example, for this particular flow, the origin server 160 responds to the user request 
by sending video or images over the network link 413 to the steering device 130, which 
for-wards the video or images to the network controller 140 over a network link 414. After 
the network controller 140 updates the flow statistics, the video or images are returned to the 
steering device 130 over a network link 415, which transmits the video or images to the user 
device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 589 of 1100



41 

No. ʼ111 Patent Claim 4 Lin ’400 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 590 of 1100



42 

No. ʼ111 Patent Claim 4 Lin ’400 
4[c] responsive to receiving 

the packet, analyzing 
the packet, by the 
controller; 

Lin ’400 discloses responsive to receiving the packet, analyzing the packet, by the controller. 
 
For example, Lin ’400 discloses analyzing packets by a security service that inspects the 
packets. A person of ordinary skill in the art would understand that the security service could 
be located in the SDN controller. Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Lin ‘400 is 
found to not meet this limitation, responsive to receiving the packet, analyzing the packet, by 
the controller would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 591 of 1100



43 

No. ʼ111 Patent Claim 4 Lin ’400 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 4(c) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 592 of 1100



44 

No. ʼ111 Patent Claim 4 Lin ’400 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data 
for the average of the bandwidth per user at the particular cell tower. The network controller 
140 can then estimate the amount of bandwidth or degree of congestion for the new flow 
based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans with 
lower hardware and software costs. The architecture of the network controller 140 provides 
an excel-lent fit for the net neutrality guideline of "reasonable network management", and 
better compliance to the copyright law (DMCA) than solutions that rely on long-term caching. 
Hav-ing the ability of monitoring network traffic on a per sub-scriber, per flow, or per video 
file basis, the network controller 140 also selectively monitors and optimizes only a subset of 
traffic that benefits from optimization the most, thus achiev-ing both scalability and efficiency 
for optimization at a com-petitive price-point. The core element of the network control-ler 
140 lies in its mechanisms for congestion detection and mitigation, which allows optimization 
resources to be utilized in the most efficient and surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 593 of 1100



45 

No. ʼ111 Patent Claim 4 Lin ’400 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer redirector 
318, a flow cache 322, and a subscriber log 324. In other embodiments, the network controller 
140 may include additional, fewer, or different components for various applications. 
Conventional components such as network interfaces, security functions, failover servers, 
management and network operations con-soles, and the like are not shown so as to not obscure 
the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline network 
element for flows deemed of interest. Thus, the network controller 140 ingests the network 
flow for inspection and subsequently forwards the network flow on the network response 
path. For example, for this particular flow, the origin server 160 responds to the user request 
by sending video or images over the network link 413 to the steering device 130, which 
for-wards the video or images to the network controller 140 over a network link 414. After 
the network controller 140 updates the flow statistics, the video or images are returned to the 
steering device 130 over a network link 415, which transmits the video or images to the user 
device 110 over the network link 416.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 594 of 1100



46 

No. ʼ111 Patent Claim 4 Lin ’400 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 595 of 1100



47 

No. ʼ111 Patent Claim 4 Lin ’400 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 from 
the origin server 160. The video optimizer 150 transcodes the video file to a format usable by 
the client device 110 based on network bandwidth available to the user device 110. The 
optimized video 626 is then transmitted from the video opti-mizer 150 to the steering device 
130. In one embodiment, the steering device 130 intercepts the optimized video 626. The 
steering device 130 will then send an ICAP request to the network controller 140 for 
inspection. The network controller 140 deems this flow to be monitored and sends ICAP 
response 630. The steering device 130 then allows the flow to go through to the user device 
110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the network 
controller 140 until the flow completes. As such, the client receives the optimized video 626 
for substantially real-time playback on an application executing on the user device 110.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 596 of 1100



48 

No. ʼ111 Patent Claim 4 Lin ’400 
 
Swenson at Figure 1 (annotation added) 

 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 597 of 1100



49 

No. ʼ111 Patent Claim 4 Lin ’400 

 
 
 
For example, Copeland discloses analyzing packets received by the intrusion detection engine 
on the monitoring appliance. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 598 of 1100



50 

No. ʼ111 Patent Claim 4 Lin ’400 
Copeland at [0021] (“The present invention provides an accurate and reliable method for 
detecting network attacks through the use of sampled packet headers that are provided by a 
source such as that as defined in sFlow and further based in large part on "flows" as opposed 
to signatures or anomalies. By utilizing the host and flow information structures that are 
inherent with flow-based analysis and applying rules of statistical significance and analysis, 
the intrusion detection system can operate with sampled data such as provided by sFlow in 
order to provide a hybrid solution that combines many of the benefits of a packet capture 
implementation with the distributed nature of an IDS that operates on Netflow, thus providing 
an enhanced wide-area IDS solu-tion.”) 
 
Copeland at [0023] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are collected 
for each determined flow. Then, the flow statistics are analyzed to determine if the flow 
appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in intruder 
activity without generation of significant unwarranted false alarms. When the concern index 
value of a host exceeds a preset alarm value, an alert is issued and appropriate action can be 
taken.”) 
 
Copeland at [0024] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detrimental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port remains 
constant allows for more efficient analysis of the flow data. The collected flow data is 
analyzed to assign a concern index value to the flow based upon a probability that the flow 
was not normal for data communications. A host list is main-tained containing an accumulated 
concern index derived from the flows associated with the host. Once the accumu-lated 
concern index has exceeded an alarm threshold value, an alarm signal is generated.”) 
 
Copeland at [0027] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are collected 
for each determined flow. Then, the flow statistics are analyzed to determine if the flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 599 of 1100



51 

No. ʼ111 Patent Claim 4 Lin ’400 
appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in intruder 
activity without generation of significant unwarranted false alarms. When the concern index 
value of a host exceeds a preset alarm value, an alert is issued and appropriate action can be 
taken.”) 
 
Copeland at [0028] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detri-mental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port remains 
constant allows for more efficient analysis of the flow data. The collected flow data is 
analyzed to assign a concern index value to the flow based upon a probability that the flow 
was not normal for data communications. A host list is main-tained containing an accumulated 
concern index derived from the flows associated with the host. Once the accumu-lated 
concern index has exceeded an alarm threshold value, an alarm signal is generated.”) 
 
Copeland at [0063] (“Consequently, abnormal flows and/or events iden-tified by the intrusion 
detection engine 155 will raise the concern index (CI) for the associated host. The intrusion 
detection engine 155 analyzes the data flow between IP devices. However, different types of 
services have different flow characteristics associated with that service. Therefore, a C/S flow 
can be determined by the packets exchanged between the two hosts dealing with the same 
service.”) 
 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular traffic 
or flow or suspicious activity. The flow concern index values have been derived heuristically 
from extensive net-work traffic analysis. Concern index values are associated with particular 
hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern index values for 
various exemplary flow-based events and other types of events are illustrated in connection 
with FIGS. 6 and 7.) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 600 of 1100



52 

No. ʼ111 Patent Claim 4 Lin ’400 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of intrusion 
detection is accomplished at least in part by analyzing communication flows to determine if 
such communications have the flow characteristics of probes or attacks. By analyzing 
communications for abnormal flow characteristics, attacks can be determined without the 
need for resource-intensive packet data analysis. A flow can be determined from the packets 
101 that are transmitted between two hosts utilizing a single service. The addresses and port 
numbers of communications are easily discerned by analysis of the header information in a 
datagram.”) 
 
Copeland at [0087] (“As previously stated, the flow-based engine 155 does not analyze the 
data segments of packets for signature identification. Instead, the engine 155 associates all 
packets with a flow. It analyzes certain statistical data and assigns a concern index value to 
abnormal activity. The engine 155 builds a concern index for suspicious hosts by detecting 
suspicious activities on the network. An alarm is generated when those hosts build enough 
concern (in the form of a cumulated CI value) to cross the network administrator's 
predetermined threshold.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0111] (“As shown, the packets exchanged between two hosts associated with a 
single service can determine a flow. A port number designates a service application that is 
associated with the particular port. Communications utiliz-ing differing protocols or services 
provide differing flow characteristics. Consequently, the flow engine 155 analyzes each of 
the services separately.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 601 of 1100



53 

No. ʼ111 Patent Claim 4 Lin ’400 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 
 

4[d] sending the packet, by 
the controller, to the 
network node; and  

Lin ’400 discloses sending the packet, by the controller, to the network node. 
 
For example, Lin ’400 discloses returning the packet to the switch after analysis. A person of 
ordinary skill in the art would understand that the security service could be located in the SDN 
controller. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Lin ‘400 is found to not meet this 
limitation, sending the packet, by the controller, to the network node would have been obvious 
to a person having ordinary skill in the art, as explained below. 
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 602 of 1100



54 

No. ʼ111 Patent Claim 4 Lin ’400 
 

 
Fig. 3 (annotation added)  

 

 
Fig. 4 (annotation added)  

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 603 of 1100



55 

No. ʼ111 Patent Claim 4 Lin ’400 
references identified in element 4(d) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow statistics. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 604 of 1100



56 

No. ʼ111 Patent Claim 4 Lin ’400 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data 
for the average of the bandwidth per user at the particular cell tower. The network controller 
140 can then estimate the amount ofbandwidth or degree of congestion for the new flow based 
on the historical record.”) 
 
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-based 
devices to help deliver value-added services using transparent HTTP proxy caches. Content 
adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific functions, 
such as ad insertion, virus scan-ning, content translation, language translation, or content 
fil-tering. ICAP servers, such as those utilized by the network controller 140, handle these 
tasks to off-load value-added services from network devices including an ICAP client, such 
as the steering device 130. By offloading value added services from the steering device 130, 
processing infrastructure (e.g., optimization services and network controllers) may be scaled 
independent from the steering devices handling raw HTTP throughput.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 605 of 1100



57 

No. ʼ111 Patent Claim 4 Lin ’400 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline network 
element for flows deemed of interest. Thus, the network controller 140 ingests the network 
flow for inspection and subsequently forwards the network flow on the network response 
path. For example, for this particular flow, the origin server 160 responds to the user request 
by sending video or images over the network link 413 to the steering device 130, which 
for-wards the video or images to the network controller 140 over a network link 414. After 
the network controller 140 updates the flow statistics, the video or images are returned to the 
steering device 130 over a network link 415, which transmits the video or images to the user 
device 110 over the network link 416.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 from 
the origin server 160. The video optimizer 150 transcodes the video file to a format usable by 
the client device 110 based on network bandwidth available to the user device 110. The 
optimized video 626 is then transmitted from the video opti-mizer 150 to the steering device 
130. In one embodiment, the steering device 130 intercepts the optimized video 626. The 
steering device 130 will then send an ICAP request to the network controller 140 for 
inspection. The network controller 140 deems this flow to be monitored and sends ICAP 
response 630. The steering device 130 then allows the flow to go through to the user device 
110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the network 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 606 of 1100



58 

No. ʼ111 Patent Claim 4 Lin ’400 
controller 140 until the flow completes. As such, the client receives the optimized video 626 
for substantially real-time playback on an application executing on the user device 110.”) 
 
Swenson at Figure 1 (annotation added) 

 
 
 

4[e] responsive to receiving 
the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Lin ’400 discloses responsive to receiving the packet, sending the packet, by the network 
node, to the second entity. 
 
For example, Lin ’400 discloses that the switch sends the packet to its destination upon 
receiving the returned packet after inspection by the security service.  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 607 of 1100



59 

No. ʼ111 Patent Claim 4 Lin ’400 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). 
 

 
Fig. 3 (annotation added)  

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 608 of 1100



60 

No. ʼ111 Patent Claim 4 Lin ’400 

 
Fig. 4 (annotation added) 

 
 

No. ʼ111 Patent Claim 5 Lin ’400 
5 The method according 

to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 
network node, to the 
controller.  
 

Lin ’400 discloses the method according to claim 1, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending the packet or a portion thereof, 
by the network node, to the controller. 
 
For example, Lin ’400 discloses a command to send a packet to a security service for further 
inspection upon positive identification. A person of ordinary skill in the art would understand 
that the security service could be located in the SDN controller. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To 
the extent that the Lin ‘400 is found to not meet this limitation, responsive to the packet 
satisfying the criterion and to the instruction, sending the packet or a portion thereof, by the 
network node, to the controller would have been obvious to a person having ordinary skill in 
the art, as explained below. 
 
Lin ’400 6:40-63 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 609 of 1100



61 

No. ʼ111 Patent Claim 5 Lin ’400 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.). The security service 630 may 
forward those packets that pass inspection toward their destination by re-injecting the packets 
back into the SDN switch 620 by way of the re-inject port 623-3. Once back in the SDN 
switch 620 by way of the re-inject port 623-3, the flow rules that govern packets received in 
the ingress port 623-1 and the redirect port 623-2 no longer apply. Accordingly, the re-
injected packets are forwarded to the egress port 623-4 (or some other port) toward the next 
hop in accordance with the L2 switching logic of the SDN computer network 600.”). 
 
Lin ’400 5:45-55 (“The security service 630 may inspect packets for compliance/non-
compliance with security policies, such as for presence of malicious code, compliance with 
firewall rules and access control lists, network intrusion detection, and other computer 
network security services. The security service 630 may employ conventional packet 
inspection algorithms. The security service 630 may comprise the Trend Micro Deep 
Security™ service, for example. The security service 630 may also comprise a physical 
machine, e.g., a server computer, an appliance, a gateway computer, etc.”). 
 
Lin ’400 7:10-22 (“Re-injecting packets that pass inspection consume bandwidth, as the 
packets will have to be transmitted by the security service 630 to the re-inject port 623-3. For 
optimization, the SDN switch 620 may be configured to copy packets that are redirected to 
the security service 630 for inspection. This way, the security service 630 simply has to 
inform the SDN switch 620 an action to take on packets based on the result of the inspection 
(see arrow 604). For example, the security service 630 may send an index identifying the 
packets and an action on how to manipulate the packets. The action may instruct the SDN 
switch 620 to drop the copied packets, forward the copied packets to their destinations, 
quarantine the copied packets, etc.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 610 of 1100



62 

No. ʼ111 Patent Claim 5 Lin ’400 
Lin ’400 8:33-45 (“The security service 630 receives the outgoing packets from the redirect 
port 623-2 (see arrow 654) and inspects the outgoing packets. After inspection, the security 
service 630 re-injects the outgoing packets (e.g., outgoing packets that passed inspection) 
back into the SDN switch 620 by way of the re-inject port 623-3 (see arrow 655). The SDN 
switch 620 receives the outgoing packets on the re-inject port 623-3. The SDN 
switch 620 forwards the outgoing packets from the re-inject port 623-3 to the egress port 623-
4 in accordance with the L2 switching logic of the SDN computer network 600 (see 
arrow 657). The outgoing packets exit the SDN switch 620 through the egress port 623-4 (see 
arrow 658) and move towards their destination.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 5 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Copeland discloses sending packets and sampled packet headers to the intrusion 
detection engine on the monitoring appliance based on matching predetermined values 
associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data stream 
such as that provided by sFlow. In a typical preferred configuration for the present invention, 
a monitoring appli-ance 150 operating a flow-based intrusion detection engine 155 is 
receiving sampled packet headers from one or more network devices 135. The monitoring 
appliance 150 moni-tors the communications between the host server 130 and other hosts 120, 
110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 611 of 1100



63 

No. ʼ111 Patent Claim 5 Lin ’400 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured and 
processed by the sample packet collector 505 in order to create a "Packet Data" data struc-ture 
that includes the sFlow agent source of the packets, the header of the sampled packets, and 
other information avail-able from the sFlow data stream that may be important. For  
example, one data field that is optionally available pr vides the username of the user using the 
computer at the time of the communications. This information is extremely useful in some 
environments subject to regulatory requirements and monitoring of the communications on 
the network. In this case the username will be stored as "supplementary infor-mation" for 
auditing purposes in the flow data. Other infor-mation, including the sampling device and the 
physical port on which the communications was detected may also be retained for other uses 
such as mitigation, where a host may be removed from the network.”) 
 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 612 of 1100



64 

No. ʼ111 Patent Claim 5 Lin ’400 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number of 
flows active with matching IP addresses but no matching port number. If this number exceeds 
a predetermined threshold value (e.g., 4) and is greater than the previous number noticed, CI 
is added for an amount corresponding to a "port scan." A bit in the host record is set to indicate 
that the host has received CI for "port scanning."”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 613 of 1100



65 

No. ʼ111 Patent Claim 5 Lin ’400 

 
Figure 9 (annotation added)  

 
Lin ’400 4:53-67 (“The SDN switch 620 may comprise one or more flow tables 621. The flow 
tables 621 may comprise one or more flow rules (labeled as 624) that indicate how to 
manipulate or process packets that are passing through the SDN switch 620. As a particular 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 614 of 1100



66 

No. ʼ111 Patent Claim 5 Lin ’400 
example, a flow rule may indicate that a packet received in the ingress port 623-1 is to be 
forwarded to the redirect port 623-2. Another flow rule may indicate that a packet received in 
the redirect port 623-2 is to be forwarded to the ingress port 623-1. The just mentioned pair 
of flow rules are redirect flow rules that create an SDN pipe between the sender 
component 622 and the security service 630, allowing the security service 630 to inspect 
packets sent by or going to the sender component 622. Table 1 shows an example flow table 
with flow rules that create an SDN pipe between the security service 630 and the sender 
component 622.”). 
 

 
No. ʼ111 Patent Claim 6 Lin ’400 

6 The method according 
to claim 5, further 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

Lin ’400 discloses the method according to claim 5, further comprising storing the received 
packet or a portion thereof, by the controller, in a memory. 
 
For example, Lin ’400 discloses a main memory and a data storage device that could be used 
to store the packet or a portion thereof.  
 
Lin ’400 2:47-65 (“FIG. 2 shows a schematic diagram of a computer system 100 that may be 
employed with embodiments of the present invention. The computer system 100 may be 
employed as a control plane and/or a data plane, for example. As another example, the 
computer system 100 may be employed to host a virtualization environment that supports a 
plurality of virtual machines. The computer system 100 may have fewer or more components 
to meet the needs of a particular application. The computer system 100 may include one or 
more processors 101. The computer system 100 may have one or more buses 103 coupling its 
various components. The computer system 100 may include one or more user input 
devices 102 (e.g., keyboard, mouse), one or more data storage devices 106 (e.g., hard drive, 
optical disk, Universal Serial Bus memory), a display monitor 104 (e.g., liquid crystal display, 
flat panel monitor), a computer network interface 105 (e.g., network adapter, modem), and a 
main memory 108 (e.g., random access memory). The computer network interface 105 may 
be coupled to a computer network 109.”) 
 
Lin ’400 2:67-3:10 (“The computer system 100 is a particular machine as programmed with 
software modules 110. The software modules 110 comprise computer-readable program code 
stored non-transitory in the main memory 108 for execution by the processor 101. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 615 of 1100



67 

No. ʼ111 Patent Claim 6 Lin ’400 
computer system 100 may be configured to perform its functions by executing the software 
modules 110. The software modules 110 may be loaded from the data storage device 106 to 
the main memory 108. An article of manufacture may be embodied as computer-readable 
storage medium including instructions that when executed by a computer causes the computer 
to be operable to perform the functions of the software modules 110.”) 

 
Fig. 2 (annotation added)  

 
No. ʼ111 Patent Claim 7 Lin ’400 

7 The method according 
to claim 5, further 
comprising responsive 

Lin ‘400 discloses the method according to claim 5, further comprising responsive to the 
packet satisfying the criterion and to the instruction, sending a portion of the packet, by the 
network node, to the controller. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 616 of 1100



68 

No. ʼ111 Patent Claim 7 Lin ’400 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

 
For example, Lin ’400 discloses a command to send a packet to a security service for further 
inspection upon positive identification A person of ordinary skill in the art would 
understand that the security service could be located in the SDN controller. Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Lin ‘400 is found to not meet this limitation, responsive to the 
packet satisfying the criterion and to instruction, sending a portion of the packet, by the 
network node, to the controller would have been obvious to a person having ordinary skill in 
the art, as explained below. 
 
See supra at Claim 5. 
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 3:25-33 (“Another way of intercepting network traffic is to mirror the packets to be 
inspected on a switch that provides vendor specific mirroring application programming 
interface (API) as shown in FIG. 4. A user may make an API call such that particular packets 
that enter the ingress port of the switch are redirected or mirrored to the security service by 
way of a connection tunnel or a mirror port. The security service may forward the redirected 
or mirrored packets back to an egress port of the switch after inspection.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 617 of 1100



69 

No. ʼ111 Patent Claim 7 Lin ’400 

 
Fig. 3 (annotation added)  

 

 
Fig. 4 (annotation added) 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 5 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 618 of 1100



70 

No. ʼ111 Patent Claim 7 Lin ’400 
 
For example, Copeland discloses sending packets and sampled packet headers to the intrusion 
detection engine on the monitoring appliance based on matching predetermined values 
associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data stream 
such as that provided by sFlow. In a typical preferred configuration for the present invention, 
a monitoring appli-ance 150 operating a flow-based intrusion detection engine 155 is 
receiving sampled packet headers from one or more network devices 135. The monitoring 
appliance 150 moni-tors the communications between the host server 130 and other hosts 120, 
110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured and 
processed by the sample packet collector 505 in order to create a "Packet Data" data struc-ture 
that includes the sFlow agent source of the packets, the header of the sampled packets, and 
other information avail-able from the sFlow data stream that may be important. For  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 619 of 1100



71 

No. ʼ111 Patent Claim 7 Lin ’400 
example, one data field that is optionally available pr vides the username of the user using the 
computer at the time of the communications. This information is extremely useful in some 
environments subject to regulatory requirements and monitoring of the communications on 
the network. In this case the username will be stored as "supplementary infor-mation" for 
auditing purposes in the flow data. Other infor-mation, including the sampling device and the 
physical port on which the communications was detected may also be retained for other uses 
such as mitigation, where a host may be removed from the network.”) 
 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number of 
flows active with matching IP addresses but no matching port number. If this number exceeds 
a predetermined threshold value (e.g., 4) and is greater than the previous number noticed, CI 
is added for an amount corresponding to a "port scan." A bit in the host record is set to indicate 
that the host has received CI for "port scanning."”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 620 of 1100



72 

No. ʼ111 Patent Claim 7 Lin ’400 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 
 

 
No. ʼ111 Patent Claim 8 Lin ’400 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 
consists of multiple 
consecutive bytes, and  

Lin ’400 discloses the method according to claim 7, wherein the portion of the packet consists 
of multiple consecutive bytes. 
 
For example, Lin ’400 discloses particular packets with specific byte counts. Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Lin ‘400 is found to not meet this limitation, wherein the 
portion of the packet consists of multiple consecutive bytes would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 621 of 1100



73 

No. ʼ111 Patent Claim 8 Lin ’400 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 8(a) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses consecutive bytes of a packet header field. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 622 of 1100



74 

No. ʼ111 Patent Claim 8 Lin ’400 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers (i.e. 
E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch software 
slow path processes the packets and performs the specialized handling; and LOCAL_GTP 
_U_ENCAP-the switch fast path forwards user data plane packets to this port that require 
encapsulation in a GTP tunnel with nonzero header fields or extension headers (i.e. E!=0, 
S!=0, or PN!=0). These packets require specialized handling. The local switch software slow 
path encapsulates the packets and performs the specialized handling. In addition to forwarding 
the packet, the switch fast path makes the OpenFlow metadata field avail-able to the slow 
path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 623 of 1100



75 

No. ʼ111 Patent Claim 8 Lin ’400 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number bitmask 0xFF0l and the upper two bytes match the G-PDU 
message type (255) while the lower two bytes are 0x31, indicating that the version number is 
1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, or 
N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 624 of 1100



76 

No. ʼ111 Patent Claim 8 Lin ’400 
For example, Copeland discloses fragmenting packets into smaller byte sizes, including 
headers and flags.  Copeland further discloses sending sampled packet headers, consisting 
of fragmented packets of consecutive bytes to the monitoring device. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 

8[b] wherein the instruction 
comprises 
identification of the 
consecutive bytes in 
the packet.  

Lin ’400 discloses wherein the instruction comprises identification of the consecutive bytes 
in the packet. 
 
For example, Lin ’400 discloses a flow table with a flow rule that indicates particular 
packets and identifies byte counts. Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Lin ‘400 is 
found to not meet this limitation, wherein the instruction comprises identification of the 
consecutive bytes in the packet would have been obvious to a person having ordinary skill 
in the art, as explained below. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 625 of 1100



77 

No. ʼ111 Patent Claim 8 Lin ’400 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 8(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses rules in which the flow table includes matching to the 
consecutive bytes of a packet header. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 626 of 1100



78 

No. ʼ111 Patent Claim 8 Lin ’400 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers (i.e. 
E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch software 
slow path processes the packets and performs the specialized handling; and LOCAL_GTP 
_U_ENCAP-the switch fast path forwards user data plane packets to this port that require 
encapsulation in a GTP tunnel with nonzero header fields or extension headers (i.e. E!=0, 
S!=0, or PN!=0). These packets require specialized handling. The local switch software slow 
path encapsulates the packets and performs the specialized handling. In addition to forwarding 
the packet, the switch fast path makes the OpenFlow metadata field avail-able to the slow 
path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 627 of 1100



79 

No. ʼ111 Patent Claim 8 Lin ’400 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number bitmask 0xFF0l and the upper two bytes match the G-PDU 
message type (255) while the lower two bytes are 0x31, indicating that the version number is 
1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, or 
N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
 
For example, Copeland discloses identifying the sampled packet headers comprised of 
fragmented packets of smaller byte sizes. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 628 of 1100



80 

No. ʼ111 Patent Claim 8 Lin ’400 
 
Copeland at [0080] (“After the fragmentation information, an 8-bit time to live field specifies 
the remaining life of a packet and is decremented each time the packet is relayed. If this field 
is 0, the packet is destroyed. Next is an 8-bit protocol field that specifies the transport protocol 
used in the data portion. The following 16-bit field is a header checksum on the header only. 
Finally, the last two fields illustrated contain the 32-bit source address and 32-bit destination 
address. IP packet data follows the address information.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 

 
No. ʼ111 Patent Claim 9 Lin ’400 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Lin ’400 the method according to claim 5, further comprising discloses responsive to 
receiving the packet, analyzing the packet, by the controller.  
 
For example, Lin ’400 discloses security service that inspects the packets. A person of 
ordinary skill in the art would understand that the security service could be located in the SDN 
controller. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Lin ‘400 is found to not meet this 
limitation, responsive to receiving the packet, analyzing the packet, by the controller would 
have been obvious to a person having ordinary skill in the art, as explained below.  
 
See supra at Claim 5.  
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 629 of 1100



81 

No. ʼ111 Patent Claim 9 Lin ’400 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 9 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 630 of 1100



82 

No. ʼ111 Patent Claim 9 Lin ’400 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 631 of 1100



83 

No. ʼ111 Patent Claim 9 Lin ’400 
for the average of the bandwidth per user at the particular cell tower. The network controller 
140 can then estimate the amount of bandwidth or degree of congestion for the new flow 
based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans with 
lower hardware and software costs. The architecture of the network controller 140 provides 
an excel-lent fit for the net neutrality guideline of "reasonable network management", and 
better compliance to the copyright law (DMCA) than solutions that rely on long-term caching. 
Hav-ing the ability of monitoring network traffic on a per sub-scriber, per flow, or per video 
file basis, the network controller 140 also selectively monitors and optimizes only a subset of 
traffic that benefits from optimization the most, thus achiev-ing both scalability and efficiency 
for optimization at a com-petitive price-point. The core element of the network control-ler 
140 lies in its mechanisms for congestion detection and mitigation, which allows optimization 
resources to be utilized in the most efficient and surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer redirector 
318, a flow cache 322, and a subscriber log 324. In other embodiments, the network controller 
140 may include additional, fewer, or different components for various applications. 
Conventional components such as network interfaces, security functions, failover servers, 
management and network operations con-soles, and the like are not shown so as to not obscure 
the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 632 of 1100



84 

No. ʼ111 Patent Claim 9 Lin ’400 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline network 
element for flows deemed of interest. Thus, the network controller 140 ingests the network 
flow for inspection and subsequently forwards the network flow on the network response 
path. For example, for this particular flow, the origin server 160 responds to the user request 
by sending video or images over the network link 413 to the steering device 130, which 
for-wards the video or images to the network controller 140 over a network link 414. After 
the network controller 140 updates the flow statistics, the video or images are returned to the 
steering device 130 over a network link 415, which transmits the video or images to the user 
device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 633 of 1100



85 

No. ʼ111 Patent Claim 9 Lin ’400 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 634 of 1100



86 

No. ʼ111 Patent Claim 9 Lin ’400 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 from 
the origin server 160. The video optimizer 150 transcodes the video file to a format usable by 
the client device 110 based on network bandwidth available to the user device 110. The 
optimized video 626 is then transmitted from the video opti-mizer 150 to the steering device 
130. In one embodiment, the steering device 130 intercepts the optimized video 626. The 
steering device 130 will then send an ICAP request to the network controller 140 for 
inspection. The network controller 140 deems this flow to be monitored and sends ICAP 
response 630. The steering device 130 then allows the flow to go through to the user device 
110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the network 
controller 140 until the flow completes. As such, the client receives the optimized video 626 
for substantially real-time playback on an application executing on the user device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 635 of 1100



87 

No. ʼ111 Patent Claim 9 Lin ’400 

 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 636 of 1100



88 

No. ʼ111 Patent Claim 9 Lin ’400 

 
 
For example, Copeland discloses analyzing packets received by the intrusion detection engine 
on the monitoring appliance. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 637 of 1100



89 

No. ʼ111 Patent Claim 9 Lin ’400 
Copeland at [0021] (“The present invention provides an accurate and reliable method for 
detecting network attacks through the use of sampled packet headers that are provided by a 
source such as that as defined in sFlow and further based in large part on "flows" as opposed 
to signatures or anomalies. By utilizing the host and flow information structures that are 
inherent with flow-based analysis and applying rules of statistical significance and analysis, 
the intrusion detection system can operate with sampled data such as provided by sFlow in 
order to provide a hybrid solution that combines many of the benefits of a packet capture 
implementation with the distributed nature of an IDS that operates on Netflow, thus providing 
an enhanced wide-area IDS solu-tion.”) 
 
Copeland at [0023] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are collected 
for each determined flow. Then, the flow statistics are analyzed to determine if the flow 
appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in intruder 
activity without generation of significant unwarranted false alarms. When the concern index 
value of a host exceeds a preset alarm value, an alert is issued and appropriate action can be 
taken.”) 
 
Copeland at [0024] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detrimental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port remains 
constant allows for more efficient analysis of the flow data. The collected flow data is 
analyzed to assign a concern index value to the flow based upon a probability that the flow 
was not normal for data communications. A host list is main-tained containing an accumulated 
concern index derived from the flows associated with the host. Once the accumu-lated 
concern index has exceeded an alarm threshold value, an alarm signal is generated.”) 
 
Copeland at [0027] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are collected 
for each determined flow. Then, the flow statistics are analyzed to determine if the flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 638 of 1100



90 

No. ʼ111 Patent Claim 9 Lin ’400 
appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in intruder 
activity without generation of significant unwarranted false alarms. When the concern index 
value of a host exceeds a preset alarm value, an alert is issued and appropriate action can be 
taken.”) 
 
Copeland at [0028] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detri-mental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port remains 
constant allows for more efficient analysis of the flow data. The collected flow data is 
analyzed to assign a concern index value to the flow based upon a probability that the flow 
was not normal for data communications. A host list is main-tained containing an accumulated 
concern index derived from the flows associated with the host. Once the accumu-lated 
concern index has exceeded an alarm threshold value, an alarm signal is generated.”) 
 
Copeland at [0063] (“Consequently, abnormal flows and/or events iden-tified by the intrusion 
detection engine 155 will raise the concern index (CI) for the associated host. The intrusion 
detection engine 155 analyzes the data flow between IP devices. However, different types of 
services have different flow characteristics associated with that service. Therefore, a C/S flow 
can be determined by the packets exchanged between the two hosts dealing with the same 
service.”) 
 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular traffic 
or flow or suspicious activity. The flow concern index values have been derived heuristically 
from extensive net-work traffic analysis. Concern index values are associated with particular 
hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern index values for 
various exemplary flow-based events and other types of events are illustrated in connection 
with FIGS. 6 and 7.) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 639 of 1100



91 

No. ʼ111 Patent Claim 9 Lin ’400 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of intrusion 
detection is accomplished at least in part by analyzing communication flows to determine if 
such communications have the flow characteristics of probes or attacks. By analyzing 
communications for abnormal flow characteristics, attacks can be determined without the 
need for resource-intensive packet data analysis. A flow can be determined from the packets 
101 that are transmitted between two hosts utilizing a single service. The addresses and port 
numbers of communications are easily discerned by analysis of the header information in a 
datagram.”) 
 
Copeland at [0087] (“As previously stated, the flow-based engine 155 does not analyze the 
data segments of packets for signature identification. Instead, the engine 155 associates all 
packets with a flow. It analyzes certain statistical data and assigns a concern index value to 
abnormal activity. The engine 155 builds a concern index for suspicious hosts by detecting 
suspicious activities on the network. An alarm is generated when those hosts build enough 
concern (in the form of a cumulated CI value) to cross the network administrator's 
predetermined threshold.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0111] (“As shown, the packets exchanged between two hosts associated with a 
single service can determine a flow. A port number designates a service application that is 
associated with the particular port. Communications utiliz-ing differing protocols or services 
provide differing flow characteristics. Consequently, the flow engine 155 analyzes each of 
the services separately.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 640 of 1100



92 

No. ʼ111 Patent Claim 9 Lin ’400 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 

 
No. ʼ111 Patent Claim 12 Lin ’400 

12 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Lin ’400 discloses the method according to claim 9, wherein the analyzing comprises applying 
security or data analytic application. 
 
For example, Lin ’400 discloses a security processing function that employs conventional 
packet inspection algorithms.  
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”). 
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 641 of 1100



93 

No. ʼ111 Patent Claim 12 Lin ’400 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”). 
 

 
No. ʼ111 Patent Claim 13 Lin ’400 

13 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Lin ’400 discloses the method according to claim 9, wherein the analyzing comprises applying 
security application that comprises firewall or intrusion detection functionality. 
 
For example, Lin ’400 discloses network security service application, such as a firewall or 
DPI.  
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”).  
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 642 of 1100



94 

No. ʼ111 Patent Claim 13 Lin ’400 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”). 
 

 
No. ʼ111 Patent Claim 14 Lin ’400 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Lin ’400 discloses the method according to claim 9, wherein the analyzing comprises 
performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Lin ’400 discloses a security service on packets which includes deep packet 
inspection.  
 
See supra Claim 9. 
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”).  
 

 
No. ʼ111 Patent Claim 15 Lin ’400 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Lin ’400 discloses the method according to claim 9, wherein the packet comprises distinct 
header and payload fields. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  Lin ’400 further discloses inspection of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 643 of 1100



95 

No. ʼ111 Patent Claim 15 Lin ’400 
packets to determine if a packet payload is prohibited or malicious.  A person of ordinary skill 
in the art would understand that data traffic is made up of packets comprised of header and 
payload fields.  Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Lin ‘400 is found to not meet this 
limitation, wherein the packet comprises distinct header and payload fields would have been 
obvious to a person having ordinary skill in the art, as explained below. 
 
See supra Claim 9. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Lin ’400 6:40-54 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.).”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 644 of 1100



96 

No. ʼ111 Patent Claim 15 Lin ’400 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 15(a) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses packet flows with header and payload fields. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic statistics 
stored in the flow cache 3 22 and user information stored in the subscriber log 324, for 
example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 645 of 1100



97 

No. ʼ111 Patent Claim 15 Lin ’400 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the network 
infrastructure via API, and making decisions on how to apply optimization based on 
individual or a combination of these inputs. The optimization policies can be applied to large 
flows all the time or on a time-of-day basis, a per user basis, and/or depending on the network 
condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP messages 
of a flow and determining to monitor the flow, the network controller 140 notify the steering 
device 130 to work in a "counting" mode for bandwidth monitoring. In contrast to the 
"continue" mode, when a matching flow is detected for "counting" mode, the steering device 
130 for-wards the HTTP response directly to the user device 110. While at the same time, the 
steering device 130 send a cus-tomized ICAP message to the network controller 140 over the 
network link 425. In one embodiment, the customized ICAP message contains the HTTP 
request and response headers, as well as a count of payload size of the current flow. After Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 646 of 1100



98 

No. ʼ111 Patent Claim 15 Lin ’400 
updating the flow statistics, the network controller 140 may acknowledge the gateway over 
the network line 426. In the "counting" mode, the network controller 140 does not join the 
network response path as an inline network element, but simply listens to the counting of flow 
size. The benefit of the "counting" mode is to off-load the network controller 140 from 
ingesting and forwarding the network flow on the net- work response path, while still enabling 
the detection of con-gestions and estimation of bandwidth associated with the flows of 
interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 647 of 1100



99 

No. ʼ111 Patent Claim 15 Lin ’400 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may never 
reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 75-
100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be different, 
hence the bandwidth for each of the buckets is measured and calculated separately. In other 
embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and l00kB+) of the buckets 
may be altered depending on the network traffic and size of objects transmitted. Furthermore, 
the bucket sizes can also be adjusted based on network topology, such as buffer size, prior to 
transmission to the client. The calculated bandwidth per bucket is stored in a queue structure 
that allows for the computing and updating of minimum, maximum, and/or average 
measurements for each bucket. In one embodiment, the 100 kB+ bucket's current tail entry is 
checked against the average bandwidth for the 100 kB+ bucket. If the current entry is less 
than the average multiplied by the number of entries in the queue, the current entry is added Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 648 of 1100



100 

No. ʼ111 Patent Claim 15 Lin ’400 
to the bandwidth calculation for the current interval. This scheme can filter out large bursts 
of data from tempo-rarily idle flows. If the bandwidth exceeds the value, a number of bytes 
(e.g., 125 kB) will be subtracted from the current entry to account for TCP buffers in the 
network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to find 
patterns or other identifiers in the flows to map them to particular subscribers. Flows without 
identified sub-scribers are added to the flow cache block under the default user flows 726, 
which is a default holding place for the new flows. The flow analyzer 312 later will scan 
through the default user flows that contain cookies or other identifiers that may be used to 
determine a real user or subscriber associated with the flow. If a flow contains identifiers not 
associated with an existing real user, a new user or subscriber is created and the user flow 
block is moved to newly created (or mapped) user or subscriber.”) 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Lin ’400 discloses wherein the analyzing comprises checking part of, or whole of, the payload 
field. 
 
For example, Lin ’400 discloses inspection of packets to determine if a packet payload is 
prohibited or malicious.  A person of ordinary skill in the art would understand that inspection 
of packets occurs at the payload field.  Thus, at least under the apparent claim scope alleged 
by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Lin ‘400 
is found to not meet this limitation, wherein the analyzing comprises checking part of, or 
whole of, the payload field would have been obvious to a person having ordinary skill in the 
art, as explained below. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 649 of 1100



101 

No. ʼ111 Patent Claim 15 Lin ’400 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Lin ’400 6:40-54 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.).”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 15(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses inspecting the payload of a packet flow. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 650 of 1100



102 

No. ʼ111 Patent Claim 15 Lin ’400 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic statistics 
stored in the flow cache 3 22 and user information stored in the subscriber log 324, for 
example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the network 
infrastructure via API, and making decisions on how to apply optimization based on 
individual or a combination of these inputs. The optimization policies can be applied to large 
flows all the time or on a time-of-day basis, a per user basis, and/or depending on the network 
condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 651 of 1100



103 

No. ʼ111 Patent Claim 15 Lin ’400 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP messages 
of a flow and determining to monitor the flow, the network controller 140 notify the steering 
device 130 to work in a "counting" mode for bandwidth monitoring. In contrast to the 
"continue" mode, when a matching flow is detected for "counting" mode, the steering device 
130 for-wards the HTTP response directly to the user device 110. While at the same time, the 
steering device 130 send a cus-tomized ICAP message to the network controller 140 over the 
network link 425. In one embodiment, the customized ICAP message contains the HTTP 
request and response headers, as well as a count of payload size of the current flow. After 
updating the flow statistics, the network controller 140 may acknowledge the gateway over 
the network line 426. In the "counting" mode, the network controller 140 does not join the 
network response path as an inline network element, but simply listens to the counting of flow 
size. The benefit of the "counting" mode is to off-load the network controller 140 from 
ingesting and forwarding the network flow on the net- work response path, while still enabling 
the detection of con-gestions and estimation of bandwidth associated with the flows of 
interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 652 of 1100



104 

No. ʼ111 Patent Claim 15 Lin ’400 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 653 of 1100



105 

No. ʼ111 Patent Claim 15 Lin ’400 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may never 
reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 75-
100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be different, 
hence the bandwidth for each of the buckets is measured and calculated separately. In other 
embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and l00kB+) of the buckets 
may be altered depending on the network traffic and size of objects transmitted. Furthermore, 
the bucket sizes can also be adjusted based on network topology, such as buffer size, prior to 
transmission to the client. The calculated bandwidth per bucket is stored in a queue structure 
that allows for the computing and updating of minimum, maximum, and/or average 
measurements for each bucket. In one embodiment, the 100 kB+ bucket's current tail entry is 
checked against the average bandwidth for the 100 kB+ bucket. If the current entry is less 
than the average multiplied by the number of entries in the queue, the current entry is added 
to the bandwidth calculation for the current interval. This scheme can filter out large bursts 
of data from tempo-rarily idle flows. If the bandwidth exceeds the value, a number of bytes 
(e.g., 125 kB) will be subtracted from the current entry to account for TCP buffers in the 
network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to find 
patterns or other identifiers in the flows to map them to particular subscribers. Flows without 
identified sub-scribers are added to the flow cache block under the default user flows 726, 
which is a default holding place for the new flows. The flow analyzer 312 later will scan 
through the default user flows that contain cookies or other identifiers that may be used to 
determine a real user or subscriber associated with the flow. If a flow contains identifiers not 
associated with an existing real user, a new user or subscriber is created and the user flow 
block is moved to newly created (or mapped) user or subscriber.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 654 of 1100



106 

No. ʼ111 Patent Claim 15 Lin ’400 
 

 
No. ʼ111 Patent Claim 16 Lin ’400 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Lin ’400 discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra Claim 1, 15[a].  
 

16[b] the header comprises 
one or more flag bits, 
and  

Lin ’400 discloses the header comprises one or more flag bits. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  A person of ordinary skill in the art 
would understand that header fields can comprise one or more flag bits.  Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Lin ‘400 is found to not meet this limitation, the header comprises 
one or more flag bits would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 655 of 1100



107 

No. ʼ111 Patent Claim 16 Lin ’400 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 16[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet headers with flag bits. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 656 of 1100



108 

No. ʼ111 Patent Claim 16 Lin ’400 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The information 
in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, contains the 
IP addresses and assures that the packet is delivered to the right host. The transport layer 
protocol (TCP) header follows the Internet protocol header and specifies the port numbers for 
the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 657 of 1100



109 

No. ʼ111 Patent Claim 16 Lin ’400 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 information. 
The data portion or segment associated with the packet 210 follows the header information.”) 
 
Copeland at [0078] (“In regards to a typical IP packet 210, the first 4 bits of the IP header 220 
identify the Internet protocol (IP) version. The following 4 bits identify the IP header length 
in 32 bit words. The next 8 bits differentiate the type of service by describing how the packet 
should be handled in transit. The following 16 bits convey the total packet length.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the TCP 
header 230 information. The initial TCP header 230 information includes the 16-bit source 
and 16-bit destination port numbers. A 32-bit sequence number for the data in the packet 
follows the port numbers. Following the sequence number is a 32-bit acknowledgement 
number. If an ACK flag (discussed below) is set, this number is the next sequence number 
the sender of the packet expects to receive. Next is a 4-bit data offset, which is the number of 
32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 658 of 1100



110 

No. ʼ111 Patent Claim 16 Lin ’400 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0116] (“These steps generally require manipulations of quantities such as IP 
addresses, packet length, header length, start times, end times, port numbers, and other 
packet related information. Usually, though not necessarily, these quanti-ties take the form 
of electrical, magnetic, or optical signals capable of being stored, transferred, combined, 
compared, or otherwise manipulated. It is conventional for those skilled in the art to refer to 
these signals as bits, bytes, words, values, elements, symbols, characters, terms, numbers, 
points, records, objects, images, files or the like. It should be kept in mind, however, that 
these and similar terms should be associated with appropriate quantities for computer 
opera-tions and that these terms are merely conventional labels applied to quantities that 
exist within and during operation of the computer.”) 
 
As another example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway can 
be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply enough Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 659 of 1100



111 

No. ʼ111 Patent Claim 16 Lin ’400 
that they can be implemented in hardware or firmware. For this reason, GTP virtual ports may 
have the following restrictions on traffic they will handle: Protocol Type (PT) field= 1, where 
GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); Extension Header flag 
(E)=0, where no extension headers are supported, Sequence Number flag (S)=0, where no 
sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message type=255, where Only 
G-PDU messages, i.e. tunneled user data, is supported in the fast path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for example 
SHA-1. The flow table entries contain a record of how the packet header, including the GTP 
encap-sulation header, should be configured. This includes: the same header fields as for the 
hardware or firmware encapsu-lation table in FIG.18; values for the GTP header flags (PT, E, 
S, and PN); the sequence number and/or the N-PDU number if any; if the E flag is 1, then the 
flow table contains a list of the extension headers, including their types, which the slow path 
should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 660 of 1100



112 

No. ʼ111 Patent Claim 16 Lin ’400 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values for 
the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-
U destination port (2152); the GTP header flags and message type field is wildcarded with 
0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the PT 
field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number present; and bitmask 0xFF0l and the upper two bytes match 
the G-PDU message type (255) while the lower two bytes are 0x31, indicating that the version 
number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP TEID. 
The gtp_ wildcard field indicates whether the GTP type and flags and TEID should be 
matched. If the lower four bits are 1, the type and flags field should be ignored, while if the 
upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and fields 
flag should be matched subject to the flags in the gtp_flag_mask field, while if the upper bits 
are 0 the TEID should be matched. The mask is combined with the message type and header 
field of the packet using logical AND; the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 661 of 1100



113 

No. ʼ111 Patent Claim 16 Lin ’400 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_ 
teid field contains the GRP TEID. When the value of the oxm_type ( oxm_class+oxm_field 
is GTP _ MATCH and the HM bit is zero, the flaw's GTP header must match these values 
exactly. If the HM flag is one, the value contains an ersmt_gtp_match field and an 
ermst_gtp_mask field, as specified by the OpenFlow 1.2 specification. We define 
ermst_gtp_mask field for selecting flows based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. If 
the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates the 
flags should be matched, the gtp_flag_mask is combined with the message type and header 
field of the packet using logical AND, the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 

16[c] wherein the packet-
applicable criterion is 
that one or more of the 
flag bits is set.  

Lin ’400 discloses wherein the packet-applicable criterion is that one or more of the flag bits 
is set. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  A person of ordinary skill in the art 
would understand that header fields can comprise one or more flag bits.   A person of ordinary 
skill in the art would further understand that whether a condition is met in the flow table could 
depend on whether the one or more flag bits of a header is set.  Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To 
the extent that the Lin ‘400 is found to not meet this limitation, wherein the packet applicable 
criterion is that one or more of the flag bits is set would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 662 of 1100



114 

No. ʼ111 Patent Claim 16 Lin ’400 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 16[c] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet specific characteristics including flag bits that are 
set. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the TCP 
header 230 information. The initial TCP header 230 information includes the 16-bit source 
and 16-bit destination port numbers. A 32-bit sequence number for the data in the packet 
follows the port numbers. Following the sequence number is a 32-bit acknowledgement 
number. If an ACK flag (discussed below) is set, this number is the next sequence number 
the sender of the packet expects to receive. Next is a 4-bit data offset, which is the number of 
32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 663 of 1100



115 

No. ʼ111 Patent Claim 16 Lin ’400 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag is 
designed to establish a TCP connection and allow both ends to synchronize their TCP buffers. 
Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0125] (“For purposes of the description, which follows, the IP address with the 
lower value, when considered as a 32-bit unsigned integer, is designated ip[0] and the 
corresponding port number is designated pt[0]. The higher IP address is designated ip[l] and 
the corresponding TCP or UDP port number is designated pt[l]. At some point, either pt[0] or 
pt[l] may be designated the "server" port by setting an appropriate bit in a bit map that is part 
of the flow record (record "state", bit 1 or 2 is set).”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 8) 
have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of hosts 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 664 of 1100



116 

No. ʼ111 Patent Claim 16 Lin ’400 
scanned "statistically significant". These and other values of concern index are shown for non-
flow based events in FIG. 7.”) 
 
As another example, Kempf flow table matches in which the flag bits is set, 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway can 
be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply enough 
that they can be implemented in hardware or firmware. For this reason, GTP virtual ports may 
have the following restrictions on traffic they will handle: Protocol Type (PT) field= 1, where 
GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); Extension Header flag 
(E)=0, where no extension headers are supported, Sequence Number flag (S)=0, where no 
sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message type=255, where Only 
G-PDU messages, i.e. tunneled user data, is supported in the fast path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 665 of 1100



117 

No. ʼ111 Patent Claim 16 Lin ’400 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for example 
SHA-1. The flow table entries contain a record of how the packet header, including the GTP 
encap-sulation header, should be configured. This includes: the same header fields as for the 
hardware or firmware encapsu-lation table in FIG.18; values for the GTP header flags (PT, E, 
S, and PN); the sequence number and/or the N-PDU number if any; if the E flag is 1, then the 
flow table contains a list of the extension headers, including their types, which the slow path 
should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values for 
the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-
U destination port (2152); the GTP header flags and message type field is wildcarded with 
0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the PT 
field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 666 of 1100



118 

No. ʼ111 Patent Claim 16 Lin ’400 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number present; and bitmask 0xFF0l and the upper two bytes match 
the G-PDU message type (255) while the lower two bytes are 0x31, indicating that the version 
number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP TEID. 
The gtp_ wildcard field indicates whether the GTP type and flags and TEID should be 
matched. If the lower four bits are 1, the type and flags field should be ignored, while if the 
upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and fields 
flag should be matched subject to the flags in the gtp_flag_mask field, while if the upper bits 
are 0 the TEID should be matched. The mask is combined with the message type and header 
field of the packet using logical AND; the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP TEID. 
When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the HM bit 
is zero, the flaw's GTP header must match these values exactly. If the HM flag is one, the 
value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified by the 
OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows based on 
the settings of flag bits: 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 667 of 1100



119 

No. ʼ111 Patent Claim 16 Lin ’400 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. If 
the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates the 
flags should be matched, the gtp_flag_mask is combined with the message type and header 
field of the packet using logical AND, the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at Figure 10 
 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 668 of 1100



120 

No. ʼ111 Patent Claim 16 Lin ’400 
 

 
No. ʼ111 Patent Claim 17 Lin ’400 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 
Protocol (TCP) packet, 
and  

Lin ’400 discloses the method according to claim 16, wherein the packet is a Transmission 
Control Protocol (TCP) packet.  
 
For example, Lin ’400 discloses TCP packets entering and exiting the switch.  Lin ’400 further 
discloses a transport protocol (TCP) port.  
 

 

 
Lin ’400 7:39-50 (“In the example of Table 2, the first two rows are bypass rules for bypassing 
packets coming from or going to a transport control protocol (TCP) port 80. More specifically, 
hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are received in the 
ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded directly to the 
egress port (i.e., egress port 623-4), instead of being redirected to the redirect port 623-2 for 
inspection by the security service 630. Similarly, HTTP packets received in the egress port 
with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the ingress 
port 623-1 without being redirected to the security service 630.”). 
 

TABLE 2 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Egress port 120 
Egress_port_ID * * 80 * * Ingress port 120 
Ingress_port_ID * * * * * Redirect port  10 
Redirect_port_ID * * * * * Ingress port  10 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 669 of 1100



121 

No. ʼ111 Patent Claim 17 Lin ’400 

 

 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630. 
 
Lin ’400 Claim 8 (“The SDN computer network of claim 7, wherein the specified packets are 
packets having a particular transport control protocol (TCP) source or destination port.”). 
 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

17[b] wherein the one or 
more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

Lin ’400 discloses wherein the one or more flag bits comprises comprise a SYN flag bit, an 
ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  A person of ordinary skill in the art 
would understand that header fields can comprise one or more flag bits that can comprise a 
SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof.  
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Lin ‘400 is found to not meet this limitation, 
wherein the one or more flag bits comprises comprise a SYN flag bit, an ACK flag bit, a FIN 
flag bit, a RST flag bit, or any combination thereof would have been obvious to a person 
having ordinary skill in the art, as explained below. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 670 of 1100



122 

No. ʼ111 Patent Claim 17 Lin ’400 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Lin ‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, 
alone or in further combination with (2) each (individually, as well as one or more together) 
of the references identified in element 17[b] of Exhibit E-4 renders the claim, including the 
present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses TCP packets with flag bits including SYN, ACK, FIN, and 
R flag bits. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the TCP 
header 230 information. The initial TCP header 230 information includes the 16-bit source 
and 16-bit destination port numbers. A 32-bit sequence number for the data in the packet 
follows the port numbers. Following the sequence number is a 32-bit acknowledgement 
number. If an ACK flag (discussed below) is set, this number is the next sequence number 
the sender of the packet expects to receive. Next is a 4-bit data offset, which is the number of 
32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 671 of 1100



123 

No. ʼ111 Patent Claim 17 Lin ’400 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag is 
designed to establish a TCP connection and allow both ends to synchronize their TCP buffers. 
Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0090] (“Host2 responds with a SYN-ACK packet. In this message, both the 
SYN flag and the ACK flag are set. Host2 provides the initial sequence number for its data to 
Hostl. Host2 also sends to Hostl the acknowledgment number that is the next sequence 
number Host2 expects to receive from host 1. In the SYN-ACK packet sent by Host2, the 
acknowl-edgment number is the initial sequence number of Hostl plus 1, which should be the 
next sequence number received.”) 
 
Copeland at [0091] (“Hostl responds to the SYN-ACK with a packet with just the ACK flag 
set. Hostl acknowledges that the next packet of information received from Host2 will be 
Host2's initial sequence number plus 1. The three-way handshake is complete and data is 
transferred.”) 
 
Copeland at [0092] (“Host2 responds to ACK packet with its own ACK packet. Host2 
acknowledges the data it has received from Hostl by sending an acknowledgment number one 
greater than its last received data sequence number. Both hosts send packets with the ACK 
flag set until the session is to end although the P and U flags may also be set, if warranted.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 672 of 1100



124 

No. ʼ111 Patent Claim 17 Lin ’400 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0094] (“Host2 acknowledges the FIN packet by sending its own ACK packet. 
The ACK packet has the acknowledge-ment number one greater than the sequence number of 
Hostl's FIN-ACK packet. ACK packets are still delivered between the two hosts, except that 
HOSTl's packets have no data appended to the TCP/IP end of the headers.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
As another example, Uchida discloses the TCP (Transmission Control Protocol) FIN flag, 
RST flag, and SYN flag. 
 
Uchida at [0040] (“A flow end can be detected by various methods as below. For example, in 
one method, a protocol end message is checked. For example, in the TCP (Transmission 
Control Protocol), a FIN flag is checked. In this way, the end of communication, that is, the 
end of a flow using communica-tion, can be detected. In practice, after a FIN flag, 
communi-cation with an ACK packet is generated in a reverse-direction flow (a flow in which 
the source and the destination are reversed). Thus, by detecting the ACK flag in the 
reverse-direction flow after the FIN packet, a flow end can be deter-mined. Further, since the 
TCP is used in bidirectional com-munication, the forward- and reverse-direction flows can be 
used as a pair to determine a flow end. Namely, if the end of a flow is detected, a process rule 
corresponding to the reverse-direction flow of the flow can also be determined to be 
unnec-essary. Alternatively, a communication end can also be deter-mined when a 
predetermined time elapses after reception of a SYN packet and a timeout is determined. Still 
alternatively, a communication end can be determined by reception of a RST packet. These 
methods will be described in more detail later as specific examples.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 673 of 1100



125 

No. ʼ111 Patent Claim 17 Lin ’400 
Uchida at [0050] (“The flow end check unit can use at least one of a TCP (Transmission 
Control Protocol) FIN flag, RST flag, and SYN flag extracted by the end determination 
information extraction unit to determine a flow end.”) 
 
Uchida at [0055] (“In the process rule update method, a flow end can be determined by at 
least one of a TCP (Transmission Control Protocol) FIN flag, RST flag, and SYN flag.”) 
 
Uchida at [0102] (“Next, specific examples 1 to 3 will be described. In the examples 1 to 3, a 
flow end is determined by combining features of the above individual exemplary 
embodiments and using TCP (Transmission Control Protocol) flags.”) 
 
Uchida at [0103] (“FIG. 6 is a state transition diagram of TCP connec-tion. "CLOSED" at the 
top of FIG. 6 represents the end of TCP communication, and portions connected thereto 
repre-sent states prior to the end of TCP communication. Approxi-mately 2MSL (MSL: 
Maximum Segment Lifetime) is the maximum amount of time required to reach the above 
"CLOSED," that is, if the packet forwarding apparatus stands by for approximately 2MSL 
after both FINs flow, the above "CLOSED" is reached. Thus, after a FIN is confirmed in 
either direction, if this 2MSL elapses, basically, a communi-cation end can be determined. 
Even if the state does not change smoothly because of packet loss or the like (for example, 
even if an ACK packet does not arrive after "CLOS-ING"), a retransmitted packet is 
forwarded immediately after this 2MSL. Thus, the end of TCP communication can be 
determined if a new FIN packet is not received within the time corresponding to the 2MSL 
and a margin (2MSL+a) at long-est.”) 
 
Uchida at [0104] (“Hereinafter, the description will be made, assuming that a packet 
forwarding apparatus Cl according to the present invention relays TCP communication 
between a com-puter (client) Dl 0 and a server D20 that use network configu-rations 
illustrated in FIG. 7. In the example of FIG. 7, the computer Dl0 belongs to a network 
represented by 192.168. 0./24 and is set by 192.168.0.10. The server D20 belongs to a network 
represented by 192.168.1./24 and is set by 192.168. 1.10. As in the case of the OpenFlow 
controller described in Non-Patent Documents 1 and 2, a control apparatus ( control-ler) Dl 
is connected to the packet forwarding apparatus Cl via a dedicated channel and manages 
connection between the two networks. In the following description, the control appa-ratus 
(controller) Dl controls the packet forwarding appara-tus Cl so that connection from other Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 674 of 1100



126 

No. ʼ111 Patent Claim 17 Lin ’400 
networks appears as communication from network number 1 (192.168.1.1) of the respective 
networks (see process rule actions in FIG. 19). In addition, in the present specific example, 
since FIN packets are monitored, the end determination information extraction unit Cl 7 
monitors a protocol stack, including: fields in which the TCP is determined; and the FIN flag 
in the TCP header.”) 
  
Uchida at [0105] (“FIG. 8 is a flow chart of a flow end determination process using FIN flags. 
In FIG. 8, steps relating to a timeout determination are added to steps Slll to S116 in the flow 
chart in FIG. 3. Thus, the flow chart in FIG. 8 includes more detailed steps than the flow chart 
of FIG. 3. Hereinafter, operations will be described with reference to FIGS. 3, 6, and 8 and 
FIGS. 9 to 13. In practice, prior to TCP/IP communi-cation, ARP (Address Resolution 
Protocol) communication is executed, and a process rule may be set in that stage. However, 
for ease of description, description of the ARP communication will be omitted. The following 
description will be made based on communication at the TCP/IP level.”) 
 
Uchida at [0106] (“First, the computer Dl0 starts communication with the server D20. For an 
initial establishment of communica-tion, a packet (SYN) is inputted to the packet forwarding 
apparatus Cl (start of ACTIVE OPEN through SYN forward-ing in FIG. 6). The packet 
reception unit Cl0 receives and stores this first packet in the packet storage unit Cll (steps 
SlOl to S102 in FIG. 3).”) 
 
Uchida at [0107] (“The packet reception unit C10 notifies the packet process information 
extraction unit C12 and the end determination information extraction unit C17 of reception of 
the packet. The packet process information extraction unit C12 refers to the packet storage 
unit C11 and extracts information such as IP source and destination information that is 
necessary to search for a process rule (step S103 in FIG. 3). Hereinafter, a process 
corresponding to steps S103 to S110 in FIG. 3 will be executed.”) 
 
Uchida at [0115] (“Upon receiving a notification that the packet has been received by the 
packet reception unit Cl 0, the end deter-mination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN flag (step S201 in FIG. 
8).”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 675 of 1100



127 

No. ʼ111 Patent Claim 17 Lin ’400 
Uchida at [0116] (“Since a FIN flag is set, the end determination infor-mation extraction unit 
Cl 7 determines that the packet includes information necessary for determining a flow end. 
Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 1; the source address is 192.168. 
0.10; the destination is 192.168.1.10; and the protocol is TCP (the type is Ox0006)) and stands 
by until forwarding of the packet. Upon receiving a notification that the packet has been 
transmitted by the packet forwarding unit C16, the end deter-mination information extraction 
unit Cl 7 further extracts information for identifying a process rule to be deleted from the 
packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a process rule to be deleted represents that the source address is 192.168.1.1; the 
destination is 192.168.1.1 0; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extraction unit Cl 7 
notifies the flow end check unit C18 of the notification that the FIN packet has been received 
and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0117] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203). These steps correspond to 
steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0121] (“Next, after an ACK reply in response to the FIN packet from the computer 
DlO is forwarded from the server D20 in the same way as the above normal packet (start of 
PASSIVE CLOSE in FIG. 6), the server D20 transmits a FIN packet to the computer DlO. 
When this FIN packet is inputted to the packet forwarding apparatus Cl, the flow end 
determi-nation process from steps Slll to S116 is started, as in the case of the above start of 
ACTIVE CLOSE.”) 
 
Uchida at [0122] (“Upon receiving a notification that the packet has been received from the 
packet reception unit Cl0, the end determination information extraction unit Cl 7 refers to the 
packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN packet (step S201 in FIG. 
8).”) 
 
Uchida at [0123] (“Since a FIN flag is set, the end determination infor-mation extraction unit 
Cl 7 determines that the packet includes information necessary for determining a flow end. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 676 of 1100



128 

No. ʼ111 Patent Claim 17 Lin ’400 
Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and stands 
by until the packet is trans-mitted. Upon receiving a notification that the packet has been 
transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a modified process rule represents that the source address is 192.168.1. 10; the 
destination is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extrac-tion unit Cl 
7 notifies the flow end check unit C18 of the notification that the FIN packet has been received 
and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0124] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203 in FIG. 8). These steps 
correspond to steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0125] (“At this point, since a FIN packet has been transmit-ted, the flow end check 
unit C18 uses the information for identifying a process rule to be deleted as a key, extracts 
the process rule (process rule corresponding to ingress port 2 in FIG. 11) from the process 
rule storage unit C13, and marks a FIN packet reception flag (steps S204 to S205 in FIG. 8). 
This process corresponds to the internal state update process in step S115 in FIG. 3.”) 
 
Uchida at [0134] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there are two cases where "CLOSED" at the top of FIG. 6 is reached without a state 
transition involving FIN flags. One case arises when the ses-sion is closed from SYN_SENT, 
which is reached when a SYN packet in which a SYN flag is marked is transmitted. The other 
case arises when a timeout is generated. In such case, while the packet forwarding apparatus 
cannot monitor the closed session, the packet forwarding apparatus can con-firm a timeout in 
the following way. In the present specific example, a flow end is determined by this timeout.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 677 of 1100



129 

No. ʼ111 Patent Claim 17 Lin ’400 
Uchida at [0135] (“n the present specific example, if a SYN/ ACK packet does not flow in a 
direction opposite to the SYN packet flow direction within a predetermined time (from 
"SYN_ RCVD" to "SYN_SENT" in FIG. 6), a timeout is determined.”) 
 
Uchida at [0136] (“FIG. 14 is a flow chart illustrating a flow end deter-mination process using 
a SYN flag. Since the basic operations are the same as those of the above specific example 1, 
the following description will be made with a focus on the dif-ference.”) 
 
Uchida at [0137] (“In FIG. 14, upon receiving a notification that the packet has been received 
by the packet reception unit ClO, the end determination information extraction unit Cl 7 refers 
to the packet storage, unit Cll, monitors a TCP SYN flag, and finds a SYN packet (step S301 
in FIG. 14).”) 
 
Uchida at [0138] (“Since a SYN flag is set, the end determination infor-mation extraction unit 
Cl 7 determines that the packet includes information necessary for determining a flow end. 
Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and stands 
by until the packet is trans-mitted. Upon receiving a notification that the packet has been 
transmitted by the packet forwarding unit C16, the end deter-mination information extraction 
unit Cl 7 further extracts information for identifying a modified process rule from the packet 
storage unit Cll. Since the IP address is replaced, the extracted information for identifying a 
process rule repre-sents that the source address is 192.168.1.10; the destination is 
192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is used for 
marking of the reverse flow. The end determination information extraction unit Cl 7 notifies 
the flow end check unit C18 of the notification that the SYN packet has been received and 
these items of information (step S302 in FIG. 14).”) 
 
Uchida at [0139] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether a SYN flag is 
set in a prede-termined packet header position and an ACK flag is not marked (step S303 in 
FIG. 14). These steps correspond to steps Slll to S114 in FIG. 3.”)  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 678 of 1100



130 

No. ʼ111 Patent Claim 17 Lin ’400 
Uchida at [0148] (“ Next, a third specific example in which a flow end determination is 
executed by using a TCP RST (reset) flag will be described.”) 
 
Uchida at [0149] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there is a transition from "SYN_ RCVD," which is a communication establishment standby 
state, to "LISTEN," which is a communication standby state. A TCP RST (reset) flag signifies 
release of connection and retry of communication. Namely, since a RST packet in which this 
RST flag is set signifies invalidation of communi-cation, by detecting this RST flag, a flow 
end can be deter-mined.”) 
 
Uchida at [0150] (“FIG. 16 is a first flow chart illustrating a flow end determination process 
using a RST flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the difference.”) 
 
Uchida at [0151] (“In FIG. 16, upon receiving a notification that the packet has been received 
by the packet reception unit ClO, the end determination information extraction unit Cl 7 refers 
to the packet storage unit Cll, monitors a TCP RST flag, and finds a RST packet (step S401 
in FIG. 16).”) 
 
Uchida at [0152] (“Since a RST flag is set, the end determination infor-mation extraction unit 
Cl 7 determines that the packet includes information necessary for determining a flow end. 
Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox0006)) and stands 
by until the packet is trans-mitted. Upon receiving a notification that the packet has been 
transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the RST 
packet has been received and these items of information ( step S402 in FIG. 16).”) 
 
Uchida at [0164] (“For example, in a specific example of the present invention, certain TCP 
flags are monitored. A single packet forwarding apparatus can monitor these flags in a parallel 
fashion. For example, after a packet that triggers a flow end is detected, the above process 
may be allowed to branch to the above FIGS. 8, 14, and 16 (17) to realize parallel 
monitoring.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 679 of 1100



131 

No. ʼ111 Patent Claim 17 Lin ’400 
 

 
No. ʼ111 Patent Claim 18 Lin ’400 

18[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Lin ’400 discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields. 
 
See supra Claim 1, 15[a].  
 
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Lin ’400 discloses the header comprises at least the first and second entities addresses in the 
packet network. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.   
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 680 of 1100



132 

No. ʼ111 Patent Claim 18 Lin ’400 
18[c] wherein the packet-

applicable criterion is 
that the first entity 
address, the second 
entity address, or both 
match a predetermined 
address or addresses.  

Lin ’400 discloses wherein the packet-applicable criterion is that the first entity address, the 
second entity address, or both match a predetermined address or addresses. 
 
For example, Lin ’400 discloses flow rules that check the source address and destination 
address of a packet, which is part of a packet header.  Lin ’400 further discloses using source 
and destination addresses of a packet header to determine whether a packet meets a condition 
in a flow table.  Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met. 
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 

 
No. ʼ111 Patent Claim 19 Lin ’400 

19 The method according 
to claim 18, wherein 
the addresses are 
Internet Protocol (IP) 
addresses.  

Lin ’400 discloses the method according to claim 18, wherein the addresses are Internet 
Protocol (IP) addresses. 
 
For example, Lin ’400 discloses where the conditions include the IP address of the source or 
destination of the packet.  
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 681 of 1100



133 

No. ʼ111 Patent Claim 19 Lin ’400 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 

 
No. ʼ111 Patent Claim 20 Lin ’400 

20[a] The method according 
to claim 1, wherein the 
packet is an 
Transmission Control 
Protocol (TCP) packet 
that comprises source 
and destination TCP 
ports, a TCP sequence 
number, and a TCP 
sequence mask fields, 
and  

Lin ’400 discloses the method according to claim 1, wherein the packet is a Transmission 
Control Protocol (TCP) packet that comprises source and destination TCP ports, a TCP 
sequence number, and a TCP sequence mask fields.  
 
For example, Lin ’400 discloses conditions relating to the ingress and egress of TCP packets.  
 

 

 
Lin ’400 7:39-50 (“In the example of Table 2, the first two rows are bypass rules for bypassing 
packets coming from or going to a transport control protocol (TCP) port 80. More specifically, 
hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are received in the 
ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded directly to the 
egress port (i.e., egress port 623-4), instead of being redirected to the redirect port 623-2 for 

TABLE 2 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Egress port 120 
Egress_port_ID * * 80 * * Ingress port 120 
Ingress_port_ID * * * * * Redirect port  10 
Redirect_port_ID * * * * * Ingress port  10 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 682 of 1100



134 

No. ʼ111 Patent Claim 20 Lin ’400 
inspection by the security service 630. Similarly, HTTP packets received in the egress port 
with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the ingress 
port 623-1 without being redirected to the security service 630.”). 
 

 

 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630. 
 
 
Lin ’400 Claim 8 (“The SDN computer network of claim 7, wherein the specified packets are 
packets having a particular transport control protocol (TCP) source or destination port.”). 
 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

20[b] wherein the packet-
applicable criterion is 
that the source TCP 
port, the destination 
TCP port, the TCP 
sequence number, the 
TCP sequence mask, 

Lin ’400 discloses wherein the packet-applicable criterion is that the source TCP port, the 
destination TCP port, the TCP sequence number, the TCP sequence mask, or any 
combination thereof, matches a predetermined value or values. 
 
For example, Lin ’400 discloses flow tables containing matching conditions regarding 
qualifications for the TCP packets.  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 683 of 1100



135 

No. ʼ111 Patent Claim 20 Lin ’400 
or any combination 
thereof, matches a 
predetermined value or 
values.  

See supra Claim 20[a].  
 
Lin ’400 7:24-27 (“In one embodiment, bypass flow rules are inserted in the flow 
tables 621 such that particular packets that do not need to be inspected are not redirected to 
the security service 630. This embodiment is explained with reference to example flow tables 
of Tables 2 and 3. 

 

 
Lin ’400 7:39-67 (“In the example of Table 2, the first two rows are bypass rules for bypassing 
packets coming from or going to a transport control protocol (TCP) port 80. More specifically, 
hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are received in the 
ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded directly to the 
egress port (i.e., egress port 623-4), instead of being redirected to the redirect port 623-2 for 
inspection by the security service 630. Similarly, HTTP packets received in the egress port 
with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the ingress 
port 623-1 without being redirected to the security service 630. 
In the example of Table 2, the bottom two rows are redirect flow rules for forming the SDN 
pipe between the sender component 622 and the security service 630. Because the bypass 
flow rules are inserted in the flow tables 621 with higher priority than the redirect flow rules, 
the bypass flow rules are followed by the SDN switch 620 before the redirect flow rules. 
Accordingly, HTTP packets are not redirected for inspection by the security service 630. 
Other packets, i.e., non-HTTP packets, are redirected to the security service 630 per the 
redirect flow rules. Bypass flow rules and redirect flow rules may be set at different priority 
levels to meet particular packet inspection needs. 

TABLE 2 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Egress port 120 
Egress_port_ID * * 80 * * Ingress port 120 
Ingress_port_ID * * * * * Redirect port  10 
Redirect_port_ID * * * * * Ingress port  10 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 684 of 1100



136 

No. ʼ111 Patent Claim 20 Lin ’400 
The bypass and redirect flow rules also allow for inspection of particular packets, while 
allowing all other packets to bypass inspection. This is illustrated in the example flow table 
of Table 3.”). 

 

 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630.”). 
 
Lin ’400 Claim 8 (“The SDN computer network of claim 7, wherein the specified packets 
are packets having a particular transport control protocol (TCP) source or destination 
port.”). 
 
 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 685 of 1100



137 

No. ʼ111 Patent Claim 21 Lin ’400 
21 The method according 

to claim 1, wherein the 
packet network 
comprises a Wide 
Area Network (WAN), 
Local Area Network 
(LAN), the Internet, 
Metropolitan Area 
Network (MAN), 
Internet Service 
Provider (ISP) 
backbone datacenter 
network, or inter - 
datacenter network.  

Lin ’400 discloses , the method according to claim 1, wherein the packet network comprises 
a Wide Area Network (WAN), Local Area Network (LAN), the Internet, Metropolitan Area 
Network (MAN), Internet Service Provider (ISP) backbone datacenter network, or inter - 
datacenter network. 
 
For example, Lin ’400 discloses communicating over a packet network which can comprise 
of a computer network utilizing the Internet via a network adapter or modem.  A person of 
ordinary skill in the art would understand that a computer network exchanging IP packets 
would include the Internet. 
 
Lin ’400 2:47-65 (“FIG. 2 shows a schematic diagram of a computer system 100 that may be 
employed with embodiments of the present invention. The computer system 100 may be 
employed as a control plane and/or a data plane, for example. As another example, the 
computer system 100 may be employed to host a virtualization environment that supports a 
plurality of virtual machines. The computer system 100 may have fewer or more components 
to meet the needs of a particular application. The computer system 100 may include one or 
more processors 101. The computer system 100 may have one or more buses 103 coupling its 
various components. The computer system 100 may include one or more user input 
devices 102 (e.g., keyboard, mouse), one or more data storage devices 106 (e.g., hard drive, 
optical disk, Universal Serial Bus memory), a display monitor 104 (e.g., liquid crystal display, 
flat panel monitor), a computer network interface 105 (e.g., network adapter, modem), and a 
main memory 108 (e.g., random access memory). The computer network interface 105 may 
be coupled to a computer network 109.”).  
 
Lin ’400 at 3:53-64 (“In one embodiment, the SDN computer network 600 is a virtual 
computer network that allows for transmission of packets from one virtual machine to another. 
Accordingly, the SDN controller 610 may comprise a virtual OpenFlow controller and the 
SDN switch 620 may comprise a virtual OpenFlow switch. The SDN computer network 600 
may be implemented in a computer system comprising one or more computers that host a 
virtualization environment. For example, the SDN computer network 600 may be 
implemented in the Amazon Web Services virtualization environment. The sender component 
622 may be a virtual machine in that embodiment.”) 
Lin ’400 5:8-36 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 686 of 1100



138 

No. ʼ111 Patent Claim 21 Lin ’400 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant condition. 
In the example of Table 1, the first and second rows are redirect flow rules for forming an 
SDN pipe between the sender component 622 and the security service 630. More specifically, 
the first row of Table 1 is a flow rule instructing the SDN switch 620 to forward packets 
received in a port having the Ingress_port_ID (e.g., ingress port 623-1) to the redirect port 
(e.g., redirect port 623-2). Similarly, the second row of Table 1 is a flow rule instructing the 
SDN switch 620 to forward packets received in a port having a “Redirect_port_ID” to the 
ingress port.”). 
 
Lin ’400 6:1-12 (“The SDN controller 610 may insert flow rules in the flow tables 621 (see 
arrow 601) to create an SDN pipe (labeled as 625) between the sender component 622 and 
the security service 630. The SDN pipe allows outgoing packets sent by the sender 
component 622 or incoming packets going to the sender component 622 to be redirected to 
the security service 630 for inspection before the packets are sent out of the SDN switch 
620. In one embodiment, the SDN pipe is created by creating a first flow rule that forwards 
packets received in the ingress port 623-1 to the redirect port 623-2, and a second flow rule 
that forwards packets received in the redirect port 623-2 to the ingress port 623-1.”). 
 
Lin ’400 6:40-54 (“After the redirect flow rules for creating the SDN pipe are inserted in the 
flow tables 621, any packet received by the SDN switch 620 in the ingress port 623-1 will be 
identified as to be forwarded to the redirect port 623-2, and any packet received by the SDN 
switch 620 in the redirect port 623-2 will be identified as to be forwarded to the ingress 
port 623-1 (see arrow 602). This allows the security service 630 to receive from the redirect 
port 623-2 all outgoing packets sent by the sender component 622 to the ingress port 623-1. 
The security service 630 may inspect the outgoing packets for compliance with security 
policies. The security service 630 may drop, or perform other security response, to packets Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 687 of 1100



139 

No. ʼ111 Patent Claim 21 Lin ’400 
that do not pass inspection (e.g., packets that do not meet firewall policies, packets containing 
prohibited payload, packets with malicious content, etc.).”). 
 

 

 

TABLE 1 
 MAC MAC IP IP    

IN_PORT src dst src dst . . . Action Count 

Ingress_port_ID * * * * * Redirect port 10 
Redirect_port_ID * * * * * Ingress port 10 

 
No. ʼ111 Patent Claim 22 Lin ’400 

22 The method according 
to claim 1, wherein the 
first entity is a server 
device and the second 
entity is a client 
device, or wherein the 
first entity is a client 
device and the second 
entity is a server 
device.  

Lin ’400 discloses the method according to claim 1, wherein the first entity is a server device 
and the second entity is a client device, or wherein the first entity is a client device and the 
second entity is a server device. 
 
For example, Lin ’400 discloses a sender component and a destination component. Lin ’400 
further discloses that the sender component can be a sender computer.  A person of ordinary 
skill in the art would understand that a destination component can be a server device.  Thus, 
at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Lin ’400 is found to not meet this limitation, wherein 
the first entity is a server device and the second entity is a client device, or wherein the first 
entity is a client device and the second entity is a server device would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
Lin ’400 at 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the Security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a Switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, Such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 688 of 1100



140 

No. ʼ111 Patent Claim 22 Lin ’400 
the next hop, which may be another Switch or a destination component (e.g., destination 
computer), for example.”) 
 
Lin ’400 at 3:53-64 (“In one embodiment, the SDN computer network 600 is a virtual 
computer network that allows for transmission of packets from one virtual machine to another. 
Accordingly, the SDN controller 610 may comprise a virtual OpenFlow controller and the 
SDN switch 620 may comprise a virtual OpenFlow switch. The SDN computer network 600 
may be implemented in a computer system comprising one or more computers that host a 
virtualization environment. For example, the SDN computer network 600 may be 
implemented in the Amazon Web Services virtualization environment. The sender component 
622 may be a virtual machine in that embodiment.”) 
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”).  
 
Lin ’400 8:18-45 (“FIG. 7 schematically illustrates inspection of outgoing packets sent by the 
sender component 622 in the SDN computer network 600 in accordance with an embodiment 
of the present invention. In the example of FIG. 7, the sender component 622 (e.g., a virtual 
machine, a laptop computer, desktop computer, etc.) transmits outgoing packets to the ingress 
port 623-1 (see arrow 651). The SDN switch 620 receives the outgoing packets in the ingress 
port 623-1 and follows a flow rule that pertains to the outgoing packets (see arrow 652). In 
the example of FIG. 7, a redirect flow rule dictates that packets received by the SDN 
switch 620 in the ingress port 623-1 are to be forwarded to the redirect port 623-2. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 689 of 1100



141 

No. ʼ111 Patent Claim 22 Lin ’400 
Accordingly, the SDN switch 620 forwards the outgoing packets to the redirect port 623-
2 (see arrow 653), which is connected to the security service 630 (e.g., a virtual machine, 
server computer, appliance, etc.). The security service 630 receives the outgoing packets from 
the redirect port 623-2 (see arrow 654) and inspects the outgoing packets. After inspection, 
the security service 630 re-injects the outgoing packets (e.g., outgoing packets that passed 
inspection) back into the SDN switch 620 by way of the re-inject port 623-3 (see arrow 655). 
The SDN switch 620 receives the outgoing packets on the re-inject port 623-3. The SDN 
switch 620 forwards the outgoing packets from the re-inject port 623-3 to the egress port 623-
4 in accordance with the L2 switching logic of the SDN computer network 600 (see 
arrow 657). The outgoing packets exit the SDN switch 620 through the egress port 623-4 (see 
arrow 658) and move towards their destination.” 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 22 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses a user device and an origin server. 
 
See supra at Claim 1. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 690 of 1100



142 

No. ʼ111 Patent Claim 22 Lin ’400 
Swenson at [0030] (“The video optimizer 150 is a computer server that provides video and 
image optimization and delivers opti-mized video and image content to the user devices 110 
via the network 120. The video and image optimization is an on-demand service provided 
through the transcoding of the video and image content. For example, when a user device 
attempts to retrieve video from the origin server 160, the network controller 140 may decide 
that the flow meets certain criteria for content optimization. The network controller 140 then 
redirected the user devices 110 to the video optimizer 150 to retrieve the optimized content. 
The video optimizer 150 receives information in the redirect request from the user devices 
110 or from the network controller 140 about the video or image content to be optimized and 
retrieve the video or image content from the corresponding origin server 160 for optimization 
and subsequent delivery to the user devices 110.”) 
 
Swenson at [0032] (“The video optimizer 150 and the origin server 160 are typically formed 
of one or more computers. While only one server of each video optimizer 150 and origin 
server 160 is shown in the environment 100 of FIG. 1, different embodi-ments may include 
multiple web servers and video servers operated by a single entity or multiple entities. In other 
embodiments, a single server may also provide different func-tionalities, such as delivering 
web content as a web server, as well as serving optimized video content.”) 
 
Swenson at [0034] (“The machine may be a server computer, a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular 
tele-phone, a smart phone, a web appliance, a network router, switch or bridge, or any 
machine capable of executing instructions 224 ( sequential or otherwise) that specify actions 
to be taken by that machine. Further, while only a single machine is illustrated, the term 
"machine" shall also be taken to include any collection of machines that individually or jointly 
execute instructions 224 to perform any one or more of the methodologies discussed herein.”) 
 
Swenson at [0055] (“The video optimizer redirector 318 generates a redi-rect request to a 
URL pointing to the video optimizer 150 if the video is deemed to be transcoded. In one 
embodiment, the URL may contain at least one of a video resolution, a video bit rate, a video 
frame rate divisor, an audio sample rate and number of channels, an audio bit rate, a source 
URL, a user agent of a client, a source domain cookie and any other authentication data by 
the video optimizer 150. The video optimizer redirector 318 rewrites the original response 
with the HTTP redirect and sets the location header to the new URL. This causes the user Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 691 of 1100



143 

No. ʼ111 Patent Claim 22 Lin ’400 
devices 110 to issue a new request to the video optimizer 150. The video optimizer redirector 
318 also has the logic to look for incoming URLs generated by itself so that they are not 
intercepted again.”) 
 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 412. 
On the opposite direction, network traffic originated from the origin server 160 flows through 
the steering device 130 back to the user device 110 over the network response path. For 
example, the origin server 160 responds to the user request by sending web content over the 
network link 413 to the steering device 130, which forwards the web content to the user device 
110 over the network link 416. Note that the network links 411 and 416 are two opposite 
directions on the same physical link, so are the network link pair 414 and 415. On the other 
hand, the network link pair 412 and 413 may or may not share the same network path because 
traffic between the steering device 130 and origin server 160 on opposite directions may be 
routed differently over one or more routers.”) 
 
Swenson at [0070] (“Once the user device 110 receives the HTTP redirect request 620, the 
user device 110 sends the request over the network to the video optimizer 150. In one 
embodiment, the network controller 140 monitors the traffic and/or requests from the client 
device 110 as the HTTP redirect request 620 is routed to the video optimizer 150. In such a 
configuration, the video optimizer 150 only sees requests for video files that need to be 
transcoded (i.e., optimized) and are associated with a HTTP redirect request 620. As such, the 
video optimizer 150 is not burdened with all the requests generated by a user device 110.”) 
 
Swenson at [0095] (“Certain embodiments are described herein as including logic or a number 
of components, modules, or mechanisms. Modules may constitute either software mod-ules ( 
e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware 
modules. A hardware module is tangible unit capable of performing certain opera-tions and 
may be configured or arranged in a certain manner. In example embodiments, one or more 
computer systems ( e.g., a standalone, client or server computer system) or one or more Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 692 of 1100



144 

No. ʼ111 Patent Claim 22 Lin ’400 
hardware modules of a computer system (e.g., a pro-cessor or a group of processors 102) may 
be configured by software (e.g., an application or application portion) as a hardware module 
that operates to perform certain operations as described herein.”) 

 
No. ʼ111 Patent Claim 23 Lin ’400 

23[a] The method according 
to claim 22, wherein 
the server device 
comprises a web 
server, and  

Lin ’400 discloses the method according to claim 22, wherein the server device comprises a 
web server. 
 
For example, Lin ’400 discloses a sender component and a destination component. Lin ’400 
further discloses that the sender component can be a sender computer.  A person of ordinary 
skill in the art would understand that a destination component can be a web server.  Thus, at 
least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Lin ’400 is found to not meet this limitation, wherein 
the server device comprises a web server would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
Lin ’400 at 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the Security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a Switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, Such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another Switch or a destination component (e.g., destination 
computer), for example.”) 
 
Lin ’400 at 3:53-64 (“In one embodiment, the SDN computer network 600 is a virtual 
computer network that allows for transmission of packets from one virtual machine to another. 
Accordingly, the SDN controller 610 may comprise a virtual OpenFlow controller and the 
SDN switch 620 may comprise a virtual OpenFlow switch. The SDN computer network 600 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 693 of 1100



145 

No. ʼ111 Patent Claim 23 Lin ’400 
may be implemented in a computer system comprising one or more computers that host a 
virtualization environment. For example, the SDN computer network 600 may be 
implemented in the Amazon Web Services virtualization environment. The sender component 
622 may be a virtual machine in that embodiment.”) 
 
Lin ’400 5:37-55 (“The SDN computer network 600 may include a security component in the 
form of the security service 630. The security service 630 may comprise a virtual machine 
that provides computer network security services, such as packet inspection, for the sender 
component 622 and other virtual machines. For example, the security service 630 may 
comprise a virtual machine with a virtual network interface card that is coupled to the redirect 
port 623-2 and re-inject port 623-3 of the SDN switch 620. The security service 630 may 
inspect packets for compliance/non-compliance with security policies, such as for presence 
of malicious code, compliance with firewall rules and access control lists, network intrusion 
detection, and other computer network security services. The security service 630 may 
employ conventional packet inspection algorithms. The security service 630 may comprise 
the Trend Micro Deep Security™ service, for example. The security service 630 may also 
comprise a physical machine, e.g., a server computer, an appliance, a gateway computer, 
etc.”).  
 
Lin ’400 8:18-45 (“FIG. 7 schematically illustrates inspection of outgoing packets sent by the 
sender component 622 in the SDN computer network 600 in accordance with an embodiment 
of the present invention. In the example of FIG. 7, the sender component 622 (e.g., a virtual 
machine, a laptop computer, desktop computer, etc.) transmits outgoing packets to the ingress 
port 623-1 (see arrow 651). The SDN switch 620 receives the outgoing packets in the ingress 
port 623-1 and follows a flow rule that pertains to the outgoing packets (see arrow 652). In 
the example of FIG. 7, a redirect flow rule dictates that packets received by the SDN 
switch 620 in the ingress port 623-1 are to be forwarded to the redirect port 623-2. 
Accordingly, the SDN switch 620 forwards the outgoing packets to the redirect port 623-
2 (see arrow 653), which is connected to the security service 630 (e.g., a virtual machine, 
server computer, appliance, etc.). The security service 630 receives the outgoing packets from 
the redirect port 623-2 (see arrow 654) and inspects the outgoing packets. After inspection, 
the security service 630 re-injects the outgoing packets (e.g., outgoing packets that passed 
inspection) back into the SDN switch 620 by way of the re-inject port 623-3 (see arrow 655). 
The SDN switch 620 receives the outgoing packets on the re-inject port 623-3. The SDN Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 694 of 1100



146 

No. ʼ111 Patent Claim 23 Lin ’400 
switch 620 forwards the outgoing packets from the re-inject port 623-3 to the egress port 623-
4 in accordance with the L2 switching logic of the SDN computer network 600 (see 
arrow 657). The outgoing packets exit the SDN switch 620 through the egress port 623-4 (see 
arrow 658) and move towards their destination.” 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Lin 
‘400 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 23(a) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses servers that’s provide different functionalities, such as 
delivering web content as a web server. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0030] (“The video optimizer 150 is a computer server that provides video and 
image optimization and delivers opti-mized video and image content to the user devices 110 
via the network 120. The video and image optimization is an on-demand service provided 
through the transcoding of the video and image content. For example, when a user device 
attempts to retrieve video from the origin server 160, the network controller 140 may decide 
that the flow meets certain criteria for content optimization. The network controller 140 then 
redirected the user devices 110 to the video optimizer 150 to retrieve the optimized content. 
The video optimizer 150 receives information in the redirect request from the user devices 
110 or from the network controller 140 about the video or image content to be optimized and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 695 of 1100



147 

No. ʼ111 Patent Claim 23 Lin ’400 
retrieve the video or image content from the corresponding origin server 160 for optimization 
and subsequent delivery to the user devices 110.”) 
 
Swenson at [0032] (“The video optimizer 150 and the origin server 160 are typically formed 
of one or more computers. While only one server of each video optimizer 150 and origin 
server 160 is shown in the environment 100 of FIG. 1, different embodi-ments may include 
multiple web servers and video servers operated by a single entity or multiple entities. In other 
embodiments, a single server may also provide different func-tionalities, such as delivering 
web content as a web server, as well as serving optimized video content.”) 
 
Swenson at [0034] (“The machine may be a server computer, a client computer, a personal 
computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular 
tele-phone, a smart phone, a web appliance, a network router, switch or bridge, or any 
machine capable of executing instructions 224 ( sequential or otherwise) that specify actions 
to be taken by that machine. Further, while only a single machine is illustrated, the term 
"machine" shall also be taken to include any collection of machines that individually or jointly 
execute instructions 224 to perform any one or more of the methodologies discussed herein.”) 
 
Swenson at [0058] (“Referring now to FIG. 4A, network traffic flows from the user device 
110 through the steering device 130 and arrive at the origin server 160 over the network 
request path. For example, a browser on the user device 110 may request web content from 
the origin server 160. A HTTP request message initiated at the user device 110 is forwarded 
to the steering device 130 over the network link 411. A data switch 402 inside the steering 
device 130 then relays the request message to the origin server 160 over the network link 412. 
On the opposite direction, network traffic originated from the origin server 160 flows through 
the steering device 130 back to the user device 110 over the network response path. For 
example, the origin server 160 responds to the user request by sending web content over the 
network link 413 to the steering device 130, which forwards the web content to the user device 
110 over the network link 416. Note that the network links 411 and 416 are two opposite 
directions on the same physical link, so are the network link pair 414 and 415. On the other 
hand, the network link pair 412 and 413 may or may not share the same network path because 
traffic between the steering device 130 and origin server 160 on opposite directions may be 
routed differently over one or more routers.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 696 of 1100



148 

No. ʼ111 Patent Claim 23 Lin ’400 
23[b] wherein the client 

device comprises a 
smartphone, a tablet 
computer, a personal 
computer, a laptop 
computer, or a 
wearable computing 
device.  

Lin ’400 discloses wherein the client device comprises a smartphone, a tablet computer, a 
personal computer, a laptop computer, or a wearable computing device. 
 
For example, Lin ’400 discloses that the sender component can be a virtual machine, a laptop 
computer, or a desktop computer, etc.  
 
Lin ’400 8:18-45 (“FIG. 7 schematically illustrates inspection of outgoing packets sent by the 
sender component 622 in the SDN computer network 600 in accordance with an embodiment 
of the present invention. In the example of FIG. 7, the sender component 622 (e.g., a virtual 
machine, a laptop computer, desktop computer, etc.) transmits outgoing packets to the ingress 
port 623-1 (see arrow 651). The SDN switch 620 receives the outgoing packets in the ingress 
port 623-1 and follows a flow rule that pertains to the outgoing packets (see arrow 652). In 
the example of FIG. 7, a redirect flow rule dictates that packets received by the SDN 
switch 620 in the ingress port 623-1 are to be forwarded to the redirect port 623-2. 
Accordingly, the SDN switch 620 forwards the outgoing packets to the redirect port 623-
2 (see arrow 653), which is connected to the security service 630 (e.g., a virtual machine, 
server computer, appliance, etc.). The security service 630 receives the outgoing packets from 
the redirect port 623-2 (see arrow 654) and inspects the outgoing packets. After inspection, 
the security service 630 re-injects the outgoing packets (e.g., outgoing packets that passed 
inspection) back into the SDN switch 620 by way of the re-inject port 623-3 (see arrow 655). 
The SDN switch 620 receives the outgoing packets on the re-inject port 623-3. The SDN 
switch 620 forwards the outgoing packets from the re-inject port 623-3 to the egress port 623-
4 in accordance with the L2 switching logic of the SDN computer network 600 (see 
arrow 657). The outgoing packets exit the SDN switch 620 through the egress port 623-4 (see 
arrow 658) and move towards their destination.” 
 

 
No. ʼ111 Patent Claim 24 Lin ’400 

24 The method according 
to claim 22, wherein 
the communication 
between the network 
node and the controller 

Lin ’400 discloses the method according to claim 22, wherein the communication between 
the network node and the controller is based on, or uses, a standard protocol. 
 
For example, Lin ’400 discloses using an Openflow protocol for communications between 
the switch and the security device.  
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 697 of 1100



149 

No. ʼ111 Patent Claim 24 Lin ’400 
is based on, or uses, a 
standard protocol.  

Lin ’400 1:17-32 (“The OpenFlow™ protocol is an open protocol for remotely controlling 
forwarding tables of network switches that are enabled for SDN. Generally speaking, the 
OpenFlow protocol allows direct access to and manipulation of the forwarding plane of 
network devices, such as switches and routers. A control plane of an OpenFlow™ protocol-
compliant computer network (also referred to as an “OpenFlow™ controller”) may 
communicate with OpenFlow™ switches (i.e., network switches that are compliant with the 
OpenFlow™ protocol) to set flow policies that specify how the switches should manipulate 
packets of network traffic. Example packet manipulation actions include forwarding a packet 
to a specific port, modifying one or more fields of the packet, asking the controller for action 
to perform on the packet, or dropping the packet.”). 
 
Lin ’400 1:33-43 (“FIG. 1 shows a schematic diagram of an SDN computer network that is 
compliant with the OpenFlow™ protocol. Generally speaking, the OpenFlow™ protocol 
separates the control plane from the data plane. An OpenFlow™ controller serves as a control 
plane for making forwarding decisions based on flow policies, which may be stored in a flow 
policy database. The controller determines flow policies in conjunction with network 
forwarding setting and network topology. The flow policies may contain a condition and 
corresponding action to be performed when the condition is met. The action may specify how 
to manipulate a packet.”). 
 
Lin ’400 1:44-54 (“An OpenFlow™ switch serves as the data plane that forwards packets, 
e.g., from an ingress port to an egress port, according to flow tables maintained by the data 
plane. The data plane is a replacement of traditional switches. When the data plane does not 
know how to manipulate a specific packet, the data plane may request the controller to receive 
a flow rule for the specific packet, and store the flow rule in the flow tables. Other packets 
that meet the same condition as the specific packet will be processed in accordance with the 
flow rule. The control plane may also actively insert flow rules into the flow tables.”). 
 
Lin ’400 Claim 8 (“The SDN computer network of claim 7, wherein the specified packets are 
packets having a particular transport control protocol (TCP) source or destination port.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 698 of 1100



150 

No. ʼ111 Patent Claim 24 Lin ’400 

 
Fig. 1 (annotation added)  

 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 699 of 1100



151 

No. ʼ111 Patent Claim 27 Lin ’400 
27 The method according 

to claim 1, wherein the 
network node 
comprises a router, a 
switch, or a bridge.  

Lin ’400 discloses the method according to claim 1, wherein the network node comprises a 
router, a switch, or a bridge. 
 
For example, Lin ’400 discloses use of a switch or a router as the claimed network node.  
 
See supra at Claim 1.  
 
Lin ’400 1:58-2:4 (“In one embodiment, a software defined networking (SDN) computer 
network includes an SDN controller and an SDN switch. The SDN controller inserts flow 
rules in a flow table of the SDN switch to create an SDN pipe between a sender component 
and a security component. A broadcast function of the SDN switch to the ports that form the 
SDN pipe may be disabled. The SDN pipe allows outgoing packets sent by the sender 
component to be received by the security component. The security component inspects the 
outgoing packets for compliance with security policies and allows the outgoing packets to be 
forwarded to their destination when the outgoing packets pass inspection. The SDN controller 
may also insert a flow rule in the flow table of the SDN switch to bypass inspection of 
specified packets.”).  
 
Lin ’400 Claim 1 (“1. A software defined networking (SDN) computer network comprising: 
an SDN switch comprising a plurality of ports that receives network traffic of an SDN 
computer network, the SDN switch having a first port coupled to a sender component and a 
second port coupled to a security component, the SDN switch comprising a flow table that 
comprises a first flow rule to forward a packet received in the first port to the second port and 
a second flow rule to forward a packet received in the second port to the first port, the SDN 
switch receiving outgoing packets from the first port and forwarding the outgoing packets to 
the second port in accordance with the first flow rule, the outgoing packets being sent by the 
sender component to a destination component; and 
an SDN controller that controls forwarding behavior of the SDN switch and inserts the first 
and second flow rules into the flow table of the SDN switch, 
wherein the security component receives the outgoing packets from the second port of the 
SDN switch, inspects the outgoing packets, and allows the outgoing packets to be forwarded 
to their destination when the outgoing packets pass inspection, 
wherein the security component allows the outgoing packets to be forwarded to their 
destination by instructing the SDN switch to release copies of the outgoing packets.”).  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 700 of 1100



152 

No. ʼ111 Patent Claim 27 Lin ’400 
 
Lin ’400 Claim 3 (“The SDN computer network of claim 1, wherein the SDN switch 
comprises a physical packet switch, the SDN controller comprises one or more computers 
that send flow rules to the SDN switch, and the sender component comprises a computer 
coupled to the first port of the SDN switch.”).  
 
Lin ’400 3:11-24 (“Network security vendors provide network security services, such as 
firewall or deep packet inspection (DPI). Generally speaking, to provide network security 
services, packets of network traffic are intercepted for inspection. One way of intercepting 
network traffic is to place the security service in the middle of the packet forwarding path. 
This is illustrated in FIG. 3, where packets from a sender component (e.g., a sender computer) 
are received in an ingress port of a switch, forwarded to an egress port of the switch, and 
forwarded to the ingress port of a security component, such as a security service. The security 
service may inspect the packets, and forward the packets to an egress port of the switch toward 
the next hop, which may be another switch or a destination component (e.g., destination 
computer), for example.”).  
 
Lin ’400 1:17-32 (“ “The OpenFlow™ protocol is an open protocol for remotely controlling 
forwarding tables of network switches that are enabled for SDN. Generally speaking, the 
OpenFlow protocol allows direct access to and manipulation of the forwarding plane of 
network devices, such as switches and routers. A control plane of an OpenFlow™ protocol-
compliant computer network (also referred to as an “OpenFlow™ controller”) may 
communicate with OpenFlow™ switches (i.e., network switches that are compliant with the 
OpenFlow™ protocol) to set flow policies that specify how the switches should manipulate 
packets of network traffic. Example packet manipulation actions include forwarding a packet 
to a specific port, modifying one or more fields of the packet, asking the controller for action 
to perform on the packet, or dropping the packet.”).  
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 701 of 1100



153 

No. ʼ111 Patent Claim 28 Lin ’400 
28 The method according 

to claim 1, wherein the 
packet network is an 
Internet Protocol (IP) 
network, and the 
packet is an IP packet.  

Lin ’400 discloses the method according to claim 1, wherein the packet network is an Internet 
Protocol (IP) network, and the packet is an IP packet. 
 
For example, Lin ’400 discloses the use of IP addresses to identify packets being transmitted 
across the packet network (IP network).   
 
See supra Claim 1.  
 
Lin ’400 5:8-25 (“A flow table may include columns that indicate one or more conditions, a 
column that indicates an action to take when the conditions are met, and a column for 
statistics. A row on the flow table may comprise a flow rule. In the example of Table 1, the 
“Action” column indicates an action to take when conditions are met, and the “Count” column 
indicates statistics, such as byte count. The rest of the columns of Table 1 indicate conditions. 
For example, “IN_PORT”, “MAC src” (media access control (MAC) address of the source 
of the packet), “MAC dst” (MAC address of the destination of the packet), “IP src” (Internet 
Protocol (IP) address of the source of the packet), “IP dst” (IP address of the destination of 
the packet), etc. are conditions that identify a particular packet. When the conditions are met, 
i.e., the particular packet is identified, the action indicated in the corresponding “Action” 
column is performed on the packet. The asterisks in Table 1 indicate an irrelevant 
condition.”). 
 
 

 
No. ʼ111 Patent Claim 29 Lin ’400 

29 The method according 
to claim 28, wherein 
the packet network is 
an Transmission 
Control Protocol 
(TCP) network, and 
the packet is an TCP 
packet.  

Lin ’400 discloses the method according to claim 28, wherein the packet network is an 
Transmission Control Protocol (TCP) network, and the packet is an TCP packet. 
 
For example, Lin ’400 discloses the use of TCP addresses to identify packets being 
transmitted across the packet network (TCP network). 
 
See supra Claim 28.  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 702 of 1100



154 

No. ʼ111 Patent Claim 29 Lin ’400 

 

 
Lin ’400 7:39-50 (“In the example of Table 2, the first two rows are bypass rules for bypassing 
packets coming from or going to a transport control protocol (TCP) port 80. More specifically, 
hypertext transfer protocol (HTTP) packets, i.e., port 80 packets, that are received in the 
ingress port with the Ingress_port_ID (i.e., ingress port 623-1) are forwarded directly to the 
egress port (i.e., egress port 623-4), instead of being redirected to the redirect port 623-2 for 
inspection by the security service 630. Similarly, HTTP packets received in the egress port 
with the Egress_port_ID (i.e., egress port 623-4) are forwarded directly to the ingress 
port 623-1 without being redirected to the security service 630.”). 
 

 

 
Lin ’400 8:10-18 (“In the example of Table 3, the top two rows are redirect flow rules for 
redirecting HTTP packets to the security service 630 for inspection, while the bottom two 

TABLE 2 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Egress port 120 
Egress_port_ID * * 80 * * Ingress port 120 
Ingress_port_ID * * * * * Redirect port  10 
Redirect_port_ID * * * * * Ingress port  10 

TABLE 3 
  IP TCP src TCP dst    

IN_PORT . . . src port port . . . Action Count 

Ingress_port_ID * * * 80 * Redirect port  10 
Redirect_port_ID * * 80 * * Ingress port  10 
Ingress_port_ID * * * * * Egress port 130 
Egress_port_ID * * * * * Ingress port 130 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 703 of 1100



155 

No. ʼ111 Patent Claim 29 Lin ’400 
rows are bypass flow rules for all packets. Because the redirect flow rules are at higher priority 
than the bypass flow rules, HTTP packets are sent through the SDN pipe formed in the SDN 
switch 620 between the sender component 622 and the security service 630. All other packets 
bypass the SDN pipe, and are accordingly not inspected by the security service 630. 
 
Lin ’400 Claim 8 (“The SDN computer network of claim 7, wherein the specified packets are 
packets having a particular transport control protocol (TCP) source or destination port.”). 
 
 

 
No. ʼ111 Patent Claim 30 Lin ’400 

30[a] The method according 
to claim 1, further 
comprising: receiving, 
by the network node 
from the first entity 
over the packet 
network, one or more 
additional packets;  

Lin ’400 discloses the method according to claim 1, further comprising: receiving, by the 
network node from the first entity over the packet network, one or more additional packets.  
 
For example, Lin ’400 discloses the switch receiving a packet from the sender component 
over the network, as it applies to one or more individual packets.  
 
See also Claim 1[c].  
 
 

30[b] checking, by the 
network node, if any 
one of the one or more 
additional packets 
satisfies the criterion;  

Lin ’400 discloses checking, by the network node, if any one of the one or more additional 
packets satisfies the criterion.  
 
For example, Lin ’400 discloses matching the packet to criteria in the flow tables, as it applies 
to one or more individual packets. 
 
See also Claim 1[d]. 
 

30[c] responsive to an 
additional packet not 
satisfying the criterion, 
sending, by the 
network node over the 
packet network, the 

Lin ’400 discloses responsive to an additional packet not satisfying the criterion, sending, by 
the network node over the packet network, the additional packet to the second entity.  
 
For example, Lin ’400 discloses, upon receiving a match of a criteria between the packet and 
the flow table, sending the packet over the network to the security device or to the destination, 
as it applies to one or more individual packets. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 704 of 1100



156 

No. ʼ111 Patent Claim 30 Lin ’400 
additional packet to 
the second entity; and  

 
See also Claim 1[e]. 
 

30[d] responsive to the 
additional packet 
satisfying the criterion, 
sending the additional 
packet, by the network 
node over the packet 
network, in response 
to the instruction.  

Lin ’400 discloses responsive to the additional packet satisfying the criterion, sending the 
additional packet, by the network node over the packet network, in response to the instruction. 
 
For example, Lin ’400 teaches that the devices check for a specific packet-applicable 
criterion, where if a packet satisfies this criterion by indication that port 80 is the s destination 
port, then the SDN switch sends the packet over the packet network to the security device, as 
it applies to one or more individual packets. 
 
See also Claim 1[f]. 
 

 
No. ʼ111 Patent Claim 31 Lin ’400 

31[a] The method according 
to claim 1, wherein the 
packet network is a 
Software Defined 
Network (SDN),  
 

Lin ’400 discloses the method according to claim 1, wherein the packet network is a Software 
Defined Network (SDN).  
 
For example, Lin ’400 discloses using a software-defined network as the packet network.  
 
Lin ’400 Claim 1 (“A software defined networking (SDN) computer network comprising: 
an SDN switch comprising a plurality of ports that receives network traffic of an SDN 
computer network, the SDN switch having a first port coupled to a sender component and a 
second port coupled to a security component, the SDN switch comprising a flow table that 
comprises a first flow rule to forward a packet received in the first port to the second port and 
a second flow rule to forward a packet received in the second port to the first port, the SDN 
switch receiving outgoing packets from the first port and forwarding the outgoing packets to 
the second port in accordance with the first flow rule, the outgoing packets being sent by the 
sender component to a destination component; and 
an SDN controller that controls forwarding behavior of the SDN switch and inserts the first 
and second flow rules into the flow table of the SDN switch, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 705 of 1100



157 

No. ʼ111 Patent Claim 31 Lin ’400 
wherein the security component receives the outgoing packets from the second port of the 
SDN switch, inspects the outgoing packets, and allows the outgoing packets to be forwarded 
to their destination when the outgoing packets pass inspection, 
wherein the security component allows the outgoing packets to be forwarded to their 
destination by instructing the SDN switch to release copies of the outgoing packets.”).  
 
Lin ’400 1:11-17 (“Software defined networking (SDN) is an emerging architecture for 
computer networking. Unlike traditional computer network architectures, SDN separates the 
control plane from the data plane. This provides many advantages, including relatively fast 
experimentation and optimization of switching and routing policies. SDN is applicable to both 
physical (i.e., real) and virtual computer networks.”). 
 
Lin ’400 1:17-32 (“The OpenFlow™ protocol is an open protocol for remotely controlling 
forwarding tables of network switches that are enabled for SDN. Generally speaking, the 
OpenFlow protocol allows direct access to and manipulation of the forwarding plane of 
network devices, such as switches and routers. A control plane of an OpenFlow™ protocol-
compliant computer network (also referred to as an “OpenFlow™ controller”) may 
communicate with OpenFlow™ switches (i.e., network switches that are compliant with the 
OpenFlow™ protocol) to set flow policies that specify how the switches should manipulate 
packets of network traffic. Example packet manipulation actions include forwarding a packet 
to a specific port, modifying one or more fields of the packet, asking the controller for action 
to perform on the packet, or dropping the packet.”).  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 706 of 1100



158 

No. ʼ111 Patent Claim 31 Lin ’400 

 
Fig. 1 (annotation added)  

 
31[b] the packet is routed as 

part of a data plane 
and 

Lin ’400 discloses that the packet is routed as part of a data plane.  
 
For example, Lin ’400 discloses that the packet is routed through the switch, where the switch 
comprises the data plane.  
 
Lin ’400 1:11-17 (“Software defined networking (SDN) is an emerging architecture for 
computer networking. Unlike traditional computer network architectures, SDN separates the 
control plane from the data plane. This provides many advantages, including relatively fast 
experimentation and optimization of switching and routing policies. SDN is applicable to both 
physical (i.e., real) and virtual computer networks.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 707 of 1100



159 

No. ʼ111 Patent Claim 31 Lin ’400 
Lin ’400 3:40-64 (“Referring now to FIG. 6, there is shown a schematic diagram of an SDN 
computer network 600 in accordance with an embodiment of the present invention. In one 
embodiment, the SDN computer network 600 is compliant with the OpenFlow™ protocol. 
Accordingly, in one embodiment, the SDN controller 610 comprises an OpenFlow™ 
controller and the SDN switch 620 comprises an OpenFlow™ switch. The SDN 
controller 610 and the SDN switch 620 comprise the control plane and data plane, 
respectively, of the SDN computer network 600. The SDN computer network 600 may have 
a plurality of SDN switches 620 but only one is shown for clarity of illustration. The SDN 
controller 610 and the SDN switch 620 are logically separate components.”).  
 
Lin ’400 1:33-43 (“FIG. 1 shows a schematic diagram of an SDN computer network that is 
compliant with the OpenFlow™ protocol. Generally speaking, the OpenFlow™ protocol 
separates the control plane from the data plane. An OpenFlow™ controller serves as a control 
plane for making forwarding decisions based on flow policies, which may be stored in a flow 
policy database. The controller determines flow policies in conjunction with network 
forwarding setting and network topology. The flow policies may contain a condition and 
corresponding action to be performed when the condition is met. The action may specify how 
to manipulate a packet.”). 
 
Lin ’400 1:44-54 (“An OpenFlow™ switch serves as the data plane that forwards packets, 
e.g., from an ingress port to an egress port, according to flow tables maintained by the data 
plane. The data plane is a replacement of traditional switches. When the data plane does not 
know how to manipulate a specific packet, the data plane may request the controller to receive 
a flow rule for the specific packet, and store the flow rule in the flow tables. Other packets 
that meet the same condition as the specific packet will be processed in accordance with the 
flow rule. The control plane may also actively insert flow rules into the flow tables.”). 
 
Lin ’400 1:11-17 (“Software defined networking (SDN) is an emerging architecture for 
computer networking. Unlike traditional computer network architectures, SDN separates the 
control plane from the data plane. This provides many advantages, including relatively fast 
experimentation and optimization of switching and routing policies. SDN is applicable to both 
physical (i.e., real) and virtual computer networks.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 708 of 1100



160 

No. ʼ111 Patent Claim 31 Lin ’400 
Lin ’400 2:47-65 (“FIG. 2 shows a schematic diagram of a computer system 100 that may be 
employed with embodiments of the present invention. The computer system 100 may be 
employed as a control plane and/or a data plane, for example. As another example, the 
computer system 100 may be employed to host a virtualization environment that supports a 
plurality of virtual machines. The computer system 100 may have fewer or more components 
to meet the needs of a particular application. The computer system 100 may include one or 
more processors 101. The computer system 100 may have one or more buses 103 coupling its 
various components. The computer system 100 may include one or more user input 
devices 102 (e.g., keyboard, mouse), one or more data storage devices 106 (e.g., hard drive, 
optical disk, Universal Serial Bus memory), a display monitor 104 (e.g., liquid crystal display, 
flat panel monitor), a computer network interface 105 (e.g., network adapter, modem), and a 
main memory 108 (e.g., random access memory). The computer network interface 105 may 
be coupled to a computer network 109.”).  
 

31[c] the network node 
communication with 
the controller serves as 
a control plane.  
 

Lin ’400 discloses the network node communication with the controller serves as a control 
plane.  
 
For example, Lin ’400 discloses that the controller comprises the control plane.  
 
Lin ’400 3:40-64 (“Referring now to FIG. 6, there is shown a schematic diagram of an SDN 
computer network 600 in accordance with an embodiment of the present invention. In one 
embodiment, the SDN computer network 600 is compliant with the OpenFlow™ protocol. 
Accordingly, in one embodiment, the SDN controller 610 comprises an OpenFlow™ 
controller and the SDN switch 620 comprises an OpenFlow™ switch. The SDN 
controller 610 and the SDN switch 620 comprise the control plane and data plane, 
respectively, of the SDN computer network 600. The SDN computer network 600 may have 
a plurality of SDN switches 620 but only one is shown for clarity of illustration. The SDN 
controller 610 and the SDN switch 620 are logically separate components.”).  
 
Lin ’400 1:11-17 (“Software defined networking (SDN) is an emerging architecture for 
computer networking. Unlike traditional computer network architectures, SDN separates the 
control plane from the data plane. This provides many advantages, including relatively fast 
experimentation and optimization of switching and routing policies. SDN is applicable to both 
physical (i.e., real) and virtual computer networks.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 709 of 1100



1 

EXHIBIT D-5 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

 
Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 

U.S. Patent Publication No. 2013/0291088 to Shieh et al. (“Shieh ’088”) 
 
As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because Shieh ’088 
meets each element of those claims, and/or (2) 35 U.S.C. § 103 because Shieh ’088 renders those claims obvious either alone, or in 
combination with the knowledge of a person having ordinary skill in the art, and in further combination with the references specifically 
identified below and in the following claim chart and/or one or more references identified in Defendant’s Preliminary Invalidity 
Contentions.  The following quotations and diagrams come from Shieh ’088 titled “Cooperative Network Security Inspection”, which 
was filed on Apr. 10, 2013, and published on Oct. 31, 2013. 
 
Motivations to combine the disclosures in Shieh ’088 with disclosures in other publications known in the art, as explained in this chart, 
include at least the similarity in subject matter between the references to the extent they concern methods relating to routing certain 
network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or suggest 
additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  
 
These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent construction 
of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, and Orckit’s 
January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 (Orckit’s 
“Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused structures, acts, or 
materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the claims, or that the claims 
satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way be seen as, admissions or 
adoptions as to any particular claim scope or construction, or as any admission that any particular element is met by any accused product 
in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  Defendant’s prior art invalidity 
contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view as to the meaning, definiteness, 
written description support for, or enablement of any claim contained therein. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 710 of 1100



2 

The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s construction 
of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Shieh ’088 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

Shieh ’088 discloses a method for use with a packet network including a network node for 
transporting packets between first and second entities under control of a controller that is 
external to the network node. 
 
For example, Shieh ’088 discloses that it relates to a network system that operates on a packet 
from a source node destined to a destination mode controlled by a controller.  Shieh ’088 
further discloses that the controller is external to the network access devices.  Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.    
 
Shieh ’088 ¶ [0002] (“Embodiments of the present invention relate generally to network 
security. More particularly, embodiments of the invention relate to enabling network security 
with network equipment.”). 
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 711 of 1100



3 

No. ʼ111 Patent Claim 1 Shieh ’088 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0021] (“According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc. In one embodiment, some of the firewall 
processing modules are located within network access device 204 (e.g., firewall modules 209) 
and some are located external to network access device 204 (e.g., firewall 
modules 210 maintained by firewall processing node(s) 211, which may be a dedicated 
firewall processing machine. All of the firewall modules 209-210 are managed by firewall 
controller 208, which may be located within network access device 204, or external to 
network access device 204, such as, for example, in a public cloud associated with 
network 203, or in a private cloud associated with network 205. Controller 208 and firewall 
processing modules 209-210 collectively are referred to herein as distributed firewall 212.”). 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 712 of 1100



4 

No. ʼ111 Patent Claim 1 Shieh ’088 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”). 
 
Shieh ’088 ¶ [0049] (“FIG. 7 is a flow diagram illustrating a method for performing firewall 
operations using a distributed firewall according to one embodiment of the invention. 
Method 700 may be performed by processing logic that may include software, hardware, or a 
combination of both. For example, method 700 may be performed by distributed 
firewall 212 of FIG. 1. Referring to FIG. 7, at block 701, a network access device receives a 
packet from a source node destined to a destination node. At block 702, the network access 
device determines whether the packet should be forwarded to a security device for security 
inspection. For example, processing logic may check whether there is an entry exists in a 
session table for the current session. If not, it may forward the packet to the security device 
for security processing at block 704. Alternatively, the processing logic may check whether 
there is a bypass flag set to a predetermined value for the current session. If there is, the packet 
will not be forwarded to the security device; instead, the packet will be directly routed to the 
destination node at block 703.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 713 of 1100



5 

No. ʼ111 Patent Claim 1 Shieh ’088 

 
Fig. 7 (annotation added)  

 
Shieh ’088 ¶ [0021] (“All of the firewall modules 209-210 are managed by firewall 
controller 208, which may be located within network access device 204, or external to 
network access device 204, such as, for example, in a public cloud associated with 
network 203, or in a private cloud associated with network 205.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 714 of 1100



6 

No. ʼ111 Patent Claim 1 Shieh ’088 

 
Fig. 2A (annotation added)  

 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central 
controller 208 receives the packet, it decides which of security processing modules 309-
311 is able to process the packets, and then forwards the packets to the designated security 
processing module. It also instructs the virtual I/O module to create the local cache to store 
connection state information so the subsequent packets of the same connection session do not 
need to be forwarded to central controller 208; rather, they can be directly forwarded to the 
proper security processing module identified in the cache.”). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 715 of 1100



7 

No. ʼ111 Patent Claim 1 Shieh ’088 
 
 

1[a] sending, by the 
controller to the 
network node over the 
packet network, an 
instruction and a 
packet-applicable 
criterion;  

Shieh ’088 discloses sending, by the controller to the network node over the packet network, 
an instruction and a packet-applicable criterion. 
 
For example, Shieh ’088 discloses an external controller that controls network nodes in a 
packet network, and identifies a command sent by the controller to the network access devices 
through a persistent connection to set up a set of filtering rules concerning whether and/or 
what types of packets should be forwarded to a security device.  
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 716 of 1100



8 

No. ʼ111 Patent Claim 1 Shieh ’088 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 717 of 1100



9 

No. ʼ111 Patent Claim 1 Shieh ’088 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 718 of 1100



10 

No. ʼ111 Patent Claim 1 Shieh ’088 

 
Fig. 2A (annotation added)  

 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 719 of 1100



11 

No. ʼ111 Patent Claim 1 Shieh ’088 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0049] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 

1[b] receiving, by the 
network node from the 
controller, the 
instruction and the 
criterion; 

Shieh ’088 discloses receiving, by the network node from the controller, the instruction and 
the criterion.  
 
For example, Shieh ’088 discloses that a command is received by the network access devices 
from the controller to set up a set of filtering rules concerning whether and/or what types of 
packets should be forwarded to a security device.  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 720 of 1100



12 

No. ʼ111 Patent Claim 1 Shieh ’088 
 
See supra at 1[a]. 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 721 of 1100



13 

No. ʼ111 Patent Claim 1 Shieh ’088 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 
Shieh ’088 Claim 17 (“The system of claim 15, further comprising a controller to manage the 
network access device and the security device, wherein the network access device is further 
to 
receive a message having a data value from the controller, the data value indicating whether 
the network access device should forward further packets to the security device for security 
inspection, and 
store the data value in the data member of the data structure.”). 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 722 of 1100



14 

No. ʼ111 Patent Claim 1 Shieh ’088 
1[c] receiving, by the 

network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Shieh ’088 discloses receiving, by the network node from the first entity over the packet 
network, a packet addressed to the second entity. 
 
For example, Shieh ’088 discloses that a network access device  receives a packet from a 
source node that is addressed to a destination node where the method is used to process a 
network flow.  
 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 723 of 1100



15 

No. ʼ111 Patent Claim 1 Shieh ’088 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0020] (“FIG. 1 is a block diagram illustrating an example of network 
configuration according to one embodiment of the invention. Referring to FIG. 1, network 
access device 204, which may be a router or gateway, a switch or an access point, etc., 
provides an interface between network 203 and network 205. Network 203 may be an 
external network such as a wide area network (WAN) (e.g., Internet) while 
network 205 represents a local area network (LAN). Nodes 206-207 go through gateway 
device 204 in order to reach nodes 201-202, or vice versa. Any of nodes 201-202 and 206-
207 may be a client device (e.g., a desktop, laptop, Smartphone, gaming device) or a server.”). 
 
Shieh ’088 ¶ [0037] (“FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 724 of 1100



16 

No. ʼ111 Patent Claim 1 Shieh ’088 
Shieh ’088 ¶ [0049] (“FIG. 7 is a flow diagram illustrating a method for performing firewall 
operations using a distributed firewall according to one embodiment of the invention. 
Method 700 may be performed by processing logic that may include software, hardware, or a 
combination of both. For example, method 700 may be performed by distributed 
firewall 212 of FIG. 1. Referring to FIG. 7, at block 701, a network access device receives a 
packet from a source node destined to a destination node. At block 702, the network access 
device determines whether the packet should be forwarded to a security device for security 
inspection. For example, processing logic may check whether there is an entry exists in a 
session table for the current session. If not, it may forward the packet to the security device 
for security processing at block 704. Alternatively, the processing logic may check whether 
there is a bypass flag set to a predetermined value for the current session. If there is, the packet 
will not be forwarded to the security device; instead, the packet will be directly routed to the 
destination node at block 703.”). 
 

1[d] checking, by the 
network node, if the 
packet satisfies the 
criterion; 

Shieh ’088 discloses checking, by the network node, if the packet satisfies the criterion.  
 
For example, Shieh ’088 discloses a network access device that uses filtering rules concerning 
whether and/or what types of packets should be forwarded to a security device.  
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 725 of 1100



17 

No. ʼ111 Patent Claim 1 Shieh ’088 
 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 726 of 1100



18 

No. ʼ111 Patent Claim 1 Shieh ’088 

 
Fig. 7 (annotation added)  

 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 727 of 1100



19 

No. ʼ111 Patent Claim 1 Shieh ’088 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 728 of 1100



20 

No. ʼ111 Patent Claim 1 Shieh ’088 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 

1[e] responsive to the 
packet not satisfying 
the criterion, sending, 
by the network node 
over the packet 
network, the packet to 
the second entity; and 

Shieh ’088 discloses responsive to the packet not satisfying the criterion, sending, by the 
network node over the packet network, the packet to the second entity.  
 
Shieh ’088 discloses transmitting the packet to the destination node without forwarding the 
packet to the security device, if the data member does not match the predetermined value.  
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”).  
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 729 of 1100



21 

No. ʼ111 Patent Claim 1 Shieh ’088 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 
Shieh ’088 ¶ [0035] “(An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 730 of 1100



22 

No. ʼ111 Patent Claim 1 Shieh ’088 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

 
Fig. 2B (annotation added) 

 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 731 of 1100



23 

No. ʼ111 Patent Claim 1 Shieh ’088 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 

 
Fig. 7 (annotation added) 

 
1[f] responsive to the 

packet satisfying the 
criterion, sending the 

Shieh ’088 discloses responsive to the packet satisfying the criterion, sending the packet, by 
the network node over the packet network, to an entity that is included in the instruction and 
is other than the second entity.  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 732 of 1100



24 

No. ʼ111 Patent Claim 1 Shieh ’088 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 
instruction and is other 
than the second entity. 

 
For example, Shieh ’088 discloses an embodiment in which a “virtual I/O module” functions 
as a network nodes that receives packets from servers and sends packets to an external 
network.  Shieh ’088 further discloses sending the packet to the controller if it cannot find an 
existing connection in its local cache.  Shieh ’088 discloses bypass rules, such as when the 
bypass flag matches a predetermined value, that when satisfied, instructs that the packet will 
be sent from the virtual I/O module to a central controller capable of deep packet inspection 
responsive to the instruction.  
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”).  
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 733 of 1100



25 

No. ʼ111 Patent Claim 1 Shieh ’088 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 
Shieh ’088 ¶ [0035] “(An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] “(During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 734 of 1100



26 

No. ʼ111 Patent Claim 1 Shieh ’088 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 

 
Fig. 2B (annotation added) 

 
Shieh ’088 ¶ [0021] “(According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 735 of 1100



27 

No. ʼ111 Patent Claim 1 Shieh ’088 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc. In one embodiment, some of the firewall 
processing modules are located within network access device 204 (e.g., firewall modules 209) 
and some are located external to network access device 204 (e.g., firewall 
modules 210 maintained by firewall processing node(s) 211, which may be a dedicated 
firewall processing machine. All of the firewall modules 209-210 are managed by firewall 
controller 208, which may be located within network access device 204, or external to 
network access device 204, such as, for example, in a public cloud associated with 
network 203, or in a private cloud associated with network 205. Controller 208 and firewall 
processing modules 209-210 collectively are referred to herein as distributed firewall 212.”). 
 
Shieh ’088 ¶ [0028] “(Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0040] “(In one embodiment, each of security processing modules 309-
311 performs major security processing functions, such as, for example, NAT, VPN, DPI, 
and/or anti-virus, etc. A security processing module receives packets and runs the packets 
through one or more various security functions in the module for security processing. There 
could be several security modules and each handles the same or different security functions. 
If the packets need to go through another security or service processing, the module sends the 
packets to the other modules. Optionally, it can run the packets through a load balancing 
mechanism to distribute the load to multiple modules. If a module is the last processing 
module in the chain to process the packets, it can forward the packets back to the virtual I/O Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 736 of 1100



28 

No. ʼ111 Patent Claim 1 Shieh ’088 
module to send out, or send the packet out directly to its destination if it's configured to do 
so.”).  
 
Shieh ’088 ¶ [0041] (“In one embodiment, each of service processing modules 312-
313 performs one or more of the functions of security processing module, such as, for 
example, NAT, VPN, DPI, and/or anti-virus, etc. However, it is different from the security 
processing module in that it only receives and sends packets to the same security processing 
module. If the tasks cannot be done in a security processing module, for example, due to a 
resource limitation, system load, or the requirement of a different operation system, the 
packets can be forwarded to one or more of service processing modules 312-313 for further 
processing. The packets then are sent back to the same security processing module for the 
next security function processing. To further share the system load, any of security processing 
modules 309-311 can load balance the computational-intensive services using multiple 
service processing modules.”). 
 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 737 of 1100



29 

No. ʼ111 Patent Claim 1 Shieh ’088 

 
Fig. 7 (annotation added) 

 
 

 
No. ʼ111 Patent Claim 2 Shieh ’088 

2[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Shieh ’088 discloses wherein the instruction is ‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
For example, Shieh ’088 discloses an external controller that controls network nodes in a 
packet network, and identifies a command sent by the controller to the network access devices 
through a persistent connection to set up a set of filtering rules concerning whether and/or 
what types of packets should be forwarded to a security device. A person of ordinary skill 
would understand that such demands could include a probe, mirror, or terminate command. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Shieh ‘088 is found to not meet this limitation, 
wherein the instruction is ‘probe’, ‘mirror', or ‘terminate’ instruction would have been 
obvious to a person having ordinary skill in the art, as explained below. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 738 of 1100



30 

No. ʼ111 Patent Claim 2 Shieh ’088 
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”) 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 739 of 1100



31 

No. ʼ111 Patent Claim 2 Shieh ’088 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 740 of 1100



32 

No. ʼ111 Patent Claim 2 Shieh ’088 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 741 of 1100



33 

No. ʼ111 Patent Claim 2 Shieh ’088 

 
Fig. 2A (annotation added)  

 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 742 of 1100



34 

No. ʼ111 Patent Claim 2 Shieh ’088 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0049] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 2[a] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 743 of 1100



35 

No. ʼ111 Patent Claim 2 Shieh ’088 
For example, Chua discloses programming network nodes with redirecting, mirroring, and 
blocking programmed actions. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device of 
service devices 116) for either inspection or to keep a potential hacker 'busy' to determine if 
there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may cause 
the net-work devices to change a path along which the packet is forwarded. For example, 
when the service device is a security device (e.g., a firewall or an IDS), if the security device 
determines that one or more packets of a packet flow are malicious, the security device may 
send service data indicat-ing that the packet flow includes malicious data. SDN con-troller 
112 may program the network devices of the SDN to perform a programmed action based on 
the service-related data (336). For example, SDN controller 112 may program network 
devices to, in response to an indication that packets of a packet flow include malicious data, 
forward packets of the packet flow to a destination of the packet flow, forward packets of 
malicious packet flows to a collection device for further analysis, cause network devices to 
drop packets of the malicious packet flows, send a close session message to devices from Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 744 of 1100



36 

No. ʼ111 Patent Claim 2 Shieh ’088 
which packets of the malicious packet flows were received, block the packets of the packet 
flow, mirror copies of the packets of the packet flow to a second service device while 
forwarding the packets of the packet flow to the destination of the packet flow, redirect the 
packets of the packet flow to a third service device, transform one or more values of headers 
of the packets, and/or encapsulate the pack-ets with a particular header, or other such 
actions.”) 
 
As another example, Copeland discloses probing, copying, and terminating rules configured 
on the network device. 
 
Copeland at [0057] (“In accordance with an aspect of the invention, a flow is considered 
terminated after a predetermined period of time has elapsed on a particular connection or port. 
For example, if HTTP Web traffic on port 80 ceases for a predetermined period of time, but 
other traffic begins to occur on port 80 after the expiration of that predetermined time period, 
it is considered that a new flow has begun, and the system responds accordingly to assign a 
new flow number and track the statistics and characteristics thereof. In the disclosed 
embodiment, the predetermined time period is 330 seconds, but those skilled in the art will 
understand that this time is arbitrary and may be heuristically adjusted.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 745 of 1100



37 

No. ʼ111 Patent Claim 2 Shieh ’088 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
Copeland at [0099] (“As another example, if a particular host sends a large number of SYN 
packets to a target host and in response receives numerous R packets from the targeted host, 
a potential TCP probe is indicated. Likewise, numerous UDP packets sent from one host to a 
targeted host and numerous ICMP "port unavailable" packets received from the targeted host 
indicate a potential UDP probe. A stealth probe is indicated by multiple packets from the same 
source port number sent to different port numbers on a targeted host.”) 
 
Copeland at [0107] (“A flow is terminated if no communications occur between the two IP 
addresses and the one low port ( e.g. port 80) for 330 seconds. Most Web browsers or a TCP 
connec-tion send a reset packet (i.e. a packet with the R flag set) if no communications are 
sent or received for 5 minutes. An analysis can determine if the flow is abnormal or not for 
HTTP communications.”) 
 
Copeland at [0123] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 8) 
have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of hosts 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 746 of 1100



38 

No. ʼ111 Patent Claim 2 Shieh ’088 
scanned "statistically significant". These and other values of concern index are shown for non-
flow based events in FIG. 7.”) 
 
Copeland at [0158] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 

2[b] upon receiving by the 
network node the 
‘terminate’' 
instruction, the method 
further comprising 
blocking, by the 
network node, the 
packet from being sent 
to the second entity 
and to the controller.  

Shieh ’088 discloses upon receiving by the network node the ‘terminate’ instruction, the 
method further comprising blocking, by the network node, the packet from being sent to the 
second entity and to the controller. 
 
For example, Shieh ’088 discloses an external controller that controls network nodes in a 
packet network, and identifies a command sent by the controller to the network access devices 
through a persistent connection to set up a set of filtering rules concerning whether and/or 
what types of packets should be forwarded to a security device. A person of ordinary skill 
would understand that such demands could include a terminate command. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Shieh ‘088 is found to not meet this limitation, upon receiving by 
the network node the ‘terminate ' instruction, the method further comprising blocking, by the 
network node, the packet from being sent to the second entity and to the controller would 
have been obvious to a person having ordinary skill in the art, as explained below. 
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 747 of 1100



39 

No. ʼ111 Patent Claim 2 Shieh ’088 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”) 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 748 of 1100



40 

No. ʼ111 Patent Claim 2 Shieh ’088 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 749 of 1100



41 

No. ʼ111 Patent Claim 2 Shieh ’088 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 

 
Fig. 2A (annotation added)  

 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 750 of 1100



42 

No. ʼ111 Patent Claim 2 Shieh ’088 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0049] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 751 of 1100



43 

No. ʼ111 Patent Claim 2 Shieh ’088 
references identified in element 2[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses programming network nodes with blocking programmed 
actions. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device of 
service devices 116) for either inspection or to keep a potential hacker 'busy' to determine if 
there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may cause 
the net-work devices to change a path along which the packet is forwarded. For example, 
when the service device is a security device (e.g., a firewall or an IDS), if the security device 
determines that one or more packets of a packet flow are malicious, the security device may 
send service data indicat-ing that the packet flow includes malicious data. SDN con-troller 
112 may program the network devices of the SDN to perform a programmed action based on 
the service-related data (336). For example, SDN controller 112 may program network 
devices to, in response to an indication that packets of a packet flow include malicious data, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 752 of 1100



44 

No. ʼ111 Patent Claim 2 Shieh ’088 
forward packets of the packet flow to a destination of the packet flow, forward packets of 
malicious packet flows to a collection device for further analysis, cause network devices to 
drop packets of the malicious packet flows, send a close session message to devices from 
which packets of the malicious packet flows were received, block the packets of the packet 
flow, mirror copies of the packets of the packet flow to a second service device while 
forwarding the packets of the packet flow to the destination of the packet flow, redirect the 
packets of the packet flow to a third service device, transform one or more values of headers 
of the packets, and/or encapsulate the pack-ets with a particular header, or other such 
actions.”) 
 
As another example, Copeland discloses terminating rules configured on the network device. 
 
Copeland at [0057] (“In accordance with an aspect of the invention, a flow is considered 
terminated after a predetermined period of time has elapsed on a particular connection or port. 
For example, if HTTP Web traffic on port 80 ceases for a predetermined period of time, but 
other traffic begins to occur on port 80 after the expiration of that predetermined time period, 
it is considered that a new flow has begun, and the system responds accordingly to assign a 
new flow number and track the statistics and characteristics thereof. In the disclosed 
embodiment, the predetermined time period is 330 seconds, but those skilled in the art will 
understand that this time is arbitrary and may be heuristically adjusted.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 753 of 1100



45 

No. ʼ111 Patent Claim 2 Shieh ’088 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
Copeland at [0099] (“As another example, if a particular host sends a large number of SYN 
packets to a target host and in response receives numerous R packets from the targeted host, 
a potential TCP probe is indicated. Likewise, numerous UDP packets sent from one host to a 
targeted host and numerous ICMP "port unavailable" packets received from the targeted host 
indicate a potential UDP probe. A stealth probe is indicated by multiple packets from the same 
source port number sent to different port numbers on a targeted host.”) 
 
Copeland at [0107] (“A flow is terminated if no communications occur between the two IP 
addresses and the one low port ( e.g. port 80) for 330 seconds. Most Web browsers or a TCP 
connec-tion send a reset packet (i.e. a packet with the R flag set) if no communications are 
sent or received for 5 minutes. An analysis can determine if the flow is abnormal or not for 
HTTP communications.”) 
 
Copeland at [0123] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 8) 
have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 754 of 1100



46 

No. ʼ111 Patent Claim 2 Shieh ’088 
based on the sample rate or other means to enhance the accuracy making the number of hosts 
scanned "statistically significant". These and other values of concern index are shown for non-
flow based events in FIG. 7.”) 
 
Copeland at [0158] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 

 
No. ʼ111 Patent Claim 3 Shieh ’088 

3[a] The method according 
to claim 1, wherein the 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

Shieh ’088 discloses wherein the instruction is a ‘probe’, a ‘mirror’, or a ‘terminate’ 
instruction. 
 
See supra at 1[a]. 
 

3[b] upon receiving by the 
network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Shieh ’088 discloses upon receiving by the network node the ‘mirror’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising sending the 
packet, by the network node, to the second entity and to the controller. 
 
For example, Shieh ’088 discloses an external controller that controls network nodes in a 
packet network, and identifies a command sent by the controller to the network access devices 
through a persistent connection to set up a set of filtering rules concerning whether and/or 
what types of packets should be forwarded to a security device. A person of ordinary skill 
would understand that such demands could include a mirror command. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Shieh ‘088 is found to not meet this limitation, upon receiving by 
the network node the ‘mirror' instruction and responsive to the packet satisfying the criterion, 
method further comprising sending the packet, by the network node, to the second entity and 
to the controller would have been obvious to a person having ordinary skill in the art, as 
explained below. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 755 of 1100



47 

No. ʼ111 Patent Claim 3 Shieh ’088 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”) 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 756 of 1100



48 

No. ʼ111 Patent Claim 3 Shieh ’088 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 757 of 1100



49 

No. ʼ111 Patent Claim 3 Shieh ’088 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 

 
Fig. 2A (annotation added)  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 758 of 1100



50 

No. ʼ111 Patent Claim 3 Shieh ’088 
 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0049] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 759 of 1100



51 

No. ʼ111 Patent Claim 3 Shieh ’088 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 3[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
’088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 3(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses a mirror program in response to an indication based on the packet 
header in which the network devices mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of 
the packet flow. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 760 of 1100



52 

No. ʼ111 Patent Claim 3 Shieh ’088 
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device of 
service devices 116) for either inspection or to keep a potential hacker 'busy' to determine if 
there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 16:23-44 (“More particularly, control unit 130 may configure any of service devices 
116 to send data representative of a particular event to SDN controller 112, and control unit 
130 may auto-matically reprogram one or more network devices of SDN 106 in response to 
such data. For example, security monitor-ing applications of service devices 116 may 
determine that a specific source port, destination port, source IP address, des-tination IP 
address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 116 
may send a message to SDN controller 112 representative of these deter-minations. As yet 
another example, a network performance device may monitor various performance metrics, 
such as latency, jitter, packet loss, or the like, and provide feedback data to SDN controller 
112 based on these metrics. SDN controller 112 may respond by programming network 
devices of SDN 106 to perform a programmed action, such as allowing corresponding traffic, 
blocking corresponding traf-fic, mirroring corresponding traffic, redirecting correspond-ing 
traffic.”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may cause 
the net-work devices to change a path along which the packet is forwarded. For example, 
when the service device is a security device (e.g., a firewall or an IDS), if the security device 
determines that one or more packets of a packet flow are malicious, the security device may 
send service data indicat-ing that the packet flow includes malicious data. SDN con-troller 
112 may program the network devices of the SDN to perform a programmed action based on 
the service-related data (336). For example, SDN controller 112 may program network 
devices to, in response to an indication that packets of a packet flow include malicious data, 
forward packets of the packet flow to a destination of the packet flow, forward packets of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 761 of 1100



53 

No. ʼ111 Patent Claim 3 Shieh ’088 
malicious packet flows to a collection device for further analysis, cause network devices to 
drop packets of the malicious packet flows, send a close session message to devices from 
which packets of the malicious packet flows were received, block the packets of the packet 
flow, mirror copies of the packets of the packet flow to a second service device while 
forwarding the packets of the packet flow to the destination of the packet flow, redirect the 
packets of the packet flow to a third service device, transform one or more values of headers 
of the packets, and/or encapsulate the pack-ets with a particular header, or other such 
actions.”) 
 
As another example, Swenson discloses a counting mode instructed by the network controller 
to the steering device for monitoring and optimizing, in which the steering device forwards 
the packet flow to the user device/origin server and at the same time, sending the packet flow 
to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 762 of 1100



54 

No. ʼ111 Patent Claim 3 Shieh ’088 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 140 
over the network link 425. In one embodiment, the customized ICAP message contains the 
HTTP request and response headers, as well as a count of payload size of the current flow. 
After updating the flow statistics, the network controller 140 may acknowledge the gateway 
over the network line 426. In the "counting" mode, the network controller 140 does not join 
the network response path as an inline network element, but simply listens to the counting of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 763 of 1100



55 

No. ʼ111 Patent Claim 3 Shieh ’088 
flow size. The benefit of the "counting" mode is to off-load the network controller 140 from 
ingesting and forwarding the network flow on the net-work response path, while still enabling 
the detection of con-gestions and estimation of bandwidth associated with the flows of 
interest.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 from 
the origin server 160. The video optimizer 150 transcodes the video file to a format usable by 
the client device 110 based on network bandwidth available to the user device 110. The 
optimized video 626 is then transmitted from the video opti-mizer 150 to the steering device 
130. In one embodiment, the steering device 130 intercepts the optimized video 626. The 
steering device 130 will then send an ICAP request to the network controller 140 for 
inspection. The network controller 140 deems this flow to be monitored and sends ICAP 
response 630. The steering device 130 then allows the flow to go through to the user device 
110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the network 
controller 140 until the flow completes. As such, the client receives the optimized video 626 
for substantially real-time playback on an application executing on the user device 110.”) 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 responds 
appropriately to the request by sending back video 624, which is intercepted by the steering 
device 130 only. The steering device 130 forwards the video to the user device 110 and at the 
same time reports the flow size to the network controller 140 for monitoring purpose.”) 
 

 
No. ʼ111 Patent Claim 4 Shieh ’088 

4[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Shieh ’088 discloses wherein the instruction is ‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
See supra at 1[a]. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 764 of 1100



56 

No. ʼ111 Patent Claim 4 Shieh ’088 
4[b] upon receiving by the 

network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 
the network node, to 
the controller;  

Shieh ’088 discloses upon receiving by the network node the ‘probe’ instruction and 
responsive to the packet satisfying the criterion, the method further comprising: sending the 
packet, by the network node, to the controller. 
 
For example, Shieh ’088 discloses an external controller that controls network nodes in a 
packet network, and identifies a command sent by the controller to the network access devices 
through a persistent connection to set up a set of filtering rules concerning whether and/or 
what types of packets should be forwarded to a security device. A person of ordinary skill 
would understand that such demands are probe commands. Shieh ’088 further discloses that 
when the central controller receives the packet, it decides which of the security processing 
modules is able to process the packets, and then forwards the packets to the designated 
security processing module. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Shieh ‘088 is found to 
not meet this limitation, upon receiving by the network node the ‘probe’ instruction and 
responsive to the packet satisfying the criterion, the method  further comprising: sending the 
packet, by the network node, to the controller would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 765 of 1100



57 

No. ʼ111 Patent Claim 4 Shieh ’088 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”) 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”) 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 766 of 1100



58 

No. ʼ111 Patent Claim 4 Shieh ’088 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 767 of 1100



59 

No. ʼ111 Patent Claim 4 Shieh ’088 

 
Fig. 2A (annotation added)  

 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 768 of 1100



60 

No. ʼ111 Patent Claim 4 Shieh ’088 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”).  
 
Shieh ’088 ¶ [0049] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 769 of 1100



61 

No. ʼ111 Patent Claim 4 Shieh ’088 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 4[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the controller 
or another table, in response to the packet matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 protocol 
enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a secure 
channel 103 and control a single forwarding table 107 in the switch 109. The controller 101 
is an external software component executed by a remote computing device that enables a user 
to configure the Open-Flow 1.0 switch 109. The secure channel 103 can be provided by any 
type of network including a local area network (LAN) or a wide area network (WAN), such 
as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; and 
a collection of statistics 205 on the flow. When an incoming packet is received a lookup for 
a matching rule is made in the flow table 107. If the incoming packet matches a particular 
rule, the associated action defined in that flow table entry is performed on the packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 770 of 1100



62 

No. ʼ111 Patent Claim 4 Shieh ’088 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are Drop, 
which drops the matching packets; Forward, which forwards the packet to one or all outgoing 
ports, the incoming physical port itself, the controller via the secure channel, or the local 
networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined with a 
set of structures specified using the C programming language. Some of the more commonly 
used messages are: report switch configuration message; modify state messages (in-cluding a 
modify flow entry message and port modification message); read state messages, where while 
the system is running, the datapath may be queried about its current state using this message; 
and send packet message, which is used when the controller wishes to send a packet out 
through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through an 
OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared against 
each of the flow tables 401. After each flow table match, the actions are accumulated into an 
action set. If processing requires matching against another flow table, the actions in the 
matched rule include an action directing processing to the next table in the pipeline. Absent 
the inclusion of an action in the set to execute all accumulated actions immediately, the actions 
are executed at the end 403 of the packet processing pipeline. An action allows the writing of 
data to a metadata register, which is carried along in the packet processing pipe-line like the 
packet header.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 771 of 1100



63 

No. ʼ111 Patent Claim 4 Shieh ’088 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 5 (annotation added) 
 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 772 of 1100



64 

No. ʼ111 Patent Claim 4 Shieh ’088 

 
For example, Swenson discloses determining by the steering device monitors flows that match 
one or more signatures or criteria of the packet. Swenson further discloses that when a 
matching flow is detected the steering device forwards the packet to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 773 of 1100



65 

No. ʼ111 Patent Claim 4 Shieh ’088 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data 
for the average of the bandwidth per user at the particular cell tower. The network controller 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 774 of 1100



66 

No. ʼ111 Patent Claim 4 Shieh ’088 
140 can then estimate the amount ofbandwidth or degree of congestion for the new flow based 
on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans with 
lower hardware and software costs. The architecture of the network controller 140 provides 
an excel-lent fit for the net neutrality guideline of"reasonable network management", and 
better compliance to the copyright law (DMCA) than solutions that rely on long-term caching. 
Hav-ing the ability of monitoring network traffic on a per sub-scriber, per flow, or per video 
file basis, the network controller 140 also selectively monitors and optimizes only a subset of 
traffic that benefits from optimization the most, thus achiev-ing both scalability and efficiency 
for optimization at a com-petitive price-point. The core element of the network control-ler 
140 lies in its mechanisms for congestion detection and mitigation, which allows optimization 
resources to be utilized in the most efficient and surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer redirector 
318, a flow cache 322, and a subscriber log 324. In other embodiments, the network controller 
140 may include additional, fewer, or different components for various applications. 
Conventional components such as network interfaces, security functions, failover servers, 
management and network operations con-soles, and the like are not shown so as to not obscure 
the details of the system architecture.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., large 
object net-work flows). Existing routing appliances in most carrier net-works are designed to 
handle large amounts of network traf-fic. They are not, however, ideal devices to operate for 
monitoring and analysis individual flows. Through the steer-ing device interface 316, the 
network controller 140 may communicate with the external routing appliances, such as the 
steering device 130, to steer a portion of network traffic to the network controller 140 when 
certain conditions are met. Generally, network flows of interest to the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 775 of 1100



67 

No. ʼ111 Patent Claim 4 Shieh ’088 
contain larger media objects, such as videos and images.  In one embodiment, the smaller 
flows, such as web page and text information, are not exchanged over the steering device 
interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline network 
element for flows deemed of interest. Thus, the network controller 140 ingests the network 
flow for inspection and subsequently forwards the network flow on the network response 
path. For example, for this particular flow, the origin server 160 responds to the user request 
by sending video or images over the network link 413 to the steering device 130, which 
for-wards the video or images to the network controller 140 over a network link 414. After 
the network controller 140 updates the flow statistics, the video or images are returned to the 
steering device 130 over a network link 415, which transmits the video or images to the user 
device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 776 of 1100



68 

No. ʼ111 Patent Claim 4 Shieh ’088 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 777 of 1100



69 

No. ʼ111 Patent Claim 4 Shieh ’088 
4[c] responsive to receiving 

the packet, analyzing 
the packet, by the 
controller; 

Shieh ’088 discloses responsive to receiving the packet, analyzing the packet, by the 
controller. 
 
For example, Shieh ’088 discloses that when the central controller receives the packet, it 
decides which of the security processing modules is able to process the packets, and then 
forwards the packets to the designated security processing module. 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 778 of 1100



70 

No. ʼ111 Patent Claim 4 Shieh ’088 
4[d] sending the packet, by 

the controller, to the 
network node; and  

Shieh ’088 discloses sending the packet, by the controller, to the network node. 
 
For example, Shieh ’088 discloses, after being analyzed by the security device, returning the 
packet to the security device.  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 779 of 1100



71 

No. ʼ111 Patent Claim 4 Shieh ’088 

 
Fig. 2B (annotation added) 

 
4[e] responsive to receiving 

the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Shieh ’088 discloses responsive to receiving the packet, sending the packet, by the network 
node, to the second entity.  
 
For example, Shieh ’088 discloses routing the security device-approved packet to the packet 
destination.  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 780 of 1100



72 

No. ʼ111 Patent Claim 4 Shieh ’088 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 781 of 1100



73 

No. ʼ111 Patent Claim 4 Shieh ’088 

 
Fig. 2B (annotation added) 

 
 

No. ʼ111 Patent Claim 5 Shieh ’088 
5 The method according 

to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 

Shieh ’088 discloses the method according to claim 1, responsive to the packet satisfying the 
criterion and to the instruction, sending the packet or a portion thereof, by the network node, 
to the controller. 
 
For example, Shieh ’088 discloses bypass rules, such as when the bypass flag matches a 
predetermined value, that when satisfied, instructs that the packet will be sent from the virtual 
I/O module to a central controller capable of deep packet inspection responsive to the 
instruction. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Shieh ‘088 is found to not meet this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 782 of 1100



74 

No. ʼ111 Patent Claim 5 Shieh ’088 
network node, to the 
controller.  
 

limitation, further comprising responsive to the packet satisfying the criterion and to the 
instruction, sending the packet or a portion thereof, by the network node, to the controller 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at 1. 
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”).  
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 783 of 1100



75 

No. ʼ111 Patent Claim 5 Shieh ’088 
Shieh ’088 ¶ [0036] “(During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 784 of 1100



76 

No. ʼ111 Patent Claim 5 Shieh ’088 

 
Fig. 2B (annotation added) 

 
Shieh ’088 Claim 1 (“A computer-implemented method, comprising: 
receiving at a network access device a packet from a source node destined to a destination 
node; 
examining a data structure maintained by the network access device to determine whether the 
data structure stores a data member having a predetermined value, the data member indicating 
whether the packet should undergo security processing; 
if the data member matches the predetermined value, transmitting the packet to a security 
device associated with the network access device to allow the security device to perform 
content inspection, and 
in response to a response received from the security device, routing the packet to the 
destination node dependent upon the response; and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 785 of 1100



77 

No. ʼ111 Patent Claim 5 Shieh ’088 
transmitting the packet to the destination node without forwarding the packet to the security 
device, if the data member does not match the predetermined value.”).  
 

 
Fig. 7 (annotation added) 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
’088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 5 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Copeland discloses sending packets and sampled packet headers to the intrusion 
detection engine on the monitoring appliance based on matching predetermined values 
associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data stream Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 786 of 1100



78 

No. ʼ111 Patent Claim 5 Shieh ’088 
such as that provided by sFlow. In a typical preferred configuration for the present invention, 
a monitoring appli-ance 150 operating a flow-based intrusion detection engine 155 is 
receiving sampled packet headers from one or more network devices 135. The monitoring 
appliance 150 moni-tors the communications between the host server 130 and other hosts 120, 
110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured and 
processed by the sample packet collector 505 in order to create a "Packet Data" data struc-ture 
that includes the sFlow agent source of the packets, the header of the sampled packets, and 
other information avail-able from the sFlow data stream that may be important. For  
example, one data field that is optionally available pr vides the username of the user using the 
computer at the time of the communications. This information is extremely useful in some 
environments subject to regulatory requirements and monitoring of the communications on 
the network. In this case the username will be stored as "supplementary infor-mation" for 
auditing purposes in the flow data. Other infor-mation, including the sampling device and the 
physical port on which the communications was detected may also be retained for other uses 
such as mitigation, where a host may be removed from the network.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 787 of 1100



79 

No. ʼ111 Patent Claim 5 Shieh ’088 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number of 
flows active with matching IP addresses but no matching port number. If this number exceeds 
a predetermined threshold value (e.g., 4) and is greater than the previous number noticed, CI 
is added for an amount corresponding to a "port scan." A bit in the host record is set to indicate 
that the host has received CI for "port scanning."”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 788 of 1100



80 

No. ʼ111 Patent Claim 5 Shieh ’088 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 

 
No. ʼ111 Patent Claim 6 Shieh ’088 

6 The method according 
to claim 5, further 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

Shieh ’088 discloses the method according to claim 5, further comprising storing the received 
packet or a portion thereof, by the controller, in a memory. 
 
For example, Shieh ’088 instructs the virtual I/O module to create a local cache to store 
connection state information. A person of ordinary skill in the art would understand that the 
controller also stores packet information in memory.  Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that 
the Shieh ‘088 is found to not meet this limitation, further comprising storing the received 
packet or a portion thereof, by the controller, in a memory would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
See supra at 5. 
 
Shieh ’088 ¶ [0039] (“An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., caches 
305-308) storing location(s) of a security processing module(s) (e.g., security processing 
modules 309-311) for each connection session. A cache maintained by each I/O module 
contains a forwarding table mapping certain connection sessions to any of security modules 
309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a packet, an 
I/O module performs a packet classification to find out the associated connection and 
forwards the packet to the corresponding security processing module identified by the 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 789 of 1100



81 

No. ʼ111 Patent Claim 6 Shieh ’088 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central 
controller 208 receives the packet, it decides which of security processing modules 309-
311 is able to process the packets, and then forwards the packets to the designated security 
processing module. It also instructs the virtual I/O module to create the local cache to store 
connection state information so the subsequent packets of the same connection session do not 
need to be forwarded to central controller 208; rather, they can be directly forwarded to the 
proper security processing module identified in the cache.”). 
 
Shieh ’088 ¶ [0060] (“Some portions of the preceding detailed descriptions have been 
presented in terms of algorithms and symbolic representations of operations on data bits 
within a computer memory. These algorithmic descriptions and representations are the ways 
used by those skilled in the data processing arts to most effectively convey the substance of 
their work to others skilled in the art. An algorithm is here, and generally, conceived to be a 
self-consistent sequence of operations leading to a desired result. The operations are those 
requiring physical manipulations of physical quantities.”). 
 
Shieh ’088 ¶ [0057] (“Referring to FIG. 8, the memory 460 includes a monitoring 
module 801 which when executed by a processor is responsible for performing traffic 
monitoring of traffic from the VMs as described above. Memory 460 also stores one or more 
IO modules 802 which, when executed by a processor, is responsible for performing 
forwarding inbound and outbound packets. Memory 460 further stores one or more security 
processing modules 803 which, when executed by a processor, is responsible for security 
processes on the packets provided by IO modules 802. Memory 460 also stores one or more 
optional service processing modules 804, which when executed by a processor performs a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 790 of 1100



82 

No. ʼ111 Patent Claim 6 Shieh ’088 
particular security process on behalf of security processing modules 803. The memory also 
includes a network communication module 805 used for performing network communication 
and communication with the other devices (e.g., servers, clients, etc.).”). 
 

 
Fig. 8 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 791 of 1100



83 

No. ʼ111 Patent Claim 6 Shieh ’088 
Shieh ’088 Claim 17 (“The system of claim 15, further comprising a controller to manage the 
network access device and the security device, wherein the network access device is further 
to 
receive a message having a data value from the controller, the data value indicating whether 
the network access device should forward further packets to the security device for security 
inspection, and 
store the data value in the data member of the data structure.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
’088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 6 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses the network controller storing historical network traffic data 
based on received packet flows. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 is 
an "out-of-band" computer server that interfaces with the steer-ing device 130 to selectively 
inspect user flows of interest. The network controller 140 may further identify user flows 
(e.g., among the flows of interest) for optimization. In one embodiment, the network 
controller 140 may be imple-mented at the steering device 130 to monitor traffic. In other Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 792 of 1100



84 

No. ʼ111 Patent Claim 6 Shieh ’088 
embodiments, the network controller 140 is coupled to and communicates with the steering 
device 130 for traffic moni-toring and optimization. When queried by the steering device 130, 
the network controller 140 determines if a given network flow should be ignored, monitored 
further or optimized. Opti-mization of a flow is often decided at the beginning of the flow 
because it is rarely possible to switch to optimized content mid-stream once non-optimized 
content delivery has begun. However, the network controller 140 may determine that existing 
flows associated with a particular subscriber or other entity should be optimized. In turn, new 
flows ( e.g., resulting from seek requests in media, new media requests, resume after pause, 
etc.) determined to be associated with the entity may be optimized. The network controller 
140 uses the net-work state as well as historical traffic data in its decision for monitoring and 
optimization. Knowledge on the current net-work state, such as congestion, deems critical 
when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, historical 
network traffic data stored at the net-work controller 140 may be searched. The historical 
network traffic data includes information such as subscriber informa-tion, the cell towers to 
which the user devices attached, rout-ers through which the traffic is passing, geography 
regions, the backhaul segments, and time-of-day of the flows. For example, in a mobile 
network, the cell tower to which a user device is attached can be most useful, since it is the 
location where most congestion occurs due to limited bandwidth and high cost of the radio 
access network infrastructure. The network controller 140 looks into the historical traffic data 
for the average of the bandwidth per user at the particular cell tower. The network controller 
140 can then estimate the amount ofbandwidth or degree of congestion for the new flow based 
on the historical record.”) 
 
Swenson at [0044] (“Additionally, historical flow data over a longer term helps the flow 
analyzer 312 to determine repeating patterns and heat-maps of certain network sections and 
to predict when they are under congestion. In this case, the flow statis-tics stored in the flow 
cache 322 can be mapped against traffic categories for analysis, for example, long-term 
running aver-ages of video flow bandwidth help determine suitability for optimization. 
Furthermore, estimated bandwidth per user ( or per cell-ID, per tower, or per router) over time 
may be metrics calculated by the flow analyzer 312 in order to determine short term needs for 
optimization. For example, the flow analyzer 312 may determine to being optimizing flows 
asso-ciated with a particular cell-ID (or those flows for identified high-bandwidth users on Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 793 of 1100



85 

No. ʼ111 Patent Claim 6 Shieh ’088 
the cell-ID) in response to a thresh-old number of high-bandwidth users connecting to a same 
cell tower corresponding to the cell-ID. The reason why flow analyzer 312 selectively 
monitors large flows lies in the real-ization that TCP statistics for small objects, which make 
up most web flows, can be misleading and cause huge errors in throughput estimations.”) 
 
Swenson at [0046] (“The flow cache 322 stores monitored flow informa-tion, which is 
updated for a flow with each associated trans-action from the steering device 13 0. In one 
embodiment, data in the flow cache is stored in a map indexed by a hash, which can be up to 
64-bit or longer. An entry in the flow cache map may be organized as a linked list to allow 
hash collisions. Alternatively, fewer bits in the hash index can also be used to speed up binary 
search in the flow cache map. For example, instead of using 64-bit hash index, which requires 
at worst 64 steps to find a node, the hash index can be reduced to 16-24 bits. There will be 
more hash collisions, hence the longer linked list. Other embodiments may use other type of 
maps or binary trees instead of the linked list to further optimize the hash collision searches.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and a 
portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 406, 
the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection to 
deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, the 
flow inspection performed by the flow analyzer 312 may determine if the flow indeed contains 
large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of the flow 
is from a user or a group of users that are required to be monitored by policies. The flow 
ana-lyzer 312 may also determine if the flow needs to be opti-mized based on historical flow 
statistical data.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 794 of 1100



86 

No. ʼ111 Patent Claim 6 Shieh ’088 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
 
For example, Chua ‘877 discloses logging and storing the packets, representative data of the 
packets, paths, and programs. 
 
Chua ’877 at 7:28-54 (“SDN controller 112 may receive data as input from service devices 
116. For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device of 
service devices 116) for either inspection or to keep a potential hacker 'busy' to determine if 
there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 795 of 1100



87 

No. ʼ111 Patent Claim 6 Shieh ’088 
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua ‘877 at 7:55-61 (“SDN controller 112 may also log the programmed actions and 
information used to make the enforcement decisions, present the information to administrator 
114 (or other user), and/or export data representative of the logs or results to a third party 
application, which may or may not include the application that sent an event that triggered 
SDN controller 112 to enforce a new policy.”) 
 
Chua ’877 at 21:32-52 (“As another example, switch 210 is communicatively coupled to 
IDS 214 via connections 224, 226. Connection 224 may represent port 9, while 
connection 226 may represent port 10. After SDN controller 218 determines that a particular 
packet flow should be inspected for intrusion detection, SDN controller 218 may program 
switch 210 to direct packets of the packet flow to IDS 214. SDN controller 218 may further 
configure IDS 214 to send data back to switch 210, such as data indicating whether packets 
of the packet flow represent a network attack and/or data of the packet flow after the data has 
been inspected. In some examples, data of the packet flow representing an attack may be 
dropped or forwarded to a containment device, rather than being forwarded along the original 
packet flow. The data indicating whether the packet flow represents an attack may be 
forwarded back to SDN controller 218, to admin workstation 220, to one of web clients 202, 
or to another device, e.g., for report generation. The device that receives the data, e.g., SDN 
controller 218, may generate and/or present a report indicative of malicious traffic to a user, 
e.g., via admin workstation 220.”) 
 
Chua ‘877 at 25:32-52 (“In the e\xample of FIG. 5, SDN controller 112 determines zones for 
packet flows through the network devices forming the SDN (304). The zones generally 
correspond to packet flows, that is, paths through the SDN followed by particular packets. 
SDN controller 112 may store data defining the zones in the data model discussed above. The 
data defining the zones may specify entities (e.g., users, devices, or the like) that have access 
to each zone. Thus, SDN controller 112 may program network devices of the SDN such that 
entities that are not authorized to access a particular zone are prevented from accessing the 
zone. SDN controller 112 may specify a zone using packet header field values, such as a 
source port, a destination port, a source IP address, a destination IP address, a virtual local 
area network (VLAN) tag, multiprotocol label switching (MPLS) labels, a packet protocol, 
and/or an IP subnet. In some cases, SDN controller 112 may specify whether a corresponding Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 796 of 1100



88 

No. ʼ111 Patent Claim 6 Shieh ’088 
packet flow for a zone is suspect or malicious and construct the zone such that packets of the 
packet flow are prevented from reaching an intended destination. As noted above, zones may 
be ordered based on priority values when overlap occurs.”) 
 
 

 
No. ʼ111 Patent Claim 7 Shieh ’088 

7 The method according 
to claim 5, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

Shieh ’088 discloses responsive to the packet satisfying the criterion and to the instruction, 
sending a portion of the packet, by the network node, to the controller. 
 
For example, Shieh ’088 discloses analyzing only certain bits in a packet to determine whether 
to forward packets for security processing or to allow the packets to proceed to the destination 
node, and thus permits only sending the portion to be analyzed to the controller.  Shieh ’088 
discloses that its system may look for TCP FIN or TCP RST packets when applying the bypass 
rule, and these packets would have been identified by examining whether a FIN flag bit was 
set or a RST flag was set. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Shieh ‘088 is found to 
not meet this limitation, further comprising responsive to the packet satisfying the criterion 
and to instruction, sending a portion of the packet, by the network node, to the controller 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at 5. 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 797 of 1100



89 

No. ʼ111 Patent Claim 7 Shieh ’088 
Shieh ’088 ¶ [0036] “(During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
’088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 7 of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 798 of 1100



90 

No. ʼ111 Patent Claim 7 Shieh ’088 
For example, Copeland discloses sending packets and sampled packet headers to the intrusion 
detection engine on the monitoring appliance based on matching predetermined values 
associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data stream 
such as that provided by sFlow. In a typical preferred configuration for the present invention, 
a monitoring appli-ance 150 operating a flow-based intrusion detection engine 155 is 
receiving sampled packet headers from one or more network devices 135. The monitoring 
appliance 150 moni-tors the communications between the host server 130 and other hosts 120, 
110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected about 
the session to help determine if the communication is abnormal. In the preferred embodiment, 
information such as the total number of packets sent, the total amount of data sent, the session 
start time and duration, and the TCP flags set in all of the packets, are collected, stored in the 
database 160, and analyzed to determine if the communication was suspicious. If a 
communication is deemed suspicious, i.e. it meets predetermined criteria, a predetermined 
concern index value associated with a determined category of suspicious activity is added to 
the cumulated CI value associated with the host that made the communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured and 
processed by the sample packet collector 505 in order to create a "Packet Data" data struc-ture 
that includes the sFlow agent source of the packets, the header of the sampled packets, and 
other information avail-able from the sFlow data stream that may be important. For  
example, one data field that is optionally available pr vides the username of the user using the 
computer at the time of the communications. This information is extremely useful in some Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 799 of 1100



91 

No. ʼ111 Patent Claim 7 Shieh ’088 
environments subject to regulatory requirements and monitoring of the communications on 
the network. In this case the username will be stored as "supplementary infor-mation" for 
auditing purposes in the flow data. Other infor-mation, including the sampling device and the 
physical port on which the communications was detected may also be retained for other uses 
such as mitigation, where a host may be removed from the network.”) 
 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number of 
flows active with matching IP addresses but no matching port number. If this number exceeds 
a predetermined threshold value (e.g., 4) and is greater than the previous number noticed, CI 
is added for an amount corresponding to a "port scan." A bit in the host record is set to indicate 
that the host has received CI for "port scanning."”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that executes 
the functions of the above-described flow-based engine is described in reference to FIG. 8. 
FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion detection Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 800 of 1100



92 

No. ʼ111 Patent Claim 7 Shieh ’088 
system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A network 
device 135, such as a router or switch supporting sFlow provides the location for connecting 
the monitoring appliance 150 to the network 899 for monitoring the network traffic.”) 
 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the "server" 
port).”) 
 
 

 
No. ʼ111 Patent Claim 8 Shieh ’088 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 
consists of multiple 
consecutive bytes, and  

Shieh ’088 discloses wherein the portion of the packet consists of multiple consecutive 
bytes. 
 
For example, Shieh ’088 discloses analyzing only certain bits in a packet to determine whether 
to forward packets for security processing or to allow the packets to proceed to the destination 
node, and thus permits only sending the portion to be analyzed to the controller.  Shieh ’088 
discloses that its system may look for TCP FIN or TCP RST packets when applying the bypass 
rule, and these packets would have been identified by examining whether a FIN flag bit was 
set or a RST flag was set. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Shieh ‘088 is found to 
not meet this limitation, further comprising responsive to the packet satisfying the criterion 
and to instruction, sending a portion of the packet, by the network node, to the controller 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at 7. 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 801 of 1100



93 

No. ʼ111 Patent Claim 8 Shieh ’088 
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 
 
Shieh ’088 ¶ [0036] “(During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 802 of 1100



94 

No. ʼ111 Patent Claim 8 Shieh ’088 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 
Shieh ’088 at [0060] (“Some portions of the preceding detailed descriptions have been 
presented in terms of algorithms and symbolic representations of operations on data bits 
within a computer memory. These algorithmic descriptions and representations are the ways 
used by those skilled in the data processing arts to most effectively convey the Substance of 
their work to others skilled in the art. An algorithm is here, and generally, conceived to be a 
self-consistent sequence of operations leading to a desired result. The operations are those 
requiring physical manipulations of physical quantities.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 8(a) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses consecutive bytes of a packet header field. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 803 of 1100



95 

No. ʼ111 Patent Claim 8 Shieh ’088 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers (i.e. 
E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch software 
slow path processes the packets and performs the specialized handling; and LOCAL_GTP 
_U_ENCAP-the switch fast path forwards user data plane packets to this port that require 
encapsulation in a GTP tunnel with nonzero header fields or extension headers (i.e. E!=0, 
S!=0, or PN!=0). These packets require specialized handling. The local switch software slow 
path encapsulates the packets and performs the specialized handling. In addition to forwarding 
the packet, the switch fast path makes the OpenFlow metadata field avail-able to the slow 
path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 804 of 1100



96 

No. ʼ111 Patent Claim 8 Shieh ’088 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number bitmask 0xFF0l and the upper two bytes match the G-PDU 
message type (255) while the lower two bytes are 0x31, indicating that the version number is 
1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, or 
N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 805 of 1100



97 

No. ʼ111 Patent Claim 8 Shieh ’088 
 
For example, Copeland discloses fragmenting packets into smaller byte sizes, including 
headers and flags.  Copeland further discloses sending sampled packet headers, consisting 
of fragmented packets of consecutive bytes to the monitoring device. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 

8[b] wherein the instruction 
comprises 
identification of the 
consecutive bytes in 
the packet.  

For example, Shieh ’088 discloses analyzing only certain bits in a packet to determine whether 
to forward packets for security processing or to allow the packets to proceed to the destination 
node, and thus permits only sending the portion to be analyzed to the controller.  Shieh ’088 
discloses that its system may look for TCP FIN or TCP RST packets when applying the bypass 
rule, and these packets would have been identified by examining whether a FIN flag bit was 
set or a RST flag was set. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Shieh ‘088 is found to 
not meet this limitation, further comprising responsive to the packet satisfying the criterion 
and to instruction, sending a portion of the packet, by the network node, to the controller 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at 7. 
 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 806 of 1100



98 

No. ʼ111 Patent Claim 8 Shieh ’088 
 
Shieh ’088 ¶ [0036] “(During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0037] “(FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 
Shieh ’088 at [0060] (“Some portions of the preceding detailed descriptions have been 
presented in terms of algorithms and symbolic representations of operations on data bits 
within a computer memory. These algorithmic descriptions and representations are the ways 
used by those skilled in the data processing arts to most effectively convey the Substance of 
their work to others skilled in the art. An algorithm is here, and generally, conceived to be a 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 807 of 1100



99 

No. ʼ111 Patent Claim 8 Shieh ’088 
self-consistent sequence of operations leading to a desired result. The operations are those 
requiring physical manipulations of physical quantities.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 8(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses rules in which the flow table includes matching to the 
consecutive bytes of a packet header. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 808 of 1100



100 

No. ʼ111 Patent Claim 8 Shieh ’088 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers (i.e. 
E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch software 
slow path processes the packets and performs the specialized handling; and LOCAL_GTP 
_U_ENCAP-the switch fast path forwards user data plane packets to this port that require 
encapsulation in a GTP tunnel with nonzero header fields or extension headers (i.e. E!=0, 
S!=0, or PN!=0). These packets require specialized handling. The local switch software slow 
path encapsulates the packets and performs the specialized handling. In addition to forwarding 
the packet, the switch fast path makes the OpenFlow metadata field avail-able to the slow 
path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 809 of 1100



101 

No. ʼ111 Patent Claim 8 Shieh ’088 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number bitmask 0xFF0l and the upper two bytes match the G-PDU 
message type (255) while the lower two bytes are 0x31, indicating that the version number is 
1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, or 
N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
For example, Copeland discloses identifying the sampled packet headers comprised of 
fragmented packets of smaller byte sizes. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 810 of 1100



102 

No. ʼ111 Patent Claim 8 Shieh ’088 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0080] (“After the fragmentation information, an 8-bit time to live field specifies 
the remaining life of a packet and is decremented each time the packet is relayed. If this field 
is 0, the packet is destroyed. Next is an 8-bit protocol field that specifies the transport protocol 
used in the data portion. The following 16-bit field is a header checksum on the header only. 
Finally, the last two fields illustrated contain the 32-bit source address and 32-bit destination 
address. IP packet data follows the address information.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 

 
No. ʼ111 Patent Claim 9 Shieh ’088 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Shieh ’088 discloses the method according to claim 5, further comprising responsive to 
receiving the packet, analyzing the packet, by the controller. 
 
For example, Shieh ’088 discloses that when the central controller receives the packet, it 
decides which of the security processing modules is able to process the packets, and then 
forwards the packets to the designated security processing module. 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 811 of 1100



103 

No. ʼ111 Patent Claim 9 Shieh ’088 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central controller 208 
receives the packet, it decides which of security processing modules 309-311 is able to 
process the packets, and then forwards the packets to the designated security processing 
module. It also instructs the virtual I/O module to create the local cache to store connection 
state information so the subsequent packets of the same connection session do not need to be 
forwarded to central controller 208; rather, they can be directly forwarded to the proper 
security processing module identified in the cache.”). 

 
No. ʼ111 Patent Claim 12 Shieh ’088 

12 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Shieh ’088 discloses the method according to claim 9, wherein the analyzing comprises 
applying security or data analytic application. 
 
For example, Shieh ’088 discloses that the controller analyzes a received packet, in which the 
analysis performed on the packets includes applying a security application. 
 
Shieh ’088 ¶ [0002] (“Embodiments of the present invention relate generally to network 
security. More particularly, embodiments of the invention relate to enabling network security 
with network equipment.”). 
 
Shieh ’088 ¶ [0017] (“According to some embodiments, a mechanism is utilized to 
dynamically perform security inspection in a network. In one embodiment, the mechanism 
includes two functions: 1) an input/output (IO) function that performs the distribution of 
network traffic; and 2) a security-processing function that performs security processing, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 812 of 1100



104 

No. ʼ111 Patent Claim 12 Shieh ’088 
including security inspection and policy enforcement. The IO function receives the packets 
and uses a session table to forward the packets to the security-processing function. A session 
table is a data structure that stores connection states, including the destination of the security-
processing function. In one embodiment, the IO function determines, based on an internal 
data structure such as a session or flow table, whether the packet should be forwarded to the 
security processing function for security inspection. The configuration of the IO function to 
control whether to forward the packets to the security processing function can be set based on 
a command received from an administrator or alternatively, based on a signal received from 
the security processing function.”). 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0019] (“Advantages of embodiments of the present invention include, without 
limitation, providing a way to integrate partial network security functions into other network 
equipment, such as switches or routers. The integration allows network administrators to turn 
on security inspection functionality when there are needs for such, thus one can flexibly 
perform security inspection if needed. The notification between I/O functions and security-
processing functions can reduce the number of packets to be inspected, thus enhancing the 
performance without lax the network security.”). 
 
Shieh ’088 ¶ [0021] (“According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 813 of 1100



105 

No. ʼ111 Patent Claim 12 Shieh ’088 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc. In one embodiment, some of the firewall 
processing modules are located within network access device 204 (e.g., firewall modules 209) 
and some are located external to network access device 204 (e.g., firewall 
modules 210 maintained by firewall processing node(s) 211, which may be a dedicated 
firewall processing machine. All of the firewall modules 209-210 are managed by firewall 
controller 208, which may be located within network access device 204, or external to 
network access device 204, such as, for example, in a public cloud associated with 
network 203, or in a private cloud associated with network 205. Controller 208 and firewall 
processing modules 209-210 collectively are referred to herein as distributed firewall 212.”). 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”). 
 
Shieh ’088 ¶ [0029] (“According to one embodiment, an administrator 265 configures, for 
example, via a controller or a management entity 208, a network access device (e.g., network 
access devices 204A-204C) to set up a set of filtering rules concerning whether and/or what 
types of packets should be forwarded to a security device and which of the security devices 
(e.g., security devices 211A-211B) for security inspection. In this embodiment, 
controller 208 is configured to manage multiple network access devices 204A-204C and/or 
multiple security devices 211A-211B. Alternatively, a security device, such as security 
device 211A, may inform a network access device, such as network access device 204B, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 814 of 1100



106 

No. ʼ111 Patent Claim 12 Shieh ’088 
whether subsequent packets of a particular session should be forwarded from the network 
access device for security inspection. A security device may perform the security inspection 
on packets at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.”). 
 
Shieh ’088 ¶ [0030] (“The configuration information may be stored in a memory or storage 
device of a network access device. In one embodiment, such configuration information may 
be stored as part of a flow table or session table as shown in FIG. 5. Referring to FIG. 5, a 
bypass flag 501 may be received from a security device indicating that the security device no 
longer wishes to receive further packets of the same session for security inspection. In 
addition, a security device may register certain notification events 502 with a network access 
device, such that when the network access device detects such events, it will notify the 
security device. Further, a set of one or more filtering rules 503 may be received from an 
administrator to filter and send only certain types of packets to a security device for 
inspection.”). 
 
Shieh ’088 ¶ [0031] (“According to one embodiment, referring back to FIG. 2A, when a 
security-processing function (e.g., processing node 211A) receives the packets, it does the 
security inspection and security policy enforcement. The packets then are forwarded to the 
next I/O function (e.g., modules 209A-209C). The choices of the next I/O function could be 
from the decision from layer 2 such as Ethernet MAC address lookup, or IP address routing, 
or other methods.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 815 of 1100



107 

No. ʼ111 Patent Claim 12 Shieh ’088 

 
Fig. 2A 

 
Shieh ’088 ¶ [0035] (“An embodiment of the invention also controls the communication 
between I/O functions and security-processing functions to enable packets to bypass security-
processing function if there is no more need to inspect the packets of the connection. Some 
of the security functions do not need to inspect all the packets of a connection. For examples, 
to identify the application of a connection, there may be only need to inspect first four or five 
packets to make the identification. In this case, the security-processing function can notify 
I/O functions to bypass the security-processing function for the rest of the packets of the 
connections. Once the I/O function receives the notification, it will forward the packets out 
without redirecting the packets to the security-processing functions. This would greatly 
improve the performance even when security inspection is turned on.”). 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 816 of 1100



108 

No. ʼ111 Patent Claim 12 Shieh ’088 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 
Shieh ’088 ¶ [0037] (“FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 817 of 1100



109 

No. ʼ111 Patent Claim 12 Shieh ’088 

 
Fig. 2B (annotation added)  

 
Shieh ’088 ¶ [0042] (“In one embodiment, central controller 208 is the central place to control 
forwarding of the packets amongst I/O modules 301-304, security processing modules 309-
311, and service processing modules 312-313. When a virtual I/O module receives a packet, 
according to one embodiment, it forwards the packet to central controller 208 if it cannot find 
an existing connection in its local cache, as shown in FIG. 5. When central 
controller 208 receives the packet, it decides which of security processing modules 309-
311 is able to process the packets, and then forwards the packets to the designated security 
processing module. It also instructs the virtual I/O module to create the local cache to store 
connection state information so the subsequent packets of the same connection session do not 
need to be forwarded to central controller 208; rather, they can be directly forwarded to the 
proper security processing module identified in the cache.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 818 of 1100



110 

No. ʼ111 Patent Claim 12 Shieh ’088 
Shieh ’088 ¶ [0049] (“FIG. 7 is a flow diagram illustrating a method for performing firewall 
operations using a distributed firewall according to one embodiment of the invention. 
Method 700 may be performed by processing logic that may include software, hardware, or a 
combination of both. For example, method 700 may be performed by distributed 
firewall 212 of FIG. 1. Referring to FIG. 7, at block 701, a network access device receives a 
packet from a source node destined to a destination node. At block 702, the network access 
device determines whether the packet should be forwarded to a security device for security 
inspection. For example, processing logic may check whether there is an entry exists in a 
session table for the current session. If not, it may forward the packet to the security device 
for security processing at block 704. Alternatively, the processing logic may check whether 
there is a bypass flag set to a predetermined value for the current session. If there is, the packet 
will not be forwarded to the security device; instead, the packet will be directly routed to the 
destination node at block 703.”).  
 

 
Fig. 7 (annotation added)  

 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 819 of 1100



111 

No. ʼ111 Patent Claim 13 Shieh ’088 
13 The method according 

to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Shieh ’088 discloses the method according to claim 9, wherein the analyzing comprises 
applying security application that comprises firewall or intrusion detection functionality. 
 
For example, Shieh ’’088 discloses that its system analyzes packets by applying a security 
application that comprises firewall functionality. 
 
Shieh ’088 ¶ [0021] (“According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc. In one embodiment, some of the firewall 
processing modules are located within network access device 204 (e.g., firewall modules 209) 
and some are located external to network access device 204 (e.g., firewall 
modules 210 maintained by firewall processing node(s) 211, which may be a dedicated 
firewall processing machine. All of the firewall modules 209-210 are managed by firewall 
controller 208, which may be located within network access device 204, or external to 
network access device 204, such as, for example, in a public cloud associated with 
network 203, or in a private cloud associated with network 205. Controller 208 and firewall 
processing modules 209-210 collectively are referred to herein as distributed firewall 212.”). 
 
Shieh ’088 ¶ [0023] (“According to one embodiment, a mechanism is utilized to dynamically 
perform security inspection in a network. In one embodiment, the mechanism includes two 
functions: 1) an input/output (IO) function (e.g., firewall module(s) 209) that performs the 
distribution of network traffic; and 2) a security-processing function (e.g., firewall 
module(s) 210) that performs security processing, including security inspection and policy 
enforcement. IO function 209 receives the packets and uses a session table to forward the 
packets to security-processing function 210. A session table is a data structure that stores 
connection states, including the destination of security-processing function. In one 
embodiment, IO function 209 determines, based on an internal data structure such as a session 
or flow table (e.g., session table as shown in FIG. 5), whether the packet should be forwarded 
to security processing function 210 for security inspection. The configuration of IO 
function 209 to control whether to forward the packets to security processing Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 820 of 1100



112 

No. ʼ111 Patent Claim 13 Shieh ’088 
function 210 can be set based on a command received from an administrator or alternatively, 
based on a signal received from security processing function 210.”). 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C).”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0038] (“FIG. 3 is a block diagram illustrating an example of a distributed 
firewall according to one embodiment of the invention. Referring to FIG. 3, distributed 
firewall 212 includes, for the purpose of illustration, four different types of modules: virtual 
I/O modules 301-304, security processing modules 309-311, service processing 
modules 312-313, and central controller 208. All these modules can run on the same virtual 
machine, or on different virtual machines, or on same or different physical hosts. In one 
embodiment, the communication protocol between the modules is IPC (inter-process 
communication) if they run on the same memory space, use layer-2 network protocol if they 
are on the same layer-2 network, or use IP protocols if they are connected through IP 
networks. Some or all of modules 301-304 and 309-313 may be executed within a virtual 
machine. Dependent upon the specific configuration, each of modules 301-304 and 309-
313 may be executed by a respective virtual machine. In other configurations, multiple of 
modules 301-304 and 309-313 may be executed by the same virtual machine.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 821 of 1100



113 

No. ʼ111 Patent Claim 13 Shieh ’088 
 

 
Fig. 3 (annotation added)  

 
Shieh ’088 ¶ [0043] (“By dividing a firewall into different modules, it allows putting virtual 
I/O and security processing functions at the best locations to protect the network entrance, 
while keeping the central control and monitoring functionality at the central controller. It also 
enhances the scalability of the system since all modules can be expanded to multiple instances 
to share the system load. Note that a service processing module is optional in the architecture, 
as it is only required when there are needs to use additional resources to handle the security 
functions.”). 
 
Shieh ’088 ¶ [0044] (“FIG. 6 is a block diagram illustrating architecture of a processing 
module according to one embodiment of the invention. Referring to FIG. 6, any of processing Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 822 of 1100



114 

No. ʼ111 Patent Claim 13 Shieh ’088 
modules 300A and 300B can be implemented as part of any of the firewall modules (e.g., I/O 
module, security processing module, or service processing module) as shown in FIG. 3. In 
the example as shown in FIG. 6, multiple possible communication protocols can be utilized 
for the packet forwarding between firewall modules. If the firewall modules are on the same 
layer-2 networks, the packet can be forwarded through a layer-2 protocol, such as Ethernet 
protocol. In this example, it is assumed that each of firewall modules 300 a-300B has a 
dedicated virtual Ethernet interface (e.g., interfaces 301A and 301B) being used for the 
forwarding link and the packets are sent with Ethernet header of both sides' media access 
control (MAC) addresses. The packets can also be forwarded in a layer-3 protocol such as an 
IP protocol. During the layer-3 routing, original packets are encapsulated with another IP 
header, which carries the IP address of both sides. The encapsulation of the outer IP address 
would ensure the packets are sent, and received from the proper peer.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 823 of 1100



115 

No. ʼ111 Patent Claim 13 Shieh ’088 

 
Fig. 6 (annotation added)  

 
Shieh ’088 ¶ [0045] (“In one embodiment, firewall modules 300A and 300B can run on 
virtual machines or physical hosts. Running on virtual machines provides additional benefit 
that a firewall module can be added dynamically. Initially the distributed firewall may have 
only one virtual I/O module, one security processing module, and a central controller. When 
there is more traffic coming, it can add more virtual I/O modules to support increasing 
connections. If it needs more CPU resources to handle the security processing, it may add 
more security processing modules and/or add more service processing modules, to support 
the increasing load. This provides lots of flexibility to support various network conditions.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 824 of 1100



116 

No. ʼ111 Patent Claim 13 Shieh ’088 
 
Shieh ’088 ¶ [0046] (“In one embodiment, firewall modules 300A-300B could be distributed 
in different networks, even on different locations, as long as the modules can reach the module 
that is next in terms of processing and the central controller. In one embodiment, virtual I/O 
modules and corresponding security processing modules are in a public cloud and the central 
controller is in a private cloud. This configuration may provide the flexibility to secure and 
control packets coming from the public cloud, and allow central controller having overall 
view of traffic from Internet as well as from internal network.”). 
 
Shieh ’088 ¶ [0047] (“One of the advantages of embodiments of the present invention 
includes, but not limited to, that the distributed firewall can employ a significantly large 
amount of CPU and memory resources for service processing and protect the networks at 
multiple geometric locations. The central controller decides which security processing 
module capable of processing particular connection, and is able to start a new security 
processing at the place deemed best for packet processing.”). 
 
Shieh ’088 ¶ [0048] (“As a result, the location of the packet I/O is not limited on a single 
appliance. The I/O modules can be placed anywhere as virtual machines. The security 
processing power is significantly higher as packets and connections can be load balanced to 
any number of the security processing modules, and the modules could be added or deleted 
dynamically. Using such modules in a firewall cloud provides a security design that is best-
fit for the emerging cloud computing, and provides great scalability and system availability.”). 
 
Shieh ’088 ¶ [0049] (“FIG. 7 is a flow diagram illustrating a method for performing firewall 
operations using a distributed firewall according to one embodiment of the invention. 
Method 700 may be performed by processing logic that may include software, hardware, or a 
combination of both. For example, method 700 may be performed by distributed 
firewall 212 of FIG. 1. Referring to FIG. 7, at block 701, a network access device receives a 
packet from a source node destined to a destination node. At block 702, the network access 
device determines whether the packet should be forwarded to a security device for security 
inspection. For example, processing logic may check whether there is an entry exists in a 
session table for the current session. If not, it may forward the packet to the security device 
for security processing at block 704. Alternatively, the processing logic may check whether 
there is a bypass flag set to a predetermined value for the current session. If there is, the packet Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 825 of 1100



117 

No. ʼ111 Patent Claim 13 Shieh ’088 
will not be forwarded to the security device; instead, the packet will be directly routed to the 
destination node at block 703.”).  
 

 
Fig. 7 (annotation added)  

 
 

 
No. ʼ111 Patent Claim 14 Shieh ’088 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Shieh ’088 discloses the method according to claim 9, wherein the analyzing comprises 
performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Shieh ’088 discloses the use of deep packet inspection as part of the analysis 
functionality. 
 
Shieh ’088 ¶ [0021] (“According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 826 of 1100



118 

No. ʼ111 Patent Claim 14 Shieh ’088 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0040] (“In one embodiment, each of security processing modules 309-
311 performs major security processing functions, such as, for example, NAT, VPN, DPI, 
and/or anti-virus, etc. A security processing module receives packets and runs the packets 
through one or more various security functions in the module for security processing. There 
could be several security modules and each handles the same or different security functions. 
If the packets need to go through another security or service processing, the module sends the 
packets to the other modules.”).  
 
Shieh ’088 ¶ [0041] (“In one embodiment, each of service processing modules 312-
313 performs one or more of the functions of security processing module, such as, for 
example, NAT, VPN, DPI, and/or anti-virus, etc. However, it is different from the security 
processing module in that it only receives and sends packets to the same security processing 
module. If the tasks cannot be done in a security processing module, for example, due to a 
resource limitation, system load, or the requirement of a different operation system, the 
packets can be forwarded to one or more of service processing modules 312-313 for further Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 827 of 1100



119 

No. ʼ111 Patent Claim 14 Shieh ’088 
processing. The packets then are sent back to the same security processing module for the 
next security function processing. To further share the system load, any of security processing 
modules 309-311 can load balance the computational-intensive services using multiple 
service processing modules.”) 
 

 
No. ʼ111 Patent Claim 15 Shieh ’088 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Shieh ’088 discloses the method according to claim 9, wherein the packet comprises distinct 
header and payload fields.  
 
For example, Shieh ’088 disclose deep packet inspection, which would be understood to 
require inspection of at least part of the payload field.  A person of ordinary skill in the art 
would understand that a packet comprises distinct header and payload fields.  Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Shieh ‘088 is found to not meet this limitation, wherein the 
packet comprises distinct header and payload fields would have been obvious to a person 
having ordinary skill in the art, as explained below. 
 
Shieh ’088 ¶ [0021] (“According to one embodiment, network access device 204 is associated 
with a distributed firewall 212 that includes various firewall processing modules, for 
example, each being executed within a virtual machine (VM). In one embodiment, each 
firewall module is responsible for performing one or more firewall functions, but it does not 
include all of the firewall functions of a firewall. Examples of the firewall functions include, 
but are not limited to, network address translation (NAT), virtual private network (VPN), deep 
packet inspection (DPI), and/or anti-virus, etc.”). 
 
Shieh ’088 ¶ [0028] (“Firewall modules 209A-209C may be part of a distributed firewall 
described above. For example, firewall modules 209A-209C may be the IO functions of a 
firewall while nodes 211A-211B may be firewall processing nodes. That is, modules 211A-
211B may be dedicated firewall processing devices that perform some firewall processing 
operations such as DPI, content inspection, antivirus, etc., while firewall modules 209A-209C 
are responsible for routing data packets. For example, when firewall module 209B receives a 
packet from node 206, it may forward the packet to firewall processing node 211A for content 
inspection and/or forwards the packet to controller 208 for routing information. In response, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 828 of 1100



120 

No. ʼ111 Patent Claim 15 Shieh ’088 
firewall processing node 211A analyzes the received packet and/or further communicates 
with controller 208. Controller 208 may provide further routing information back to network 
access device 204B regarding how to route the packet. Each of the firewall processing 
nodes 211A-211B may further maintains a persistent connection or tunnel with 
controller 208, for example, using the OpenFlow communication protocol.”). 
 
Shieh ’088 ¶ [0040] (“In one embodiment, each of security processing modules 309-
311 performs major security processing functions, such as, for example, NAT, VPN, DPI, 
and/or anti-virus, etc. A security processing module receives packets and runs the packets 
through one or more various security functions in the module for security processing. There 
could be several security modules and each handles the same or different security functions. 
If the packets need to go through another security or service processing, the module sends the 
packets to the other modules.”).  
 
Shieh ’088 ¶ [0041] (“In one embodiment, each of service processing modules 312-
313 performs one or more of the functions of security processing module, such as, for 
example, NAT, VPN, DPI, and/or anti-virus, etc. However, it is different from the security 
processing module in that it only receives and sends packets to the same security processing 
module. If the tasks cannot be done in a security processing module, for example, due to a 
resource limitation, system load, or the requirement of a different operation system, the 
packets can be forwarded to one or more of service processing modules 312-313 for further 
processing. The packets then are sent back to the same security processing module for the 
next security function processing. To further share the system load, any of security processing 
modules 309-311 can load balance the computational-intensive services using multiple 
service processing modules.”) 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 15(a) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses packet flows with header and payload fields. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 829 of 1100



121 

No. ʼ111 Patent Claim 15 Shieh ’088 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic statistics 
stored in the flow cache 3 22 and user information stored in the subscriber log 324, for 
example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the network 
infrastructure via API, and making decisions on how to apply optimization based on 
individual or a combination of these inputs. The optimization policies can be applied to large 
flows all the time or on a time-of-day basis, a per user basis, and/or depending on the network 
condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 830 of 1100



122 

No. ʼ111 Patent Claim 15 Shieh ’088 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP messages 
of a flow and determining to monitor the flow, the network controller 140 notify the steering 
device 130 to work in a "counting" mode for bandwidth monitoring. In contrast to the 
"continue" mode, when a matching flow is detected for "counting" mode, the steering device 
130 for-wards the HTTP response directly to the user device 110. While at the same time, the 
steering device 130 send a cus-tomized ICAP message to the network controller 140 over the 
network link 425. In one embodiment, the customized ICAP message contains the HTTP 
request and response headers, as well as a count of payload size of the current flow. After 
updating the flow statistics, the network controller 140 may acknowledge the gateway over 
the network line 426. In the "counting" mode, the network controller 140 does not join the 
network response path as an inline network element, but simply listens to the counting of flow 
size. The benefit of the "counting" mode is to off-load the network controller 140 from 
ingesting and forwarding the network flow on the net- work response path, while still enabling 
the detection of con-gestions and estimation of bandwidth associated with the flows of 
interest.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 831 of 1100



123 

No. ʼ111 Patent Claim 15 Shieh ’088 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 832 of 1100



124 

No. ʼ111 Patent Claim 15 Shieh ’088 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may never 
reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 75-
100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be different, 
hence the bandwidth for each of the buckets is measured and calculated separately. In other 
embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and l00kB+) of the buckets 
may be altered depending on the network traffic and size of objects transmitted. Furthermore, 
the bucket sizes can also be adjusted based on network topology, such as buffer size, prior to 
transmission to the client. The calculated bandwidth per bucket is stored in a queue structure 
that allows for the computing and updating of minimum, maximum, and/or average 
measurements for each bucket. In one embodiment, the 100 kB+ bucket's current tail entry is 
checked against the average bandwidth for the 100 kB+ bucket. If the current entry is less 
than the average multiplied by the number of entries in the queue, the current entry is added 
to the bandwidth calculation for the current interval. This scheme can filter out large bursts 
of data from tempo-rarily idle flows. If the bandwidth exceeds the value, a number of bytes 
(e.g., 125 kB) will be subtracted from the current entry to account for TCP buffers in the 
network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 833 of 1100



125 

No. ʼ111 Patent Claim 15 Shieh ’088 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to find 
patterns or other identifiers in the flows to map them to particular subscribers. Flows without 
identified sub-scribers are added to the flow cache block under the default user flows 726, 
which is a default holding place for the new flows. The flow analyzer 312 later will scan 
through the default user flows that contain cookies or other identifiers that may be used to 
determine a real user or subscriber associated with the flow. If a flow contains identifiers not 
associated with an existing real user, a new user or subscriber is created and the user flow 
block is moved to newly created (or mapped) user or subscriber.”) 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Shieh ’088 discloses wherein the analyzing comprises checking part of, or whole of, the 
payload field. 
 
For example, Shieh ’088 discloses packet analysis, which includes checking the headers, 
which includes checking in whole or in part the payload field. A person of ordinary skill in 
the art would understand that deep packet inspection occurs on the payload field. Thus, at 
least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Shieh ‘088 is found to not meet this limitation, 
wherein the analyzing comprises checking part of, or whole of, the payload field would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 834 of 1100



126 

No. ʼ111 Patent Claim 15 Shieh ’088 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 15(b) of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below is an example. 
 
For example, Swenson discloses inspecting the payload of a packet flow. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the user 
device traffic flows onto the network and vice versa. In one embodiment, the steering device 
130 categorizes traffic routed through it to identify flows of inter-est for further inspection at 
the network controller 140. Alter-natively, the network controller 140 interfaces with the 
steer-ing device 130 to coordinate the monitoring and categorization of network traffic, such 
as identifying large and small objects in HTTP traffic flows. In this case, the steering device 
130 receives instructions from the network controller 140 based on the desired criteria for 
categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic statistics 
stored in the flow cache 3 22 and user information stored in the subscriber log 324, for 
example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 835 of 1100



127 

No. ʼ111 Patent Claim 15 Shieh ’088 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the network 
infrastructure via API, and making decisions on how to apply optimization based on 
individual or a combination of these inputs. The optimization policies can be applied to large 
flows all the time or on a time-of-day basis, a per user basis, and/or depending on the network 
condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache entry 
is created for the flow in the flow cache 322. The flow cache entry keeps track of the flow 
and its associated bandwidth. For a flow that is marked in "continue" mode, each time the 
steering device 130 forwards a next portion of the flow payload to the network controller 140, 
the flow cache 3 22 updates the number of bytes for transmitted in the flow. By monitoring 
the number of bytes per flow over time, the flow analyzer 312 is capable of determining an 
estimate value of bandwidth associated with flow. Further-more, since the steering device 130 
does not have infinite packet buffers, if congestion happens on the network link 416 from the 
steering device 130 to the user device 110, the TCP congestion control mechanism kicks in 
at the steering device 130, which may slows down and/or eventually stop receiving data over 
the network link 413 from origin server 160. During the congestion, the steering device 130 
would not forward any data to the network controller 140, since the link 416 is congested and 
the network controller 140 would not be able to transmit data to the user device 110. 
Therefore, as an inline element, the network controller 140 can detect network con-gestions 
and estimate bandwidth associated with any flows of interest selected by the network 
controller 140. However, in the "continue" mode, the network controller 140 does not modify 
and transform the HTTP messaged it receives over the ICAP interface. The network controller 
140 simply updates the flow statistics and returns the video or images to the steering device 
130 for transmission to the user device 110.”) 
  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 836 of 1100



128 

No. ʼ111 Patent Claim 15 Shieh ’088 
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP messages 
of a flow and determining to monitor the flow, the network controller 140 notify the steering 
device 130 to work in a "counting" mode for bandwidth monitoring. In contrast to the 
"continue" mode, when a matching flow is detected for "counting" mode, the steering device 
130 for-wards the HTTP response directly to the user device 110. While at the same time, the 
steering device 130 send a cus-tomized ICAP message to the network controller 140 over the 
network link 425. In one embodiment, the customized ICAP message contains the HTTP 
request and response headers, as well as a count of payload size of the current flow. After 
updating the flow statistics, the network controller 140 may acknowledge the gateway over 
the network line 426. In the "counting" mode, the network controller 140 does not join the 
network response path as an inline network element, but simply listens to the counting of flow 
size. The benefit of the "counting" mode is to off-load the network controller 140 from 
ingesting and forwarding the network flow on the net- work response path, while still enabling 
the detection of con-gestions and estimation of bandwidth associated with the flows of 
interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 512 to the intended 
origin server 160 and receives a response 514 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 516 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 518. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 514 to an 
HTTP redirect response 520, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 520 directly to the user device 110. In case the flow dose not contain video 
or image objects, or the network controller 140 determines not to monitor the flow, the 
steering device 13 0 would forward the response to the user device 110.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 837 of 1100



129 

No. ʼ111 Patent Claim 15 Shieh ’088 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 160. 
The steering device 130 intercepts all requests originated from the user device 110. In one 
embodiment, the steering device 130 for-wards the HTTP get request 612 to the intended 
origin server 160 and receives a response 614 back from the origin server 160. The steering 
device 130 then sends an ICAP request message 616 comprising the HTTP GET request 
header and a portion of the response payload to the network controller 140, which inspects 
the message to determine whether to monitor the flow or optimize the video. In this case, the 
network controller 140 responds with a redirect to optimize the video in ICAP response 618. 
Upon receiving the instruc-tion, the steering device 130 re-writes the response 614 to an 
HTTP redirect response 620, causing the user device 110 to request the video file from the 
video optimizer 150. In another embodiment, the network controller 140 sends the HTTP 
redirect request 620 directly to the user device 110. In case the flow dose not contain video 
or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may never 
reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 75-
100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be different, 
hence the bandwidth for each of the buckets is measured and calculated separately. In other Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 838 of 1100



130 

No. ʼ111 Patent Claim 15 Shieh ’088 
embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and l00kB+) of the buckets 
may be altered depending on the network traffic and size of objects transmitted. Furthermore, 
the bucket sizes can also be adjusted based on network topology, such as buffer size, prior to 
transmission to the client. The calculated bandwidth per bucket is stored in a queue structure 
that allows for the computing and updating of minimum, maximum, and/or average 
measurements for each bucket. In one embodiment, the 100 kB+ bucket's current tail entry is 
checked against the average bandwidth for the 100 kB+ bucket. If the current entry is less 
than the average multiplied by the number of entries in the queue, the current entry is added 
to the bandwidth calculation for the current interval. This scheme can filter out large bursts 
of data from tempo-rarily idle flows. If the bandwidth exceeds the value, a number of bytes 
(e.g., 125 kB) will be subtracted from the current entry to account for TCP buffers in the 
network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to find 
patterns or other identifiers in the flows to map them to particular subscribers. Flows without 
identified sub-scribers are added to the flow cache block under the default user flows 726, 
which is a default holding place for the new flows. The flow analyzer 312 later will scan 
through the default user flows that contain cookies or other identifiers that may be used to 
determine a real user or subscriber associated with the flow. If a flow contains identifiers not 
associated with an existing real user, a new user or subscriber is created and the user flow 
block is moved to newly created (or mapped) user or subscriber.”) 
 
 

 
No. ʼ111 Patent Claim 16 Shieh ’088 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Shieh ’088 discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields.  
  
See supra Claim 15[a].  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 839 of 1100



131 

No. ʼ111 Patent Claim 16 Shieh ’088 
16[b] the header comprises 

one or more flag bits, 
and  

Shieh ’088 discloses that the header comprises one or more flag bits. 
 
For example, Shieh ’088 discloses header fields in a packet and how they are used to route 
packets. Shieh ’088 further discloses that the packet streams passing through its system 
include TCP FIN or TCP RST packets; a TCP FIN packet includes a FIN flag bit in its header 
that is set, and a TCP RST packet includes a RST flag bit in its header that is set. Thus, at 
least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Shieh ‘088 is found to not meet this limitation, the 
header comprises one or more flag bits would have been obvious to a person having ordinary 
skill in the art, as explained below. 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 16[b] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet headers with flag bits. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 840 of 1100



132 

No. ʼ111 Patent Claim 16 Shieh ’088 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The information 
in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, contains the 
IP addresses and assures that the packet is delivered to the right host. The transport layer 
protocol (TCP) header follows the Internet protocol header and specifies the port numbers for 
the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 841 of 1100



133 

No. ʼ111 Patent Claim 16 Shieh ’088 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 information. 
The data portion or segment associated with the packet 210 follows the header information.”) 
 
Copeland at [0078] (“In regards to a typical IP packet 210, the first 4 bits of the IP header 220 
identify the Internet protocol (IP) version. The following 4 bits identify the IP header length 
in 32 bit words. The next 8 bits differentiate the type of service by describing how the packet 
should be handled in transit. The following 16 bits convey the total packet length.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the TCP 
header 230 information. The initial TCP header 230 information includes the 16-bit source 
and 16-bit destination port numbers. A 32-bit sequence number for the data in the packet 
follows the port numbers. Following the sequence number is a 32-bit acknowledgement 
number. If an ACK flag (discussed below) is set, this number is the next sequence number 
the sender of the packet expects to receive. Next is a 4-bit data offset, which is the number of 
32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 842 of 1100



134 

No. ʼ111 Patent Claim 16 Shieh ’088 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0116] (“These steps generally require manipulations of quantities such as IP 
addresses, packet length, header length, start times, end times, port numbers, and other 
packet related information. Usually, though not necessarily, these quanti-ties take the form 
of electrical, magnetic, or optical signals capable of being stored, transferred, combined, 
compared, or otherwise manipulated. It is conventional for those skilled in the art to refer to 
these signals as bits, bytes, words, values, elements, symbols, characters, terms, numbers, 
points, records, objects, images, files or the like. It should be kept in mind, however, that 
these and similar terms should be associated with appropriate quantities for computer 
opera-tions and that these terms are merely conventional labels applied to quantities that 
exist within and during operation of the computer.”) 
 
As another example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway can 
be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply enough Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 843 of 1100



135 

No. ʼ111 Patent Claim 16 Shieh ’088 
that they can be implemented in hardware or firmware. For this reason, GTP virtual ports may 
have the following restrictions on traffic they will handle: Protocol Type (PT) field= 1, where 
GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); Extension Header flag 
(E)=0, where no extension headers are supported, Sequence Number flag (S)=0, where no 
sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message type=255, where Only 
G-PDU messages, i.e. tunneled user data, is supported in the fast path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for example 
SHA-1. The flow table entries contain a record of how the packet header, including the GTP 
encap-sulation header, should be configured. This includes: the same header fields as for the 
hardware or firmware encapsu-lation table in FIG.18; values for the GTP header flags (PT, E, 
S, and PN); the sequence number and/or the N-PDU number if any; if the E flag is 1, then the 
flow table contains a list of the extension headers, including their types, which the slow path 
should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 844 of 1100



136 

No. ʼ111 Patent Claim 16 Shieh ’088 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values for 
the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-
U destination port (2152); the GTP header flags and message type field is wildcarded with 
0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the PT 
field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number present; and bitmask 0xFF0l and the upper two bytes match 
the G-PDU message type (255) while the lower two bytes are 0x31, indicating that the version 
number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP TEID. 
The gtp_ wildcard field indicates whether the GTP type and flags and TEID should be 
matched. If the lower four bits are 1, the type and flags field should be ignored, while if the 
upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and fields 
flag should be matched subject to the flags in the gtp_flag_mask field, while if the upper bits 
are 0 the TEID should be matched. The mask is combined with the message type and header 
field of the packet using logical AND; the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 845 of 1100



137 

No. ʼ111 Patent Claim 16 Shieh ’088 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_ 
teid field contains the GRP TEID. When the value of the oxm_type ( oxm_class+oxm_field 
is GTP _ MATCH and the HM bit is zero, the flaw's GTP header must match these values 
exactly. If the HM flag is one, the value contains an ersmt_gtp_match field and an 
ermst_gtp_mask field, as specified by the OpenFlow 1.2 specification. We define 
ermst_gtp_mask field for selecting flows based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. If 
the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates the 
flags should be matched, the gtp_flag_mask is combined with the message type and header 
field of the packet using logical AND, the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 

16[c] wherein the packet-
applicable criterion is 
that one or more of the 
flag bits is set.  

Shieh ’088 discloses wherein the packet-applicable criterion is that one or more of the flag 
bits is set. 
 
For example, Shieh ’088 discloses that the packet streams passing through its system include 
TCP FIN or TCP RST packets; a TCP FIN packet includes a FIN flag bit in its header that is 
set, and a TCP RST packet includes a RST flag bit in its header that is set. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Shieh ‘088 is found to not meet this limitation, wherein the packet 
applicable criterion is that one or more of the flag bits is set would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 846 of 1100



138 

No. ʼ111 Patent Claim 16 Shieh ’088 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Shieh 
‘088 in combination with (1) the knowledge of a person of ordinary skill in the art, alone or 
in further combination with (2) each (individually, as well as one or more together) of the 
references identified in element 16[c] of Exhibit E-4 renders the claim, including the present 
limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet specific characteristics including flag bits that are 
set. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the TCP 
header 230 information. The initial TCP header 230 information includes the 16-bit source 
and 16-bit destination port numbers. A 32-bit sequence number for the data in the packet 
follows the port numbers. Following the sequence number is a 32-bit acknowledgement 
number. If an ACK flag (discussed below) is set, this number is the next sequence number 
the sender of the packet expects to receive. Next is a 4-bit data offset, which is the number of 
32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit flags, 
shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U flag is 
set, it indicates that the urgent pointer is valid and points to urgent data that should be acted 
upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. The 
ACK flag indicates that an acknowledgment number is valid, and acknowledges that data has 
been received. The next flag, the push (P) flag, tells the receiving end to push all buffered 
data to the receiving application. The reset (R) flag is the following flag, which terminates 
both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is set in the 
initial packet of a TCP connection where both ends have to synchronize their TCP buffers. 
Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that the sending 
end of the communication and the host will not send any more data but still may acknowledge 
data that is received.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 847 of 1100



139 

No. ʼ111 Patent Claim 16 Shieh ’088 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag is 
designed to establish a TCP connection and allow both ends to synchronize their TCP buffers. 
Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0125] (“For purposes of the description, which follows, the IP address with the 
lower value, when considered as a 32-bit unsigned integer, is designated ip[0] and the 
corresponding port number is designated pt[0]. The higher IP address is designated ip[l] and 
the corresponding TCP or UDP port number is designated pt[l]. At some point, either pt[0] or 
pt[l] may be designated the "server" port by setting an appropriate bit in a bit map that is part 
of the flow record (record "state", bit 1 or 2 is set).”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 8) 
have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of hosts 
scanned "statistically significant". These and other values of concern index are shown for non-
flow based events in FIG. 7.”) 
 
As another example, Kempf flow table matches in which the flag bits is set, 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP TEID 
Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table modification 
for GTP TEID routing. An OpenFlow switch that supports TEID routing matches on the 2 
byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, in addition to other 
OpenFlow header fields, in at least one flow table ( e.g., the first flow table). The GTP TEID Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 848 of 1100



140 

No. ʼ111 Patent Claim 16 Shieh ’088 
flag can be wildcarded (i.e. matches are "don't care"). In one embodiment, the EPC pro-tocols 
do not assign any meaning to TEIDs other than as an endpoint identifier for tunnels, like ports 
in standard UDP/ TCP transport protocols. In other embodiments, the TEIDs can have a 
correlated meaning or semantics. The GTP header flags field can also be wildcarded, this can 
be partially matched by combining the following bitmasks: 0xFF00- Match the Message Type 
field; 0xe0-Match the Version field; 0xl0-Match the PT field; 0x04-Match the E field; 0x02- 
Match the S field; and 0x0l-Match the PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway can 
be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply enough 
that they can be implemented in hardware or firmware. For this reason, GTP virtual ports may 
have the following restrictions on traffic they will handle: Protocol Type (PT) field= 1, where 
GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); Extension Header flag 
(E)=0, where no extension headers are supported, Sequence Number flag (S)=0, where no 
sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message type=255, where Only 
G-PDU messages, i.e. tunneled user data, is supported in the fast path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with nonzero 
header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet (i.e. it is a 
GTP-U control packet), the processing must proceed via the gateway's slow path (software) 
control plane. GTP-C and GTP' packets directed to the gateway's IP address are a result of 
mis-configuration and are in error. They must be sent to the OpenFlow controller, since these 
packets are handled by the S-GW-C and P-GW-C control plane entities in the cloud 
computing system or to the billing entity handling GTP' and not the S-GW-D and P-GW-D 
data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for example 
SHA-1. The flow table entries contain a record of how the packet header, including the GTP 
encap-sulation header, should be configured. This includes: the same header fields as for the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 849 of 1100



141 

No. ʼ111 Patent Claim 16 Shieh ’088 
hardware or firmware encapsu-lation table in FIG.18; values for the GTP header flags (PT, E, 
S, and PN); the sequence number and/or the N-PDU number if any; if the E flag is 1, then the 
flow table contains a list of the extension headers, including their types, which the slow path 
should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path decapsulation 
virtual port. When requested by the S-GW and P-GW control plane software running in the 
cloud computing system, the gateway switch installs rules and actions for routing GTP 
encapsulated packets out of GTP tunnels. The rules match the GTP header flags and the GTP 
TEID for the packet, in the modified OpenFlow flow table shown in FIG. 17 as follows: the 
IP destination address is an IP address on which the gateway is expecting GTP traffic; the IP 
protocol type is UDP (17); the UDP destination port is the GTP-U destination port (2152); 
and the header fields and message type field is wildcarded with the flag 0XFFF0 and the upper 
two bytes of the field match the G-PDU message type (255) while the lower two bytes match 
0x30, i.e. the packet is a GTP packet not a GTP' packet and the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values for 
the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-
U destination port (2152); the GTP header flags and message type field is wildcarded with 
0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the PT 
field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are wildcarded 
with the following bitmasks and match as follows: bitmask 0xFFF4 and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are Ox34, indicating that the 
version number is 1, the packet is a GTP packet, and there is an extension header present; 
bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type (255) while the 
lower two bytes are 0x32, indicating that the version number is 1, the packet is a GTP packet, 
and there is a sequence number present; and bitmask 0xFF0l and the upper two bytes match Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 850 of 1100



142 

No. ʼ111 Patent Claim 16 Shieh ’088 
the G-PDU message type (255) while the lower two bytes are 0x31, indicating that the version 
number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP TEID. 
The gtp_ wildcard field indicates whether the GTP type and flags and TEID should be 
matched. If the lower four bits are 1, the type and flags field should be ignored, while if the 
upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and fields 
flag should be matched subject to the flags in the gtp_flag_mask field, while if the upper bits 
are 0 the TEID should be matched. The mask is combined with the message type and header 
field of the packet using logical AND; the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP TEID. 
When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the HM bit 
is zero, the flaw's GTP header must match these values exactly. If the HM flag is one, the 
value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified by the 
OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows based on 
the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. If 
the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates the 
flags should be matched, the gtp_flag_mask is combined with the message type and header 
field of the packet using logical AND, the result becomes the value of the match. Only those 
parts of the field in which the mask has a 1 value are matched.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 851 of 1100



143 

No. ʼ111 Patent Claim 16 Shieh ’088 
Kempf at Figure 10 
 

 
 

 
No. ʼ111 Patent Claim 17 Shieh ’088 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 
Protocol (TCP) packet, 
and  

Shieh ’088 discloses the method according to claim 16, wherein the packet is a Transmission 
Control Protocol (TCP) packet.  
 
For example, Shieh ’088 discloses that the packet streams passing through its system include 
TCP packets.  
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 852 of 1100



144 

No. ʼ111 Patent Claim 17 Shieh ’088 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 

17[b] wherein the one or 
more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

Shieh ’088 discloses wherein the one or more flag bits comprises comprise a SYN flag bit, an 
ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof. 
 
For example, Shieh ’088 discloses that some of the packets can be TCP FIN or TCP RST 
packets. 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
  

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 853 of 1100



145 

No. ʼ111 Patent Claim 18 Shieh ’088 
18[a] The method according 

to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Shieh ’088 discloses the method according to claim 1, wherein the packet comprises distinct 
header and payload fields.  
 
See supra Claim 15[a].  
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Shieh ’088 discloses the header comprises at least the first and second entities addresses in 
the packet network. 
 
For example, Shieh ’088 discloses unique parameters of a TCP/IP packet flow such as source 
and destination addresses in packet headers.  
 
Shieh ’088 ¶ [0031] (“According to one embodiment, referring back to FIG. 2A, when a 
security-processing function (e.g., processing node 211A) receives the packets, it does the 
security inspection and security policy enforcement. The packets then are forwarded to the 
next I/O function (e.g., modules 209A-209C). The choices of the next I/O function could be 
from the decision from layer 2 such as Ethernet MAC address lookup, or IP address routing, 
or other methods.”). 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 854 of 1100



146 

No. ʼ111 Patent Claim 18 Shieh ’088 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0044] (“FIG. 6 is a block diagram illustrating architecture of a processing 
module according to one embodiment of the invention. Referring to FIG. 6, any of processing 
modules 300A and 300B can be implemented as part of any of the firewall modules (e.g., I/O 
module, security processing module, or service processing module) as shown in FIG. 3. In 
the example as shown in FIG. 6, multiple possible communication protocols can be utilized 
for the packet forwarding between firewall modules. If the firewall modules are on the same 
layer-2 networks, the packet can be forwarded through a layer-2 protocol, such as Ethernet 
protocol. In this example, it is assumed that each of firewall modules 300 a-300B has a 
dedicated virtual Ethernet interface (e.g., interfaces 301A and 301B) being used for the 
forwarding link and the packets are sent with Ethernet header of both sides' media access 
control (MAC) addresses. The packets can also be forwarded in a layer-3 protocol such as an 
IP protocol. During the layer-3 routing, original packets are encapsulated with another IP 
header, which carries the IP address of both sides. The encapsulation of the outer IP address 
would ensure the packets are sent, and received from the proper peer.”). 
 
 

18[c] wherein the packet-
applicable criterion is 
that the first entity 
address, the second 
entity address, or both 

Shieh ’088 discloses wherein the packet-applicable criterion is that the first entity address, 
the second entity address, or both match a predetermined address or addresses. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 855 of 1100



147 

No. ʼ111 Patent Claim 18 Shieh ’088 
match a predetermined 
address or addresses.  

For example, Shieh ’088 discloses that IP or MAC addresses are packet-applicable criterion 
used to determine whether to forward packets to a security processing function based on 
whether the IP or MAC addresses match a predetermined address or addresses. 
 
Shieh ’088 ¶ [0031] (“According to one embodiment, referring back to FIG. 2A, when a 
security-processing function (e.g., processing node 211A) receives the packets, it does the 
security inspection and security policy enforcement. The packets then are forwarded to the 
next I/O function (e.g., modules 209A-209C). The choices of the next I/O function could be 
from the decision from layer 2 such as Ethernet MAC address lookup, or IP address routing, 
or other methods.”). 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 856 of 1100



148 

No. ʼ111 Patent Claim 18 Shieh ’088 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0044] (“FIG. 6 is a block diagram illustrating architecture of a processing 
module according to one embodiment of the invention. Referring to FIG. 6, any of processing 
modules 300A and 300B can be implemented as part of any of the firewall modules (e.g., I/O 
module, security processing module, or service processing module) as shown in FIG. 3. In 
the example as shown in FIG. 6, multiple possible communication protocols can be utilized 
for the packet forwarding between firewall modules. If the firewall modules are on the same 
layer-2 networks, the packet can be forwarded through a layer-2 protocol, such as Ethernet 
protocol. In this example, it is assumed that each of firewall modules 300 a-300B has a 
dedicated virtual Ethernet interface (e.g., interfaces 301A and 301B) being used for the 
forwarding link and the packets are sent with Ethernet header of both sides' media access 
control (MAC) addresses. The packets can also be forwarded in a layer-3 protocol such as an 
IP protocol. During the layer-3 routing, original packets are encapsulated with another IP 
header, which carries the IP address of both sides. The encapsulation of the outer IP address 
would ensure the packets are sent, and received from the proper peer.”). 
 
 

 
No. ʼ111 Patent Claim 19 Shieh ’088 

19 The method according 
to claim 18, wherein 
the addresses are 
Internet Protocol (IP) 
addresses.  

Shieh ’088 discloses the method according to claim 18, wherein the addresses are Internet 
Protocol (IP) addresses. 
 
For example, Shieh ’088 discloses that IP addresses are used to determine whether to forward 
packets to a security processing function based on whether the IP address matches a 
predetermined address or addresses. 
 
See supra Claim 18. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 857 of 1100



149 

No. ʼ111 Patent Claim 19 Shieh ’088 
Shieh ’088 ¶ [0031] (“According to one embodiment, referring back to FIG. 2A, when a 
security-processing function (e.g., processing node 211A) receives the packets, it does the 
security inspection and security policy enforcement. The packets then are forwarded to the 
next I/O function (e.g., modules 209A-209C). The choices of the next I/O function could be 
from the decision from layer 2 such as Ethernet MAC address lookup, or IP address routing, 
or other methods.”). 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 858 of 1100



150 

No. ʼ111 Patent Claim 19 Shieh ’088 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 
Shieh ’088 ¶ [0044] (“FIG. 6 is a block diagram illustrating architecture of a processing 
module according to one embodiment of the invention. Referring to FIG. 6, any of processing 
modules 300A and 300B can be implemented as part of any of the firewall modules (e.g., I/O 
module, security processing module, or service processing module) as shown in FIG. 3. In 
the example as shown in FIG. 6, multiple possible communication protocols can be utilized 
for the packet forwarding between firewall modules. If the firewall modules are on the same 
layer-2 networks, the packet can be forwarded through a layer-2 protocol, such as Ethernet 
protocol. In this example, it is assumed that each of firewall modules 300 a-300B has a 
dedicated virtual Ethernet interface (e.g., interfaces 301A and 301B) being used for the 
forwarding link and the packets are sent with Ethernet header of both sides' media access 
control (MAC) addresses. The packets can also be forwarded in a layer-3 protocol such as an 
IP protocol. During the layer-3 routing, original packets are encapsulated with another IP 
header, which carries the IP address of both sides. The encapsulation of the outer IP address 
would ensure the packets are sent, and received from the proper peer.”). 
 

 
No. ʼ111 Patent Claim 20 Shieh ’088 

20[a] The method according 
to claim 1, wherein the 
packet is an 
Transmission Control 
Protocol (TCP) packet 
that comprises source 
and destination TCP 
ports, a TCP sequence 
number, and a TCP 
sequence mask fields, 
and  

Shieh ’088 discloses the method according to claim 1, wherein the packet is an Transmission 
Control Protocol (TCP) packet that comprises source and destination TCP ports, a TCP 
sequence number, and a TCP sequence mask fields. 
 
For example, Shieh ’088 discloses the transportation of TCP packets in a TCP network using 
TCP protocol, and describes tracking TCP packets that can be identified by their source and 
destination port. 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 859 of 1100



151 

No. ʼ111 Patent Claim 20 Shieh ’088 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 

20[b] wherein the packet-
applicable criterion is 
that the source TCP 
port, the destination 
TCP port, the TCP 
sequence number, the 
TCP sequence mask, 
or any combination 
thereof, matches a 
predetermined value or 
values.  

Shieh ’088 discloses wherein the packet-applicable criterion is that the source TCP port or 
the destination TCP port. 
 
For example, Shieh ’088 discloses using a source TCP port or a destination TCP port are used 
to determine whether to take an action on the packet. 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 860 of 1100



152 

No. ʼ111 Patent Claim 20 Shieh ’088 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”). 
 

 
No. ʼ111 Patent Claim 21 Shieh ’088 

21 The method according 
to claim 1, wherein the 
packet network 
comprises a Wide 
Area Network (WAN), 
Local Area Network 
(LAN), the Internet, 
Metropolitan Area 
Network (MAN), 
Internet Service 
Provider (ISP) 
backbone datacenter 
network, or inter - 
datacenter network.  

Shieh ’088 discloses wherein the packet network comprises a Wide Area Network (WAN) or 
Local Area Network (LAN) or Internet Service Provider (ISP) backbone data center network.  
 
For example, Shieh ’088 discloses that its packet network includes the Internet, a WAN or 
LAN, and that its system can be in communication with an ISP. 
 
Shieh ’088 ¶ [0020] (“FIG. 1 is a block diagram illustrating an example of network 
configuration according to one embodiment of the invention. Referring to FIG. 1, network 
access device 204, which may be a router or gateway, a switch or an access point, etc., 
provides an interface between network 203 and network 205. Network 203 may be an 
external network such as a wide area network (WAN) (e.g., Internet) while 
network 205 represents a local area network (LAN). Nodes 206-207 go through gateway 
device 204 in order to reach nodes 201-202, or vice versa. Any of nodes 201-202 and 206-
207 may be a client device (e.g., a desktop, laptop, Smartphone, gaming device) or a server.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 861 of 1100



153 

No. ʼ111 Patent Claim 21 Shieh ’088 

 
Fig. 1 (annotation added)  

 
Shieh ’088 ¶ [0053] (“Modem 447 may provide a direct connection to a remote server via a 
telephone link or to the Internet via an internet service provider (ISP). Network 
interface 448 may provide a direct connection to a remote server. Network interface 448 may 
provide a direct connection to a remote server via a direct network link to the Internet via a 
POP (point of presence). Network interface 448 may provide such connection using wireless 
techniques, including digital cellular telephone connection, a packet connection, digital 
satellite data connection or the like.”). 

 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 862 of 1100



154 

No. ʼ111 Patent Claim 22 Shieh ’088 
22 The method according 

to claim 1, wherein the 
first entity is a server 
device and the second 
entity is a client 
device, or wherein the 
first entity is a client 
device and the second 
entity is a server 
device.  

Shieh ’088 discloses the method according to claim 1, wherein the first entity is a server 
device and the second entity is a client device, or wherein the first entity is a client device and 
the second entity is a server device. 
 
For example, Shieh ’088 discloses, in Figure 1, that the source of the network packets can be 
a server device, and the destination of the claimed packets can be a client device, or vice versa. 
 
Shieh ’088 ¶ [0020] (“FIG. 1 is a block diagram illustrating an example of network 
configuration according to one embodiment of the invention. Referring to FIG. 1, network 
access device 204, which may be a router or gateway, a switch or an access point, etc., 
provides an interface between network 203 and network 205. Network 203 may be an 
external network such as a wide area network (WAN) (e.g., Internet) while 
network 205 represents a local area network (LAN). Nodes 206-207 go through gateway 
device 204 in order to reach nodes 201-202, or vice versa. Any of nodes 201-202 and 206-
207 may be a client device (e.g., a desktop, laptop, Smartphone, gaming device) or a server.”). 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 863 of 1100



155 

No. ʼ111 Patent Claim 22 Shieh ’088 

 
Fig. 1 (annotation added)  

 
Shieh ’088 ¶ [0022] (“A virtual machine represents a completely isolated operating 
environment with a dedicated set of resources associated therewith. A virtual machine may 
be installed or launched as a guest operating system (OS) hosted by a host OS. In one 
embodiment, a host OS represents a virtual machine monitor (VMM) (also referred to as a 
hypervisor) for managing the hosted virtual machines. A guest OS may be of the same or 
different types with respect to the host OS. For example, a guest OS may be a Windows™ 
operating system and a host OS may be a LINUX operating system. In addition, the guest 
operating systems (OSes) running on a host can be of the same or different types. A virtual Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 864 of 1100



156 

No. ʼ111 Patent Claim 22 Shieh ’088 
machine can be any type of virtual machine, such as, for example, hardware emulation, full 
virtualization, para-virtualization, and operating system-level virtualization virtual machines. 
Different virtual machines hosted by a server may have the same or different privilege levels 
for accessing different resources.”). 
 
Shieh ’088 ¶ [0057] (“Referring to FIG. 8, the memory 460 includes a monitoring 
module 801 which when executed by a processor is responsible for performing traffic 
monitoring of traffic from the VMs as described above. Memory 460 also stores one or more 
IO modules 802 which, when executed by a processor, is responsible for performing 
forwarding inbound and outbound packets. Memory 460 further stores one or more security 
processing modules 803 which, when executed by a processor, is responsible for security 
processes on the packets provided by IO modules 802. Memory 460 also stores one or more 
optional service processing modules 804, which when executed by a processor performs a 
particular security process on behalf of security processing modules 803. The memory also 
includes a network communication module 805 used for performing network communication 
and communication with the other devices (e.g., servers, clients, etc.).”). 
 

 
No. ʼ111 Patent Claim 23 Shieh ’088 

23[a] The method according 
to claim 22, wherein 
the server device 
comprises a web 
server, and  

Shieh ’088 discloses the method according to claim 22, wherein the server device comprises 
a web server. 
 
For example, Shieh ’088 discloses that the source or destination of the packets can be a server 
device.  Shieh ’088 further discloses that the network interface my provide a direct connection 
to a remote server via a direct link to the Internet via POP.  
 
Shieh ’088 ¶ [0039] (“An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 865 of 1100



157 

No. ʼ111 Patent Claim 23 Shieh ’088 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 
Shieh ’088 ¶ [0053] (“Modem 447 may provide a direct connection to a remote server via a 
telephone link or to the Internet via an internet service provider (ISP). Network 
interface 448 may provide a direct connection to a remote server. Network interface 448 may 
provide a direct connection to a remote server via a direct network link to the Internet via a 
POP (point of presence). Network interface 448 may provide such connection using wireless 
techniques, including digital cellular telephone connection, a packet connection, digital 
satellite data connection or the like.”).  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 866 of 1100



158 

No. ʼ111 Patent Claim 23 Shieh ’088 

 
Fig. 2A (annotation added)  

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 867 of 1100



159 

No. ʼ111 Patent Claim 23 Shieh ’088 

 
Fig. 4 (annotation added)  

 
See supra Claim 22.  
 

23[b] wherein the client 
device comprises a 
smartphone, a tablet 
computer, a personal 
computer, a laptop 
computer, or a 
wearable computing 
device.  

Shieh ’088 discloses wherein the client device comprises a smartphone, a tablet computer, a 
personal computer, a laptop computer, or a wearable computing device. 
 
For example, Shieh ’088 discloses that any of the nodes may be a client device such as a 
desktop, laptop, smartphone, gaming device, etc. 
 
Shieh ’088 ¶ [0020] (“FIG. 1 is a block diagram illustrating an example of network 
configuration according to one embodiment of the invention. Referring to FIG. 1, network 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 868 of 1100



160 

No. ʼ111 Patent Claim 23 Shieh ’088 
access device 204, which may be a router or gateway, a switch or an access point, etc., 
provides an interface between network 203 and network 205. Network 203 may be an 
external network such as a wide area network (WAN) (e.g., Internet) while 
network 205 represents a local area network (LAN). Nodes 206-207 go through gateway 
device 204 in order to reach nodes 201-202, or vice versa. Any of nodes 201-202 and 206-
207 may be a client device (e.g., a desktop, laptop, Smartphone, gaming device) or a server.”). 
 

 
No. ʼ111 Patent Claim 24 Shieh ’088 

24 The method according 
to claim 22, wherein 
the communication 
between the network 
node and the controller 
is based on, or uses, a 
standard protocol.  

Shieh ’088 discloses the method according to claim 22, wherein the communication between 
the network node and the controller is based on, or uses, a standard protocol. 
 
For example, Shieh ’088 discloses the use of the standard OpenFlow protocol for 
communication between the network access devices and the controller. 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 869 of 1100



161 

No. ʼ111 Patent Claim 24 Shieh ’088 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 

 
No. ʼ111 Patent Claim 27 Shieh ’088 

27 The method according 
to claim 1, wherein the 
network node 
comprises a router, a 
switch, or a bridge.  

Shieh ’088 discloses the method according to claim 1, wherein the network node comprises a 
router, a switch, or a bridge. 
 
For example, Shieh ’088 discloses network access devices may be a router or a gateway, a 
switch or an access point. 
 
See supra at Claim 1. 
 
Shieh ’088 ¶ [0020] (“FIG. 1 is a block diagram illustrating an example of network 
configuration according to one embodiment of the invention. Referring to FIG. 1, network 
access device 204, which may be a router or gateway, a switch or an access point, etc., 
provides an interface between network 203 and network 205. Network 203 may be an 
external network such as a wide area network (WAN) (e.g., Internet) while 
network 205 represents a local area network (LAN). Nodes 206-207 go through gateway 
device 204 in order to reach nodes 201-202, or vice versa. Any of nodes 201-202 and 206-
207 may be a client device (e.g., a desktop, laptop, Smartphone, gaming device) or a server.”). 

 
No. ʼ111 Patent Claim 28 Shieh ’088 

28 The method according 
to claim 1, wherein the 
packet network is an 
Internet Protocol (IP) 
network, and the 
packet is an IP packet.  

Shieh ’088 discloses the method according to claim 1, wherein the packet network is an 
Internet Protocol (IP) network, and the packet is an IP packet. 
 
For example, Shieh ’088 discloses the use of IP addresses to identify packets being 
transmitted across the packet network. 
 
See supra at Claim 1.  Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 870 of 1100



162 

No. ʼ111 Patent Claim 28 Shieh ’088 
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”).  
 
Shieh ’088 ¶ [0031] (“According to one embodiment, referring back to FIG. 2A, when a 
security-processing function (e.g., processing node 211A) receives the packets, it does the 
security inspection and security policy enforcement. The packets then are forwarded to the 
next I/O function (e.g., modules 209A-209C). The choices of the next I/O function could be 
from the decision from layer 2 such as Ethernet MAC address lookup, or IP address routing, 
or other methods.”). 
 
Shieh ’088 ¶ [0038] (” FIG. 3 is a block diagram illustrating an example of a distributed 
firewall according to one embodiment of the invention. Referring to FIG. 3, distributed 
firewall 212 includes, for the purpose of illustration, four different types of modules: virtual 
I/O modules 301-304, security processing modules 309-311, service processing 
modules 312-313, and central controller 208. All these modules can run on the same virtual 
machine, or on different virtual machines, or on same or different physical hosts. In one 
embodiment, the communication protocol between the modules is IPC (inter-process 
communication) if they run on the same memory space, use layer-2 network protocol if they 
are on the same layer-2 network, or use IP protocols if they are connected through IP Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 871 of 1100



163 

No. ʼ111 Patent Claim 28 Shieh ’088 
networks. Some or all of modules 301-304 and 309-313 may be executed within a virtual 
machine. Dependent upon the specific configuration, each of modules 301-304 and 309-
313 may be executed by a respective virtual machine. In other configurations, multiple of 
modules 301-304 and 309-313 may be executed by the same virtual machine.”). 
 

 
No. ʼ111 Patent Claim 29 Shieh ’088 

29 The method according 
to claim 28, wherein 
the packet network is 
an Transmission 
Control Protocol 
(TCP) network, and 
the packet is an TCP 
packet.  

Shieh ’088 discloses the method according to claim 28, wherein the packet network is an 
Transmission Control Protocol (TCP) network, and the packet is an TCP packet. 
 
For example, Shieh ’088 discloses that the packet streams passing through its system include 
TCP packets.  Shieh ’088 further discloses the transportation of TCP packets across a TCP 
network using TCP protocol. 
 
See supra Claim 28.  
 
Shieh ’088 ¶ [0027] (“Referring back to FIG. 2A, in one embodiment, each of the network 
access devices 204A-204C maintains a flow table or session table (e.g., flow tables 251A-
251C) and a firewall module (e.g., 209A-209C). A network flow refers to a sequence of 
packets from a source computer to a destination, which may be another host, a multicast 
group, or a broadcast domain. For example, a TCP/IP flow can be uniquely identified by the 
following parameters within a certain time period: 1) Source and Destination IP address; 2) 
Source and Destination Port; and 3) Layer 4 Protocol (TCP/UDP/ICMP). A session is a semi-
permanent interactive information interchange, also known as a dialogue, a conversation or a 
meeting, between two or more communicating devices. A session is set up or established at a 
certain point in time and torn down at a later point in time. An established communication 
session may involve more than one message in each direction. A session is typically, but not 
always, stateful, meaning that at least one of the communicating entities needs to save 
information about the session history in order to be able to communicate, as opposed to 
stateless communication, where the communication consists of independent requests with 
responses. Flow tables 251A-251C may be implemented as a combination of a flow table and 
a session table.”). 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 872 of 1100



164 

No. ʼ111 Patent Claim 29 Shieh ’088 
Shieh ’088 ¶ [0036] (“During the bypass phase, the I/O function may notify the security-
processing function if there are special events in the packet stream. These events could be 
receipt of TCP FIN or TCP RST packets, or not receiving any packets of the connection within 
a time threshold. The notification from I/O functions to security processing functions could 
help to clean up the state in the security-processing nodes.”).  
 

 
No. ʼ111 Patent Claim 30 Shieh ’088 

30[a] The method according 
to claim 1, further 
comprising: receiving, 
by the network node 
from the first entity 
over the packet 
network, one or more 
additional packets;  

Shieh ’088 discloses the method according to claim 1, further comprising: receiving, by the 
network node from the first entity over the packet network, one or more additional packets. 
 
For example, Shieh ’088 discloses that its method can be applied to subsequent packets of a 
particular packet flow or session. 
 
See also Claim 1. 
 
Shieh ’088 ¶ [0018] (“According to one embodiment, an administrator can configure, for 
example, via a controller or a management entity, a network access device to set up a set of 
filtering rules specifying whether and/or what types of packets should be forwarded to a 
security device and which of the security devices for security inspection. In this embodiment, 
the controller is configured to manage multiple network access devices and/or multiple 
security devices. Alternatively, a security device may inform a network access device that 
subsequent packets of a particular session should be forwarded from the network access 
device for security inspection. In one embodiment, a security device performs the security 
inspection at the beginning of the flow or session, and at a certain point, the security device 
decides that it no longer needs to inspect further packets of the same session.). 
 
Shieh ’088 ¶ [0037] (“FIG. 2B is a processing flow diagram illustrating a process of security 
inspection according to one embodiment of the invention. Referring to FIG. 2B, as an 
example, network switch 272 may represent any of network access devices 204A-204C and 
security device 273 may represents any of security processing devices 211A-211B as 
described above with respect to FIG. 2A. When device 272 receives a packet from a source 
node 271 via transaction 281, device 272 may determine whether the packet should be 
forwarded to security device 273. For example, device 272 may look up in its session table Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 873 of 1100



165 

No. ʼ111 Patent Claim 30 Shieh ’088 
such as the one as shown in FIG. 5 to determine whether a bypass flag has been set to a 
predetermined value. If the bypass flag matches the predetermined value, the packet is 
forwarded to security device 273 via path 282; otherwise, the packet is routed to destination 
node 274. Alternatively, if there is no entry in the session table corresponding to the current 
session, the packet will also be transmitted to security device 273. After network 
device 272 receives a response from security device 273 via path 283, dependent upon the 
response, the packet may then be routed to destination node 274 via path 284. These processes 
may continue until a notification is received from security device 273 via path 285 indicating 
that it no longer wishes to receive further packets of the same session for inspection, such that 
subsequent packets will be directly routed to destination node 274 via path 286 without 
routing to security device 273. If there are certain events that have been registered from 
security device 273, network device 272 may notify security device 274 via path 287 upon 
detecting the registered events.”). 
 

30[b] checking, by the 
network node, if any 
one of the one or more 
additional packets 
satisfies the criterion;  

Shieh ’088 discloses checking, by the network node, if any one of the one or more additional 
packets satisfies the criterion. 
 
For example, Shieh ’088 discloses classifying each incoming packet, not limited to a single 
packet, to see if it satisfies the criterion in the forwarding table i.e., checking, by the network 
node, if any one of the one or more additional packets satisfies the criterion. 
 
See also Claim 1[d]. 
 
Shieh ’088 ¶ [0039] “(An I/O module running within a virtual machine is referred to herein 
as a virtual I/O module. Each of virtual I/O modules 301-304 receives packets from any of 
servers 321-324 of LAN 320 and sends packets to external network 315 outside of the 
firewall. In one embodiment, each of I/O modules 301-304 keeps a local cache (e.g., 
caches 305-308) storing location(s) of a security processing module(s) (e.g., security 
processing modules 309-311) for each connection session. A cache maintained by each I/O 
module contains a forwarding table mapping certain connection sessions to any of security 
modules 309-311. An example of a forwarding table is shown in FIG. 5. Upon receiving a 
packet, an I/O module performs a packet classification to find out the associated connection 
and forwards the packet to the corresponding security processing module identified by the 
forwarding table. If it cannot find the connection in its local cache, the packets are forwarded Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 874 of 1100



166 

No. ʼ111 Patent Claim 30 Shieh ’088 
to central controller 208 for processing. In such a case, controller 208 assigns the connection 
to one of security processing modules 309-311 based on one or more of a variety of factors 
such as load balancing. The virtual I/O modules 302-304 can be located at multiple locations 
of the networks to receive and send out packets.”). 
 

30[c] responsive to an 
additional packet not 
satisfying the criterion, 
sending, by the 
network node over the 
packet network, the 
additional packet to 
the second entity; and  

Shieh ’088 discloses responsive to an additional packet not satisfying the criterion, sending, 
by the network node over the packet network, the additional packet to the second entity.  
 
Shieh ’088 discloses transmitting each packet to the destination node without forwarding the 
packet to the security device, if the data member does not match the predetermined value, 
where the data member is inspected respective to each packet received, i.e., responsive to an 
additional packet not satisfying the criterion, sending, by the network node over the packet 
network, the additional packet to the second entity.  
 
See supra Claim 30[b].  
 
See also Claim 1[e]. 
 

30[d] responsive to the 
additional packet 
satisfying the criterion, 
sending the additional 
packet, by the network 
node over the packet 
network, in response 
to the instruction.  

Shieh ’088 discloses responsive to the additional packet satisfying the criterion, sending the 
additional packet, by the network node over the packet network, in response to the instruction. 
 
For example, Shieh ’088 discloses an embodiment in which a “virtual I/O module” functions 
as a network nodes that receives packets from servers and sends packets to an external 
network, depending on existing connections in a local cache, i.e., responsive to the additional 
packet satisfying the criterion, sending the additional packet, by the network node over the 
packet network, in response to the instruction. 
 
See supra Claim 30[b].  
 
See also Claim 1[f]. 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 875 of 1100



167 

No. ʼ111 Patent Claim 31 Shieh ’088 
31[a] The method according 

to claim 1, wherein the 
packet network is a 
Software Defined 
Network (SDN),  
 

Shieh ’088 discloses the method according to claim 1, wherein the packet network is a 
Software Defined Network (SDN). 
 
For example, Shieh ’088 discloses that it uses an OpenFlow protocol (an SDN networking 
standard) in which a packet is routed as part of the data plane. 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 

31[b] the packet is routed as 
part of a data plane 
and 

Shieh ’088 discloses that the packet is routed as part of a data plane.  
 
For example, Shieh ’088 discloses that it uses an Openflow protocol (an SDN networking 
standard) in which a packet is routed as part of the data plane. 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 876 of 1100



168 

No. ʼ111 Patent Claim 31 Shieh ’088 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 

31[c] the network node 
communication with 
the controller serves as 
a control plane.  
 

Shieh ’088 discloses that the network node communication with the controller serves as a 
control plane.  
 
For example, Shieh ’088 discloses that the controller communicates with the switches via 
the Openflow protocol. 
 
Shieh ’088 ¶ [0025] (“According to one embodiment, each of network access devices 204A-
204C maintains a persistent connection such as secure connections or tunnels 260 with a 
controller or management entity 208 for exchanging management messages and 
configurations, or distributing routing information to network access devices 204A-204C, etc. 
In one embodiment, controller 208 communicates with each of the network access 
devices 204A-204C using a management protocol such as the OpenFlow™ protocol. 
OpenFlow is a Layer 2 communications protocol (e.g., media access control or MAC layer) 
that gives access to the forwarding plane of a network switch or router over the network. In 
simpler terms, OpenFlow allows the path of network packets through the network of switches 
to be determined by software running on multiple routers (minimum two of them, primary 
and secondary, having a role of observers). This separation of the control from the forwarding 
allows for more sophisticated traffic management than is feasible using access control lists 
(ACLs) and routing protocols.”). 
 
Shieh ’088 ¶ [0026] (“The OpenFlow technology consists of three parts: flow tables installed 
on switches, a controller, and an OpenFlow protocol for the controller to talk securely with 
switches. Flow tables are set up on switches or routers. Controllers talk to the switches via 
the OpenFlow Protocol, which is secure, and impose policies on flows. For example, a simple 
flow might be defined as any traffic from a given IP address. The rule governing it might be 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 877 of 1100



169 

No. ʼ111 Patent Claim 31 Shieh ’088 
to route the flow through a given switch port. With its knowledge of the network, the 
controller could set up paths through the network optimized for speed, fewest number of hops 
or reduced latency, among other characteristics. Using OpenFlow takes control of how traffic 
flows through the network out of the hands of the infrastructure, the switches and routers, and 
puts it in the hands of the network owner (such as a corporation), individual users or individual 
applications.”). 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 878 of 1100



1 

EXHIBIT D-6 
Defendant’s Preliminary Invalidity Contentions 

Orckit Corporation v. Cisco Systems, Inc., 2:22-cv-00276-JRG-RSP  
____________________________________________________________________________________________________________ 

 
Chart for U.S. Patent 10,652,111 (“the ’111 Patent”) 

Cisco Intelligent WAN (“Cisco IWAN System”) 
 
As shown in the chart below, all Asserted Claims of the ’111 Patent are invalid under (1) AIA-35 U.S.C. § 102 (a) because Cisco 
IWAN System meets each element of those claims, (2) invalid under AIA-35 U.S.C. § 102 (a) because the references describing the 
Cisco IWAN System disclose every limitation of every Asserted Claim, and/or (3) 35 U.S.C. § 103 because Cisco IWAN System 
renders those claims obvious either alone, or in combination with the knowledge of a person having ordinary skill in the art, and in 
further combination with the references specifically identified below and in the following claim chart and/or one or more references 
identified in Defendant’s Preliminary Invalidity Contentions.  The Cisco IWAN System comprises various Cisco switches and routers 
from before April 22, 2014 that implemented Cisco’s IWAN feature.  The following quotations and diagrams come from 
documentation describing Cisco IWAN System and its functionalities that were published prior to April 22, 2014. 
 

 https://www.cisco.com/c/dam/global/hr_hr/assets/ciscoconnect/2014/pdfs/cc_see_2014_iwan_next_generation_branch.pdf  
(“IWAN Next Gen”) 

 Cisco Performance Routing (PfR) Solution Guides (“PfR Solution Guides”) 
 Cisco Intelligent WAN (IWAN): Right-Size Your Network without Compromise (“IWAN Right Size”) 
 Cisco presentation titled “Cisco Next Generation Branch Architecture”, dated November 2013 (“Cisco Next Generation”) 
 Cisco presentation titled “Cisco Intelligent WAN (IWAN)”, dated November 2013 (“Cisco IWAN”) 
 Cisco presentation titled “Cisco Intelligent WAN (IWAN) – Uncompromised Experience over Any Link”, dated November 

2013 (“Cisco IWAN – Uncompromised Experience”)  
 Cisco document titled, “Cisco Network Architecture Discovery, Planning, Design and Implementation Services for Intelligent 

WAN” (“IWAN At-A-Glance”) 
 https://www.youtube.com/watch?v=GQuRzr__N-c (“DMVPN QoS for Intelligent WAN”) 
 https://www.youtube.com/watch?v=XFsqTENxopo (“2014 March Webinar LiveAction IWAN Management”) 
 https://www.youtube.com/watch?v=8mWSXKIz2hk (“IWAN Management Technical Presentation and Demo”) 
 https://web.archive.org/web/20140226054405/http://www.cisco.com/c/en/us/solutions/enterprise-networks/intelligent-

wan/index.html (“Cisco Intelligent WAN”) 
Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 879 of 1100



2 

 https://web.archive.org/web/20140813171810/http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-
networks/intelligent-wan/white-paper-c11-729752.pdf (“Cisco IWAN and Akamai Intelligent Platform™: Maximize Your 

 WAN Investment”) 
 https://web.archive.org/web/20140225095408/http://www.cisco.com/c/dam/en/us/solutions/collateral/borderless-

networks/application-experience/connect_to_the_cloud.pdf (“Cisco Application Services Platform”) 
 
Motivations to combine the disclosures in Cisco IWAN System with disclosures in other publications known in the art, as explained in 
this chart, include at least the similarity in subject matter between the references to the extent they concern methods relating to routing 
certain network traffic to entities for further analysis and inspection.  Insofar as the references cite other patents or publications, or 
suggest additional changes, one of ordinary skill in the art would look beyond a single reference to other references in the field.  
 
These invalidity contentions are based on Defendant’s present understanding of the Asserted Claims, and Orckit’s apparent 
construction of the claims in its November 3, 2022 Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1, 
and Orckit’s January 19, 2023 First Amended Disclosure of Asserted Claims and Infringement Contentions Pursuant to P.R. 3-1 
(Orckit’s “Infringement Disclosures”), which is deficient at least insofar as it fails to cite any documents or identify accused 
structures, acts, or materials in the Accused Products with particularity.  Defendant does not agree with Orckit’s application of the 
claims, or that the claims satisfy the requirements of 35 U.S.C. § 112.  Defendant’s contentions herein are not, and should in no way 
be seen as, admissions or adoptions as to any particular claim scope or construction, or as any admission that any particular element is 
met by any accused product in any particular way.  Defendant objects to any attempt to imply claim construction from this chart.  
Defendant’s prior art invalidity contentions are made in a variety of alternatives and do not represent Defendant’s agreement or view 
as to the meaning, definiteness, written description support for, or enablement of any claim contained therein. 
 
The following contentions are subject to revision and amendment pursuant to Federal Rule of Civil Procedure 26(e), the Local Rules, 
and the Orders of record in this matter subject to further investigation and discovery regarding the prior art and the Court’s 
construction of the claims at issue. 
 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
1[preamble] A method for use with 

a packet network 
including a network 
node for transporting 
packets between first 
and second entities 

Cisco IWAN System discloses a method for use with a packet network including a network 
node for transporting packets between first and second entities under control of a controller 
that is external to the network node, the method comprising. 
 
For example, Cisco IWAN System discloses a communication method utilizing branch 
devices/border routers that transport data packets between user devices and/or data center 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 880 of 1100



3 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
under control of a 
controller that is 
external to the network 
node, the method 
comprising: 

devices.  Cisco IWAN System further discloses communication within a network using 
border routers under the control of an external hub/master controller. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.    
 
IWAN Next Gen at 11 

 
 
IWAN Next Gen at 16 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 881 of 1100



4 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
IWAN Next Gen at 17 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 882 of 1100



5 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
IWAN Next Gen at 18 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 883 of 1100



6 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
 
Cisco Next Generation  
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 884 of 1100



7 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 885 of 1100



8 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 886 of 1100



9 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 887 of 1100



10 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 888 of 1100



11 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
IWAN At-A-Glance 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 889 of 1100



12 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 890 of 1100



13 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
1[a] sending, by the 

controller to the 
network node over the 
packet network, an 
instruction and a 
packet-applicable 
criterion;  

Cisco IWAN System discloses sending, by the controller to the network node over the 
packet network, an instruction and a packet-applicable criterion. 
 
For example, Cisco IWAN System discloses sending by the hub/master controller (MC) to 
the branch devices/border routers. 
 
IWAN Next Gen at 25 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 891 of 1100



14 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 892 of 1100



15 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 893 of 1100



16 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 894 of 1100



17 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 895 of 1100



18 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 896 of 1100



19 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 897 of 1100



20 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 898 of 1100



21 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 899 of 1100



22 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 900 of 1100



23 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

1[b] receiving, by the 
network node from the 
controller, the 
instruction and the 
criterion; 

Cisco IWAN System discloses receiving, by the network node from the controller, the 
instruction and the criterion. 
 
See supra at 1[a]. 
 

1[c] receiving, by the 
network node from the 
first entity over the 
packet network, a 
packet addressed to 
the second entity; 

Cisco IWAN System discloses receiving, by the network node from the first entity over the 
packet network, a packet addressed to the second entity. 
 
For example, Cisco IWAN System discloses receiving at a branch device/border router 
traffic flows between user devices directed to data center devices. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 901 of 1100



24 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 902 of 1100



25 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 903 of 1100



26 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 904 of 1100



27 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
1[d] checking, by the 

network node, if the 
packet satisfies the 
criterion; 

Cisco IWAN System discloses checking, by the network node, if the packet satisfies the 
criterion. 
 
For example, Cisco IWAN System discloses monitoring, learning, and measuring the traffic 
flows at the branch device/border router to determine whether the traffic flow meets traffic 
policy definitions. 
 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 905 of 1100



28 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 906 of 1100



29 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 907 of 1100



30 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 908 of 1100



31 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 909 of 1100



32 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 910 of 1100



33 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

7 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 911 of 1100



34 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 912 of 1100



35 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 913 of 1100



36 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 914 of 1100



37 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
1[e] responsive to the 

packet not satisfying 
the criterion, sending, 
by the network node 
over the packet 
network, the packet to 
the second entity; and 

Cisco IWAN System discloses responsive to the packet not satisfying the criterion, sending, 
by the network node over the packet network, the packet to the second entity. 
 
For example, Cisco IWAN System discloses relaying traffic by the branch device/border 
router to intended data center devices based on a particular traffic class. A person of 
ordinary skill in the art would understand that a packet not satisfying the criterion depends 
on the particular traffic policy definition and traffic class of the packet. Thus, at least under 
the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Cisco IWAN System is found to not meet this limitation, 
responsive to the packet not satisfying the criterion, sending, by the network node over the 
packet network, the packet to the second entity would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 915 of 1100



38 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 916 of 1100



39 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 917 of 1100



40 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 918 of 1100



41 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 1[e] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the 
destination device in response to the packet not matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 919 of 1100



42 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 920 of 1100



43 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
the actions in the matched rule include an action directing processing to the next table in the 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0051] (“FIG. 5 is a flowchart of one embodiment of the OpenFlow 1.1 rule 
matching process. OpenFlow 1.1 contains support for packet tagging. OpenFlow 1.1 allows 
matching based on header fields and multi-protocol label switching (MPLS) labels. One 
virtual LAN (VLAN) label and one MPLS label can be matched per table. The rule 
matching process is initiated with the arrival of a packet to be processed (Block 501 ). 
Starting at the first table 0 a lookup is performed to determine a match with the received 
packet (Block 503). If there is no match in this table, then one of a set of default actions is 
taken (i.e., send packet to controller, drop the packet or continue to next table) (Block 509). 
If there is a match, then an update to the action set is made along with counters, packet or 
match set fields and meta data (Block 505). A check is made to determine the next table to 
process, which can be the next table sequentially or one specified by an action of a matching 
rule (Block 507). Once all of the tables have been processed, then the resulting action set is 
executed (Block 511). FIG. 6 is a diagram of the fields, which a matching process can 
utilize for identifying rules to apply to a packet.”) 
 
Kempf at [0053] (“In one embodiment, a group table can be supported in conjunction with 
the OpenFlow 1.1 protocol. Group tables enable a method for allowing a single flow match 
to trigger forwarding on multiple ports. Group table entries consist of four fields: a group 
identifier, which is a 32 bit unsigned integer identifying the group; a group type that 
determines the group's semantics; counters that maintain statistics on the group; and an 
action bucket list, which is an ordered list of action buckets, where each bucket contains a 
set of actions to execute together with their parameters.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 921 of 1100



44 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at Figure 5 (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 922 of 1100



45 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 923 of 1100



46 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
As another example, Swenson discloses monitoring and categorizing network traffic by the 
steering device based on instructions and desired criteria sent by the network controller to 
determine if packet flows require further inspection.  Based on the instruction and desired 
criteria, the network controller monitors and optimizes only a subset of network traffic.  
Packet flows that do not meet the desired criteria from the network controller’s instructions 
at the steering device are not sent for further inspection and are sent to their originally 
intended destination. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 924 of 1100



47 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 925 of 1100



48 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0042] (“The network controller 140 collects real-time statis-tical data on the 
network flows from core network side with-out probes deployed in the RAN network. The 
statistical data is stored and compared against historical flow data to estimate level of 
congestion and available network bandwidth. Instead of collecting traffic statistics for every 
flow and every session, the network controller 140 samples only large flows involving 
media objects such as videos and images above a certain size ( e.g., above 50 kB). The 
network controller 140 can choose to be a pass-through device to monitor the large flows as 
well as to determine whether to optimize the flows. Measuring only larger flows has the 
advantage to mitigate corruptions caused by origin server latency and network glitches. 
Furthermore, focusing on the large flows helps the network controller to reduce the 
background noise and to increase noise-to-signal ratio in bandwidth measuring by removing 
the impact of millions of tiny or small flows with delivery time in millisec-onds. Therefore 
the reliability of bandwidth estimation and congestion detection is much higher.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 926 of 1100



49 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 927 of 1100



50 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

1[f] responsive to the 
packet satisfying the 
criterion, sending the 
packet, by the network 
node over the packet 
network, to an entity 
that is included in the 

Cisco IWAN System discloses responsive to the packet satisfying the criterion, sending the 
packet, by the network node over the packet network, to an entity that is included in the 
instruction and is other than the second entity. 
 
For example, Cisco IWAN System discloses sending traffic flow metrics to the hub/master 
controller by the branch device/border router based on a particular traffic class.  Thus, at 
least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Cisco IWAN System is found to not meet this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 928 of 1100



51 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
instruction and is other 
than the second entity. 

limitation, responsive to the packet satisfying the criterion, sending the packet, by the 
network node over the packet network, to an entity that is included in the instruction and is 
other than the second entity would have been obvious to a person having ordinary skill in 
the art, as explained below. 
 
Cisco IWAN 
 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 929 of 1100



52 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 930 of 1100



53 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 931 of 1100



54 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 932 of 1100



55 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 933 of 1100



56 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 1[f] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the 
controller or another table, in response to the packet matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 934 of 1100



57 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 935 of 1100



58 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 5 (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 936 of 1100



59 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 937 of 1100



60 

No. ʼ111 Patent Claim 1 Cisco IWAN System 

 
For example, Swenson discloses determining by the steering device monitors flows that 
match one or more signatures or criteria of the packet. Swenson further discloses that when 
a matching flow is detected the steering device forwards the packet to the network 
controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 938 of 1100



61 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 939 of 1100



62 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 940 of 1100



63 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 941 of 1100



64 

No. ʼ111 Patent Claim 1 Cisco IWAN System 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 

 Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 942 of 1100



65 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
2[a] The method according 

to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  

Cisco IWAN System discloses the method according to claim 1, wherein the instruction is 
‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
For example, Cisco IWAN System discloses traffic policies sent by the hub/master 
controller to the branch devices/border routers, including probing, forwarding, and blocking 
policies.  A person of ordinary skill in the art would understand that such traffic policies 
could include any number of definitions including ‘probe’, ‘mirror’, and ‘terminate’.  Thus, 
at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this 
limitation is met.  To the extent that the Cisco IWAN System is found to not meet this 
limitation, wherein the instruction is ‘probe’, ‘mirror', or ‘terminate’ instruction would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Cisco IWAN 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 943 of 1100



66 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 944 of 1100



67 

No. ʼ111 Patent Claim 2 Cisco IWAN System 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 2[a] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses programming network nodes with redirecting, mirroring, and 
blocking programmed actions. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 945 of 1100



68 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device 
of service devices 116) for either inspection or to keep a potential hacker 'busy' to determine 
if there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may 
cause the net-work devices to change a path along which the packet is forwarded. For 
example, when the service device is a security device (e.g., a firewall or an IDS), if the 
security device determines that one or more packets of a packet flow are malicious, the 
security device may send service data indicat-ing that the packet flow includes malicious 
data. SDN con-troller 112 may program the network devices of the SDN to perform a 
programmed action based on the service-related data (336). For example, SDN controller 
112 may program network devices to, in response to an indication that packets of a packet 
flow include malicious data, forward packets of the packet flow to a destination of the 
packet flow, forward packets of malicious packet flows to a collection device for further 
analysis, cause network devices to drop packets of the malicious packet flows, send a close 
session message to devices from which packets of the malicious packet flows were received, 
block the packets of the packet flow, mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of 
the packet flow, redirect the packets of the packet flow to a third service device, transform 
one or more values of headers of the packets, and/or encapsulate the pack-ets with a 
particular header, or other such actions.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 946 of 1100



69 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
As another example, Copeland discloses probing, copying, and terminating rules configured 
on the network device. 
 
Copeland at [0057] (“In accordance with an aspect of the invention, a flow is considered 
terminated after a predetermined period of time has elapsed on a particular connection or 
port. For example, if HTTP Web traffic on port 80 ceases for a predetermined period of 
time, but other traffic begins to occur on port 80 after the expiration of that predetermined 
time period, it is considered that a new flow has begun, and the system responds accordingly 
to assign a new flow number and track the statistics and characteristics thereof. In the 
disclosed embodiment, the predetermined time period is 330 seconds, but those skilled in 
the art will understand that this time is arbitrary and may be heuristically adjusted.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 947 of 1100



70 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
 
Copeland at [0099] (“As another example, if a particular host sends a large number of SYN 
packets to a target host and in response receives numerous R packets from the targeted host, 
a potential TCP probe is indicated. Likewise, numerous UDP packets sent from one host to 
a targeted host and numerous ICMP "port unavailable" packets received from the targeted 
host indicate a potential UDP probe. A stealth probe is indicated by multiple packets from 
the same source port number sent to different port numbers on a targeted host.”) 
 
Copeland at [0107] (“A flow is terminated if no communications occur between the two IP 
addresses and the one low port ( e.g. port 80) for 330 seconds. Most Web browsers or a TCP 
connec-tion send a reset packet (i.e. a packet with the R flag set) if no communications are 
sent or received for 5 minutes. An analysis can determine if the flow is abnormal or not for 
HTTP communications.”) 
 
Copeland at [0123] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 
8) have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of 
hosts scanned "statistically significant". These and other values of concern index are shown 
for non-flow based events in FIG. 7.”) 
 
Copeland at [0158] (“Flow processing is done for TCP and UDP packets, and the port 
numbers in the transport layer header are used to identify the flow record to be updated. For 
ICMP packets that constitute rejections of a packet, the copy of the rejected packet in the 
ICMP data field is used to identify the IP addresses and port numbers of the corresponding 
flow.”) Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 948 of 1100



71 

No. ʼ111 Patent Claim 2 Cisco IWAN System 
 

2[b] upon receiving by the 
network node the 
‘terminate’ instruction, 
the method further 
comprising blocking, 
by the network node, 
the packet from being 
sent to the second 
entity and to the 
controller.  

Cisco IWAN System discloses upon receiving by the network node the ‘terminate’ 
instruction, the method further comprising blocking, by the network node, the packet from 
being sent to the second entity and to the controller. 
 
For example, Cisco IWAN System discloses blocking or preventing the forwarding of 
traffic flows by the branch device/border router to the intended data center device or 
hub/master controller based on a particular traffic policy definition. 
 
Cisco IWAN 

 
 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
3[a] The method according 

to claim 1, wherein the 
Cisco IWAN System discloses the method according to claim 1, wherein the instruction is a 
‘probe’, a ‘mirror’, or a ‘terminate’ instruction. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 949 of 1100



72 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
instruction is a 
‘probe’, a ‘mirror’, or 
a ‘terminate’ 
instruction, and  

 
See supra at 2(a). 

3[b] upon receiving by the 
network node the 
‘mirror’ instruction 
and responsive to the 
packet satisfying the 
criterion, the method 
further comprising 
sending the packet, by 
the network node, to 
the second entity and 
to the controller.  

Cisco IWAN System discloses upon receiving by the network node the ‘mirror’ instruction 
and responsive to the packet satisfying the criterion, the 4[b]method further comprising 
sending the packet, by the network node, to the second entity and to the controller. 
 
For example, Cisco IWAN System discloses traffic policies sent by the hub/master 
controller to the branch devices/border routers, including forwarding policies.  A person of 
ordinary skill in the art would understand that such traffic policies could include any 
number of definitions including a mirror instruction in which, responsive to determining a 
particular traffic class of the traffic flow, forwarding the traffic to the intended data center 
device as well as the hub/master controller. Thus, at least under the apparent claim scope 
alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the 
Cisco IWAN System is found to not meet this limitation, upon receiving by the network 
node the ‘mirror' instruction and responsive to the packet satisfying the criterion, method 
further comprising sending the packet, by the network node, to the second entity and to the 
controller would have been obvious to a person having ordinary skill in the art, as explained 
below. 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 950 of 1100



73 

No. ʼ111 Patent Claim 3 Cisco IWAN System 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 3[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Chua discloses a mirror program in response to an indication based on the 
packet header in which the network devices mirror copies of the packets of the packet flow 
to a second service device while forwarding the packets of the packet flow to the destination 
of the packet flow. 
 
Chua at 7:28-54 (“SDN controller 112 may receive data as input from service devices 116. 
For example, SDN controller 112 may be con-figured to receive data from an intrusion 
detection system (IDS) device, a Denial of Service (DoS) device, a Distributed Denial of 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 951 of 1100



74 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
Service (DDoS) device, an intrusion prevention system (IPS) device, or the like. Based on 
this information, SDN controller 112 may make network enforcement decisions for specific 
traffic flows. That is, SDN controller 112 may program network devices of SDN 106 to 
perform pro-grammed actions on packets of a packet flow based on this data. Such 
programmed actions may include: 
 
Allow-explicitly allow a certain network flow to proceed to its destination  
Block-explicitly block a certain flow from traversing SDN 106  
Mirror-allow the traffic, but send a copy of the traffic for deeper inspection or recording to, 
e.g., one of service devices 116 
Redirect-redirect the traffic to another network (such as a honeypot device or other device 
of service devices 116) for either inspection or to keep a potential hacker 'busy' to determine 
if there is a real security threat. 
Transform-modify or translate values of headers of packets in the network flow  
Encapsulate-encapsulate packets in the network flow with a particular header”) 
 
Chua at 16:23-44 (“More particularly, control unit 130 may configure any of service devices 
116 to send data representative of a particular event to SDN controller 112, and control unit 
130 may auto-matically reprogram one or more network devices of SDN 106 in response to 
such data. For example, security monitor-ing applications of service devices 116 may 
determine that a specific source port, destination port, source IP address, des-tination IP 
address, or the like should be acted upon. Alter-natively, security monitoring applications 
may determine that, due to content or deep packet inspection, a specific type of traffic is 
malicious and should be blocked. In either case, the corresponding one of service devices 
116 may send a message to SDN controller 112 representative of these deter-minations. As 
yet another example, a network performance device may monitor various performance 
metrics, such as latency, jitter, packet loss, or the like, and provide feedback data to SDN 
controller 112 based on these metrics. SDN controller 112 may respond by programming 
network devices of SDN 106 to perform a programmed action, such as allowing 
corresponding traffic, blocking corresponding traf-fic, mirroring corresponding traffic, 
redirecting correspond-ing traffic.”) 
 
Chua at 28:7-32 (“In addition, SDN controller 112 may configure the service device to send 
service-related data to one or more network devices (334). The service-related data may Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 952 of 1100



75 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
cause the net-work devices to change a path along which the packet is forwarded. For 
example, when the service device is a security device (e.g., a firewall or an IDS), if the 
security device determines that one or more packets of a packet flow are malicious, the 
security device may send service data indicat-ing that the packet flow includes malicious 
data. SDN con-troller 112 may program the network devices of the SDN to perform a 
programmed action based on the service-related data (336). For example, SDN controller 
112 may program network devices to, in response to an indication that packets of a packet 
flow include malicious data, forward packets of the packet flow to a destination of the 
packet flow, forward packets of malicious packet flows to a collection device for further 
analysis, cause network devices to drop packets of the malicious packet flows, send a close 
session message to devices from which packets of the malicious packet flows were received, 
block the packets of the packet flow, mirror copies of the packets of the packet flow to a 
second service device while forwarding the packets of the packet flow to the destination of 
the packet flow, redirect the packets of the packet flow to a third service device, transform 
one or more values of headers of the packets, and/or encapsulate the pack-ets with a 
particular header, or other such actions.”) 
 
As another example, Swenson discloses a counting mode instructed by the network 
controller to the steering device for monitoring and optimizing, in which the steering device 
forwards the packet flow to the user device/origin server and at the same time, sending the 
packet flow to the network controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 953 of 1100



76 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0064] (“Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 954 of 1100



77 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net-work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
Swenson at [0072] (“In one embodiment, if the video optimizer 150 failed to retrieve user 
requested video file from the origin server 160, the video optimizer 150 appends a "do not 
transcode" flag to the HTTP redirect request and returned to the user device 110, which re-
sends the request out over the network to the origin server 160. The origin server 160 
responds appropriately to the request by sending back video 624, which is intercepted by the 
steering device 130 only. The steering device 130 forwards the video to the user device 110 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 955 of 1100



78 

No. ʼ111 Patent Claim 3 Cisco IWAN System 
and at the same time reports the flow size to the network controller 140 for monitoring 
purpose.”) 
 

 
No. ʼ111 Patent Claim 4 Cisco IWAN System 

4[a] The method according 
to claim 1, wherein the 
instruction is ‘probe’, 
‘mirror’, or ‘terminate’ 
instruction, and  
 

Cisco IWAN System discloses the method according to claim 1, wherein the instruction is 
‘probe’, ‘mirror’, or ‘terminate’ instruction. 
 
See supra at 2(a). 

4[b] upon receiving by the 
network node the 
‘probe’ instruction and 
responsive to the 
packet satisfying the 
criterion, the method 
further comprising: 
sending the packet, by 
the network node, to 
the controller;  

Cisco IWAN System discloses upon receiving by the network node the ‘probe’ instruction 
and responsive to the packet satisfying the criterion, the method further comprising: sending 
the packet, by the network node, to the controller. 
 
For example, Cisco IWAN System discloses a probe policy enforced by the branch 
device/border router in which traffic flow metrics are sent to the hub/master controller upon 
determining the traffic belongs to a particular traffic class.  A person of ordinary skill in the 
art would understand that such traffic policies could include any number of definitions in 
which, responsive to determining a particular traffic class of the traffic flow, forwards the 
traffic to the hub/master controller. Thus, at least under the apparent claim scope alleged by 
Orckit’s Infringement Disclosures, this limitation is met.  To the extent that the Cisco 
IWAN System is found to not meet this limitation, upon receiving by the network node the 
‘probe’ instruction and responsive to the packet satisfying the criterion, the method further 
comprising: sending the packet, by the network node, to the controller would have been 
obvious to a person having ordinary skill in the art, as explained below. 
 
 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 956 of 1100



79 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 957 of 1100



80 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 958 of 1100



81 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 959 of 1100



82 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 960 of 1100



83 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 961 of 1100



84 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 4[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses sending the packet from the network element to the 
controller or another table, in response to the packet matching the action in the flow table. 
 
Kempf at [0044] (“FIG. 1 is a diagram of one embodiment of an example network with an 
OpenFlow switch, conforming to the OpenFlow 1.0 specification. The OpenFlow 1.0 
protocol enables a controller 101 to connect to an OpenFlow 1.0 enabled switch 109 using a 
secure channel 103 and control a single forwarding table 107 in the switch 109. The 
controller 101 is an external software component executed by a remote computing device 
that enables a user to configure the Open-Flow 1.0 switch 109. The secure channel 103 can 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 962 of 1100



85 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
be provided by any type of network including a local area network (LAN) or a wide area 
network (WAN), such as the Internet.”) 
 
Kempf at [0045] (“FIG. 2 is a diagram illustrating one embodiment of the contents of a flow 
table entry. The forwarding table 107 is populated with entries consisting of a rule 201 
defining matches for fields in packet headers; an action 203 associated to the flow match; 
and a collection of statistics 205 on the flow. When an incoming packet is received a lookup 
for a matching rule is made in the flow table 107. If the incoming packet matches a 
particular rule, the associated action defined in that flow table entry is performed on the 
packet.”) 
 
Kempf at [0046] (“A rule 201 contains key fields from several headers in the protocol stack, 
for example source and destination Ethernet MAC addresses, source and destination IP 
addresses, IP protocol type number, incoming and outgoing TCP or UDP port numbers. To 
define a flow, all the available matching fields may be used. But it is also possible to restrict 
the matching rule to a subset of the available fields by using wildcards for the unwanted 
fields.”) 
 
Kempf at [0047] (“The actions that are defined by the specification of OpenFlow 1.0 are 
Drop, which drops the matching packets; Forward, which forwards the packet to one or all 
outgoing ports, the incoming physical port itself, the controller via the secure channel, or the 
local networking stack (if it exists). OpenFlow 1.0 protocol data units (PDU s) are defined 
with a set of structures specified using the C programming language. Some of the more 
commonly used messages are: report switch configuration message; modify state messages 
(in-cluding a modify flow entry message and port modification message); read state 
messages, where while the system is running, the datapath may be queried about its current 
state using this message; and send packet message, which is used when the controller wishes 
to send a packet out through the datapath.”) 
 
Kempf at [0050] (“FIG. 4 illustrates one embodiment of the processing of packets through 
an OpenFlow 1.1 switched packet pro-cessing pipeline. A received packet is compared 
against each of the flow tables 401. After each flow table match, the actions are 
accumulated into an action set. If processing requires matching against another flow table, 
the actions in the matched rule include an action directing processing to the next table in the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 963 of 1100



86 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
pipeline. Absent the inclusion of an action in the set to execute all accumulated actions 
immediately, the actions are executed at the end 403 of the packet processing pipeline. An 
action allows the writing of data to a metadata register, which is carried along in the packet 
processing pipe-line like the packet header.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0106] (“This encapsulates the packet and sends it to the OpenFlow controller.”) 
 
Kempf at Figure 5 (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 964 of 1100



87 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Kempf at Figure 2 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 965 of 1100



88 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
For example, Swenson discloses determining by the steering device monitors flows that 
match one or more signatures or criteria of the packet. Swenson further discloses that when 
a matching flow is detected the steering device forwards the packet to the network 
controller. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 966 of 1100



89 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 967 of 1100



90 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of"reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0045] (“The steering device interface 316 interacts with an external routing 
appliance, such as the steering device 130 to divert portions of the network traffic ( e.g., 
large object net-work flows). Existing routing appliances in most carrier net-works are 
designed to handle large amounts of network traf-fic. They are not, however, ideal devices 
to operate for monitoring and analysis individual flows. Through the steer-ing device 
interface 316, the network controller 140 may communicate with the external routing 
appliances, such as the steering device 130, to steer a portion of network traffic to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 968 of 1100



91 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
network controller 140 when certain conditions are met. Generally, network flows of 
interest to the network controller 140 contain larger media objects, such as videos and 
images.  In one embodiment, the smaller flows, such as web page and text information, are 
not exchanged over the steering device interface 316.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 969 of 1100



92 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 970 of 1100



93 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
4[c] responsive to receiving 

the packet, analyzing 
the packet, by the 
controller; 

Cisco IWAN System discloses responsive to receiving the packet, analyzing the packet, by 
the controller. 
 
For example, Cisco IWAN System discloses analyzing traffic flow metrics received by the 
hub/master controller to update and change traffic policy definitions. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Cisco IWAN System is found to not meet this limitation, 
responsive to receiving the packet, analyzing the packet, by the controller would have been 
obvious to a person having ordinary skill in the art, as explained below. 
 
Cisco IWAN 

 
Cisco IWAN - Uncompromised Experience 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 971 of 1100



94 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 972 of 1100



95 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 4(c) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 973 of 1100



96 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 974 of 1100



97 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of "reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 975 of 1100



98 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 976 of 1100



99 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 977 of 1100



100 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 978 of 1100



101 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 979 of 1100



102 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
For example, Copeland discloses analyzing packets received by the intrusion detection 
engine on the monitoring appliance. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 980 of 1100



103 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
Copeland at [0021] (“The present invention provides an accurate and reliable method for 
detecting network attacks through the use of sampled packet headers that are provided by a 
source such as that as defined in sFlow and further based in large part on "flows" as opposed 
to signatures or anomalies. By utilizing the host and flow information structures that are 
inherent with flow-based analysis and applying rules of statistical significance and analysis, 
the intrusion detection system can operate with sampled data such as provided by sFlow in 
order to provide a hybrid solution that combines many of the benefits of a packet capture 
implementation with the distributed nature of an IDS that operates on Netflow, thus 
providing an enhanced wide-area IDS solu-tion.”) 
 
Copeland at [0023] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are 
collected for each determined flow. Then, the flow statistics are analyzed to determine if the 
flow appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in 
intruder activity without generation of significant unwarranted false alarms. When the 
concern index value of a host exceeds a preset alarm value, an alert is issued and appropriate 
action can be taken.”) 
 
Copeland at [0024] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detrimental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port 
remains constant allows for more efficient analysis of the flow data. The collected flow data 
is analyzed to assign a concern index value to the flow based upon a probability that the 
flow was not normal for data communications. A host list is main-tained containing an 
accumulated concern index derived from the flows associated with the host. Once the 
accumu-lated concern index has exceeded an alarm threshold value, an alarm signal is 
generated.”) 
 
Copeland at [0027] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 981 of 1100



104 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
collected for each determined flow. Then, the flow statistics are analyzed to determine if the 
flow appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in 
intruder activity without generation of significant unwarranted false alarms. When the 
concern index value of a host exceeds a preset alarm value, an alert is issued and appropriate 
action can be taken.”) 
 
Copeland at [0028] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detri-mental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port 
remains constant allows for more efficient analysis of the flow data. The collected flow data 
is analyzed to assign a concern index value to the flow based upon a probability that the 
flow was not normal for data communications. A host list is main-tained containing an 
accumulated concern index derived from the flows associated with the host. Once the 
accumu-lated concern index has exceeded an alarm threshold value, an alarm signal is 
generated.”) 
 
Copeland at [0063] (“Consequently, abnormal flows and/or events iden-tified by the 
intrusion detection engine 155 will raise the concern index (CI) for the associated host. The 
intrusion detection engine 155 analyzes the data flow between IP devices. However, 
different types of services have different flow characteristics associated with that service. 
Therefore, a C/S flow can be determined by the packets exchanged between the two hosts 
dealing with the same service.”) 
 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular 
traffic or flow or suspicious activity. The flow concern index values have been derived 
heuristically from extensive net-work traffic analysis. Concern index values are associated 
with particular hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 982 of 1100



105 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
index values for various exemplary flow-based events and other types of events are 
illustrated in connection with FIGS. 6 and 7.) 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of 
intrusion detection is accomplished at least in part by analyzing communication flows to 
determine if such communications have the flow characteristics of probes or attacks. By 
analyzing communications for abnormal flow characteristics, attacks can be determined 
without the need for resource-intensive packet data analysis. A flow can be determined from 
the packets 101 that are transmitted between two hosts utilizing a single service. The 
addresses and port numbers of communications are easily discerned by analysis of the 
header information in a datagram.”) 
 
Copeland at [0087] (“As previously stated, the flow-based engine 155 does not analyze the 
data segments of packets for signature identification. Instead, the engine 155 associates all 
packets with a flow. It analyzes certain statistical data and assigns a concern index value to 
abnormal activity. The engine 155 builds a concern index for suspicious hosts by detecting 
suspicious activities on the network. An alarm is generated when those hosts build enough 
concern (in the form of a cumulated CI value) to cross the network administrator's 
predetermined threshold.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
 
Copeland at [0111] (“As shown, the packets exchanged between two hosts associated with a 
single service can determine a flow. A port number designates a service application that is 
associated with the particular port. Communications utiliz-ing differing protocols or services Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 983 of 1100



106 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
provide differing flow characteristics. Consequently, the flow engine 155 analyzes each of 
the services separately.”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
 
 

4[d] sending the packet, by 
the controller, to the 
network node; and  

Cisco IWAN System discloses sending the packet, by the controller, to the network node. 
 
For example, Cisco IWAN System discloses sending updated traffic policies with traffic 
flow metrics to the branch devices/border routers.  Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Cisco IWAN System is found to not meet this limitation, sending the packet, by the 
controller, to the network node would have been obvious to a person having ordinary skill in 
the art, as explained below. 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 984 of 1100



107 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 985 of 1100



108 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 986 of 1100



109 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 987 of 1100



110 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 4(d) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
 
For example, Swenson discloses sending the packet, for example a video or image, back to 
the steering device after the network controller analyzes the packet and updates flow 
statistics. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 988 of 1100



111 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 989 of 1100



112 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
network controller 140 can then estimate the amount ofbandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0057] (“The Internet content adaption protocol is a light-weight protocol aimed 
at executing a simple remote proce-dure call on HTTP messages. ICAP leverages edge-
based devices to help deliver value-added services using transparent HTTP proxy caches. 
Content adaptation refers to performing the particular value added service, such as content 
manipula-tion or other processing, for the associated HTTP client request/response. ICAP 
clients pass HTTP messages to ICAP servers for transformation or other processing. In tum, 
the ICAP server executes its transformation service on the HTTP messages and sends back 
responses to the ICAP client. At the core of this process is a cache that can proxy all client 
trans-actions and process them through ICAP servers, which may focus on specific 
functions, such as ad insertion, virus scan-ning, content translation, language translation, or 
content fil-tering. ICAP servers, such as those utilized by the network controller 140, handle 
these tasks to off-load value-added services from network devices including an ICAP client, 
such as the steering device 130. By offloading value added services from the steering device 
130, processing infrastructure (e.g., optimization services and network controllers) may be 
scaled independent from the steering devices handling raw HTTP throughput.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 990 of 1100



113 

No. ʼ111 Patent Claim 4 Cisco IWAN System 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 991 of 1100



114 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 

4[e] responsive to receiving 
the packet, sending the 
packet, by the network 
node, to the second 
entity.  

Cisco IWAN System discloses responsive to receiving the packet, sending the packet, by the 
network node, to the second entity. 
 
For example, Cisco IWAN System discloses upon receiving updated traffic policies, 
sending the traffic to the intended data center device. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 992 of 1100



115 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 993 of 1100



116 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 994 of 1100



117 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 995 of 1100



118 

No. ʼ111 Patent Claim 4 Cisco IWAN System 

 
No. ʼ111 Patent Claim 5 Cisco IWAN System 

5 The method according 
to claim 1, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending 
the packet or a portion 
thereof, by the 
network node, to the 
controller.  
 

Cisco IWAN System discloses the method according to claim 1, further comprising 
responsive to the packet satisfying the criterion and to the instruction, sending the packet or 
a portion thereof, by the network node, to the controller.  
 
For example, Cisco IWAN System discloses sending traffic flow metrics to the hub/master 
controller upon determining the traffic belongs to a particular traffic class. Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Cisco IWAN System is found to not meet this limitation, 
responsive to the packet satisfying the criterion and to the instruction, sending the packet or 
a portion thereof, by the network node, to the controller would have been obvious to a 
person having ordinary skill in the art, as explained below. 
 
See supra at Claim 1. 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 996 of 1100



119 

No. ʼ111 Patent Claim 5 Cisco IWAN System 
 
Cisco Next Generation 
 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 997 of 1100



120 

No. ʼ111 Patent Claim 5 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 998 of 1100



121 

No. ʼ111 Patent Claim 5 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 999 of 1100



122 

No. ʼ111 Patent Claim 5 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 5 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
 
For example, Copeland discloses sending packets and sampled packet headers to the 
intrusion detection engine on the monitoring appliance based on matching predetermined 
values associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1000 of 1100



123 

No. ʼ111 Patent Claim 5 Cisco IWAN System 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured 
and processed by the sample packet collector 505 in order to create a "Packet Data" data 
struc-ture that includes the sFlow agent source of the packets, the header of the sampled 
packets, and other information avail-able from the sFlow data stream that may be important. 
For  
example, one data field that is optionally available pr vides the username of the user using 
the computer at the time of the communications. This information is extremely useful in 
some environments subject to regulatory requirements and monitoring of the 
communications on the network. In this case the username will be stored as "supplementary 
infor-mation" for auditing purposes in the flow data. Other infor-mation, including the 
sampling device and the physical port on which the communications was detected may also 
be retained for other uses such as mitigation, where a host may be removed from the 
network.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1001 of 1100



124 

No. ʼ111 Patent Claim 5 Cisco IWAN System 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number 
of flows active with matching IP addresses but no matching port number. If this number 
exceeds a predetermined threshold value (e.g., 4) and is greater than the previous number 
noticed, CI is added for an amount corresponding to a "port scan." A bit in the host record is 
set to indicate that the host has received CI for "port scanning."”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1002 of 1100



125 

No. ʼ111 Patent Claim 5 Cisco IWAN System 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
 

 
No. ʼ111 Patent Claim 6 Cisco IWAN System 

6 The method according 
to claim 5, further 
comprising storing the 
received packet or a 
portion thereof, by the 
controller, in a 
memory.  

Cisco IWAN System discloses the method according to claim 5, further comprising storing 
the received packet or a portion thereof, by the controller, in a memory. 
 
For example, Cisco IWAN System discloses storing traffic statistics and monitoring records 
of the traffic flow. Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  
 
See supra at Claim 5. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1003 of 1100



126 

No. ʼ111 Patent Claim 6 Cisco IWAN System 

 
 

No. ʼ111 Patent Claim 7 Cisco IWAN System 
7 The method according 

to claim 5, further 
comprising responsive 
to the packet satisfying 
the criterion and to the 
instruction, sending a 
portion of the packet, 
by the network node, 
to the controller.  

Cisco IWAN System discloses the method according to claim 5, further comprising 
responsive to the packet satisfying the criterion and to the instruction, sending a portion of 
the packet, by the network node, to the controller. 
 
For example, Cisco IWAN System discloses sending traffic flow metrics to the hub/master 
controller upon determining the traffic belongs to a particular traffic class. Thus, at least 
under the apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation 
is met.  To the extent that the Cisco IWAN System is found to not meet this limitation, 
responsive to the packet satisfying the criterion and to instruction, sending a portion of the 
packet, by the network node, to the controller would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
See supra at Claim 5. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1004 of 1100



127 

No. ʼ111 Patent Claim 7 Cisco IWAN System 
Cisco Next Generation 
 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1005 of 1100



128 

No. ʼ111 Patent Claim 7 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1006 of 1100



129 

No. ʼ111 Patent Claim 7 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1007 of 1100



130 

No. ʼ111 Patent Claim 7 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 5 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
 
For example, Copeland discloses sending packets and sampled packet headers to the 
intrusion detection engine on the monitoring appliance based on matching predetermined 
values associated with a concern index. 
 
Copeland at [0067] (“The host servers 130 are directly or indirectly coupled to one or more 
network devices 135 such as routers or switches that support providing a sampled data 
stream such as that provided by sFlow. In a typical preferred configuration for the present 
invention, a monitoring appli-ance 150 operating a flow-based intrusion detection engine 
155 is receiving sampled packet headers from one or more network devices 135. The 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1008 of 1100



131 

No. ʼ111 Patent Claim 7 Cisco IWAN System 
monitoring appliance 150 moni-tors the communications between the host server 130 and 
other hosts 120, 110 in the attempt to detect intrusion activity.”) 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
 
Copeland at [0120] (“The sampled packet headers sent from the sFlow agent are captured 
and processed by the sample packet collector 505 in order to create a "Packet Data" data 
struc-ture that includes the sFlow agent source of the packets, the header of the sampled 
packets, and other information avail-able from the sFlow data stream that may be important. 
For  
example, one data field that is optionally available pr vides the username of the user using 
the computer at the time of the communications. This information is extremely useful in 
some environments subject to regulatory requirements and monitoring of the 
communications on the network. In this case the username will be stored as "supplementary 
infor-mation" for auditing purposes in the flow data. Other infor-mation, including the 
sampling device and the physical port on which the communications was detected may also 
be retained for other uses such as mitigation, where a host may be removed from the 
network.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1009 of 1100



132 

No. ʼ111 Patent Claim 7 Cisco IWAN System 
Copeland at [0126]-[0129] (“If a particular packet 101 being processed by the packet 
classifier 510 matches a particular entry or record in the flow data structure 162, data from 
that particular packet 101 is used to update the statistics in the corresponding flow data 
structure record. A packet 101 is considered to match to a flow data structure record if both 
IP numbers match and the source of the sampled packet matches and: 
 
(1) both port numbers match and no port is marked as the "server" port, or  
(2) the port number previously marked as the "server" port matches, or  
(3) one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
Copeland at [0144] (“Concern index (CI) values calculated from packet anomalies also add 
to a host's accumulated concern index value. Table II of FIG. 7 shows one scheme for 
assigning concern index values due to other events revealed by the flow analysis. For 
example, there are many combinations of TCP flag bits that are rarely or never seen in valid 
TCP connections. When the packet classifier thread 510 recog-nizes one of these 
combinations, it directly adds a predeter-mined value to the sending host's accumulated 
concern index value. When the packet classifier thread 510 searches along the flow linked-
list (i.e. flow data 162) for a match to the current packet 101, it keeps count of the number 
of flows active with matching IP addresses but no matching port number. If this number 
exceeds a predetermined threshold value (e.g., 4) and is greater than the previous number 
noticed, CI is added for an amount corresponding to a "port scan." A bit in the host record is 
set to indicate that the host has received CI for "port scanning."”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1010 of 1100



133 

No. ʼ111 Patent Claim 7 Cisco IWAN System 
Copeland at [0159]-[0162] (“A packet 101 is considered to match to a flow data structure 
record if both IP numbers match and the source of the sampled data matches and: 
 
(a). both port numbers match and no port is marked as the "server" port, or  
(b). the port number previously marked as the "server" port matches, or  
(c). one of the port numbers matches, but the other does not, and the neither port number has 
been marked as the server port (in this case the matching port number is marked as the 
"server" port).”) 
 
 

 
No. ʼ111 Patent Claim 8 Cisco IWAN System 

8[a] The method according 
to claim 7, wherein the 
portion of the packet 
consists of multiple 
consecutive bytes, and  

Cisco IWAN System discloses the method according to claim 7, wherein the portion of the 
packet consists of multiple consecutive bytes. 
 
On information and belief, Cisco IWAN System discloses fragmenting packets into smaller 
byte sizes. Thus, at least under the apparent claim scope alleged by Orckit’s Infringement 
Disclosures, this limitation is met.  To the extent that the Cisco IWAN System is found to 
not meet this limitation, wherein the portion of the packet consists of multiple consecutive 
bytes would have been obvious to a person having ordinary skill in the art, as explained 
below. 
 
See supra at Claim 7. 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 8(a) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses consecutive bytes of a packet header field. 
 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1011 of 1100



134 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1012 of 1100



135 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1013 of 1100



136 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number bitmask 0xFF0l and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are 0x31, indicating that 
the version number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 
For example, Copeland discloses fragmenting packets into smaller byte sizes, including 
headers and flags.  Copeland further discloses sending sampled packet headers, consisting 
of fragmented packets of consecutive bytes to the monitoring device. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
 

8[b] wherein the instruction 
comprises 
identification of the 
consecutive bytes in 
the packet.  

Cisco IWAN System discloses wherein the instruction comprises identification of the 
consecutive bytes in the packet. 
 
On information and belief, Cisco IWAN System discloses wherein the instruction comprises 
identification of the consecutive bytes in the packet. Thus, at least under the apparent claim Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1014 of 1100



137 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Cisco IWAN System is found to not meet this limitation, coupling each of the one 
or more interface modules to a communication network using a second group of second 
physical links arranged in parallel would have been obvious to a person having ordinary 
skill in the art, as explained below. 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 8(b) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Kempf discloses rules in which the flow table includes matching to the 
consecutive bytes of a packet header. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1015 of 1100



138 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0087] (“In one embodiment, slow path support for GTP is implemented with an 
OpenFlow gateway switch. An Open-Flow mobile gateway switch also contains support on 
the software control plane for slow path packet processing. This path is taken by G-PDU 
(message type 255) packets with nonzero header fields or extension headers, and user data 
plane packets requiring encapsulation with such fields or addition of extension headers, and 
by G TP-U control packets. For this purpose, the switch supports three local ports in the 
software control plane: LOCAL_GTP _CONTROL-the switch fast path forwards GTP 
encapsulated packets directed to the gateway IP address that contain GTP-U control 
mes-sages and the local switch software control plane initiates local control plane actions 
depending on the GTP-U control message; LOCAL_GTP _U_DECAP-the switch fast path 
forwards G-PDU packets to this port that have nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path processes the packets and performs the specialized handling; and 
LOCAL_GTP _U_ENCAP-the switch fast path forwards user data plane packets to this port 
that require encapsulation in a GTP tunnel with nonzero header fields or extension headers 
(i.e. E!=0, S!=0, or PN!=0). These packets require specialized handling. The local switch 
software slow path encapsulates the packets and performs the specialized handling. In 
addition to forwarding the packet, the switch fast path makes the OpenFlow metadata field 
avail-able to the slow path software.”) 
 
Kempf at [0091] (“When a packet header matches a rule associated with the virtual port, the 
GTP TEID is written into the lower 32 bits of the metadata and the packet is directed to the 
virtual port. The virtual port calculates the hash of the TEID and looks up the tunnel header 
information in the tunnel header table. If no such tunnel information is present, the packet is 
forwarded to the controller with an error indication. Other-wise, the virtual port constructs a 
GTP tunnel header and encapsulates the packet. Any DSCP bits or VLAN priority bits are 
additionally set in the IP or MAC tunnel headers, and any VLAN tags or MPLS labels are 
pushed onto the packet. The encapsulated packet is forwarded out the physical port to which 
the virtual port is bound.”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1016 of 1100



139 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number bitmask 0xFF0l and the upper two bytes 
match the G-PDU message type (255) while the lower two bytes are 0x31, indicating that 
the version number is 1, the packet is a GTP packet, and a N-PDU is present.”) 
 
Kempf at [0101] (“In one embodiment, the system implements han-dling of user data plane 
packets requiring GTP-U encapsula-tion with extension headers, sequence numbers, and N-
PDU numbers. User data plane packets that require extension head-ers, sequence numbers, 
or N-PDU numbers during GTP encapsulation require special handling by the software slow 
path. For these packets, the OpenFlow controller programs a rule matching the 4 tuple: IP 
source address; IP destination address; UDP/TCP/SCTP source port; and UDP/TCP/SCTP 
destination port. The instructions for matching packets are: 
 
Write-Metadata ( GTP-TEID, 0x FFFFFFFF)  
Apply-Actions (Set-Output-Port LOCAL_GTP _U_ENCAP )”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1017 of 1100



140 

No. ʼ111 Patent Claim 8 Cisco IWAN System 
For example, Copeland discloses identifying the sampled packet headers comprised of 
fragmented packets of smaller byte sizes. 
 
Copeland [0079] (“Large packets tend to be fragmented by networks that cannot handle a 
large packet size. A 16-bit packet identification is used to reassemble fragmented packets. 
Three one-bit set of fragmentation flags control whether a packet is or may be fragmented. 
The 13-bit fragment offset is a sequence number for the 4-byte words in the packet when 
reassembled. In a series of fragments, the first offset will be zero.”) 
 
Copeland at [0080] (“After the fragmentation information, an 8-bit time to live field 
specifies the remaining life of a packet and is decremented each time the packet is relayed. 
If this field is 0, the packet is destroyed. Next is an 8-bit protocol field that specifies the 
transport protocol used in the data portion. The following 16-bit field is a header checksum 
on the header only. Finally, the last two fields illustrated contain the 32-bit source address 
and 32-bit destination address. IP packet data follows the address information.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
  

 
No. ʼ111 Patent Claim 9 Cisco IWAN System 

9 The method according 
to claim 5, further 
comprising responsive 
to receiving the 
packet, analyzing the 
packet, by the 
controller.  

Cisco IWAN System discloses the method according to claim 5, further comprising 
responsive to receiving the packet, analyzing the packet, by the controller. 
 
For example, Cisco IWAN System discloses analyzing traffic flow metrics received by the 
hub/master controller to update and change traffic policy definitions. Thus, at least under the 
apparent claim scope alleged by Orckit’s Infringement Disclosures, this limitation is 
met.  To the extent that the Cisco IWAN System is found to not meet this limitation, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1018 of 1100



141 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
responsive to receiving the packet, analyzing the packet, by the controller would have been 
obvious to a person having ordinary skill in the art, as explained below. 
 
See supra at Claim 5. 
 
Cisco Next Generation 
 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1019 of 1100



142 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1020 of 1100



143 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1021 of 1100



144 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1022 of 1100



145 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1023 of 1100



146 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1024 of 1100



147 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 9 of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Swenson discloses the network controller comprising a flow analyzer for 
analyzing and inspecting the packet. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1025 of 1100



148 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0028] (“In contrast to conventional inline TCP throughput monitoring devices 
that monitor every single data packets transmitted and received, the network controller 140 
is an "out-of-band" computer server that interfaces with the steer-ing device 130 to 
selectively inspect user flows of interest. The network controller 140 may further identify 
user flows (e.g., among the flows of interest) for optimization. In one embodiment, the 
network controller 140 may be imple-mented at the steering device 130 to monitor traffic. In 
other embodiments, the network controller 140 is coupled to and communicates with the 
steering device 130 for traffic moni-toring and optimization. When queried by the steering 
device 130, the network controller 140 determines if a given network flow should be 
ignored, monitored further or optimized. Opti-mization of a flow is often decided at the 
beginning of the flow because it is rarely possible to switch to optimized content mid-stream 
once non-optimized content delivery has begun. However, the network controller 140 may 
determine that existing flows associated with a particular subscriber or other entity should 
be optimized. In turn, new flows ( e.g., resulting from seek requests in media, new media 
requests, resume after pause, etc.) determined to be associated with the entity may be 
optimized. The network controller 140 uses the net-work state as well as historical traffic 
data in its decision for monitoring and optimization. Knowledge on the current net-work 
state, such as congestion, deems critical when it comes to data optimization.”) 
 
Swenson at [0029] (“As a flow is sent to the network controller 140 for inspection, 
historical network traffic data stored at the net-work controller 140 may be searched. The 
historical network traffic data includes information such as subscriber informa-tion, the cell 
towers to which the user devices attached, rout-ers through which the traffic is passing, 
geography regions, the backhaul segments, and time-of-day of the flows. For example, in a 
mobile network, the cell tower to which a user device is attached can be most useful, since it 
is the location where most congestion occurs due to limited bandwidth and high cost of the 
radio access network infrastructure. The network controller 140 looks into the historical 
traffic data for the average of the bandwidth per user at the particular cell tower. The Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1026 of 1100



149 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
network controller 140 can then estimate the amount of bandwidth or degree of congestion 
for the new flow based on the historical record.”) 
 
Swenson at [0038] (“Turning back to FIG. 1, the network controller 140 allows network 
operators to apply fine granular optimization policies to ensure high quality of experience 
(QoE) based on cell tower congestion, device types, subscriber profiles and service plans 
with lower hardware and software costs. The architecture of the network controller 140 
provides an excel-lent fit for the net neutrality guideline of "reasonable network 
management", and better compliance to the copyright law (DMCA) than solutions that rely 
on long-term caching. Hav-ing the ability of monitoring network traffic on a per sub-scriber, 
per flow, or per video file basis, the network controller 140 also selectively monitors and 
optimizes only a subset of traffic that benefits from optimization the most, thus achiev-ing 
both scalability and efficiency for optimization at a com-petitive price-point. The core 
element of the network control-ler 140 lies in its mechanisms for congestion detection and 
mitigation, which allows optimization resources to be utilized in the most efficient and 
surgical manner.”) 
 
Swenson at [0039] (“Referring now to FIG. 3, it illustrates one embodi-ment of an example 
architecture of the network controller 140 for providing selective real-time network 
monitoring and subscriber identification. The network controller 140 com-prises a flow 
analyzer 312, a policy engine 314, a steering device interface 316, a video optimizer 
redirector 318, a flow cache 322, and a subscriber log 324. In other embodiments, the 
network controller 140 may include additional, fewer, or different components for various 
applications. Conventional components such as network interfaces, security functions, 
failover servers, management and network operations con-soles, and the like are not shown 
so as to not obscure the details of the system architecture.”) 
 
Swenson at [0059] (“In one embodiment, as the steering device 130 monitors network 
responses, it is looking for flows that match one or more signatures for video and images. 
When a match-ing flow is detected, the steering device 130 forwards the HTTP request and 
a portion of the HTTP response to the network controller 140 over the ICAP client interface 
404. After receiving the request and the portion of response at the ICAP server interface 
406, the flow analyzer 312 of the net-work controller 140 performs a deep flow inspection 
to deter-mine if the flow is worth bandwidth monitoring and/or user detection. For example, Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1027 of 1100



150 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
the flow inspection performed by the flow analyzer 312 may determine if the flow indeed 
contains large or medium object ( e.g., larger than 50 kB), and/or if the source IP address of 
the flow is from a user or a group of users that are required to be monitored by policies. The 
flow ana-lyzer 312 may also determine if the flow needs to be opti-mized based on 
historical flow statistical data.”) 
 
Swenson at [0060] (“If the flow is deemed of interest, the steering device 130 is notified to 
steer the flow through the network controller 140. This is known as the "continue" working 
mode for bandwidth monitoring. In the "continue" mode, the network controller 140 
interfaces with the steering device 130 to func-tion, on-demand, as a traditional inline 
network element for flows deemed of interest. Thus, the network controller 140 ingests the 
network flow for inspection and subsequently forwards the network flow on the network 
response path. For example, for this particular flow, the origin server 160 responds to the 
user request by sending video or images over the network link 413 to the steering device 
130, which for-wards the video or images to the network controller 140 over a network link 
414. After the network controller 140 updates the flow statistics, the video or images are 
returned to the steering device 130 over a network link 415, which transmits the video or 
images to the user device 110 over the network link 416.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1028 of 1100



151 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1029 of 1100



152 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0071] (“After receiving the request, the video optimizer 150 forwards the video 
HTTP GET requests 622 to the origin server 160 and in return, receives a video file 624 
from the origin server 160. The video optimizer 150 transcodes the video file to a format 
usable by the client device 110 based on network bandwidth available to the user device 
110. The optimized video 626 is then transmitted from the video opti-mizer 150 to the 
steering device 130. In one embodiment, the steering device 130 intercepts the optimized 
video 626. The steering device 130 will then send an ICAP request to the network controller 
140 for inspection. The network controller 140 deems this flow to be monitored and sends 
ICAP response 630. The steering device 130 then allows the flow to go through to the user 
device 110. The steering device 130 next sends periodic ICAP "counting" updates 632 to the 
network controller 140 until the flow completes. As such, the client receives the optimized 
video 626 for substantially real-time playback on an application executing on the user 
device 110.”) 
 
Swenson at Figure 1 (annotation added) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1030 of 1100



153 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
 
Swenson at Figure 4A (annotation added) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1031 of 1100



154 

No. ʼ111 Patent Claim 9 Cisco IWAN System 

 
 
For example, Copeland discloses analyzing packets received by the intrusion detection 
engine on the monitoring appliance. 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1032 of 1100



155 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
Copeland at [0021] (“The present invention provides an accurate and reliable method for 
detecting network attacks through the use of sampled packet headers that are provided by a 
source such as that as defined in sFlow and further based in large part on "flows" as opposed 
to signatures or anomalies. By utilizing the host and flow information structures that are 
inherent with flow-based analysis and applying rules of statistical significance and analysis, 
the intrusion detection system can operate with sampled data such as provided by sFlow in 
order to provide a hybrid solution that combines many of the benefits of a packet capture 
implementation with the distributed nature of an IDS that operates on Netflow, thus 
providing an enhanced wide-area IDS solu-tion.”) 
 
Copeland at [0023] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are 
collected for each determined flow. Then, the flow statistics are analyzed to determine if the 
flow appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in 
intruder activity without generation of significant unwarranted false alarms. When the 
concern index value of a host exceeds a preset alarm value, an alert is issued and appropriate 
action can be taken.”) 
 
Copeland at [0024] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detrimental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port 
remains constant allows for more efficient analysis of the flow data. The collected flow data 
is analyzed to assign a concern index value to the flow based upon a probability that the 
flow was not normal for data communications. A host list is main-tained containing an 
accumulated concern index derived from the flows associated with the host. Once the 
accumu-lated concern index has exceeded an alarm threshold value, an alarm signal is 
generated.”) 
 
Copeland at [0027] (“According to one aspect of the invention, the detection system works 
by assigning sampled data packets to various client/server ( C/S) flows. Statistics are Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1033 of 1100



156 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
collected for each determined flow. Then, the flow statistics are analyzed to determine if the 
flow appears to be legitimate traffic or possible suspicious activity. A value, referred to as a 
"concern index," is assigned to each flow that appears suspicious. By assigning a value to 
each flow that appears suspicious and adding that value to an accumulated concern index 
associated with the responsible host, it is possible to identify hosts that are engaged in 
intruder activity without generation of significant unwarranted false alarms. When the 
concern index value of a host exceeds a preset alarm value, an alert is issued and appropriate 
action can be taken.”) 
 
Copeland at [0028] (“Generally speaking, the intrusion detection system analyzes network 
communication traffic for potential detri-mental activity. The system collects flow data from 
sampled packet headers between two hosts or Internet Protocol (IP) addresses. Collecting 
flow data from packet headers asso-ciated with a single service where at least one port 
remains constant allows for more efficient analysis of the flow data. The collected flow data 
is analyzed to assign a concern index value to the flow based upon a probability that the 
flow was not normal for data communications. A host list is main-tained containing an 
accumulated concern index derived from the flows associated with the host. Once the 
accumu-lated concern index has exceeded an alarm threshold value, an alarm signal is 
generated.”) 
 
Copeland at [0063] (“Consequently, abnormal flows and/or events iden-tified by the 
intrusion detection engine 155 will raise the concern index (CI) for the associated host. The 
intrusion detection engine 155 analyzes the data flow between IP devices. However, 
different types of services have different flow characteristics associated with that service. 
Therefore, a C/S flow can be determined by the packets exchanged between the two hosts 
dealing with the same service.”) 
 
Copeland at [0065] (“The intrusion detection engine 155 analyzes the flow data 160 to 
determine if the flow appears to be legitimate traffic or possible suspicious activity. Flows 
with suspicious activity are assigned a predetermined concern index (CI) value based upon a 
heuristically predetermined assessment of the significance of the threat of the particular 
traffic or flow or suspicious activity. The flow concern index values have been derived 
heuristically from extensive net-work traffic analysis. Concern index values are associated 
with particular hosts and stored in the host data structure 166 (FIG. 1). Exemplary concern Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1034 of 1100



157 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
index values for various exemplary flow-based events and other types of events are 
illustrated in connection with FIGS. 6 and 7.) 
 
Copeland at [0069] (“It will now be appreciated that the disclosed meth-odology of 
intrusion detection is accomplished at least in part by analyzing communication flows to 
determine if such communications have the flow characteristics of probes or attacks. By 
analyzing communications for abnormal flow characteristics, attacks can be determined 
without the need for resource-intensive packet data analysis. A flow can be determined from 
the packets 101 that are transmitted between two hosts utilizing a single service. The 
addresses and port numbers of communications are easily discerned by analysis of the 
header information in a datagram.”) 
 
Copeland at [0087] (“As previously stated, the flow-based engine 155 does not analyze the 
data segments of packets for signature identification. Instead, the engine 155 associates all 
packets with a flow. It analyzes certain statistical data and assigns a concern index value to 
abnormal activity. The engine 155 builds a concern index for suspicious hosts by detecting 
suspicious activities on the network. An alarm is generated when those hosts build enough 
concern (in the form of a cumulated CI value) to cross the network administrator's 
predetermined threshold.”) 
 
Copeland at [0097] (“The described TCP session 300 of FIG. 3 is a generic TCP session in 
which a network might engage. In accordance with the invention, flow data is collected 
about the session to help determine if the communication is abnormal. In the preferred 
embodiment, information such as the total number of packets sent, the total amount of data 
sent, the session start time and duration, and the TCP flags set in all of the packets, are 
collected, stored in the database 160, and analyzed to determine if the communication was 
suspicious. If a communication is deemed suspicious, i.e. it meets predetermined criteria, a 
predetermined concern index value associated with a determined category of suspicious 
activity is added to the cumulated CI value associated with the host that made the 
communication.”) 
 
Copeland at [0111] (“As shown, the packets exchanged between two hosts associated with a 
single service can determine a flow. A port number designates a service application that is 
associated with the particular port. Communications utiliz-ing differing protocols or services Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1035 of 1100



158 

No. ʼ111 Patent Claim 9 Cisco IWAN System 
provide differing flow characteristics. Consequently, the flow engine 155 analyzes each of 
the services separately.”) 
 
Copeland at [0150] (“A preferred hardware configuration 800 of an embodiment that 
executes the functions of the above-described flow-based engine is described in reference to 
FIG. 8. FIG. 8 illustrates a typically hardware configuration 800 for a network intrusion 
detection system. A monitoring appliance 150 serves as a pass-by filter of network traffic. A 
network device 135, such as a router or switch supporting sFlow provides the location for 
connecting the monitoring appliance 150 to the network 899 for monitoring the network 
traffic.”) 
 

 
No. ʼ111 Patent Claim 12 Cisco IWAN System 

12 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security or 
data analytic 
application.  

Cisco IWAN System discloses the method according to claim 9, wherein the analyzing 
comprises applying security or data analytic application. 
 
For example, Cisco IWAN System discloses analyzing traffic flow metrics with secure 
transport and application performance monitoring. Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.   
 
See supra at Claim 9. 
 
IWAN Next Gen at 33 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1036 of 1100



159 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1037 of 1100



160 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1038 of 1100



161 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1039 of 1100



162 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1040 of 1100



163 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1041 of 1100



164 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1042 of 1100



165 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1043 of 1100



166 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1044 of 1100



167 

No. ʼ111 Patent Claim 12 Cisco IWAN System 

 
No. ʼ111 Patent Claim 13 Cisco IWAN System 

13 The method according 
to claim 9, wherein the 
analyzing comprises 
applying security 
application that 
comprises firewall or 
intrusion detection 
functionality.  

Cisco IWAN System discloses the method according to claim 9, wherein the analyzing 
comprises applying security application that comprises firewall or intrusion detection 
functionality. 
 
For example, Cisco IWAN System discloses analyzing traffic flow metrics with zone based 
firewall and integrated threat defense functionality. Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.   
 
See supra at Claim 9. 
 
IWAN Next Gen at 33 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1045 of 1100



168 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1046 of 1100



169 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
 
Cisco Next Generation 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1047 of 1100



170 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1048 of 1100



171 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1049 of 1100



172 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1050 of 1100



173 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1051 of 1100



174 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1052 of 1100



175 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1053 of 1100



176 

No. ʼ111 Patent Claim 13 Cisco IWAN System 

 
No. ʼ111 Patent Claim 14 Cisco IWAN System 

14 The method according 
to claim 9, wherein the 
analyzing comprises 
performing Deep 
Packet Inspection 
(DPI) or using a DPI 
engine on the packet.  

Cisco IWAN System discloses the method according to claim 9, wherein the analyzing 
comprises performing Deep Packet Inspection (DPI) or using a DPI engine on the packet. 
 
For example, Cisco IWAN System discloses analyzing traffic flow metrics with inspection 
functionality. 
 
See supra at Claim 9. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1054 of 1100



177 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 
 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1055 of 1100



178 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 
Cisco IWAN 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1056 of 1100



179 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1057 of 1100



180 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1058 of 1100



181 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1059 of 1100



182 

No. ʼ111 Patent Claim 14 Cisco IWAN System 

 
No. ʼ111 Patent Claim 15 Cisco IWAN System 

15[a] The method according 
to claim 9, wherein the 
packet comprises 
distinct header and 
payload fields, and  

Cisco IWAN System discloses the method according to claim 9, wherein the packet 
comprises distinct header and payload fields. 
 
For example, Cisco IWAN System discloses data traffic that can be defined into subsets by 
prefixes.  A person of ordinary skill in the art would understand that data traffic is made up 
of packets comprised of header and payload fields.  Thus, at least under the apparent claim 
scope alleged by Orckit’s Infringement Disclosures, this limitation is met.  To the extent 
that the Cisco IWAN System is found to not meet this limitation, wherein the packet 
comprises distinct header and payload fields would have been obvious to a person having 
ordinary skill in the art, as explained below. 
 
See supra at Claim 9. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1060 of 1100



183 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
Cisco IWAN - Uncompromised Experience 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 15(a) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
 
For example, Swenson discloses packet flows with header and payload fields. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1061 of 1100



184 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the 
network infrastructure via API, and making decisions on how to apply optimization based 
on individual or a combination of these inputs. The optimization policies can be applied to 
large flows all the time or on a time-of-day basis, a per user basis, and/or depending on the 
network condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1062 of 1100



185 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
network link 416 from the steering device 130 to the user device 110, the TCP congestion 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net- work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1063 of 1100



186 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1064 of 1100



187 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
the example diagram is a possible linked list behind each flow cache entry which allows 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may 
never reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 
75-100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be 
different, hence the bandwidth for each of the buckets is measured and calculated 
separately. In other embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and 
l00kB+) of the buckets may be altered depending on the network traffic and size of objects 
transmitted. Furthermore, the bucket sizes can also be adjusted based on network topology, 
such as buffer size, prior to transmission to the client. The calculated bandwidth per bucket 
is stored in a queue structure that allows for the computing and updating of minimum, 
maximum, and/or average measurements for each bucket. In one embodiment, the 100 kB+ 
bucket's current tail entry is checked against the average bandwidth for the 100 kB+ bucket. 
If the current entry is less than the average multiplied by the number of entries in the queue, 
the current entry is added to the bandwidth calculation for the current interval. This scheme 
can filter out large bursts of data from tempo-rarily idle flows. If the bandwidth exceeds the 
value, a number of bytes (e.g., 125 kB) will be subtracted from the current entry to account 
for TCP buffers in the network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1065 of 1100



188 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 
 
 

15[b] wherein the analyzing 
comprises checking 
part of, or whole of, 
the payload field.  
 

Cisco IWAN System discloses wherein the analyzing comprises checking part of, or whole 
of, the payload field.  
 
For example, Cisco IWAN System discloses determining traffic classes by identifying 
traffic characteristics. A person of ordinary skill in the art would understand that one 
characteristic of data traffic that can be used to identify traffic class is the payload field. 
Thus, at least under the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
this limitation is met.  To the extent that the Cisco IWAN System is found to not meet this 
limitation, wherein the analyzing comprises checking part of, or whole of, the payload field 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1066 of 1100



189 

No. ʼ111 Patent Claim 15 Cisco IWAN System 

 
 

Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 15(b) of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below is an example. 
 
For example, Swenson discloses inspecting the payload of a packet flow. 
 
Swenson at [0026] (“The steering device 130 may be a load balancer or a router located 
between the user device 110 and the network 120. The steering device 130 provides the user 
device 110 with access to the network and thus, provides the gateway through which the 
user device traffic flows onto the network and vice versa. In one embodiment, the steering 
device 130 categorizes traffic routed through it to identify flows of inter-est for further 
inspection at the network controller 140. Alter-natively, the network controller 140 
interfaces with the steer-ing device 130 to coordinate the monitoring and categorization of Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1067 of 1100



190 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
network traffic, such as identifying large and small objects in HTTP traffic flows. In this 
case, the steering device 130 receives instructions from the network controller 140 based on 
the desired criteria for categorizing flows of interest for further inspection.”) 
 
Swenson at [0040] (“The flow analyzer 312 monitors large flows in the network, analyzes 
collected flow statistics to determine net-work throughput, and accordingly selects flows to 
be opti-mized. The flow analyzer 312 does not need to see all the flows in order to make an 
accurate estimate of network con-ditions. The flow analyzer 312 processes the traffic 
statistics stored in the flow cache 3 22 and user information stored in the subscriber log 324, 
for example, by associating network flows identified by source IP addresses to a mobile 
subscriber or user, which is identified by his or her current subscriber ID or device ID. The 
user flows are also mapped to a congestion level at the current sub-network (e.g., a cell with 
which the user devices are associated), so that an optimization decision can be made at the 
beginning of the data transmission.”) 
 
Swenson at [0049] (“The policy engine 314 defines policies for optimiz-ing large flows with 
media objects to mitigate network con-gestion. Detecting and acting on congestion in the 
network, the design focus of the network controller 140 is built on this very flexible policy 
engine. The policy engine 314 is capable of taking virtually any input, either deduced from 
HTTP headers and payload ( e.g., through RADIUS/Gx interface), or provided by the 
network infrastructure via API, and making decisions on how to apply optimization based 
on individual or a combination of these inputs. The optimization policies can be applied to 
large flows all the time or on a time-of-day basis, a per user basis, and/or depending on the 
network condition.”) 
 
Swenson at [0061] (“Once a flow is reported to the network controller 140, a flow cache 
entry is created for the flow in the flow cache 322. The flow cache entry keeps track of the 
flow and its associated bandwidth. For a flow that is marked in "continue" mode, each time 
the steering device 130 forwards a next portion of the flow payload to the network controller 
140, the flow cache 3 22 updates the number of bytes for transmitted in the flow. By 
monitoring the number of bytes per flow over time, the flow analyzer 312 is capable of 
determining an estimate value of bandwidth associated with flow. Further-more, since the 
steering device 130 does not have infinite packet buffers, if congestion happens on the 
network link 416 from the steering device 130 to the user device 110, the TCP congestion Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1068 of 1100



191 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
control mechanism kicks in at the steering device 130, which may slows down and/or 
eventually stop receiving data over the network link 413 from origin server 160. During the 
congestion, the steering device 130 would not forward any data to the network controller 
140, since the link 416 is congested and the network controller 140 would not be able to 
transmit data to the user device 110. Therefore, as an inline element, the network controller 
140 can detect network con-gestions and estimate bandwidth associated with any flows of 
interest selected by the network controller 140. However, in the "continue" mode, the 
network controller 140 does not modify and transform the HTTP messaged it receives over 
the ICAP interface. The network controller 140 simply updates the flow statistics and 
returns the video or images to the steering device 130 for transmission to the user device 
110.”) 
  
Swenson at [0064] (Similar to the "continue" mode, after receiving the initial HTTP 
messages of a flow and determining to monitor the flow, the network controller 140 notify 
the steering device 130 to work in a "counting" mode for bandwidth monitoring. In contrast 
to the "continue" mode, when a matching flow is detected for "counting" mode, the steering 
device 130 for-wards the HTTP response directly to the user device 110. While at the same 
time, the steering device 130 send a cus-tomized ICAP message to the network controller 
140 over the network link 425. In one embodiment, the customized ICAP message contains 
the HTTP request and response headers, as well as a count of payload size of the current 
flow. After updating the flow statistics, the network controller 140 may acknowledge the 
gateway over the network line 426. In the "counting" mode, the network controller 140 does 
not join the network response path as an inline network element, but simply listens to the 
counting of flow size. The benefit of the "counting" mode is to off-load the network 
controller 140 from ingesting and forwarding the network flow on the net- work response 
path, while still enabling the detection of con-gestions and estimation of bandwidth 
associated with the flows of interest.”) 
 
Swenson at [0065] (“FIG. 5 is a block diagram illustrating an example event trace of 
"continue" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 512 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 512 to the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1069 of 1100



192 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
intended origin server 160 and receives a response 514 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 516 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 518. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
514 to an HTTP redirect response 520, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 520 directly to the user device 110. In case the flow dose not contain 
video or image objects, or the network controller 140 determines not to monitor the flow, 
the steering device 13 0 would forward the response to the user device 110.”) 
 
Swenson at [0069] (“FIG. 6 is a block diagram illustrating an example event trace of 
"counting" working mode between the user device 110, steering device 130, network 
controller 140, video optimizer 150, and origin server 160. The process starts when the user 
device 110 initiates an HTTP GET request 612 to retrieve content from the origin server 
160. The steering device 130 intercepts all requests originated from the user device 110. In 
one embodiment, the steering device 130 for-wards the HTTP get request 612 to the 
intended origin server 160 and receives a response 614 back from the origin server 160. The 
steering device 130 then sends an ICAP request message 616 comprising the HTTP GET 
request header and a portion of the response payload to the network controller 140, which 
inspects the message to determine whether to monitor the flow or optimize the video. In this 
case, the network controller 140 responds with a redirect to optimize the video in ICAP 
response 618. Upon receiving the instruc-tion, the steering device 130 re-writes the response 
614 to an HTTP redirect response 620, causing the user device 110 to request the video file 
from the video optimizer 150. In another embodiment, the network controller 140 sends the 
HTTP redirect request 620 directly to the user device 110. In case the flow dose not contain 
video or image objects that need to be redirected, the steering device 130 would forward the 
response to the user device 110.”) 
 
Swenson at [0073] (“FIG. 7 is a block diagram illustrating one embodi-ment of an example 
of internal components of the flow cache. The flow cache map 700 comprises a plurality of 
flow cache entries, such as flow cache entries 710 and 712 indexed by a hash. Not shown in 
the example diagram is a possible linked list behind each flow cache entry which allows Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1070 of 1100



193 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
chaining of flow cache entries for a given hash index. The hash into the flow cache may be 
based on source IP address, MAC address, subscriber ID, or other identifier indicative of a 
given sub-scriber, group of subscribers or subscriber's device.”) 
 
Swenson at [0079] (“In the bandwidth calculation, flows are categorized into buckets based 
on the size of the objects being transferred. Small objects may not be factored into the 
bandwidth calcu-lation since they may come and go within a single interval. For example, 
flows with payload size less than 50 kB may be ignored because a transfer of 50 kB may 
never reach the full potential throughput of the link. While larger flows may reach the full 
throughput of the link for a long period of time intervals, they are grouped into 50-75 kB, 
75-100 kB and 100 kB+ buckets because the characteristics of these flow sizes can be 
different, hence the bandwidth for each of the buckets is measured and calculated 
separately. In other embodiments, the flow size ranges (e.g., 50-75 kB, 75-100 kB and 
l00kB+) of the buckets may be altered depending on the network traffic and size of objects 
transmitted. Furthermore, the bucket sizes can also be adjusted based on network topology, 
such as buffer size, prior to transmission to the client. The calculated bandwidth per bucket 
is stored in a queue structure that allows for the computing and updating of minimum, 
maximum, and/or average measurements for each bucket. In one embodiment, the 100 kB+ 
bucket's current tail entry is checked against the average bandwidth for the 100 kB+ bucket. 
If the current entry is less than the average multiplied by the number of entries in the queue, 
the current entry is added to the bandwidth calculation for the current interval. This scheme 
can filter out large bursts of data from tempo-rarily idle flows. If the bandwidth exceeds the 
value, a number of bytes (e.g., 125 kB) will be subtracted from the current entry to account 
for TCP buffers in the network.”) 
 
Swenson at [0083] (“When a new flow is observed, flow cache entries are searched by 
matching source IP address 722 if the subscriber id or other identifiers of the flow are not 
available. In case of multiple users sharing an IP address, the flow analyzer 312 needs to 
find patterns or other identifiers in the flows to map them to particular subscribers. Flows 
without identified sub-scribers are added to the flow cache block under the default user 
flows 726, which is a default holding place for the new flows. The flow analyzer 312 later 
will scan through the default user flows that contain cookies or other identifiers that may be 
used to determine a real user or subscriber associated with the flow. If a flow contains 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1071 of 1100



194 

No. ʼ111 Patent Claim 15 Cisco IWAN System 
identifiers not associated with an existing real user, a new user or subscriber is created and 
the user flow block is moved to newly created (or mapped) user or subscriber.”) 

 

 
No. ʼ111 Patent Claim 16 Cisco IWAN System 

16[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Cisco IWAN System discloses the method according to claim 1, wherein the packet 
comprises distinct header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 
 

16[b] the header comprises 
one or more flag bits, 
and  

Cisco IWAN System discloses the header comprises one or more flag bits. 
 
On information and belief, the Cisco IWAN System discloses headers comprised of one or 
more flag bits.  Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Cisco IWAN System 
is found to not meet this limitation, the header comprises one or more flag bits would have 
been obvious to a person having ordinary skill in the art, as explained below. 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1072 of 1100



195 

No. ʼ111 Patent Claim 16 Cisco IWAN System 

 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 16[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet headers with flag bits. 
 
Copeland at Figure 2 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1073 of 1100



196 

No. ʼ111 Patent Claim 16 Cisco IWAN System 

 
 
Copeland at [0076] (“FIG. 2 illustrates an exemplary TCP/IP packet or datagram 210 and an 
exemplary UDP datagram 240. In a typical TCP/IP packet like 210, each packet typically 
includes a header portion comprising an IP header 220 and a TCP header 230, followed by a 
data portion that contains the information to be communicated in the packet. The 
information in the IP header 220 contained in a TCP/IP packet 210, or any other IP packet, 
contains the IP addresses and assures that the packet is delivered to the right host. The 
transport layer protocol (TCP) header follows the Internet protocol header and specifies the 
port numbers for the associated service.”) 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1074 of 1100



197 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
 
Copeland at [0077] (“The header portion in the typical TCP/IP datagram 210 is 40 bytes 
including 20 bytes of IP header 220 information and 20 bytes of TCP header 230 
information. The data portion or segment associated with the packet 210 follows the header 
information.”) 
 
Copeland at [0078] (“In regards to a typical IP packet 210, the first 4 bits of the IP header 
220 identify the Internet protocol (IP) version. The following 4 bits identify the IP header 
length in 32 bit words. The next 8 bits differentiate the type of service by describing how 
the packet should be handled in transit. The following 16 bits convey the total packet 
length.”) 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1075 of 1100



198 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0116] (“These steps generally require manipulations of quantities such as IP 
addresses, packet length, header length, start times, end times, port numbers, and other 
packet related information. Usually, though not necessarily, these quanti-ties take the form 
of electrical, magnetic, or optical signals capable of being stored, transferred, combined, 
compared, or otherwise manipulated. It is conventional for those skilled in the art to refer to 
these signals as bits, bytes, words, values, elements, symbols, characters, terms, numbers, 
points, records, objects, images, files or the like. It should be kept in mind, however, that 
these and similar terms should be associated with appropriate quantities for computer 
opera-tions and that these terms are merely conventional labels applied to quantities that 
exist within and during operation of the computer.”) 
 
As another example, Kempf discloses packet headers with flag bits. 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1076 of 1100



199 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1077 of 1100



200 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1078 of 1100



201 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_ 
teid field contains the GRP TEID. When the value of the oxm_type ( oxm_class+oxm_field 
is GTP _ MATCH and the HM bit is zero, the flaw's GTP header must match these values 
exactly. If the HM flag is one, the value contains an ersmt_gtp_match field and an 
ermst_gtp_mask field, as specified by the OpenFlow 1.2 specification. We define 
ermst_gtp_mask field for selecting flows based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 

16[c] wherein the packet-
applicable criterion is 
that one or more of the 
flag bits is set.  

Cisco IWAN System discloses wherein the packet-applicable criterion is that one or more of 
the flag bits is set. 
 
On information and belief, the Cisco IWAN System discloses headers comprised of one or 
more flag bits.  Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Cisco IWAN System 
is found to not meet this limitation, wherein the packet applicable criterion is that one or 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1079 of 1100



202 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
more of the flag bits is set would have been obvious to a person having ordinary skill in the 
art, as explained below. 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, Cisco 
IWAN System in combination with (1) the knowledge of a person of ordinary skill in the 
art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 16[c] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
For example, Copeland discloses packet specific characteristics including flag bits that are 
set. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1080 of 1100



203 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
Copeland at [0083] (“Following the TCP flag bits is a 16-bit receive window size field that 
specifies the amount of space avail-able in the receive buffer for the TCP connection. The 
checksum of the TCP header is a 16-bit field. Following the checksum is a 16 bit urgent 
pointer that points to the urgent data. The TCP/IP datagram data follows the TCP header.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0125] (“For purposes of the description, which follows, the IP address with the 
lower value, when considered as a 32-bit unsigned integer, is designated ip[0] and the 
corresponding port number is designated pt[0]. The higher IP address is designated ip[l] and 
the corresponding TCP or UDP port number is designated pt[l]. At some point, either pt[0] 
or pt[l] may be designated the "server" port by setting an appropriate bit in a bit map that is 
part of the flow record (record "state", bit 1 or 2 is set).”) 
 
Copeland at [0145] (“A list IP of addresses contacted or probed by each host can be 
maintained. When this list indicates that more than a threshold number of other hosts (e.g., 
8) have been contacted in the same subnet, CI is added to the to the host and a bit in the host 
record is set to indicate that the host has received CI for "address scanning." Note that the 
number of hosts to designate a scan is not required to be a fixed value, but could be adjusted 
based on the sample rate or other means to enhance the accuracy making the number of 
hosts scanned "statistically significant". These and other values of concern index are shown 
for non-flow based events in FIG. 7.”) 
 
As another example, Kempf flow table matches in which the flag bits is set, 
 
Kempf at [0081] (“In one embodiment, OpenFlow is modified to pro-vide rules for GTP 
TEID Routing. FIG. 17 is a diagram of one embodiment of the OpenFlow flow table 
modification for GTP TEID routing. An OpenFlow switch that supports TEID routing 
matches on the 2 byte (16 bit) collection of header fields and the 4 byte (32 bit) GTP TEID, 
in addition to other OpenFlow header fields, in at least one flow table ( e.g., the first flow Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1081 of 1100



204 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
table). The GTP TEID flag can be wildcarded (i.e. matches are "don't care"). In one 
embodiment, the EPC pro-tocols do not assign any meaning to TEIDs other than as an 
endpoint identifier for tunnels, like ports in standard UDP/ TCP transport protocols. In other 
embodiments, the TEIDs can have a correlated meaning or semantics. The GTP header flags 
field can also be wildcarded, this can be partially matched by combining the following 
bitmasks: 0xFF00- Match the Message Type field; 0xe0-Match the Version field; 0xl0-
Match the PT field; 0x04-Match the E field; 0x02- Match the S field; and 0x0l-Match the 
PN field.”) 
 
Kempf at [0082] (“In one embodiment, OpenFlow can be modified to support virtual ports 
for fast path GTP TEID encapsulation and decapsulation. An OpenFlow mobile gateway 
can be used to support GTP encapsulation and decapsulation with virtual ports. The GTP 
encapsulation and decapsulation virtual ports can be used for fast encapsulation and 
decapsulation of user data packets within GTP-U tunnels, and can be designed simply 
enough that they can be implemented in hardware or firmware. For this reason, GTP virtual 
ports may have the following restrictions on traffic they will handle: Protocol Type (PT) 
field= 1, where GTP encapsulation ports only sup-port GTP, not GTP' (PT field=0); 
Extension Header flag (E)=0, where no extension headers are supported, Sequence Number 
flag (S)=0, where no sequence numbers are sup-ported; N-PDU flag (PN)=0; and Message 
type=255, where Only G-PDU messages, i.e. tunneled user data, is supported in the fast 
path.”) 
 
Kempf at [0083] (“If a packet either needs encapsulation or arrives encapsulated with 
nonzero header flags, header extensions, and/or the GTP-U packet is not a G-PDU packet 
(i.e. it is a GTP-U control packet), the processing must proceed via the gateway's slow path 
(software) control plane. GTP-C and GTP' packets directed to the gateway's IP address are a 
result of mis-configuration and are in error. They must be sent to the OpenFlow controller, 
since these packets are handled by the S-GW-C and P-GW-C control plane entities in the 
cloud computing system or to the billing entity handling GTP' and not the S-GW-D and P-
GW-D data plane switches.”) 
 
Kempf at [0088] (“To support slow path encapsulation, the software control plane on the 
switch maintains a hash table with keys calculated from the GTP-U TEID. The TEID hash 
keys are calculated using a suitable hash algorithm with low collision frequency, for Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1082 of 1100



205 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
example SHA-1. The flow table entries contain a record of how the packet header, including 
the GTP encap-sulation header, should be configured. This includes: the same header fields 
as for the hardware or firmware encapsu-lation table in FIG.18; values for the GTP header 
flags (PT, E, S, and PN); the sequence number and/or the N-PDU number if any; if the E 
flag is 1, then the flow table contains a list of the extension headers, including their types, 
which the slow path should insert into the GTP header.”) 
 
Kempf at [0092] (“In one embodiment, the system implements a GTP fast path 
decapsulation virtual port. When requested by the S-GW and P-GW control plane software 
running in the cloud computing system, the gateway switch installs rules and actions for 
routing GTP encapsulated packets out of GTP tunnels. The rules match the GTP header 
flags and the GTP TEID for the packet, in the modified OpenFlow flow table shown in FIG. 
17 as follows: the IP destination address is an IP address on which the gateway is expecting 
GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the GTP-U 
destination port (2152); and the header fields and message type field is wildcarded with the 
flag 0XFFF0 and the upper two bytes of the field match the G-PDU message type (255) 
while the lower two bytes match 0x30, i.e. the packet is a GTP packet not a GTP' packet and 
the version number is 1.”) 
 
Kempf at [0094] (“In one embodiment, the system implements han-dling of GTP-U control 
packets. The OpenFlow controller programs the gateway switch flow tables with 5 rules for 
each gateway switch IP address used for GTP traffic. These rules contain specified values 
for the following fields: the IP des-tination address is an IP address on which the gateway is 
expecting GTP traffic; the IP protocol type is UDP (17); the UDP destination port is the 
GTP-U destination port (2152); the GTP header flags and message type field is wildcarded 
with 0xFFF0; the value of the header flags field is 0x30, i.e. the version number is 1 and the 
PT field is 1; and the value of the message type field is one of 1 (Echo Request), 2 (Echo 
Response), 26 (Error Indication), 31 (Support for Extension Headers Notification), or 254 
(End Marker).”) 
 
Kempf at [0098] (“The header flags and message type fields for the three rules are 
wildcarded with the following bitmasks and match as follows: bitmask 0xFFF4 and the 
upper two bytes match the G-PDU message type (255) while the lower two bytes are Ox34, 
indicating that the version number is 1, the packet is a GTP packet, and there is an extension Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1083 of 1100



206 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
header present; bitmask 0xFFFF2 and the upper two bytes match the G-PDU message type 
(255) while the lower two bytes are 0x32, indicating that the version number is 1, the packet 
is a GTP packet, and there is a sequence number present; and bitmask 0xFF0l and the upper 
two bytes match the G-PDU message type (255) while the lower two bytes are 0x31, 
indicating that the version number is 1, the packet is a GTP packet, and a N-PDU is 
present.”) 
 
Kempf at [0114] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GTP 
TEID. The gtp_ wildcard field indicates whether the GTP type and flags and TEID should 
be matched. If the lower four bits are 1, the type and flags field should be ignored, while if 
the upper four bits are 1, the TEID should be ignored. If the lower bits are 0, the type and 
fields flag should be matched subject to the flags in the gtp_flag_mask field, while if the 
upper bits are 0 the TEID should be matched. The mask is combined with the message type 
and header field of the packet using logical AND; the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at [0117] (“The gtp_type_n_flags field contains the GTP mes-sage type in the upper 
8 bits and the GTP header flags in the lower 8 bits. The gtp_teid field contains the GRP 
TEID. When the value of the oxm_type ( oxm_class+oxm_field is GTP _ MATCH and the 
HM bit is zero, the flaw's GTP header must match these values exactly. If the HM flag is 
one, the value contains an ersmt_gtp_match field and an ermst_gtp_mask field, as specified 
by the OpenF!ow 1.2 specification. We define ermst_gtp_mask field for selecting flows 
based on the settings of flag bits: 
 

 
 
Kempf at [0118] (“The gtp_ wildcard field indicates whether the TEID should be matched. 
If the value is 0xFFFFFFFF, the TEID should be matched and not the flags, if the value is 
0x00000000, the flags should be matched and not the TEID. If the gtp_ wildcard indicates 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1084 of 1100



207 

No. ʼ111 Patent Claim 16 Cisco IWAN System 
the flags should be matched, the gtp_flag_mask is combined with the message type and 
header field of the packet using logical AND, the result becomes the value of the match. 
Only those parts of the field in which the mask has a 1 value are matched.”) 
 
Kempf at Figure 10 
 

 
 
 

 
No. ʼ111 Patent Claim 17 Cisco IWAN System 

17[a] The method according 
to claim 16, wherein 
the packet is an 
Transmission Control 

Cisco IWAN System discloses the method according to claim 16, wherein the packet is an 
Transmission Control Protocol (TCP) packet. 
 
For example, Cisco IWAN System discloses traffic flows that are part of a TCP connection. 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1085 of 1100



208 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
Protocol (TCP) packet, 
and  

See supra at Claim 16. 
 
Cisco IWAN 

 
 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1086 of 1100



209 

No. ʼ111 Patent Claim 17 Cisco IWAN System 

 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1087 of 1100



210 

No. ʼ111 Patent Claim 17 Cisco IWAN System 

 
17[b] wherein the one or 

more flag bits 
comprises comprise a 
SYN flag bit, an ACK 
flag bit, a FIN flag bit, 
a RST flag bit, or any 
combination thereof.  

 
On information and belief, the Cisco IWAN System discloses wherein the one or more flag 
bits comprises comprise a SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or 
any combination thereof.  Thus, at least under the apparent claim scope alleged by Orckit’s 
Infringement Disclosures, this limitation is met.  To the extent that the Cisco IWAN System 
is found to not meet this limitation, wherein the one or more flag bits comprises comprise a 
SYN flag bit, an ACK flag bit, a FIN flag bit, a RST flag bit, or any combination thereof 
would have been obvious to a person having ordinary skill in the art, as explained below. 
 
Under at least the apparent claim scope alleged by Orckit’s Infringement Disclosures, 
Cisco IWAN System in combination with (1) the knowledge of a person of ordinary skill in 
the art, alone or in further combination with (2) each (individually, as well as one or more 
together) of the references identified in element 17[b] of Exhibit E-4 renders the claim, 
including the present limitation, obvious. Below are examples of two such references. 
 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1088 of 1100



211 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
For example, Copeland discloses TCP packets with flag bits including SYN, ACK, FIN, and 
R flag bits. 
 
Copeland at [0081] (“In a TCP/IP datagram 210, the initial data of the IP datagram is the 
TCP header 230 information. The initial TCP header 230 information includes the 16-bit 
source and 16-bit destination port numbers. A 32-bit sequence number for the data in the 
packet follows the port numbers. Following the sequence number is a 32-bit 
acknowledgement number. If an ACK flag (discussed below) is set, this number is the next 
sequence number the sender of the packet expects to receive. Next is a 4-bit data offset, 
which is the number of 32-bit words in the TCP header. A 6-bit reserved field follows.”) 
 
Copeland at [0082] (“Following the reserved field, the next 6 bits are a series of one-bit 
flags, shown in FIG. 2 as flags U, A, P, R, S, F. The first flag is the urgent flag (U). If the U 
flag is set, it indicates that the urgent pointer is valid and points to urgent data that should be 
acted upon as soon as possible. The next flag is the A ( or ACK or "acknowledgment") flag. 
The ACK flag indicates that an acknowledgment number is valid, and acknowledges that 
data has been received. The next flag, the push (P) flag, tells the receiving end to push all 
buffered data to the receiving application. The reset (R) flag is the following flag, which 
terminates both ends of the TCP connection. Next, the S (or SYN for "synchronize") flag is 
set in the initial packet of a TCP connection where both ends have to synchronize their TCP 
buffers. Following the SYN flag is the F (for FIN or "finish") flag. This flag signifies that 
the sending end of the communication and the host will not send any more data but still may 
acknowledge data that is received.”) 
 
Copeland at [0089] (“FIG. 3 illustrates an exemplary TCP/IP session 300. As discussed in 
reference to FIG. 2, the SYN flag is set whenever one host initiates a session with another 
host. In the initial packet, Hostl sends a message with only the SYN flag set. The SYN flag 
is designed to establish a TCP connection and allow both ends to synchronize their TCP 
buffers. Hostl provides the sequence of the first data packet it will send.”) 
 
Copeland at [0090] (“Host2 responds with a SYN-ACK packet. In this message, both the 
SYN flag and the ACK flag are set. Host2 provides the initial sequence number for its data 
to Hostl. Host2 also sends to Hostl the acknowledgment number that is the next sequence 
number Host2 expects to receive from host 1. In the SYN-ACK packet sent by Host2, the Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1089 of 1100



212 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
acknowl-edgment number is the initial sequence number of Hostl plus 1, which should be 
the next sequence number received.”) 
 
Copeland at [0091] (“Hostl responds to the SYN-ACK with a packet with just the ACK flag 
set. Hostl acknowledges that the next packet of information received from Host2 will be 
Host2's initial sequence number plus 1. The three-way handshake is complete and data is 
transferred.”) 
 
Copeland at [0092] (“Host2 responds to ACK packet with its own ACK packet. Host2 
acknowledges the data it has received from Hostl by sending an acknowledgment number 
one greater than its last received data sequence number. Both hosts send packets with the 
ACK flag set until the session is to end although the P and U flags may also be set, if 
warranted.”) 
 
Copeland at [0093] (“As illustrated, when Hostl terminates its end of the session, it sends a 
packet with the FIN and ACK flags set. The FIN flag informs Host2 that Hostl will send no 
more data. The ACK flag acknowledges the last data received by Hostl by informing Host2 
of the next sequence number it expects to receive.”) 
 
Copeland at [0094] (“Host2 acknowledges the FIN packet by sending its own ACK packet. 
The ACK packet has the acknowledge-ment number one greater than the sequence number 
of Hostl's FIN-ACK packet. ACK packets are still delivered between the two hosts, except 
that HOSTl's packets have no data appended to the TCP/IP end of the headers.”) 
 
Copeland at [0095] (“When Host 2 is ready to terminate the session, it sends its own packet 
with the FIN and ACK flags set. Hostl responds that it has received the final packet with an 
ACK packet providing to Host2 an acknowledgment number one greater than the sequence 
number provided in the FIN-ACK packet of Host2.”) 
 
As another example, Uchida discloses the TCP (Transmission Control Protocol) FIN flag, 
RST flag, and SYN flag. 
 
Uchida at [0040] (“A flow end can be detected by various methods as below. For example, 
in one method, a protocol end message is checked. For example, in the TCP (Transmission Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1090 of 1100



213 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
Control Protocol), a FIN flag is checked. In this way, the end of communication, that is, the 
end of a flow using communica-tion, can be detected. In practice, after a FIN flag, 
communi-cation with an ACK packet is generated in a reverse-direction flow (a flow in 
which the source and the destination are reversed). Thus, by detecting the ACK flag in the 
reverse-direction flow after the FIN packet, a flow end can be deter-mined. Further, since 
the TCP is used in bidirectional com-munication, the forward- and reverse-direction flows 
can be used as a pair to determine a flow end. Namely, if the end of a flow is detected, a 
process rule corresponding to the reverse-direction flow of the flow can also be determined 
to be unnec-essary. Alternatively, a communication end can also be deter-mined when a 
predetermined time elapses after reception of a SYN packet and a timeout is determined. 
Still alternatively, a communication end can be determined by reception of a RST packet. 
These methods will be described in more detail later as specific examples.”) 
 
Uchida at [0050] (“The flow end check unit can use at least one of a TCP (Transmission 
Control Protocol) FIN flag, RST flag, and SYN flag extracted by the end determination 
information extraction unit to determine a flow end.”) 
 
Uchida at [0055] (“In the process rule update method, a flow end can be determined by at 
least one of a TCP (Transmission Control Protocol) FIN flag, RST flag, and SYN flag.”) 
 
Uchida at [0102] (“Next, specific examples 1 to 3 will be described. In the examples 1 to 3, 
a flow end is determined by combining features of the above individual exemplary 
embodiments and using TCP (Transmission Control Protocol) flags.”) 
 
Uchida at [0103] (“FIG. 6 is a state transition diagram of TCP connec-tion. "CLOSED" at 
the top of FIG. 6 represents the end of TCP communication, and portions connected thereto 
repre-sent states prior to the end of TCP communication. Approxi-mately 2MSL (MSL: 
Maximum Segment Lifetime) is the maximum amount of time required to reach the above 
"CLOSED," that is, if the packet forwarding apparatus stands by for approximately 2MSL 
after both FINs flow, the above "CLOSED" is reached. Thus, after a FIN is confirmed in 
either direction, if this 2MSL elapses, basically, a communi-cation end can be determined. 
Even if the state does not change smoothly because of packet loss or the like (for example, 
even if an ACK packet does not arrive after "CLOS-ING"), a retransmitted packet is 
forwarded immediately after this 2MSL. Thus, the end of TCP communication can be Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1091 of 1100



214 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
determined if a new FIN packet is not received within the time corresponding to the 2MSL 
and a margin (2MSL+a) at long-est.”) 
 
Uchida at [0104] (“Hereinafter, the description will be made, assuming that a packet 
forwarding apparatus Cl according to the present invention relays TCP communication 
between a com-puter (client) Dl 0 and a server D20 that use network configu-rations 
illustrated in FIG. 7. In the example of FIG. 7, the computer Dl0 belongs to a network 
represented by 192.168. 0./24 and is set by 192.168.0.10. The server D20 belongs to a 
network represented by 192.168.1./24 and is set by 192.168. 1.10. As in the case of the 
OpenFlow controller described in Non-Patent Documents 1 and 2, a control apparatus ( 
control-ler) Dl is connected to the packet forwarding apparatus Cl via a dedicated channel 
and manages connection between the two networks. In the following description, the control 
appa-ratus (controller) Dl controls the packet forwarding appara-tus Cl so that connection 
from other networks appears as communication from network number 1 (192.168.1.1) of the 
respective networks (see process rule actions in FIG. 19). In addition, in the present specific 
example, since FIN packets are monitored, the end determination information extraction 
unit Cl 7 monitors a protocol stack, including: fields in which the TCP is determined; and 
the FIN flag in the TCP header.”) 
  
Uchida at [0105] (“FIG. 8 is a flow chart of a flow end determination process using FIN 
flags. In FIG. 8, steps relating to a timeout determination are added to steps Slll to S116 in 
the flow chart in FIG. 3. Thus, the flow chart in FIG. 8 includes more detailed steps than the 
flow chart of FIG. 3. Hereinafter, operations will be described with reference to FIGS. 3, 6, 
and 8 and FIGS. 9 to 13. In practice, prior to TCP/IP communi-cation, ARP (Address 
Resolution Protocol) communication is executed, and a process rule may be set in that stage. 
However, for ease of description, description of the ARP communication will be omitted. 
The following description will be made based on communication at the TCP/IP level.”) 
 
Uchida at [0106] (“First, the computer Dl0 starts communication with the server D20. For 
an initial establishment of communica-tion, a packet (SYN) is inputted to the packet 
forwarding apparatus Cl (start of ACTIVE OPEN through SYN forward-ing in FIG. 6). The 
packet reception unit Cl0 receives and stores this first packet in the packet storage unit Cll 
(steps SlOl to S102 in FIG. 3).”) 
 Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1092 of 1100



215 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
Uchida at [0107] (“The packet reception unit C10 notifies the packet process information 
extraction unit C12 and the end determination information extraction unit C17 of reception 
of the packet. The packet process information extraction unit C12 refers to the packet 
storage unit C11 and extracts information such as IP source and destination information that 
is necessary to search for a process rule (step S103 in FIG. 3). Hereinafter, a process 
corresponding to steps S103 to S110 in FIG. 3 will be executed.”) 
 
Uchida at [0115] (“Upon receiving a notification that the packet has been received by the 
packet reception unit Cl 0, the end deter-mination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN flag (step S201 in 
FIG. 8).”) 
 
Uchida at [0116] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 1; the source address is 192.168. 
0.10; the destination is 192.168.1.10; and the protocol is TCP (the type is Ox0006)) and 
stands by until forwarding of the packet. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a process rule to be deleted 
from the packet storage unit Cll. Since the IP address is replaced, the extracted information 
for identifying a process rule to be deleted represents that the source address is 192.168.1.1; 
the destination is 192.168.1.1 0; and the protocol is TCP (the type is 0x0006). The 
information is used for marking of the reverse flow. The end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the FIN 
packet has been received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0117] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203). These steps correspond to 
steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0121] (“Next, after an ACK reply in response to the FIN packet from the 
computer DlO is forwarded from the server D20 in the same way as the above normal Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1093 of 1100



216 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
packet (start of PASSIVE CLOSE in FIG. 6), the server D20 transmits a FIN packet to the 
computer DlO. When this FIN packet is inputted to the packet forwarding apparatus Cl, the 
flow end determi-nation process from steps Slll to S116 is started, as in the case of the 
above start of ACTIVE CLOSE.”) 
 
Uchida at [0122] (“Upon receiving a notification that the packet has been received from the 
packet reception unit Cl0, the end determination information extraction unit Cl 7 refers to 
the packet storage unit Cll, monitors a TCP FIN flag, and finds a FIN packet (step S201 in 
FIG. 8).”) 
 
Uchida at [0123] (“Since a FIN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for 
identifying a modified process rule represents that the source address is 192.168.1. 10; the 
destination is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is 
used for marking of the reverse flow. The end determination information extrac-tion unit Cl 
7 notifies the flow end check unit C18 of the notification that the FIN packet has been 
received and these items of information (step S202 in FIG. 8).”) 
 
Uchida at [0124] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether or not a FIN 
flag is set in a predetermined packet header position (step S203 in FIG. 8). These steps 
correspond to steps Slll to S114 in FIG. 3.”) 
 
Uchida at [0125] (“At this point, since a FIN packet has been transmit-ted, the flow end 
check unit C18 uses the information for identifying a process rule to be deleted as a key, 
extracts the process rule (process rule corresponding to ingress port 2 in FIG. 11) from the 
process rule storage unit C13, and marks a FIN packet reception flag (steps S204 to S205 in Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1094 of 1100



217 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
FIG. 8). This process corresponds to the internal state update process in step S115 in FIG. 
3.”) 
 
Uchida at [0134] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there are two cases where "CLOSED" at the top of FIG. 6 is reached without a state 
transition involving FIN flags. One case arises when the ses-sion is closed from 
SYN_SENT, which is reached when a SYN packet in which a SYN flag is marked is 
transmitted. The other case arises when a timeout is generated. In such case, while the 
packet forwarding apparatus cannot monitor the closed session, the packet forwarding 
apparatus can con-firm a timeout in the following way. In the present specific example, a 
flow end is determined by this timeout.”) 
 
Uchida at [0135] (“n the present specific example, if a SYN/ ACK packet does not flow in a 
direction opposite to the SYN packet flow direction within a predetermined time (from 
"SYN_ RCVD" to "SYN_SENT" in FIG. 6), a timeout is determined.”) 
 
Uchida at [0136] (“FIG. 14 is a flow chart illustrating a flow end deter-mination process 
using a SYN flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the dif-ference.”) 
 
Uchida at [0137] (“In FIG. 14, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage, unit Cll, monitors a TCP SYN flag, and finds a SYN 
packet (step S301 in FIG. 14).”) 
 
Uchida at [0138] (“Since a SYN flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox.0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted by the packet forwarding unit C16, the end deter-mination information 
extraction unit Cl 7 further extracts information for identifying a modified process rule from 
the packet storage unit Cll. Since the IP address is replaced, the extracted information for Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1095 of 1100



218 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
identifying a process rule repre-sents that the source address is 192.168.1.10; the destination 
is 192.168.0.10; and the protocol is TCP (the type is 0x0006). The information is used for 
marking of the reverse flow. The end determination information extraction unit Cl 7 notifies 
the flow end check unit C18 of the notification that the SYN packet has been received and 
these items of information (step S302 in FIG. 14).”) 
 
Uchida at [0139] (“Upon receiving the above information from the end determination 
information extraction unit Cl 7, the flow end check unit C18 checks whether a SYN flag is 
set in a prede-termined packet header position and an ACK flag is not marked (step S303 in 
FIG. 14). These steps correspond to steps Slll to S114 in FIG. 3.”)  
 
Uchida at [0148] (“ Next, a third specific example in which a flow end determination is 
executed by using a TCP RST (reset) flag will be described.”) 
 
Uchida at [0149] (“Referring back to the state transition diagram of TCP connection in FIG. 
6, there is a transition from "SYN_ RCVD," which is a communication establishment 
standby state, to "LISTEN," which is a communication standby state. A TCP RST (reset) 
flag signifies release of connection and retry of communication. Namely, since a RST 
packet in which this RST flag is set signifies invalidation of communi-cation, by detecting 
this RST flag, a flow end can be deter-mined.”) 
 
Uchida at [0150] (“FIG. 16 is a first flow chart illustrating a flow end determination process 
using a RST flag. Since the basic operations are the same as those of the above specific 
example 1, the following description will be made with a focus on the difference.”) 
 
Uchida at [0151] (“In FIG. 16, upon receiving a notification that the packet has been 
received by the packet reception unit ClO, the end determination information extraction unit 
Cl 7 refers to the packet storage unit Cll, monitors a TCP RST flag, and finds a RST packet 
(step S401 in FIG. 16).”) 
 
Uchida at [0152] (“Since a RST flag is set, the end determination infor-mation extraction 
unit Cl 7 determines that the packet includes information necessary for determining a flow 
end. Thus, the end determination information extraction unit Cl 7 extracts information for 
identifying a process rule to be deleted (the ingress port is 2; the source address is 192.168. Orckit Exhibit 2018 

Cisco Systems v. Orckit Corp. 
IPR2023-00554, Page 1096 of 1100



219 

No. ʼ111 Patent Claim 17 Cisco IWAN System 
1.10; the destination is 192.168.1.1; and the protocol is TCP (the type is Ox0006)) and 
stands by until the packet is trans-mitted. Upon receiving a notification that the packet has 
been transmitted from the packet forwarding unit C16, the end determination information 
extraction unit Cl 7 notifies the flow end check unit C18 of the notification that the RST 
packet has been received and these items of information ( step S402 in FIG. 16).”) 
 
Uchida at [0164] (“For example, in a specific example of the present invention, certain TCP 
flags are monitored. A single packet forwarding apparatus can monitor these flags in a 
parallel fashion. For example, after a packet that triggers a flow end is detected, the above 
process may be allowed to branch to the above FIGS. 8, 14, and 16 (17) to realize parallel 
monitoring.”) 
 
 

 
No. ʼ111 Patent Claim 18 Cisco IWAN System 

18[a] The method according 
to claim 1, wherein the 
packet comprises 
distinct header and 
payload fields,  

Cisco IWAN System discloses the method according to claim 1, wherein the packet 
comprises distinct header and payload fields. 
 
See supra at Claim 1, 15[a]. 
 

18[b] the header comprises 
at least the first and 
second entities 
addresses in the packet 
network, and  

Cisco IWAN System discloses the header comprises at least the first and second entities 
addresses in the packet network. 
 
For example, Cisco IWAN System discloses data traffic with IP addresses to forward the 
traffic flow. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1097 of 1100



220 

No. ʼ111 Patent Claim 18 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1098 of 1100



221 

No. ʼ111 Patent Claim 18 Cisco IWAN System 

 
 

18[c] wherein the packet-
applicable criterion is 
that the first entity 
address, the second 
entity address, or both 
match a predetermined 
address or addresses.  

Cisco IWAN System discloses wherein the packet-applicable criterion is that the first entity 
address, the second entity address, or both match a predetermined address or addresses. 
 
For example, Cisco IWAN System discloses IP prefixes, such as IP addresses, as an 
identifying characteristic of traffic classes in a traffic policy. 
 
Cisco IWAN 
 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1099 of 1100



222 

No. ʼ111 Patent Claim 18 Cisco IWAN System 

 
Cisco IWAN - Uncompromised Experience 

Orckit Exhibit 2018 
Cisco Systems v. Orckit Corp. 

IPR2023-00554, Page 1100 of 1100




